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Abstract

In spite of its evolutionary significance and conservation importance, the population structure of the common chimpanzee,
Pan troglodytes, is still poorly understood. An issue of particular controversy is whether the proposed fourth subspecies of
chimpanzee, Pan troglodytes ellioti, from parts of Nigeria and Cameroon, is genetically distinct. Although modern high-
throughput SNP genotyping has had a major impact on our understanding of human population structure and
demographic history, its application to ecological, demographic, or conservation questions in non-human species has been
extremely limited. Here we apply these tools to chimpanzee population structure, using ,700 autosomal SNPs derived from
chimpanzee genomic data and a further ,100 SNPs from targeted re-sequencing. We demonstrate conclusively the
existence of P. t. ellioti as a genetically distinct subgroup. We show that there is clear differentiation between the verus,
troglodytes, and ellioti populations at the SNP and haplotype level, on a scale that is greater than that separating continental
human populations. Further, we show that only a small set of SNPs (10–20) is needed to successfully assign individuals to
these populations. Tellingly, use of only mitochondrial DNA variation to classify individuals is erroneous in 4 of 54 cases,
reinforcing the dangers of basing demographic inference on a single locus and implying that the demographic history of
the species is more complicated than that suggested analyses based solely on mtDNA. In this study we demonstrate the
feasibility of developing economical and robust tests of individual chimpanzee origin as well as in-depth studies of
population structure. These findings have important implications for conservation strategies and our understanding of the
evolution of chimpanzees. They also act as a proof-of-principle for the use of cheap high-throughput genomic methods for
ecological questions.
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Introduction

The history and population structure of the common chimpan-

zee, Pan troglodytes, are incompletely understood. Traditionally,

three subspecies have been described: the western chimpanzee (P.

t. verus), central chimpanzee (P. t. troglodytes) and eastern

chimpanzee (P. t. schweinfurthii). Analysis of mitochondrial DNA

(mtDNA) variation led to the proposal of a fourth, ‘‘Nigerian’’

chimpanzee subspecies (P. t. vellerosus, since renamed P. t. ellioti [1])

as a sister taxon to P. t. verus occurring in an area of Nigeria and

Cameroon east of the Niger river and north of the Sanaga river

(Figure 1) [2,3]. This new subspecies has been recognized by many

taxonomists and conservation biologists [4,5]. Subsequent analyses

of autosomal microsatellite data, in one case based on few loci [6],

and in another including few individuals designated a priori as P. t.

ellioti [7], found little evidence to distinguish P. t. ellioti from P. t.

troglodytes, which is distributed south of the Sanaga river (Figure 1).

Very recently however a microsatellite-based study of 94

individuals with 27 loci [8] has established that up to five groups

of common chimpanzees, including P. t. ellioti, can be distinguished

genetically. In this study we provide a complementary analysis

using very different data and analytical methodology that allows a

direct comparison with human data.

For most animals, the definition of a subspecies as ‘‘a collection

of populations occupying a distinct breeding range and diagno-

sably distinct from other populations’’ [9] would be uncontrover-
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sial. However, our close evolutionary relationship with chimpan-

zees, and the parallels that can be drawn between chimpanzees

and humans, makes this terminology increasingly uncomfortable,

and in some cases controversial, and so we prefer to avoid it.

Whatever term is used, modern genetic methods clearly have the

potential to make the assessment of distinctiveness more objective

and precise than in the past and it should now be possible to

confirm or refine earlier judgments that were based on other

criteria or limited data.

The development of modern high-throughput SNP genotyping

technologies has revolutionized many aspects of human genetics,

including our understanding of the history and demography of

human populations [10–13]. To date, the impact of such methods

in non-human species has been limited (e.g. [14,15]). Here we

apply these technologies to chimpanzees, and show that they can

clearly resolve the genetic distinctness of P. t. ellioti, and that, for

conservation purposes, small subsets of SNPs can be used to

distinguish previously recognized populations. Our major source

of SNPs was those arising from sequencing reads of a single

individual (‘‘Clint’’) from the chimpanzee genome project [16]. A

notable finding is that, in spite of the severe ascertainment biases

inherent in this SNP discovery (largely a single individual, from

only one of the populations), analyses based on the resulting SNPs

remain powerful, suggesting that the same may be true in other

species for which there have been genome projects. We also

demonstrate the potential benefits of haplotype-based analyses in

combination with genomic SNP data in defining and quantifying

population relationships.

