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Abstract

Prognostic models are developed to guide the clinical management of patients or to

assess the performance of health institutions. It is essential that performances of these

models are evaluated using appropriate validation measures. Despite the proposal of

several validation measures for survival outcomes, it is still unclear which measures

should be generally used in practice. In this thesis, a simulation study was performed

to investigate a range of validation measures for survival outcomes in order to make

practical recommendations regarding their use. Measures were evaluated with respect

to their robustness to censoring and their sensitivity to the omission of important pre-

dictors. Based on the simulation results, from the discrimination measures, Gönen and

Heller’s K statistic can be recommended for validating a survival risk model developed

using the Cox proportional hazards model, since it is both robust to censoring and

reasonably sensitive to predictor omission. Royston and Sauerbrei’s D statistic can be

recommended provided that the distribution of the prognostic index is approximately

normal. Harrell’s C-index was affected by censoring and cannot be recommended for

use with data with more than 30% censoring. The calibration slope can be recom-

mended as a measure of calibration since it is not affected by censoring. The measures

of predictive accuracy and explained variation (Graf et al ’s integrated Brier Score and

its R2 version, and Schemper and Henderson’s V ) cannot be recommended due to their

poor performance in the presence of censored data.

In multicentre studies patients are typically clustered within centres and are likely

to be correlated. Typically, random effects logistic and frailty models are fitted to

clustered binary and survival outcomes, respectively. However, limited work has been

done to assess the predictive ability of these models. This research extended existing

validation measures for independent data, such as the C-index, D statistic, calibra-

tion slope, Brier score, and the K statistic for use with random effects/frailty models.

Two approaches: the ‘overall’ and ‘pooled cluster-specific’ are proposed. The ‘over-

all’ approach incorporates comparisons of subjects both within-and between-clusters.



The ‘pooled cluster-specific’ measures are obtained by pooling the cluster-specific es-

timates based on comparisons of subjects within each cluster; the pooling is achieved

using a random effects summary statistics method. Each approach can produce three

different values for the validation measures, depending on the type of predictions: con-

ditional predictions using the estimates of the random effects or setting these as zero

and marginal predictions by integrating out the random effects. Their performances

were investigated using simulation studies. The ‘overall’ measures based on the con-

ditional predictions including the random effects performed reasonably well in a range

of scenarios and are recommended for validating models when using subjects from the

same clusters as the development data. The measures based on the marginal predic-

tions and the conditional predictions that set the random effects to be zero were biased

when the intra-cluster correlation was moderate to high and can be used for subjects in

new clusters when the intra-cluster correlation coefficient is less than 0.05. The ‘pooled

cluster-specific’ measures performed well when the clusters had reasonable number of

events. Generally, both the ‘overall’ and ‘pooled’ measures are recommended for use in

practice.

In choosing a validation measure, the following characteristics of the validation data

should be investigated: the level of censoring (for survival outcome), the distribution

of the prognostic index, whether the clusters are the same or different to those in the

development data, the level of clustering and the cluster size.
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Chapter 1

Introduction

1.1 Context of this research

In medicine, prognosis literally means forecasting, predicting or estimating the proba-

bility or risk of an individual’s future health outcomes, such as illness, or complication,

or death. For example, in oncology, it may be important to predict the probability of

survival beyond a specific time point for cancer patients, and, in cardiology, to predict

the risk of developing a cardiovascular disease or death from a cardiovascular disease.

Prognostic studies are usually carried out to predict patients’ future health status as ac-

curately as possible using their clinical and demographic characteristics. For example,

the study carried out by Ambler et al. [1] focuses on predicting the risk of in-hospital

mortality for patients following heart valve surgery. Similarly, the Nottingham prog-

nostic index derived by Galea et al. [2] is used to estimate the risk of cancer recurrence

or death in breast cancer patients.

Prognostic studies are similar to aetiological studies in terms of design and anal-

ysis, but have different purposes: the former focuses on predicting health outcome of

interest while the latter on explaining their causes [3]. In particular, aetiological stud-

ies investigate the association between risk factors and an outcome of interest, with

possible adjustment for other factors (confounders), typically using a multivariable sta-

tistical model. Prognostic studies also use a multivariable statistical model to identify
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all important predictors that are potentially associated with the outcome and, using a

combination of these, provide prediction algorithms or rules to predict the risk of fu-

ture outcome. These algorithms are commonly known, in the literature, as prognostic

models or prediction models [4–10].

Prognostic models are increasingly being used in various settings of clinical re-

search such as cardiology, intensive care medicine, and oncology to estimate individual

patients’ prognosis and/or to classify patients into clinical risk groups with different

prognoses, for example, low, medium, and high. The clinical use of these models mainly

consists in providing information for patients about the future course of their illness (or

their risk of developing illness) and in guiding doctors on joint decisions with patients

to plan for possible treatment.

Prognostic models may be useful in cost effectiveness programs or to select ap-

propriate tests or therapies in patient management including decisions on withholding

or withdrawing therapy. For example, models may be used to classify patients with

good prognosis for whom adjuvant therapy would not be (cost-)effective, or a group

of patients with a poor prognosis for whom more aggressive adjuvant therapy would

not be justified [9, 11]. These models may also be used to select homogeneous groups

of patients for clinical trials, for example, to select patients with a low risk of cancer

recurrence for a randomised trial on the efficacy of radiotherapy after breast conserving

resection. Finally, prognostic models may be used to assess the performance of clin-

icians or hospitals and to conduct comparisons between them after adjusting for the

case-mix of patients. For example, the clinical risk index for babies (CRIB) [12] is used

to predict the risk of mortality for newborn babies and to assist comparative assessment

across the neonatal intensive care units by case-mix-adjusted risk predictions.

Although the use of prognostic models in clinical management is promising, clini-

cians will be reluctant to use these models unless they can trust their predictions [13].

Therefore, the prime goal of prognostic studies should be to develop such a model which

is statistically valid and clinically useful. To facilitate such clinical prognostication suc-

cessfully, researchers [4–10, 14, 15] have paid attention to the methodological aspects of
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prognostic studies and models, particularly focusing on the validation of models’ pre-

dictive performance. The general idea of validating a prognostic model is to establish

that it performs well for patients other than those used to develop the model [7, 14–16].

Prognostic models are usually developed using multivariable regression models. For

example, logistic regression is commonly used for binary outcomes while Cox propor-

tional hazards regression is used for survival outcomes. Often an index is developed

from a prognostic model based on weighted sum of the predictors in the model, where

the weights are the estimated regression coefficients. This is known as the ‘prognostic

index’ and can be used to classify patients into different risk groups, for example, low,

medium, and high. Building a prognostic model from a set of candidate predictors is

a complex process [17–19], and there is no widely agreed approach to this. However,

the importance of carefully dealing with some of the statistical and clinical aspects of

developing a prognostic model, such as choosing clinically relevant patient sample, se-

lecting important predictors, modeling continuous predictors, having adequate sample

size, and handling missing data, if any, is widely accepted. These aspects are discussed

in details in some recent studies; see, for example, Royston et al. [4], Altman [9], and

Omar et al. [10].

