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Abstract

Background: The time course and outcome of perceptual learning can be affected by the length and distribution of
practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory
domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning
to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple
training sessions provided benefit over a single session.

Methodology/Principal Findings: We investigated the efficacy of different regimens that varied in the distribution of
practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While
learning was relatively robust to variations in regimen, the group with the shortest training sessions (,8 min) had
significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the
longest training sessions (.1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session
improvements were inversely correlated with performance; they were largest at the start of training and reduced as training
progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer
of learning for a group that trained over 4 sessions (,4 hr in total) relative to a group that trained for a single session
(,1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following
cessation of training, whereas the multi-session group showed no further improvement once training had ceased.

Conclusions/Significance: Shorter training sessions were advantageous because they allowed for more latent, between-
session and post-training learning to emerge. These findings suggest that efficient regimens should use short training
sessions, and optimized spacing between sessions.
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Introduction

Perceptual learning is the process whereby practice on

a perceptual task, such as discriminating between sounds,

improves performance on that task. Though learning can be

contingent simply on the overall amount of practice [1], it can also

be affected by other aspects of the training regimen, including the

amount of practice within each session [2,3], or the length of

breaks between sessions ([4] for a review). Systematically in-

vestigating the effects of varying the training regimen may provide

insight into both learning mechanisms and the optimal design of

applied training programs that aim to improve perceptual skills.

When designing training programs, whether for clinical or

research use, it is important to use regimens which are feasible for

the patient or participant, while ensuring that learning is also

maximized. Training sessions that are shorter or fewer in number

may increase compliance, especially in children [5]. However,

learning may not occur if sessions are too short [1,2] and may

require extensive training, sometimes occurring over thousands of

practice trials [6,7]. Consequently, it is important to find a balance

between brevity and efficacy of training. In the experiments

described here we addressed two crucial questions: how much

training is required overall to produce significant learning, and

how is it best distributed across training sessions? In investigating

these aspects of learning, the time course of improvements within

and across training sessions, and the amount of practice required

to trigger and sustain these improvements, are of fundamental

importance. In addition, it is necessary to establish the amount of

training beyond which no further benefit is gained.

Remarkably different time courses have been observed for

perceptual learning. Improvements are often apparent while

training (within-session learning [1,8,9]; Fig. 1, green line), but

can sometimes occur during a latent period after training has

finished (between-session learning [2,7,10,11]; Fig. 1, red line).

Within- and between-session learning probably represent two

different processes, as they can be disrupted independently [12]

and show differences in retention [13]. They also appear to have

different electrophysiological correlates [13–15]. Both types of
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learning can also occur on the same task [16–18] (Fig. 1, blue line).

However, neither of two previous studies that varied the number

of trials within sessions, while controlling the total amount of

practice, reported both forms of learning: Aberg et al. [1] showed

only within-session learning in a visual experiment, while Wright

& Sabin [2] showed only between-session learning in the auditory

domain. Thus, the effect of varying the training regimen on a task

that displays both learning types is currently undocumented.

Moreover, neither study assessed how well learning was retained

once practice had ceased, so the effect of training distribution on

long term benefits is unclear.

Perceptual learning studies have shown that specific require-

ments should be met for learning to occur. For example,

a sufficient number of trials (critical minimum) may be required

to initiate within-session [1] as well as between-session [2]

learning. Insufficient practice results in a lack of performance

improvement during training, or a failure of overnight consolida-

tion of improvements attained within a session (Fig. 1, yellow line).

On the other hand, learning has been shown with as little as one

trial of training on some tasks [3,19] so minima may not always

exist. Within- and between-session learning may have different

critical minima, and this can only be established on a task which

shows both learning types.

Overtraining on a task is also possible, with extra practice

providing no added benefit. For example, no additional between-

session learning was observed on a temporal interval discrimina-

tion task for a regimen with a large number of trials each day

compared with fewer trials [2]. Within-session learning can

plateau towards the end of a session and restart once a new

session has begun [16,17], suggesting overtraining within a session.

As with the minimum requirements for learning, the maximum

effective amount of training may differ for between- and within-

session learning, but as of yet no study has determined whether

this is the case.

Learning is usually non-linear; very early learning is typically

rapid whereas later learning is slower [20,21]. It is conceivable that

other aspects of learning, such as the critical minimum, the

maximum effective training per day, or the relative contributions

of within- and between-session learning might also change as

training progresses. However, studies that have varied the amount

of training in each session have used extensive pre-testing to

establish baseline performance on the training and untrained tasks,

and so the characteristics of the early stages of learning were not

documented [1,2].

Since learning generally follows the characteristic time course

described above, large performance improvements occur early on.

Extended training may provide only marginal additional benefit

compared to less exhaustive training. However, a longer training

regimen may provide other benefits: tasks which are learnt over

a more extended period of time are often remembered better

[4,22]. On the other hand, longer regimens may produce less

generalization than shorter regimens, since as learning progresses

it can become more specific to the trained stimulus [6,23,24].

Here we used a frequency discrimination (FD) task that was

previously shown to result in both within- and between-session

learning [8,25] to investigate the characteristics of early and late

within- and between-session learning. We compared their relative

contributions to overall improvements, and the parameters within

which they produce effective learning. We avoided the extensive

pre-tests used in previous studies in order to capture the early stage

of learning, and recalled participants up to several weeks after

cessation of training to assess retention.