Results

To address the question of whether Pan t. ellioti is genetically

distinct from other populations, we obtained DNA samples from

Cameroonian chimpanzees which we analysed along with samples

from captive Western (verus) and troglodytes chimpanzees. Eastern

chimpanzees (P. t. schweinfurthii), with their distinct geographical

distribution, were not sampled in the current study. We sequenced

12 autosomal fragments of ,1 kb and genotyped 691 SNPs from

22 autosomal regions of 40–80 kb [17] in order to resolve genome-

Figure 1. Map of the geographic distribution of four populations of common chimpanzee. After [3], Figure 6b. Colours show the ranges of
each population (yellow - P. t. troglodytes, red - P. t. ellioti, blue - P. t. verus, green - P. t. schweinfurthii) with major rivers indicated. The Sanaga River in
Cameroon has been proposed to form the boundary between the ranges of P. t. ellioti and P. t. troglodytes.
doi:10.1371/journal.pgen.1002504.g001

Author Summary

Chimpanzees are viewed with fondness as our closest
animal relatives and are valued by scientists for the
biological and evolutionary insights they provide. In spite
of this, the relationships between different populations of
common chimpanzees are still relatively poorly under-
stood, a situation that potentially threatens conservation
efforts. Here we have used information gathered in the
Chimpanzee Genome Project to design comprehensive
tests of genetic variability that show unambiguously the
existence of four genetically distinct groups (or popula-
tions) of common chimpanzee. We demonstrate that
previous methods based on mitochondrial DNA sequences
alone are not always accurate and show the feasibility of
cheap new genetic tests of individuals’ origins that could
play an important role in conservation.

Chimpanzee Population Structure Using Genomics

PLoS Genetics | www.plosgenetics.org 2 March 2012 | Volume 8 | Issue 3 | e1002504



wide relationships, and compared the results with inference from

the mitochondrial HV-I locus.

We applied a number of different methods to the analysis of

these data to assess the relationships and genetic clustering

amongst the sampled individuals. The first set of methods

(principal components and STRUCTURE) were based on the

marginal data at each genotyped SNP. We then calculated FST

from the DNA sequence data, and finally applied recently

developed methods which exploited information on the joint

distribution of SNP alleles within haplotypes.

Using the first two principal components of the data from all

818 SNPs, 52 of the 54 chimpanzees studied clustered into three

distinct, non-overlapping groups (Figure 2a). These clusters are

consistent with three genetically distinct populations represented

amongst the study chimpanzees: captive Western (P. t. verus)

chimpanzees form one cluster while Cameroonian chimpanzees

are divided into two genetically distinct clusters, one of which we

infer to correspond to P. t. ellioti, whose existence had been the

subject of uncertainty. We note that two individuals in the P. t.

ellioti cluster had previously been designated P. t. troglodytes based on

mtDNA sequence, a point to which we return below. Two

individuals (C024, C025) with P. t. troglodytes-like mtDNA lie

between the presumptive P. t. verus and P. t. troglodytes clusters, and

records have subsequently revealed that these are indeed first-

generation hybrids produced in captivity.

A similar conclusion comes from a different perspective when

the software STRUCTURE [18,19] is used to estimate the proportion

of each individual’s genome that comes from each of several

ancestral populations. With k = 3 presumptive populations, the

same three groups were recovered cleanly with little estimated

admixture except for the two hybrids (Figure 3), and where there

was evidence for co-ancestry, it was detected between the ellioti and

troglodytes groups, rather than involving verus chimpanzees. This

suggests more recent interaction between P. t. ellioti and P. t.

troglodytes than either has had with P. t. verus, although an effect of

SNP ascertainment could not be ruled out. We note that the

model underlying STRUCTURE assumes no linkage disequilibrium

between loci, whereas our data do exhibit such correlations

because of the clustering of SNPs. The expected effect of this in the

STRUCTURE model is an over-estimation of precision, rather than

bias [19], but nonetheless our STRUCTURE analysis should be

interpreted with some caution.