Compared to the methodology published in the literature on the development of

prognostic models, the methodology for validating their predictive performance is not

well developed [7, 20]. However, validation of the predictive performance of a newly

developed model or a model updated from an existing one plays a key role in prognostic

studies. This research focuses on the methodological aspects of validating a prognostic

model. Validating a prognostic model implies gaining evidence that it performs well

for new patients different from those used to develop the model. This idea is motivated

by the fact that the predictive ability of a model is likely to be overestimated in the

sample of patients used to develop the model (training/development data), compared

to the predictive ability of the model in other patient samples (test/validation data),

even if both samples are derived from the same population [7, 8, 15, 21].

Different types of validation process have been discussed in the literature [7, 16].

3



1.1 Context of this research

The most commonly used processes include (i) splitting a single dataset (randomly

or based on time) into two parts, one of which is used to develop the model and

the other used for validation, (internal or temporal validation) and (ii) validating on an

independent dataset collected by different centres or investigators (external validation).

Apart from the type of validation process, there are several aspects of a model that are

usually assessed on new data. These include (i) the agreement between the observed and

predicted outcome of interest for a group of patients (calibration) or individual patients

(accuracy scores), (ii) the ability of the model to distinguish between patients who do

or do not experience the outcome of interest (discrimination) [7, 22]. Another aspect

that is sometimes used to assess the model’s predictive performance is the concept of

‘explained variation’, which refers to the proportion of variation in the outcome that can

be explained by the predictors in the model [23]. Intuitively, high explained variation

depends on making a wide range of accurate predictions. This aspect captures both

the calibration and discrimination of the model.

The methodology for validating prognostic models with independent binary out-

comes are reasonably well developed; for example, see Omar et al. [10], Steyerberg

et al. [24], and Royston and Altman [25]. Although a number of validation measures

have been proposed for survival outcomes, it is still unclear which measures should

be used in practice. This research evaluates some of the proposed measures in order

to make practical recommendations. Furthermore, patients’ health outcomes may be

clustered within large units. For example, in a multi-centre study, patients within the

same hospitals are likely to be more similar compared to patients across hospitals. This

correlation between patients within a hospital is known as clustering. Random effects

logistic and frailty models which can take account of this clustering have been proposed

for the analysis of clustered binary and survival outcomes, respectively. In risk predic-

tion research, this clustering is often ignored both in the process of model development

and the validation of the models predictive performance. Limited work has been done

to assess the predictive ability of models developed with clustered outcomes, regardless

of the types of outcomes (binary or survival). This research also focuses on the use

of these models for risk prediction for clustered data and the validation methods for

assessing the predictive performance of the models.
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1.2 Objectives of this research

The primary objective of this research is to consider the methodological aspects of

validating a prognostic model, particularly focusing on the validation measures that

could be useful in assessing the predictive performance of the model.

Several validation measures have been proposed for models with independent sur-

vival outcomes, but it is still not clear what measures should be generally used. One of

the objectives of this research is to review some of the proposed measures and evaluate

these by a simulation study based on two real datasets in order to make recommenda-

tions for their use in practice.

Furthermore, limited work has been done for validation measures for models de-

veloped with clustered outcomes. This research discusses possible extensions of some

of the standard validation measures that have been used for independent binary or

survival outcomes for use with models for clustered outcomes. An application of these

measures is illustrated using data on patients who underwent heart valve surgery (bi-

nary outcome: in-hospital mortality) and child mortality data (survival outcome: time

to event, died/alive, by the 5th birthday). A simulation study is further conducted

to investigate the properties of the new measures under various simulation scenarios

formulated by varying the number of clusters and their size, varying the intra-cluster

correlation between subjects within a cluster, and for survival outcomes, varying the

degree of censoring.

The real data presented in this thesis are mainly used to illustrate and evaluate

validation measures. The clinical motivation for developing the risk models is not

the main focus here; it is assumed that the model development has been carried out

appropriately.
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1.3 Organization of this research

This research is organised as follows. Chapter 2 discusses the motivation and general

procedures for validating a prognostic model. This chapter also discusses a literature

review of validation measures that have been proposed for models with binary and

survival outcomes.

Chapter 3 evaluates some of the validation measures for models with independent

survival data. In particular, this chapter includes a motivation for choosing the mea-

sures to be evaluated, their calculation for the Cox proportional hazards model, and a

simulation study based on two clinical datasets.

In Chapter 4, some of the standard validation measures that have been used for

independent binary outcomes are extended for use with models for clustered binary

outcomes. This chapter particularly discusses the detailed calculation of these measures

for random intercept logistic model, starting with a description of the model and its

possible approaches to prediction. An illustration of these methods using real data and

a simulation study to assess their performance are also discussed.

Chapter 5 discusses possible extensions of some of the standard validation measures

for use with models for clustered survival data. Specifically, this chapter discusses a

frailty model along with its different approaches to prediction, and the detailed calcu-

lation of the validation measures for the frailty model. This chapter also includes an

illustration of the new methods using child mortality data and a simulation study to

assess the properties of the methods.

Chapter 6 starts by summarising the research and the findings, then discusses some

recommendations for use in practice, and ends by discussing the possibilities for future

research.
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Chapter 2

Validating a prognostic model

2.1 Introduction

A vital aspect of the prognostic modelling process is to consider whether a model

developed using a patient-sample is transportable to other patients from a relevant

but different population, who are different in terms of patient characteristics. This

concept is generally referred to as validity (or generalisability), and a model that is

found to have such quality is said to have been validated [26]. A validated model may

be recommended for use as a clinical decision making tool. Different types of model

validity have been discussed in the literature. These include ‘internal’, ‘temporal’, and

‘external’ validity. When conducting a validation study, there are some key aspects of

a model that need to be evaluated. These include ‘calibration’, ‘discrimination’ and

‘explained variation’. This chapter discusses all these aspects of validating a prognostic

model and includes a brief literature review of existing validation measures, starting

with a motivation for validating a model.

2.2 Motivation for validating a prognostic model

There are several reasons why we need to validate the performance of a prognostic

model. One of the main reasons is that we need evidence of the accuracy of predictions

made by the model before using it in clinical practice. Furthermore, a prognostic

model that accurately predicts for patients in the development data may not perform
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similarly for new patients from a different but relevant population [7, 26]. Therefore, to

establish that the model is useful to clinicians who would use it, it is essential to evaluate

(validate) its predictive performance particularly on new data different from which the

model was derived. There are several statistical and clinical reasons discussed in the

literature [7, 14, 16, 20, 27] explaining why a prognostic model may perform poorly on

new data. The reasons are discussed below:

(i) Inadequate design of prognostic studies:

The inadequate design of prognostic factor studies may lead to overoptimistic

results [7, 18]. The design may be inadequate if there is no standard inclusion and

exclusion criteria for selecting patients (many patients may be excluded because

of missing data), no justification for the choice of treatments, an inadequate

sample size, and an inadequate number of events of interest per predictor. For

more details, see Altman and Royston [7], Harrell et al. [28], and Peduzzi et al.

[29, 30].

(ii) Lack of a standard approach to developing the model:

A prognostic model may not perform well for new patients if the model was

inadequately developed in the original sample. The model may be developed,

for example, using ‘stepwise variable selection algorithm’, by which one selects

the best model from many alternative models, but these methods usually have

data-dependent aspects. These aspects are likely to lead to an overoptimistic

assessment of the predictive performance. For more details, see Altman and

Royston [7], Altman et al. [14].

