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Abstract

The Rho family of small GTPases are essential during early embryonic development making it difficult to study their
functions in adult animals. Using inducible transgenes expressing either a constitutively active version of the single C.
elegans Rho ortholog, RHO-1, or an inhibitor of endogenous Rho (C3 transferase), we demonstrate multiple defects caused
by altering Rho signaling in adult C. elegans. Changes in RHO-1 signaling in cholinergic neurons affected locomotion,
pharyngeal pumping and fecundity. Changes in RHO-1 signaling outside the cholinergic neurons resulted in defective
defecation, ovulation, and changes in C. elegans body morphology. Finally both increased and decreased RHO-1 signaling in
adults resulted in death within hours. The multiple post-developmental roles for Rho in C. elegans demonstrate that RhoA
signaling pathways continue to be used post-developmentally and the resulting phenotypes provide an opportunity to
further study post-developmental Rho signaling pathways using genetic screens.
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Introduction

Rho GTPases regulate many basic cell functions. Using cell

based assays they have been implicated in the establishment of cell

polarity, cell-shape change, cell migration, phagocytosis, secretion,

cell-cycle progression, cytokinesis and transcription [1]. These

studies have told us a great deal about the functions of Rho,

however in some cases the importance of these functions in whole

animals remains unclear. Here we investigate the role of RhoA in

adult C. elegans.

In vivo studies involving Rho, its regulators or effectors have

largely focused on their many developmental roles [2]. RNAi of

the single RhoA orthlog in C. elegans (rho-1) resulted in early

embryonic arrest, with a failure in cytokinesis, revealing a role for

Rho signaling at the earliest stages of development [3]. Studies of

Rho signaling in C. elegans also show that Rho is required

throughout development to regulate many other processes

including neuronal morphogenesis and axon pathfinding [2,4],

ventral hypodermal closure [5], gastrulation [2,6] and vulval

development [7]. The requirement for Rho signaling during

development is not restricted to C. elegans and inactivation of

RhoA, Rac1 or Cdc42 in mice or Drosophila results in embryonic

lethality [8,9,10] showing that this requirement is evolutionarily

conserved.

Does Rho also function post-developmentally? Although

inactivation of some GTPases causes embryonic lethality inacti-

vation of others (RhoB, RhoC, Rac2 or Rac3) results in viable,

fertile adult mice [10,11,12,13,14]. In some cases defects can be

observed in these adult animals for example mice lacking the

haematopoetic-cell-specific GTPase Rac2 or conditionally lacking

Rac1 have impaired adult immune function [15]. A naturally

occurring dominant negative mutation in Rac2 has been found in

a patient with severe recurrent infection and reduced neutrophil

chemotaxis, emphasising the importance of Rac29s function in the

human immune system [16,17]. Behavioral studies of adult mice

lacking Rho regulators and effectors highlight a conserved role for

Rho in the nervous system. Mice with mutations in PAK, WAVE-

1, or LIMK-1 have learning and memory defects [18,19,20] while

mutations in human genes encoding regulators (ARHGEF6,

OPHN1) or effectors (LIMK-1, PAK3) are associated with mental

retardation [21,22].

Although these genetic studies have associated Rho GTPases

with cellular responses and behaviors in adult animals, it is likely

that at least some of the defects described above reflect subtle

developmental problems rather than roles for Rho signaling in

adults. Both Rac1 and Rac2 have roles in haematopoietic cell

development, and it is possible that these developmental effects

may contribute to the defective immune function seen in adult

mice deficient in these proteins [23]. To study the post-

developmental functions of Rho GTPases it is necessary to

exclude such developmental roles.

Using C. elegans we have previously identified an adult

requirement for RHO-1 signaling in synaptic function [24]. Using

transgenic animals expressing a heat shock-inducible constitutively

active hsRHO-1(G14V) to increase RHO-1 activity post-develop-

mentally, we showed that RHO-1 altered locomotion behavior

and neurotransmitter release in adult animals. These alterations in

synaptic function were distinct from the developmental effects of
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RHO-1 as no changes in synapse number or gross nervous system

morphology were observed [24].

We show here for the first time that, in addition to its previously

published role in locomotion [24], RHO-1 acts in the cholinergic

motor neurons to regulate pharyngeal pumping and fecundity. In

addition, we show that RHO-1 acts in non-neuronal cells to

regulate defecation and ovulation. Moreover, heat shock expres-

sion of RHO-1 in adult C. elegans causes a tail swelling phenotype

similar to that seen during the innate immune response to certain

bacterial infections (RM and SN paper in preparation) [25], as

well as a protruding vulva. Thus the use of transgenic C. elegans to

alter RHO-1 activity allows us to study the post-developmental

roles of Rho in a genetic model organism, providing an attractive

system to further investigating Rho signaling using genetic screens.

Materials and Methods

Strains
N2 (wild type) strain was obtained from the Caenorhabditis

Genetics Centre (University of Minnesota). rho-1(ok2418) mutant

animals were generated by the C. elegans Gene Knockout

Consortium. All strains were cultivated at 20uC unless otherwise

stated and were maintained as described previously [26].

Transgenes and germline transformation
RHO-1 and C3 transferase were as described previously (nzIs1,

nzEx4 and nzEx95) [24]. In addition activated RHO-1(G14V)

expressed from the unc-17 cholinergic promoter (QT#220) was

injected into wild type animals at 1 ng/ml. nzIs33 and nzIs34

contain integrated versions of this with p.unc-17::GFP as an

injection marker. nzIs29 contains an integrated version with unc-

122::GFP (a gift of P. Sengupta Brandeis University MA) as an

injection marker. The neuronal phenotype of nzIs29 phenocopies

the previously described nzIs28 transgene [24]. hsRHO-1(G14V)

(QT#42) was injected into wild type animals at 1 ng/ml and

nzEx485 contains an extrachromasomal version of QT#42. hsC3

transferase (QT#99) was injected into wild type animals at 1 ng/ml

and nzEx5 contains an extrachromasomal version of QT#99. In

all cases the data presented were obtained using nzIs1, nzEx4 and

nzIs29 but similar results for locomotion, pharyngeal pumping,

defecation and egg laying were obtained using at least one other

independent transgenic array. nzIs1, nzEx4, nzEx95 and nzIs29

were used for ovulation and brood size assays.