Next, we calculated pairwise FST, a commonly-used measure of

the proportion of total genetic variation occurring between

populations. Potential confounding effects from SNP ascertain-

ment complicate interpretation of FST values calculated from the

genotype data, so we restricted these analyses to our re-sequencing

data alone (104 of 818 SNPs, also eliminating 3 sequenced loci

showing evidence of positive selection) [20]. Consistent with

STRUCTURE’s view of relative amounts of co-ancestry, FST between

P. t. ellioti and P. t. troglodytes (0.134, 95% CI 0.105–0.162) is slightly

lower than, but cannot be formally distinguished from, that

between P. t. troglodytes and P. t. verus (0.177, 95% CI 0.129–0.225)

or between P. t. ellioti and P. t. verus (0.190, 95% CI 0.145–0.235).

The troglodytes – verus figure in our data is lower than the 0.29 for

Central vs. Western chimpanzees previously estimated from re-

sequencing data [21], presumably due to sampling differences

(either of loci or individuals) between the two studies.

When genetic data is collected from tightly linked variable sites,

exploiting patterns of non-random association (i.e. linkage

disequilibrium) can increase power to identify population structure

over single-SNP analyses [22,23]. Informally, haplotype-based

approaches have many of the advantages in terms of discrimina-

tory power of other multi-allelic systems such as microsatellites,

but in addition, our understanding of the evolutionary mecha-

nisms involved means that there is a natural sense of the

evolutionary distance between haplotypes. Sensible haplotype-

based analyses can thus be more powerful than SNP-based

approaches in using considerably more genetic information in

comparing individuals, and in our context can thus be informative

about differentiation at timescales shorter than those over which

drift can be detected in SNP frequency differences. Additionally,

haplotype-based analyses may be less susceptible to biases in SNP

discovery [22]. Conversely, while haplotype-based methods can

increase power to detect population structure, statistical method-

ology to fit explicit models of isolation, migration and fluctuating

population size [24] to such data is so far lacking.

We analysed similarities in patterns of haplotype variation

among individuals for the 691 clustered autosomal SNPs using a

so-called copying model applied to estimated haplotypes from

each individual [25,26]. In effect, for each small chromosomal

segment in one of the haplotypes of a particular individual, the

approach looks amongst the haplotypes of the other sampled

individuals to find the one with which it is most closely related, in

the sense of most recently sharing a common ancestor. This is

done under a model in which shared ancestry is likely to be the

same for chromosomal segments which are very near to each other

(in terms of genetic distance). The primary results of such an

analysis are estimates of the most recent shared ancestry across

each locus in each haplotype. For a particular chimpanzee, these

can be aggregated to calculate the estimated proportion of the

sampled regions for which it is most closely related to each of the

other chimpanzees. These estimates are shown in Figure 4a. The

figure provides a visual summary of the patterns of most-recently-

shared ancestry within and between the three population groups.

In a randomly mating population, the haplotypes in a particular

individual will share similarities with many others across the

sample, while in the presence of population structure haplotypes

will tend to be more similar to those of other individuals within the

same population than to those in other populations. Figure 4b (see

also Table 1) provides a higher-level summary which aggregates

information across populations to show, for each chimpanzee, the

proportion of its sampled regions for which the most closely related

haplotype comes from each of the three populations. Strikingly,

Figure 4a and 4b show that across most of the sampled regions in

each individual, the most closely related haplotype comes from the

same population; in other words that the three populations are

genetically quite distinct. This effect is most marked for the P. t.

verus individuals, for whom the most closely related haplotype is

virtually always in the same population. Haplotypes of P. t. ellioti

and P. t. troglodytes chimpanzees respectively are typically most

similar to those of other individuals within the same population,

but occasionally to those of individuals from the other (P. t.

troglodytes and P. t. ellioti respectively) population. The two

previously noted hybrid individuals are clearly identified, and in

addition it emerges that two of the P. t. ellioti chimpanzees had a

higher level of shared ancestry than the other chimpanzees. The

qualitative conclusions from the haplotype-based analysis thus

mimic those from principal components and STRUCTURE, although

reassuringly they explicitly model the correlations between nearby

SNPs, in contrast to STRUCTURE.