Experiment 1: Distribution of Training across
Sessions

In this experiment we asked how much training per session is

most effective. We varied the number of trials each day whilst

keeping the overall amount of training constant (with the

exception of the regimen with the shortest sessions). Overall

learning and long-term retention were compared between four,

multi-day training regimens (Fig. 2). We further assessed whether

minimum or maximum effective amounts of daily training were

achieved by comparing the speed of learning between regimens.

Figure 1. Schema of different time courses for learning. Lines represent different hypothetical learning curves in situations where between-
and within-session changes are combined in different ways.
doi:10.1371/journal.pone.0036929.g001
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Based on Wright and Sabin [2], who found a critical minimum of

between 360 and 900 trials for between-session improvements, we

tested a similar range. We expected the group(s) with fewer trials

not to achieve a critical minimum and show reduced or no

learning. Conversely, we expected overtraining to result in

a reduced learning rate in the longer regimens relative to regimens

with fewer trials.

We also differentiated learning seen within and between

training sessions. We expected to see within-session learning in

the early stages of this task, based on previous data from single-

session studies in our lab (e.g. [8]). Between-session improvements

were predicted to be more dominant in later stages, as typically

observed by Wright and colleagues in extended FD training (e.g.

[2]).

Methods
Ethics statement. The research protocols for Experiments 1

and 2 were approved by the Nottingham University Hospitals

Research Ethics Committee. Informed written consent was

obtained from all participants.

Participants. Forty eight adults aged 18–27 were recruited

via posters from the University of Nottingham student population

and the general public, and were paid an inconvenience allowance

for their participation. All participants had normal hearing (pure-

tone thresholds ,=20 dB HL across 0.5–4 kHz, measured

according to BSA guidelines [26]), except one participant who

had a threshold of 25 dB HL at 4 kHz in the right ear.

Participants had no prior experience of psychoacoustic testing,

and had initial FD thresholds between 0.4 and 15% at 1 kHz (i.e.

between 4 and 150 Hz), as determined by the first block of trials

(see below).

General procedure. Participants were allocated to one of the

four groups (Fig. 2) according to their FD performance on the first

block, in order to match the groups for initial performance.

Groups trained using 50-trial blocks of adaptive FD, and differed

according to the number of blocks per session. Group T800

trained on 800 trials per day over two days, group T400 trained on

400 trials a day over 4 days, and group T200 trained on 200 trials

a day over 8 days (with a weekend occurring after the 5th day) for

a total of 1600 trials each. Group T100 trained on 800 trials in

total, with 100 trials per day over 8 days (using the same schedule

as T200). In all four groups a five trial FD demo was run at the

beginning of the experiment to introduce the task concept. FD

performance was assessed the day after training was completed

(post-test), and four to six weeks later (retention test) using two

blocks (100 trials) (Fig. 2).

Stimuli. Stimuli consisted of 100 ms tones (including 10 ms

raised cosine ramps) presented with an inter-stimulus interval of

500 ms. Stimuli were presented diotically at 60 dB SPL using

Sennheiser HD-25-1 headphones. The frequencies of the tones

ranged between 1 and 1.5 kHz according to the adaptive

procedure described below.

Task and adaptive procedure. All testing was conducted

within a sound-attenuated booth. The FD task was administered

via computer games with a visual interface that cued sound

presentation and provided trial-by-trial feedback. Responses were

recorded via touchscreen and there was no time limit in which to

respond.

During each trial participants heard three intervals, two of

which contained a standard tone of frequency f and a third,

randomly determined interval, contained a higher-frequency

target tone (f + Df, where Df is in per cent of the standard

frequency f). Participants were instructed to choose the interval

that was different from the other two (3-interval, 3-alternative

forced choice; 3I-3AFC). The value of Df was adaptively varied

using a three-down one-up staircase procedure, targeting 79.4%

correct on the psychometric function [27]. Starting with Df = 50%,

it was divided by 2 following every correct response until the first

incorrect response, and then multiplied by two following each

incorrect response until the first correct response. Thereafter, Df
was divided by !2 after three correct responses, and multiplied by

!2 after one incorrect response. The adaptive track was terminated

after 50 trials had elapsed.

A demo of five trials was administered before the first block to

familiarize participants with task requirements (see Fig. 2). Three

of these trials were ‘easy’ (Df = 50%), and two were impossible

(Df = 0%). All participants correctly identified the target sounds for

the Df = 50% practice trials.

Training, post-test and retention test. Training was

administered in blocks of 50 trials of FD, each of which was

a threshold assessment where the difference in frequency, Df, was
adapted as described above. Sessions containing more than 200

trials were split up with 5 minute breaks every 200 trials.

All participants completed a further 100 trials of FD (two blocks,

identical to those used in training) during the post-test. Some

participants (n = 9, 7, 9, 6 for groups T800, T400, T200 and T100

respectively) returned for the retention test, which consisted of

a further two blocks of FD.