Induction of heat shock-inducible transgenes
Expression from the heat shock promoter was achieved using

two rounds of heat shock for 60 min at 27uC or 33uC, separated

by 30 min at 20uC. Animals were allowed to recover at 20uC for

30 min, 24 hours or 48 hours. Unless otherwise stated animals

were heat shocked as one-day-old adults.

Phenotypic analysis
Analysis of locomotion behavior. Movies showing the

altered locomotion phenotype of animals expressing RHO-

1(G14V) or C3 transferase were taken using a Leica M50

steromicroscope and Hamamatsu Orca-05 camera. Movies were

captured at 10 frames per second for two minutes using

Micromanager open source microscopy software (http://www.

micro-manager.org/) and ImageJ (NIH).

Determination of death. Dead animals were defined as

those completely lacking movement, pharyngeal pumping,

defecation and egg-laying. After induction of hsRHO-1(G14V) or

hsC3transferase we observed decaying dead animals (or ghosts) in

most cases. These plates contained no animals one week after heat

shock. At least 100 plates of heat-shocked hsRHO-1(G14V) or

hsC3transferase animals have been observed.

Determination of pharyngeal pumping rate. Pharyngeal

pumping rate was determined as described previously [27]. Rates

were counted over a two minute period and averaged to give

pumps/min. To assess the role of exaggerated ACh signaling in

pumping animals were exposed to 1 mM aldicarb for one hour

[28], prior to counting. At least 15 animals were tested in all cases.

Determination of defecation cycle length. The defecation

cycle length was determined as described previously [29]. One-day-

old adults were assayed by recording the time from one posterior

body wall contraction (pBOC) to the next using Ethotimer (J.H.

Thomas, University of Washington, Seattle). 10 cycles were recorded

except in the case of animals with extended cycle times that were

scored for 10 minutes. At least 5 animals were scored in all cases.

Determination of brood size. Brood size was determined

using standard methods [30]. L4 stage animals were heat shocked as

described above. Subsequently, individual animals of each genotype

were transferred to new Nematode Growth Media (NGM) plates

each day for four days and F1 progeny that reached adulthood were

scored. A minimum of 8 animals was tested in all cases.

Determination of egg laying rate. The rate of egg laying

was determined as described previously [31]. Firstly, the number

of fertilized eggs remaining in adult animals was scored. One-day-

old adults were placed into a solution of 1% sodium hypochlorite

in M9 buffer to dissolve the adults leaving fertilized eggs that were

counted using a Leica M50 stereomicroscope. At least 37 animals

were tested in all cases. Secondly, the developmental stage of

newly laid eggs was determined [32]. 10 one-day-old adults were

placed onto a seeded NGM plate for one hour and the

developmental stage of laid eggs was scored on a Zeiss Akioskop

microscope. Eggs were classified into the following categories; one

to two cell, three to four cell, four to eight cell, nine cell to comma

stage and post-comma. Experiments were repeated four times and

the data presented is the sum of these experiments.

Ovulation. Following heat shock adult worms were paralysed

using 0.1% Tricane and 0.01% Tetramisole in M9 for 30 minutes

and mounted on agarose pads. Ovulation events were recorded

using a Leica DMIRB microscope with Leica 40x objective and a

Hamumatsu camera. Images were taken every 3 seconds for 45

minutes using Openlab software (Improvision).

Larval Growth arrest. Larval growth arrest following heat

shock was determined as described previously [27]. Adult animals

were treated with 1% sodium hypochlorite to obtain a synchronous

population of L1-staged larvae [33]. Approximately 100–200 L1

larvae were transferred to a new NGM plate and heat shocked as

described above. Plates were examined 3–5 days later when wild

type animals had reached adulthood. For experiments involving

nzEx4 only L1 animals containing the transgene were transferred to

assay plates. Experiments were repeated at least three times.

Statistical analysis
In all cases statistical analysis was performed using an unpaired

two-tailed t-test. P values between 0.02 and 0.001 (significant) are

indicated on figures using one asterisk, and P values of 0.001 or

less (highly significant) are indicated with two asterisks.

Results

Heat shock-inducible expression of constitutively active
RHO-1(G14V) can be used to model the post-
developmental functions of RHO-1

To test for post-developmental roles of RHO-1 (the single C.

elegans RhoA ortholog) we generated transgenes that expressed

Multiple Functions for RHO-1 in Adult C. elegans
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constitutively active RHO-1(G14V) from a heat shock-inducible

promoter (hsRHO-1(G14V); nzIs1 and nzEx485) [24]. To inhibit

endogenous RHO-1 we expressed the Clostridium-botulinum-derived

C3 transferase from the same inducible promoter (hsC3 transferase;

nzEx4 and nzEx5). This system allowed animals to develop in the

presence of normal levels of RHO-1 signaling, before we either

increased (hsRHO-1(G14V)), or decreased (hsC3 transferase) RHO-1

signaling in adults using heat shock.

Mutations that either increase or decrease RHO-1 signaling

result in lethality [3]. In support of this we found that a recently

isolated strain carrying a deletion in rho-1 (rho-1(ok2418)) is

homozygous lethal (data not shown). To confirm that our

transgenic animals were a good model for the post-develop-

mental effects of RHO-1 we looked to see if altering RHO-1

signaling in adults using our heat shock-inducible transgenes

could bypass this lethality. In the absence of heat shock animals

that carried transgenes expressing constitutively active RHO-

1(G14V) or the RHO-1 inhibitor C3 transferase from the heat

shock, or cholinergic specific unc-17 promoter, were viable,

fertile adults demonstrating that RHO-1 signaling in these

animals was not changed sufficiently to cause developmental

lethality (Figure 1A–C).