By applying the haplotype-based copying model to human data,

we can compare quantitatively the extent of differentiation

between the three chimpanzee groups with that between various

human populations. Importantly, such analyses can allow for

ascertainment effects. We show the copy model results for human

data from the Phase II HapMap (Frazer et al. 2007) in Figure 4c

and 4d, comparing sampled individuals of European (CEPH),

Chimpanzee Population Structure Using Genomics
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African (Yoruba, YRI) and East-Asian (Han Chinese, CHB)

descent in an analysis in which SNPs in the human data were re-

ascertained to match characteristics of the chimpanzee data (see

‘‘Data Analysis’’). The average within- vs. between-population

copying frequencies, that is, frequencies for the most-closely-

related-haplotype, in these analyses are summarized in Table 1.

Levels of between-population similarity among the chimpanzee

populations are lower than among the HapMap populations,

suggesting that the chimpanzee populations are more distinct than

even continental human populations. To test the robustness of this

conclusion to choice of comparison data, we re-sampled Phase II

HapMap individuals, genomic regions and ascertained SNPs, 100

times. Only three times was the level of within-population copying

of a pair of human populations greater than that between any

chimp population (estimated within-population copying in each of

Africa and East-Asia was greater than the estimated within-

population copying in P. t. troglodytes for 3 of 100 re-samples). In

Figures S1 and S2, we colour fragments of chromosomes

according to their assigned population of origin under the copying

model, illustrating that the probabilities with which individual

chimpanzee chromosome segments are assigned to specific

populations are also higher than for human data.

An equivalent analysis of the HapMap III African populations

[27] showed that these African human populations are consider-

ably less structured than the chimpanzee populations (Figures S3

and S4), as might be expected given the observation above that the

chimpanzee populations are more differentiated even than

continental human populations. Note that our comparisons with

the human population samples are based on similar amounts of

data as in our chimpanzee samples. With larger SNP datasets, the

power to separate the human populations increases.

We note that while it is theoretically possible to use the lengths

of copied fragments in the copying model to estimate the timescale

over which differentiation has occurred, our data is not well-suited

to this because the shortness of the assayed regions means that

relatively few breakpoints are observed, providing little informa-

tion about the times of events in the history of chimpanzee

populations.

Discussion

We have applied a number of different analytical methods to an

extensive set of SNP data from 54 chimpanzees. All of the methods

point clearly to the existence of three distinct population groups,

corresponding to three of the previously-described ‘‘subspecies’’ of

chimpanzee P. t. verus, P. t. troglodytes, and P. t. ellioti, with the latter

two groups sharing somewhat more similarity with each other than

either does with P. t. verus. P. t. troglodytes and P. t. verus are two

securely defined populations estimated to have diverged 0.4–0.6

million years ago [7,8,28–30]. Our analyses show P. t. ellioti to be

clearly distinct from P. t. troglodytes with both groups equally distinct

from P. t. verus, so that whatever terminology (‘‘population’’ or

‘‘subspecies’’) is applied to verus and troglodytes should equally be

applied to ellioti.

By way of comparison, we have shown that these three

chimpanzee populations are more differentiated than even

continental human populations, and also that in spite of the

relatively close geographic proximity of the groups, particularly

troglodytes and ellioti, the chimpanzee populations are considerably

more distinct than the African populations sampled in HapMap

III, suggesting rather differing demographic histories for the two

sister species.

In order to compare population comparisons based on the

copying model with those based on more traditional FST

approaches, we also calculated pairwise FST values for each of

the 100 resamples of individuals and SNPs in our analyses of the

three continental population samples. The results are summarized

in Table 2. We note that while the average values of pairwise FST

Figure 2. Clustering of chimpanzees based on principal components. (a) Clustering of chimpanzees based on principal components using
data from 818 SNPs. Plots of the first two principal components of data from 818 SNPs show that chimpanzees in this study form three genetically
distinct groups. Two chimpanzees (C127, C541) have P. t. troglodytes-like mtDNA but group with P. t. ellioti at autosomal loci. Two chimpanzees (C024,
C025) known to be hybrids between P. t. troglodytes and P. t. verus lie between these populations on the PCA plot. (b) Clustering of chimpanzees
based on principal components using population-informative SNPs. Plots of the first two principal components of data from just 10 selected SNPs
(Table S4) reveal the same three groups as the full dataset. Plotted positions are shown with jitter to separate individuals with the same genotypes at
the subset of SNPs. Plotting characters show the inferred population of origin of each chimpanzee: (triangles - P. t. troglodytes, squares - P. t. ellioti,
circles - P. t. verus, ‘+’ - hybrids).
doi:10.1371/journal.pgen.1002504.g002