Non-verbal IQ. The matrix reasoning and block design

subtests of the Wechsler Abbreviated Scale of Intelligence (WASI

[28]) were administered at the end of the post-test to assess non-

verbal IQ (NVIQ). A one-way ANOVA confirmed that NVIQ did

not differ significantly between the groups (F(3,44) = 0.11,

Figure 2. Training regimens for Experiment 1. Groups T800, T400 and T200 trained on 1600 trials of FD overall, with 800, 400 and 200 trials per
day, respectively. Group T100 trained on 800 trials of FD overall, with 100 trials per day. A five-trial demo preceded the training, and 100 trials were
run the day after training was completed (post-test), and 4–6 weeks after training was completed (retention test).
doi:10.1371/journal.pone.0036929.g002
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p=0.95). NVIQ scores were entered as covariates into all learning

ANOVAs.

Data analysis. The log-transformed Df values for each

adaptive track were fitted with a logistic psychometric function

[29], and the difference limens for frequency (DLFs) were

estimated as the 79.4% correct point on this function. Tracks

where the psychometric function had a slope of less than 0.10 were

discarded because shallow slopes render the threshold estimates

unreliable – this occurred for just 0.5% of DLFs measured. One

participant was excluded because of highly inconsistent DLFs.

Excluding this participant did not affect the mean results, but

reduced the variability in the sample considerably.

Overall learning was analyzed by comparing individual DLFs at

the beginning of training (average of the first two blocks) and

immediately after training (average of the two blocks from the

post-test) using a mixed ANCOVAmodel with group as a between-

subjects factor, threshold as the repeated measure, and NVIQ as

a covariate. The data were then split to consider the early (first 800

trials) and later (second 800 trials) stages of training. ANCOVAs

(as above) were used to compare DLFs at the beginning and

immediately after each 800 trials. To compare retention of

learning between groups, DLFs at the retention test were modeled

using an ANCOVA as described above, but with number of days

between post and retention tests as an additional covariate.

To assess whether minimum or maximum amounts of effective

training per day had been reached, slopes of the learning curve for

each group were compared. Multiple regression models were fitted

to the mean DLFs for each block in the first 800 and second 800

trials separately. The models entered log(block) and group*log(-

block) as covariates, and group was entered as an additional factor

for the second 800 trials model to allow for the possibility of

different performance levels at the midpoint of training (groups

were matched on performance initially). All p values of the slope

parameters in the regression were Bonferroni corrected for

multiple comparisons.

Similarly, to compare the rate of learning over days, mean daily

DLFs were modeled using a multiple regression with log(day) and

log(day)*group as covariates. Thresholds from block 1 (where all

groups were matched on performance) were included in the

regression model as the first point. Mean group daily DLFs were

calculated by averaging individual thresholds within training days

(note that the block 1 DLF was not reused in calculating the mean

performance on day 1).

To assess within- and between-session learning, DLFs for the

beginning and end of each day were calculated by averaging the

DLFs from the first or last two training blocks. As Group T100

only had two blocks per day, it was not included in these statistical

analyses. Within- and between-day improvements were calculated

for each individual and each day/night, by finding the difference

between the relevant DLFs. A multiple regression model with

group, log(day) and log(day)*group was fitted to the mean learning

for each group (for both within- and between-session datasets), to

determine whether the amount of within- and between-session

learning changed as training progressed.

Results
Overall learning. DLFs improved significantly (Fig. 3) from

the initial blocks to the post-test (F(1,42) = 130.2, p,.001), with no

difference between groups (F(3,42) = 0.1, ns). Note that this is true

even though the T100 group had half the training. Learning was

significant over the first 800 trials in all groups (F(1,42) = 92.7,

p,.001) and also over the second 800 trials in the T200, T400 and

T800 groups (F(1,31) = 10.3, p= .003), with no significant differ-

ences between groups at either stage (F ,0.8 for both analyses).

Retention of learning. Performance did not deteriorate

following cessation of training. There was no significant change in

DLFs from the post-test to the retention test several weeks later

(F(1,25) = 0.6, ns), and no difference between groups (F(3,25) = 0.6,

ns; see Fig. 4), indicating all groups retained their learning equally

successfully.

Minimum and maximum effective daily

training. Learning rates during early (first 800 trials) and later

learning (800–1600 trials) were investigated separately (Fig. 5A

and B, respectively) by comparing the slopes of the learning curves.

During the first 800 training trials the T200, T400 and T800

groups showed equivalent learning speed, but the T100 group

showed significantly faster learning than the other groups (t(63)

.4.9, p,.001 for all comparisons). Rather than a critical

minimum requirement of daily training, these results suggest that

shorter sessions result in more overall learning than longer ones, at

least in the early stage of training.

During the second 800 trials (Fig. 5B) the T800 group had

a shallower slope than the other two groups, but these differences

were not significant after Bonferroni correction (T400:

t(47) =22.1, p= .042; T200: t(47) =21.9, p= .066; a=0.025).

The trend for the T800 group to show slower learning could

indicate that 800 trials exceeded a maximum effective amount of

daily training in the later stages of learning, with additional trials

resulting in less benefit; however further data were required to

confirm whether this was the case (see Experiment 2 below).

Considering improvements gained each day rather than per

trial further clarifies the relative learning rate (Fig. 6). The slopes

describing amount of learning per day grow progressively

shallower from T800 to T200, but further reducing the number

of trials per day does not decrease the learning rate. The T800 and

T400 groups show significant differences in slope compared to

each other, the T200 and the T100 groups (t(25) .3.7, p#.001).

