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Abstract 

Synaptic N-Methyl-D-aspartate receptors (NMDARs) are crucial for neural coding 

and plasticity. However, little is known about the adaptive function of extrasynaptic 

NMDARs located on the dendritic shaft. Here we find that in CA1 pyramidal neurons 

backpropagating action potentials (bAPs) recruit shaft NMDARs exposed to ambient 

glutamate of non-vesicular origin. In contrast, spine NMDARs are "protected" under 

baseline conditions from such glutamate by perisynaptic transporters: bAP-evoked 

Ca2+ entry through these receptors can be detected upon synaptic glutamate release 

or local glutamate uncaging. During theta-burst firing, NMDAR-dependent Ca2+ entry 

either upregulates or downregulates an h-channel conductance (Gh) of the cell 

depending on whether synaptic glutamate release is intact or blocked. Gh plasticity in 

turn regulates dendritic input probed by local glutamate uncaging. Thus, the balance 

between activation of synaptic and extrasynaptic NMDARs can determine the sign of 

Gh-dependent plasticity. These results uncover a novel meta-plasticity mechanism 

potentially important for neural coding and memory formation.  
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Chapter 1: Introduction 

Brain functions, such as learning, memory and consciousness, are based on 

information processing at cellular and molecular levels. The computational units for 

such processing have been suggested to be synapses. Synapses are specialized 

structures where two neurons communicate. Presynaptic neurons can release signal 

molecules into synaptic clefts from axonal terminals, and these molecules then bind 

with their receptors on adjacent postsynaptic membrane (Fig. 1.1a). There are more 

than 100 trillion (1014) connections of this type in the human neocortex (Pakkenberg 

et al., 2003). They link neurons into complex circuits and networks which make it 

possible for the human brain to compute and deal with diverse tasks. The 

communication between neurons, however, is not limited to point-to-point synaptic 

wiring. Diffusive chemical signals also allow communication between neurons that 

are not connected by synapses between them.  

The diffusive chemicals were thought to be only include neuromodulators, such 

as dopamine, serotonin, and norepinephrine etc (Vizi, 2000; Vizi et al., 2004). These, 

unlike fast neurotransmitters, e.g. glutamate and γ-aminobutyric acid (GABA), are 

released from axonal boutons without an associated specialized synaptic structure. 

After being released, they can diffuse a considerable distance, and act on their 

receptors before being removed by uptake. Therefore, they can serve as signalling 

molecules that mediate the communication between cells without any synaptic 

connections (Fig. 1.1b). This type of signal transmission is called “volume 

transmission” because communication takes place within a large volume. On the 
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other hand, fast neurotransmitters were considered only to mediate point-to-point 

synaptic communication. They are released into the narrow synaptic cleft and then 

cleared within a confined space and time. Thus they are unlikely to play a role in 

“volume transmission”. However, when fast neurotransmitters are released during 

high synaptic activity, they can escape the synaptic cleft (this is termed “spillout”) 

and spill into the extrasynaptic space (Kullmann et al., 2005). When the 

concentration in the extrasynaptic space reaches a certain threshold, they can 

activate extrasynaptic receptors (Fig. 1.1c). Therefore, fast neurotransmitters may 

also work as signalling molecules in volume transmission-like extrasynaptic 

communication (Okubo and Iino, 2011). 
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Figure 1.1 Neuronal communications via diffusive chemical signals  

a, A typical view of neuronal communications via point-to-point synaptic 
connections. The boxed region indicates a typical glutamatergic synapse. 
Neurotransmitters (pink) are released by presynaptic boutons (green) and act 
on the immediate postsynaptic membrane (blue). The red arrow indicates the 
direction of information flow. b, A scheme for “volume transmission”. 
Neuromodulators (orange) are released via a bouton (brown) without 
specialized postsynaptic targets and act on several dendrites (blue). The 
information can flow from one source to multiple targets. c, A scheme for a 
“volume transmission-like” neuronal communication mediated by spillout of 
fast neurotransmitters from the synaptic clefts during higher synaptic activities. 
The information flow extends from one-to-one to one-to-multiple manner. Red 
arrows with dash-lines indicate the information flow mediated by “spillout”. 
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Besides synaptic spillout, the sources of extrasynaptic signalling molecules also 

include non-synaptic neuronal and astrocytic release (Malarkey and Parpura, 2008). 

The diverse agonist sources and the spatially distributed receptors make 

extrasynaptic communication more complicated than initially thought. Only in recent 

years, have researchers started to investigate this type of communication in detail, 

finding that extrasynaptic signalling indeed plays crucial roles in neuronal functions 

and dysfunctions. Extrasynaptic signals can potentially interact with synaptic 

networks. In addition to modulation, this interaction may also guide the information 

flows of the synaptic networks (Semyanov, 2008). Thus, they can be as important as 

synaptic communication for network activity. 

This study focuses on glutamatergic extrasynaptic communication carried out by 

N-Methyl-D-aspartate receptors (NMDARs) in Cornu Ammonis 1 (CA1) pyramidal 

neurons of the rodent hippocampus. The main purpose of the study is to understand 

when and how extrasynaptic NMDARs are activated under physiological conditions, 

and the consequences of such activation. I will first discuss the properties of the 

NMDAR and how it is activated, before outlining the mechanisms that underlie 

subunit- and location-dependent downstream signalling of NMDARs. Basic 

knowledge of NMDARs and sources of extrasynaptic glutamate will be also discussed. 

Finally, I will explain how NMDARs detect the dynamics of extrasynaptic glutamate 

release from a variety of sources, providing a potential non-synaptic wiring between 

neurons and astrocytes. 
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1.1. The properties of the N-methyl-D-aspartate receptor (NMDAR) 

Glutamate is the main excitatory neurotransmitter that mediates fast synaptic 

transmission in the mammalian brain. When glutamate is released from presynaptic 

terminals, mainly two types of glutamate receptors are activated: α–amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) and 

NMDARs. Both AMPARs and NMDARs are ionotropic glutamate receptors. Upon 

AMPAR activation sodium (Na+) and potassium (K+) ions can pass through the 

channels and produce excitatory postsynaptic potentials (EPSPs). Unlike AMPARs, 

which are typically calcium impermeable, NMDARs are highly calcium (Ca2+) 

permeable. Besides, NMDARs display several other special properties. They are 

voltage-dependently blocked by extracellular magnesium (Mg2+), and have unique 

slow channel activation and deactivation kinetics. Activation of NMDARs also 

requires binding of co-agonists, such as glycine and D-serine. These peculiar features 

make NMDARs ideal for a variety of functions, such as brain development, cognition, 

learning and memory (Cull-Candy et al., 2001). Because of their high Ca2+ 

permeability, dysfunction and excessive activation of NMDARs also result in 

neurotoxicity and lead to neuronal death in many diseases including epilepsy, 

Huntington's, Parkinson’s, and Alzheimer’s diseases (Lau and Zukin, 2007). 
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1.1.1. Subunit composition and structure of NMDARs 

There are three main subunit families for NMDARs, designated GluN1, GluN2, 

and GluN3. Among them, GluN1 has eight isoforms encoded by the same gene with 

variant alternative splicing; GluN2 subunits have four subtypes: GluN2A, -2B, -2C, 

and -2D, whereas GluN3 subunits have two (GluN3A and GluN3B) (Cull-Candy and 

Leszkiewicz, 2004). The ligand for GluN1 and GluN3 subunits is glycine, whereas 

GluN2 subunits bind glutamate. A functional NMDAR is most frequently a 

diheteromeric receptor of two identical GluN1 and two identical GluN2 subunits 

(dimer of dimers). Triheteromeric receptors composed of two GluN1 with two 

different GluN2, or with GluN3 subunits are also observed in native brain tissue(Cull-

Candy and Leszkiewicz, 2004; Low and Wee, 2010) (fig 1.2a). Each NMDAR subunit 

includes four main parts: (1) an extracellular amino-terminal domain (NTD) which 

serves as the allosteric modulation site for Zn2+ and ifenprodil in the GluN2 subunits; 

(2) a transmembrane domain consisting of three membrane-spanning regions 

(M1,M3, and M4) and a channel pore forming re-entry loop (M2); (3) an agonist 

binding domain (ABD) formed by the remaining part of extracellular NTD (named S1) 

and the loop between M3 and M4 (named S2); (4) a cytoplasmic carboxyl-terminal 

domain (CTD) which interacts with scaffold proteins, cytoskeletons, and various 

downstream signalling pathways (Fig. 1.2b) (Cull-Candy and Leszkiewicz, 2004; Low 

and Wee, 2010). 
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Figure 1.2 Subunit assemblies and topology of GluN1-GluN2 NMDAR  

a, The scheme of subunit assemblies of NMDARs. Both diheteromeric (a1) and 
triheteromeric (a2) receptors are formed in native neurons. b, The topology 
scheme of GluN1 and GluN2 subunits. NMDAR is a cation channel and is 
permeable to K+, Na+ and Ca2+. The binding sites for agonists (glutamate, 
NMDA), co-agonists (glycine, D-serine)(black), antagonist (APV, NVP-AMM007, 
and PPDA)(red), pore blockers (Mg2+ and MK-801)(green) and modulators (H+, 
ifenprodil, Ro 25-6981, and Zn2+)(blue) are indicated. NTD denotes amino-
terminal domain; CTD denotes carboxyl terminal domain.  
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1.1.2. NMDAR properties depend on subunit composition 

The majority of NMDARs are diheteromeric receptors, which are composed of 

GluN1 and GluN2 subunits. The subtype of the GluN2 subunit largely determines the 

single channel properties of NMDARs. First, it was shown in a recombinant system 

that GluN2A and GluN2B-containing NMDARs exhibit high single channel 

conductance (40-50 pS), while GluN2C and GluN2D-containing NMDARs have lower 

conductance (16-35 pS) (Cull-Candy and Leszkiewicz, 2004). Secondly, GluN2A- and 

GluN2B-containing receptors display a higher sensitivity to Mg2+ block than GluN2C- 

and GluN2D-containing NMDARs (Farrant et al., 1994; Momiyama et al., 1996; Wyllie 

et al., 1998). The time required for Mg2+ to leave the channel pore (unblocking rate) 

during membrane depolarization is also different within GluN2 subtypes (Clarke and 

Johnson, 2006). GluN2A- and GluN2B-containing receptor show a slow and delayed 

Mg2+ unblocking rate compared to GluN2C- and GluN2D-containing receptors, which 

show almost instantaneous Mg2+ unblock upon membrane depolarization (Clarke 

and Johnson, 2006; Vargas-Caballero and Robinson, 2003). Such differences might 

result in subunit-dependent sensing of depolarization events: GluN2C- and GluN2D-

containing NMDARs might sense fast events like bAPs, while GluN2A- and GluN2B-

containing ones sense slower event like EPSPs more efficiently (Kampa et al., 2004). 

Thirdly, the deactivation and inactivation time constants also vary in different 

subtypes. The GluN1/GluN2A-containing receptor shows deactivation and 

inactivation time constants within a range of several milliseconds, whereas the 

GluN1/GluN2D-containing receptor shows exceptionally slow deactivation time 
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constant (4 to 5 seconds) (Cull-Candy and Leszkiewicz, 2004; Wyllie et al., 1998) and 

almost no inactivation when it binds to a low concentration of glutamate (Wyllie et 

al., 1998). Therefore, the timing for synaptic NMDAR currents in the central nervous 

system (CNS) can be decisively determined by the GluN2 subunit composition in 

different synapses. 

Fourthly, GluN2 subtypes display distinct pharmacological properties. A number 

of pharmacological tools were developed to distinguish the physiological functions 

between GluN2 subtypes. Ifenprodil, and its analogue, Ro 25-6981, bind to the NTD 

of GluN2B subunit, and allosterically modulate the GluN2B-containing NMDARs in an 

activity-dependent manner (Fig. 1.2b) (Fischer et al., 1997; Williams, 1993). NVP-

AAM007 is a GluN2A-containing receptor antagonist (Liu et al., 2004). [±]-cis-1-

[phenanthren-2yl-carbonyl]piperazine-2,3-dicarboxylic acid (PPDA) and the recently 

developed (2R*,3S*)-1-(phenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid 

(UBP141) selectively block GluN2C- and GluN2D-containing receptors, though the 

selectivity is still not good enough (selectivity 10-fold over GluN2A and GluN2B) 

(Costa et al., 2009; Feng et al., 2004; Lozovaya et al., 2004b; Paoletti and Neyton, 

2007). Notably, a recently developed GluN2C and GluN2D-selective potentiator, 3-

chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-

dihydroisoquinolin-2(1H)-yl)methanone (CIQ), and non-competitive antagonists, 

quinazolin-4-one derivatives, show great improvement in selectivity over PPDA and 

UBP141 (Mosley et al., 2010; Mullasseril et al., 2010). Many important discoveries of 

NMDAR subunit-dependent properties and functions are actually based on using 
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these pharmacological tools. For example, GluN2A activation causes LTP while 

GluN2B activation triggers LTD (Liu et al., 2004). The subcellular locations of NMDARs 

are also functionally distinguished by using these antagonists/blockers. In adult 

cortical neurons, GluN1/GluN2A-containing receptors are predominantly localized in 

postsynaptic densities (Tovar and Westbrook, 1999), whereas GluN1/GluN2B-

containing receptors are shown to be present in both synaptic and extrasynaptic 

regions (Li et al., 1998). Recent evidence further indicates the restricted expression 

of GluN2D-containing receptors in the extrasynaptic membrane in hippocampal CA1 

and dentate gyrus areas (Harney et al., 2008; Lozovaya et al., 2004b). 

Besides assemblies of two GluN1s with two identical GluN2s, triheteromeric 

NMDARs also exist. GluN1/GluN2A/GluN2B-, GluN1/GluN2A/GluN2D-, and 

GluN1/GluN2B/GluN2D-containing NMDARs have been shown to be expressed in 

different cell types (Brickley et al., 2003; Dingledine et al., 1999) (Fig. 1.2a). 

Triheteromeric NMDARs composed of GluN1/GluN2B/GluN2C and 

GluN1/GluN2A/GluN2C have also been identified (Cull-Candy and Leszkiewicz, 2004). 

They display different biophysical properties compared to those diheteromeric 

NMDARs described above. The different assemblies further increase the diversity of 

functional NMDARs, which control a broad spectrum of physiological events by their 

activation. 
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1.1.3. Mechanisms of NMDAR activation: agonist, co-agonist, and depolarization 

Although NMDA receptors are considered glutamate receptors, activation of 

NMDARs requires other critical criteria besides binding of glutamate: 

First, activation of NMDA receptors requires the binding of co-agonists glycine 

(Johnson and Ascher, 1987; Kleckner and Dingledine, 1988) or D-serine (Schell et al., 

1995; Shleper et al., 2005) to its glycine-binding site on the GluN1 subunit (Fig. 

1.3a). Glycine was previously thought to be the endogenous ligand for NMDARs 

(Johnson and Ascher, 1987). However, its concentration in hippocampal synapses is 

maintained by glycine transporters at a level that is too low to bind to many 

NMDARs (Xu and Gong, 2010). Instead, D-serine is considered as the endogenous 

ligand for the glycine-binding site (Mothet et al., 2000). It can be locally released 

into the synapse from astrocytes and modulate synaptic NMDAR activity 

(Henneberger et al., 2010; Yang et al., 2003). Therefore, the glycine-binding site of 

NMDARs can serve as a detector for the integrated activity of neuron and glia. 

Secondly, the voltage-sensitive block of NMDARs by extracellular Mg2+ is a 

fundamental property (Cull-Candy and Leszkiewicz, 2004; Nowak et al., 1984). At 

resting membrane potential, even if the agonist and co-agonist are bound to 

NMDARs, there is only a small current flux. However, with the aid of depolarizing 

events like EPSPs and action potentials, NMDARs can produce remarkable Ca2+ influx 

when bound with agonists. When glutamate is released in large quantities, 

depolarization caused by the NMDAR itself can also relieve the Mg2+ block and 
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further trigger NMDAR-dependent regenerative spikes in the dendrites of cortical 

pyramidal cells (Schiller et al., 2000). Therefore, the voltage dependence enables 

NMDARs to serve as coincidence detectors of agonist binding and membrane 

depolarization (Fig. 1.3b). 

In conclusion, glutamate, co-agonist (glycine or D-serine), and depolarization are 

the essential three components for NMDAR activation (Fig. 1.3). The different 

temporal and spatial interactions between release of glutamate and D-serine and 

membrane depolarizing events can thus provide a variety of combinations of 

paradigms for the activation of NMDARs, which differentially trigger Ca2+ influx and 

activate diverse downstream signalling cascades. For example, NMDAR activation 

induced by high frequency synaptic stimulation can trigger long-term potentiation 

(LTP) of synaptic currents, while low frequency stimulation results in long-term 

depression (LTD) (Helmchen, 2002; Zucker, 1999). The classical spike-timing 

dependent plasticity (STDP) is also caused by differential activation of NMDARs 

under different temporal interactions between presynaptic release of glutamate and 

postsynaptic action potentials (Dan and Poo, 2006; Kampa et al., 2007). 
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Figure 1.3 NMDAR activation depends on the presence of agonist, co-agonist 
and depolarization 

a, Activation of NMDA receptors requires the binding of agonist (glutamate) 
and co-agonists (glycine or D-serine), which is controlled by neuronal and 
astrocytic release mechanisms, as well as transporter systems. However, 
without depolarization to relieve voltage-dependent Mg2+ block of NMDAR, 
ions cannot pass through. b, When binding with agonist and co-agonist, 
neuronal activities (e.g. action potentials (APs), and EPSPs) which depolarize 
the membrane can relieve the Mg2+ block and allow influx and efflux of ions. 
Red arrows in both a and b indicate the possible ways (black texts) for 
modulating the three key components of NMDAR activation.  
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1.1.4.  Subcellular localization: Synaptic and extrasynaptic NMDARs 

Most of our understanding about the role of NMDARs concentrates on those 

located in synapses, where they are confined to the area of post-synaptic densities 

(PSD). Here, they are structurally organized in a protein complex containing scaffold 

proteins, adaptors, and downstream signalling molecules (Husi et al., 2000; Newpher 

and Ehlers, 2008; Newpher and Ehlers, 2009; Rebola et al., 2010). However, evidence 

from electron microscopy (EM) and single molecule tracking demonstrated that 

NMDARs can be found not only in synapses but also in extrasynaptic areas, i.e. 

beyond the region of PSD (Groc et al., 2009; Newpher and Ehlers, 2008; Petralia et 

al., 2010). Because excitatory synapses are exclusively located on dendritic spines in 

adult cortical and hippocampal pyramidal neurons (Sheng and Hoogenraad, 2007), 

NMDARs which were observed on dendritic shafts are considered as extrasynaptic 

receptors (Petralia et al., 2010). Electrophysiological approaches also showed the 

existence of extrasynaptic NMDARs in different cell types by functionally defining 

extrasynaptic NMDARs as receptors not activated by glutamate released during low-

frequency synaptic events (Brickley et al., 2003; Fellin et al., 2004; Harney et al., 

2008; Lozovaya et al., 2004b; Tovar and Westbrook, 1999). Although the density of 

NMDARs in extrasynaptic regions is much less than in synapses, they represent two 

thirds of the total NMDAR population during early development, and still make up 

one third in adult rodents (Groc et al., 2009). Considering the existence of such a 

high number of extrasynaptic NMDARs, disproportionately little is known about their 

physiological functions. 
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1.1.5. Downstream signalling of extrasynaptic NMDARs 

The downstream signalling pathways of extrasynaptic NMDARs are different 

from those of synaptic ones. Synaptic NMDAR activation induces cAMP response 

element binding protein (CREB) activity and brain-derived neurotrophic factor (BDNF) 

gene expression, whereas extrasynaptic NMDAR activation triggers CREB shut-off 

pathway and blocks BDNF expression (Hardingham et al., 2002). Also, synaptic and 

extrasynaptic NMDARs have opposite roles on the regulation of extracellular signal-

regulated kinases (ERKs) (Ivanov et al., 2006; Kim et al., 2005). Recent studies also 

show that the balance between synaptic versus extrasynaptic NMDA receptor 

activity plays a crucial role in modulating mutant huntingtin protein and the 

production of amyloid-β peptide (Aβ) in Huntington's and Alzheimer’s diseases, 

respectively (Bordji et al., 2010; Milnerwood et al., 2010; Milnerwood and Raymond, 

2010; Okamoto et al., 2009). 

Selective activation of synaptic and extrasynaptic NMDARs can also bi-

directionally regulate neuronal excitability. Activation of extrasynaptic but not 

synaptic NMDARs triggers unclustering and dephosphorylation of the delayed-

rectifier voltage-gated potassium channel, Kv2.1, which changes intrinsic neuronal 

excitability (Mulholland et al., 2008). Moreover, selective activation of extrasynaptic 

NMDARs also triggers dephosphorylation of the A-type potassium channel, Kv4.2, 

and decreases synaptic strength in hippocampal neurons. In contrast, driving 

synaptic activity increases phosphorylation and internalization of Kv4.2 which results 
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in increasing cell excitability and synaptic strength (Hammond et al., 2008; Kim et al., 

2007; Kim et al., 2008; Lei et al., 2009; Mulholland and Chandler, 2009). 

The underlying mechanisms for such different downstream signalling are still not 

well understood. Two possible mechanisms, or a combination of them, were 

proposed. First, the subunit composition of the receptors is different from synaptic 

to extrasynaptic NMDARs. For example, in adult cortical neurons, GluN2A-containing 

NMDARs are predominantly localized in PSDs (Tovar and Westbrook, 1999), whereas 

GluN2B-containing NMDARs are shown to be present in both synaptic and 

extrasynaptic regions (Li et al., 1998). A restricted expression pattern of GluN2D-

containing receptors in the extrasynaptic membrane was also demonstrated (Harney 

et al., 2008; Lozovaya et al., 2004b). Because the GluN2 subunits have different 

molecular identities and structural differences on their CTDs, they bind with 

different scaffold proteins and adaptors, and hence activate specific downstream 

signalling machineries.  

Secondly, the NMDARs with the same subunit composition can link to different 

scaffold proteins. The major group of NMDAR-associated scaffold proteins, 

membrane-associated guanylate kinases (MAGUKs) were shown to locate differently 

in synapses and extrasynaptic areas. For example, PSD-95 is mainly and stably 

located in synapses, while SAP102 shows a broader distribution with peak 

localization further away from PSDs (Zheng et al., 2010). EM studies also showed 

that SAP102 labelling density and frequency were higher in dendrites and lower in 

spines compared to PSD-93/95 (Petralia et al., 2010). GIPC (GAIP-interacting protein, 
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C terminus), a novel NMDAR interacting protein, was shown to be excluded from 

synapses and preferentially associated with extrasynaptic NMDARs (Yi et al., 2007). 

These scaffold proteins then further link NMDARs to different downstream signalling 

protein complexes. The mechanisms determining the location of NMDARs with the 

same subunit composition are still unclear. Different phosphorylation of tyrosine 

residues of CTDs is one of the possibilities (Goebel-Goody et al., 2009).  

In conclusion, these observations suggest that the specific responses of NMDAR 

activation can be determined not only by their molecular identities, but also by their 

localizations. 