(iii) Differences between patients’ characteristics in the development and validation

data:

Even if the model is adequately developed, it may not perform well for new

patients. This may be because there are differences between the characteristics of

the patients in the development and validation data. This is known as a difference

in ‘case-mix’ [7, 15, 20]. Both the discrimination and calibration of a model could

be affected by the difference in ‘case-mix’. For example, if age is one of the

predictors included in the model and ranges from 60 to 80 years in the validation

sample and 20 to 80 years in the development sample, then the discrimination

(between patients who experienced the outcome and who did not) in the more
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homogeneous validation population would be expected to be worse than in the

more heterogenous development population [20]. Another example would be if

the validation sample contains relatively more patients with hypertension than

the development sample, and presence of hypertension increases the probability of

the outcome but hypertension was not included in the model (missed predictor),

then the predicted probability derived from the model may be underestimated in

the validation population [15, 20].

2.3 Validation procedure

This section discusses a procedure for validating a prognostic model, following the val-

idation strategies discussed in the literature [7, 14]. Typically, a validation procedure

involves (i) designing a validation study, which describes the development and valida-

tion data and what type of validation process one should choose, and (ii) identifying

the aspects of the model, for example, calibration and discrimination that need to be

validated.

2.3.1 Design of a validation study

The main validation processes discussed in the literature are internal validation, tempo-

ral validation, and external validation study [7, 14, 16, 20, 27]. These are now discussed

in the following subsections.

2.3.1.1 Internal validation

The key feature of internal validation process is that only one dataset (the primary

data) is used. The most common approach is to randomly split the data into two

parts (often 2:1) before model development begins [7, 14, 20]. The first part, which

is usually called the ‘development’ set, is used to develop the model and the second

part, called the ‘validation’ set, is used to evaluate the model’s predictive performance.

This data-splitting process has some limitations. For example, this process is likely to

provide overoptimistic results on the model’s performance. In addition, the estimates

of the predictive performance from this procedure may be unbiased, but they tend to

be imprecise [31]. A possible reason is that both datasets are very similar as they
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were extracted from the same underlying population. Furthermore, one issue that

commonly arises in data-splitting process is how to split the data; there is no guideline

on what proportion of patients should be in the development and validation sets [7, 32].

Some alternative, but better, approaches are to use a resampling technique such as

‘bootstrapping’ and ‘cross-validation’. These resampling techniques are commonly used

to overcome overoptimism [7, 33–35].

Briefly, bootstrapping [36] involves taking a large number of samples with replace-

ment from the original sample, of the same size as the original data set. Then models

may be developed in the bootstrap samples and validated in the original sample. In

cross-validation, for example, k-fold cross-validation, the original sample is partitioned

into k subsets, one of which is used to validate the model and the remaining k − 1

subsets are used to develop the model. This procedure is repeated k times. To improve

the efficiency of the cross-validation, the whole procedure can be repeated several times

taking new random subsamples [35]. The most extreme cross-validation technique is to

leave one subject out at a time, which is equivalent to the jack-knife technique [36].

2.3.1.2 Temporal validation

In principle, temporal validation approach is similar to internal validation using data-

splitting. In this procedure, a single dataset is partitioned into two cohorts observed

at different time points. The model is usually developed with data from one cohort of

patients collected at a particular time point and is evaluated on a subsequent cohort

from the same centre(s). Temporal validation is a prospective evaluation of a model,

independent of the original data and the development process [7]. In addition, this

approach can be considered as external validation with respect to time.

2.3.1.3 External validation

In this procedure, the performance of the model is evaluated on new data collected from

a relevant patient population in a different centre. The second dataset, the validation

set, must have information available on all the predictors in the model. The acceptable

degree of similarities (or dissimilarities) between development and validation popula-

tions from which the samples were drawn is a matter of debate. However, it would
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not be reasonable to expect that a model developed on a sample of older patients to

perform well in younger patients. Of the three validation processes discussed above,

only the external validation process appears to serve the purpose that a prognostic

model should be transportable (or generalisable) to new patients [7, 14].

2.3.2 Key aspects of a model that need to be validated

This section discusses the key aspects of a model that need to be validated. These

include (i) the agreement between the observed and predicted outcome of interest for

a group of patients (calibration) or for an individual patient (accuracy score), and

(ii) the ability of the model to distinguish high risk patients from those with low risk

(discrimination) [7, 15, 22]. Another aspect that is used to assess the overall predictive

performance of the model (both the calibration and discrimination simultaneously) is

the concept of ‘explained variation’ [23, 35, 37]. The more the variability in the outcome

explained, the better the predictive ability of the model. All these aspects are discussed

in detail below.

2.3.2.1 Calibration

Calibration is an important aspect of a prognostic model that considers the answer to

the question ‘Are the predictions made by the model reliable?’ More specifically, the

calibration aspect of the model refers to the agreement between the predicted outcome

of interest and the observed outcome. For example, for a group of 100 patients, if the

probability that the event of interest will occur is predicted by the model to be 10%,

then the model would be well calibrated if it actually does occurs for approximately

in every 10 out of 100 patients. This suggests that the model has good predictive

ability. When such agreement is quantified for an individual prediction by means of a

loss function, for example, squared error loss, then it is called an ‘accuracy score’.

2.3.2.2 Discrimination

Discrimination is the ability of the model to distinguish between patients with high

risk for a given event and patients with low risk for that event. A model with reason-

ably good discriminatory ability shows a wide spread in the distribution of predicted

11



2.3 Validation procedure

probabilities. For example, such a model might predict probabilities close to 100% for

patients who had experienced the event of interest and probabilities close to 0% for

patients who did not experience the event.

2.3.2.3 Distinction between calibration and discrimination

There is a conceptual difference between the discrimination and calibration aspects

of a model. Good calibration does not necessarily lead to good discrimination in the

model. In fact, an well calibrated model can exhibit poor even no discrimination.

This phenomenon is illustrated by a hypothetical example of two models. Figure 2.1

Figure 2.1: Plots to show the distinction between calibration and discrimination. Plots
are for two hypothetical models (M1 and M2) with equal (perfect) calibration but different
discriminatory abilities.

demonstrates the assessments of two well calibrated models, say M1 and M2, which

have different discriminatory abilities. In case of both models, the predicted and ob-

served probabilities for each of the six groups agree with each other, indicating perfect

calibration. However, the predicted probabilities made by the model M1 ranges be-

tween 10% and 95% indicating strong discriminatory ability, whereas those of model

M2 ranges between 40% and 55% indicating weak discriminatory ability. Generally for

clinical purposes, one would like to have both good calibration and discrimination in a

model. However, of these two aspects, the primary focus should be on good discrimi-
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nation [8]. This is because if there is mis-calibration, re-calibrated is possible, but poor

discrimination can not be fixed to a good discrimination.

2.3.2.4 Overall performance

This aspect of a model quantifies the accuracy of predictions for each patient or for

a group of patients (calibration) and also quantifies the spread in predictions (dis-

crimination). Therefore, by assessing this aspect one validates both the calibration and

discriminatory ability of the model, often referred to as ‘overall’ predictive performance.

This aspect is also known as ‘explained variation’. A value of explained variation is

interpreted as the proportion of variation in the outcome that can be explained by the

predictors in the model. Intuitively, good calibration and strong discrimination im-

plies a high value of explained variation [23, 38]. In the previous hypothetical example

illustrated by Figure 2.1, the model M1 exhibits more explained variation than M2.