However, the T200 group did not show more daily improvement

than the T100 group (t(25) = 0.6, ns). This further highlights that

the T100 group is improving relatively faster than the other

groups, showing as much improvement each day as the T200

group, who had double the training. These results suggest that, at

least for this task, 100 trials are above the critical minimum

number of trials required to initiate learning, and that there is

benefit to having shorter training sessions.

Within- and between-session changes. All groups showed

within-session improvements on each day (Fig. 7A). Group T800

showed greater learning on Day 1 than Day 2 (t(13) =26.8,

p,.001), but groups T400 and T200 showed no change in the

amount learnt in each day (t(13) ,0.9 for both, ns). The T100

group did not have enough data within each day to be included in

this analysis. The results for the T400 and T200 groups suggest

that within-session learning is constant, with a fixed benefit per

practice block regardless of the stage of training (at least up to 1600

trials). The difference seen in the T800 group’s within-day

learning could thus be another indication that while 800 trials

per day is an effective regimen for early training, it may lose some

efficacy as training progresses.

Between-session changes (estimated as the difference in DLFs

for the last two blocks of each training day and the first two blocks

of the next) were positive at the beginning of training, decreased as

training progressed, and became negative in some cases towards

the end of training (Fig. 7B). This progressive loss of between

session benefit was significant in T800, T400 and T200 (t(13) ,

25.6, p#.001). T100 data could not be analyzed because there

were not enough blocks within each session, but they are pictured

in Figure 7B for comparison. Performance at the end of each

session (i.e. the average DLF from the last two blocks) was

Advantage for Less Intensive Training
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correlated with the between-session change in threshold that

followed it – the better the performance, the smaller the between-

session gains (r = .49, p,.001; Fig. 8).

All four training regimens produced equivalent overall learning

and retention. Regimens ranging from as little as 100 trials per day

(about 8 minutes’ practice) to 800 trials per day (over one hour of

practice) were equally effective on this task, indicating that FD

learning is relatively robust to regimen changes. Further, the group

with the shortest sessions reached equivalent final performance to

that of the groups who trained twice as much overall. This suggests

that more training is not necessarily better, and that excess training

can, in fact, be inefficient. These findings bode well for

applications of FD training, since they support flexibility in the

training regimen to suit individual schedules.

Censor and colleagues [30,31] have also shown improved

learning with shorter sessions on a visual texture discrimination

task. They attributed their results to within-session adaptation:

increased stimulus exposure in longer sessions produced perfor-

mance deterioration, while overnight sleep resulted in improve-

ment. Our data do not preclude the possibility of adaptation-

related deterioration. However, if adaptation did occur, it did not

result in reduced within-session learning, as shown by Censor and

colleagues. In fact, the greatest within-session learning was

observed in the group with the longest training sessions (T800).

The amount of overnight benefit was greatest and lasted over

more sessions in the T100 group, consistent with the findings of

Goedert and Miller [3] on a visual motor task, where groups

trained on fewer trials within a session showed greater overnight

improvement than groups who trained on more trials. Our finding

that the largest overnight benefit is associated with the poorest

performance is also consistent with the observation that difficult

tasks (poorer performance) show greater between-session improve-

ment than easier tasks [32]. This is not surprising as performance

thresholds decrease with practice. Taken together, these results

suggest that using more difficult tasks coupled with short training

sessions may be advantageous in maximizing the benefit of

between-session learning.

The reduced and negative contribution of between-session

learning in later stages of training was unexpected given a previous

finding that between-session learning occurs throughout multi-day

training, and in spite of extensive pre-tests [2,33]. It is possible that

even extensive pre-testing does not produce much training, and

Figure 3. Changes in FD performance with training. Data points show mean group DLFs for each training block of 50 trials, and the post-test.
Logarithmic and power curve fits to the mean learning data were compared [43]. Learning was best fitted by a logarithmic function in all groups
(power function least squares fits, mean r2 = 0.78, logarithmic least squares fits, mean r2 = 0.90). Logarithmic fits are indicated by solid curves in the
figure. Bars along the top of the figure illustrate sessions in each group’s training regimen. Error bars were omitted for clarity as they overlap for all
groups at each block.
doi:10.1371/journal.pone.0036929.g003

Figure 4. Retention of FD learning following cessation of
training. Group mean DLFs for initial performance (first two blocks),
post-test (immediately after end of training) and retention test (4–6
weeks later). Groups were no longer matched because only a subset of
the participants returned for the retention test, so DLFs were adjusted
for individual differences in initial DLFs [44]. Error bars show 6SEM.
doi:10.1371/journal.pone.0036929.g004
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that subsequent between-session learning is still early stage.

However, the between-session learning seen by Wright and

colleagues persisted over several thousand trials. Here, we saw

very little between-session learning after the first 1000 trials. The

tones used by Wright and colleagues were very short compared to

those used here, making the task more difficult (i.e. increasing the

discrimination threshold [34]). Our data show that higher

thresholds lead to more between-session learning. Thus, it is

possible that harder tasks start with poorer performance and

improve more slowly than easier tasks, yielding a later transition

from a stage where between-session learning is effective to a stage

where it is not. Alternatively, the two tasks may produce different

learning profiles because practicing FD on very short tones may

train different aspects of auditory perception compared to practice

on longer tones.