To confirm that altering RHO-1 signaling using these

transgenes could induce developmental arrest and phenocopy

the previously observed role for Rho signaling in development we

heat shocked hsRHO-1(G14V) and hsC3 transferase animals during

development. In contrast to wild type controls, altering RHO-1

signaling in L1 stage animals using heat shock expression of

hsRHO-1(G14V) or hsC3 transferase was sufficient to induce

developmental arrest and these animals did not become adults

(Figure 1D-J).

Normal levels of RHO-1 signaling are required for correct

neuronal morphogenesis [34] and expression of constitutively

active Rho in cultured neurons results in defects in dendrite length

and neurite outgrowth [35,36]. Therefore we expected that

overexpression of RHO-1(G14V) during development would

result in defects in neuronal connectivity. Using a GFP reporter

to label the motor neurons of animals expressing RHO-1(G14V)

from the cholinergic motor neuron specific unc-17 promoter

(nRHO-1(G14V)) we observed premature branching of neuronal

Figure 1. Heat shock-inducible RHO-1 is a model for post-developmental Rho signaling. (A–C). In the absence of heat shock mixed stage
populations of nzIs1 (B) or nzEx4 (C) animals were indistinguishable from wild type (A) and were viable and fertile. (D–J). Approximately 200 L1 stage
animals were transferred to assay plates and either, heat shocked immediately at 33uC, or maintained at 20uC as controls. For hsC3 transferase (nzEx4)
assays 50 L1 animals carrying the GFP injection marker were selected. Following heat shock animals were maintained at 20uC and animals that had
reached adulthood after 5 days were visualized. No adult animals could be observed when hsRHO-1(G14V) (nzIs1) (H and J) or hsC3 transferase (nzEx4)
(I and J) were expressed at the L1 stage indicating that expression of these transgenes led to developmental arrest. Arrested animals are indicated
with arrows in H and I. Adult animals could clearly be observed after 3 days in the absence of heat shock (D–F and J) or in wild type controls (G and J).
Vulva of adult animals indicated with an arrowhead in D–G. (K, L and M). The cholinergic motor neurons of wild type animals (J) or animals expressing
neuronal RHO-1(G14V) (nzIs34 and nzIs33) (K and L) were labeled with p.unc-17::gfp. In some transgenic lines (nzIs33) (M) the commissures that
normally extend from the ventral to the dorsal nerve cord branched prematurely extending a process towards the posterior of the animal (arrow)
indicating that expression of nRHO-1(G14V) results in neuronal pathfinding defects.
doi:10.1371/journal.pone.0017265.g001
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commisures in 49.0% of animals from one transgenic line (nzIs33)

(Figure 1M). Other lines (nzIs34, nzIs28 and nzIs29) displayed

altered locomotion behavior but did not show any defects in

axonal pathfinding (Figure 1K–M (nzIs34)) or synapse number

(nzIs28 and nzIs29) [24]. Thus in some cases over-expression of our

activated RHO-1(G14V) transgenes caused defects in neuronal

development but these defects did not correlate with the altered

locomotion behavior we have described previously [24]. As we

were interested in the adult neuronal function of RHO-1 we used

nzIs29 and nzIs34 for further experiments and also sought to

confirm that when RHO-1 signaling was altered in adult animals

using heat shock there were no defects in neuronal connectivity.

No gross defects were observed in GFP labeled motor neurons of

animals that had been heat shocked as adults to induce hsRHO-

1(G14V) expression post-developmentally [24]. The failure to

observe axon guidance defects in hsRHO-1(G14V) adults further

confirmed that these animals bypassed the essential developmental

roles of RHO-1 and allow us to use these transgenes to examine

the effect of changing RHO-1 signaling in adults.

Altered RHO-1 signaling leads to behavioral changes,
followed by death

Using the transgenic strains described above, we analysed the

effect on C. elegans behavior of increasing or decreasing RHO-1

signaling post-developmentally. After heat shock adults containing

the hsRHO-1(G14V) or hsC3 transferase transgenes displayed

significant changes in locomotion behavior compared to wild type

controls [24]. These locomotion changes were similar to those

observed in animals expressing RHO-1(G14V) or C3 transferase in

the cholinergic motor neurons [24]. However, 24 hours after heat

shock animals carrying the hsRHO-1(G14V) transgene failed to

move and the phenotypes of both hsRHO-1(G14V) and hsC3

transferase animals were no longer comparable to their neuronal

counterparts (Movie S1-4) or wild type animals. 48 hours after

heat shock 68.7% (67.7) of hsRHO-1(G14V) animals, 58.0% (63.6)

of hsC3 transferase animals and 1% (61) of wild type animals failed

to show any activity (locomotion, pharyngeal pumping, egg laying,

or defecation) and were scored as dead. Before death (between 30

minutes and 24 hours after heat shock), adult animals expressing

either hsRHO-1(G14V) or hsC3 transferase displayed several

phenotypes in addition to the previously described changes in

locomotion [24] suggesting that altered RHO-1 signaling has

multiple effects in adults.

RHO-1 regulates pharyngeal pumping
Acetylcholine (ACh) acts as a neurotransmitter at C. elegans and

mammalian neuromuscular junctions [37]. In C. elegans regulation

of ACh release can alter several behaviors including pharyngeal

pumping, egg laying and locomotion [38,39,40]. We have

previously shown that RHO-1 can control ACh release and

modulate locomotion behavior [24]. To further extend these

findings we asked whether altering RHO-1 activity affected two

other ACh-regulated behaviors; pharyngeal pumping and egg

laying.

Expression of hsRHO-1(G14V) in adult animals decreased the

rate of pharyngeal pumping even in the presence of food

(Figure 2A). This decrease was observed when animals were heat

shocked using our standard heat shock temperature of 33uC. A

smaller, but significant, decrease was also observed when animals

were heat shocked at 27uC (Figure 2B). Unlike heat shock at 33uC,

a 27uC heat shock did not alter responsiveness to the ACh esterase

inhibitor, aldicarb (data not shown). There are a number of

possible explanations for this observation; Firstly, the pharyngeal

neurons may be more sensitive to either heat shock or RHO-

1(G14V) expression. Secondly, the pharyngeal muscle is more

sensitive to ACh than the body wall muscle, or finally low levels

RHO-1(G14V) may alter the release of something other than

ACh.