2.4 Measures that assess the predictive ability of a model

Measures that assess the predictive ability (calibration or discrimination or both) of a

model can be considered as estimates of underlying parameters, which summarise the

intrinsic ability of the model to predict accurately and to discriminate well between

patients in the target population. Such measures are usually known as validation

measures. This section briefly discusses some popular validation measures that have

been proposed in the prognostic modelling literature.

2.4.1 Measures of calibration

The calibration of a model can be assessed graphically, with predictions made by the

model on the x-axis and the observed outcome on the y-axis. This plot is known as

calibration plot [39]. If the model’s predictions agree with the observed outcomes over

the entire range of predictions, the plot will show a 45-degree line. For an outcome

with normal distribution, the calibration plot can be achieved from a scatter plot of

observations against predictions. For a binary outcome y , the y-axis of the plot contains

only 0 and 1 values. To estimate the observed proportions of the outcome for each

patient in relation to the predicted probabilities, a smoothing technique, such as the
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loess algorithm [40], can be applied [24]. The plot can also be obtained by grouping

patients with similar predicted probabilities and then by comparing the mean observed

outcome with the mean predicted probability obtained for each group of patients. For

example, one can plot the observed outcome by decile of the predicted probabilities,

which is essentially a graphical illustration of the Hosmer-Lemeshow test [41].

Figure 2.2: Theoretical calibration plots to assess the agreement between the observed
proportion and predicted probability with a dot line through all outcome value (0 and 1):

(a) α̂ = 0, β̂ = 1; (b) α̂ = 0, β̂ = 0.74; (c) α̂ = −0.65, β̂ = 1 ; (d) α̂ = −0.65, β̂ = 0.74.

The calibration plot can be summarised by fitting a (regression) line of the observed

proportions on the predicted probabilities, which results in an intercept α̂ and slope β̂.

For a plot showing a 45-degree line, α̂ = 0 and β̂ = 1 (Figure 2.2a). This approach to

summarise the calibration aspect of a model was originally proposed by Cox [42] and

was further considered by Miller et al. [39] for a model with binary outcomes. The

intercept and slope of the calibration line can be estimated using a logistic regression

model with the predicted ‘prognostic index’ derived from the model for the validation

14



2.4 Measures that assess the predictive ability of a model

sample as the only predictor. The ‘prognostic index’ is the linear combination of the

predictors in the model weighted by the estimated regression coefficients.

If the estimated slope β̂ is much smaller than 1, it indicates optimism (overfitting).

This implies that the predictions are too extreme: the predictions are too low for low

risk subjects and too high for high risk subjects (Figure 2.2b). If the opposite occurs,

that is, the estimated slope is much larger than 1, it indicates that the predictions are

too high for low risk subjects and too low for high risk subjects [38, 40]. The estimated

intercept α̂ assesses the overall agreement between the observed and the predicted

outcomes, that is, the agreement between the sum of all predicted probabilities and

total number of observed outcomes. This is referred to as ‘calibration-in-the-large’. If

the intercept α̂ is much different from 0, it may indicate that the predicted probabilities

are systematically too high (α̂� 0, Figure 2.2c) or too low (α̂� 0). If both the slope

and intercept are far away from 1 and 0, respectively (Figure 2.2d), the interpretation

of miscalibration is difficult, because the values of both slope and intercept are highly

correlated [38].

For survival outcomes, a calibration plot could be a plot of Kaplan-Meier (K-M)

estimates of survival probabilities at a selected time point, say t∗, against the survival

probabilities predicted by the model at t∗. In a similar manner to that for binary

outcomes, the plot can be achieved by grouping patients with similar predicted prob-

abilities, which can be determined by the decile of predicted probabilities at t∗, and

then by comparing the mean K-M probabilities with the mean predicted probabilities

for each group of patients [38].

Furthermore, the slope of the calibration line can be estimated from a regression

analysis using, for example, the Cox proportional hazards (PH) model with the ‘prog-

nostic index’ as the only predictor [43, 44]. The intercept of the calibration model can-

not be calculated directly using the Cox PH model, as it does not estimate an intercept,

but it includes the intercept within the baseline hazard. If the intention is to validate

the whole model, that is, both the slope and intercept, the time-axis needs to be trans-

formed into the cumulative baseline hazard obtained from the model. Then a Weibull
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2.4 Measures that assess the predictive ability of a model

model in an accelerated failure time (AFT) formulation of this transformed time scale

with the ‘prognostic index’ as a single predictor can be used to assess the whole model

[43, 44]. The resulting model takes the form: ln(t) = α + β × prognostic index + γe,

where e is distributed as the logarithm of a negative exponential. The whole model

is strictly well calibrated if α̂ is close to 0, β̂ is close to -1, and γ̂ is close to 1. Note

that the Weibull model is also a proportional hazards model with regression coeffi-

cient β∗ = −β/γ. For more details, see van Houwelingen and Thorogood [43] and van

Houwelingen [44].

2.4.2 Measures of discrimination

A number of measures have been published in the literature to assess the discrimina-

tory ability of prognostic models. The most commonly used measure is the concordance

probability, which is also called the concordance statistic or C-index. Another mea-

sure is based on prognostic separation that quantifies the spread of the observed risks

across the range of predicted risks. This measure is known as a measure of prognostic

separation or a separation statistic.

2.4.2.1 Measures based on concordance probability

Concordance probability (C-index) quantifies the concordance between the ranking of

the predicted and observed outcomes. For binary outcomes, concordance is measured

between the predicted and observed event of interest. Whereas for survival outcomes,

concordance is measured between the observed and predicted orders of failure. For

binary outcomes, the concordance statistic (or C-index) is identical to the area under

the receiver operating characteristic curve (AUC) [45]. The receiver operating charac-

teristic (ROC) curve is the graph of sensitivity (true-positive rate) versus one minus

specificity (true-negative rate) evaluated at consecutive threshold values of the pre-

dicted probability. Briefly, the sensitivity refers to the percentage of patients with an

event who are correctly identified as having the condition, and the specificity refers to

the percentage of patients without an event who are correctly identified as not having

the condition.
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2.4 Measures that assess the predictive ability of a model

The AUC measures the ‘concordance’ of ranking between the predicted probabilities

of having the event for a random pair of subjects who had the event and who did not.

This represents the probability that the event subject has higher predicted probability

than the non-event subject. For a model with perfect discriminatory ability, the ROC

curve passes through the coordinate (0,1) of the ROC space, which corresponds to

sensitivity = 100% and specificity = 100% for each threshold value and AUC = 1. A

straight line from the bottom left (0,0) to the top right (1,1) corners corresponds to

the AUC = 0.5, which indicates a model with no discriminatory ability.

Applying ROC methodology to survival data is not straightforward. The AUC

assesses the discriminatory ability of the model at an arbitrary time point rather than

the entire time period, and it does not take into account the censoring pattern of the

subjects. To overcome these drawbacks, an extension of the C-index or AUC proposed

by Harrell et al. [8, 28, 46] for use with right censored survival data is commonly

known as Harrell’s C-index. This is a rank-order statistic motivated by Kendall’s τ

[47] that measures the association between the ranked predicted and observed survival

times. Specifically the C-index is based on the idea that, for a randomly selected pair

of subjects, the subject who fails first has shorter predicted survival time. This is

described in detail in Chapter 3.

Gonen and Heller [48] discussed the possibility of bias in Harrell’s C-index, induced

by censoring, and proposed a new measure of concordance probability, K(β), for use

with the Cox proportional hazards model. K(β) is a model based estimator and is a

function of model parameters and the covariate distribution. This is explained in more

details in Chapter 3.