Differences in the task may also affect the critical minimum

number of trials required for learning. Wright and Sabin [2]

observed between-session learning for a group who trained on 900

but not 360 trials each day, indicating a critical minimum within

this range. The groups in our study (all of whom trained within or

below this range) showed no evidence of a critical minimum. It is

possible that difficult tasks require more practice within a session in

order to trigger learning than easier tasks. Alternatively, as noted

above, it may be that fundamentally different aspects of perception

are being trained by practice with short and long tones, and that

these aspects have different requirements.

While we saw no evidence for a critical minimum, the T800

group showed a marginally reduced slope compared to other

regimens in later learning, which could indicate that a maximum

amount of effective training was exceeded. One explanation is that

within-session learning had saturated during the session, so that

some of the practice was wasted. If this were the case, the finding

that 800 trials per session was effective for early training would

indicate that the effective maximum decreases as learning

Figure 5. Learning curves for early and late stages of training. (A) Group mean DLFs for the first 800 trials for all groups. (B) Group mean DLFs
for the second 800 trials for groups T800, T400 and T200. Solid lines are least squares logarithmic fits plotted on a log-log scale to appear linear. Error
bars were omitted, since analyses compared slopes not individual points. Bars along the top of the figure illustrate sessions in each group’s training
regimen. Note the different DLF axis scales in A and B.
doi:10.1371/journal.pone.0036929.g005
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Figure 6. Progress of learning over training days. Group mean DLFs for each training day. DLFs from block 1 are plotted at the far left, followed
by daily DLFs for each training day (note that the block 1 DLFs were not reused in calculating the mean for Day 1). Solid lines are least squares
logarithmic fits plotted on a log-log scale to appear linear. Error bars were omitted, since analyses compared slopes not individual points.
doi:10.1371/journal.pone.0036929.g006

Figure 7. Within- and between-session changes in performance. (A) Group mean within-session changes for groups T800, T400 and T200. (B)
Group mean between-session changes in all training groups. The gap between bars 5 and 8 in A and B indicate a weekend break. Error bars show
6SEM.
doi:10.1371/journal.pone.0036929.g007
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progresses. This explanation is consistent with the finding that,

while within-session learning was constant throughout the study

for the T200 and T400 regimens, the T800 group showed less

learning within session 2 than session 1. An alternative explanation

is that the T800 group (unlike the other groups) did not have any

session breaks within the second 800 trials, and so could not

benefit from any between-session learning. Our data suggest that

this is unlikely; rather than contributing to learning, session breaks

produced decrements in performance in these later stages in the

other regimens. In addition to investigating the total amount of

effective training for lasting performance improvement, Experi-

ment 2 was designed to provide additional data on longer-term

training with 800 trials per day.

Experiment 2: Single- and Multiple-Session
Training

The second experiment addressed two questions. The first,

raised in the Introduction, is whether extended, multi-day training

confers any benefit over single-session training. The second, raised

in Experiment 1, regards the possibility that 800 trials per day

exceed a maximum effective daily training in the later stages of

learning. We found in Experiment 1 that performance of the T800

group improved significantly between 800 and 1600 trials. This

would suggest that multi session training should enhance learning

compared to single session training. On the other hand, we found

that between-session improvements become more negative as

training progresses, suggesting prolonged training may be less

effective. In Experiment 2 one group trained on 800 trials of FD

for a single day (T800 s) and a second group on 800 trials per day

over 4 days (T800 m; Fig. 9). All participants were tested at the

trained and an untrained frequency before training, and several

times during and after training, to determine how well the

regimens compared in terms of overall learning, retention of

learning, and transfer to another condition.

We expected significant additional learning in the multi-session

group compared to the single-session group. Based on visual

studies showing increased specificity with training [6,10], we also

expected that multi session training would produce less transfer to

a different frequency than single session training. Multi-session

learning studies suggest that learning is retained over long time

periods [10,25,35]. While long-term retention can be observed

after extremely short exposure to visual stimuli (for example, the

‘‘McCollough Effect’’ [36,37]), there is no previous evidence that

short auditory training can induce or maintain long-term re-

tention.

If a slower learning rate for T800 regimens in later stages of

training is confirmed, data from days 2–4 of the T800 m group

will allow us to determine its cause. The slope beyond the first 800

trials should be shallow if a maximum of effective daily training

has been exceeded. However, if the slow learning is due to the lack

of overnight benefit, the slope over the three additional training

days taken together should be equivalent to those of the T400 and

T200 regimens in Experiment 1 (Fig. 5B).

Methods
Participants. Thirty adults aged 18–33 were recruited via

posters from the Nottingham University student population and

the general public, and were paid an inconvenience allowance for

their participation. All participants had normal hearing (pure-tone

thresholds ,=20 dB HL across 0.5–4 kHz), and had no prior

experience of psychoacoustic testing.

General procedure. The study consisted of two groups

completing one or four days of training, each day comprising 800

trials of FD (Fig. 9). Three tests assessed improvement during

training: a pre-test before training began on Day 1, a mid-test at

the beginning of Day 2, and a post-test on Day 5. Two further tests

assessed retention of learning one week (Day 12) and four weeks

(Day 33) after the post-test. A demo of five trials at 1 kHz was run

at the beginning of the experiment to introduce the task concept.

The stimuli and task were as described in Experiment 1.

Pre-, mid-, post- and retention probe tests. During each

test, participants’ DLFs were assessed at both the training

frequency f = 1 kHz and at an untrained frequency f = 4 kHz.

