Magnetic topology of Active Regions and Coronal Holes: Implications for
Coronal Outflows and the Solar Wind

L. van Driel-Gesztelyi %+ J. L. Culhane'* « D. Baker' * P. Démoulin® *
C.H. Mandrini>®* M.L. DeRosa’ * A. P. Rouillard®’ « A. Opitz*’ « G. Stenborg'® «
A. Vourlidas'' » D. H. Brooks'’

'University College London, Mullard Space Science Laboratory, Dorking, UK,
Observatoire de Paris, LESIA, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot,
Meudon, France, email: Lidia.vanDriel@obspm.fr
*Konkoly Observatory, Hungarian Academy of Sciences, Budapest, Hungary,
*International Space Science Institute, Bern, Switzerland,

*Instituto de Astronomia y Fisica del Espacio, CONICET-UBA,

CC. 67, Suc. 28, 1428 Buenos Aires’ Argentina,

SFacultad de Ciencias Exactas y Naturales, FCEN-UBA, Buenos
Aires, Argentina,

"Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA,
¥ Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse
(UPS), France
? Centre National de la Recherche Scientifique, UMR 5277, Toulouse, France
10College of Science, George Mason University, Fairfax, VA 22030, USA,
"Space Science Division, Naval Research Laboratory, Washington, DC 20375, USA

Abstract

During 2 — 18 January 2008 a pair of low-latitude opposite-polarity coronal holes (CHs) were
observed on the Sun with two active regions (ARs) and the heliospheric plasma sheet located
between them. We use the Hinode/EUV Imaging Spectrometer (EIS) to locate AR-related
outflows and measure their velocities. Solar-Terrestrial Relations Observatory (STEREQ)
imaging is also employed as are the Advanced Composition Explorer (ACE) in-situ
observations, to assess the resulting impacts on the interplanetary solar wind (SW) properties.
Magnetic field extrapolations of the two ARs confirm that AR plasma outflows observed with
EIS are co-spatial with quasi-separatrix layer locations, including the separatrix of a null
point. Global potential field source-surface modeling indicates that field lines in the vicinity
of the null point extend up to the source surface, enabling a part of the EIS plasma upflows
access to the SW. We find that similar upflow properties are also observed within closed-field
regions that do not reach the source surface. We conclude that some of plasma upflows
observed with EIS remain confined along closed coronal loops, but that a fraction of the
plasma may be released in the slow SW. This suggests that ARs bordering coronal holes can
contribute to the slow SW. Analyzing the in-situ data, we propose that the type of slow SW
present depends on whether the AR is fully or partially enclosed by an overlying streamer.
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1. Introduction



Persistent and intermittent outflows from active regions (ARs) have been observed
with the Transition Region and Coronal Explorer (TRACE) Extreme Ultraviolet
(EUV) telescope with velocities in the range 5 — 20 km s™ (Winebarger, DeLuca, and
Golub, 2001). In the absence of any periodicities, the authors ascribed these flows as
resulting from discrete reconnection events. More recently Sakao et al. (2007) using
the Hinode/X-ray Telescope (XRT: Golub et al., 2007) have identified continuous
plasma outflows along extended large AR loops. They estimated that a contribution of
< 25% to the slow SW is possible. The same target region has been observed by Harra
et al. (2008) using the Hinode/EUV Imaging Spectrometer (EIS: Culhane et al., 2007)
who found line of sight velocities of 20 km s™' to 50 km s™ but, by comparison with a
magnetic-field extrapolation for the AR, estimated that the true velocities could reach
over 100 km s™.

Following this work, several further observations of AR-associated outflows have
been reported. Such flows are generally observed at AR peripheries and not in the AR
cores. Doschek et al. (2007, 2008) and Del Zanna (2008) found that the flows are
variable, are from areas of weak Fe XII line intensity, are usually associated with a
single magnetic polarity region, and can last for several days. They also suggested
that the significant line broadening, observed to correlate with outflow velocity, along
with the appearance of blue wing asymmetries (see also Hara ef al, 2008; Bryans,
Young, and Doschek, 2010) could indicate the presence of multiple flow sites at
different speeds. Warren et al. (2011) observed upflows up to T. = 2.5 MK (Fe XV)
but with no blue-shifted emission at lower temperatures (T. = 0.63 MK in Si VII)
where down-flowing plasma was detected along coronal fan-like loop structures,
which appeared to have a different morphology to that of the outflows. They
concluded that the peripheral outflows are probably not associated with a fan-loop
population, which connects to close-by quiet-Sun polarities, as the latter represent
mainly closed magnetic field lines. Based on temporal variability observations,
Ugarte-Urra and Warren (2011) support this conclusion.

From TRACE observations, Schrijver ef al. (1999) established the existence of cooler
loops (T. = 1 MK) at AR peripheries that are long fan-like structures extending away
from the parent AR. These fan-loops can connect with other ARs, to remote parts of
the parent AR and even to the quiet Sun. Spectroscopic observations have confirmed
their low temperature (T, < 1 MK; Del Zanna, 2003; Young et al., 2007) along with
the presence of persistent redshifts indicating downflows (Winebarger et al., 2002;
Marsch, Wiegelmann, and Xia, 2004; Del Zanna, 2008; Warren et al, 2011).
Following the suggestion that upflows (50 — 150 km s') from the recently identified
Type 1II spicules, observed from all parts of the chromosphere may play a significant
role in coronal heating (De Pontieu et al., 2007, 2009) more recent work by Tian,
Mclntosh, and De Pontieu (2011), based on EIS raster scanning and Atmospheric
Imaging Assembly (AIA) observations (Lemen et al., 2012), suggests that at least a
part of the AR-associated outflows can be identified with periodic disturbances seen
in the fan-loop plasma. Discussion of the driving mechanisms for the spicule-related
flows is beyond the scope of this article.

After the discovery of AR outflows, several possible driving mechanisms were
suggested. These included magnetic-field funnels causing coronal plasma circulation
(Marsch et al., 2008), impulsive heating at loop footpoints (Hara et al, 2008),



evaporation upflows due to flux emergence (Del Zanna, 2008), expansion of large-
scale reconnected loops (Harra et al., 2008), reconnection at quasi-separatrix layers
(QSLs) involving AR structures and surrounding field (Baker ef al., 2009), plasma
compression due to AR expansion (Murray et al., 2010), new flux emergence within a
pre-existing AR (Harra et al., 2012), and interchange reconnection at a high coronal
null-point with a resulting pressure gradient driving a rarefaction wave (Del Zanna et
al., 2011; Bradshaw, Aulanier, and Del Zanna, 2011).

It is thought that interchange reconnection takes place between open and closed field
lines that exchange footpoints between them. For example, if an emerging closed
field interacts with pre-existing open fields, coronal jets can result (Shibata et al.,
1992) producing fast outflows. However, for the configuration that we will analyze
below, the observed outflows emerge from a unipolar field region located at an
AR/coronal hole (CH) boundary. The peripheral AR outflows observed by the EIS
instrument frequently occur at sites where magnetic-field lines display strong
gradients in connectivity over unipolar regions. These sites are thought to be the
locations of QSLs (Démoulin et al., 1996) or, in the limit of infinitely large gradients,
separatrices. QSLs are defined by the global properties of the magnetic field and
therefore evolve slowly. They are preferential locations for current-sheet formation
and magnetic reconnection can still occur through component reconnection provided
that there is a significant angle between the field lines involved (Baker et al., 2009).