2.4.2.2 Measure based on prognostic separation

This measure quantifies the separation between the observed risks across the range of

predicted risks. In survival analysis, the standard approach often used in the literature

is to generate a prognostic classification scheme comprising of two or more risk groups

and to plot the Kaplan-Meier survival curves for each group, which leads to the idea

of separation of survival curves as a measures of prognostic information. Based on this
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idea, Royston and Sauerbrei [49] proposed a measure of prognostic separation, called

separation statistic, D statistic. The D statistic can be calculated by first transforming

the prognostic index derived from the model using the Blom’s approximation [50] to

give a standard normal order rank statistic z; D is then the coefficient of z in a model

fitted with z as the only predictor. The D statistic can be interpreted as the log hazard

ratio (for survival outcomes) or log odds ratio (for binary outcomes) between low-and

high-risk patient-groups obtained by dichotomising the predicted prognostic index at

their median value.

2.4.3 Overall performance measures: R2 type measures

Measures in this category are equivalent to the R2 measures generally used in normal

linear regression and are also used to quantify the prognostic ability of the predictors

in the model. The main reason for the popularity of R2 in normal linear regression

is its interpretation as the proportion of variation in the outcome that is explained

by the predictors in the regression model. R2 measures in prediction research aim at

quantifying the increase in the amount of explained variation in the observed outcome

resulting from the addition of the predictor to the model. The value of R2 measures

range between 0 and 1 (or 0 - 100%). A maximum value of 1 indicates that the

predictors fully explain the variation in the outcome, whereas the minimum value 0

indicates that the predictors have failed to explain any of the outcome.

Extending the definition of R2 for linear regression, several measures have been

proposed for both binary and survival outcomes, exclusively for logistic and Cox models.

Such measures have been reviewed and compared by Mittlbock and Schemper [51] for

models with binary outcomes and by Choodari-Oskooei et al. [52] and Schemper and

Stare [53] for models with survival outcomes. As discussed by Mittlbock and Schemper

[51] and Choodari-Oskooei et al. [52], R2 measures are mainly defined based on either

a loss function (for example, squared error loss), or the model’s log-likelihood function,

or the Kullback-Leibler distance [54].

Commonly used R2 type measures based on the loss function approach include those

proposed by Schemper and Henderson [23], Graf et al. [55], Schemper [56], Margolin
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2.4 Measures that assess the predictive ability of a model

and Light [57], Haberman [58], van Houwelingen and Le Cessie [59], and Schemper [60].

Measures based on the model’s likelihood and the Kullback-Leibler distance include

those proposed by Kent and O’Quigley [61], Cox and Snell [62], Korn and Simon [63],

Magee [64], Nagelkerke [65] O’Quigley et al. [66], and Royston [67]. Among all types of

R2 measures, the measures based on the loss function approach have an interpretation

closely related to the measures of discrimination and calibration, and have also been

used in practice [37, 68]. In the following subsection, a brief discussion on the measures

based on the loss function approach are given.

2.4.3.1 Measures of explained variation: based on loss function approach

Measures in this category quantify the relative gain in predictive accuracy resulting from

the addition of predictors to the model. The predictive accuracy is usually obtained by

quantifying the distance between the observed and predicted outcome. For continuous

outcomes, the distance is usually Y − Ŷ , where Ŷ is the predicted value of the outcome

Y . For binary outcomes, Ŷ is equal to the predicted probability of the event occurring,

and for survival outcomes, it is the predicted survival probability at a given time or

as a function of time. A measure of predictive accuracy is then defined by applying a

loss function to the distance Y − Ŷ . The most commonly used loss functions include

the squared error loss, for example, (Y − Ŷ )2, and absolute error loss, for example,

|Y − Ŷ |). A wide variety of loss functions, most of which are adapted from these two,

for binary and survival outcomes have been discussed in the paper of Mittlbock and

Schemper [51] and Korn and Simon [63], respectively.

The most commonly used measure of predictive accuracy for both binary and sur-

vival outcomes is the Brier score [55, 69], which was originally developed by Brier [70]

for assessing the inaccuracy of probabilistic weather forecasts. The Brier score is based

on the squared error loss function and assesses the predictive accuracy of individual

predictions. Schemper and Henderson [23] proposed another measure of predictive ac-

curacy, Dx, based on the absolute error loss function. The calculation of both the Brier

score and Dx for survival data require an additional weight factors to adjust for the

effects of censoring.
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2.5 Conclusion

The relative gain in predictive accuracy, which gives an R2 value, can be obtained

by comparing the prediction error PEx (for example, the Brier score) obtained for the

model with predictors X and the prediction error PE0 obtained for the null model.

Then a general measure of explained variation based on the loss function approach is

defined as

R2
PA = 1− PEx

PE0
.

R2
PA ranges between 0 and 1; a maximum value of 1 indicates that the outcome is fully

explained by the predictors in the model while the minimum value 0 indicates that the

predictors have failed to explain the outcome at all.

2.5 Conclusion

This chapter has discussed motivation and a general procedure for validating a prog-

nostic model, particularly focusing on models with binary and survival outcomes. Val-

idation of a prognostic model is essential before using it in clinical practice. Generally,

validating a prognostic model implies achieving evidence regarding the accuracy of

predictions for new patients different from those used to developed the model. This

chapter has discussed the design of the validation process and key aspects of the model

that are evaluated when conducting a validation study. This chapter has also provided

a brief literature review of validation measures that have been proposed to assess the

predictive performance of models for binary or survival outcomes.

The next chapter reviews and evaluates some of the validation measures that have

been proposed for models with independent survival outcomes and makes practical

recommendations, starting with a motivation for this investigation.
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Chapter 3

Measures for independent

survival outcomes

3.1 Introduction

It is essential that prognostic models have good ability to make accurate predictions.

Therefore, there needs to be validation measures available to evaluate the predictive

ability of these models. Validation measures for models for binary outcomes are rea-

sonably well developed; see, for example, Omar et al. [10], Steyerberg et al. [24], and

Royston and Altman [25]. However, despite the proposal of several validation measures

for survival outcomes, it is still unclear which measures should be adopted for general

use. One common feature of survival data is that these are subject to censoring, and

therefore it is essential for a validation measure to be robust to the degree of censoring

[52, 53, 68]. The aim of this chapter is to review some of the validation measures pro-

posed for survival models, to evaluate their performance through simulation studies,

and to make recommendations regarding their use in practice.

Some authors have already investigated the performance of validation measures for

survival risk models [52, 53, 68]. However, these papers focussed only on measures

of explained variation. In addition, some of these papers did not consider the use

of validation data; they validated the model using the same data that were used to
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3.2 Example data sets

develop the model [52, 53]. However, assessing the performance of a prognostic model

on the data used to develop the model can lead to overoptimistic results regarding

its predictive performance [26]. This chapter will evaluate validation measures using

data that have not been used for model development. The performance of validation

measures for survival outcomes from all categories: discrimination, calibration and

predictive accuracy, and explained variation will be investigated.

The chapter is organised as follows. Section 2 describes two real clinical datasets

that are used to simulate the new data for this investigation. Section 3 describes the

validation measures that were assessed, focusing on the motivation for choosing these

measures, their estimation, and their properties. In Section 4, the criteria against which

the measures are assessed and the simulation design are discussed. Section 5 presents

and discusses the simulation results. Some recommendations are discussed in Section

6, and Section 7 ends the chapter with a general discussion.