Figure 3. STRUCTURE estimates of ancestry in three populations. For each sampled individual the figure shows the estimated proportion of
ancestry from STRUCTURE’s three putative ancestral populations, with P. t. troglodytes in yellow, P. t. ellioti in red and P. t. verus in blue. STRUCTURE reveals
the same pattern of group memberships as PCA, and additionally suggests that P. t. troglodytes and P. t. ellioti individuals may share more DNA from
the other group than either shares with P. t. verus (blue). The two known hybrid individuals (C024, C025, with ancestry estimated at close to 50% in
each of P. t. troglodytes and P. t. verus) and two P. t. ellioti chimpanzees with P. t. troglodytes-like mtDNA (C127, C541) are labelled.
doi:10.1371/journal.pgen.1002504.g003
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across the 100 samples show the same pattern as copying

proportions in the copying model, the sample-to-sample variation

is larger. For example, the FST intervals for the central 95% of

resamples for Europe-East Asia overlap those of Africa-Europe

and Africa-East Asia, and for example for five of the 100 resamples

the pairwise FST between Africa and Europe was actually smaller

than that between Europe and East-Asia. In contrast, for the

copying model analysis the 95% intervals for the proportion that

Europe and East Asia copy from each other do not overlap with

the 95% intervals for either copying from Africa, and the

proportion that Europe copied from Africa was lower than the

proportion Europe copied from East Asia in each of the 100 re-

samples. This accurately reflects the fact that on average East Asia

and Europe share more recent ancestry with each other than with

Africa.

One weakness of our study (and some others) is that we do not

have definitive information on the geographic origin of all of the

chimpanzees we have studied. All our analyses point to two very

distinct population groups for the chimpanzees originating from

eastern Nigeria and Cameroon. In the light of other genetic

evidence for distinctiveness of individuals sampled from either side

of the Sanaga River [3,8], our assignment of one of our sampled

groups as troglodytes and one as ellioti seems reasonable. Whilst our

data alone could not rule out two distinct populations, one or both

of which extends across the Sanaga River, this seems a priori

unlikely – the river provides a natural barrier between the distinct

populations, whereas if both were to exist on the same side of the

river there seems no reason for their reproductive isolation—and

at variance to other available evidence. Notwithstanding our lack

of complete geographical information on sampled chimpanzees,

the clear separation between all three populations, relative to the

similarities within the populations, seems hard to reconcile with

the suggestion that chimpanzee genetic variation is distributed

more or less continuously across the species range (cf [21]).

The initial genetic description of P. t. ellioti was based on

mtDNA sequence analysis [2,3], which places most chimpanzees

from parts of Nigeria and Cameroon north of the Sanaga river in a

group sharing a common ancestor with P. t. verus, to the exclusion

of P. t. troglodytes, a description made more robust by a recent

analysis of complete mitochondrial genomes [31,32]. We com-

Figure 4. Haplotype-based analyses of population relationships. (a) (chimpanzee) and (c) (human): heat maps show the estimates from a
copying model of the proportion of sampled genetic material of each individual (X axis) inferred to be closest to that in each other individual in the
sample (Y axis). Human data was sampled from HapMap data for the three continental populations: Europe (CEU), Africa (YRI) and East Asia (Han
Chinese, CHB) using an ascertainment scheme designed to match properties of SNPs in the chimpanzee data. Chimpanzees have less estimated
copying from outside their own population than do humans. Individuals are labeled by their inferred (chimpanzee) or known (human) population of
origin, or as hybrids. (b) and (d): summaries of estimated copying (ancestry) proportions by population, for each individual. (b) Chimpanzees: P. t.
troglodytes in yellow, P. t. ellioti in red and P. t. verus in blue. P. t. troglodytes and P. t. ellioti appear to be less differentiated from other populations
than is P. t. verus. (d) Human Continental populations: CEU Europe in yellow, YOR Africa in red and CHB East Asia in blue. Human individuals have
higher proportions of ancestry from other populations than do chimpanzees.
doi:10.1371/journal.pgen.1002504.g004
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PLoS Genetics | www.plosgenetics.org 6 March 2012 | Volume 8 | Issue 3 | e1002504



pared the classification based on mtDNA with our genome-wide

analysis and found that it classified 50 of 52 non-hybrid individuals

correctly. Chimpanzees C127 and C541 had troglodytes-like

mtDNA but ellioti autosomal SNP genotypes. (The two known

hybrid chimpanzees C024 and C025 had troglodytes-like mtDNA

but were detectably intermediate in autosomal genotype). Thus

the two systems generally agree, but, not surprisingly, single-locus

mtDNA data is less reliable for classification than genome-wide

data.