Whether or not these flows are generated on closed or open magnetic field structures
is of great importance in relation to their possible contribution to the slow solar wind.
Although it is generally agreed that the fast SW (v> 600 km s™) originates in coronal
holes, the source of the slow wind (v < 450 km s™) is still a matter of debate. While
the latter is frequently associated with the edges of coronal holes where the magnetic
field expands super-radially (e.g. Wang and Sheeley, 1991), alternative theories have
been proposed, including reconnection between closed and open magnetic-field lines
that circulate inside coronal holes (Zhao, Zurbuchen, and Fisk, 2009), and recently a
network of narrow open-field corridors that map to a web of separatrices and QSLs in
the heliosphere (Antiochos et al., 2011) have all been suggested.

Observations using the ACE and Ulysses spacecraft have detected in-situ evidence for
the presence of AR material on AR-associated open field lines (Liewer, Neugebauer,
and Zurbuchen, 2004; Ko et al., 2006), which in fact can form part of Antiochos and
co-workers’ QSL-web. This latter point is reinforced by the composition of the slow
wind plasma, which is characteristic of the closed field within ARs (Geiss, Gloeckler,
and von Steiger, 1995, von Steiger et al., 1995). Composition features include the
enhanced presence of elements with low first ionization potential (FIP) whose
abundances are ~ four times those of the photosphere (Von Steiger et al., 2000,
Feldman and Widing, 2003). By contrast, the fast-wind plasma shows no such
enhancement, whereas plasma originating on open field regions rooted on the
boundary of coronal holes have a FIP bias that ranges between the FIP bias of the
slow and fast solar wind. We note that there is yet no broadly agreed theory of the
origin of the FIP effect with many proposed theories that differ largely on the invoked
physical mechanism. In addition the rapid fall-off in plasma density with height
ensures that the ionization equilibrium established in the lower corona and
characterized by a temperature, Te, remains “frozen-in” to the plasma for distances
beyond 1 — 3 Rgy,, depending on the atomic element. The ion state populations



established at these temperatures can be measured in situ by instruments on spacecraft
in the heliosphere e.g. ACE, Ulysses. Temperature estimates based on such
measurements show 7, > 1.5 MK for the slow wind as opposed to 7, < 1.2 MK for
the fast component (von Steiger et al., 2001, Zurbuchen ef al., 2002). In other words,
the fast and slow solar wind originate from cold and hot regions of the base of the
corona, respectively.

In this article we examine the AR-associated outflows from an AR—CH complex that
crossed the solar disc in the period 3 — 18 January 2008 and ask the questions 1) what
drives them and ii) whether or not these plasma flows contribute to the solar wind. In
Section 2 we present a wide range of observations of the AR—-CH complex and
employ linear force-free modeling to relate the AR upflows to the presence of QSLs.
Employing local as well as full-Sun potential-field models we find a high-latitude
null-point above one of the ARs and identify the QSLs which contain a separatrix,
enabling some of the AR plasma flows to reach the solar wind. In Section 3 we
examine the data from the ACE spacecraft for evidence of AR-related plasma in the
near-Earth slow solar wind. Finally, we conclude in Section 4.

2. Observations of CH/AR Interaction

Since the peripheral AR outflows are associated with unipolar magnetic field regions
and are often adjacent to CHs (Sakao et al., 2007; Harra et al., 2008; Doschek et al.,
2008), we identified at the beginning of January 2008 a solar configuration,
established during Carrington Rotation (CR) 2065 that appeared favorable for AR
outflow studies.

2.1 Overall Coronal and Magnetic Field Configurations

A Hinode/XRT image for 07 January 2008 at 10:12 UT is shown in Figure 1. Here,
moving from West to East, we can see a section of the quiet corona close to the west
limb, followed by a coronal hole labeled CH1. This feature is followed by an AR
(NOAA 10980), labeled AR1. A second AR, which remained spotless during its disc
passage and therefore was not given a NOAA number (AR2), is located further to the
East. It is a small AR since it had a magnetic flux of approximately 1x10*' Mx and it
is separated from AR1 by an interval of quiet corona. AR2 is situated at the
northwestern boundary of a second coronal hole (CH2). The outflow region that we
discuss in detail below is located at this boundary. Thus, for the interval 2 — 18
January (CR 2065), CH1 leads ARI in rotation while CH2 lags AR2. As a result of
this configuration, the fast SW outflow from CHI1 can, by overtaking and compressing
quiet Sun slow wind, create a stream interaction region (SIR1) in the heliosphere. The
converse situation, which occurs behind CHI1, leads to the creation of a rarefaction
region (RF1). Similar structures are created in relation to AR2 and CH2 and are
indicated in Figure 1. Our discussion will focus on the AR2-CH2 boundary, though
we also analyze the CHI-AR1 boundary in less detail.



7 January 2008 10:12 UT

1000

500

Y {arcsecs)
o

—-500

—1000

—=1000 =500 0 500 1000
X (arcsecs)

Figure 1. Hinode/XRT image for 7 January 2008. Markings show a stream interaction region (SIR1),
a coronal hole (CH1), a rarefaction region (RF1), and two active regions (AR1 and AR2), followed by
a second stream interaction region (SIR2), coronal hole (CH2), and rarefaction region (RF2).

A Carrington map constructed from meridional strips of STEREO/EUVI-B images is
displayed in Figure 2a for the complete CR 2065. The yellow arrow indicates the
location of the principal outflow site, which is discussed in detail in Section 2.2. The
location of the HCS is clearly indicated in the Wilcox Solar Observatory and
NSO/Global Oscillation Network Group (GONG) Potential Field Source Surface
(PFSS) model shown in Figures 2b and 2c. Comparison of Figures 2a and 2b indicates
that during CR 2065, the inward projection of the HCS separates AR1 from AR2.
Thus the outflow region of AR2 (yellow arrow), which we discuss in Section 2.2, will
arrive at L1 on the Sun—Earth line of sight behind, i.e. later than, the HCS crossing.
Regions of positive (green) and negative (red) open magnetic field are associated with
the coronal holes CH2 and CHI, respectively (compare Figures 2a and 2c). The
outflow site observed with EIS is again indicated in Figure 2d where the large area of
closed field, shown in blue, is associated with the closed magnetic structures in the
streamer belt.
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Figure 2. a) Carrington Rotation 2065 displayed with STEREO-B/EUVI images. b) Wilcox Solar
Observatory PFSS model for CR 2065 with isocontours of the large-scale radial field component. Grey
areas show the open field regions. ¢) NSO/GONG PFSS model with open field reaching the ecliptic
plane (shown up to the source surface at 2.5 Rg,,). The AR and CH features shown in Figure 1 are
indicated, while the solar Equator is drawn in red. The red/green areas show the negative/positive
polarity of the open field regions and the blue line is the inversion line at 2.5 Rg,,). d) As for c¢) but
showing the largest closed field lines (reaching 2.5 Rg,,). The yellow arrow indicates the studied site of
the EIS outflow from AR2.