3.2 Example data sets

3.2.1 Breast cancer data

This dataset contains information on patients with primary node positive breast cancer

from the German Breast Cancer Study [71]. The outcome of interest is recurrence-free

survival time and there are 686 patients, with 299 events; that is, the rest of the

patients (56%) were censored. The median follow-up time was 4.5 years. All these

patients had complete data for all predictors that include age, tumour size (tsize),

number of positive lymph nodes (lnod), progesterone status (progest), menopausal

status (menpst: pre/post), tumour grade (tgrad: 1-3), and hormone therapy (hormon:

yes/no). For simulation purposes, all the continuous predictors, except age, were log-

transformed. If the predictor contained zero values then a small scalar was added prior

to the transformation. Age was converted into three categories: below 45 years, 45-60

years, above 60 years. The risk model based on this dataset has already been published

[72]. The only focus here is to use this dataset for simulation purposes and to assess

the performance of the validation measures, rather than on the clinical motivation for

developing a risk model.
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3.3 Validation measures for the Cox Proportional Hazards model

3.2.2 Sudden cardiac death data

This dataset contains information on a retrospective cohort of patients with hyper-

trophic cardiomyopathy from a single cardiac hospital in the UK. The outcome of in-

terest is sudden cardiac death (SCD). There are 1831 patients of which 79 had recorded

sudden cardiac death; the rest of the patients were censored. The median follow-up

time was approximately 5 years. The predictors of interest are age, number of runs

of ventricular tachycardia (runvent: 0-2 or 3+), obstruction to blood flow (BF), ab-

normal blood pressure response to exercise (BP: normal or abnormal), and maximum

thickness of heart muscle (HM). The dataset is used in this thesis only for simulation

purposes and to evaluate the performance of the validation measures. The risk model

based on this dataset is under development; the aim is to guide clinical management

of patients who have been suffering from hypertrophic cardiomyopathy. I would like to

thank Drs Constantinos O’Mahony and Perry Elliott for allowing me to use their data

for simulation purposes.

3.3 Validation measures for the Cox Proportional Haz-

ards model

The Cox Proportional Hazards (PH) model [73] is the most commonly used regression

model for the analysis of right censored survival outcomes. Note that a subject is

right censored if it is known that the event of interest occurs some time after the

observed follow up period. Consequently, in health care research, prognostic models

for survival data are typically developed using the Cox PH model and hence validation

measures will be evaluated based on this model. For this investigation, we have selected

measures that can be interpreted and communicated easily for clinical purposes, have

been implemented or are easy to implement in commonly used statistical softwares,

and can be used routinely in practice.

Validation measures selected include the calibration slope [44] from the category of

calibration measures; Harrell’s C-index [8], Gönen and Heller’s K(β) [48], and Roys-

ton and Sauerbrei’s D [49] from the discrimination measures; Graf et al’s integrated
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3.3 Validation measures for the Cox Proportional Hazards model

Brier score (IBS) from the category of predictive accuracy measures; and R2
IBS [55],

and Schemper and Henderson’s V [23] from the explained variation category. Further

motivation for choosing these measures and their estimation for the Cox PH model are

given in the following sections, following a description of the Cox model and some basic

notation.

3.3.1 The Cox Proportional Hazards model

Suppose we have data on N subjects, where for the ith subject, ti is the observed

time, δi is 1 if the event of interest is experienced at ti or 0 otherwise (right censoring),

and xi is a vector of p predictor values. The Cox model specifies the hazard, which

corresponds to the risk that the event will occur in an interval after time t given that

the subject had survived to time t, as

h(t|xi,β) = h0(t) exp(ηi),

where h0(t) is the baseline hazard that describes how the hazard changes over time at

baseline levels of predictors, and ηi = β1xi1+. . .+βpxip = βTxi is the prognostic index,

a linear combination of p predictor values weighted by regression coefficients β1, . . . , βp.

The predictive form of this model can be written in terms of the survival function as

S(t|xi,β) = S0(t)
exp(ηi),

where S(t|xi) is the probability of surviving beyond time t given predictors xi, and

S0(t) is the baseline survivor function at time t, which corresponds to the baseline

hazard h0(t) as S0(t) = exp[−
∫ t
0 h0(u)du]. To make predictions at time t, one uses

estimates β̂T and Ŝ0(t) [37].

3.3.2 Measures of calibration

A calibration measure assesses whether the model makes reliable predictions by as-

sessing how closely the predicted probability of survival for a group of subjects at a

particular time point agrees with the actual outcome. When such an agreement is quan-

tified for an individual subject, this aspect leads to a measure of predictive accuracy
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(Section 3.3.4). The most commonly used calibration measure for survival models is the

calibration slope proposed by van Houwelingen [44], which was originally introduced

for binary outcomes by Cox [42] and was further considered by Miller et al. [74].

3.3.2.1 Calibration slope (CS)

The calibration slope (CS) assesses the degree of agreement between the observed and

predicted values using a regression model. The calibration slope for survival data is

obtained by fitting a Cox Model to the validation data where the predicted prognostic

index η̂i = β̂Txi is included as the only predictor:

h(t|η̂, βη) = h0(t) exp(βηη̂).

If β̂η is close to 1, it suggests that the predicted log hazard ratio is accurate. A value

far away from 1 indicates that some form of re-calibration of the risk model may be

necessary [44]. In particular, β̂η � 1 suggests over-fitting in the original data with the

spread of predictions being too large: the predictions are too low for low risk subjects

and too high for high risk subjects.

3.3.3 Measures of discrimination

Measures of discrimination assess how well a model can distinguish patients with high-

risk from those with low-risk. The discriminatory ability of a survival model is com-

monly quantified by a measure of concordance probability that quantifies the correlation

between the predicted and observed survival times. The most frequently used concor-

dance measure is the C-index, which has been proposed by Harrell et al. [8]. However,

Gonen and Heller [48] reported possible censoring bias in the C-index and proposed

a new measure of concordance probability K(β) to overcome this problem. Another

measure of discrimination is the D statistic proposed by Royston and Sauerbrei [49].

This is based on the idea of prognostic separation which quantifies the spread in the

observed risks between those patients predicted to be at low risk and those at high risk.

All these measures are discussed in detail in the next section.
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3.3.3.1 Harrell’s C-index

The C-index [8] is a rank-correlation measure motivated by Kendall’s τ statistic [47]

which quantifies the correlation between the ranked predicted and observed survival

times. For the Cox PH model, this is defined as the probability that of a randomly

selected pair of subjects, the subject who fails first has the worse predicted prognosis.

The overall concordance probability, or the C-index, is calculated as the proportion of

all usable pairs in which the predictions and outcomes are concordant. For a randomly

selected pair of subjects (i, j) with observed survival times ti and tj respectively, the

pair is said to be usable or comparable if ti 6= tj . For censored data, a pair is usable if

the shorter time corresponds to an event. With the corresponding predicted survival

times t̂i and t̂j , a usable pair is said to be concordant if ti > tj and t̂i > t̂j or ti < tj and

t̂i < t̂j . For a proportional hazards model, a ‘one-to-one’ transformation holds between

the predicted survival time t̂i and the predicted probability of survival S(t|xi) for every

t > 0 [75]. Therefore, t̂i and S(t|xi) are interchangeable. A pair is then concordant

if ti > tj and S(t|xi) > S(t|xj) or ti < tj and S(t|xi) < S(t|xj). If the inequalities

go in the opposite direction, that is, ti > tj and S(t|xi) < S(t|xj) or ti < tj and

S(t|xi) > S(t|xj), then the pair is said to be discordant. In the presence of censoring,

not all pairs of subjects are observed to be usable. If there is high degree of censoring

then many subject pairs will be omitted from the calculation of the C-index.