 

1.1.6. Functions of extrasynaptic NMDAR activation 

It was hypothesized that extrasynaptic NMDARs are non-functioning, and form a 

reserve pool for synaptic NMDARs. However, since the diverse extrasynaptic 

NMDAR-mediated downstream signalling pathways were observed, more functions 

are being proposed (Groc et al., 2009). Most of the studies consider activation of 

extrasynaptic NMDARs as a pathological process. It is thought to trigger 

excitotoxicity and neuronal death as the consequence of pathological neuronal 

activity and excessive glutamate release. These processes were shown to contribute 

to neuronal death in neurological disorders, such as Huntington’s disease and stroke 

(Hardingham and Bading, 2010). However, it is not difficult to infer that triggering 

neuronal death should not be the major function of extrasynaptic NMDARs. Indeed, 
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in the rat/mouse brain during early postnatal development, extrasynaptic NMDARs 

play the major role in generating slow network oscillations (Ben-Ari, 2001). In adults, 

the balance between activation of extrasynaptic NMDARs and GABAARs on 

interneurons controls the frequency of hippocampal gamma oscillations (Mann and 

Mody, 2010). GluN2B-containg NMDARs, which are localized to mainly extrasynaptic 

areas, can detect glutamate arising from multiple synaptic releases (Chalifoux and 

Carter, 2011; Scimemi et al., 2004). They can also detect glutamate released from 

astrocytes and promote synchronized neuronal activity in hippocampal CA1 

pyramidal neurons (Fellin et al., 2004).  

Together, the evidence leads us to hypothesize that the major function of 

extrasynaptic NMDARs is to sense global glutamate signals generated from 

population activity of neurons and astrocytes. Nevertheless, the detailed 

mechanisms as well as the potential sources of extrasynaptic glutamate are still not 

well studied. In the next paragraph, I discuss the possible sources of glutamate that 

contribute to the activation of extrasynaptic NMDARs. 

 

1.2. Sources of extrasynaptic glutamate 

Glutamate is the most common and important excitatory neurotransmitter that 

mediates synaptic signalling in the synaptic clefts of the mammalian brain. 

Nevertheless, it is also present in extrasynaptic regions. Glutamate reaching 
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extrasynaptic regions mainly comes from two sources, i.e. neuronal and astrocytic 

release. 

1.2.1. Neuronal origin of extrasynaptic glutamate  

1.2.1.1. Glutamate spillover 

Extrasynaptic glutamate mainly originates from synaptic vesicular release and 

then spill out from the synaptic cleft. Glutamate usually is released into the synaptic 

cleft and rapidly cleared from the cleft by diffusion and uptake (Diamond and Jahr, 

1997; Tong and Jahr, 1994). Its concentration profile in the synapse is tightly 

controlled by neuronal and astrocytic glutamate transporters. (Asztely et al., 1997; 

Diamond and Jahr, 2000; Rusakov and Kullmann, 1998). Therefore, glutamate 

released by a single action potential from boutons of a same neuron cannot diffuse 

out of the synaptic cleft (Arnth-Jensen et al., 2002). However, under several 

circumstances, glutamate can spill out of synapses and increase its concentration in 

extrasynaptic regions or even activate receptors at neighbouring synapses. This 

phenomenon is generally referred to as “glutamate spillover” (Asztely et al., 1997). 

First, when glutamate is released synchronously from multiple axons, even under 

low frequency it can cooperatively activate NMDARs of neighbouring synapses 

through the confluence of released glutamate (Arnth-Jensen et al., 2002; Scimemi et 

al., 2004). Secondly, when glutamate is released during high frequency synaptic 

activity, it can also break through the glutamate uptake system and activate 

extrasynaptic receptors (Semyanov and Kullmann, 2000; Semyanov and Kullmann, 
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2001). This implies that the concentration of extrasynaptic glutamate can be spatially 

and temporally determined by glutamate spillover reflecting neuronal activity. 

Glutamate spillover mediates several types of synaptic modulation in many 

brain regions. In cerebellum, glutamate spillover from mossy fibre-granule cell 

synapses inhibits GABA release from GABAergic terminals of Golgi cells through 

activation of metabotropic glutamate receptors (mGluRs) (Mitchell and Silver, 2000). 

Similar heterosynaptic inhibition is also observed between hippocampal CA3-CA1 

synapses and local GABAergic inputs (Min et al., 1999; Semyanov and Kullmann, 

2000). Such heterosynaptic modulation is likely to boost the efficacy of active 

excitatory inputs by local disinhibition. Homosynaptic modulation mediated by 

glutamate spillover is also present at hippocampal mossy fiber-CA3 synapses (Min et 

al., 1998; Scanziani et al., 1997). Glutamate spill out from the synaptic cleft can 

activate extrasynaptic mGluRs on its immediate presynaptic bouton and inhibit 

subsequent glutamate release which provides a negative feedback mechanism for 

controlling synaptic transmission (Scanziani et al., 1997). A recent report showed 

that recruitment of extrasynaptic NMDARs via glutamate spillover contributes to the 

initiation of NMDA spikes in hippocampal CA1 pyramidal neurons (Chalifoux and 

Carter, 2011). These results suggest computational roles in neural circuits for 

extrasynaptic glutamate that originates from synaptic spillover. 
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1.2.1.2. Ectopic glutamate release 

Ectopic glutamate release is another neuronal origin of extrasynaptic glutamate. 

Aside from the conventional synaptic exocytosis mechanism, vesicles can also fuse 

with the plasma membrane outside synaptic zones (ectopic sites) and release 

glutamate directly into extrasynaptic regions (Matsui and Jahr, 2003). This 

phenomenon has been shown in dendrites of neocortical pyramidal cells (Zilberter, 

2000), cerebellar Purkinje cells (Shin et al., 2008a) , and mitral cells of the olfactory 

bulb (Castro and Urban, 2009; Christie and Westbrook, 2006). Ectopically released 

glutamate from the dendrite triggered by membrane depolarization can work as an 

autocrine agent that provides feedback regulation (Shin et al., 2008a), as well as 

activate neighbouring dendrites without direct synaptic connections (Castro and 

Urban, 2009; Christie and Westbrook, 2006). Ectopic glutamate release is also 

observed in cerebellar climbing fibres, olfactory receptor axons, and unmyelinated 

axons in white matter (Kukley et al., 2007; Matsui and Jahr, 2003; Thyssen et al., 

2010; Ziskin et al., 2007). Glutamate released from ectopic sites of the axon activates 

astrocytic receptors rather than neuronal receptors at extrasynaptic regions and 

triggers both electrical and calcium activity. Thus it is an important mechanism for 

neural-glial communication. 
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1.2.1.3. Summary for neuronal origins of extrasynaptic glutamate 

So far all the known neuronal sources of extrasynaptic glutamate are from 

vesicular release, synaptically and ectopically. The possible sources of extrasynaptic 

glutamate of neuronal origin are outlined in figure 1.4 b-d. Glutamate that originates 

from synaptic release reaches extrasynaptic areas only when spillover occurs. 

Spillover occurs when glutamate passes between nearby synapses during 

synchronous release (Fig. 1.4b) and when glutamate temporarily accumulates in 

extrasynaptic areas during high frequency release (Fig. 1.4c). Aside from synaptic 

spillover, direct release of glutamate into extrasynaptic regions via ectopic release 

from dendrites (Fig. 1.4d) and axons (Fig. 1.4e) is another source for extrasynaptic 

glutamate. 
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Figure 1.4 Neuronal origins of extrasynaptic glutamate  

a, Glutamate released from baseline synaptic activity only activates synaptic 
receptors. Red trace indicates the action potential that triggers glutamate 
release from one of the presynaptic cells. b and c, Spillover of glutamate can 
be induced by two ways: during synchronous release, glutamate interflows 
between spatially close synapses and activates extrasynaptic receptors (b); 
during high frequency release, glutamate can be temporally accumulated in 
the extrasynaptic region (c). d and e, Ectopic release triggered by membrane 
depolarization, e.g. EPSP (the red trace in d), or action potential (the red trace 
in e) can directly release of glutamate into extrasynaptic region from dendrite 
(d) and axon(e).  
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1.2.2. Astrocytic origin of extrasynaptic glutamate 

It has been shown in the early 1990s that, besides neurons, astrocytes can 

release glutamate and other amino acids under several pathological conditions such 

as anoxia and ischemia (Kimelberg et al., 1990; Nicholls and Attwell, 1990). 

Astrocytic glutamate release was later shown to be regulated by intracellular Ca2+ 

signalling which can be triggered by neuronal activity (Nedergaard, 1994; Parpura et 

al., 1994). Because there is no synaptic structure on the astrocytic membrane, 

glutamate released from astrocytes is considered extrasynaptic. Although the 

mechanisms underlying astrocytic glutamate release are still controversial (Hamilton 

and Attwell, 2010), they can be categorized in three major ways: 1) vesicular-

mediated exocytotic release; 2) carrier(transporter)-mediated release; and 3) 

channel-mediated release. 

1.2.2.1. Vesicular-mediated exocytotic release of glutamate 

Although it is still under debate, evidence has shown that an astrocyte contains 

small vesicles (∼30 nm in diameter) which have characteristics resembling synaptic 

vesicles in neurons (Bezzi et al., 2004). These vesicles express vesicular glutamate 

transporter 1 (VGLUT1)/VGLUT2, vesicle-associated membrane protein 2 

(VAMP2)/VAMP3, and synaptotagmin 4/5/11 (Bezzi et al., 2004; Bowser and Khakh, 

2007). VGLUTs are essential for loading glutamate into the vesicles, whereas VAMPs 

and synaptotagmins mediate Ca2+-dependent exocytosis (Araque et al., 2000; 

Marchaland et al., 2008). Furthermore, the essential elements for forming the 
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SNARE complex, synaptosomal-associated protein 25 (SNAP25)/SNAP23 and syntaxin, 

are also expressed in astrocytes, implying that astrocytes are capable of sensing 

intracellular Ca2+ triggering glutamate exocytosis. Astrocytic glutamate released into 

extrasynaptic areas in such a manner targets presynaptic mGluRs (Perea and Araque, 

2007) and NMDARs (Jourdain et al., 2007) or postsynaptic NMDARs (particularly 

GluN2B-containing NMDARs) (Angulo et al., 2004; Bezzi et al., 2004; D'Ascenzo et al., 

2007; Fellin et al., 2004; Parri et al., 2001). The activation of presynaptic mGluRs and 

NMDARs modulates the synaptic release probability (Jourdain et al., 2007; Perea and 

Araque, 2007), whereas activation of post/extrasynaptic NMDARs on neurons 

(particularly GluN2B-containing NMDARs) generates slow inward currents (SICs) 

inducing synchronous firing of neurons (Angulo et al., 2004; D'Ascenzo et al., 2007; 

Fellin et al., 2004; Parri et al., 2001). SICs were shown to be exclusively mediated by 

NMDARs but not AMPARs confirming that glutamate which mediates SICs originates 

from the extrasynaptic area. However, the detailed mechanisms underlying the SIC-

triggering release, such as the number of released vesicles and the membrane 

location at which release occurs etc., are still unclear and need to be further 

investigated. 

 

1.2.2.2. Carrier (transporter)-mediated glutamate release 

Under physiological conditions, extracellular glutamate is taken up by astrocytes 

via astrocytic glutamate transporters, excitatory amino-acid transporter 1 (EAAT1) 
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and EAAT2 (Tzingounis and Wadiche, 2007). Normally the uptake is powered by the 

cross membrane electrochemical gradient of Na+ and K+. Uptake of one glutamate 

molecule is accompanied by co-transport of 3 Na+ and 1 H+, and counter-transport of 

1 K+ (Tzingounis and Wadiche, 2007). In pathological conditions like ischemia or 

metabolic collapse, the electrochemical gradient of Na+ and K+ that maintain 

glutamate uptake can bedissipate and result in reversal of glutamate transport and 

the release of glutamate (Rossi et al., 2000; Szatkowski et al., 1990). However, since 

this only happens during severe brain ischemia, this type of mechanism is unlikely to 

contribute significantly to physiological astrocytic glutamate release.  

The cystine-glutamate exchanger, or system xc
−, is an antiporter that imports 

one extracellular cystine in exchange for one glutamate (McBean, 2002). This 

exchanger is mainly expressed in astrocytes (Pow, 2001) and was shown to 

contribute to major extrasynaptic glutamate (around 60 %) in physiological 

conditions in brain areas such as nucleus accumbens (Baker et al., 2002; Moran et al., 

2005), striatum (Massie et al., 2011), and hippocampus (De Bundel et al., 2011). The 

uptake of extracellular cystine supports intracellular glutathione (GSH) synthesis and 

the reduction of oxidative stress which were believed to be the main functions of 

system xc
− (Bannai, 1986). However, a recent study showed that genetic deletion of 

the system xc
− gene in mice does not lower GSH content or increase oxidative stress 

in the hippocampus in vivo (De Bundel et al., 2011). Instead, the mice have deficits in 

spatial working memory which might be caused by a lower concentration of 

extrasynaptic glutamate in the hippocampus (De Bundel et al., 2011), suggesting 
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another major role for system xc
− in controlling the extrasynaptic glutamate level 

(Warr et al., 1999). Astrocytic glutamate released from system xc
− has been shown to 

activate mGluRs and modulate presynaptic release (Moran et al., 2005). Although 

work performed in acute brain slices showed that system xc
− does not contribute to 

extrasynaptic glutamate unless an unphysiologically high concentration of cystine 

was present (Cavelier and Attwell, 2005), the same study showed that system xc
−- 

mediated glutamate release can also tonically activate NMDARs. Together, these 

studies indicate that the astrocytic system xc
− plays a key role in modulating 

extrasynaptic glutamate concentration which can affect learning and memory. 

 

1.2.2.3. Channel-mediated glutamate release 

There are several types of channels in astrocytes that directly release glutamate 

through the pore of the channel. These channels have a common feature that their 

open channel pores are large and permeable to some organic molecules such as 

glutamate and adenosine 5'-triphosphate (ATP). 

First, the P2X7 purinergic receptor (P2X7R) is a ligand-gated channel which opens 

in response to the binding of extracellular ATP (Burnstock, 2008). P2X7R is shown to 

generate efflux of glutamate and ATP from its open channel pore in cultured 

astrocytes (Duan et al., 2003). Later it was demonstrated in hippocampal slices that 

activation of P2X7R indeed triggers a sustained glutamate efflux and activates an 

NMDAR-dependent tonic current (Fellin et al., 2006). Furthermore, P2X7R is sensitive 
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to extracellular Ca2+ (Duan et al., 2003). Lowering extracellular Ca2+ concentration 

potentiates the sustained tonic glutamate efflux from P2X7R (Fellin et al., 2006). This 

suggests that P2X7R on astrocytes can serve as a sensor integrating extracellular ATP 

and Ca2+ signals, and translating them to a glutamate signal. Further study on the 

physiological relevance of such sustained glutamate efflux is needed. 

Hemichannels are large pore ion channels that were also shown to mediate 

glutamate release in cultured astrocytes (Ye et al., 2003). They are defined as halves 

of gap junction channels that do not form intercellular junctions but open to the 

extracellular space (Thompson and Macvicar, 2008). Both connexin 43 and pannexin 

1 have been proposed to form functional hemichannels and account for glial release 

of glutamate and ATP (Iglesias et al., 2009; Ye et al., 2003). The open probability of 

hemichannels is highly sensitive to extracellular calcium (Spray et al., 2006; Thimm et 

al., 2005). Recently it was shown in hippocampal astrocytes that hemichannels 

detect extracellular Ca2+ depletion due to neuronal activity and release ATP to trigger 

Ca2+ waves in the astrocytic network (Rusakov, 2012; Torres et al., 2012). Although 

whether glutamate, accompanied by ATP, is released was not investigated in this 

work, it is likely that glutamate efflux from hemichannels might also play a role in 

response to changes in extracellular Ca2+ concentrations. Indeed, in a slice model of 

Alzheimer's disease, pathogenic Aβ can trigger hemichannel-mediated glial release 

of glutamate and ATP that induce neuronal death (Orellana et al., 2011). Although 

the direct regulation mechanisms are still largely unknown, these results suggest 
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that hemichannel-mediated glutamate release can play important roles both in 

physiological and pathological conditions. 

Volume-regulated anion channels (VRACs) on astrocytes were also shown to 

release glutamate, as well as aspartate and taurine, during cell swelling in ischemia 

conditions in vivo (Kimelberg et al., 1990; O'Connor and Kimelberg, 1993). Such 

release was shown to be Ca2+-independent (O'Connor and Kimelberg, 1993). 

However, it can be also triggered by ATP-induced cell swelling in a Ca2+ dependent 

manner (Takano et al., 2005). Among many types of anion channels in VRACs families, 

volume-sensitive outward rectifying chloride channels (VSORs) and maxi-anion 

channels were shown to contribute to the swelling-induced glutamate release in 

cultured astrocytes (Liu et al., 2006). VSORs also mediate cell swelling-independent 

glutamate release in response to an inflammatory peptide, bradykinin (Liu et al., 

2009), suggesting that the VSORs-mediated release does not happen solely in 

pathological conditions with cell swelling. Optogenetic activation of solely 

photoactivatable Ca2+-permeable ion channels in cultured astrocytes induces 

glutamate release from anion-channels without other external agonists (Li et al., 

2012). This again suggests that anion channel-mediated glutamate release (Ca2+-

dependent or -independent) from astrocytes has a physiological role per se in glia-to-

neuron as well as glia-to-glia communication. In most studies, these anion channels 

were identified based on their electrophysiological and pharmacological properties. 

However, the molecular identities of these anion channels are still largely unknown. 

Bestrophin-1, a Ca2+-activated anion channel that is expressed in cortical astrocytes 
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could be a possible substrate for anion-mediated glutamate release (Park et al., 

2009). 

Apart from the induced glutamate release, there is a continuous and non-

vesicular release of glutamate from hippocampal astrocytes that contributes to the 

basal ambient glutamate concentration (Cavelier and Attwell, 2005; Jabaudon et al., 

1999; Le Meur et al., 2007). This tonic release of glutamate is not sensitive to NPPB 

(5-nitro-2-(3-phenylpropylamino) benzoic acid) and tamoxifen, which were found to 

block VRACs. However, another anion channel blocker, DIDS (4,4’-

diisothiocyanostilbene-2,2’-disulphonic acid) reduces the tonic glutamate release, 

suggesting anion channels other than VRACs might be involved in this tonic release 

(Cavelier and Attwell, 2005).  

 

1.2.2.4. Summary for astrocytic origins of extrasynaptic glutamate 

As discussed above, astrocytes are able to release glutamate via a variety of 

mechanisms. All the possible sources and ways to induce glutamate release are 

summarized in figure 1.5. However, there are still many controversies concerning 

these reported possible mechanisms (Hamilton and Attwell, 2010). This may be due 

to the limitations of the available pharmacological tools, as many anion channel 

inhibitors are not sufficiently specific and were also shown to block hemichannels 

(Eskandari et al., 2002; Ye et al., 2009). Besides, the methods to stimulate glutamate 

release are also quite diverse and sometimes not physiologically relevant (Hamilton 
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and Attwell, 2010). It will be important to know whether the specific release 

mechanisms only operate in response to particular stimulation paradigms. 

Furthermore, many of the seminal studies addressing astrocytic glutamate release 

were performed in cell culture systems (Nedergaard, 1994; Parpura et al., 1994). It 

will be necessary to know whether contradictory findings were due to different 

culture conditions and whether these mechanisms also apply to ex-vivo brain slice 

preparations and in vivo. 
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Figure 1.5 Astrocytic origins of glutamate release 

a, Ca2+-mediated vesicular exocytosis. Glutamate uptake in the vesicles though 
VGLUT1/2. Astrocytes also express essential elements for forming SNARE 
complex that mediates exocytosis in response to intracellular Ca2+ rise ([Ca2+]in 

↑) b, Reversal of glutamate transporter (EAATs) only happens under severe 

ischemia condition that induces built up in extracellular K+ ([K+]ex). c, Cystine-
glutamate exchanger (system xc

-) takes up an extracellular cystine in exchange 
for release a glutamate molecule. d, Purinergic P2X7 receptor is activated by 
extracellular ATP and is enhanced when lowering extracellular Ca2+ (low 
[Ca2+]ex ). e, Volume-regulated anion channel is activated by cell-swelling 
induced by hypo-osmolarity, as well as activated by intracellular Ca2+ signalling. 
f, Gap junction hemichannel is opened in response to low [Ca2+]ex. Mechanisms 
to induce astrocytic glutamate release are outlined in red.  
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1.3. Extrasynaptic glutamate signalling via NMDARs 

It was long believed that neuronal computation is conducted exclusively through 

synaptic transmission between neurons. Whether extrasynaptic neurotransmitters 

carry any meaningful information remains elusive. In this chapter, I will introduce the 

dynamics of extrasynaptic glutamate and show potential mechanisms of how 

neuronal NMDARs detect and convert such dynamics into meaningful signalling. 

 

1.3.1. Ambient extrasynaptic glutamate concentration 

Unlike glutamate released in the synaptic cleft, which can reach millimolar (mM) 

or sub-millimolar concentrations, the concentration of baseline ambient 

extrasynaptic glutamate is relatively low. In typical in vivo microdialysis experiments, 

the concentration of extracellular, presumably extrasynaptic, glutamate was shown 

to range from 0.2 to 7 µM (Cavelier et al., 2005). Studies using enzyme-based 

electrochemical sensors in vivo even report steady-state glutamate concentrations 

as high as 45 µM (range from 2 to 45 µM) (Dash et al., 2009; Hascup et al., 2011; 

Rutherford et al., 2007). On the other hand, Herman and Jahr (2007) used patch-

clamp recording of neuronal NMDAR currents as a sensor for glutamate in brain 

slices and reported only 25 – 50 nM of ambient extracellular glutamate (Herman and 

Jahr, 2007; Herman et al., 2011). Theoretical calculations also suggested 30 – 50 nM 

as the baseline ambient glutamate concentration (Cavelier and Attwell, 2005; Zheng 

et al., 2008). Such discrepancies between reported values might be due to the 
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methods used. Since every method has its own drawbacks the concentration of 

ambient glutamate is still not conclusive. 

Theoretically, the baseline ambient extrasynaptic glutamate concentration is 

determined by the balance between tonic release and uptake of glutamate (Cavelier 

and Attwell, 2005; Diamond and Jahr, 1997; Tong and Jahr, 1994). The cystine-

glutamate exchanger, system xc
-, was shown to contribute most of the ambient 

glutamate in vivo in many brain areas including hippocampus (Baker et al., 2002; De 

Bundel et al., 2011; Massie et al., 2011). However, in hippocampal slices, glutamate 

uptake is so efficient that it is not overwhelmed during high-frequency synaptic 

release (Diamond and Jahr, 2000). Only when glutamate transporters are blocked 

was the enhanced tonic release from system xc
- unmasked (Cavelier and Attwell, 

2005; Jabaudon et al., 1999), suggesting that the ambient glutamate concentration is 

set by the efficiency of uptake rather than the rate of tonic release. Conversely, in a 

recent study, knocking down the functional system xc
- in mice decreased the amount 

of extrasynaptic glutamate in hippocampus, even though the expression of 

glutamate transporters was not affected, suggesting that the ambient glutamate 

concentration in wild type animals is maintained by tonic glutamate release from 

system xc
- (De Bundel et al., 2011). Whether the release or the uptake system of 

glutamate was predominates in regulating ambient glutamate concentration remains 

an important question to be answered.  
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1.3.2. Dynamics of extrasynaptic glutamate 

Instead of a constant level of ambient glutamate, the concentration of 

extracellular glutamate changes dynamically. By using in vivo microdialysis and 

amperometric approaches, it was shown that extracellular glutamate is able to 

reflect the real-time neuronal network activities and the behavioural state of the 

animals (Baker et al., 2002; Dash et al., 2009; Del Arco et al., 2003; Mattinson et al., 

2011; Rutherford et al., 2007). For example, it was shown in freely moving rats that 

the extracellular glutamate concentration increased during the waking state whereas 

it decreased during non- rapid eye movement sleep (Dash et al., 2009). The change 

in the extracellular concentration is suggested to be an index of overall extrasynaptic 

glutamate released from neurons and astrocytes (Del Arco et al., 2003). However, it 

was also argued that these invasive methods might damage the cells and blood 

vessels, affecting the real extracellular glutamate concentration. These approaches 

also have limitations in spatiotemporal resolution, because the sensors have sizes of 

tens to hundreds of µm, and need seconds to minutes to read out the concentration 

(Mattinson et al., 2011).  