2.2 Active Region Outflows

A selection of three AR outflow and intensity maps for Fe XII 195 A emission made
for AR2 in the interval 10 — 11 January 2008 is shown in Figure 3. A more complete
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Figure 3. Set of three EIS Fe xi1 (T, = 10%' K) intensity maps (top row) and the corresponding
velocity maps (bottom row). Reading left to right, maps were obtained on 10 January 2008 at 18:08 UT
and at 22:51 UT, and on 11 January 2008 at 00:17 UT. CH2 is indicated in the upper panel while the
strong and variable outflow region at the NE edge of AR2 is shown in the velocity maps, as are two
coronal jets.

set of maps is available in the on-line material. The EIS instrument observed the
mature, dispersed AR2 at 18:07 UT on 10 January 2008 when it was at disc center.
Observations continued for approximately three days until 22:08 UT on 13 January
2008. A raster scan using the 2" slit and consisting of 90 pointing positions with
exposure time of 25 seconds per position for a total raster time of 37.5 minutes was
performed with EIS. The intensity and velocity maps shown in Figure 3 were made
from the slit raster observations. The field of view (FoV) is 180" x 512" and covers
all of the positive polarity and part of the nearby equatorial CH but does not extend to
the leading negative polarity on the western side of the AR. The EIS study included
24 wavelength windows containing more than 50 emission lines, however, the signal-
to-noise (S/N) ratio was insufficient in a large number of weaker lines as the study
was designed for rapid cadence observations of AR footpoints.

EIS data reduction was carried out using standard SolarSoft EIS procedures. Raw data
were corrected for dark current, hot, warm and dusty pixels, and cosmic rays. Relative
Doppler velocities were determined by fitting a single-Gaussian function to the
calibrated spectra in order to obtain the line centre for each spectral profile. A fitted
line centre was further corrected by removing instrumental effects including slit tilt
and orbital variation. Blueshifts (redshifts) seen in the final velocity maps correspond
to negative (positive) Doppler velocity shifts along the line-of-sight. As indicated in
Figure 3, it is clear that the EIS observations show hot-plasma outflows. These are
mainly located at a single site on the AR2-CH2 boundary (see Figure 2). The



outflows are variable with line-of-sight velocities in the range 20 — 40 km s™'. There
are also significant spatial changes in the extent of the outflow site.

Coronal jet-related outflows are also seen and two examples are indicated in Figure 3.
These may be due to small-scale flux emergence with subsequent interchange
reconnection within CH2, or at the AR2—CH2 boundary. The coronal-hole boundaries
also show significant time evolution. A set of three images for the interval 9 — 13
January is presented in Figure 4 and the corresponding boundary evolution movies are
given in the on-line material. CH boundary evolution can contribute to outflows by
interaction of open field with closed AR field but, since the eastern boundary of AR2
and CH2 have the same magnetic polarity, classical antiparallel interchange
reconnection is less likely to occur for the present configuration and it is restricted to
the locations of small-scale flux emergence. Magnetic reconnection between open and
closed field lines, even when their photospheric footpoints are of the same magnetic
polarity, can still occur when there is a coronal null-point present, e.g. in a pseudo-
streamer configuration (Del Zanna ef al., 2011, Masson et al, 2012), or high in the
corona at the streamer tip (Wang, Sheeley, and Rich, 2007; Kahler, Jibben, and
DeLuca, 2010).

9 Jan 2008 02:34 UT 12 Jan 2008 05:46 UT 13 Jan 2008 |1:10 UT
' |

Figure 4.Three individual SOHO/EUV Imaging Telescope (EIT) 195A image frames from a movie
covering the interval 9 to 13 January which illustrates the boundary evolution of CH2. Though viewing
angles do influence the CH boundaries, the dynamic nature of the CH boundary is evident. The images
represent a 700" x 700" area. See the corresponding movies in the electronic supplement to this article
in the electronic version both with and without the contours indicating the boundary of the CH.

2.3 Reconnection at Quasi Separatrix Layers - a Likely Outflow Driving
Mechanism

Magnetic reconnection is also possible along QSLs. It occurs between same-polarity
magnetic field lines (loops) if there is a significant angle between them; such
magnetic component reconnection results in footpoint exchange of the two loops. The
operation of component reconnection is outlined in Figure 5. Two sample field lines
from large low-density and small high-density loops are shown in Figure 5a. Because
of the angle between them, the x-components are oppositely directed although the y-
components remain parallel. The oppositely oriented B, components reconnect
resulting in a footpoint exchange between the low-density and high-density field lines.
This creates a density gradient in the long loops that leads to an upflow (Baker et al.,
2009; Bradshaw et al., 2011). An opposite gradient in the closed field lines results in a
downflow.
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Figure 5. Simplified 2D cartoon explanation of magnetic reconnection between two positive-polarity
magnetic loops (field lines) having a non-zero angle between them. This type of magnetic component-
reconnection can take place along QSLs at the periphery of an AR, e.g. between dense loops of the AR
and more evacuated loops connecting elsewhere outside or inside the AR. (Left) Pre-reconnection
configuration: the dense closed AR-loop (thick red line) and the evacuated far-closing field line (thin
blue line) have an anti-parallel B, component. Along the QSL between these field lines of drastically
different connectivities, a current sheet forms enabling reconnection. (Right) These field lines “break”
and reconnect. Far-connecting post-reconnection field line shown on the left will have a dense lower
and an evacuated upper part, while the reconnected short field line has densities the other way around.
The resulting density gradients drive plasma flows upward on the long field line, leading to blue-
shifted plasma flows and downward along the closed loops, leading to red-shifted flows.

2.3.1 Flows and QSLs

When viewing examples of peripheral AR outflows observed by EIS, it is clear that in
a substantial majority of cases, these flows are found at locations where magnetic
field lines with drastically different connectivities meet or are rooted. These locations
are called QSLs (Démoulin ef al., 1996). The role of these sites as drivers of outflows
was proposed by Baker ef al. (2009) based on extensive observations and magnetic
modeling of AR 10942, which was visible on the disc from 16 — 28 February 2007. In
discussing the outflows from AR2 in the present article, we adopt the approach
described by these authors.



Figure 6. (a) Photospheric trace of dominant QSLs indicated by the thick red lines overlaid on an
MDI magnetogram (turquoise /magenta is negative/positive, -50/50 G and -300/300 G contours). The
most extended QSL trace is located over the positive polarity of the AR within the EIS FoV. For
context, (b) an MDI magnetogram, and (c) an Fe XV image overlaid with field lines from the same
LFFF model used for computing the QSLs in panel (a) for AR2 are shown on 10 January 2008.