Between 24 and 48 hours after heat shock at 33uC hsRHO-

1(G14V) expressing animals die preventing the measurement of

pumping rates at longer timepoints. However, animals heat

shocked at 27uC did not die, developed normally and remained

viable and fertile (data not shown). Thus the observed reduction in

pharyngeal pumping rates occurred not because these animals

were dying but rather as a direct consequence of altering RHO-1

signaling. In support of this we observed that 24 hours after heat

shock at 27uC the rate of pumping in hsRHO-1(G14V) animals had

recovered to wild type levels (Figure 2B).

The defects we observed in pharyngeal pumping could be due

to expression of RHO-1(G14V) in either the neurons that control

pharyngeal pumping, the pharyngeal muscle itself, or both tissues.

Rho signaling has been implicated in control of both muscle

contraction and release of neurotransmitter [24,41]. We have

previously shown that expression of RHO-1(G14V) from the

cholinergic motor neuron specific promoter, p.unc-17 (nRHO-

1(G14V)) alters locomotion behavior and increases ACh release

onto the bodywall muscles [24]. Pharyngeal pumping was

decreased from 188 pumps per min in wild type animals to 124

pumps per min in nRHO-1(G14V) animals (Figure 2A) showing

that altering RHO-1 activity in cholinergic motor neurons was

also sufficient to regulate pharyngeal pumping. Increasing levels of

extracellular ACh by briefly exposing wild type animals to the

acetylcholinesterase inhibitor aldicarb also decreased pharyngeal

pumping to a level similar to that observed in nRHO-1(G14V)

animals (Figure 2A). These results are consistent with RHO-1

acting in the cholinergic neurons to increase ACh release and

regulate pharyngeal pumping but do not exclude a role for RHO-

1 in the pharyngeal muscle.

We also tested the effect of inhibiting the function of

endogenous RHO-1 in adult animals using C3 transferase.

Expression of hsC3 transferase in adult animals using heat shock at

33uC (but not 27uC, data not shown) decreased the pharyngeal

pumping rate (Figure 2A); the same effect as expression of

constitutively active RHO-1(G14V).

RHO-1 regulates fecundity
Two sets of neurons (VC and HSN) control egg laying in C.

elegans [42]. Both release ACh and serotonin; serotonin stimulates

egg laying [32] whereas ACh has both positive and negative effects

[40,43]. To investigate the role of RHO-1 in this neuronally

regulated behavior we tested the ability of RHO-1 to alter egg

laying using two methods. We determined the number of unlaid

eggs remaining in animals as a steady state measure of egg laying;

animals with increased egg laying rates should retain fewer eggs

than wild type while those with decreased egg laying should retain

more. Even in the absence of heat shock hsRHO-1(G14V) animals

showed a decrease in the number of eggs remaining in the animals

suggesting that our heat shock-inducible transgenes were leaky in

some cells under certain conditions (Figure 3A [44]). Expression of

hsRHO-1(G14V) in adults decreased the number of eggs remaining

in animals relative to heat shocked wild type and non-heat shocked

hsRHO-1(G14V) animals (Figure 3A).

To further investigate RHO-1’s role in egg laying we examined

the number and stage of the eggs laid. Wild type animals lay eggs

once they reach the 50 to 100-cell stage whereas animals with

higher egg laying rates lay early stage eggs containing eight or

fewer cells [32]. In contrast to wild type, animals expressing

hsRHO-1(G14V) laid early stage eggs with less than eight cells

Multiple Functions for RHO-1 in Adult C. elegans
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Figure 2. RHO-1 regulates pharyngeal pumping. Pumping rate was determined by manually counting contractions of the pharyngeal bulb for
2 min. (A) Following heat shock at 33uC animals were allowed to recover for 30 min before determining pumping rate. Expression of a constitutively
activated hsRHO-1(G14V)(nzIs1) in adult animals or inhibition of endogenous RHO-1 using hsC3 transferase (nzEx4) decreased pumping rate. The
pumping rate of animals expressing nRHO-1(G14V) (nzIs29) was also decreased when compared to wild type. This decrease was mimicked by
increasing the extracellular ACh concentration using a 1 hour exposure to the acetylcholinesterase inhibitor aldicarb. (B) The pumping rate of hsRHO-
1(G14V) (nzIs1) expressing animals heat shocked at 27uC was determined 30 min and 24 hours following heat shock. Expression of hsRHO-1(G14V)
(nzIs1) resulted in a decrease in pumping rate 30 min after heat shock that was not observed after 24 hours recovery.
doi:10.1371/journal.pone.0017265.g002

Multiple Functions for RHO-1 in Adult C. elegans
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Figure 3. RHO-1 regulates fecundity. (A) The number of unlaid eggs remaining in animals was determined as a steady-state measure of egg
laying. Expression of hsRHO-1(G14V) (nzIs1) or nRHO-1(G14V) (nzIs29) led to a significant decrease in the number of eggs remaining in animals when
compared to wild type controls. Inhibition of endogenous RHO-1 using hsC3 transferase (nzEx4) did not have any significant effect on the number of
eggs remaining in animals. (B) The stage of eggs laid was determined by visual inspection. Experiments were repeated four times and the data
presented is the sum of these experiments. Animals expressing activated hsRHO-1(G14V) (nzIs1) or nRHO-1(G14V) (nzIs29) laid some early stage eggs
containing fewer than eight cells and hsRHO-1(G14V) (nzIs1) the total number of eggs laid was decreased. This decrease was also observed in animals
expressing hsC3 transferase (nzEx4).
doi:10.1371/journal.pone.0017265.g003

Multiple Functions for RHO-1 in Adult C. elegans
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(Figure 3B) suggesting that RHO-1 increases egg laying rate,

however it is also possible that eggs develop more slowly in hsRHO-

1(G14V) animals than in wild type. Interestingly, hsRHO-1(G14V)

expressing animals also laid fewer eggs than wild type (Figure 3B)

suggesting that the decreased number of eggs remaining inside

hsRHO-1(G14V) mothers following heat shock is likely caused by a

combination of increased egg laying and reduced egg production.