The mtDNA-based picture of demographic relationships

suggests that P. t. verus and P. t. ellioti are sister taxa [3,31]. Our

data suggests this to be misleading, in two different respects.

Firstly, as noted above, two individuals who are clearly P. t. ellioti,

on the basis of extensive autosomal data, have mtDNA which

clusters with P. t. troglodytes. Thus, mtDNA from ellioti individuals

does not fall into a single clade on a mtDNA tree. If mtDNA is

used both to classify individuals and to estimate trees for the

resulting groups, there is always a danger, as seems to have

occurred in this instance, that misclassification of individuals will

lead to a simpler-looking tree than is actually the case. Secondly,

the suggestion from the mtDNA data that (many, but as noted

above, not all) ellioti individuals have mtDNA types which are

closer to verus than to troglodytes individuals is strikingly different

from the results of our analyses based on many independent

autosomal loci, which places P. t. ellioti clearly closer to P. t.

troglodytes than to P. t. verus. It is interesting to note that a study of

morphological variation agreed with the picture obtained from

autosomal loci [4]. Taken together, the mtDNA and autosomal

results are difficult to reconcile with a simple demographic

scenario based on population splitting, and suggest a more

complex demographic history for the three populations we have

studied, possibly including sex-biased gene flow.

For many conservation applications, it would be desirable to be

able to assign or classify individuals to populations based on a

small number of loci. We developed and applied a method for

choosing subsets of SNPs for classification based on their

contribution to assignment probabilities (see Methods). To avoid

over-fitting, we divided our data set in two. A training dataset

comprising half the samples from each population (27 of the 52

non-hybrid individuals) was used to select informative SNPs for

classification, with the other half of the individuals forming a test

dataset in which the ability of the chosen SNPs to accurately

classify individuals to populations was measured.

For our data, we could essentially reproduce the discrimination

obtained with the complete dataset of 818 SNPs with as few as 8

carefully selected SNPs in distinct regions of the genome

(Figure 2b). While there is still some danger of over-fitting from

our relatively small sample sizes, we conclude that a small, well-

chosen panel of probably 10–20 SNPs, assayed via either a set of

PCR-based single-locus assays or a single multiplex SNP assay for

forensic and conservation work, would be capable of analysing and

classifying limited DNA samples at low cost. The exact size of

panel used would depend on the requirement to identify

individuals of mixed ancestry. This is particularly encouraging

considering the extreme ascertainment bias inherent in our

genotyped SNPs: for the chimpanzee, dbSNP at the time of our

SNP selection reflected the composition of the chimpanzee draft

genome, in which ,91% of sequence traces came from a single P.

t. verus individual (‘Clint’), a further 4% from four other verus, and

less than 5% from three P. t. troglodytes [16]. Notwithstanding this

bias, 12 of our SNPs have an estimated allele frequency difference

of .0.5 between ellioti and pooled troglodytes and verus chimpanzees.

Our study thus confirms the utility of genomic resources even

when ascertainment is sub-optimal.

The confirmation of P. t. ellioti as a genetically distinct

population of chimpanzee strongly supports efforts to treat this

population as a separate management unit for conservation [33]

This is of particular importance since while all chimpanzees are

Table 2. Pairwise FST values for human samples.

CEU Europe YOR Africa CHB East Asia

CEU Europe - 0.150 (0.120–0.190) 0.108 (0.075–0.145)

YOR Africa 0.150 (0.120–0.190) - 0.172 (0.133–0.223)

CHB East Asia 0.108 (0.075–0.145) 0.172 (0.133–0.223) -

Parentheses show the empirical central 95% region of the distribution of values
for the 100 re-samples of the human data.
doi:10.1371/journal.pgen.1002504.t002

Table 1. Estimates of the proportion of the sampled genomic regions for which the most closely related haplotype comes from
each study population, for chimpanzees and humans.