Mathematically, the concordance probability under the Cox PH model can be de-

fined as

C = Pr
[
S(ti|xi) < S(tj |xj)|ti < tj

]
,

or equivalently

C = Pr
[
βTxi > β

Txj |ti < tj

]
.

Ties in the observed survival times and/or in the predicted survival probability are

ignored in above definition. Indeed, the distributions of survival times and the predicted

probability of survival are assumed to be continuous.
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Considering all possible pair of subjects (i, j), given that at least one of them had

an event, with their observed data {(ti, δi,xi), (tj , δj ,xj)} the C-index for the Cox PH

model can be estimated using

Ĉ =

N∑ N∑
i<j

[
I(β̂Txi > β̂

Txj & ti < tj & δi = 1) + I(β̂Txj > β̂
Txi & tj < ti & δj = 1)

]
N∑ N∑
i<j

[
I(ti < tj & δi = 1) + I(tj < ti & δj = 1)

] ,

where I(.) is the indicator function and β̂T is the partial likelihood estimator of βT .

The C-index typically ranges between 0.5 and 1, where a value of 0.5 indicates no

discriminatory ability of the model and 1 indicates perfect discrimination. Values

below 0.5 are possible, but rarely occur in practice. This scenario implies that the

model predicts better prognosis for the subject who fails first.

3.3.3.2 Gönen and Heller’s K(β)

Gönen and Heller’s K(β) [48] is an alternative estimator of the concordance probability

under the Cox PH model. It is a function of the model parameters and the predictor

distribution only. Unlike Harrell’s C-index, K(β) does not use the observed event and

censoring times directly. Since the effect of censoring on the partial likelihood estimator

of βT is negligible, K(β) is reported to be asymptotically unbiased [48]. The K(β)

statistic has the same interpretation to the C-index.

Under the proportional hazards model, the ranking between the survival times,

denoted T (βTxi) and T (βTxj), of a randomly selected pair of subjects (i, j) can be

calculated by

Pr[T (βTxj) > T (βTxi)] =

∫ ∞
0

S(t|xj ,βT )dS(t|xi,βT )

=
1

1 + exp{βT (xj − xi)}
,

where T (βTxi) and T (βTxj) corresponds to the prognostic index βTxi and βTxj ,

respectively. Considering all pairs (i, j), the concordance probability
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K(β) = Pr(tj > ti|βTxi ≥ βTxj)

can be estimated using

K(β̂) =
2

N(N − 1)

N∑ N∑
i<j

[ I(β̂Txi > β̂
Txj)

1 + exp{β̂T (xj − xi)}
+

I(β̂Txj > β̂
Txi)

1 + exp{β̂T (xi − xj)}

]
.

It seems that K(β) can be calculated knowing the regression coefficients of the Cox

model and predictor values. Unlike C-index, all pairs of subjects are used in the

calculation of K(β). The C-index uses all pairs only when there is no censoring.

Therefore, for the uncensored data, K(β) claims to be very close to the C-index [48].

3.3.3.3 Royston and Sauerbrei’s D

The D-statistic [49] quantifies the observed separation between subjects with low and

high predicted risk, as predicted by the model. It is calculated by first transforming

each patient’s predicted prognostic index η̂i = β̂Txi to give standard normal order rank

statistics (rankits-formed) using Blom’s approximation [50]. These rank statistics are

then divided by a factor of
√

( 8
π ) to give zi as

zi = k−1Φ−1
( i− 3/8

N + 1/4

)
,

where i is the rank order based on the predicted prognostic index η̂(i), N is the number

of observations, Φ−1(.) is the inverse standard Normal distribution function, and k =√
8/π ≈ 1.60. The scaled normalised predicted prognostic index zi is distributed as

N(0, π/8). A Cox PH model is then fitted using zi as the sole predictor, which takes

the following form:

h(t|z, βz) = h0(t) exp(βzz).

The estimated regression coefficient for this predictor is the estimate of D statistic, D̂.

Alternatively, suppose two equal-sized prognostic groups are determined by dichotomis-

ing zi at their median, then Cox regression on the group averaged zi provides the same

regression coefficient as Cox regression on a dummy variable distinguishing the groups.
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Therefore, D̂ is interpreted as the log hazard ratio between the two patient groups;

these groups may be described as low and high risk, respectively. The null value for D̂

is 0, with increasing values indicating greater separation.

3.3.4 Measures of predictive accuracy and explained variation

Measures of predictive accuracy quantify the squared (or absolute) distance between

the predicted survival probability and the actual outcome for an individual subject at

a particular time point. For example, the Brier score [55, 76] may be used to assess

predictive accuracy at a particular time point t. The integrated version of the Brier

score (integrated Brier score) assesses the overall predictive accuracy over the entire

study period. Schemper and Henderson [23] proposed a similar measure of predictive

accuracy, denoted by Dx, to the integrated Brier score (IBS).

A measure of predictive accuracy leads to a ‘relative measure of predictive accuracy’

or ‘measure of explained variation’ that has the same interpretation to R2 measures

commonly used in normal linear regression [23, 55]. Several measures of explained vari-

ation have been proposed in the literature [52, 53]. Among them, the measures which

are based on the predictive accuracy approach, for example, V proposed by Schemper

and Henderson [23] and R2
IBS proposed by Graf et al. [55], have an interpretation closely

related to the measures of discrimination and calibration. In addition, these measures

have been used in practice [37, 68]. Therefore, these two measures have been chosen

from the category of explained variation. All these measures are discussed in detail in

the following sections.

3.3.4.1 Graf et al’s Brier score

The Brier score can be calculated by comparing the predicted survival probability and

the observed survival status using a quadratic loss function, then taking a weighted

average over all subjects. The weights are used to compensate for the loss of information

due to censoring.

For data (ti, δi,xi), the individual contribution to the Brier score (BS) at time t

can be split up into three categories: if
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(i) ti ≤ t and δi = 1, B̂S(t|xi) = (0− Ŝ(t|xi))2

(ii) ti > t and δi = 1 or δi = 0, B̂S(t|xi) = (1− Ŝ(t|xi))2

(iii) ti ≤ t and δi = 0, the survival status is unknown and thus the contribution to

BS cannot be calculated.

The loss of information indicated in category (iii) is compensated by adding a weight

to B̂S(t|xi) for subjects in categories (i)-(ii). These weights account for the inverse

probability of censoring [77]. The resulting weighted Brier score can be calculated as

B̂Sx(t) =
1

N

N∑
i=1

[(0− Ŝ(t|xi))2I(ti ≤ t, δi = 1)

Ĝ(ti)
+

(1− Ŝ(t|xi))2I(ti > t)

Ĝ(t)

]
,

where Ĝ(t) is the Kaplan-Meier estimate of the probability of being uncensored at time

t. The Brier score at time t can be interpreted as the mean squared error of prediction

for survival. Lower values of the Brier score indicate better predictive performance of

the model; 0 indicates perfect predictions, which is however very unlikely to occur in

practice.