QSLs are defined by the regions of high values of a function called the squashing
degree, or simply Q, which characterizes the locations where the field line mapping to
the photosphere shows drastic changes (Titov, Hornig, and Démoulin, 2002). QSLs
are both preferential locations for current sheet development and magnetic
reconnection (e.g. Aulanier, Pariat, and Démoulin, 2005). At the locations, where QO
becomes infinitely large, a QSL is simply a separatrix and the field line mapping is
discontinuous (see Démoulin et al., 1996). In this case a magnetic null point is
present (or field lines are tangent to the photosphere). It was shown by Masson et al.
(2009, 2012) that a separatrix is surrounded by a thin volume of finite but high-O
values, so a separatrix is embedded in a QSL. This has implications for 3D
reconnection: a field line is not reconnecting only once with another field line (as in
2D) but with a continuous set of field lines within a QSL, irrespective of the presence
or absence of a separatrix within the QSL. In summary, thin QSLs (large Q values)
generalize the concept of separatrices: they are volumes, where reconnection is
expected to occur.

2.3.2 Linear Force Free Model of AR2

The results of a linear force-free field (LFFF) magnetic extrapolation were used to
establish the locations of the QSL traces shown in Figure 6. Although the EIS FoV
does not include both polarities of the AR, this is not crucial for an analysis of the
AR?2 outflows, since the coronal extrapolation is calculated using the full-disc MDI
magnetogram closest in time to the relevant EIS observation, and QSLs are defined by
the global properties of the magnetic field. The LFFF extrapolation of the coronal
field was compared with an EIS Fe XII slot raster image taken at 16:02 UT on 10
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January 2008. Good agreement between the modeled loops and the real coronal
structures of the AR is achieved witha = 3.1x10 > Mm™' (¢f. the extrapolations
overlaid on a Fe XV image in Figure 6¢). The low a value implies that the AR is
weakly sheared. This is confirmed by inspection of larger images containing both
polarities.

Figure 6 shows the photospheric trace of the dominant QSLs with
SOHO/Michelson Doppler Imager (MDI) magnetic-field isocontours of 50 G and
300 G. The most extended QSL trace is located over the positive polarity of the
AR within the EIS FoV. Two other QSL traces are found over the AR’s negative
polarity, just outside of the EIS FoV. It should be noted that the identification of
dominant QSLs is difficult in this case because AR2 is fragmented and dispersed,
therefore, creating numerous small QSLs. Only QSLs with Q exceeding a
minimum threshold of 107 are designated here as dominant. It is noteworthy
that the highest value of Q found in our computation is Q = 1036, This upper limit
is set by the numerical limitations obtained in computations with double precision of
the field lines. Such QSLs are so thin that they are expected to behave physically as
separatrices.

The Fe XII intensity and velocity maps for the following positive polarity section of
AR?2 are displayed in Figures 7a and 7b. They were made at 18:07 UT on 10 January
2008. The overlay image (Figure 7c) shows that the strong AR outflows seen in the
EIS velocity map are spatially coincident with field lines having footpoints in the
neighborhood of the QSL located over the positive polarity

In our LFFF model, there are a number of field lines, that leave the 3D box shown in
Figure 7c (a portion of the computational box): these end with a circle and are drawn
in orange. The LFFF hypothesis is not well suited for modeling “open” (or very
extended) field lines because the large-scale magnetic field lines are unrealistically
distorted. Moreover, the photospheric field is forced to be balanced within the
computational box that, in this case, is taken as large as 600 Mm in all three spatial
directions, so including both AR2 and AR1. The original imbalance in our magnetic-
field data was approximately 1 G, when uniformly distributed in the above
computational box. This implies that the magnetic field computed in weaker field
regions, away from the AR, is questionable.

Even with the constraints mentioned above, we find a magnetic null point between
AR2 and ARI at a height of about 120 Mm. It is nearly a 2D null, i.e. the field lines
in the vicinity of the null point are nearly planar, with a ratio of the smallest to the
largest eigenvalue of the field-gradient matrix in the fan is ~ 0.05, meaning that one
component of the field is only about 5% of the other one in the fan plane (e.g., Lau,
1993, for a study of null points and the definition of the eigen vectors and eigen
values). Such types of null have been found previously in several solar configurations
(e.g. Mandrini et al., 2006; Luoni et al., 2007). This implies that the magnetic field
remains very weak when going away from the null along one specific direction
(defined by the eigenvector of the lowest eigenvalue). This configuration is due to the
two nearly parallel magnetic bipoles of AR2 and AR1. A fan separatrix is associated
with the null point. The set of orange field lines present in the upper part of Figure
7c is indeed drawn in the immediate vicinity of this separatrix. We also verify that Q
reaches in this region the highest possible values according to our integration
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precision. Then, we propose that the blue flows observed in this specific region are
related to continuous magnetic reconnection at the null point as proposed by Del
Zanna et al. (2011), but so far without knowing whether or not it involves open field
lines.

Figure 7. a) EIS Fe XII intensity map of AR2. b) Fe XII velocity map overlaid with + 50 G MDI
magnetic contours. White/black is positive/negative polarity. c) Photospheric trace of QSLs (thick red
lines) and field lines originating in the QSLs computed from a LFFF extrapolation. They are overlaid
on a grayscale EIS Fe XII emission line velocity map. Orange/blue field lines are drawn from the QSL
over the positive polarity. Lines with circles leave the viewing 3D box and are considered to be open or
large extended loops. Magnetic field isocontours are shown in continuous magenta/turquoise lines for
positive/negative values of the field (+ 50 G and + 300 G).

2.3.3 Local and Full-Sun Potential Field Models

The LFFF model in the previous sub-section was constructed to take account of the
weak magnetic shear present in AR2. However, on larger scales the magnetic field is
typically closer to a potential field. To establish whether or not the previous high-
altitude null point is a bias of our LFFF modeling, we compute the nulls in the AR1-
AR2 complex in the potential approximation. For this modeling, we enlarged our
computational box to 1600 Mm in both east — west and north — south directions both
to decrease the influence of the lateral boundaries and to remove the flux unbalance
(which corresponds to 0.03 G per pixel).

With this potential field, the null point shifted upwards and West by about 10 Mm,
and South by about 56 Mm. This shift is mostly in the direction of the eigenvector
with the lowest eigenvalue, as expected (Démoulin, Hénoux, and Mandrini, 1994).
However, the separatrices have a much smaller shift of position (the null is mostly
moving along the so-called separator, the intersection of separatrices). The spine and
field lines passing in the vicinity of the null point are shown in Figure 8. A
comparable figure is found with the LFFF extrapolation. The photospheric trace of the
separatrix is slightly shifted (and rotated) in the following polarity of AR2
(compare Figure 7c to 8b). The same is true with the QSLs; this is an expected result
since all our previous studies (e.g. Mandrini ef al., 1996; Démoulin et al., 1997) have
shown the structural stability of QSLs when the magnetic field is not drastically
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modified (as in this case, given the low value of ).

(a)

Figure 8 Location of a high-altitude (about 130 Mm) null point above AR2 in the AR1-AR2
complex in a Cartesian potential field extrapolation. The spine field line (red) and fan field lines
(green lines) are shown from two perspectives (a) from the South and (b) as seen from Earth.
The bottom boundary is an MDI magnetogram taken on 9 January 2008, when the AR1-AR2
complex was closest to the central meridian. Negative polarity is contoured with turquoise,
positive with magenta.