To overcome these limitations, several fluorescent sensors have been developed 

to directly monitor the dynamics of extracellular glutamate in culture system (Hires 

et al., 2008; Namiki et al., 2007; Okumoto et al., 2005). Among these sensors, 

glutamate (E) optical sensors (EOS) were the first used to evaluate extrasynaptic 

glutamate dynamics in vivo, and showed that cortical extrasynaptic glutamate 

concentrations increased due to glutamate spillover in response to a tactile 
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stimulation of the hind paw (Okubo et al., 2010). These results, consistent with the 

findings using the microdialysis approach, indicate that extrasynaptic glutamate 

dynamics can reflect neuronal activity under physiological conditions. Besides, other 

origins of glutamate release introduced in the previous section can also bring extra 

dynamics to extrasynaptic glutamate concentrations.  

 

1.3.3. Detection of extrasynaptic glutamate by NMDARs 

The glutamate EC50 (effective concentration required to induce a 50% effect) is 

about 2 µM for NMDARs and 10 µM for most of the mGluRs. The EC50s for NMDARs 

and mGluRs are almost 50 to 500 times more potent than AMPARs (EC50 = ~ 100 - 

1000 µM) (Featherstone and Shippy, 2008), explaining the reason why extrasynaptic 

glutamate is detected mostly by NMDARs and mGluRs (Featherstone and Shippy, 

2008). Potentially all the extrasynaptic glutamate originating from different sources 

can be detected by neuronal extrasynaptic NMDARs. NMDAR-mediated currents 

activated by glutamate spillover and astrocytic tonic and phasic glutamate release 

have been recorded by the whole-cell patch-clamp technique. 

A tonic current mediated by NMDARs has been observed upon prolonged 

depolarization in hippocampal pyramidal cells, suggesting that neurons are able to 

detect low levels of baseline ambient glutamate through NMDARs (Cavelier and 

Attwell, 2005; Dalby and Mody, 2003; Herman and Jahr, 2007; Jabaudon et al., 1999; 

Le Meur et al., 2007; Sah et al., 1989). It was later found that extrasynaptic but not 
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synaptic NMDARs are activated by ambient glutamate and the tonic current is 

sensitive to GluN2A- and GluN2C/D-containing NMDAR selective blockers (Le Meur 

et al., 2007). Although Sah and colleagues showed that tonic activation of NMDARs 

by ambient glutamate enhances neuronal excitability in hippocampal slices (Sah et 

al., 1989), this strong effect of ambient glutamate was not seen in the following 

reports (Cavelier and Attwell, 2005; Jabaudon et al., 1999; Le Meur et al., 2007). 

Therefore whether this tonic NMDAR-mediated current has any physiological impact 

remains unanswered (Featherstone and Shippy, 2008). 

Slow inward current (SIC) induced by transient astrocytic glutamate release has 

also been recorded in hippocampal pyramidal neurons (Angulo et al., 2004; Fellin et 

al., 2004). Specifically, SIC has a slow rise time around 100 ms, which is much slower 

than excitatory postsynaptic current (EPSC) (rise time < 10 ms), suggesting that it is 

mediated by extrasynaptic release which takes more time to diffuse before binding 

with its receptors. Indeed, SIC is sensitive to ifenprodil and APV but not non-NMDAR 

blockers, indicating that it is mediated by extrasynaptic GluN2B-containing NMDARs 

(Fellin et al., 2004; Pirttimaki et al., 2011). Besides, SIC also has common voltage-

dependent block by extracellular Mg2+ like synaptic NMDAR currents (Angulo et al., 

2004; Fellin et al., 2004). SIC was shown to induce synchronous neuronal activity and 

promote burst firing (Fellin et al., 2004; Pirttimaki et al., 2011). Furthermore, the 

frequency of SIC exhibits plasticity resulting in the enhancement of neuronal burst 

activity (Pirttimaki et al., 2011), which suggests that the extrasynaptic NMDAR is an 

active player in neuro-gial communication.  
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Altogether the evidence suggests that extrasynaptic NMDARs are able to detect 

the extracellular glutamate dynamics reflecting neuronal and astrocytic network 

activity. However, extrasynaptic NMDARs have a similar voltage-dependent block by 

Mg2+, but in order to recruit more NMDARs, in most of the studies experiments were 

performed in non-physiological conditions, i.e. in Mg2+-free solution or under 

artificially prolonged depolarizing membrane potential (Arnth-Jensen et al., 2002; 

Cavelier and Attwell, 2005; Le Meur et al., 2007; Scimemi et al., 2004). Under 

physiological conditions, binding with glutamate alone does not produce current 

through NMDARs, indicating that apart from the presence of extrasynaptic 

glutamate, a depolarizing event is needed to activate neuronal NMDARs and 

generate Ca2+ influx. 

 

1.3.4. Depolarization is required for ‘readout’ of extrasynaptic NMDAR activation 

As mentioned above (Chapter 1.1.3), the activation of NMDARs requires not 

only agonists and co-agonists, but also membrane depolarization to relieve Mg2+ 

block. Depolarizing events in neurons are usually initiated by activation of synaptic 

AMPARs which are able to induce a Na+ inward current generating an EPSP under 

resting membrane potential. Therefore during glutamatergic synaptic events, the 

EPSP contributed by AMPARs can relieve Mg2+ block of NMDARs generating Ca2+ 

influx (Fig. 1.6a) (Bloodgood and Sabatini, 2007a; Nevian and Sakmann, 2006). 

However, unlike usual synaptically-released glutamate which reaches millimolar 
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concentrations in the synaptic clefts and thus activating low-affinity AMPARs, 

extrasynaptic glutamate concentration between sub-micromolar to tens of 

micromolar range is not high enough to involve AMPARs, providing depolarization 

(Rusakov and Kullmann, 1998). Without depolarization events, extrasynaptic 

signalling mediated by NMDARs stays silent.  

In addition to EPSPs, action potentials (AP) are another major depolarizing event 

in neurons. A classical view of the AP is that it is generated in the axon initial 

segment when the EPSP reaches the AP-generating threshold. The AP then 

propagates forward to the axon terminal to trigger neurotransmitter release. 

However, APs also propagate backward into dendrites (called backpropagating APs, 

bAPs). bAPs contribute to functional changes associated with synaptic plasticity 

(Magee and Johnston, 1997; Markram et al., 1997; Stuart and Hausser, 2001a) and 

homeostatic changes in dendritic excitability (Campanac et al., 2008; Losonczy et al., 

2008). In dendrites, bAPs not only trigger Ca2+ entry mainly by activating voltage-

dependent Ca2+ channels (VDCCs) (Sabatini and Svoboda, 2000), but also enhance 

synaptic NMDAR mediated Ca2+ influx by removal of the voltage-dependent Mg2+ 

block (Nevian and Sakmann, 2004; Schiller et al., 1998; Yuste and Denk, 1995). 

Therefore, potentially, the bAP could also be a good candidate to provide the 

depolarization that recruits extrasynaptic NMDARs. 

Simple illustrations are made in figure 1.6 to explain the hypothetical impact of 

the depolarizing event on reading out the extrasynaptic glutamate signalling. For 

example, glutamate from spillover is able to bind to extrasynaptic NMDARs on the 
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immediate postsynaptic neuron as well as on the neighboring neuron (Fig. 1.6b and 

c). The extrasynaptic NMDARs on the immediate postsynaptic neuron gain the 

depolarization from activation of synaptic AMPARs, and hence generate Ca2+ influx. 

AMPARs on the neighbouring neuron are not activated by the low concentration of 

spillover glutamate and do not provide depolarization, so the extrasynaptic NMDARs 

stay silent. However, when depolarizing events (here a bAP) occur on the 

neighbouring neuron coinciding with the glutamate spillover, the Mg2+ block can be 

relieved from extrasynaptic NMDARs generating Ca2+ influx (Fig. 1.6e). Such 

depolarizing events possibly provide ‘readout’ for extrasynaptic signalling mediated 

by NMDARs. Moreover, in addition to glutamate spillover, glutamate from tonic and 

transient astrocytic release that binds with extrasynaptic NMDARs potentially also 

requires depolarization for readout (Fig. 1.7). The readout mechanisms for 

extrasynaptic glutamate signalling mediated by NMDARs, however, remain elusive. 

Therefore, the main object of this study is to investigate whether and how the 

physiological depolarizing event, here bAP, provides ‘readout’ for the dynamics of 

extrasynaptic glutamate. 
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Figure 1.6 Depolarization is required for ‘readout’ of glutamate spillover 

a to c, Schemes for glutamatergic signalling targets to one postsynaptic cell. 
Glutamate released from presynaptic (pre) bouton binds with synaptic 
AMPARs and synaptic NMDARs on the immediate postsynaptic cell under 
baseline condition (a), and further binds with extrasynaptic NMDARs when 
glutamate spillout (b) and spillover (c). Activation of AMPARs generates EPSP 
(black trace) which relieves the Mg2+ block of NMDARs producing Ca2+ influx 
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(red arrows). d and e, Hypothetical schemes for glutamate spillover to the 
neighboring neuron without (d) and with (e) a depolarizing event for ‘readout’. 
Glutamate released from cell2 can bind with NMDARs on spines of cell3 but 
cannot generate Ca2+ influx due to lacking membrane depolarization for 
‘readout’ (d). When a depolarizing event (ex: a bAP) coincidently occurs in cell3, 
extrasynaptic NMDARs can be relieved from the Mg2+ block and generates Ca2+ 
influx (e).  
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Figure 1.7 Depolarization is required for ‘readout’ of tonic and transient 
glutamate release from astrocytes 

a, A hypothetical scheme for NMDAR-mediated detection of ambient 
glutamate released from astrocyte (as). The ambient glutamate-bound 
extrasynaptic NMDARs generate Ca2+ influx in cell4 when ‘readout’ is triggered 
by depolarization (here, a bAP), whereas cell3 stays silent. The ambient 
glutamate is indicated by green background. Green arrows indicate tonic 
glutamate release. b, A hypothetical scheme for NMDAR-mediated detection 
of transient glutamate released from astrocyte. Transient glutamate release 
(the green gradient) from astrocytes also binds with extrasynaptic NMDARs. 
Only when ‘readout’ is triggered by depolarization NMDARs generate Ca2+ 
influx (cell4), otherwise the cell stays silent (cell3). 
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1.4.  Aims of the current study 

The overarching hypothesis of this thesis is that extrasynaptic NMDARs detect 

extracellular glutamate and provide a readout of this during depolarizing events. 

Within this the specific aims are: 

1. To test whether a physiological depolarization event, here bAP, enables 

ambient glutamate-bound extrasynaptic NMDARs and generates Ca2+ entry. 

2. To test whether depolarization provided by bAP triggers ‘readout’ for 

extrasynaptic NMDAR-mediated detection of local rises of extracellular 

glutamate. 

3. To build a theoretical model of tonic activated NMDAR conductance and test 

whether the model is able to reproduce the experimental findings on bAP-

evoked Ca2+ entry.  

4. To test whether burst firing of bAPs triggers larger ‘readout’, generating more 

extrasynaptic NMDAR-mediated Ca2+ entry. 

5. To test whether activation of extrasynaptic NMDARs during repeated burst 

firing of bAPs (theta-burst-firing) triggers neuronal plasticity and modulates 

synaptic inputs. 
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Chapter 2: Materials and Methods 

2.  

2.1. Introduction  

In this study, I address the question of how hippocampal CA1 pyramidal cells 

communicate via NMDARs and extrasynaptic glutamate. Experiments were done in 

acute hippocampal slices from mice and rats. There are several benefits of using 

acute hippocampal slices to study the questions posed above. First, the properties of 

synaptic transmission and connections onto CA1 pyramidal neurons are well studied. 

Secondly, it is easy to superfuse and rapidly exchange the solution containing 

different pharmacological tools (usually in 3-5 min), while the slice is supplied with 

nutrition and oxygen to maintain the health of the tissue. Thirdly, electrophysiology 

and two-photon imaging can be easily combined and recorded simultaneously.  

To monitor NMDAR activities in apical oblique dendrites of CA1 pyramidal cells 

during bAPs, I combined whole-cell patch-clamp recording and two-photon calcium 

imaging. Therefore, I could control the cell membrane potential and acquire 

fluorescent signals from subcellular structures simultaneously. Two-photon calcium 

imaging was performed by using a two-photon scanning microscope equipped with 

an ultra-fast, pulsed (<140 fs at peak) tunable laser tuned to 810 or 830 nm. CA1 

pyramidal cells were filled with Alexa Fluor 594 (20-50 µM) to reveal the morphology 

and Fluo-4 (250 µM) for calcium imaging. bAPs were triggered by somatic current 

injection. Intrinsic membrane properties were also monitored by whole-cell 
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recording. Extracellular electrical stimulation via microelectrode, two-photon and 

single-photon photolysis of 4-Methoxy-7-nitroindolinyl (MNI)-caged L-glutamate 

were performed in some sets of experiments to mimic glutamate released from 

different synaptic and extrasynaptic origins. 

 

2.2. Animals 

Male Sprague–Dawley (SD) rats, aged 21 to 35 days (p21 –p35), were used in 

most of the experiments. Rats were kept under controlled environmental conditions 

(24–25 °C; 50–60% humidity; 12 h light/dark cycle) with free access to food and 

filtered water. 

Two types of genetically- modified mice were also used: 

1) CA1-GluN1 (CA1-NR1) KO mice [GluN1 (NR1) fl/fl; CaMKII-Cre] and littermate 

controls [GluN1 fl/fl], age 42 to 49 days. In this mouse line, NMDARs were specifically 

knocked-out in CA1 pyramidal cells at this age (Tsien et al., 1996). The CA1 pyramidal 

cells of these mice still preserve place-related activity. However, the spatial 

specificity of individual place fields is significantly reduced. The coordinated firing of 

pairs of neurons at similar spatial locations was also shown to be defected (Tsien et 

al., 1996). 

2) A triple transgenic line, CA3-TeTX mice [KA1-Cre/+; TetO-TeTX/+; αCaMKII-loxP-

STOP-loxP-tTA/+], age 42 to 49 days. In this mouse line, tetanus toxin (TeTX) light 
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chain was expressed selectively in CA3 pyramidal cells and temporally controlled by 

doxycycline (Dox) diet. TeTX is an endopeptidase targeting to VAMP2, which is 

essential for neurotransmitter release from synaptic terminals. Therefore, synaptic 

transmission from CA3 to CA1 pyramidal cells is blocked in CA3-TeTX mice with Dox-

off state for more than 3 weeks (Nakashiba et al., 2008). These mice have defects in 

the consolidation of contextual fear memory. The defect might result from the 

reduction of intrinsic frequency of sharp-wave ripples driven by CA3 pyramidal cells 

in CA1 area. Moreover, the coordinated reactivation of CA1 cell pairs associated with 

ripples is also reduced (Nakashiba et al., 2008).  

All experiments were performed in accordance with the RIKEN regulations and 

the Home Office regulations under the Animal (Scientific Procedures) Act, 1986. 

 

2.3. Hippocampal slice preparation  

Transverse slices were prepared from the different animals mentioned above. 

Animals were anaesthetised with volatile anaesthetic 2-bromo-2-chloro-1,1,1-

trifluroethane (halothane) and decapitated. The brain was removed, chilled with ice-

cold solution (cutting solution) containing (mM): 75 Sucrose, 87 NaCl, 2.5 KCl, 0.5 

CaCl2, 1.25 NaH2PO4, 7 MgCl2, 25 NaHCO3, 1 Na-Ascorbate, and 11 D-glucose. 

Hippocampi from both hemispheres were isolated and placed in an agar (8%) block 

with anterior part of hippocampus facing upward (Fig. 2.1a). Transverse slices with 

thickness of 350 µm were cut with an angle of 30o perpendicular to the long-axis 
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(septotemporal axis) with a vibroslicer (Fig. 2.1e) (Microm HM 650 V, Thermo Fisher 

Scientific Inc., USA). Only slices from the middle one-third part of hippocampus were 

collected (Fig. 2.1f). They were left to recover for 20 to 30 min at 34°C in a 

submerged chamber in cutting or storage solution containing (mM): 127 NaCl, 2.5 

KCl, 1.25 NaH2PO4, 1 MgCl2, 1 CaCl2, 25 NaHCO3, and 11 D-glucose. Then they were 

transferred and incubated on either an interface- or submerged-type chamber 

(mostly submerged-type) at room temperature for at least 1 hour for recovery with 

storage solution. After that, the slices were transferred to the recording chamber 

and were continuously superfused at 33-34oC with ACSF containing (mM): 127 NaCl, 

2.5 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 25 NaHCO3, and 11 D-glucose. All solutions 

were saturated with 95% O2 and 5% CO2. Osmolarity was adjusted to 298 ± 3 mOsm. 

The slices were used up to 8 hours after slice preparation.  
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Figure 2.1 Procedures for transverse hippocampal slice preparation  

a, The hippocampus was isolated from the inside of the cortical mantle. b, The 
isolated hippocampus was placed in the groove of an agar block with the 
anterior part facing upward and CA1 region facing outside. c, The 1/4 posterior 
part of hippocampus was trimmed off to create a flat interface. e. The trimmed 
age then was glued on a metal stage. d, The trimmed age then was glued on a 
metal stage. e, The slices were cut with an angle of 30˚ perpendicular to the 
long-axis of the hippocampus. F, Only slices cut from the middle 1/3 part of the 
hippocampus were collected.   
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2.4. Blockage of vesicular/synaptic release with bafilomycin A1 

In order to block all the synaptic release of neurotransmitters, bafilomycin A1 

was used to prevent packing of neurotransmitters into synaptic vesicles. Bafilomycin 

A1 is an antibiotic that inhibits vacuolar H+-ATPase with a high degree of specificity 

(Drose and Altendorf, 1997). Because the proton gradient is lost with vacuolar H+-

ATPase blocked in synaptic vesicles, the ability of VGLUT to transport glutamate into 

synaptic vesicles is also lost. Glutamate thus does not enter synaptic vesicles and 

cannot be released after such treatment.  

Instead of recovery at room temperature, the slices were incubated at 34°C in a 

miniature submerged incubation chamber (3 ml) (Fig. 2.2) for another 2.5 hour in 

ACSF containing 4 μM of bafilomycin A1. Slices were then incubated at room 

temperature before transferring to recording chamber superfused with ACSF 

without bafilomycin A1. The effect of bafilomycin A1 can last for at least 3 to 4 hours. 

No recovery of synaptic transmission was observed in this period. The control slices 

for this set of experiments were incubated in the same conditions but without 

bafilomycin A1. For testing the effect of bafilomycin A1, whole-cell spontaneous and 

evoked glutamatergic EPSCs were recorded via whole-cell patch-clamp recording 

with a holding potential at -70 mV. The evoked synaptic release of glutamate was 

induced by electrical stimulation of Schaffer collaterals in CA1 area via a bipolar 

stainless steel electrode more than 200 μm away from the recorded neurons. There 

were no spontaneous EPSCs and evoked EPSC in the bafilomycin A1-treated slices 

even with a stimulation current 10 times larger than in control slices (Fig. 3.6). 
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2.5. Local synaptic stimulation and finding the active spine 

Local synaptic stimulation was done with an extracellular glass pipette (2−3 µm 

tip) filled with 1M NaCl. To monitor the location of the pipette, 5 µM Alexa Fluor 594 

was also added to the solution in the pipette. The pipette then was positioned 5 to 

20 µm from an apical oblique dendrite of the recorded neuron (Yasuda et al., 2004). 

The neuron was voltage-clamped at -40 mV in absence of AMPA receptor 

antagonists. Then we identified spines which responded with Ca2+ transients to a 

train of 5 stimulus pulses (0.2-5 V, 200 µs) at 50 Hz to assure glutamate release (Fig. 

4.1). Then the AMPA receptors were blocked. The cells were held in current clamp 

and three types of measurements were done in the dendrite and the spine: (1) Ca2+ 

transients in response to a bAP; (2) Ca2+ response to synaptic stimulation; and (3) a 

response to the bAP and ‘synaptic’ stimulation combined. In protocol (3) bAPs were 

initiated 70 ms after the end of synaptic stimulation. 
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Figure 2.2 Miniature slice incubation chamber 

a. The scheme and design of the chamber. The solution flow (indicated with 
red arrows) was driven by air bubbles. The slices were placed in the middle of 
the mesh. The top of the chamber was sealed with Para film during the 
incubation. b. The red arrows indicate the solution flow. 

 

2.6. Visualized patch clamp recording 

To obtain whole-cell recordings, cells were first visually searched using an 

Olympus BX-61 microscope equipped with differential interference contrast optics 

under infrared illumination and a water immersion lens (60x, NA=0.9, Olympus, 

Japan). The identified neurons were then approached with a patch pipette using 

motorized manipulators (Luigs & Neumann, Germany). For imaging experiments, 

whole-cell current-clamp recordings were obtained from CA1 pyramidal neurons 

with a patch pipette (3 - 6 MΩ) filled with a solution containing (mM): 130 KCH3SO3, 

8 NaCl, 10 HEPES, 10 Na2-Phosphocreatine, 0.4 Na2GTP, 4 MgATP, 3 Na-Ascorbate, 

pH = 7.2, osmolarity was adjusted to 300 mOsm. The recording solution also 
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contained a fluorophore Alexa Fluor 594 (50 µM) and the Ca2+ sensitive dye Fluo-4 

(250 µM) or Fluo-4FF (500µM). Once the whole cell recordings were obtained, the 

patch amplifier (Multiclamp 700B; Axon Instruments Inc.; Union City, CA, USA) was 

set to either current- or voltage-clamp mode. Dendritic bAPs were induced in these 

cells by somatic current injections (2-3 ms, 400 - 1000 pA) and monitored in the 

soma. 

To monitor the effects of NMDAR antagonists and of the glutamate uptake 

blocker TBOA on the membrane properties of CA1 pyramidal cells, whole-cell voltage 

clamp recordings were obtained with patch pipettes (3-6 MΩ) filled with a solution 

containing (mM): 130 CsCH3SO3, 8 NaCl, 10 HEPES, 10 Na2-Phosphocreatine, 0.5 

EGTA, 0.4 Na2GTP, 4 MgATP, 3 Na-Ascorbate, pH = 7.2, osmolarity was adjusted to 

300 mOsm. Changes in the holding current were measured following 100 µM TBOA 

application with the membrane potential clamped at -70 mV. The series resistances 

and input resistance (Rinput) of the recorded cells were measured by injection of 

hyperpolarizing pulses (5 mV, 50 -100 ms) and not compensated.  

The series resistance was usually < 20 MΩ and data were discarded if its value 

changed more than by 20% during the recording. In current clamp mode, the series 

resistance was compensated with “bridge balance” mode. Signals were low-pass 

filtered at 2.2 kHz and digitized at 4-10 kHz with a NI PCI-6221 card (National 

Instruments). The data were recorded using WinWCP and WinEDR (supplied free of 

charge to academic users by Dr. John Dempster, University of Strathclyde, UK). 
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2.7. Two-photon imaging system 

Cells were filled with Alexa Fluor 594 (50 µM) and calcium sensitive dye Fluo-4 

(250 µM) or Fluo-4FF (500 µM) for 20 to 30 minutes before the start of acquiring 

image data to insure reachingsteady-state of both dyes. Two-photon Ca2+ imaging 

was performed using a two-scanner FV1000 microscope (Olympus) equipped with an 

ultra-fast, pulsed (<140 fs at peak) tunable 720-930 nm laser Chameleon (Coherent) 

and a near UV (405 nm) LED laser (Fig.. 2.3). The dyes were excited at 810 nm, and 

their fluorescence was chromatically separated and imaged by two independent 

photomultipliers (PMTs) separated with a 570nm dichroic mirror followed with two 

band pass filters (570-625 nm for Alexa Fluor 594 (red channel (R)); 495-540 nm for 

Fluo-4/Fluo-4FF (green channel (G))) (Fig.. 2.4).  