Threshold assessments at each frequency consisted of an adaptive

track with 30 trials [38]. The adaptive algorithm was the same as

described in Experiment 1.

Training. Participants were allocated to either the T800 s or

T800 m group based on their pre-test DLFs to match the groups

on initial FD ability at 1 kHz. The initial mean group DLFs did

not differ between Experiment 1 and Experiment 2 (F(1,74) = 0.73,

ns). During each session eight training blocks of 100 trials of FD at

the training frequency were completed. Blocks consisted of two

adaptive tracks of 50 trials, which were interleaved by randomly

selecting which of the tracks to use on each trial. Participants were

given 10-minute breaks after every four blocks (400 trials).

Statistical analysis. DLFs were calculated as described in

Experiment 1 for each probe test of 30 trials and each training

block (combining the data from both interleaved tracks within the

block 2100 trials in total). One participant was excluded for the

same reasons as in Experiment 1.

Mixed ANOVAs with test day as the repeated measure and

group as the between-subjects factor were used to assess learning

and retention. Learning was compared from Day 1 to Day 2 to

confirm that the groups did not differ during this phase where

training was identical. Learning between Day 2 and Day 5 was

also tested to see whether the extended training produced any

benefit in performance. Retention was assessed by comparing

DLFs on Days 5, 12 and 33 between groups, with the Day 2 DLFs

Figure 8. Correlation between performance and between-
session learning. Amount of between-session improvement plotted
as a function of mean DLFs on the last two blocks of the session.
Dashed line indicates the regression fit.
doi:10.1371/journal.pone.0036929.g008
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as a covariate. These analyses were performed separately for the

trained and the untrained frequency. Finally, repeated measures

ANOVAs were conducted to compare the total amount of

improvement on the trained frequency which occurred after

training had ceased (Day 2 for T800 s, Day 5 for T800 m) to the

retention test on Day 33.

To check that the training data were equivalent between

experiments, a multiple regression was run on the T800

(Experiment 1) and the T800m data from Day 2 (800–1600

trials), with group as a factor, and log(block) and group*log(block)

as covariates. To confirm whether there was a slope difference

between regimens from 800 to 1600 trials, a multiple regression

model was fitted to DLFs from groups T200, T400, T800

(Experiment 1) and T800m, with log(block) as a covariate. A

coding variable (H1) was created to test the specific hypothesis that

the slopes of groups T800 and T800m differed from those of T200

and T400; H1 was entered as a factor and H1*log(block) was

entered as a covariate. Finally the slope of the T800 group on Day

2 was compared to the T800 m slope for Days 2–4, using

a regression with group and block entered as described above.

Where appropriate, the DLFs from Experiment 1 (based on 50

trials) were averaged across pairs of blocks so that they were

comparable to those from Experiment 2 (based on 100 trials).

Results
Learning and retention on the trained frequency. Group

mean DLFs for the training blocks are shown in Figure 10A, with

the tests at the trained frequency in Figure 10B. As expected, both

groups showed significant learning between Day 1 and Day 2

(F(1,27) = 10.7, p= .003), with no difference between them. From

Day 2 to Day 5, there was significant additional improvement

(F(1,27) = 6.2, p= .019) but, surprisingly, no significant difference

between the T800m group that actively trained during the

intervening time and T800 s that did not (F(1,27) = 0.4, ns).

Performance on Day 5 was maintained by both groups when

tested one week and then four weeks later (retention: F(2,48) = 0.1,

ns; group interaction: F(2,48) = 0.3, ns). The T800 s group

continued to improve after cessation of training (from Day 2 to

Day 33: F(1,13) = 17.9, p= .001), whereas the T800 m group did

not (from Day 5 to Day 33: F(1,12) = 0.02, ns). This resulted in the

equivalent performance observed on Day 33, suggesting that

extended training may be needless since it ‘overrides’ improve-

ments which would occur in its absence, and unlike shorter

regimens, may not benefit further from latent learning once

training has stopped.

Transfer to the untrained frequency. Figure 10C shows

performance on the 4 kHz tones before and after training, as well

as retention for the same test days as for the trained frequency (see

Fig. 9). Both groups showed transfer of learning from 1 kHz to

4 kHz tones following the first 800 trials of training (F(1,27) = 11.8,

p= .002), with no difference between groups. Neither group

showed additional improvement from Day 2 to Day 5

(F(1,27) = 0.3, ns), and the transfer was retained in both groups

from Day 5 to Day 33 (retention: F(2,52) = 0.3, ns; group

interaction: F(2,52) = 1.4, ns).

Maximum effective daily training in later

learning. Slopes of the learning curves from 800 to 1600 trials

(Fig. 11) did not differ between groups T800 (Experiment 1) and

T800m (t(15) = 1.7, ns). Combining these data and comparing

them to a combination of two groups with fewer daily trials (T400

and T200, which also did not differ, see Fig. 5B) yielded

significantly shallower slopes (slower learning) for the groups with

800 trials per day (t(31) = 3.8, p= .001). This confirms the marginal

result from Experiment 1.