To check if the spine field line originating from the null shown in Figure 8 extends up
to the source surface, we carry out Potential Field Source Surface (PFSS) modeling of
the whole Sun. This global modeling is complementary to our previous more local
models since it takes into account the larger scales. The surface-field maps that are
used in calculating the PFSS model are sampled from an evolving-flux model, and not
from the usual synoptic map. The main difference is that the surface-field is not static
when it is not visible form Earth; instead the field is sheared due to the differential
rotation, advected poleward due to meridional flows, and undergoes dispersal due to
the convective—supergranular motions. The evolving scheme is presented by Schrijver
and Title (2001) and the method by which data are inserted into the model is
discussed by Schrijver and DeRosa (2003). As we are mostly interested in the AR2—
CH2 interface, the model is optimized for its central meridian location (11 January
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2008, 00:00 UT) by building a synoptic map centered on this time. The model is
shown in Figures 9 and 10 as viewed from the Earth on the 11™ (AR2 is at central
meridian) and 6" anuary, respectively.

Figure 9c shows large-scale topological features, i.e. separatrix surfaces, null points
above 1.02 Rgyn (14 Mm) and their spine field lines in the solar corona (cyan lines) up
to the source surface or closing elsewhere on the Sun at a distance. Each of these null
points has a separatrix surface associated with it. The intersections of these separatrix
surfaces with either the upper (if it reaches the source surface) or lower boundary of
the domain are indicated with red lines. AR1 and the eastern-most part of AR2 are
under the yellow-colored semi-transparent streamer separatrix surface flanked by the
two CHs (Figure 9d). This separatrix is between open and closed field and is defined
from the inversion line present on the source surface at 2.5 Rgy, (thick blue line in
Figure 10b). This is identified with the base of the HCS, which is located typically
within the Heliospheric Plasma Sheet (HPS). Finally, the grey areas at the
photospheric level are the footprints of open flux as determined by the PFSS model.

2 ade '.'.,x

(c) 11Jan.2008 0:00 UT

Figure 9 PFSS extrapolation and topological structures of the solar corona for 11 January 2008 with
the locations of AR1, AR2, and CH2. The main topological features are streamers, pseudo-streamers,
null-points, and their associated fan surfaces and spine field lines. The various semi-transparent colored
surfaces are separatrices. The null points are indicated with red dots and the spine lines are the cyan
lines associated with these nulls. Thick red and blue lines, indicating pseudo-streamers and streamers,
respectively, delineate the intersections of the separatrix surfaces with the photosphere and with the
source surface. Panels (a) and (c) are without, while (b) and (d) are shown with the (yellow semi-
transparent) streamer separatrix surface. The panels (a) and (b) are zoomed-in details of (¢) and (d),
respectively. AR2 is partially under a fan surface associated with the null point (red dot), also shown
in Figure 8. This fan surface is only partially enveloped by the (yellow) streamer surface. Part of the
positive (trailing) polarity of AR2 is in the open-field region of CH2.
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Figure 9a shows that AR2, in accordance with the modeling illustrated in Figure 8§,
has indeed an associated null point and the separatrix dome (fan surface, colored in
green) covers nearly the entire AR2, but for the easternmost part of its following
(positive) polarity. This separatrix dome is not entirely under the streamer (Figure 9a,
b) and the null point and its spine field line, which extends up to the source surface
(see Figure 10a), are in the “open-field” domain east of the streamer. On the other
hand, AR1 seems to be almost fully under the streamer and has no associated null
point, but several spine field lines closing on its southwest leading (negative) polarity
(Figure 10a).

(a) 06 Jan. 2008 0:004dill

Figure 10 PFSS extrapolation and topological structures of the corona as viewed from the Earth on 6
January 2008 with the location of CHs and ARs indicated. The main topological features are streamers,
pseudo-streamers, null points and their associated fan surfaces and spine field lines. They are
represented with the same drawing convention as in Figure 9. Panel (a) shows the model without and
(b) shows it with the yellow semi-transparent closed-loop streamer region associated with the source-
surface inversion line (thick blue line at a radius of 2.5 Rg,,). AR1 is nearly fully enclosed by the main
streamer, while AR2 has a pseudo-streamer associated to the null point.

Field lines starting on the orange QSL side are truly
open, as they are just outside of the separatrices
(fan + streamer surface) in the PFSS model.

Field lines starting along the green
QSL side are short and connect
to small dispersed patches of
surrounding network field.

0

o

Y- Field lines sta&ing on the blue QSL
side are closed within the AR.
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Figure 11. QSL locations in AR2 (cf. Figure 6 where QSLs are shown in dark red/brown) with the
types of connectivity on both sides color-coded and the characteristic connectivities described using the
insight gained from PFSS modeling. The QSLs are overlaid on an MDI magnetogram where
isocontours of the polarities are represented with different colors (turquoise is negative, magenta is
positive polarity). Different sides of each QSL are coloured according to the field line connectivity
found.

2.3.4 Detailed Analysis of QSLs within AR2

The connectivities of the dominant QSLs in AR2 are displayed with detailed
explanations in Figure 11. Sites where field lines originating at the QSLs connect
within/outside of the AR are indicated by the blue/green and orange color scheme
around the dark red (or brown) QSL traces, as follows. Field lines starting along the
“outside” of the QSLs, marked by thick green lines, are short loops that connect to the
small dispersed magnetic fragments of the surrounding network field. These field
lines are not displayed in Figure 7c¢ (since they are not linked to the blue-shifted
upflows). Thick orange lines over the positive polarity show where the open field
lines drawn in Figure 7c are rooted on the “inside” of the main QSL. Such field lines
are going to large heights in the Cartesian LFFF and potential-field extrapolation,
passing in the vicinity of the null point (Figures 7c and 8). The full-Sun extrapolation
shows that they are open (Figures 9 and 10). Finally, field lines starting on the “blue”
side of the QSLs are closed within the AR and connect the AR’s opposite polarities
(see blue field lines in Figure 7c). A combination of information on the footpoints of
field lines enveloping the fan surface and the intersection of the separatrix enveloping
the streamer with the photosphere shown in Figures 8, 9, and 10 enables us to confirm
that the field lines seen in Figure 7c leaving the 3D box are indeed open and their
associated QSLs are, in fact, separatrices.

The QSL locations and field-line connectivities are important for understanding the
outflows that originate in the vicinity of the QSLs and extend into the corona. As
shown in Figure 7c, the outflows occur both along “open” (drawn in orange) and
closed field lines (drawn in blue) that are rooted at the dominant QSLs. The
magnitude of the flows is comparable in both cases. This both supports reconnection
within QSLs, as proposed by Baker et al. (2009) and reconnection associated with a
magnetic null point, as proposed by Del Zanna et al. (2011). In both cases the flows
are expected to be driven by the over pressure present in the shorter of the pre-
reconnection loops, driving an upward flow in the longer of the two reconnected
loops, as modeled by Bradshaw et al. (2011). In the case of an open field reconnecting
with a closed field, this strong asymmetry in plasma pressure is always expected,
while in the case of closed-closed reconnection, it is present only when the loops have
a marked geometrical and heat-content difference. Provided the asymmetry in plasma
pressure is large enough, one expects that the driven flows can be of similar
magnitude as in the open field. Such a conjecture remains to be quantified by
numerical simulations.