We used the bright Alexa Fluor 594 emission to identify oblique apical dendrites 

(within 150 µm from the soma) and their spines. Free-line line-scan image 

acquisition was normally performed to record Ca2+ signals in the dendritic shaft and 

1-4 spines at 200 – 500 Hz. Image acquisition was synchronized with 

electrophysiological sweeps. bAPs were induced by brief depolarizing current 

injections through a patch pipette producing a single action potential in the soma. 

bAP-evoked Ca2+ transients were imaged in dendrites and spines (Fig.. 3.1). We also 

tested that recorded transients were well below Fluo-4 saturation level achieved by 

prolonged somatic depolarization causing Ca2+ build up in the neurons. We also 

monitored changes in baseline Ca2+ level as the ratio between Fluo-4 and 

Alexa Fluor 594 fluorescence. If this ratio steadily increased and changed more than 
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20% during the experiment, the cells were discarded. The dark noise of the PMTs 

was collected when the imaging laser shutter was closed in every individual 

recording and subtracted from the baseline fluorescent signal as indicated in Chapter 

2.10 Data analysis.  

 

 

Figure 2.3 Experimental setup (FV1000) for two-photon imaging and single-
photon uncaging.  

The system includes a Ti:sapphire laser tuned to 810 nm for imaging, and a 405 
nm LED laser for glutamate uncaging. The two light paths are connected to the 
microscopy via their own galvanometer XY-scan mirrors. The 810 nm laser 
output power was controlled by an acousto-optic-modulator (AOM). Emission 
light was separated to a green (G) and a red (R) channels with a 570 nm 
dichroic mirror (DM) followed by two band-pass filters, and then detected with 
two photomultiplier tubes (PMTs).Gray lines indicate the signal received and 
sent from the PC. 
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Figure 2.4 Optic design for separating emission light from Alexa Fluor 594 and 
Fluo-4/Fluo-4FF. 

The normalized emission spectra for Alexa Fluor 594 (thin red line) and Fluo-4 
(thin green line) are present. The emission light is first separated with a 570 nm 
dichroic mirror (thick black line) and then filtered with two band-pass filters 
(495 – 540 nm for Fluo-4 (thick green line) and 570 – 625 nm for Alexa Fluor 
594 (thick red line)). The spectra of both dyes are taken from Invitrogen 
website (http://www.invitrogen.com/site/us/en/home/support/Research-
Tools/Fluorescence-SpectraViewer.html). 

 

2.8. Glutamate uncaging 

2.8.1. Single photon glutamate uncaging 

Single photon uncaging was carried out with a near UV laser (405 nm diode laser; 

FV5-LD405, Olympus) in the same system mentioned in the previous Chapter (Fig. 

2.3). 4-methoxy-7-nitroindolinyl-caged L-glutamate (MNI-glutamate) was applied in 

the bath (200-250 µM) with a micro-perfusion system containing 4 ml ACSF. The 
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uncaging spot was located 2-5 µm near an oblique dendrite. Uncaging was carried 

out using a 405 nm laser line, in ‘tornado’ circular scan mode with a diameter about 

1 µm. To mimic the transient rise of extracellular glutamate concentration, the 

duration and the power of the uncaging pulse were set to 20 ms and 10-20 % to 

produce a detectable Ca2+ response. 

In experiments addressing the physiological effects of TBF-induced plasticity, 

somatic uEPSPs were obtained by uncaging bath-applied MNI-glutamate (400 µM) 

using 5-10 ms laser pulses at spots located close to spines on apical dendrites 

between 100 and 150 µm from the soma. 

2.8.2. Two photon glutamate uncaging 

In the two-photon uncaging experiments, a two-scanner FV1000-MPE 

microscope (Olympus) equipped with two ultra-fast, pulsed (<140 fs at peak) tunable 

690-1020 nm lasers Mai-Tai (Spectra-Physics) was used. The imaging and uncaging 

lasers were tuned to 840 nm and 720 nm respectively (Fig. 2.5). Lasers were aligned 

in XYZ-axis every time before the experiments with 0.5 µm fluorescent beads coated 

with Alexa Fluor 488 (Fig. 2.6) to ensure the precision of uncaging. MNI-caged 

glutamate (12 mM) was applied locally via an extracellular glass pipette (1-2 MΩ) 

with a constant pressure of 1-2 KPa. The uncaging spot was located opposite an 

oblique dendrite at equal distances (around 1 µm) from the imaged dendritic shaft 

and spine. Uncaging was carried out under a “point scan” mode in the FV1000-MPE 

system. To mimic the transient rise of extracellular glutamate concentration, the 
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duration and the power of the uncaging pulse were set to 5 ms and 2-3 mW (under 

objective) to produce a just detectable Ca2+ response. In control experiments, we 

also confirmed that illumination of the preparation in absence of MNI-caged 

glutamate, or the application of MNI-glutamate alone had no effect on either the 

resting Ca2+ or Ca2+ transients induced by bAPs.   
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Figure 2.5 Experimental setup (FV1000-MPE) for two-photon imaging and 
two-photon uncaging.  

The system includes two Ti:sapphire laser tuned to 840 nm and 720 nm for 
imaging and glutamate uncaging respectively. The lasers first pass through the 
negative pre-chirp optics to correct the dispersion after passing the objectives 
to maintain a short enough pulse width. The two light paths are connected to 
the microscopy via their own galvanometer XY-scan mirrors, and the output 
power was controlled by two independent acousto-optic-modulators (AOMs) 
via Fluoview software. Emission light was separated to a green (G) and a red (R) 
channel with a 570 nm dichroic mirror (DM) followed with two band-pass 
filters, and then detected with two photomultiplier tubes (PMTs). Gray lines 
indicate the signal received and sent from the PC. 
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Figure 2.6 Laser alignment for precise glutamate uncaging.  

a and b, A fluorescent bead of 0.5 μm diameter coated with Alexa Fluor 488 
was imaged with 720 nm and 840 nm lasers with their own scan mirrors 
separately. c, The spatial profiles along the white dash lines in (a) and (b) were 
plotted. The peaks of the point spread function were overlaid to each other 
suggesting that the lasers were well aligned. a.u. represents arbitrary units of 
fluorescent signal. 

 

2.9. Drugs and chemicals 

All drugs were made from stock solutions kept frozen at -20oC in 100-200 µl 

x1000 concentration aliquots. Picrotoxin (PTX) 100 µM, LY341495 100 µM,S-MCPG 

200-400 µM, D-APV 50 µM, NBQX 25 µM, DL-TBOA 100 µM, Ro25-6981 5 µM, 

ZD7288 20 µM, CGP52432 5 µM, QX-314 3 mM, PPDA 0.5 µM and MNI-caged 

glutamate (bath-application: 200 or 400 µM; local application 12 mM) were 

purchased from Tocris Cookson (Bristol, UK). Bafilomycin A1 4 µM was obtained 
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from Wako Chemicals (Osaka, Japan). Chemicals for solutions were from Sigma (St. 

Louis, MO, USA). 

 

2.10. Data analysis and software development 

2.10.1. Data analysis 

Electrophysiological data were analysed by using WinWCP and Clampfit (Axon 

Instruments Inc.; Union City, CA, USA). Imaging data were analysed using Fluoview 

(Olympus, Japan), ImageJ (a public domain Java image processing program by Wayne 

Rasband) and custom software written in LabView (National Instruments, Austin, TX, 

US). Statistical analysis was performed using Excel (Microsoft, US) and Origin 8 

(OriginLab Corp.)  

The fluorescent measurements of Ca2+ transients were represented as ΔG/R: 

((Gpeak - Gbaseline) / (Rbaseline- Rdark noise)). Baseline Ca2+ signals were represented by 

baseline G/R: ((Gbaseline - Gdark noise) / (Rbaseline- Rdark noise)), where G is the Fluo-4 or Fluo-

4FF fluorescence, and R is Alexa Fluor 594 fluorescence. Gbaseline and Rbaseline are 

averaged fluorescence 50~100 ms before the stimulation. Gpeak is averaged 

fluorescence 30-40 ms after the stimulation. Gdark noise and Rdark noise are the dark 

currents of the corresponding PMTs. For illustration purposes, single traces were 

processed by 5 point moving average, and then 4-5 sequential traces were averaged.  
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2.10.2. Statistics 

To choose a correct statistic method, I performed Shapiro–Wilk normality test 

on the distribution of APV effect on bAP-evoked Ca2+ entry in the first set of 

experiments which contained enough sample numbers (Fig. 3.1 c and d), and showed 

that the data points followed a normal distribution (shafts: n = 13, W = 0.31; spines: 

n = 22, W = 0.8). Thus, for experiments testing drug effect on bAP-evoked Ca2+ entry, 

the statistical significance was tested using a paired or unpaired Student’s t-test. For 

all the other experiments, Wilcoxon signed-rank test was performed for testing 

statistical significance. The data are given in mean ± the standard error of the mean 

(s.e.m.); n – number of recordings. In all figures error bars indicate mean ± s.e.m.  

 

2.10.3. Analysis software development 

For data analysis, I developed two LabView programs.  

(1), “Fluo-LineScan Viewer.vi” is designed to read line-scan image files acquired by 

Fluoview, and to automatically define region of interests (ROIs) for sub-dendritic 

structures (spines and shafts). Signals from both G (Fluo-4/Fluo-4FF) and R channels 

(Alexa Fluor 594) were read into the software. Dark noise was subtracted from the 

signal first (Fig. 2.7, step b). The morphological profile across the scanning line was 

built by averaging all the scans from the R channel (Fig. 2.7, step c). The profile was 

filtered with Savitzky-Golay smoothing (3rd polynomial order, 15 pixel/side points), 
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and followed by a multiple-peak detection and Gaussian fitting (Fig. 2.7, step d and 

e). The ROIs were defined as the region within the full-width-at-half-maximum 

(FWHM) of each Gaussian fitting (Fig. 2.7, step f). Then, the fluorescent time course 

traces were calculated by averaging signal across the space within ROI (Fig. 2.7, step 

g). The time course traces were then used for further analysis. The user interface is 

shown in figure 2.8.   
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Figure 2.7 The procedures for transferring imaging data to time-course traces 

Image data was first acquired with Fluoview. Step a, Signals from both G (Fluo-
4/Fluo-4FF) and R channels (Alexa Fluor 594) were read into the software. The 
calcium transient in G channel was induced by bAPs (black arrows). Step b, 
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Subtract dark noise. Step c, The morphological profile across the scanning line 
was built by averaging all the scans from the R channel. Step d and e, The 
profile was filtered with Savitzky-Golay smoothing (3rd polynomial order, 15 
pixel/side points), and followed by a multiple-peak detection and Gaussian 
fitting. Step f, The ROIs were defined by the FWHM of each Gaussian fitting. 
Step g, The fluorescent time course traces were calculated by averaging signal 
across the space within ROI. ROI for region of interest.   
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Figure 2.8 User interface of the software, “Fluo-LineScan Viewer.vi”. 

The user interface of the “Fluo-LineScan Viewer.vi”. Step a, Images acquired 
with Fluoview were read into the program. Step b, Image with dark noise 
subtracted. Step c, The morphological profile across the scanning line. Step d 
and e, With one click, the profile was filtered with Savitzky-Golay smoothing, 
and followed by a multiple-peak detection and Gaussian fitting. Step f, The 
ROIs (marked with gray squares) were then defined by the FWHM of each 
Gaussian fitting. Step g, the fluorescent time course traces were calculated by 
averaging signal across the space within ROI. 
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(2), “Fluo-TimeCourse Viewer.vi” is designed for automated trial-by-trial calculation 

of baseline G/R and ΔG/R from the fluorescent time courses generated by “Fluo-

LineScan Viewer.vi”. First, the baseline and peak of fluorescent transient were 

manually defined (Fig. 2.9, step a). After assigning an ROI, the trial-by-trail 

normalized G and R of this ROI were plotted (Fig. 2.9, step b). Normalized baseline 

G/R, ΔG/R and the variance of baseline G/R, ΔG/R peak were also plotted in 

separated graphs (Fig. 2.9, step c and d). Finally the time-course traces were 

averaged from trials of different experimental treatments and displayed on a graph 

(Fig. 2.9, step e). All the results were then saved as text files. 

 

  

Figure 2.9 User interface of the software, “Fluo-TimeCourse Viewer.vi”. 

Step a, The baseline and peak of fluorescent transient were manually defined. 
Step b, After assigning an ROI, the trial-by-trail normalized G and R were 
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plotted. Step c and d, Normalized baseline G/R, ΔG/R and the variance of 
baseline G/R, ΔG/R peak were also plotted in separated graphs. Step e, The 
time-course traces were averaged from trials of different experimental 
treatments and displayed on a graph.  
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Chapter 3: Detection of ambient glutamate by NMDARs in 

quiescent slices 

3.  

3.1. Introduction 

It has been shown that there is a tonic current mediated by ambient glutamate-

bound extrasynaptic NMDARs in CA1 pyramidal neurons by artificially holding the 

cell membrane potential to either a more depolarized potential (-35 to -33 mV) 

(Cavelier and Attwell, 2005; Sah et al., 1989) or positive potential (+40 to 50 mV) 

(Jabaudon et al., 1999; Le Meur et al., 2007) with the voltage-clamp technique. 

However, it is not known whether the glutamate pre-bound NMDARs are also 

activated during a physiological depolarizing event, like a bAP. Since the NMDAR is 

Ca2+ permeable, NMDAR-mediated Ca2+ influx was monitored with a Ca2+-sensitive 

dye by two-photon laser excitation microscopy to test whether NMDARs contribute 

to Ca2+ influx during a bAP (illustrated in Fig. 1.7a) in hippocampal CA1 pyramidal 

neurons. 

Furthermore, because excitatory synapses are shielded by astrocytic processes 

expressing high densities of glutamate transporters, it has been suggested that 

ambient glutamate is restricted to the extrasynaptic regions and excluded from 

synaptic clefts (Featherstone and Shippy, 2008). Based on the fact that glutamatergic 

synapses in adult hippocampus in rat are mostly sitting on spines (Bourne and Harris, 

2011), NMDARs on dendritic shafts are considered to be exclusively extrasynaptic. I 
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then tested whether there is a different contribution in NMDAR-mediated Ca2+ entry 

in dendritic spines and shafts. 

The source of the glutamate tonically bound with NMDARs was also investigated. 

I tested whether synaptically-released glutamate also contributes to the baseline 

glutamate concentration either by pharmacologically emptying the synaptic vesicles 

or by using genetically modified mice in which the synaptic release is shut down in 

CA3 pyramidal cells. 

 

3.2. Materials and methods 

3.2.1. Animals and slice preparation 

Transverse slices of hippocampus were prepared from animals as described in 

Chapter 2.2. Briefly, the majority of the experiments were done using SD rats, aged 

p21 - p35. Slices from CA1-GluN1 KO mice, aged p42 - p49, were used for control 

experiments showing the involvement of postsynaptic NMDARs on CA1 pyramidal 

cells. Slices from CA3-TeTX mice, aged p42 - p49, were used in experiments probing 

the source of glutamate.  

 The procedures for slice preparation are described in Chapter 2.3. Briefly, 

animals were anaesthetised and decapitated. The brain was removed, and chilled 

with ice-cold cutting solution. Hippocampi from both hemispheres were isolated and 

placed in an agar block and transverse slices (350 µm) were cut with a vibroslicer (Fig. 
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2.1e). The slices were left to recover for 20 to 30 min at 34°C in a submerged 

chamber in cutting or storage solution. Then they were transferred and incubated on 

either an interface- or submerged-type chamber (mostly submerged-type) at room 

temperature for at least 1 hour for recovery with storage solution. After that, the 

slices were transferred to the recording chamber and were continuously superfused 

at 33-34oC with ACSF. All solutions were saturated with 95% O2 and 5% CO2. 

Osmolarity was adjusted to 298 ± 3 mOsm. The procedures for incubation of slices in 

bafilomycin A1 are described in Chapter 2.4. 

 

3.2.2. Electrophysiology and two-photon imaging  

Whole cell patch-clamp recording and two-photon imaging were performed as 

described in Chapter 2.5 and 2.6. Briefly, cells in slices were first visually searched 

using Olympus BX-61 microscope equipped with differential interference contrast 

optics under infrared illumination and a 60x water immersion lens. For imaging 

experiments, whole-cell current-clamp recordings were obtained from CA1 

pyramidal neurons with a patch pipette (3 - 6 MΩ) filled with solution containing the 

morphological tracer Alexa Fluor 594 (50 µM) and the Ca2+ sensitive dye Fluo-4 (250 

µM). Once the whole cell recordings were obtained, the patch amplifier (Multiclamp 

700B) was set to either current- or voltage-clamp mode. Dendritic bAPs were 

induced in these cells by somatic current injections (2-3 ms, 400 – 1000 pA) and 

monitored in the soma. Two-photon imaging was performed at least 20 -30 min after 
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rupturing the seal and breaking into the cell to ensure dye equilibration. Imaged 

dendrites were at least 30 µm (mostly 50 µm) below the slice surface. 

 

3.3. Dendritic shaft-associated NMDARs are enabled by a single bAP 

Hippocampal CA1 pyramidal cells were held in whole-cell current clamp mode, 

filled with the Ca2+ indicator Fluo-4 (250 µM) and the morphological tracer Alexa 

Fluor 594 (50 µM). Line-scan imaging of Ca2+ transients were induced by a single bAP 

in shafts and spines of the apical oblique dendrites (Fig. 3.1a,b) with AMPA/kainate 

and GABAA receptors blocked by 25 µM NBQX and 100 µM Picrotoxin respectively. It 

has been shown that the majority of the Ca2+ transients induced by bAPs both in 

spine and shaft are contributed by VDCC (Bloodgood and Sabatini, 2007b; Sabatini 

and Svoboda, 2000). The amplitudes of fluorescence Ca2+ responses, indicated by 

ΔG/R (see chapter 2.11.1), in the dendritic shafts were reversibly reduced to 89 ± 3% 

of baseline by the broad-spectrum NMDAR antagonist D-APV (50 µM) (n = 13, p = 

0.001; Table 3.1; Fig.3.1c; Fig. 3.2a for trial-by-trial example). Strikingly, no such 

reduction was detected in the spines on the same dendritic shaft (n = 22, p = 0.31; 

Table 3.1; Fig.3.1d; Fig. 3.2b for trial-by-trial example). Because the overwhelming 

majority of excitatory synapses in CA1 pyramidal cells are hosted by spines (Bourne 

and Harris, 2011), extrasynaptic rather than synaptic NMDARs are activated upon 

generation of a bAP. The lack of APV effects on the bAP-evoked Ca2+ influx in spines 

also suggests that unblocking NMDARs had no detectable influence on the bAP 
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waveform (e.g. amplitude or duration) which controls the opening of local voltage-

dependent Ca2+ channels.  
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Figure 3.1 Activation of shaft NMDARs is enabled by bAPs 

a, Left panel, a recorded neuron filled with Alexa Fluor 594. Upper right, the 
boxed region expanded. Red line: the line-scan trajectory through the dendritic 
shaft (de) and spines (s1, s2). Lower right, somatic action potential in response 
to current injection. b, Line-scan Ca2+ imaging (upper) and average traces 
(lower); notation is as in (a). c and d, The effect of NMDAR antagonist APV on 
bAP-evoked Ca2+ entry (ΔG/R) in shafts (c) and spines (d). Averaged traces in 
control (black) and in APV (red). Summary data normalized to control (Ctrl). 
Wash – washout of APV. *, p < 0.05.  
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Figure 3.2 A trail-by-trial example of single experiments for APV effect on 
bAP-evoked Ca2+ transients 

a and b, APV slightly decreases bAP-evoked Ca2+ transients (ΔG/R) in the 
dendritic shaft (a) but not in the spine (b). c and d, Baseline Ca2+ indicated by 
baseline G/R is not affected by APV in the shafts (c) and spines (d). Open circles, 
individual trials. Red dash-lines, averaged values of each condition.  

 

3.4. Shaft NMDARs contribution to bAP-Ca2+ entry was occluded in 

Mg2+ free solution 

Because NMDARs also exhibit voltage-dependent gating even in the absence of 

external Mg2+ (Clarke and Johnson, 2008), I tested whether this Ca2+ influx through 

dendritic shaft-associated NMDARs is due to the relief of voltage-dependent Mg2+ 

block during AP backpropagating. To separate the effect of depolarization from that 
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of Mg2+ blockade, these experiments were repeated in Mg2+ free solution. There was 

no significant effect of APV (ΔG/R; 97 ± 2% of control, n = 6, p = 0.09; Fig. 3.3), which 

argues against any contribution of the voltage-dependent receptor properties other 

than the Mg2+ block. 

 

 

Figure 3.3 Shaft NMDARs contribution to bAP-Ca2+ entry was occluded in 
Mg2+ free solution 

No significant effect of APV on bAP-evoked Ca2+ entry in Mg2+-free ACSF (0-
Mg2+) in shafts. Left panel, Averaged traces in 0- Mg2+ (black) and after adding 
APV (red). Summary data normalized to control (0-Mg2+). n.s. for no significant 
difference. 

 

3.5. No shaft NMDAR-mediated bAP-Ca2+ entry in CA1-GluN1 

conditional knock-out mice 

The APV effect on shaft NMDAR could be explained by downregulation of 

network activity because all NMDARs on other types of cells were also blocked. Thus, 

I tested whether the above effects depend on the presence of functional dendritic 

NMDARs in CA1 pyramidal cells or on the network consequences of APV actions. The 
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bAP-evoked Ca2+ entry in shafts and spines in slices prepared from CA1-GluN1 

conditional knock-out mice (Tsien et al., 1996) was insensitive to APV application 

(ΔG/R; shafts: 96 ± 5 % of control, n = 6, p = 0.45, Fig. 3.4a). At the same time, APV 

was effective in the littermates which expressed functional NMDARs (ΔG/R; shafts: 

87 ± 5% of control, n = 6, p = 0.04, Fig. 3.4b). These results suggest that the APV 

effect on bAP-evoked Ca2+ entry in shafts is due to the activation of functional shaft 

NMDARs. 

 

Figure 3.4 No significant shaft NMDAR-mediated bAP-Ca2+ entry in CA1-
GluN1 conditional knock-out mice 

a, No significant effect of APV on bAP-evoked Ca2+ entry (ΔG/R) in dendritic 
shafts of CA1-GluN1 KO mice. b, APV has effect on bAP-evoked Ca2+ entry in 
the control littermates and wild type mice (Ctrl/WT). Averaged traces in 
control (black) and in APV (red). Summary data normalized to control (Ctrl). n.s. 
for no significant difference. Summary data normalized to control (Ctrl). *, p < 
0.05.  



Yu-Wei Wu                                                                                                     July 2012 

85 

3.6. Activation of background synaptic NMDARs does not contribute 

to bAP-Ca2+ entry  

Activation of spine NMDARs by background synaptic release might also generate 

Ca2+ influx, diffusing to dendritic shaft. Thus, I addressed the possibility that the APV 

sensitivity of bAP-evoked Ca2+ entry in dendritic shafts could be due to activation of 

synaptic NMDARs on a sub-group of neighbouring spines which were not sampled. In 

baseline conditions the frequency of spontaneous synaptic release detected by 

whole-cell recording was 1-3 Hz (Fig. 3.6a). Given 5-10 thousand excitatory synapses 

per CA1 pyramidal cell (Megias et al., 2001), this suggests that spontaneous 

glutamate release occurs at each individual synapse once every hour or so: indeed, 

no spontaneous signals were observed in n = 111 documented postsynaptic spines 

each monitored over several minutes. To further confirm this presumption, I 

monitored the Ca2+ signal on a dendritic branch and the somatic spontaneous EPSPs 

in low Mg2+ ACSF for 5 minutes (fig 3.5). It has been shown that the Ca2+ signal 

generated by synaptic glutamate release is much larger than that generated by a bAP 

(Yasuda et al., 2004). I tested whether our two-photon Ca2+ imaging system was 

sensitive enough to detect Ca2+ influx triggered by spontaneous glutamate release by 

monitoring bAP-evoked Ca2+ influx. Indeed, the imaging system was able to capture 

bAP-evoked Ca2+ entry (Fig. 3.5 b1) which is usually smaller than a typical EPSP-

induced Ca2+ event (Fig 3.5 b2). The frequency of somatic spontaneous EPSPs was 

0.93 Hz, but no spontaneous Ca2+ activity was seen in the 11 monitored spines 

during this period. Altogether, these again suggested infrequent spontaneous Ca2+ 
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activity in an individual spine in acute hippocampal slice preparation. Therefore, any 

impact of background synaptic NMDARs activation on bAP-evoked Ca2+ entry is 

highly unlikely. 