The learning slope for group T800 m over Days 2–4 was

compared to that of the T800 group on Day 2, and showed no

significant difference (t(31) = 0.2, ns). This indicates that the

reduced learning rate seen for regimens with 800 trials per day

is not due to a lack of opportunity for overnight (between-session)

gains. Rather, it supports our previous suggestion that 800 trials is

above the maximum amount of effective daily practice for later

stages of training on this task. This is consistent with the further

observation that performance in both groups T800 and T800 m

deteriorated towards the end of each session (see Fig. 10A). A trend

analysis of block DLFs within sessions showed a significant

quadratic term (F(1,11) = 10.1, p= .009) confirming the upward

turn, and this was the case for all sessions (interaction term non-

significant).

The single-session group showed significant further improve-

ment after cessation of training whereas the multi-session group

did not, resulting in both groups showing equivalent performance

on the final retention test (Day 33). Latent performance

improvements appear to be greater for tasks which are less well-

trained [3], as we have observed above for between-session

learning. The latent performance improvements seen after

training also extended beyond the overnight benefits found in

Experiment 1, with improvements continuing even after the initial

between-session benefit between Day 1 and Day 2. This supports

findings that improvements can continue for several days after

practice has ceased [15].

Our results show that the extended training regimen is

redundant for our task. Since performance generally continues

to improve as training progresses, it is often assumed that training

on fewer sessions would produce less learning in the longer term.

One study which did directly compare training on different

numbers of days also found that a greater number of training

Figure 9. Training regimens for Experiment 2. Two groups trained on 800 trials of FD per day. The T800 m group completed four days of
training and the T800 s group completed one. Tests consisted of assessment at the trained and an untrained frequency, and were conducted at the
beginning of Days 1, 2 and 5, and then one week (Day 12) and four weeks afterwards (Day 33). A five trial demo preceded the experiment.
doi:10.1371/journal.pone.0036929.g009
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Figure 10. Comparison of single and multi-session training for learning, retention and transfer of learning. (A) Group mean thresholds
for training. Solid lines are least squares logarithmic fits. Error bars were omitted for clarity as they overlapped at each point. Note that the pre-test
(where groups were initially matched) is not included in this figure or in fitting the learning curves (B) Pre-, post- and retention tests at the trained
frequency (1 kHz), adjusted for individual differences in pre-test performance at 1 kHz. (C) Pre-, post- and retention tests at the untrained frequency
(4 kHz), adjusted for individual differences in pre-test performance at 4 kHz. Error bars in panels B and C show 6SEM.
doi:10.1371/journal.pone.0036929.g010

Figure 11. Comparison of learning rates in the later stage of training. Group mean DLFs after the first 800 trials for groups T800, T400 and
T200 from Experiment 1 (see Fig. 5B), and the T800 m group from Experiment 2. Data points are mean thresholds for 100 trials each, and solid lines
are least squares logarithmic fits. Error bars were omitted, since analyses compared slopes not individual points.
doi:10.1371/journal.pone.0036929.g011
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sessions did not improve performance on the trained task

compared to fewer sessions [39]. However, we cannot assume

that this result will apply broadly. Tasks which produce less daily

learning (such as fewer trials each day or a different task in which

learning is slower) might continue to show latent performance

improvement after more sessions than was seen here. In these

situations, multi-session regimens may be beneficial.

We did not observe a difference in the amount of transfer to an

untrained frequency between regimens. If specificity increases with

training, as suggested by visual studies [6,23], then 4 days of

training on this task is not sufficient for that to occur. However, the

transfer of training may not be strictly comparable between

auditory and visual learning. According to reverse hierarchy

theory (RHT [23,24]), learning initially occurs in higher areas of

neural processing, where receptive fields are large and neurons

respond to multiple dimensions of the stimulus. Thus, early

learning occurs in areas which are involved in processing a range

of stimuli, and will transfer broadly. RHT posits that as training

progresses it cascades to lower neural levels, and thus becomes

more specific to the trained stimulus. While RHT has received

much of its support from visual learning studies, it has been

suggested that, due to differences in neural functional architecture

between the auditory and visual systems, it does not account for all

the processes occurring during auditory learning [40]. Instead,

Amitay suggests that, along with learning which proceeds in a top

down fashion, in audition some bottom-up learning, associated

with improved filtering of irrelevant information, occurs simulta-

neously. This scheme would imply that specificity would not

necessarily increase with training, consistent with results observed

here (see also [39]).

Since a no-training control condition was not included in this

experiment, we cannot rule out the possibility that the improve-

ment at 4 kHz (which we assume to be transfer from the 1 kHz

training) was simply due to repeated testing, a ‘test-retest’ effect.

However, if this was perceptual learning of the 4 kHz stimulus

induced only by the pre-test assessment, we would have expected

learning to continue following the repeated tests (Days 2, 5, etc.).

Since such improvement did not continue, we suggest it is transfer

associated with the early stage of training on the 1 kHz stimulus,

though we cannot entirely rule out it is some form of procedural

learning or transfer thereof.

Finally, our results confirmed that 800 trials per day exceeded

an effective maximum of training within a session in the later

stages of learning. Performance deterioration towards the end of

each session for both groups in Experiment 2 suggests that the

maximum may be (at least in part) due to fatigue. If within-session

learning was simply saturated we would expect performance to

plateau, not deteriorate. This deterioration was not observed in

the first 800 trials of the T800 group in Experiment 1. In

Experiment 2, we suggest it was due to the longer blocks (100

instead of 50 trials) and fewer breaks (every 400 instead of 200

trials), resulting in greater fatigue. Alternatively, it could be

indicative of stimulus adaptation, as observed in visual learning

[30,31]. Taken together with the finding that the T800 learning

slope for the first 800 trials is as steep as the T400 and T200

regimens, our results suggest that these effects become more

prominent as learning progresses.