Egg laying requires motor neurons, egg-laying muscles and a

supply of fertilized eggs. To address whether RHO-1 was acting in

the cholinergic motor neurons to control egg laying we again used

animals expressing nRHO-1(G14V). These animals laid early stage

eggs and the number of unlaid eggs was decreased (Figure 3A and

B) suggesting that RHO-1 signaling in the motor neurons can

control both egg laying and egg production. Although nRHO-

1(G14V) expressing animals laid fewer eggs than wild type they laid

more eggs than hsRHO-1(G14V) expressing animals suggesting that

Rho signaling may also act in non-cholinergic cells to regulate egg

production (Figure 3B).

We also investigated the effect of inhibiting endogenous RHO-1

on egg laying behavior by expressing hsC3 transferase in adults. We

observed that the number of eggs laid was decreased even in the

absence of heat shock, again suggesting leaky expression from our

heat shock promoter (Figure 3B [24]). However, in contrast to

overexpression of hsRHO- 1(G14V), inhibition of endogenous

RHO-1 did not have a significant effect on the number of eggs

remaining in animals (Figure 3A). Although hsC3 transferase

expressing animals did not retain more eggs than wild type these

animals laid almost no eggs suggesting that inhibition of RHO-1

leads to decreased egg laying (Figure 3A and B). The failure to

observe an increase in retained eggs despite decreased egg laying

may suggest that these animals had stopped producing eggs and

24 hours after heat shock we were still unable to observe eggs

accumulating inside hsC3 transferase expressing animals.

RHO-1 regulates defecation
Comparison of heat shock and cholinergic expression of RHO-

1(G14V) revealed roles for RHO-1 in cells other than the

cholinergic motor neurons. One example is the effect of RHO-

1(G14V) expression on the defecation cycle. Wild type animals

defecate by initiating a series of three muscle contractions;

(posterior body-wall-muscle contraction (pBoc), anterior body-

wall-muscle contraction (aBoc) and enteric-muscle contraction

(Emc)), regularly with an interval between cycles of 50sec [29].

Although the aBoc and Emc steps of this cycle require neuronal

activity via a GABAergic motor neuron the pBoc step and

initiation of the defecation cycle do not require neuronal input

[45]. Expression of constitutively active hsRHO-1(G14V), but not

nRHO-1(G14V) resulted in an almost complete block in initiation of

the defecation cycle (as defined by the interval between pBoc)

(Figure 4), however, when a cycle did occur all three motor steps

(pBoc, aBoc and Emc) were observed. This suggests that RHO-1

acts in non-cholinergic cells to regulate defecation cycle initiation

rather than muscle contractions themselves. Inhibition of endog-

enous RHO-1 in adults using hsC3 transferase also resulted in a

defect in the defecation motor programme. Although the cycle was

not completely blocked, as it was by overexpression of hsRHO-

1(G14V), it became very variable and a slight increase in the

average cycle period was observed (Figure 4).

RHO-1 regulates ovulation
Our analysis of fecundity revealed that when RHO-1 signaling

was activated in adults the total number of eggs was decreased

suggesting a defect in egg production. Therefore, we asked

whether RHO-1 signaling could affect oocyte fertilization. Failure

to fertilize oocytes would result in a decrease in brood size and so

we determined the brood size of animals expressing hsRHO-

1(G14V). Although we observed a decrease in the brood size of

wild type animals using our heat shock conditions we also observed

that expression of activated hsRHO-1(G14V) in L4 stage animals

resulted in a much larger decrease in brood size when compared to

controls (Figure 5).

The decrease in brood size we observed could, in part, be

caused by the premature death of the parent and the defects in

development that we have described following hsRHO-1(G14V)

expression. Therefore, to directly assess the effect of increased

RHO-1 signaling on ovulation, we recorded ovulation events in

adults expressing hsRHO-1(G14V). C. elegans are self-fertilizing

hermaphrodites, thus, eggs can be produced by self- fertilization of

oocytes as they pass through the spermatheca. This process occurs

in a series of steps; oocyte maturation, dilation of the spermatheca

and contraction of the sheath cells surrounding the oocyte. The

contraction of the sheath cells pulls the spermatheca around the

oocyte allowing entry into the spermatheca and fertilization [30].

Ovulation events in wild type animals, both before and after heat

shock, appeared normal and we observed at least one ovulation

event in every animal within the 45 minute-recording period

(Movie S5). However, in hsRHO-1(G14V) animals without heat

shock the increase in sheath cell contractions that precedes

ovulation was not observed and we could not record any ovulation

events during the 45 minute recording (Movie S6). As hsRHO-

1(G14V) animals contain eggs and are viable and fertile ovulation

must occur. It is possible that leaky expression of hsRHO-1(G14V)

results in a reduction in the number of ovulation events and this

may account for the decrease in brood size we observed in these

animals. Heat shock induction of hsRHO-1(G14V) also resulted in

no observed ovulations and in addition, we observed a large

increase in sheath cell contractions that was not confined to just

before oocyte entry into the spermatheca (Movie S7). hsRHO-

1(G14V) animals did not ovulate because oocytes failed to exit the

spermatheca towards the vulva and were occasionally pushed out

of the spermatheca in the opposite direction (Movie S7). The

different ovulation phenotypes observed before or after heat shock

suggests that RHO-1 may have multiple effects on fertilization

with low and high levels of RHO-1(G14V) activity causing

different responses, however, as both phenotypes result in

decreased fertilization they may account for the decrease in total

egg number we observed previously. Using animals expressing

nRHO-1(G14V) in the cholinergic motor neurons we detected

normal ovulation events indicating that this was not the site of

action for RHO-1 (data not shown).