  



Yu-Wei Wu                                                                                                     July 2012 

87 

 

Figure 3.5 Spontaneous Ca2+ activity rarely detected in spines of a dendritic 
branch in acute hippocampal slice  

a, A CA1 pyramidal cell was filled with Alexa Fluor 595 and Fluo-4 with a whole-
cell patch pipette in low Mg2+ (0.05 mM) ACSF containing CGP52432 (5 μM) 
and PTX (100 μM). 11 spines on an oblique dendritic branch were imaged for 5 
minutes. b, No Ca2+ activities were observed except bAP-activated Ca2+ 
transients induced by somatic current injection (arrows). Insert b1, Enlarged 
bAPs-induced Ca2+ transient. Insert b2, A typical trace of a single synaptic 
stimulation induced Ca2+ transient in a dendritic spine recorded in a separated 
experiment. Note that the Ca2+ transient induced by synaptic stimulation is 
significantly larger than the bAP-induced one. c, Membrane potential recording 
simultaneously with Ca2+ imaging in b. Many spontaneous EPSPs could be seen 
during the 5 minutes. Insert c1, APs triggered by somatic current injection. 
Insert c2, Enlarged spontaneous EPSPs waveforms. 
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3.7. Glutamate that binds to shaft NMDAR has non-synaptic origin in 

quiescent slices 

Next, I examined whether synaptically-released glutamate participates in 

binding to shaft NMDARs in the baseline conditions. Synaptic release was blocked 

with 4 µM bafilomycin A1 (a specific inhibitor of vacuolar-type H+-ATPase; Chapter2 

2.4). Indeed, this treatment completely abolished both spontaneous and evoked 

glutamatergic synaptic responses (Fig. 3.6; for method see chapter 2.4). Strikingly, 

the effect of APV on bAP-evoked Ca2+ entry in these slices compared to control 

conditions was qualitatively identical (Table 3.1; Fig. 3.7).  

Finally, I confirmed this finding in a more specific way in a mouse line (CA3-TeTX 

mouse line) in which CA3 to CA1 glutamatergic synaptic transmission was specifically 

shut down (Nakashiba et al., 2008). Because the apical oblique dendrites of CA1 

pyramidal neurons receive excitatory inputs mostly from CA3 Schaffer collaterals 

(Jones and McHugh, 2011), in CA3-TeTX mice there should be no or at least 

considerably fewer frequent glutamatergic synaptic events targeting to the imaged 

dendritic branches. In agreement with the results shown in bafilomycin A1 treated 

slices, no qualitative difference of the APV effect on bAP-evoked Ca2+ entry was 

found in CA3-TeTX mice compared to control conditions (Table 3.1; fig 3.8). 

These observations indicated that activation of synaptic NMDARs does not 

contribute significantly to the APV sensitivity of bAP-evoked Ca2+ entry in the shafts 

in baseline condition. This was also consistent with previous reports demonstrating 
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that ambient glutamate in quiescent slices has a non-synaptic origin under basal 

conditions (Cavelier and Attwell, 2005; Fleming et al., 2011a; Fleming et al., 2011b; 

Jabaudon et al., 1999; Le Meur et al., 2007).  

 

 

Figure 3.6 Spontaneous and evoked EPSC were completely blocked in 
bafilomycin A1 treated slice 

a, The spontaneous (left) and evoked (by stainless-steel bipolar electrodes) 
(right) synaptic activity in a control slice. Many spontaneous EPSCs were 
observed. b, No spontaneous EPSCs (left) were observed. No evoked (right) 
synaptic activity was seen even stimulated with 10 times stronger current in a 
bafilomycin A1 treated slice. 
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Figure 3.7 bAP triggers detection of ambient glutamate by shaft NMDARs. 

a and b, The effect of APV on bAP-evoked Ca2+ entry (ΔG/R) in shafts (a) and 
spines (b) of CA1 pyramidal neurons from bafilomycin A1 treated slices. Upper 
panels, averaged traces of bAP-evoked Ca2+ transients in control (black trace) 
and after adding APV (red trace) in one characteristic dendritic shaft and spine, 
respectively. Lower panels, summary data normalized to “Ctrl”– control 
condition in bafilomycin A1 treated slice. *, p < 0.05.  
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Figure 3.8 bAP triggers detection of glutamate by shaft NMDARs in mice 
without CA3 to CA1 excitatory synaptic transmission 

a and b, The effect of APV on bAP-evoked Ca2+ entry (ΔG/R) in shafts of CA1 
pyramidal neurons in CA3-TeTX mice (a) and in control littermates (b). Upper 
panels, averaged traces of bAP-evoked Ca2+ transients in control (black trace) 
and after adding APV (red trace) in one characteristic dendritic shaft and spine, 
respectively. Lower panels, summary data normalized to control (Ctrl). *, p < 
0.05.  

 

 

3.8. Glutamate uptake protects synaptic NMDARs from exposure to 

ambient glutamate 

Electron microscopy suggests that astrocytic processes, which are enriched in 

high-affinity glutamate transporters (Lehre and Danbolt, 1998) and provide > 90 % of 

the glutamate uptake in area CA1 (Danbolt, 2001), tend to occur in the vicinity of 
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postsynaptic spines (Lehre and Rusakov, 2002). While this transporter shield 

provides a powerful buffer for glutamate which escapes the adjacent synaptic cleft 

(Bergles et al., 1999; Diamond and Jahr, 1997), it could also protect local synaptic 

NMDARs from extracellular glutamate originating from outside the immediate 

synapse. To test this hypothesis, I asked whether blocking glutamate uptake would 

affect the differential contribution of postsynaptic (associated with dendritic spines), 

as opposed to dendritic- shaft NMDARs, to the bAP-evoked Ca2+ entry. 

 

3.8.1. Glutamate uptake prevents contribution of spine NMDARs to bAP-evoked 

Ca2+ entry  

Glutamate transporters were blocked with the potent non-selective glutamate 

transporter blocker DL-threo-β-Benzyloxyaspartic acid (TBOA) (100 µM). TBOA was 

added on the presence of the blockers of AMPA/kainate receptors and mGluRs to 

avoid the involvement of other types of glutamate receptors after extracellular 

glutamate built up.  

Under TBOA treatment, several phenomena were observed. First, TBOA 

increased the effect of APV on bAP-evoked Ca2+ entry in dendritic shafts (Ca2+ 

transients were reduced to 79 ± 3 % of baseline, n = 9; p < 0.001; Table 3.1; Fig. 3.9a) 

indicating that shaft NMDARs are not saturated under basal conditions. Secondly, in 

the presence of TBOA APV also reduced Ca2+ transients in dendritic spines (Table 3.1; 

Fig. 3.9b; p < 0.001). These results provide evidence that the shaft NMDARs sense 
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concentrations of extracellular glutamate, whereas spine receptors are relatively 

'protected' by local transporters (Lozovaya et al., 2004a; Scimemi et al., 2004). 

 

 

Figure 3.9 Blockade of glutamate uptake unveils the NMDAR contribution to 
bAP-evoked Ca2+ transients in dendritic spines.  

a, The glutamate transporter blocker TBOA increases the effect of APV on bAP-
evoked Ca2+ transients (ΔG/R) in shafts. b, TBOA reveals a APV-sensitive 
component in Ca2+ transients in spines. a and b, Upper panels, averaged traces 
of bAP-evoked Ca2+ transients in TBOA (black trace) and in TBOA + APV (red 
trace) in one characteristic dendritic shaft and spine, respectively. Lower 
panels, summary data normalized to the Ca2+ transient in TBOA. *, p < 0.05.  
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Table 3.1       Effect of APV on bAP-evoked Ca2+ transients 

 Normal ACSF 

Bafilomycin A1 CA3-tetanus mice In TBOA 

p, for difference with ‘Normal ACSF’ 

Shafts 89 ± 3 (13) 
87 ± 4 (4)  

p = 0.36 

86 ± 4 (12)  

p = 0.56 

79 ± 3 (9)  

*p = 0.011 

Spines 98 ± 4 (22) 
93 ± 5 (7)  

p = 0.22 

93 ± 6 (11)  

p = 0.43 

77 ± 3 (18)  

*p < 0.001 

* ΔG/R; mean ± SEM (n) - % of bAP-evoked Ca2+ transients in its control condition 
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3.8.2. The concomitant effects of TBOA application 

Although the blockade of glutamate uptake resulted in a relatively larger 

contribution of NMDARs to bAP-evoked Ca2+ transients, the baseline amplitude of 

these transients was decreased by TBOA both in shafts and spines (ΔG/R; 80 ± 3 % of 

control; n= 9, p < 0.001 in shafts; 80 ± 5 % of control; n = 18, p < 0.001 in spines; Fig. 

3.10a,b). Possible explanations for this effect of TBOA are (1) depolarization which 

leads to recruitment or inactivation of some voltage dependent Ca2+ channels 

(Magee and Johnston, 1995) (thus their insensitivity to bAP), and (2) shunting of 

bAPs due to an increase in membrane conductance.  

Indeed, TBOA notably increased Ca2+ baseline level (baseline G/R; 117 ± 3% of 

control, n = 9, p = 0.002 in shafts; 117 ± 4% of control, n = 18, p = 0.001 in spines; Fig. 

3.10c,d). TBOA induced a significant shift in the holding current (Δ Ihold = -35 ± 8 pA, n 

= 6, Wilcoxon signed-rank test p = 0.016; Fig. 3.11a) in CA1 pyramidal cells held 

at -70 mV, which was completely reversed by APV (50 μM). The shift in the holding 

current was accompanied by an irreversible decrease in the Rinput (83 ± 7 % of control, 

n = 6, p = 0.016; Fig 3.11b). The changes in holding current and Rinput in TBOA were 

blocked when the slices were pre-incubated in APV (Δ Ihold = 2.5 ± 13 pA, n = 5, p = 1; 

Rinput : 100 ± 2 % of control, n = 5, p = 0.59; Fig 3.11c,d). These results suggest that 

TBOA induced an NMDAR-dependent modulation of non-NMDAR conductance (e.g. 

h-channels (Fan et al., 2005) or Kv channels (Mulholland et al., 2008; Mulholland and 

Chandler, 2010) following extracellular buildup of glutamate in the presence of TBOA. 

This also suggests that some NMDARs could be activated at physiological Mg2+ near 
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the cell resting membrane potential (Kovalchuk et al., 2000), and furthermore it 

highlights the importance of local transporters to protect synaptic NMDARs from 

globally increased glutamate concentration produced from outside the immediate 

synapse, which leads to concomitant side-effects including increase in baseline Ca2+ 

concentration, depolarization, and change in cell membrane Rinput.  

 

Figure 3.10 The glutamate uptake blocker TBOA reduces bAP-evoked Ca2+ 
transients. 

a and b, TBOA reduces bAP-evoked Ca2+ transients(ΔG/R) in dendritic shafts (a) 
and spines (b). Upper panels, Ca2+ transients in control (black line) and in TBOA 
(red line) in shafts (a) and spines (b). Lower panels, summary data normalized 
to control (‘Ctrl’). c and d, TBOA increases baseline Ca2+ (baseline G/R )both in 
in dendritic shafts (c) and spines (d). *, p < 0.05. 
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Figure 3.11. Blockade of glutamate uptake induces an NMDAR-dependent 
decrease of membrane Rinput. 

a and b, TBOA induced an NMDAR-dependent shift in the holding current 
(ΔIhold) in CA1 pyramidal neurons voltage clamped at -70 mV. Upper panels, 
sample traces showing holding current time-course. Lower panels, summary 
data. c and d, TBOA induced an irreversible decrease in membrane Rinput. Upper 
panels, the membrane current response to a -5 mV pulse in control (black) and 
after TBOA (blue). Lower panels, summary data. Open circles, individual 
experiments. *, p < 0.05. “n.s.”, p > 0.05.  
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Therefore, next I tested the potential effects of TBOA application, namely (a) 

shunting and (b) depolarization, to see whether they could reproduce the effect of 

TBOA on bAP-evoked Ca2+ entry. First, a shunting effect was mimicked by applying 30 

- 50 μM extracellular GABA (with AMPA, NMDA, GABAB receptors blocked). 

Extracellular GABA successfully induced a 17 ± 3 % decrease in Rinput (n =7, p < 0.008; 

Fig 3.12a) which was reversed by GABAA receptor blocker PTX (100 μM) (104 ± 2 % of 

control, n = 7, p = 0.625; Fig 3.12a). However, bAP-evoked Ca2+ entry was not 

affected by extracellular GABA (ΔG/R; 96 ± 4 % of control, n = 8, p = 0.12 in shafts; 

and ΔG/R; 100 ± 8 % of control, n = 10, p = 0.16 in spines; Fig 3.12c,d ) which 

suggested that the decrease of bAP-evoked Ca2+ entry upon TBOA application was 

not due to an accompanied shunting effect. (At least bAP-evoked Ca2+ entry was not 

affected in proximal oblique dendrites which were imaged). Next, the depolarization 

effect was mimicked by raising extracellular K+ to 3.5 mM. It induced 3.6 ± 0.5 mV 

depolarization and decreased the bAP-evoked Ca2+ entry in both shafts and spines 

(ΔG/R; 83 ± 5 % of control; n= 6, p < 0.009 in shafts; 79 ± 4 % of control; n = 11, p < 

0.001 in spines; Fig. 3.13). Therefore, the decrease of bAP-evoked Ca2+ entry upon 

TBOA application could be due to membrane depolarization. 

However, neither (a) shunting nor (b) depolarization could explain an increase of 

the APV effect on bAP-induced Ca2+ entry in dendritic spines. Although these data 

are thus consistent with the hypothesis that glutamate transporters protect synaptic 

NMDARs from exposure to glutamate, it was important to demonstrate this using 

less invasive physiological manipulations. 
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Figure 3.12. Shunting generated by activation GABAA receptor does not affect 
bAP-evoked Ca2+ transients. 

a, GABA (50 µM ) induced GABAA receptor mediated shunting (decrease in 
Rinput) in CA1 pyramidal neurons. Left panel, the membrane potential responses 
to a 800 ms/-60 pA current injection in control (black), GABA (red), and PTX 
(Red). Right panel, summary data. b and c, Shunting induced by GABAA 
receptor activation is not accompanied by a decrease of bAP-evoked Ca2+ 
transient. Upper panels, bAP-evoked Ca2+ transients in control (black line) and 
in GABA (red line) in shafts (b) and spines (c). Lower panels, summary data 
normalized to control (‘Ctrl’). *, p < 0.05.  



Yu-Wei Wu                                                                                                     July 2012 

100 

 

Figure 3.13. Raising external K+ reduces bAP-evoked Ca2+ transients. 

a and b, Raising external K+ from 2.5 to 3.5 mM reduced bAP-evoked Ca2+ 
transients(ΔG/R) in dendritic shafts (a) and spines (b) which partially mimics 
the effect of TBOA. Upper panels, Ca2+ transients in control (black line) and in 
3.5 mM external K+ (red line) in shafts (a) and spines (b). Lower panels, 
summary data normalized to control (‘Ctrl’). *, p < 0.05. 
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3.9. Discussion 

These results demonstrate that NMDARs located in dendritic shafts, but not 

spines, are bound to glutamate under baseline condition. A bAP relieves the Mg2+ 

block of the receptors providing ‘readout’ for the ambient glutamate. Because 

glutamatergic synapses on CA1 pyramidal neurons occur mainly on dendritic spines, 

shaft NMDARs exist overwhelmingly as extrasynaptic receptors (Petralia et al., 2010). 

Dendritic spines however may host both synaptic and extrasynaptic NMDARs. 

Because it may be difficult to distinguish between the two, I have focused on the 

physiological role of shaft NMDARs as almost exclusively extrasynaptic. The 

mechanism behind the distinction between spine and shaft NMDARs is likely to be 

the differential expression of high-affinity neuronal and glial glutamate transporters. 

The relatively tight glial coverage of dendritic spines and efficient postsynaptic 

transporters appear to maintain a negligible background glutamate concentration 

inside the synaptic cleft in the absence of synaptic events (Fig. 1.7a) (Danbolt, 2001; 

Danbolt et al., 1998; Diamond, 2001). 

Indeed, the blockade of glutamate uptake with TBOA revealed contribution of 

spine NMDARs in Ca2+ entry induced by a bAP. Such isolation of the synaptic cleft 

from baseline ambient glutamate may serve not only the purpose of separation of 

the signalling mediated by synaptic and extrasynaptic NMDARs, but could also be 

important for minimizing the desensitization of synaptic AMPA receptors by ambient 

glutamate (Trussell and Fischbach, 1989). The concomitant effects of blocking 
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glutamate transporters further suggest the importance of maintaining the 

compartmentalization of synaptic and extrasynaptic receptors. 

Moreover, these results also demonstrate that, in quiescent slices, the 

extrasynaptic glutamate which binds to shaft NMDARs originates from non-vesicular 

release, because shaft NMDAR-mediated Ca2+ entry enabled by bAP was not affected 

when the vesicular glutamate release was blocked by bafilomycin A1 or in the 

transgenic mice without synaptic release from CA3 pyramidal neurons. This finding is 

consistent with previous reports that baseline ambient glutamate originates from 

non-vesicular astrocytic release (Cavelier and Attwell, 2005; Jabaudon et al., 1999; Le 

Meur et al., 2007). 

Actually, the majority of the bAP-evoked Ca2+ influx in dendrite of CA1 pyramidal 

neuron is mediated by VDCCs both in spine and shaft (Bloodgood and Sabatini, 

2007b; Sabatini and Svoboda, 2000). Specifically, Bloodgood and colleagues 

performed two-photon Ca2+ imaging approaches combining pharmacological tools 

which sensitively block different types of VDCCs, and show that the T-type, L-type, 

and N-type VDCCs contribute to bAP-evoked Ca2+ entry both in shafts and in spines, 

whereas R-type VDCCs are specifically presented in spines (Bloodgood and Sabatini, 

2008). However, the glutamate-bound NMDAR-mediated Ca2+ entry during bAP was 

not discussed because the NMDAR antagonist was always present in their recording 

solution. Another work by Herman and colleagues, however, suggested no 

contribution of Ca2+ entry through NMDARs during a single bAP (Herman et al., 2011). 

In their work, the lower sensitive Ca2+ dye, Fluo-5F (Kd = 1.3 μM), was used for 
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monitoring bAP-evoked Ca2+ entry, whereas in my work the ~4-fold more sensitive 

calcium dye, Fluo-4 (Kd = 0.3μM), was used. This difference in dye sensitivity might 

be critical for observing the small changes, here 13 ± 4%, of a single bAP-evoked Ca2+ 

entry. 
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Chapter 4: Detection of extrasynaptic glutamate concentration 

rises by NMDARs during bAPs 

4.  

4.1. Introduction 

In chapter 3, I have shown that a bAP can provide ‘readout’ for the baseline 

ambient glutamate bound to shaft NMDARs, whereas spine NMDARs could be 

protected from ambient glutamate by the powerful transporter shield. The 

extracellular glutamate concentration in a quiescent brain slice can be thought of as 

a ‘floor’ level of ambient glutamate which is independent of the synaptic network 

activity. In addition to ambient non-vesicular glutamate, extrasynaptic NMDARs 

potentially can also be bound to glutamate escaping from the synaptic cleft when 

synaptic network activity increases, as well as from transient astrocytic release. In 

this chapter, I tested whether the same readout mechanism also applies to the 

detection of rises of extracellular glutamate concentration in these conditions 

(illustrated in Fig. 1.6e and 1.7b). 
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4.2. Materials and methods  

4.2.1. Animal and slice preparation 

Procedures for preparing transverse slices (350 µm) of hippocampus from SD 

rats aged p21 - p35 are described in Chapter 2.2 and 2.3. Briefly, rats were 

anaesthetised and decapitated. The brain was removed, chilled with ice-cold cutting 

solution. Hippocampi from both hemispheres were isolated and placed in an agar 

block and transverse slices (350 µm) were cut with a vibroslicer (Fig. 2.1e). The slices 

were left to recover for 20 to 30 min at 34°C in a submerged chamber in cutting or 

storage solution. Then they were transferred and incubated on either an interface- 

or submerged-type chamber (mostly submerged-type) at room temperature for at 

least 1 hour for recovery with storage solution. After that, the slices were transferred 

to the recording chamber and were continuously superfused at 33-34oC with ACSF. 

All solutions were saturated with 95% O2 and 5% CO2. Osmolarity was adjusted to 

298 ± 3 mOsm.  

4.2.2. Electrophysiology and two-photon imaging 

Whole cell patch-clamp recording and two-photon imaging were performed as 

described in Chapter 2.5 and 2.6. Briefly, cells in slices were first visually identified 

using Olympus BX-61 microscope equipped with differential interference contrast 

optics under infrared illumination and a 60x water immersion lens. For imaging 

experiments, whole-cell current-clamp recordings were obtained from CA1 
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pyramidal neurons with a patch pipette (3 - 6 MΩ) filled with a solution containing 

the morphological tracer Alexa Fluor 594 (50 µM) and the Ca2+ sensitive dye Fluo-4 

(250 µM). Once the whole cell recordings were obtained, the patch amplifier 

(Multiclamp 700B) was set to either current- or voltage-clamp mode. Dendritic bAPs 

were induced in these cells by somatic current injections (2-3 ms, 400 - 1000 pA) and 

monitored in the soma. Two-photon imaging was performed at least 20 -30 min after 

rupturing the seal and breaking into the cell to ensure dye reaching steady-state. 

Imaged dendrites were at least 30 µm (mostly 50 µm) below the slice surface. 

4.2.3. Local synaptic stimulation and finding the active spine 

Local synaptic stimulation was done with an extracellular glass pipette (2−3 µm 

tip) filled with 1M NaCl. To monitor the location of the pipette, 5 µM Alexa Fluor 594 

was also added to the solution in the pipette. The pipette then was positioned 5 to 

20 µm from an apical oblique dendrite of the recorded neuron (Yasuda et al., 2004). 

The neuron was voltage-clamped at -40 mV in absence of AMPA receptor 

antagonists. Then we identified spines which responded with Ca2+ transients to a 

train of 5 stimulus pulses (0.2-5 V, 200 µs) at 50 Hz to assure glutamate release (Fig. 

4.1). Then the AMPA receptors were blocked. The cells were held in current clamp 

and three types of measurements were done in the dendrite and the spine: (1) Ca2+ 

transients in response to a bAP; (2) Ca2+ response to synaptic stimulation; and (3) a 

response to the bAP and ‘synaptic’ stimulation combined. In protocol (3) bAPs were 

initiated 70 ms after the end of synaptic stimulation. 



Yu-Wei Wu                                                                                                     July 2012 

107 

 

4.2.4. Uncaging of caged glutamate 

Single-photon and two-photon glutamate uncaging were performed as 

described in Chapter 2.6 and Chapter 2.7 respectively. Briefly, experiments were 

performed by using a two-scanner FV1000-MPE microscope (Olympus) equipped 

with two ultra-fast pulsing lasers, Mai-Tai (Spectra-Physics) tuned to 810 – 830 nm 

and 720 nm for imaging and for glutamate uncaging, respectively (Fig. 2.5). MNI-

caged glutamate (12 mM) was applied locally via an extracellular glass pipette (1-2 

MΩ). The uncaging spot was located opposite an oblique dendrite at equal distances 

(around 1 µm) from the imaged dendritic shaft and spine (Fig 4.1). To mimic the 

transient rise of extracellular glutamate concentration, the duration and the power 

of the uncaging pulse were set to 5 ms and low power (2-3 mW) to produce a just 

detectable Ca2+ response. 