Discussion

The most important observation in this study was that the most

efficient regimens were those which take advantage of latent

learning following training. We observed this learning as between-

session improvement in Experiment 1 and as performance gains

over several days following cessation of training in Experiment 2.

Both results show that the improvements seen after practice has

ceased are largest in the early stages of learning. These findings are

consistent with previous reports from visual training [3,32], which

indicate dependence of latent learning on the amount of training

and the task difficulty. However, our data particularly highlight

the role of performance level.

The differences we saw when comparing early and later stages

of training reinforce the general observation that learning is not

uniform throughout training. While ‘early’ and ‘late’ are clearly

not distinct stages – changes occurred gradually – our results

highlight the fact that the stage of training is an important factor

affecting learning. Between-session or latent learning appears to be

most prominent in the early stage of the learning process. Not only

should this be taken into account when planning training

regimens, but it is also an important consideration when

comparing results of different experiments.

The amount of pre-testing used to establish baseline perfor-

mance varies considerably between studies. Learning can occur

during these tests and the subsequent training data reflect different

stages of learning, depending on the length and content of the pre-

test. However, we have found that even if we take that into

consideration, there remain differences between the patterns of

subsequent learning reported here and in some other studies. In

particular, between-session learning has been found to persist for

much longer than would be predicted from our results [2,33]. We

suggest that performance level could be a key factor here; if the

more challenging tasks used by Wright and colleagues resulted in

performance that was initially worse and improved more slowly,

between-session learning may have remained positive for longer.

This could explain why participants can train for tens of thousands

of trials on some psychoacoustic tasks and still show improvements

[6,7]. It implies that regimens requiring long-term training should

endeavor to use tasks which are very difficult, so that between-

session improvements remain positive for as long as possible.

Indeed, given that it has been shown that increasing difficulty does

not prevent learning, even in the limiting case where the task is

impossible [8], our results would suggest that training on difficult

tasks would always be beneficial.

A further prediction of our findings is that optimal training

regimens should have short sessions which are spaced by several

days in early learning. This would provide a greater opportunity

for between-session, latent improvements while the learning is still

positive, as shown in Experiment 1. Longer gaps between sessions

would allow between-session learning to reach a maximum over

several days, as shown in Experiment 2. Distributed practice (i.e.

large gaps between sessions) has previously been found to be more

beneficial than massed (consecutive) practice (for reviews see

[4,22]). Our results suggest that the benefit of distributed practice

is due to increased opportunity for between-session learning, but as

we have noted, this is not seen for all tasks. For example, Aberg

and colleagues observed no between-session learning, nor any

differences between massed and distributed training [1].

Our results suggest that within- and between-session learning

are separable elements of the learning process that develop

differently as training progresses. This complements previous

findings suggesting that within- and between- session changes are

independent: they can be disrupted separately [12], they show

differences in retention [13], and they have different electrophys-

iological correlates [13–15]. However, some visual research has

suggested a dependence between the two types of learning, with

between-session learning occurring only if within-session learning

has saturated [16,17]. Our results do not support any contingency

of the two since we observed between-session learning at the
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beginning of training, when there was no saturation of within-

session learning.

The relative contributions of within- and between-session

learning change over the course of training. Their interaction is

additive in the early stage (when both are positive) and detrimental

in the later stage (when between-session learning is negative),

suggesting that the classic fast-then-slow shape of the learning

curve [20,21] is driven largely by the changes in between-session

learning. This explanation clearly cannot apply to all learning,

since fast-then-slow learning curves are found even in experiments

where there is no between-session learning [9,41]. However, it

does reinforce the notion that within- and between-session

learning can represent independent learning processes, and

suggests that modeling of learning curves should consider whether

they are better represented separately or by fitting a single curve to

overall learning (see [19]).

An important question raised by this study is whether

manipulating task difficulty by, for example, using tones of various

durations would affect the magnitude of between-session learning.

Note that we use ‘difficulty’ here in a constrained sense to refer to

tasks for which perceptual thresholds were higher. Other factors

such as perceptual load [42] or required cognitive resources could

affect difficulty without necessarily impacting perceptual thresh-

olds. If task difficulty in any generalizable sense was found to

reliably affect between-session improvements, it could provide

a tractable way to enhance learning, which would be of great

practical benefit. Additionally, although our results so far suggest

that shorter sessions are more efficient, we do not know whether

even shorter sessions (,100 trials) would show the enhanced

benefit or fail to meet the minimum requirements for learning on

this task. The critical minimum may also be affected by the task

difficulty – it seems plausible that more difficult tasks would

require more practice to initiate learning. Thus, it is important

that studies which consider the effect of task difficulty on between-

session learning also assess the range of trials per day for which

each regimen is effective.

Asking trainees, especially children and older or infirm people,

to engage in long periods of sustained engagement with a task is

arguably the greatest challenge facing application of perceptual

learning. Our results suggest that training is most effective when

the opportunity for latent improvement between practice sessions

is maximized during early learning. These findings suggest that less

intense regimens can be engineered to produce more efficient

learning.
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