We also asked whether inhibition of endogenous RHO-1 using

hsC3 transferase had any effect on fertilization. In the absence of

heat shock hsC3 transferase animals had a decreased brood size and

no ovulations were detected (Figure 5 and data not shown), again

suggesting leaky expression from our heat shock promoter.

Increased expression of hsC3 transferase using heat shock further

decreased the brood size (Figure 5) and consistent with this no

fertilization of oocytes was observed during a 45 minute recording

in adults expressing hsC3 transferase (Movie S8).

Overexpression of RHO-1 causes dar and pvl phenotypes
During the course of our studies we observed changes in the

anatomy of animals expressing hsRHO-1(G14V). Animals induced

to express hsRHO-1(G14V) by heat shock at 33uC (Figure 6D) and

then allowed to recover developed swellings around the vulval

(Figure 6C and D) and anal (data not shown) regions. These

swellings became visible 6 hours after heat shock, had a

penetrance of 90% and 93% respectively 12 hours after heat
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shock and resembled the pvl and dar phenotypes previously

reported [25,46]. We further describe a role for Rho signaling in

regulating the dar phenotype following infection elsewhere (RM

and SN paper in preparation). We did not observe these

phenotypes in wild type animals or animals expressing hsC3

transferase subjected to identical heat shock regimes (Figure 6A, B, E

and F) and therefore these phenotypes appear to be a consequence

of increased RHO-1 signaling.

Discussion

In this paper we have characterised the post-developmental role

of RHO-1, the RhoA ortholog in C. elegans. RhoA’s essential

functions in development make it difficult to study its role in adult

animals, particularly using genetics, as animals with mutations in

Rho GTPases are likely to be dead or have severe developmental

defects. Indeed we observed that a deletion in the rho-1 gene (rho-

1(ok2418)) causes lethality, although rescue experiments need to be

performed to confirm that the rho-1 deletion is responsible for this

lethal phenotype. Here we show that using heat shock-inducible

transgenes to either increase or decrease RHO-1 activity, and

control when RHO-1 signaling is altered, we can bypass the early

lethality caused by too much or too little RHO-1 signaling.

Using heat shock to express constitutively active RHO-1(G14V)

from our integrated transgene (nzIs1) in adult animals we did not

observe the neuronal pathfinding defects that were observed when

RHO-1(G14V) was expressed neuronally in larval animals. This

demonstrates that we are able to control the timing of when RHO-

1 signaling becomes aberrant however we and others have

observed phenotypes that are consistent with leaky expression

from the heat shock promoters of both the hsRHO-1(G14V) and

hsC3 transferase transgenes used here [44]. Increased egg laying and

decreased brood size and pharyngeal pumping were observed in

hsRHO-1(G14V) animals even in the absence of heat shock,

although in all cases the effect was far smaller than that observed

in response to heat shock. It is possible that manipulation of the

animals during these assays leads to stress that is sufficient to cause

leaky expression from the heat shock promoter. For example even

in the absence of heat shock animals containing the hsRHO-

1(G14V) and hsC3 transferase transgenes failed to ovulate when

mounted on agarose pads and image over a 45 minute period and

yet these animals were viable and produced progeny under our

standard culture conditions. Some cells appear more prone to

leaky expression from the heat shock promoter or are more

sensitive to small changes in RHO-1 activity. This is supported by

our observation that expression from hsRHO-1(G14V) using a weak

heat shock at 27uC was sufficient to alter pharyngeal pumping but

not ACh release onto the bodywall muscles or locomotion

behavior. Leaky expression from the hsRHO-1(G14V) transgene

may only alter adult behaviors but we cannot exclude some

developmental contributions to the defects we observe. However it

is clear that the use of these inducible transgenes does not cause a

major change in RHO- 1 activity during development as both

hsRHO-1(G14V) and hsC3 transferase animals become viable, fertile

adults in the absence of heat shock.

Figure 4. RHO-1 regulates defecation. The average defecation cycle length was determined by measuring the interval between pBoc
contractions. The defecation cycle was almost completely blocked by expression of hsRHO-1(G14V) (nzIs1) but not by nRHO-1(G14V) (nzIs29).
Inhibition of endogenous RHO-1 by expressing hsC3 transferase (nzEx4) resulted in increased variability in cycle length and an increase in the average
defecation cycle period.
doi:10.1371/journal.pone.0017265.g004
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Figure 5. RHO-1 regulates brood size. Adult F1 progeny from animals heat shocked at the L4 stage were scored to determine brood size.
Expression of activated hsRHO-1(G14V) (nzIs1) or hsC3 transferase (nzEx4) resulted in a decrease in brood size.
doi:10.1371/journal.pone.0017265.g005

Figure 6. Overexpression of hsRHO-1(G14V) results in anatomical changes. After heat shock abnormalities were observed in the vulva of
animals expressing hsRHO-1(G14V) (nzIs1). Wild type controls (A and B), animals expressing hsC3 transferase (nzEx4) (E and F) and animals containing
the hsRHO-1(G14V) (nzIs1) transgene in the absence of heat shock (C) had normal unswollen vulva however following heat shock of hsRHO-1(G14V)
(nzIs1) animals a phenotype reminiscent of pvl was observed (D).
doi:10.1371/journal.pone.0017265.g006
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Using both heat shock and cholinergic specific expression of