 

4.2.5. Pairing protocols for two-photon uncaging  

For the ‘pairing’ protocol, the three types of recordings were carried out: (1) 

Ca2+ transients in response to a bAP; (2) a Ca2+ response to glutamate uncaging; and 

(3) a response to the bAP and uncaging combined. In protocol (3) bAPs were induced 

70 ms after the uncaging pulse to avoid the involvement of another voltage-gated 

conductance.  
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4.3. Detection of glutamate spillover 

To test whether such protection withstands increased network activity, a brief 

train of stimuli to Schaffer collaterals was applied (5 at 50 Hz, Chapter 2.9). This 

stimulation is compatible with physiological discharges of CA3 pyramidal cells, 

thought to be sufficient to produce detectable glutamate escape (Lozovaya et al., 

2004b; Min et al., 1999; Min et al., 1998; Scimemi et al., 2004; Semyanov and 

Kullmann, 2000). When the cell was held at -70 mV with AMPA receptors not 

blocked, this stimulus evoked clear Ca2+ responses in a proportion of dendritic spines, 

but not in dendritic shafts (Fig. 4.1). This pattern of responses has routinely been 

associated with spines activated by glutamate released at the immediate synapse 

(Sabatini et al., 2002). Next we depolarized the cell to -40 mV to relieve the Mg2+ 

block of NMDARs. Under these conditions synaptic stimulation did evoke a 

detectable APV-sensitive Ca2+ response in a proportion of the previously 

unresponsive spines, as well as in the dendritic shaft (Fig. 4.1). The most plausible 

explanation is that removing the Mg2+ has boosted the response of spine and shaft 

NMDARs to glutamate escaping from active synapses. An alternative explanation 

involving activating NMDAR-only ('silent') synapses (Kerchner and Nicoll, 2008) is 

unlikely because the 'mature' spine types which were routinely imaged in adult 

animals are thought to host synapses equipped with AMPA receptors (Beique et al., 

2006; Busetto et al., 2008). 



Yu-Wei Wu                                                                                                     July 2012 

109 

To understand the role of signals mediated by synaptic glutamate escape, I 

therefore focused on the spines showing small (indirectly activated) NMDAR-

mediated Ca2+ responses, termed here as spillover-activated spines (SASs). In the 

presence of AMPA/kainate, mGluRs, GABAA and GABAB receptor blockers, the 

stimulation induced a small and slow somatic depolarization (2.3 ± 0.6 mV). It was 

shown that bAP itself can be boosted when it coincides with an EPSP due to many 

voltage-dependent ion channels within a narrow time window (4-6 ms) (Stuart and 

Hausser, 2001b). To avoid the effect of the depolarization itself on the amplification 

of bAP, the bAP was paired with a very long delay (70 ms) after the last synaptic 

stimulation. When the synaptic stimulation was paired with a bAP (Fig. 4.2b), a 

relatively small, but highly significant, supra-linear summation of Ca2+ entry was 

observed both in the shafts (ΔG/R; 115 ± 3 % of the sum, n = 10, p < 0.001; Fig. 4.2c,e) 

and in the spines (ΔG/R; 115 ± 5 % of the sum, n = 19, p = 0.001; Fig. 4.2d,f; cells 

were held in current clamp mode). If anything, the supra-linear effect is likely to be 

underestimated under these conditions, as any partial saturation of the fluorescence 

indicator would produce a smaller fluorescence increment in response to the same 

Ca2+ entry. Importantly, the effect was completely abolished by APV (ΔG/R; shafts: 

100 ± 2 % of the sum, n = 7, p = 0.49; spines: 104 ± 4 % of the sum, n = 13, p = 0.17; 

Fig. 4.2e,f) suggesting that bAPs can provide a readout mechanism for the detection 

of a glutamate rise by both shaft and spine NMDARs. 

Interestingly, no supra-linear boost was found in directly activated spines (DASs) 

(ΔG/R; 98 ± 4 % of the sum, n = 4, p = 0.65), which indicates that either the subunit 
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compositions of synaptic NMDARs are different from extrasynaptic ones (Harney et 

al., 2008; Lozovaya et al., 2004b), or they had already desensitized due to binding 

with a higher concentration of glutamate. 

Finally, because the depolarization caused by the synaptic stimulation protocol 

could also induce a direct amplification of the pairing bAP even with a 70 ms delay 

(although unlikely), a different way of synaptic stimulation was applied to test this 

possibility. Instead of local stimulation, synaptic stimulation was applied with a 

bipolar electrode placed > 200 µm from the recorded neurons in stratum radiatum. 

The stimulation intensity was set to produce similar somatic depolarization as with 

local stimulation. Then spines and shafts of an apical oblique dendritic branch were 

scanned to monitor the Ca2+ transients induced by the pairing protocols. In this set of 

experiments no supra-linear summation of bAP-evoked Ca2+ entry was observed 

(ΔG/R; 103 ± 7 % of the sum, n = 8, p = 0.42 in shafts; 99 ± 4 % of the sum, n = 8, p = 

0.32 in spines) which ruled out the possibility of direct amplification of bAPs by 

depolarization. These results also suggested that bAPs readout the local glutamate 

concentration rise and produce supra-linear Ca2+ entry locally. 
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Figure 4.1. Ca2+ response to synaptically released glutamate in dendritic 
shafts and spines. 

a, A recorded dendrite. Red line: line-scan position through the spines (s1-3) 
and the shaft (de). b, Ca2+ transients (ΔG/R) in corresponding shaft and spines 
induced by 5 x 50 Hz electric stimulation (black arrows) when the cell was 
voltage-clamped at -70 mV (blue line) or at -40 mV (black line). Large responses 
were detected in s1 (directly activated spine - DAS); a small response in s2 
(spillover activated spine - SAS) and de; no response in s3 (inactive spine). c, 
Averaged amplitude of Ca2+ transients (ΔG/R) at -40 mV from different cells in 
DASs (n=4), SASs (n=15) and shafts (n=9) in control conditions (black bars) and 
in the presence of APV (red bars) *, p < 0.05.  
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Figure 4.2. bAP triggers detection of synaptic glutamate spillout by both shaft 
and spine NMDARs . 

a, A recorded dendrite with line-scan positions (red line). b, Somatic response 
to current injection (open arrow), local synaptic stimulation (black arrows) and 
their combination. c and d, Line-scan images and the corresponding traces 
(black) of Ca2+ transients in shafts (c) and spines (d) induced by a bAP (top), 
synaptic stimulation (‘stim.’; middle), and synaptic stimulation paired with a 
bAP (‘pairing’; bottom). Grey line, arithmetic sum of bAP and ‘stim.’ traces. e 
and f, Summary data of pairing response normalized to the sum of bAP and 
‘stim.’ responses in shafts (e) and spines (f) in normal ACSF (pairing) and in APV 
(+ APV). *, p < 0.05.  
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4.4. Detection of extracellular glutamate released from a volume-

limited source 

Stimulation of afferent fibers activates multiple sources of glutamate in the 

neuropil in a relatively indiscriminate manner, making it impossible to gauge typical 

distances between the source and the detected Ca2+ signal. To control glutamate 

release in space and time we employed two-photon uncaging of extracellular 

glutamate. To test the sensitivity of the bAP-evoked Ca2+ entry to local glutamate 

rises, we uncaged glutamate at a single point 1 µm away from both the spine and the 

parent shaft (5 ms pulse), a distance exceeding the average nearest-neighbor 

distance between synapses in the hippocampus (~0.5 µm) (Rusakov and Kullmann, 

1998) (Fig. 4.3). The uncaging of glutamate in the presence of an AMPAR antagonist 

produced small Ca2+ transients (ΔG/R; 0.093 ± 0.030 in spines and 0.020 ± 0.006 in 

shafts, n = 7), which are likely to reflect the fraction of NMDARs with Mg2+ unblocked 

at resting conditions (Kovalchuk et al., 2000); these transients were completely 

blocked by APV (Fig. 4.3). However, when uncaging was paired with a bAP, the 

resulting Ca2+ signals were again substantially higher than the sum of the Ca2+ signals 

evoked by either uncaging or a bAP alone (ΔG/R; shafts: 122 ± 4 % of the sum, n = 7, 

p < 0.001; Fig. 4.3c,e and spines: 129 ± 10 % of the sum, n = 7, p = 0.015; Fig. 4.3d, f). 

Again, the supra-linearity was completely abolished by APV (ΔG/R; shafts: 102 ± 3 % 

of the sum, n = 7, p = 0.28; Fig. 4.3e and spines: 99 ± 1 % of the sum, n = 7, p = 0.19; 

Fig. 4.3f). This result is therefore consistent with our suggestion that bAPs can 

provide a readout of local extrasynaptic glutamate rises, be it from synaptic activity 
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(Rusakov and Kullmann, 1998; Zheng et al., 2008), or through astrocytic (Jabaudon et 

al., 1999) or ectopic dendritic (Duguid et al., 2007; Shin et al., 2008a) release.  

Next the Ca2+ entry purely contributed by NMDARs (ΔG/RNMDARs) during the 

pairing protocol was calculated by subtracting the ΔG/R values of the arithmetic sum 

from the pairing. Although the surface density of spine-associated NMDARs is much 

higher than that of shaft-associated NMDARs (Aoki et al., 1994; Racca et al., 2000; 

Sans et al., 2000), these experiments failed to show a larger contribution of the Ca2+ 

entry from spine-associated NMDARs compared to the shaft-associated receptors 

(ΔG/RNMDAR; shaft: 0.018 ± 0.003, n = 7; spine: 0.039 ± 0.012, n = 7; p = 0.12 for 

difference). This finding suggests that glutamate generated from extrasynaptic 

sources can access and bind to extrasynaptic NMDARs on dendritic shafts easier. It is 

also consistent with our previous finding (Fig. 3.1c,d) that extracellular glutamate is 

more likely to be taken up by high-affinity glutamate transporters in the synaptic 

vicinity before it binds to synaptic or perisynaptic NMDARs.  
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Figure 4.3 bAP triggers detection of photolysis-induced local rises in 
extracellular glutamate by both shaft and spine NMDARs. 

a, A recorded dendrite depicting line-scan positions (red lines). Red circle: the 
uncaging spot. b, Somatic response to current injection (open arrow), local 
glutamate uncaging (black arrow) and their combination. c and d, Line-scan 
images and the corresponding traces (black) of Ca2+ transients in shafts (c) and 
spines (d) induced by a bAP (top), uncaging (‘glu’; middle), and uncaging paired 
with a bAP (‘pairing’; bottom). Grey line, arithmetic sum of bAP and ‘glu’ traces. 
e and f, Summary data of pairing response normalized to the sum of bAP and 
‘glu’ responses in normal ACSF (pairing) and in APV (+ APV). *, p < 0.05.  
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4.5. NMDAR subtypes that sense extrasynaptic glutamate rise 

The results indicate that although in baseline conditions only shaft NMDARs are 

bound with ambient glutamate, spine NMDARs are recruited when the 

concentration of glutamate is raised due to glutamate spillover and uncaging. Next, I 

investigated the subunit compositions of NMDARs that sense the rises of 

extracellular glutamate. Specifically, because the extrasynaptic NMDARs in 

hippocampal pyramidal cells were shown to be GluN2B- and GluN2D-containing 

NMDARs, I tested the effect of GluN2B selective blocker, Ro25-6981, and the 

GluN2C/D selective blocker, PPDA, on NMDAR-mediated Ca2+ influx. 

CA1 pyramidal cells were filled with Alexa 594 (50 µM) and Fluo-5F (300 µM) 

with a patch pipette for at least 20 min. Glutamate uncaging was performed in Mg2+ 

free (or low Mg2+ (0.05 mM)) ACSF while voltage clamping the neuron at -70 mV. 200 

to 250 µM of MNI-caged glutamate was added to the bath solution. NMDAR-

mediated Ca2+ entry was induced in the dendritic spines and shafts by single photon 

glutamate uncaging 1-2 µm away from the dendrite in the presence of 

AMPA/kainate, mGluR, GABAA, and GABAB receptor blockers. The GluN2B-containing 

NMDAR selective blocker, Ro25-6981 5 µM (Ro25) (Fischer et al., 1997), significantly 

decreased the Ca2+ entry in spines (ΔG/R; 79 ± 6 % of control, n = 15 spines p = 0.002) 

but failed to show effect on dendritic shafts (ΔG/R; 89 ± 10 % of control, n = 8 spines 

p = 0.156; Fig 4.4a,b). The GluN2C/D-containing NMDARs selective blocker, PPDA 0.5 

µM, further decreased the Ca2+ entry both in spines and shafts (ΔG/R; 39 ± 5 % of 

control, n = 15 spines, p < 0.001; 42 ± 7 % of control, n = 8 shafts, p = 0.004). Adding 
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APV then abolished the remaining Ca2+ responses in both shafts and spines, only the 

artefacts of uncaging, producing auto-fluorescence were left (ΔG/R; 10 ± 2 % of 

control, n = 15 spines, p < 0.001; 11 ± 2 % of control, n = 8 shafts, p = 0.004). Because 

it has been shown that the GluN2C subunit does not express in hippocampal neurons 

(Ishii et al., 1993; Wenzel et al., 1997), the PPDA sensitive component was due to the 

activation of GluN2D-containing NMDARs. These results suggest that Ca2+ entry 

through spine NMDARs activated by extrasynaptic uncaging are composed of 23 ± 7 

% of GluN2B subunits and 45 ± 6 % of GluN2D subunits. However, in dendritic shaft, 

Ca2+ entry through NMDARs was not contributed by GluN2B-containing NMDARs, 

but 55 ± 9 % of which was contributed by GluN2D-containing NMDARS. Both in 

spines and shafts, the residual 30 % of Ca2+ response was insensitive to Ro25 and 

PPDA, but blocked by APV. Presumably, it was partially mediated by GluN2A subunit-

containing NMDARs but this needs to be further confirmed by the GluN2A selective 

blocker. 
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Figure 4.4 NMDAR subtypes that sense extrasynaptic glutamate rise  

a and b, The uncaging induced Ca2+ transients (ΔG/R) in zero-Mg2+ solution can 
be reduced by GluN2B selective blocker, Ro25-6981 (Ro25), and GluN2C/D 
selective blocker, PPDA, in both shafts (a) and spines (b). Upper panels, 
averaged traces of Ca2+ transients in control (Ctrl; black), Ro25 (red), PPDA 
(blue), and APV (green). Lower panels, bar charts of summary data normalized 
to control (Ctrl). ‘2D, ‘2B’ and ‘2A’ indicate the portions of Ca2+ entry that is 
possibly contributed by GluN2B and GluN2D subunits, respectively. *, p < 0.05. 
“n.s.”, p > 0.05. 
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4.6. Discussion 

These results demonstrated that in addition to ambient non-vesicular glutamate, 

presumably the ‘floor’ level of extracellular glutamate, extrasynaptic NMDARs can 

also bind glutamate escaping from the synaptic cleft when synaptic network activity 

increases. They can also bind glutamate released from astrocytes. I found that 

synaptic discharges (or local glutamate uncaging mimicking this) paired with bAPs 

boost Ca2+ entry in both shafts and spillover-activated spines (Fig. 4.1 and 4.2). Thus 

both shaft and spine NMDARs can also sense extracellular glutamate, which is 

transiently elevated as a result of local synaptic activity, but they require a ‘readout’ 

signal such as the bAP to be activated. Importantly, the coincidence detection 

interval for glutamate release and bAPs extends beyond the duration of individual 

glutamate rises, reflecting the fact that glutamate molecules can remain bound to 

dendritic NMDARs for hundreds of milliseconds. The NMDAR-mediated 

enhancement of bAP-evoked dendritic Ca2+ signals could therefore act as an 

integrating detector of glutamate release events. 

It is also worth noting that the experiments were performed in the presence of 

AMPA/kainate receptor blocker, NBQX, which reduces the depolarization during 

synaptic stimulation. However, there is still NMDAR-Ca2+ entry observed without the 

‘readout’ provided by bAP, suggesting that NMDARs were partially activated by 

massive glutamate release during high frequency synaptic stimulation at the resting 

membrane potential. The depolarization triggered by NMDARs can provide ‘readout’ 
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by themselves and recruit more NMDARs to become active, which works as a 

positive feedback loop. Such positive feedback has been shown to mediate NMDAR 

spikes triggered by clustered synaptic inputs in cortical pyramidal neurons (Schiller et 

al., 2000). On the other hand, unlike glutamate release triggered by high frequency 

synaptic stimulation, which still directly activates synaptic NMDARs due to the high 

concentration of glutamate in the synaptic cleft, the extrasynaptic glutamate 

uncaging can preferentially activate extrasynaptic NMDARs with a relatively lower 

glutamate concentration. Indeed, glutamate uncaging triggered less depolarization 

(less than 1 mV) than when it was induced by synaptic stimulation, while it 

generated larger Ca2+ entry during the ‘readout’ period, suggesting that the ‘readout’ 

signal is more important for pure extrasynaptic signalling which by itself cannot 

produce sufficient depolarization to relieve the magnesium block. 

The results also demonstrate that a large portion (more than 50% in the shafts 

and more than 40% in the spines) of NMDAR-mediated Ca2+ entry induced by 

extrasynaptic glutamate uncaging is sensitive to selective blockers of GluN2B- and 

GluN2C/D-containing NMDARs (Ro25-6981 and PPDA respectively). Especially the 

PPDA sensitive component contributes more than 40% of Ca2+ entry. Since GluN2C-

containing NMDARs are expressed highly confined to cerebellum, thalamus, and 

olfactory bulb (Ishii et al., 1993; Wenzel et al., 1997), it is unlikely that GluN2C-

subtyes contribute to the Ca2+ entry which I observed. Although it has also been 

shown that in adult hippocampus only a very low level of GluN2D mRNA was 

detected (Dunah et al., 1996), evidence demonstrated that functional GluN2D-



Yu-Wei Wu                                                                                                     July 2012 

121 

containing NMDARs are located on the extrasynaptic membrane(Costa et al., 2009; 

Harney et al., 2008; Lozovaya et al., 2004b), and contributes about 60% of the tonic 

NMDAR-mediated current in CA1 hippocampal neurons (Le Meur et al., 2007). 

Therefore, my results suggest that besides GluN2B, GluN2D-containing NMDAR 

might be another major subtype that mediates the detection of rise of extrasynaptic 

glutamate concentration.  

It has been shown that the Mg2+ unblocking from GluN2A and GluN2B-containg 

NMDARs has a prominent slow component in cultured cells (Clarke and Johnson, 

2006) and in cortical pyramidal neurons (Vargas-Caballero and Robinson, 2003). The 

slow unblocking time constants during rapid depolarization pulses are around 5 ms 

for GluN2A and 9 ms for GluN2B whereas the Mg2+ unblocking rate from GluN2D-

containing receptors is extremely fast (unblocking time constant: 0.25 ms) without 

any slow unblock (Clarke and Johnson, 2006). Thus during rapid depolarization, such 

as a bAP, the Mg2+ block might be preferentially relieved from GluN2D-containing 

NMDARs than from other subtypes. 
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Chapter 5: Computational simulation of tonic NMDAR-

mediated Ca2+ entry during bAPs 

5.  

5.1. Introduction 

I next addressed the question of whether even short durations of depolarization 

during a single bAP, approximately 2 ms half duration, could relieve the Mg2+ block 

efficiently and produce a large enough Ca2+ influx to be observed by 2-photon Ca2+ 

imaging (Fig. 3.1). It has been shown that NMDAR has a slow fraction of Mg2+ 

unblock (i.e. unblocking τ = 4 – 10 ms weights 35 -45 % of total unblocking) and a 

rapid reblock (reblocking τ < 0.2 ms) (Kampa et al., 2004; Vargas-Caballero and 

Robinson, 2003). In order to confirm the experimental results and also to further 

evaluate the Ca2+ influx from tonic NMDAR conductances (i.e. tonic glutamate-bound 

NMDARs) during different firing modes, I built a mathematical model of tonic 

NMDAR conductance which takes subunit-specific kinetics of Mg2+ unblocking into 

consideration (Clarke and Johnson, 2006; Kampa et al., 2004; Le Meur et al., 2007). 

This NMDAR conductance then was inserted onto a modelled CA1 pyramidal cell 

built previously (Poirazi et al., 2003), and simulated with the NEURON simulation 

environment (Hines and Carnevale, 1997). 
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5.2. Methods for computational simulation 

First, I constructed a modelled tonic NMDA conductance with channel gating 

properties both obtained from experimental data and from a previous report 

(Kampa et al., 2004) (Chapter 5.2.1 – 5.2.3). Then the constructed tonic conductance 

was inserted into a modelled neuron with morphology reconstructed from a 

biocytin-filled CA1 pyramidal cell and biophysical properties built by Poirazi and 

colleagues (Poirazi et al., 2003) (Chapter 5.2.4). The simulation was performed with 

the NEURON simulation environment (version 7.1) (Hines and Carnevale, 1997) using 

a desktop PC equipped with 4-core 64-bit processor (Intel Core i7). The detailed 

procedures are described below. 

 

5.2.1. Obtaining the I-V relation of tonic NMDAR-mediated current 

To obtain the I-V relation of tonic NMDAR-mediated currents in CA1 pyramidal 

neurons, whole-cell voltage clamp recordings were performed using the same 

CsCH3SO3 based internal solution as described above with additional 3 mM QX-314. 

The cell was voltage clamped to +50 mV to inactivate voltage-dependent 

conductances. After the holding current stabilized, a 4-second voltage ramp (from -

70 mV to + 50 mV) was applied to the soma every 10 sec (Fig. 5.1a). The tonic 

NMDAR-mediated current was isolated by subtracting the holding current before 

and after D-APV (100 µM) application. After offline series resistance compensation, 

the I-V relation of tonic NMDAR-mediated current was obtained (Fig 5.1b). 
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Figure 5.1 I-V curve of tonic NMDAR–mediated conductance 

a. The cell was voltage clamped at +50 mV followed by a voltage ramp from -70 
mV to + 50 mV at 34˚C. Upper panel, the holding current in control (Ctrl; black) 

and after applying 100 μM D-APV (APV; red). Lower panel, the voltage 
command. b. The I-V curve of tonic NMDAR-mediated current isolated by D-
APV (black).The I-V curve was fitted with a Boltzmann equation (red). 