For the reconnection aspect, 3D reconnection with a null point is indeed similar to
that without a null point (but with thin enough QSLs), as the fan and the spine of a
null point are surrounded by a QSL with finite O values. This is the case both with
closed fields (with Q defined by the field line mapping to the photosphere, Masson et
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al., 2009) and with closed-open fields (with the mapping to both the photosphere and
the source surface, Masson ef al., 2012). Indeed for the local reconnection physics, the
case with open-field lines is comparable to the closed case with very long field lines.
Moreover, 3D magnetic reconnection does not only occur at the null point, like in 2D
reconnection, but it involves the slippage of the field lines within the QSL both before
and after field lines cross the separatrix. Without a separatrix, 3D reconnection
simply occurs only in the slipping mode.

Finally, the PFSS modeling enables us to see which upflows are generated along field
lines, which reach the source surface and, thus, are able to channel plasma flows into
the solar wind. As a next step, we analyze the SW parameters related to the AR—-CH
complex.

3. Interplanetary measurements
3.1 Possible Contribution of AR Outflow to the Slow Solar Wind

The solar features (ARs, CHs, flows) that we are discussing are indicated on a
Hinode/XRT image for 10 January (Figure 12) at a time when AR2 and its associated
outflow site are at central meridian. The location of the HCS projected radially on the
Sun is also shown based on NSO/GONG PFSS computations. In temporal order, AR1
crosses central meridian on 7™ January (see Figure 1), followed by the HCS
embedded in the HPS, AR2 with its associated outflow region to the East and finally
CH2. About three-four days later than the central meridian passage of AR1, ACE in-
situ sensors should begin to register plasma of slow SW composition with
contributions from the quiet Sun and any outflows associated with AR1. The HPS
passage should lead to the detection of material associated with the streamer belt.
Foullon ef al. (2011), in an extensive study of the HPS during this period, have found
evidence for plasmoid ejection possibly related to an ICME and a long-decay flare in
addition to the presence of streamer material. Analysing another series of events,
Rouillard et al. (2010a,b; 2011) tracked the outflow of small-scale transients in the
heliospheric imagers from the Sun to 1AU and identified the presence of small-scale
mangetic-flux ropes embedded in the HCS and near the heliospheric plasma sheet.
Then, the HPS should be followed by a plasma of mixed slow wind composition
involving streamer belt-related material with a possible contribution from the AR2
outflow. Finally the ACE instruments should register fast SW plasma from CH2.
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Figure 12. Hinode/XRT image for 10 January 2008. Both active regions (AR1, AR2), the second
coronal hole (CH2), and stream interaction region (SIR2) are indicated. Also shown are the positions of
the active-region outflow sites observed with Hinode/EIS and the Heliospheric Plasma Sheet (HPS)
location projected radially on the Sun.

In situ observations obtained by ACE for the plasma flow encountering the spacecraft
include the ratios Fe/O, O”7/0%", C®"/C**, and He*'/H" (Solar Wind lon Composition
Spectrometer (SWICS): Gloeckler et al, 1998) along with proton density,
temperature, and velocity (Solar Wind Electron Proton Alpha Monitor (SWEPAM):
McComas et al., 1998). These quantities are plotted against time for the interval 9 to
15 January 2008 in Figure 13. In order to facilitate the comparison with the solar
structures the time is running from right to left. The interval for the HPS crossing has
been established mainly from the enhanced proton density (see Foullon ef al., 2011,
for more details). Within the HPS, the HCS location is established from the
magnetometer data (Magnetic Field Experiment (MAG): Smith et al., 1998). This
provides a useful reference for linking ACE to the solar surface.

We start our description of the data on 9 January with a fast wind associated with
CHI1. The speed progressively decreases inside a rarefaction region to typical slow
SW speed before the HPS (Figure 13). After the HPS, a broad peak in plasma velocity
is present (around 13 January), well before ACE clearly registers plasma with high-
speed SW properties coming from CH2. The velocity peak is associated with a
similar peak in the proton temperature. Since both parameters have been found to be
related in the SW (e.g. Elliott et al., 2005, and references therein), we plot in red the
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expected temperature, as well as the range of observed values under typical SW
conditions (dotted lines), derived froma scatter plot of observed and measured solar
wind speed measured between January 2007 and Januar- 2008. In this scatter plot, we
have carefully selected intervals when the solar-wind speed did not change over
several days, thereby removing the effect of rarefaction and compression regions.
This demonstrates that the observed peak in proton temperature is significantly higher
than expected from the peak of the observed velocity. We interpret these results as
due to the presence of an important outflow, most plausibly coming from AR2 and
associated with a significant extra-heating of the plasma.

The in-situ O'"/0°" and C®/C" ratios provide another diagnostic of the plasma
temperature in the corona, since these ratios are supposed to be fixed values within
the SW (because of low collisions at larger distances). The frozen-in height of both is
about 1.1 — 1.2 Rgyy (e.g. Owocki, Holzer, and Hundhausen, 1983). Figure 13 shows
that both CH1 and CH2 associated regions have low ratios as expected (dotted line).
Higher ratios are associated with the AR1 passage and even larger ones with AR2.
Indeed, AR1 is located behind a large streamer region (Figure 9); so, at most the
largest scales, which are also typically the coolest, can have a contribution to the SW
(by interchange reconnection). On the contrary, AR2 is only partly below the streamer
and interchange reconnection involves loops closer to the AR core, so hotter ones. We
conclude that the O"/O°" and C®"/C°" ratios are organised with PFSS derived
distribution of magnetic-field strengths at the base of the corona (as found by Wang,
Ko, and Grappin, 2009). We further note that there is no peak, but rather a decrease,
in these ratios associated to the peak present in proton temperature (around 13
January). This implies that the plasma was not significantly heated in the low corona
(e.g. by reconnection at the null point), but latter on (e.g. by dissipation of Alfvén
waves or MHD turbulence).
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Figure 13. ACE in situ observations of SW plasma for the interval 9 — 15 January 2008 (right to
left). From the top of the figure, values of the concentration ratios Fe/O, O7+/O6+, C®/C>, and He?'/H',
and density, temperature, and proton velocity are plotted against time. The FIP bias, i.e. Fe/O
normalized to photospheric value, is indicated on the top right. In the three top panels the typical low
and high speed values (LSV and HSV) are indicated by the horizontal dotted lines. The expected
temperature in a SW with the same velocity is shown in red, while dotted lines show the typical
extreme values in the T panel. Passage of the HPS is indicated as are those of CH2, AR2, AR1, and
CHI1. The black arrows show a proton-velocity and temperature peak, which we link to outflows from
AR2.