RHO-1(G14V) we have previously shown that RHO-1 controls

ACh release onto the bodywall muscles and alters locomotion

behavior [24]. Here we show that RHO-1 signaling can also act in

the cholinergic motor neurons to regulate pharyngeal pumping and

egg laying emphasizing the importance of RHO-1 function in these

neurons. The increased egg laying caused by nRHO-1(G14V) is likely

due to increased activity of either the HSN or VC cholinergic motor

neurons that both release ACh onto the egg laying muscles causing

contraction. It will be interesting to express RHO-1(G14V) in just the

HSN neurons or test the effect of nRHO-1(G14V) in egl-1 mutants,

which lack the HSN neuron. Cholinergic expression of constitu-

tively active RHO-1(G14V) decreased the rate of pharyngeal

pumping and yet from our previous studies RHO-1(G14V) would

be expected to increase ACh release onto the pharyngeal muscle,

which should increase pumping [38]. Addition of the acetylcholin-

esterase inhibitor aldicarb; which increases extracellular ACh levels

and causes hypercontraction of the body wall muscles [28], also

decreased pumping rate after one hour and chronic exposure to

aldicarb causes death due to hypercontraction of the pharyngeal

muscles [47,48]. Thus, it is likely that cholinergic expression of

constitutively active RHO-1(G14V) triggers a release of ACh

sufficient to cause prolonged contraction of the pharyngeal muscle

and thus decrease the pumping rate. Alternatively, nRHO-1(G14V)

expression in pharyngeal motor neurons may alter more than ACh

release, for example neuropeptides and octopamine that can both

reduce contraction of the pharyngeal muscle [49]. Similarly, in the

egg laying system the HSN neuron releases serotonin and

neuropeptides in addition to acetylcholine. nRHO-1(G14V) may

also alter their release onto the egg laying muscles. It is possible that

Rho could regulate neuropeptide release through its ability to

regulate levels of the membrane-bound second-messenger DAG as

the DAG binding protein PKC-1 stimulates neuropeptide release in

C. elegans [50]. As locomotion, egg-laying, and pharyngeal pumping

are all controlled by ACh it is possible that the RHO-1 pathways

involved in these three behaviors [51] are substantially similar if not

identical, although one or more RHO-1 effectors in the nervous

system still remains to be identified [24].

We observed more phenotypes associated with RHO-1(G14V)

expression from the heat shock promoter than from the cholinergic

promoter suggesting that RHO-1 signaling pathways are also used

outside the cholinergic neurons. Most strikingly animals that

expressed RHO-1(G14V) from the widely expressed heat shock

promoter became sterile and died following heat shock, whereas

animals that expressed RHO-1(G14V) in the cholinergic motor

neurons were viable and fertile. In addition hsRHO-1(G14V) animals

were defective in their ability to initiate the defecation cycle after

heat shock, had ovulation defects and developed dar and pvl

phenotypes. None of these phenotypes were observed in nRHO-

1(G14V) animals confirming that these phenotypes require RHO-1

signaling in cells other than the cholinergic neurons. Our data

demonstrates that the expression of RHO-1(G14V) results in a

pleiotrophic phenotype and it is likely that Rho signaling may be

required in multiple tissues to influence some behaviors. For

example heat shock and neuronal expression of RHO-1(G14V)

appears to influence egg laying however decreased ovulation and

slower development may contribute to the egg laying phenotype we

observed. The use of recently described tools, such as the FLP/FRT

system [52], that allow temporal and spatial regulation of gene

expression will enable expression of RHO-1 in specific adult tissues

and will begin to address Rho’s role in each of these processes.

Inhibition of endogenous RHO-1 using hsC3 transferase also

caused changes in pharyngeal pumping, egg laying, defecation

cycle length, and fertility similar to those observed upon expression

of hsRHO-1(G14V). This was in contrast to changes in locomotion

and ACh release where RHO-1(G14V) and C3 transferase had

opposite effects and the dar and pvl phenotypes where C3

transferase had no effect. How is it that both increased and

decreased RHO-1 signaling had similar effects? As the heat shock

promoter is widely expressed perhaps increased Rho signaling in

one cell gives rise to a similar phenotype to RHO-1 inhibition in

another cell. Activation and inhibition of RHO-1 using transgenes

expressed from cell specific promoters as well as more careful study

of Rho’s regulators and effectors will help to address this question.

Indeed we have recently used this approach to demonstrate that

Rho signaling is not only sufficient to cause the dar phenotype but

is also necessary for the dar response to infection (R. McMullan

unpublished observation). It is possible that the phenotypes we

observe are somewhat non-specific because these animals were

dying following transgene induction. However, this seems unlikely

as we have observed defects in pharyngeal pumping and a weak

dar phenotype in animals that appear otherwise healthy following a

heat shock at 27uC. Alternatively RHO-1 may need to be able to

cycle between being bound to GDP and GTP to function as has

previously been observed elsewhere, for example, too much and

too little RHO-1 signaling resulted in similar phenotypes in

macrophage chemotaxis [53] and in Drosophila neurite outgrowth

[54]. In C. elegans gain- and loss-of-function alleles of the rac/cdc42

like GTPase mig-2 both caused axon pathfinding defects [2].

What are the RHO-1 signaling pathways acting in adult C. elegans?

To further understand the role of RHO-1 signaling in adult behaviors

it will be necessary to define the upstream activators and downstream

effectors that modulate these behaviors. Some activators and effectors

of RHO-1 signaling have been studied in C. elegans however

mutations in several, including the Rho-associated kinase let-502

and the serum response factor (SRF) unc-120, are lethal [55,56]

preventing analysis of their post-developmental functions. A more

successful approach may be to analyse the behavior of transgenic

animals expressing mutated versions of RHO-1 that are unable to

interact with subsets of effectors in mammalian systems [57].

Mutations in some Rho effectors are not lethal, for example animals

with mutations in the DAG Kinase, dgk-1, which is negatively

regulated by RHO-1, have defects in locomotion and egg laying [58]

consistent with its function downstream of RHO-1. The defecation

and dar phenotypes observed in hsRHO-1(G14V) animals have not

been observed in dgk-1 mutants and these animals become viable,

fertile adults [58,59]. Thus, RHO-1 must regulate other downstream

effectors to control these behaviors.

One pathway known to interact with Rho in mammalian cells is

the Ras/ERK/MAPKinase pathway [60,61,62]. Interestingly,

both these pathways are required to regulate the dar phenotype in

response to infection ([63] R. McMullan personal observation).