 

5.2.2. NMDAR channel property: open-channel Ionic flux  

The open-channel ionic fluxes of tonic NMDAR are composed of sodium, 

potassium, and calcium fluxes. The ionic fluxes are described by Goldman-Hodgkin-

Katz flux equations (Hille, 2001): 
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where F, R, and T are Faraday constant, gas constant, and absolute temperature 

(here T = 307 degrees Kelvin), respectively; Vm is the membrane potential; PNa, PCa, 

and PK are the ionic permeability; ZNa, ZCa, and ZK are valence for sodium, calcium, 

and potassium, respectively. The ratio of PNa : PCa : PK is set to be 1 : 10.6 : 1 according 

to the ionic permeability of NMDAR (Mayer and Westbrook, 1987). Therefore, the 

open channel ionic flux of NMDAR, INMDAR-open is simply the summation of three 

different ionic currents: 

                                                                                     (4)  

 

5.2.3. NMDAR channel property: voltage-dependent Mg2+ unblocking 

The voltage-dependent Mg2+ unblocking properties described here are based on 

several previous findings. First, the tonic NMDAR-mediated current was shown to be 

mainly contributed by around 40% of GluN2A and 60% GluN2D containing NMDARs 

(Le Meur et al., 2007). Second, NMDARs exhibit a GluN2 subunit-dependent slow 

component of Mg2+ unblock (Clarke and Johnson, 2006). The slow component of 

Mg2+ unblock is absent in the GluN1/2D receptor (i.e. instantaneous unblocking), 

while GluN1/2A has a prominent slow component (delayed unblocking). Therefore 

the voltage-dependent channel conductivity (from 0 to 1; 0 = close; 1 = fully open) of 

NMDAR caused by Mg2+ block was described by combining instantaneous and 

delayed Mg2+ unblocking mechanisms: 
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                                             ,                                       (5) 

where                  is the voltage-dependent conductivity of delayed Mg2+ 

unblock, and was modified from a 10-state kinetic model (Kampa et al., 2004). 

                is the voltage-dependent conductivity of instantaneous Mg2+ 

unblock, and is characterized by fitting the APV isolated tonic NMDAR current 

obtained from whole-cell recording of a CA1 pyramidal cell with the Boltzmann 

equation (Fig. 5.1b). The                 is described as: 

                                            ⁄                                        (6) 

Then the ionic permeabilities (PNa, PCa, and PK in equation (1), (2), and (3)) were 

adjusted so that tonic NMDAR current contributed 40% from delayed and 60% from 

instantaneous Mg2+ unblocking mechanisms when the cell is voltage-clamped at +50 

mV. Therefore, the final NMDAR-mediated current is: 

                                                                                           (7) 

Thus, we could get a modelled NMDAR I-V curve and its ionic compositions (Fig. 

5.2). 
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Figure 5.2. I-V curve and ionic fluxes of modelled tonic NMDAR–mediated 
conductance 

The I-V curve of modelled tonic NMDAR-mediated current (red) and the 
compositions of its ionic fluxes (black: INa+; green: ICa2+; blue: IK+). 

 

5.2.4. Tonic NMDAR-mediated conductance in a modelled CA1 pyramidal cell. 

Simulations were performed with the NEURON simulation environment (Hines 

and Carnevale, 1997). The modelled CA1 pyramidal cell was imported from the 

website of Laboratory for Neural Computation at USC (http://www-lnc.usc.edu/CA1-

pyramidal-cell-model/). The modelled cell has a realistic morphology of dendritic 

branching, location-dependent Rm (membrane resistance) and Ra (axial resistance), 

and subcellular distribution of sodium, DR-, A-, M-type, Ca2+-activated potassium, 

and h-type currents; as well as L-, R-, and T-type voltage-dependent calcium 

channels (VDCCs) (Poirazi et al., 2003) (Fig 5.3). The detailed gating properties of the 

listed channels and their subcellular distribution and density can be found in the 

online supplemental information of the report published by Poirazi et al. (2003). The 

modelled cell has also been validated and compared with several experimental 
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findings. The modelled neuron has the pronounced rectifying sag of the electrotonic 

potential when injecting a hyperpolarizing current pulse (Magee, 1998; Poirazi et al., 

2003). Furthermore, the bAP properties, i.e. time-, frequency- and distance-

dependent attenuate, of the modelled neuron are similar to experimental reports 

(Hoffman et al., 1997; Stuart et al., 1997). Therefore, this modelled neuron can be a 

good plate form to test the potential biophysical impacts of the tonic NMDAR-

mediated conductance. 

In order to have a physiological range of the modelled tonic NMDAR-mediated 

conductance, the current density obtained from the ramp voltage-clamp experiment 

(0.6 pA/pF; V-clamp at + 50 mV; Chapter 5.2.1, Fig. 5.1) was inserted into this 

modelled CA1 pyramidal cell homogeneously. Then, the model was used to simulate 

the contribution of Ca2+ entry from tonic NMDAR-mediated conductance during 

action potential back propagation. 
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5.3. Simulated bAP-induced NMDAR-mediated Ca2+ entry is 

comparable to experimental results 

First, to confirm the experimental findings, bAP-evoked Ca2+ entry was 

monitored in an apical oblique dendrite (around 50 μm from soma) of the modelled 

neuron (Fig. 5.3a). A short pulse of current was injected in the soma to make the 

modelled neuron fire a single action potential, and the membrane potential and Ca2+ 

current in the dendrite were monitored during bAP (Fig. 5.3b). The Ca2+ current 

during the bAP was integral to Ca2+ charge transfer, and was compared before and 

after tonic NMDAR conductance was removed (Fig. 5.3d,e). After removing tonic 

NMDAR conductance, there was only negligible change in AP shapes (Half-width: 

99.74 %, and amplitude: 99.80 % of “with NMDAR”; Fig. 5.3c), but a significant 

reduction of Ca2+ charge transfer (90 ± 3 % of Ctrl, n = 9 positions along the dendrites, 

p = 0.003; Fig. 5.3d,e,f). This result is consistent with the APV effect on bAP-evoked 

Ca2+ entry in real neurons, which further confirmed the experimental findings that a 

single bAP can enable ambient glutamate bound NMDARs.  
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Figure 5.3. Ca2+ influx through tonic NMDAR during a single bAP in an apical 
oblique dendrite of a modelled CA1 pyramidal neuron 

a, A 3D reconstructed CA1 pyramidal neuron. bAP was triggered in soma; Vm 
and Ca2+ current were monitored in a proximal apical oblique dendrite. b, The 
action potential waveforms in the soma and dendrite. c, bAP waveforms were 
not changed with (black) or without (w/o; red) tonic NMDAR conductance. d, 
Ca2+ current density in the oblique dendrite with and w/o tonic NMDAR 
conductance. e, Ca2+ charge transfer density in the oblique dendrite with and 
w/o tonic NMDAR conductance. f, Summary Ca2+ charge transfer data 
normalized to “with NMDAR”. *, p < 0.05. 
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5.4. Burst firing induces supra-linear Ca2+ entry through tonic NMDAR 

conductance 

Next, burst-firing induced tonic NMDAR-mediated Ca2+ entry (NMDAR-Ca2+) was 

simulated to see how Ca2+ enters the dendrite during each bAP of a burst. The 

simulation was performed by changing the number of AP from 1 to 5 at 100 Hz to 

mimic the burst in TBF (Fig. 5.4a). Total NMDAR-Ca2+ charge transfers during 

different number of APs were then monitored (Fig. 5.4b). The result showed that 

NMDAR-Ca2+ summated supra-linearly compared to the arithmetic sum of NMDAR-

Ca2+ induced by a single AP (Fig. 5.4c). 5 APs burst produced 164 ± 19 % (n = 9 places 

on the branch) of NMDAR-Ca2+ entry when compared to the arithmetic sum of 5 

single AP (Fig. 5.4d). The NMDAR-Ca2+ entry for each bAP in a burst correlated with 

the half-width of the bAP, which was prolonged during the burst (R2 = 0.90; ANOVA, 

p < 0.01) (Fig. 5.4e). Therefore, broadening of the bAP might be the underlying 

mechanisms for such supra-linearity. 

This result not only confirmed the finding that burst-firing enhances Ca2+ entry 

through extrasynaptic NMDARs, but also proposed that burst-firing of APs might be 

more efficient in triggering NMDAR-Ca2+ entry than a single AP. 
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Figure 5.4 Supra-linear Ca2+ influxes through tonic NMDAR during burst-firing 

a, bAP waveforms of burst-firing at 100 Hz in a modelled oblique dendrite 
triggered by somatic current injection. b, Ca2+ charge transfer density traces in 
the oblique dendrite during a different number of bAPs. The colour code for 
different number of AP is the same as in a. c, Ca2+ charge transfer showed a 
supra-linear summation (red) comparing to the arithmetic sum of single bAP 
(black). d, The supra-linear summation ratio of Ca2+ charge transfer for 
different number of bAP. “AP #” - number of AP within a burst. *, p < 0.05. e, 
The amount of NMDAR-mediated Ca2+ entry correlates to the bAP duration. 
Left panel, Example traces of bAP waveform for the 1st, 3rd and 5th bAP in a 
burst. Right panel, The NMDAR-mediated Ca2+ entry correlates to the duration 
of the half-width of bAPs which prolonged in a burst.  
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5.5. Discussions 

These simulation results first confirmed my experimental finding that a tonic 

NMDAR conductance with a physiological conductance density is able to generate 

about 10 % of total Ca2+ entry during a single bAP. The results also demonstrated 

that tonic NMDAR conductance has a limited effect on shaping bAP waveform but 

contributes to Ca2+ influx. Furthermore, the simulation also showed that during a 

burst firing of APs (5 x 100 Hz), tonic NMDAR-mediated Ca2+ entry increases with the 

number of bAP in a supra-liner manner. Thus the results proposed a way to enhance 

‘readout’ for the ambient glutamate via burst firing of APs. 
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Chapter 6: Plasticity triggered by extrasynaptic NMDARs 

6.  

6.1. Introduction 

The results so far indicate that a bAP can recruit glutamate-bound extrasynaptic 

NMDARs and generate NMDAR-mediated Ca2+ entry, depending on the level of 

extrasynaptic glutamate. Therefore I asked whether there is also room for signal 

modulation depending on the ‘readout’. If a bAP can promote some amount of 

NMDAR-mediated Ca2+ entry, burst firing of the cell should produce more because of 

repeated dendritic depolarization, as it is demonstrated by the simulation results in 

the previous chapter. Here, I tested this hypothesis experimentally using whole-cell 

patch clamp recording and two-photon Ca2+ imaging in CA1 pyramidal neurons. 

Furthermore, because in many cases postsynaptic Ca2+ elevation triggers various 

forms of cellular plasticity, I asked whether activation of glutamate-bound 

extrasynaptic NMDARs also triggers neuronal plasticity. In vivo, the common firing 

pattern of CA1 pyramidal cells has two classical features. First, they usually fire short 

burst consisting of 3 to 5 action potentials at 50 to 100 Hz (Kandel and Spencer, 1961; 

Ranck, 1973; Suzuki and Smith, 1985). Second, the burst repeats at a slower 4 to 12 

Hz frequency, which is defined as the theta rhythm (Rose, 1983; Rose and Dunwiddie, 

1986). This theta oscillation occurs when animals are exploring and performing 

attentive behaviours (Bland, 1986; Grastyan et al., 1959; Vanderwolf, 1969). 

Furthermore, the burst stimulation repeated at theta rhythm has also been shown to 
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effectively induce synaptic plasticity in the hippocampal CA1 area (Larson and Lynch, 

1986; Larson et al., 1986). Such a firing pattern is usually termed as theta-burst firing 

(TBF). It has previously been shown that activation of glutamate-bound synaptic 

NMDARs during TBF (Fig. 6.1) can reduce input resistance and excitability of CA1 

pyramidal neurons though upregulation of Gh (conductance mediated by h-channel) 

(Fan et al., 2005). The h-channel is a hyperpolarization-activated channel that plays 

an important role in modulating neuronal resting membrane potential and 

membrane excitability (Biel et al., 2009). Here, I tested whether activation of 

glutamate-bound extrasynaptic NMDARs during the same burst activity also triggers 

lasting consequences for cell excitability. 

 

6.2. Materials and methods 

6.2.1. Animal and slice preparation 

Procedures for preparing transverse slices (350 µm) of hippocampus from SD 

rats aged p21 - p35 are described in Chapter 2.2 and 2.3. Briefly, rats were 

anaesthetised and decapitated. The brain was removed and chilled with ice-cold 

cutting solution. Hippocampi from both hemispheres were isolated and placed in an 

agar block and transverse slices (350 µm) were cut with a vibroslicer (Fig. 2.1e). The 

slices were left to recover for 20 to 30 min at 34°C in a submerged chamber in 

cutting or storage solution. Then they were transferred and incubated on either an 

interface- or submerged-type chamber (mostly submerged-type) at room 
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temperature for at least 1 hour for recovery with storage solution. After that, the 

slices were transferred to the recording chamber and were continuously superfused 

at 33-34oC with ACSF. All solutions were saturated with 95% O2 and 5% CO2. 

Osmolarity was adjusted to 298 ± 3 mOsm.  

6.2.2. Electrophysiology and two-photon imaging 

Whole cell patch-clamp recording and two-photon imaging were performed as 

described in Chapter 2.5 and 2.6 Briefly, cells in slices were first visually identified 

using an Olympus BX-61 microscope equipped with differential interference contrast 

optics under infrared illumination and a 60x water immersion lens. For imaging 

experiments, whole-cell current-clamp recordings were obtained from CA1 

pyramidal neurons with a patch pipette (3 - 6 MΩ) filled with a solution containing 

the morphological tracer Alexa Fluor 594 (50 µM) and the Ca2+ sensitive dye Fluo-4 

(250 µM). Once the whole cell recordings were obtained, the patch amplifier 

(Multiclamp 700B) was set to either current- or voltage-clamp mode. Dendritic bAPs 

were induced in these cells by somatic current injections (2-3 ms, 400 - 1000 pA) and 

monitored in the soma. Two-photon imaging was performed at least 20 -30 min after 

rupturing the seal and breaking into the cell for dye reaching steady-state. Imaged 

dendrites were at least 30 µm (mostly 50 µm) below the slice surface. 
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6.2.3. Monitoring the apparent Rinput with current-clamp recording  

To monitor the plasticity of apparent Rinput in current clamp mode, cells were 

recorded with pipette solution containing (mM): 130 K gluconate, 8 NaCl, 10 HEPES, 

10 Na2-Phosphocreatine, 0.5 EGTA, 0.4 Na2GTP, 4 MgATP, 3 Na-Ascorbate, pH = 7.2, 

osmolarity was adjusted to 290 mOsm. Rinput was determined by 700 ms current 

injections (ranging from -50 to +50 pA in steps of 10 pA every 3 sec). The steady-

state voltage shifts versus the injected currents were plotted and fitted with a linear 

regression line (Fig. 6.1). The slope of the line then was assigned as the Rinput of the 

cell at at steady-state. 
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Figure 6.1 Protocol for measurement of cell Rinput by steps of current injection. 

a, A demonstration of the measurement of steady-state cell Rinput and the 
protocol to induce Rinput plasticity. ΔV is the membrane potential change upon 
700 ms current injection. b, Rinput is determined by fitting the linear I-V relation 
(current injection v.s. ΔV) upon current injections. Here shows an example of 
the fitting pre- and post-TBF. c, An example of a single experiment of Rinput 
plasticity after TBF, with synaptic glutamate release intact. 
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6.2.4. Protocol for inducing theta-burst firing (TBF) 

The plasticity of Rinput was induced by somatic current injection to trigger neuron 

firing in theta frequency (theta-burst firing; TBF). TBF consisted of 30 trains of 5 

action potentials firing at 100 Hz (10 trains at 5 Hz repeated three times with a 10 

sec interval) (Fig 6.2). Each AP is triggered by current injection (1.5-2 nA; 2-3 ms) to 

ensure the fidelity of AP initiation.  

 

 

Figure 6.2 Protocol of theta-burst firing (TBF) stimulation  

TBF stimulation consists of 30 trains of 5 action potentials firing at 100 Hz (10 
trains at 5 Hz repeated three times with a 10 sec interval. Upper trace, an 
example of somatic membrane potential during TBF stimulation. Lower trace, 
the amplitude of the injected current during TBF.  
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6.3. Burst firing of bAPs increases readout for activation of ambient 

glutamate bound extrasynaptic NMDARs 

The results so far indicate that a bAP can recruit glutamate-bound extrasynaptic 

NMDARs and generate NMDAR-mediated Ca2+ entry. Therefore I asked whether 

there is room for signal modulation. If a bAP can promote some amount of NMDAR-

mediated Ca2+ entry, burst firing of the cell should produce more because of 

repeated dendritic depolarization. To address this, I monitored Ca2+ entry mediated 

by the burst of bAPs. Fluo-4 has a high Ca2+ affinity (Ca2+ Kd = 0.35 µM), it easily 

saturates and goes beyond linear range (Fig. 6.3a); therefore, a low-affinity Ca2+ dye, 

Fluo-4FF (Ca2+ Kd = 6.7 µM), was used instead. I then could use the linear sensitivity 

range to estimate the amount of Ca2+ entry during burst stimulation (Fig. 6.3b). It 

was found that the relative effects of APV on Ca2+ entry were similar for 5x100 Hz 

bursts and single bAPs (ΔG/R; shafts: 93 ± 3 % of control, n = 10, p = 0.02; and spines: 

103 ± 7 % of control, n = 10, p = 0.35; Fig. 6.4a, b). However, because of increased 

depolarization, burst firing can also enhance the contribution of VDCCs to Ca2+ entry. 

Therefore, I measured the APV-sensitive response on each stimulus in the burst 

(NMDAR mediated bAP-Ca2+; ΔG/RNMDAR) and normalized it to the amplitude of the 

total Ca2+ response to the first bAP. This measurement indicated that either (1) a 

larger number of NMDARs is indeed recruited with more bAPs or (2) repeated Ca2+ 

entry was triggered during each bAP in a burst (ΔG/RNMDAR: 5th vs 1st bAP, n = 10, p = 

0.04; Fig. 6.3c). Strikingly, a similar result was obtained in slices pre-treated with 

bafilomycin A1 (ΔG/R; shafts: 90 ± 2 % of control, n = 8, p = 0.002; spines: 97 ± 4 % of 
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control, n = 7, p = 0.21; Fig. 6.4a,b). Thus synaptically released glutamate does not 

contribute to activation of extrasynaptic NMDARs in the slice even during the burst 

firing of the postsynaptic cell. 

 

 

 

Figure 6.3 Using the low-affinity Ca2+ dye Fluo-4FF to approach the linear 
sensitivity 

a, Imaging bAPs-induced Ca2+ entry in an apical oblique dendrite with high 
affinity Ca2 dye, Fluo-4 (250 µM). The Ca2+ signal (ΔG/R) went beyond the 
linear range for more than 3 APs at 50 Hz. b, When imaged with low affinity 
Ca2 dye, Fluo-4FF (500 µM), the Ca2+ signal (ΔG/R) stayed linear up to 30 APs at 
50 Hz. Upper panels, ΔG/R traces. Lower panels, membrane potential traces 
recorded via whole-cell patch pipettes in soma. 
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Figure 6.4 Burst firing triggers detection of ambient glutamate and induces 
more shaft NMDAR-mediated Ca2+ entry.  

a and b, The effect of APV on burst bAPs-evoked Ca2+ transients (ΔG/R) in 
shafts (a) and spines (b). Upper panels, averaged traces of burst bAPs-evoked 
Ca2+ transients in ACSF (black trace) and in APV (red trace) in one characteristic 
dendritic shaft and spine, respectively. Lower panels, summary data 
normalized to the burst bAPs-evoked Ca2+ transient in control (Ctrl). c, More 
NMDAR-mediated Ca2+ entry is triggered with increased number of bAPs within 
a burst. “ΔG/RNMDAR”- NMDAR-mediated Ca2+ entry ;“AP #” - sequential 
number of AP within a burst. *, p < 0.05. 
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Figure 6.5 Burst firing triggers detection of ambient glutamate by shaft 
NMDARs in bafilomycin A1 treated slice. 

a and b, The effect of APV on burst bAPs-evoked Ca2+ entry (ΔG/R) in shafts (b) 
and spines (c) of CA1 pyramidal neurons from bafilomycin A1 treated slices. 
Upper panels, averaged traces of burst bAPs-evoked Ca2+ transients in control 
(black trace) and after adding APV (red trace) in one characteristic dendritic 
shaft and spine, respectively. Lower panels, summary data normalized to 
“Bafilo.”– control state in Bafilomycin A1 treated slice. *, p < 0.05. 
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6.4. Bidirectional modulation of Gh by activation of synaptic and 

extrasynaptic NMDARs during TBF 

To test whether activation of glutamate-bound extrasynaptic NMDARs during 

burst activity also triggers lasting changes in cell excitability, these experiments were 

performed in control slices and in slices pre-treated with bafilomycin A1. The slices 

pre-incubated in bafilomycin A1 had no vesicular release (Fig 3.6), but the ambient 

glutamate concentration remained intact (Cavelier and Attwell, 2005; Le Meur et al., 

2007). In this condition, bAPs can only activate shaft extrasynaptic NMDARs which 

are already bound by ambient glutamate but not synaptic ones (Fig. 3.1c,d). In 

control slices, TBF led to a gradual decrease in the cell input resistance (to 90 ± 4 % 

of baseline 30 min post-TBF, n = 8; p = 0.011, Fig. 6.6) consistent with the previously 

reported upregulation of Gh that is mediated by synaptic NMDARs (Fan et al., 2005). 

In striking contrast, similar stimulation in slices treated with bafilomycin A1 

increased input resistance (to 124 ± 9 % of baseline 30 min post-TBF, n = 6; p = 0.031) 

whereas bafilomycin A1 alone had no effect (to 101 ± 5 % of baseline 30 min post-

TBF, n = 5; p = 0.82) (Fig. 6.6). The effect of TBF in bafilomycin A1 treated-slices was 

completely abolished either by the NMDAR antagonist APV (98 ± 3 % of baseline in 

30 min after TBF, n = 5; p = 0.187, Fig. 6.7); by the h-channel blocker ZD7288 (Harris 

and Constanti, 1995) (20 µM, 96 ± 2 % of baseline in 30 min after TBF, n = 5; p = 

0.313, Fig. 6.7); or by chelating intracellular Ca2+ with 10 mM BAPTA (97 ± 7 % of 

baseline in 30 min after TBF, n = 7, p = 0.47 , Fig. 6.7) . These experiments suggest 

that Ca2+ entry during activation of shaft extrasynaptic NMDARs by bursts of bAP is 
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responsible for the downregulation of Gh. This finding demonstrates a form of 

neuronal non-synaptic plasticity induced by extrasynaptic glutamate signalling. 

 

 

Figure 6.6 Activation of extrasynaptic NMDARs during TBF increased cell Rinput 

a, The changes in cell Rinput induced by TBF in bafilomycin A1 treated slice (blue 
circles) and control slice (red circles). No gradual change in Rinput was detected 
in bafilomycin A1 treated slice without TBF (black circles). b, Traces for voltage 
response to current injections before (pre-TBF) and 30 min after (post-TBF) TBF 
in bafilomycin A1 treated (blue traces) and control (red traces) slices. *, p < 
0.05.   
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Figure 6.7 Increase of cell Rinput induced by TBF was due to downregulation of 
Gh 

a, TBF did not produce detectable change in the Rinput in bafilomycin A1 treated 
slice in the presence of APV (black circles)or 20 μM ZD7288 (red circles) or 
dialysing the cell with BAPTA (blue circles). b, Traces for voltage response to 
current injections before (pre-TBF) and 30 min after (post-TBF) TBF in the 
presence of APV (black traces) and ZD7288 (red traces). *, p < 0.05.  

 

6.5. Plasticity in Gh in turn regulates dendritic input  

Changes in Gh and associated changes in input resistance can affect the synaptic 

input into cell dendrites (Campanac et al., 2008; Fan et al., 2005). Local spot 

uncaging near identified dendritic spines produced an EPSP-like potential (uEPSP) in 

the cell soma (Fig. 6.8). Consistent with previous reports, upregulation of Gh in 

control slices did not significantly affect the amplitude of the uEPSP (amplitude after 

TBF was 101 ± 3 % of control, n = 12, p = 0.85), however it significantly reduced the 

half-duration of the uEPSP (half-duration after TBF was 82 ± 2 % of control, n = 12, p 
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< 0.001) (Fig. 6.8a) (Magee, 1998; Poolos et al., 2002). TBF in bafilomycin A1 treated 

slices increased both the amplitude (amplitude after TBF was 121 ± 4 % of control, n 

= 18, p < 0.001) and the half-duration of the uEPSP (half-duration after TBF was 113 

± 4 % of control, n = 18, p < 0.001) (Fig. 6.8b). This finding demonstrates a form of 

neuronal non-synaptic plasticity induced by the read out of extrasynaptic glutamate 

by bAPs, which in turn affects integration of synaptic inputs in the postsynaptic cell. 
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Figure 6.8 Activation of extrasynaptic NMDARs during TBF enhances uEPSPs 

a, Left panel, Glutamate was uncaged on spines of apical dendrites of CA1 
pyramidal neuron in control slices. Right panel, The summarized results of the 
amplitudes and half-durations of uEPSP before (black) and after (red) TBF. 
Inserts, The uEPSP traces recorded via a somatic whole-cell patch pipette 
before (black) and 30 min after (red) the induction of TBF. Calibration: 50 ms, 1 
mV. b, The experimental settings were similar to those in (a) but performed in 
bafilomycin A1 treated slices.  
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6.6. Discussions 

In this chapter, the results demonstrate that burst firing of bAP induces 

significantly larger NMDAR-Ca2+ entry than that induced by a single bAP; although 

the result did not show a supra-liner increase with the number of bAPs as it was 

shown by the simulation (Fig. 5.4). This might be explained by the low signal to noise 

ratio of low affinity Ca2+ dye (Fluo-4FF) for detecting single bAP-evoked Ca2+ entry. 