The Fe/O ratio shown in the top panel of Figure 13 is characteristic of a FIP bias
when normalized to the photospheric ratio (shown on the right-hand scale). A FIP bias
larger than one should come from the chromosphere where the low-FIP elements are
ionized but the high-FIP ones are still neutral (von Steiger et al., 2000; Feldman and
Widing, 2003). It has been suggested that by diffusion across the magnetic field, the
high-FIP elements can escape from the heated and over-pressurised loops but not the
low-FIP elements, implying an enhancement in low-FIP elements of the loops.
Because it involves diffusion, such a process requires the storage of the recurrently
heated plasma during a period of days to weeks. This is not the case in CHs, and
indeed the region associated with CH2 shows such typical value of the fast SW (top
panel of Figure 13). The diffusive interpretation faces two surprising observations.
The region associated with CH1 has a FIP bias comparable to slow SW conditions, as
in the region associated with AR1. The occasional presence of high FIP bias in fast
solar wind was noted by Wang et al. (2009). This could be related to the presence of
faint coronal loops within CH1 as observed with the EUV Imager (EUVI) (see
attached movie). Even more surprisingly, the AR2 region has the lowest of the FIP
bias values. AR2 is at least one rotation younger than ARI1, being first seen on 2
January 2008 (by STEREO-B), while AR1 was observed for the first time on 04
December 2007 on the east limb in the growth stage (also by STEREO-B). Even if
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AR2 is younger than AR1 by about one solar rotation, such that diffusion has less
time to operate, these low values remain to be explained.
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Figure 14. Sample EIS Fe XII intensity (right) and velocity (left) map obtained for AR1 on 6 January
2008 at 23:16 UT. Significant outflows are still visible though with diminished footprint compared to
the observations of Brooks and Warren (2011) made for this region on the previous solar rotation.

3.2 Does AR1 Contribute to the Solar Wind?

In contrast to AR2, evidence for contribution by ARI to the SW is sparse since
the peaks in the proton temperature and velocity, observed before the HPS, are much
weaker than those associated with AR2 (Figure 13). Moreover the FIP bias is
comparable to that in the CHI region. Still, there is a weak increase of the O’*/0°"
and C*'/C”" ratios compared to the nearby plasma originating from CH1. Therefore,
below we analyze coronal data to see whether or not there is any evidence that AR1
could be related to plasma outflows.

We have observed AR1 with EIS in a 24 hour interval from 5 to 6 January, 2008.
Figure 14 shows Fe XiI 195 A intensity and velocity for one of the 15 observations.
Upflows are seen in both the East and the West of the region, although with much
diminished footprint area compared to those observed by Brooks and Warren (2011)
on the previous rotation. However, as shown in Section 2 for AR2, coronal upflows
can be present in closed or open field lines, so that the observation of EIS upflows is
not by itself sufficient to make the link with the SW.

The PFSS model of Figures 9 and 10 does show that AR1 is fully inside a large scale
streamer. However, this computation assumes a fully relaxed (potential) magnetic
field apart from the presence of an imposed source surface, which locally forces the
magnetic field to be open. The PFSS model also includes only the large scales
without temporal evolution. Using STEREO/EUVI data, we indeed verify that the
large-scale observed structures (CH1, CH2, AR1, AR2) are globally reproduced by
the PFSS model. However, the EUVI observations also show that both closed and
open-like loops are present on the western side of AR1 (Figure 15). The open-like
structures are more evident closer to the limb due to a more favourable projection and
fewer back/foreground stuctures. Moreover, outflows are present (see attached
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movie). We conclude that, while most of AR1 field is closed, there is still a small
fraction of open loops present in the leader polarity. This is consistent with the weak
signature of AR-related plasma in the SW before the HPS.
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Figure 15 STEREO-A 195 A EUVI images of the AR—CH complex showing loops fanning out of
ARI1. These loops become increasingly visible as AR1 approaches the limb. Though PFSS modeling
indicates that AR1 is fully enveloped by the streamer above it, the dynamically changing loops fanning
out of the AR1—-CHI interface indicate that the boundary is not simple and there is a continuous
interchange reconnection process, taking place low in the corona driving brightness changes in the fan.
The frames shown here have been wavelet-cleaned and enhanced to extend the visibility of the coronal
features as far out as possible above the limb (see Stenborg, Vourlidas, and Howard, 2008, for a
description of the method). See the corresponding movie in the electronic supplement to this article in
the electronic version.

Finally, we emphasize how the general SW plasma characteristics on both sides of the
HPS (CH1-AR1 and AR2-CH2) differ. This illustrates the different kinds of
interactions of AR1 and AR2 with open fields. The pre-HPS characteristics appear to
be consistent with the outer part of AR1 interacting with the nearby open field. Then,
interchange reconnection at large heights is compatible with the relatively low frozen-
in temperature observed in situ. On the contrary, the post-HPS charateristics are
compatible with interchange reconnection at the null and surrounding QSLs at lower
heights above AR2, resulting in higher frozen-in temperatures. A more detailed study
of the topology of AR1 and the connections between coronal outflows and the solar
wind will be carried out in a follow-up article (Mandrini et al., in preparation).

4., Discussion and Conclusions
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In this articlewe make an attempt to provide answers to the following questions: what
drives plasma upflows observed in ARs with Hinode/EIS and whether or not these
upflows become outflows forming part of the slow solar wind. We analyse a complex
of two ARs (AR1 and AR2) flanked by two CHs (CH1 and CH2) of opposite
magnetic polarity (Figures 1, 2) using observations from Hinode/EIS and XRT,
SOHO/MDI and EIT, as well as STEREO/EUVL.

We employ linear force-free field (LFFF) and potential modeling of the two ARs and
confirm previous results by Baker ef al. (2009) that plasma upflows observed by EIS
emanate from the vicinity of narrow QSLs (Figures 6, 7, and 8). This indicates that
magnetic reconnection along QSLs is involved in these upflows. As a particular case,
some QSLs contain a separatrix inside, when the field-line mapping is discontinuous.
For the case studied we find a magnetic null point at a height of about 120 Mm above
the leading polarity of AR2. This implies that some of the computed QSLs include
the separatrix (fan surface) and the spine of the null point. However, these local
models can only show QSL locations relatively low in the corona (as they use a
Cartesian computational box) and they are unable to tell if some of the outflows seen
in the EIS maps would be able to reach the SW or not.

Therefore, we complement these local, detailed models of the AR topology with a
global potential field (PFSS) magnetic topology model of magnetic nulls and
separatrices, showing which magnetic field lines reach the source surface. Confirming
the local LFFF and potential model results (Figure 8) we find with the PFSS model a
null at a similar height (=130 Mm) located above the leading polarity of AR2 (Figures
9 and 10) and confirm that its spine field line indeed reaches the source surface.
Moreover, the spine and fan of the null point are embedded in the QSLs (computed
from field line mapping reaching the photosphere or the source surface) where
reconnection can occur (see Masson ef al., 2012). Then, at the null point and in the
QSLs, interchange reconnection between closed field lines under the fan surface and
open field lines, can indeed allow plasma originally confined along closed loops to
gain access to open field lines and reach the solar wind. This is in agreement with the
conclusions of Del Zanna et al. (2011).