We describe the interaction between these pathways in detail

elsewhere and show that Rho and Ras signaling converge on the

ERK/MAPKinase pathway to trigger this immune response.

Previous studies of C. elegans body morphology and behavior have

provided insights into many conserved signaling pathways such as

the Ras/MAPK pathway and genetic screens have identified core

components, regulators and interactions with other signaling

pathways [64,65]. These findings establish the dar phenotype as a

genetic model to dissect interactions between Rho and ERK/

MAP Kinase signaling pathways. The pvl phenotype has been

previously observed in mutants defective for Wnt signaling

although in this case it is thought to be a developmental defect

[46]. Activation of RHO-1 results in a much weaker pvl phenotype

and does not completely phenocopy the protruding vulva seen

during development however, in mammalian cells, RhoA has been

shown to be a component of non-canonical Wnt signaling
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pathways [66] raising the possibility that Wnt signaling is required

to both form the vulva and maintain its morphology and Rho

signaling interferes with this. Suppressor and enhancer genetic

screens will reveal the pathways by which constitutively active

RHO-1(G14V) causes both the dar and pvl phenotypes.

Recent work has provided clues to the nature of the upstream

components of Rho signaling in adult C. elegans. The adult

behaviors of three RhoGEF mutants, vav-1, unc-73 and rhgf-1, have

been studied. Deletion of the RhoGEF2 domain of unc-73 that

activates RHO-1 results in developmental arrest due to defects in

pharyngeal pumping [67], however, animals with pharynx specific

rescue of unc-73 [67] or mutations specific to the UNC-73

RhoGEF2 domain [68] develop into adults that have lethargic

locomotion and egg laying defects. Loss of vav-1 also led to defects

in pumping as well as defects in gonadal-sheath-cell contractions

and defecation [30]. Both VAV-1 and UNC-73 can regulate the

activity of multiple Rho family small GTPase and our results

suggest that the pharyngeal pumping, defecation, and ovulation

defects observed in vav-1 and unc-73 mutants are due to a defect in

RHO-1 activation. The data obtained so far suggests that

behaviors such as defecation and ovulation may be regulated by

one RhoGEF (VAV-1) acting on RHO-1 however as both unc-73

and vav-1 appear to regulate pharyngeal pumping it seems that

RhoGEFs may act redundantly to regulate RHO-1 signaling in

some behaviors. In support of this, data from our laboratory

suggest that, in addition to unc-73, rhgf-1 is able to regulate RHO-1

activity and control locomotion [69]. These RhoGEFs are likely to

be activated by different signals as unc-73 is regulated by Gaq [68]

while rhgf-1 acts downstream of Ga12 [69]. Whilst RhoGEF

mutations cause adult phenotypes it cannot be ruled out that this is

a result of a developmental defect. Careful analysis of any mutants

in RHO-1 signaling components will be required to distinguish the

adult roles of RHO-1 signaling from the developmental ones.

Analysis of adult Rho GTPases signaling pathways is important as

aberrant signaling by these pathways has been implicated in human

diseases including cancer, neurological disorders, vascular and renal

disease [70,71,72,73]. Rho GTPase signaling has been extensively

studied using biochemistry and cell based assays [74] and Rho’s role

in development has been confirmed in whole animal models [75].

Here we use a whole animal model to show that Rho also has

important post-developmental roles acting in both neuronal and non-

neuronal tissues. C. elegans has a single Rho GTPase, RHO- 1, and we

show that aberrant RHO-1 activity alters adult processes such as

neuronal activity, fertility, defecation and cell morphology and results

in death. Our work provides the starting point for future genetic

screens to fully describe adult RHO-1 signaling pathways.

Supporting Information

Movie S1 Adult nRHO-1(G14V) (nzIs29) animals dis-
played loopy locomotion compared to wildtype animals.
(MP4)

Movie S2 Adult hsRHO-1(G14V) (nzIs1) animals were
heat shocked at 336C and their locomotion behavior was
recorded 24 hours after recovery at 206C. Although some

animals displayed loopy locomotion the majority of animals only

moved slightly when touched.

(MP4)

Movie S3 Animals expressing nC3 transferase (nzEx95)
show lethargic locomotion behavior when compared to
wild type controls (Movie S1) [24].

(MP4)

Movie S4 Adult hsC3 transferase (nzEx4) animals were
heat shocked at 336C and their locomotion behavior was
recorded after recovery for 24 hours at 206C. Animals

expressing nC3 transferase (nzEx95) or hsC3transferase (nzEx4) 30 min

following heat shock ([24] and movie S4) were lethargic but still

responded to touch however 24 hours after heat shock animals no

longer responded strongly to touch.

(MP4)

Movie S5 Ovulation events in wild type animals were
recorded for 45minutes as described in Materials and
Methods. Wild type animal ovulate as previously described [48]

showing an increase in sheath cell contractions prior to ovulation

followed by entry of the oocyte into the spermatheca, fertilization

and exit into the uterus. One ovulation event can be observed

during this recording.

(MP4)

Movie S6 Ovulation events in adult hsRHO-1(G14V)
(nzIs1) animals in the absence of heat shock were
recorded for 45 minutes as described in Materials and
Methods. These animals failed to ovulate during the recording

period.

(MP4)

Movie S7 Adult hsRHO-1(G14V) (nzIs1) animals were
heat shocked at 336C and ovulation events were
recorded for 45minutes as described in Materials and
Methods. hsRHO-1(G14V) (nzIs1) expressing animals show

increased sheath cell contractions and failure of oocytes to

correctly exit the spermatheca. No complete ovulation events

were observed during the recording period.

(MP4)

Movie S8 Adult hsC3 transferase (nzEx4) expressing
animals were heat shocked at 336C and ovulation events
were recorded for 45minutes as described in Materials
and Methods. hsC3 transferase (nzEx4) expressing animals showed

an increase in sheath cell contractions throughout the recording

period however oocytes completely failed to enter the spermatheca

and no ovulation events were observed during the recording.

(MP4)
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