Chimpanzees

copying population copying from

P. t. troglodytes P. t. ellioti P. t. verus

P. t. troglodytes 0.887 0.105 0.009

P. t. ellioti 0.084 0.908 0.008

P. t. verus 0.009 0.028 0.962

Humans

copying population copying from

CEU Europe YOR Africa CHB East Asia

CEU Europe 0.837 (0.791–0.870) 0.036 (0.022–0.051) 0.127 (0.095–0.169)

YOR Africa 0.080 (0.055–0.104) 0.860 (0.834–0.892) 0.060 (0.035–0.080)

CHB East Asia 0.125 (0.089–0.174) 0.023 (0.010–0.032) 0.852 (0.807–0.888)

Parentheses show the empirical central 95% region of the distribution of values for the 100 re-samples of the human data.
doi:10.1371/journal.pgen.1002504.t001
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considered to be endangered [34], P. t. ellioti, with an estimated

6,500 individuals remaining, is the least numerous population.

In conclusion, using genomic resources we have assembled the

largest SNP-based dataset for investigating chimpanzee population

structure. It resolves an outstanding controversy in clearly

establishing the fourth putative subspecies, Pan troglodytes ellioti, as

a genetically distinct group. More generally, our results confirm

the utility of high throughput SNP typing for evolutionary genetic

and conservation analysis. However, we recognize that a full

appraisal of chimpanzee population structure would require

denser sampling from all four populations in addition potentially

to comparative studies across primates that go beyond great apes

and humans.

Materials and Methods

Chimpanzee samples
Blood samples were obtained from 35 wild-born orphaned

chimpanzees of unknown geographic origin within Cameroon.

Genomic DNA, extracted using standard procedures, was

amplified (GenomiPhi, GE Healthcare) before genotyping. DNA

samples were also obtained from 15 P. t. verus (from Sierra Leone)

and 4 putative P. t. troglodytes (unknown geographic origin)

chimpanzees held at the Biomedical Primate Research Centre in

the Netherlands (Table S1). For chimpanzees in the Netherlands,

all blood sampling was done in accordance with a protocol that

was approved by the Institutional Animal Care and User

Committee (IACUC) of the Biomedical Primate Research Center

(BPRC). For chimpanzees in Cameroon, blood samples were

taken from orphaned individuals for haematological analysis as

part of veterinary health screens.

Re-sequencing
Mitochondrial HV-I fragments of 534 bp and fragments of

,1 kbp from the genes CCR5, SDF, CXCR4, CX3CR1, RANTES,

CCR2, SEC22L3, ZNF445, PTPN23, CCRL2, MC1R and HBB

(Table S2, Table S3) were amplified by PCR and sequenced

directly. PCR products with heterozygous indels were cloned and

10 clones were sequenced for each sample. For pairwise Fst

analyses, 3 loci with evidence for directional selection (CCR5,

CXCR4 and CX3CR1; 23 SNPs, MacFie et al. 2009) were removed

from the analysis.

SNP genotyping
A panel of 768 SNPs was designed for the GoldenGate

Genotyping Assay (Illumina, San Diego), using polymorphism

information from the Chimpanzee Genome Project [16] via

dbSNP v26 [http://www.ncbi.nlm.nih.gov/projects/SNP/]. The

SNPs, arranged in 22 clusters of size 40–80 kbp on several

autosomes, were screened using BLAST to ensure unique context.

The panel has also been used to assess recombination rates in the

22 regions, orthologous to recombination hotspots in humans [17].

Across 54 samples, 58 SNPs failed visual inspection, 14 gave at

least one no-call and 5 SNPs departed strongly from Hardy-

Weinberg equilibrium within a population (as initially labelled),

leaving 691 SNPs for analysis.

Data analysis
Population structure was assessed by pairwise FST in ARLEQUIN

(with 95% CIs estimated by jackknifing) [35], PCA and SNP

selection for assignment in the R Package [36], and with

STRUCTURE [18,19], using the admixture model of ancestry, with

correlated allele frequencies, run with a ‘burn-in’ of 100,000

iterations followed by a further 1,000,000 iterations. This model is

not strictly applicable to data from sites in linkage disequilibrium,

so this analysis is indicative only. SNPs were chosen for

classification as follows: for each SNP a sample was assigned to

the population in which its genotype was most probable, the 818

SNPs were ranked by their ability to classify the training samples

and the best SNPs, from distinct loci, were chosen (Table S4).