Moreover, other thin QSLs, without separatrices, are also associated with EIS
upflows. These QSLs are also expected to host magnetic reconnection; this time
between closed field lines. We propose that, through reconnection of two closed
asymmetric loops, the plasma-pressure gradient can drive plasma upflows (Figure 5)
as was modeled by Bradshaw et al. (2011) for the reconnection between closed and
open field lines. However, these flows will remain confined along closed loops in the
solar atmosphere. Therefore, only a fraction of the upflows observed with EIS in the
low corona are contributing to the SW. We have shown this in detail for AR2, which
has a mixture of closed and open fields, as shown both from the PFSS model and
EUV observations. The global PFSS model also shows that AR1 has no associated
high-coronal null point and it is practically totally enveloped by the streamer (Figure
10), i.e. we do not find any significant part of AR1 in the open-field domain of CHI.
Hence the upflows in AR1 observed by EIS are expected to remain confined in the
low corona.

The modelling employed has its uncertainties (e.g. the validity of the potential and
LFFF approximations may be questionable, and the chosen height of the source
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surface (2.5 Rgyy 1n this case) influences the location of boundaries between open and
closed field lines. Moreover, the computed magnetic field is affected by the
distribution of coronal electric currents. Such effects are difficult to evaluate, and one
can only rely on a comparison of the computed field lines with coronal loops. There is
further uncertainty (of at most a few pixels) in overlays between EIS scans and and
MDI magnetograms. However, there is no measurable difference between the QSL
locations computed in the LFFF and potential field models. Moreover, the remarkable
agreement between the topologies found in local and global extrapolations is quite
encouraging as it indicates the robustness of the results, e.g. concerning the presence
of the high-altitude null-point above AR2. Both the separatrix location in the global
topology and the QSL location in the local LFFF extrapolation intersect the trailing
positive polarity of AR at the vicinity of significant long-lived upflows. These blue-
shifted upflows originate where coronal loops “separate” (e.g. Figure 3), i.e. from
where, starting within a small region in the photosphere, loops (implying their field
lines) connect to different regions, i.e. the magnetic field lines have a large
connectivity gradient, which is the definition of QSLs (including separatrices). Thus,
though the combined observations and modeling techniques all have their own
uncertainties, the blue-shifted upflows and separating loops (traces of QSLs) are co-
spatial with no uncertainty. Concerning the boundary between open and closed field
lines in the global magnetic topology (Figure 9), its location is confirmed by imaging
observations (cf. Figures 3 and 4 and the CH movie in the electronic supplement to
this article). These observations clearly show that the dark CH2 intrudes AR2 when
projection effects do not prevent us to look at the AR-CH boundary directly from
above. So there is little doubt that the PFSS modeling captures reality in this case.

The confirmed fact that significant plasma up-flows within an AR originate at special
locations in the magnetic topology, which are favourable locations for magnetic
reconnection to take place, appears to contradict some previously proposed driver
mechanisms of these flows, which are independent of the magnetic topology. These
mechanisms are, e.g. impulsive heating at loop footpoints (Hara et al., 2008) and
evaporation upflows due to flux emergence (Del Zanna, 2008).

We complement our coronal study with in-situ measurements by ACE. The large-
scale coronal structures found in the PFSS model (CHs, HCS) correspond relatively
well to the SW structures observed at 1 AU. From the PFSS model, we deduce that
the possible outflows of both ARs should be separated by the HCS (embedded in the
HPS). Indeed, within a region of slow solar wind, we found strong peaks for both the
proton temperature and velocity. We associate them with the outflows from AR2
located in the close proximity to the separatrix and QSL associated with the null point
and open-field lines. We also found that the higher O""/0%" and C®*/C*" ratios in the
time interval may be plausibly related to AR2, a result consistent with the observation
of CH2 entering inside AR2, so in a hotter region than at the periphery of the AR.
However, these ratios also indicate that the plasma associated to the velocity peak
was not heated low in the corona, but at larger distances (by e.g. Alfvén waves or
turbulence related to magnetic reconnection), since only the in-situ proton
temperature is enhanced.

By contrast, the SW on the other side of the HPS shows only weak signatures of AR

plasma. The main signature is a small increase of the O'"/0°" and C®*/C”" ratios
compared to the nearby CH. This is likely to be related to the streamer overlying
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ARI. Still, while the PSFF model indicates that AR1 is fully covered by closed field
lines, STEREO/EUVI observations indicate the presence of some open field lines
within the leading polarity. Interchange reconnection with closed fields at the
periphery of ARI. This can also help to explain the characteristics of the in-situ
plasma.

There is another remarkable difference between SW characteristics associated with
the CHI-AR1 and AR2-CH2 interfaces: the former has typical FIP bias, while the
latter shows a FIP bias lower than is usually found in fast SW. FIP bias involves
diffusion of neutrals across field lines so it requires time to become established. There
is a significant age difference between AR1 and AR2, of about one solar rotation;
however this cannot explain the very low FIP bias observed, nor the lower He* —H"
ratio in the time interval related to AR2. Perhaps the continuous magnetic
reconnection at the null-point above AR2, which is releasing plasma from closed AR
loops into the solar wind, does not allow sufficient time for the FIP bias to be built up.

The most common magnetic-polarity arrangement of CH-AR complexes is that one
or more ARs are flanked by two CHs of opposite magnetic polarity, with the extremes
of AR polarities being the same as the CH polarities with which they interface (e.g.
Karachik, Pevtsov, and Abramenko, 2010; Webb ef al, 2011). This is the magnetic
configuration of the streamer belt and the configuration of the AR—CH complex under
study in this article. In such a case, the interfacing open and closed field lines are of
the same magnetic polarity at both sides of AR(s). We show here that in this common
case magnetic interchange reconnection is possible not only at the source surface as
proposed by Wang, Sheeley, and Rich (2007), but well below the source surface along
null-points in pseudo-streamer configurations, which can be jointly present with the
streamer. In such cases, AR plasma can gain access to open field lines and be released
into the solar wind.

Sources of SW are of low radiance like CHs. The outflows from ARs, though being
low-radiance regions within the AR, are much brighter than CHs, however. Can they
still be sources of the SW? The plasma outflows from the periphery of AR2, which
we argue to be a source of the slow SW, are places where interchange reconnection
between evacuated, low-radiance, open and dense, bright, closed loops is
continuously taking place, thus plasma is being released into the solar wind from the
AR’s rich plasma reservoir. Therefore these AR outflows must be one of the densest
and therefore brightest sources of the SW.

Appendix. List of acronyms

ACE: Advanced Composition Explorer
AR: active region

CH: coronal hole

EIS: EUV Imaging Spectrometer

FIP: first ionization potential

FoV: field of view

HCS: Heliospheric Current Sheet
HPS: Heliospheric Plasma Sheet
LFFF: linear force free field

PFSS: potential field source-surface
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QSL: quasi-separatrix layer

RF: rarefaction region

SIR: Stream Interaction Region

STEREO: Solar-Terrestrial Relations Observatory
SW: solar wind

XRT: X-ray Telescope
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