Hence, this dye might not be sensitive enough to see the supra-liner Ca2+ entry 

during a burst. Nevertheless, the data indicate that Ca2+ entry through glutamate-

bound NMDARs can be enhanced not only by increased extracellular glutamate, but 

also by increasing the number of the ‘readout’. 

The results also show that recruitment of ambient glutamate-bound shaft 

NMDARs (activated by non-vesicular supply of glutamate) by theta-bursts of bAPs 

increased the Rinput of the cell. The change is mediated by downregulation of Gh by 

triggered Ca2+ entry from shaft NMDARs (Fig. 6.7). The present results, however, do 

not show specifically the extrasynaptic NMDAR-dependent downstream signalling 

pathway that links to Gh, leaving open the possibility that it shares the same pathway 

as synaptic NMDARs. The Gh in CA1 pyramidal neurons has been shown to be 

mediated by HCN channels (hyperpolarization-activated cyclic nucleotide-gated 

channel) (Lorincz et al., 2002; Nolan et al., 2004). It has also been shown that 

activation of synaptic NMDARs during TBF upregulates Gh. The Ca2+ entry through 

synaptic NMDARs during TBF activates calcium/calmodulin-dependent protein 

kinase II (CaMKII) and enhances protein synthesis of HCN1 (Fan et al., 2005). CaMKII 
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can indirectly trigger protein synthesis through activation of extracellular signal-

regulated kinases 1 and 2 (ERK1/2) (Greer and Greenberg, 2008), which is oppositely 

regulated by synaptic and extrasynaptic NMDARs (Ivanov et al., 2006). Therefore, the 

downregulation of Gh might be due to a decrease in new HCN1 protein synthesis, 

resulting in reduced total HCN1 proteins. This also explains that the slow change in 

Rinput after TBF was introduced, because it required time for protein turnover of 

HCN1 on the cell membrane.  

However, this does not rule out the possibility that the downregulated Gh was 

due to a change in gating properties of HCN channels, which was strongly modulated 

by p38 mitogen-activated protein kinase (p38 MAPK) (Poolos et al., 2006). It has 

been shown that inhibition of p38 MAKP activity downregulates Gh by a 

hyperpolarizing shift of the activation curve of HCN channels in CA1 pyramidal 

neurons (Jung et al., 2010). Furthermore, p38 MAPK was shown to be bidirectionally 

controlled by different NMDAR subtypes (Waxman and Lynch, 2005). Specifically, 

extrasynaptic NMDARs downregulate p38 MAPK through the activation of 

phosphoinositide 3-kinase (PI3K), whereas synaptic NMDAR upregulates p38 MAPK 

through the activation of calcineurin, a Ca2+-dependent phosphatase (Waxman and 

Lynch, 2005). Therefore, these findings, together with my results, suggest a possible 

molecular mechanism in bidirectional modulation of Gh through synaptic and 

extrasynaptic NMDARs. 
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Chapter 7: General discussion 

7.  

7.1.  Conclusions  

1. The dendritic shaft NMDARs, but not spine NMDARs, bound with glutamate 

released from non-vesicular origin are enabled during bAPs serving as a ‘readout’ 

signal. 

2. An effective glutamate transporter shield protects synaptic NMDARs from 

ambient glutamate and extrasynaptic NMDARs from glutamate released in the 

synapse.  

3. The extrasynaptic NMDARs detect local transient rises of glutamate generated 

either by glutamate spillover or extrasynaptic glutamate uncaging. The consequent 

Ca2+ entry is also boosted by a ‘readout’ signal, bAPs. 

4. bAP-evoked Ca2+ entry mediated by ambient glutamate-bound extrasynaptic 

NMDARs can be enhanced during burst firing of APs. 

5. Activation of extrasynaptic NMDARs during repeated bAPs (theta-burst firing) 

can increase neuronal Rinput via downregulation of Gh (h-channel conductance). 
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7.2. Compartmentalized synaptic and extrasynaptic NMDARs 

Evidence in this study indicates that synaptic and extrasynaptic NMDARs can 

form different compartments. First, a proportion of NMDARs in dendritic shafts, but 

not spines, is bound by ambient glutamate at basal conditions enabling receptor 

activation upon generation of a bAP (Fig. 3.1c). The relatively tight glial coverage of 

dendritic spines appears to maintain a negligible glutamate concentration inside the 

synaptic cleft when there is no synaptic release. This phenomenon could be 

important for minimizing the desensitization of synaptic AMPA receptors by the 

ambient glutamate (Trussell and Fischbach, 1989). Secondly, blockade of glutamate 

transporter by TBOA removed the barriers between synaptic and extrasynaptic 

compartments. Therefore application of TBOA revealed a portion of Ca2+ entry 

through spine-associated NMDARs during bAPs (Fig. 3.10). Thirdly, the spine- and 

shaft-associated NMDARs activated by extrasynaptic glutamate uncaging share the 

same pharmacological profile which distinguish them from synaptic NMDARs. This 

indicated that the synaptic NMDARs, which are compartmentalized from the 

extrasynaptic region, cannot sense the glutamate rise generated from extrasynaptic 

sources (Fig. 1.7a). Finally, activation of ambient glutamate-bound extrasynaptic, but 

not synaptic NMDARs during TBF downregulates the Ih channels (Fig. 6.6). This 

further indicates the compartmentalized downstream signalling cascades between 

synaptic and extrasynaptic NMDARs. Based on these findings, a hypothetical 

functional architecture of the compartmentalized synaptic and extrasynaptic regions 

is summarized in Figure 7.1.  
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Figure 7.1 The hypothetical functional architecture of the compartmentalized 
synaptic and extrasynaptic areas 

The synaptic area is defined by the region of PSD. The concentration and the 
spatial distribution of glutamate are indicated in green. The density and the 
distribution of the astrocytic glutamate transporter are indicated in pink. The 
relative density and spatial distribution of NMDAR subtypes are indicated in 
blue. Note the barrier between synapse and extrasynaptic area is the presence 
of the high density glutamate transporter. 

 

The reasonable explanations for such compartmentalization can be either that 

ambient glutamate is more likely present in the extrasynaptic region rather than in 

the synaptic cleft, or that the occupancy of NMDARs for glutamate is higher in the 

extrasynaptic than synaptic region. The higher density of glutamate transporters on 

the perisynaptic membrane (Danbolt, 2001; Danbolt et al., 1998), a significantly 
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higher surface to volume ratio of astrocytic processes which are closer to the 

synapses (our unpublished data), and the reduction of diffusion due the 

macromolecular obstacles and the narrower extracellular space inside the synaptic 

clefts than extrasynaptic regions (Rusakov and Kullmann, 1998; Rusakov et al., 2011) 

might be the underlying mechanisms. Therefore, in order to understand how 

ambient glutamate interacts with NMDARs in a complex extracellular 

microenvironment, the compartmentalized synaptic and extrasynaptic receptors 

should be taken into consideration. 

 

7.3. Compartmentalized Ca2+ signalling mediated by extrasynaptic 

NMDARs and VDCCs 

Although I have demonstrated that blocking shaft NMDAR-mediated Ca2+ entry 

during TBF prevents downregulation of Gh, the residual Ca2+ entry through VDCCs 

still accounts for about 90% of total Ca2+ entry of control condition. How such small 

reduction in Ca2+ entry could have profound effects is still questionable. The answer 

might relate to the highly local nature of Ca2+-dependent signalling mechanisms: Ca2+ 

concentration drops orders of magnitudes 10-50 nm away from the source due to 3D 

diffusion and endogenous buffering (Bucurenciu et al., 2008; Weber et al., 2010; 

Yamashita et al., 2010). In particular, it has been shown that NMDAR-mediated 

postsynaptic Ca2+ entry triggers CAMKII-dependent molecular cascades in the 

immediate vicinity of the NMDAR channel, possibly within nanoscopic Ca2+ hotspots 
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(Lee et al., 2009; Thalhammer et al., 2006). Therefore, extrasynaptic NMDAR- and 

VDCC-mediated Ca2+ signals might be compartmentalized in the dendritic cytoplasm. 

Although there is no direct evidence for such nanodomains in this work, this has 

been demonstrated to exist for at least different VDCCs (Hudmon et al., 2005; 

Wheeler et al., 2012). For example, activation of CaMKII-mediated signalling is ~10-

fold more effective by Cav1- than by Cav2-type VDCCs for the same bulk Ca2+ increase, 

because CaMKIIs are located within nanometer-range to Cav1. Furthermore, Cav2-

mediated Ca2+ increase rises are favorably restricted by Ca2+ uptake machinery. In a 

similar context, triggering downregulation of Gh might require Ca2+ rises to a 

substantial concentration in the vicinity of extrasynaptic NMDARs. Therefore, only a 

10% reduction in bulk Ca2+ transient might reflect a profound decrease of Ca2+ within 

the Ca2+ nanodomain of extrasynaptic NMDARs preventing their downstream 

signalling, whereas the residual VDCC-mediated Ca2+, although accounting for 90% of 

bulk Ca2+ rises, is not efficient enough to activate the same signalling pathway. 

 

 

7.4. Synaptic and non-synaptic sources of extracellular glutamate  

I found that the average NMDAR occupancy by glutamate in quiescent slices 

does not depend on its vesicular release, which is fully consistent with previous 

reports (Cavelier and Attwell, 2005; Jabaudon et al., 1999; Le Meur et al., 2007). The 

resulting space-and-time average extracellular glutamate concentration can be 
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thought of as a ‘floor’ level of ambient glutamate, which is independent of the 

synaptic network activity. In addition to ambient non-vesicular glutamate, 

extrasynaptic NMDARs can also bind glutamate escaping from the synaptic cleft 

when synaptic network activity increases. I found that synaptic discharges (or local 

glutamate uncaging mimicking such) paired with bAPs boost Ca2+ entry in both shafts 

and spillover-activated spines (Fig. 4.1 and 4.2). Thus, both shaft and spine NMDARs 

can also sense extracellular glutamate which is transiently elevated as result of local 

synaptic activity, but require a readout signal such as the bAP to be activated. 

Importantly, the coincidence detection interval for glutamate release and bAPs 

extends beyond the duration of the individual glutamate rise, reflecting the fact that 

glutamate molecules can remain bound to dendritic NMDARs for hundreds of 

milliseconds. The NMDAR-mediated enhancement of bAP-evoked dendritic Ca2+ 

signals could therefore act as an integrating detector of glutamate release events 

that occurred nearby over an extended period of time.  

 

7.5. Local transient versus global tonic rise of extracellular glutamate 

My results suggest that a transient, rather than long-term, rise in extrasynaptic 

glutamate could boost bAP-induced Ca2+ signals. Indeed, although NMDARs 

contribute to the bAP-evoked Ca2+ entry in basal conditions (Fig. 3.1c), the uniform 

increase in the ambient glutamate level following application of TBOA does not 

enhance but decrease the Ca2+ signals (Fig. 3.11). This is likely because a small 
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proportion of NMDARs, both extrasynaptic and synaptic, which are activated by the 

accumulated ambient glutamate at resting membrane potential (Kovalchuk et al., 

2000) may already trigger long-term changes in cell membrane properties, which is 

consistent to previous reports (Mulholland et al., 2008; Mulholland et al., 2009; 

Mulholland and Chandler, 2010). Such changes might represent an important 

mechanism to limit a cytotoxic effect of extracellular glutamate rises. This also 

indicates the importance of glutamate transporters to maintain the 

compartmentalized synaptic and extrasynaptic regions in neurons. 

 

7.6. Extrasynaptic signalling is tunable 

In the current study, I examined different possible ways to modulate 

extrasynaptic signalling. Here, the NMDAR-Ca2+ for each condition during the 

‘readout’ process is normalized to the Ca2+ influx of a single bAP and summarized in 

Figure 7.2. There are two ways to enhance the extrasynaptic signalling sensed by a 

neuron, namely increased ‘readout’ (Fig. 7.2 blue region) and a rise of the 

concentration of extrasynaptic glutamate (Fig. 7.2 pink region). The proportion of 

Ca2+ entry from spines and shafts is different between stimulation paradigms. The 

‘readout’ triggered by burst firing tends to have larger Ca2+ entry through shafts than 

spines, suggesting a novel way for specifically recruiting shaft NMDARs. On the other 

hand, elevating extracellular glutamate concentration by different stimulation, i.e. 

blockage of glutamate uptake, glutamate spillover, and extrasynaptic glutamate 
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uncaging, also results in distinct Ca2+ entry, both in terms of the amount and the 

proportion contributed by spine and shaft. Given that both the ‘readout’ and the 

level of extrasynaptic glutamate can be dynamic, the extrasynaptic signal sensed by 

a neuron can also be dynamic and depends on the activities of the neuron itself and 

those of the local network. This suggests a complexity of extrasynaptic signalling that 

was not fully considered. 
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Figure 7.2 Tunable extrasynaptic signalling 

The NMDAR-Ca2+ for each condition during the ‘readout’ process is normalized 
to the Ca2+ entry of a single bAP: (1) NMDAR-Ca2+ evoked by a single bAP (from 
Fig. 3.1); (2) NMDAR-Ca2+ evoked by burst of bAPs (from Fig. 6.4); (3) NMDAR-
Ca2+ evoked by a single bAP in TBOA (from Fig. 3.9); (4) NMDAR-Ca2+ evoked by 
glutamate spillover paired with a single bAP (from Fig. 4.2); (5) NMDAR-Ca2+ 
evoked by glutamate uncaging paired with a single bAP (from Fig. 4.3). They 
can be categorized into two ways of enhancement of the extrasynaptic 
signalling. Firstly, increase ‘readout’ (blue region; (2)) and a rise of the 
concentration of extrasynaptic glutamate (pink region; (3)-(5)). 
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7.7. Possible roles of extrasynaptic glutamate signalling in neuronal 

synchronization 

The activation of extrasynaptic NMDARs by the astrocytic release of glutamate 

has been suggested to act as a mechanism for neuronal synchronization (Angulo et 

al., 2004; Fellin et al., 2004), and a recent discovery of the use-dependent release of 

the NMDAR co-agonist D-serine from astrocytes provides a potential regulating 

mechanism for this 'diffuse' form of signalling (Henneberger et al., 2010). The 

present study suggests that such (slow) extracellular glutamate signals, by acting 

predominantly on dendritic shaft NMDARs, may trigger downregulation of Gh in a 

group of neurons in a synchronized fashion. The latter could in principle provide a 

mechanism for meta-plasticity changes that help to handle information in the 

network.  

 

7.8. Synaptic versus extrasynaptic communication 

The results in this study together suggest that synaptic and extrasynaptic 

NMDARs could be thought of as destined to receive and process different types of 

signalling. Synapses are tuned for fast point-to-point communication whereas 

extrasynaptic NMDARs appear to sense slower, volume-averaged rises of glutamate. 

Correspondingly, individual synapses can operate at relatively high frequencies to 
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resolve closely timed events whereas extrasynaptic NMDARs respond to integrated 

signals reflecting activity of local network and astrocytes. 

The results also demonstrated that recruitment of shaft NMDARs (activated by 

non-vesicular supply of glutamate) by theta-bursts of bAPs downregulates Gh. In 

contrast, the recruitment of synaptic NMDARs (activated by vesicular glutamate 

release) by bAPs upregulates Gh. Thus, the net effect of bAPs on the cell’s input 

resistance depends on the balance between glutamate-bound synaptic versus 

extrasynaptic NMDARs (Fig. 7.3). In this way, increased synaptic network activity can 

tip the balance in favour of synaptic NMDARs, whereas decreased synaptic activity 

shifts it back to the extrasynaptic NMDARs. Similar to synaptic potentiation and 

depression, this bi-directional plasticity mechanism prevents the cell from 

progressive runaway excitation, thus providing a theoretically plausible basis for 

information coding in the network. 

Recent reports suggest that dendritic branches rather than individual synapses 

are the primary functional units for long term memory storage (Govindarajan et al., 

2011; Losonczy et al., 2008; Makara et al., 2009). These studies used synaptic 

stimulation to demonstrate that dendritic branches operate as single computational 

units. The present results suggest therefore that extrasynaptic glutamate signalling 

acting via the dendritic shaft NMDARs could play a potentially important part in such 

integration. For example, when a dendrite receives more extrasynaptic inputs than 

synaptic ones, it suggests that the activity of the dendrite is low compared to the 

surrounding tissue, because extrasynaptic input reflects the local network activity. In 
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this case, shaft NMDARs can trigger the downregulation of Gh to increase dendritic 

excitability and let the dendrite be involved in local network (Fig. 6.6). 

 

Figure 7.3 Synaptic and extrasynaptic NMDARs differentially regulate Gh  

Extrasynaptic glutamate-bound shaft NMDARs enabled by ‘readout’ provided 
by bAPs. Repetitive activation of these receptors triggers downregulation of h-
channels (Gh). In contrast, when synaptic NMDARs are activated by bAP during 
synaptic events, Gh becomes upregulated. 
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7.9. Brain-state dependent extrasynaptic NMDAR-mediated 

signalling 

It has been shown that acetylcholine release and activation of muscarinic 

cholinergic receptors (mAChRs) enhance NMDAR-mediated synaptic transmission in 

synapses between CA3 and CA1 pyramidal neurons (Marino et al., 1998; Markram 

and Segal, 1990). The effect is mediated by postsynaptically expressed M1-type 

mAChRs that mobilize Ca2+ from intracellular stores (Shinoe et al., 2005). In addition, 

extracellular acetylcholine levels were shown to be altered between different brain 

states, i.e. awaking, slow-wave sleep, and rapid-eye-movement (REM) sleep 

(Kametani and Kawamura, 1990; Marrosu et al., 1995). During awake and REM sleep, 

the extracellular acetylcholine levels in hippocampus can be three-times higher than 

during slow-wave sleep (Kametani and Kawamura, 1990). It is, therefore, reasonable 

to speculate a wake state-dependent modulation of NMDARs by M1-type mAChRs. 

However, more recent findings have suggested that M1-type mAChRs promote 

NMDAR-mediated EPSPs (NMDAR-EPSPs) not via direct modulation of NMDARs but 

by downregulating small conductance Ca2+-activated potassium (SK) channels and 

thus disinhibiting NMDAR-EPSPs (Giessel and Sabatini, 2010). SK channels have been 

shown to be co-localized with synaptic NMDARs on individual spine heads and are 

activated only when intracellular Ca2+ rises within a nanodomain through synaptic 

NMDARs but not extrasynaptic ones (Bloodgood et al., 2009; Bloodgood and Sabatini, 

2007b; Ngo-Anh et al., 2005). These findings suggest that the dynamics of ambient 
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acetylcholine levels in different brain states can specifically modulate synaptic 

NMDAR-mediated signalling. 

On the other hand, as described in Chapter 1.3.2, extracellular glutamate levels 

are also altered between brain states (Baker et al., 2002; Dash et al., 2009; Del Arco 

et al., 2003; Mattinson et al., 2011; Rutherford et al., 2007). In the cortex of freely 

moving rats, extrasynaptic glutamate concentration increased during the awaking 

and REM sleep state whereas it decreased during non-REM sleep (Dash et al., 2009). 

Because of the powerful glutamate uptake system, the dynamics of extrasynaptic 

glutamate across brain states are only sensed by extrasynaptic NMDARs rather than 

synaptic ones. Altogether, these data further suggest that the modulation of synaptic 

and extrasynaptic NMDAR signalling can be brain state-dependent but still be 

compartmentalized. 

 

7.10. Future work 

7.10.1. Detection of transient glutamate release from astrocytes by extrasynaptic 

NMDARs depends on neuronal activity 

My results demonstrate that extrasynaptic glutamate generated by glutamate 

uncaging is sensed by neurons during bAPs. What is not known is that whether such 

uncaged glutamate indeed mimics the astrocytic release. Therefore, it is important 

to show that ‘readout’ is also required for detecting astrocytic glutamate release. 
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The activation of extrasynaptic NMDARs by the astrocytic release of glutamate has 

been suggested to promote synchronized firing of a proportion of neurons (Angulo 

et al., 2004; Fellin et al., 2004). It is possible that those neurons were actually having 

a ‘readout’ signal which coincides with the astrocytic release. Therefore, the 

astrocytic glutamate release might have a stronger impact on those neurons which 

are electrically active.  

 

7.10.2. The downstream signalling of extrasynaptic NMDAR 

The results in this thesis only demonstrate that activation of ambient glutamate-

bound extrasynaptic NMDARs downregulated Gh, which is opposite to synaptic 

NMDARs. The possible downstream signalling pathways, i.e. ERK1/2 –dependent 

downregulation of HCN protein synthesis and changing channel gating properties by 

p38 MAPK, which were discussed in chapter 6, can be tested by using 

pharmacological tools that target ERK1/2 and p38 MAPK. 

 

7.10.3. The in vivo impact of the glutamatergic extrasynaptic signalling 

As the current study was performed in brain slices, it is important to test 

whether such compartmentalized synaptic and extrasynaptic signalling is also 

present in vivo. My results have shown that a large proportion of extrasynaptic 

glutamate is sensed by GluN2D-containing NMDARs. It is possible to manipulate the 
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glutamatergic extrasynaptic signalling by local injection of either GluN2D selective 

blockers, PPDA and UBP141, or potentiator, CIQ, into hippocampus (Mosley et al., 

2010; Mullasseril et al., 2010). Thus, we can investigate whether there is any impact 

of glutamatergic extrasynaptic signalling on learning and memory of the animal. 

 

7.10.4. Glutamatergic extrasynaptic signalling in epilepsy 

There is growing evidence suggesting the loss of HCN channels is involved in the 

development of the epileptic state (Huang et al., 2009; Shah et al., 2004; Shin et al., 

2008b), which makes HCN channels a new target for drug development (Postea and 

Biel, 2011). The detailed mechanisms for such loss in HCN1 channels after status 

epilepticus (SE) are still unclear. A recent study demonstrated that the loss of 

functional HCN1 involved sequential processes of channel internalization, loss of 

protein expression, and downregulation of mRNA expression following SE in 

hippocampal pyramidal neurons (Jung et al., 2011). However, this contradicts the 

finding that activation of synaptic NMDARs during burst firing upregulates HCN 

channels, downregulating the cell excitability and preventing excitotoxicity 

(Campanac et al., 2008; Fan et al., 2005). It is reasonable to hypothesize that during 

SE the extrasynaptic glutamatergic signal overrides the synaptic one, resulting in the 

downregulation of Gh. My preliminary data suggest an increased tonic NMDAR-

mediated current in hippocampal CA1 pyramidal neurons after status epilepticus in 

an in vivo animal model of epilepsy (data not shown) (Walker et al., 1999). Instead of 
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targeting the HCN channel itself, the extrasynaptic NMDARs, especially GluN2D-

containing receptors can be another candidate for preventing loss of HCN function. 

Therefore, it is worth trying the selective blockers for GluN2D-containing NMDAR to 

see whether they have any antiepileptogenic effect in animal models of epilepsy. 
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