For the haplotype-based analysis, we inferred haplotypes and

population-scaled recombination rates between adjacent SNPs

using PHASEv2.1.1 [25,37–39] with ten times the default number

of MCMC iterations. We then applied the Li and Stephens (2003)

copying model to the inferred ‘‘best-guess’’ haplotypes as described

in [40] but fixing the PHASE recombination rate estimates,

inferring the expected number of haplotype segments that each

chimp copies from every other chimp via 100 iterations of an

Expectation-Maximization (EM) algorithm and precluding copy-

ing from the other haplotype within the same individual. Figures

S1, S2, and S3 are based on 100 samples from the model using the

converged E-M values.

For comparisons with human data, we matched features of the

chimpanzee dataset by randomly selecting 18 individuals per

population using HapMap Phase 2 Release 21 or HapMap Phase

3 Release 2 consensus haplotypes. For each analysis, we then

randomly selected 22 autosomal genomic regions, randomly

selecting SNPs to match the SNP density and minor allele

frequency distribution (in bins of (0.0,0.1], (0.1,0.2], (0.2,0.3],

(0.3,0.4], (0.4,0.5]) for the respective 22 chimp regions. We ran the

copying model using fixed genetic map estimates (build 35

estimates for HapMap2 populations and build 36 estimates for

HapMap3 populations) scaled by an effective population size value

of 30000, the value that maximized the expected log-likelihood

over a fixed grid of (10K,20K,30K,40K,60K,300K,25000K),

though we note that results were similar for all scaling factors

we considered. Ascertaining SNPs on a single randomly selected

HapMap Phase2 CEPH individual or HapMap Phase3 Luhya

(Kenya) individual not included in the sample gave similar results

to those presented. Pairwise FST for each re-sample was calculated

using the approach described in [41].

Supporting Information

Figure S1 Assignment of population of origin by genomic

fragment: Chimpanzee Data. Each line in the figure shows an

individual with its inferred population of origin and 22 autosomal

fragments for which SNP genotype data was collected. Each line is

divided into two coloured strips showing the two haplotypes for

each fragment. Colours show the copying model-estimated

probabilities of origin of each fragment for each chromosome

(yellow - P. t. troglodytes, red - P. t. ellioti, blue - P. t. verus) and

intermediate colours show intermediate probabilities. Chimpan-

zees have individual- and fragment-based copying probabilities

that are more extreme (closer to 0 or 1) than human Continental

populations, indicating greater population differentiation.

(PDF)

Figure S2 Assignment of population of origin by chromosomal

fragment: Human Data. Figure as in Figure S1 for human

continental population data sampled from HapMap data. Colours

are yellow – CEU Europe, red – YOR Africa, blue – CHB East

Asian. Human continental populations are much less differenti-

ated at the individual and fragment level than chimpanzees.

(PDF)

Figure S3 Assignment of population of origin by chromosomal

fragment: African Populations Data. Figure as in Figuress S1 and

S2 for human African population data sampled from HapMap
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data. Colours are yellow – Luhya, red – Maasai, blue – Yoruba.

Population differentiation is much less clear than for continental

human or chimpanzee populations.

(PDF)

Figure S4 Haplotype-based analyses of population relationships.

Figures as in Main Figure 4 for human African population data

sampled from HapMap data. (a) heat map of estimated proportion

of each individual (X axis) with most recent common ancestry with

each other individual in the sample (Y axis); (b) estimated copying

(ancestry) proportions by population, for each individual. Colours

are yellow – Luhya, red – Maasai, blue – Yoruba. Population

differentiation is much less clear than for continental human or

chimpanzee populations.

(PDF)

Table S1 Chimpanzees Studied. BPRC = Biomedical Primate

Research Centre, The Netherlands. mtDNA classification: T, P. t.

troglodytes; E, P. t. ellioti; W, ‘Western’ i.e. P. t. verus.

(DOC)

Table S2 Amplification Targets.

(DOC)

Table S3 PCR and Sequencing Primers. PCR primers are in

bold. All primers were used for sequencing.

(DOC)

Table S4 Highly Differentiated SNPs. For each population,

SNPs with highest frequency difference between chimpanzees in

that population cluster and the other two clusters. Bold SNPs are

in the minimal panel of 10 markers used in Figure 2b to reproduce

the original clustering pattern; SNPs from re-sequencing are

underlined.

(DOC)
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