The Brier score defined above is a function of time t. Therefore, to obtain a summary

measure of predictive accuracy over a range of time points, say 0 < t ≤ τ , an integrated

version of the Brier score (IBS) can be estimated by integrating B̂Sx(t) for all t (0 <

t ≤ τ) with respect to some weight functions W (t). The IBS is given by

ÎBSx(τ) =

∫ τ

0
B̂Sx(t)dŴ (t).

where Ŵ (t) is a function to weight the contribution of the Brier score at individual time

points, and τ should be chosen as any time less than or equal to the last observed failure

time. The weight Ŵ (t) is implemented for ÎBSx(τ) as a straightforward trapezoidal

rule for integrating the area under the prediction curve. Following [55], we choose

Ŵ (t) = (1 − Ŝ(t))/(1 − Ŝ(τ)), where Ŝ(t) denotes the estimated marginal survival

function. The integrated Brier score was investigated in this study.
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3.3 Validation measures for the Cox Proportional Hazards model

3.3.4.2 Graf et al’s R2
IBS

To quantify the relative gain in predictive accuracy resulting from the inclusion of

predictors in the model, Graf et al. [55] also proposed R2
IBS which can be estimated as

R̂2
IBS = 1− ÎBSx(τ)/ÎBS0(τ),

where ÎBS0(τ) and ÎBSx(τ) are the estimated integrated Brier scores obtained from

the null model and the model with predictors, respectively. R2
IBS ranges between 0

and 1. A maximum value of 1 indicates that the predictors fully explain the variation

in the outcome, whereas the minimum value 0 indicates that the predictors have failed

to explain any of the outcome.

3.3.4.3 Schemper and Henderson’s V

Similar to R2
IBS , V [23] is a relative measure of prognostic accuracy and can be calcu-

lated as

V̂ = 1− D̂x(τ)/D̂0(τ),

where D̂0(τ) and D̂x(τ) are the measures of predictive accuracy obtained for the null

model and the model including the predictors, respectively. In principle, Dx(τ) is anal-

ogous to IBSx(τ). However, unlike IBSx(τ) which is based on quadratic differences,

Dx(τ) quantifies the absolute difference between the predicted and observed survival

status (alive/died) at each event time and averages over all subjects and event times up

to the last event time τ . Additionally, subjects who are censored before the event time

are allocated to alive or dead categories according to their corresponding conditional

survival probability estimates at their censoring times.

Assuming that there are m distinct event times t(j) (t(1) < t(2) . . . < t(m)) in the ob-

served data (ti, δi,xi) with dj events at t(j), the individual contribution to the absolute

distance, M(t(j)|xi), at each event time t(j) falls into one of three categories:

(i) ti ≤ t(j) and δi = 1, M̂(t(j)|xi) = Ŝ(t(j)|xi)
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3.3 Validation measures for the Cox Proportional Hazards model

(ii) ti > t(j) and δi = 1 or δi = 0, M̂(t(j)|xi) = 1− Ŝ(t(j)|xi)

(iii) ti ≤ t(j) and δi = 0, M̂(t(j)|xi) =
(

1 − Ŝ(t(j)|xi)
)
Ŝ(t(j)|xi)

Ŝ(ti|xi)
+ Ŝ(t(j)|xi)

(
1 −

Ŝ(t(j)|xi)

Ŝ(ti|xi)

)
.

The first category corresponds to the subjects who have died before or at t(j) and the

second to those who are alive at t(j). The last category relates to the subjects censored

before or at t(j) and amounts to an extrapolation, assuming that these subjects have

identical risk of death to those with known survival status at t(j). This assumption

is quite similar to that of random censoring and is required by the standard survival

methods [23]. Therefore, the estimate in the third category gives an average over alive

or dead categories weighted by the corresponding conditional probability estimates at

their censoring times: namely, Ŝ(t(j)|xi)/Ŝ(ti|xi) represents the probability of survival

beyond time t(j) given that the subject survived to at least time ti.

The overall estimator D̂x(τ) of predictive accuracy can be obtained by taking a

weighted average of M(t(j)|xi) over failure times, with weights designed to compensate

for the reduction in observed deaths due to earlier censoring:

D̂x(τ) = w−1
m∑
j=1

Ĝ(t(j))
−1dj

[ 1

N

N∑
i=1

M̂(t(j)|xi)
]
,

where w =
∑m

j=1 Ĝ(t(j))
−1dj is the weighting factor and Ĝ(t(j)) is the Kaplan-Meier

estimate of the censoring times. Similarly, D̂0(τ) can be computed for the null model

by replacing Ŝ(t(j)|xi) with Ŝ(t(j)).

Hielscher et al. [68] showed that IBSx(τ) = Dx(τ)/2, given that the model is

correctly specified and the same method of integrating over time is used. Similarly

IBS0(τ) = D0(τ)/2. Furthermore, since Dx(τ) uses absolute distance between the ob-

served and predicted survival status as opposed to squared distance used by IBSx(τ),

Dx(τ) is less affected than IBSx(τ) by unstable survival probability estimate for the

largest survival time. Hence, Dx(τ) has a smaller variance than IBSx(τ). A similar
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argument can be applied to IBS0(τ) and D0(τ) and hence to V and R2
IBS . As discussed

by Hielscher et al. [68], the difference between squared distance and absolute distance

is particularly large in the context of survival data, because due to censoring the un-

certainty in the right tail of the survival distribution is large. This uncertainty may

have influence on the quantity we use to evaluate the prediction accuracy. Therefore,

a measure of predictive accuracy that is based on absolute distance might be preferred

in this context.

3.4 Evaluation of the measures

Using a simulation study the validation measures are evaluated against a set of criteria

that a suitable validation measure should have in the context of survival analysis. This

section discusses the criteria, the simulation design, and strategies for assessing the

measures against the proposed criteria.

3.4.1 Criteria for evaluation

To evaluate the suitability of the validation measures for use in practice with survival

data, three aspects were considered:

(i) Robustness to censoring : Censoring is common for survival data. For example,

in the example datasets in Section 3.2, there are 56% censoring in the breast

cancer data while it is 95% in the sudden death data. An essential property for a

validation measure is that it should be robust to censoring or at least not affected

much by the presence of censoring.

(ii) Sensitivity to the exclusion of important predictors: If an important predictor is

excluded from the model then the validation measures, except perhaps for the

calibration slope, should demonstrate sensitivity to the exclusion. The validation

measures are generally expected to move closer to their null value as important

predictors are omitted from the model. However, the calibration slope may not

react to this exclusion if the distribution of the predictors in the development and

validation data are similar [40, 44]. For more details see Section 3.5.1.2.

(iii) Interpretability : The measure should be intuitive and clearly interpretable.
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3.4 Evaluation of the measures

Each validation measure under study has already been discussed with respect to

criteria (iii) in Section 3.3. In the simulation study, the measures are investigated with

respect to criteria (i) and (ii).

3.4.2 Simulation design

3.4.2.1 Simulation scenarios

The simulation study was based on the two clinical datasets described in Section 2. Val-

idation datasets were generated by simulating new outcomes for each of these datasets

based on a true model and combining these with the original predictors. The validation

measures were investigated over a range of scenarios to mimic real situations. For all

simulations, three different risk profiles (low, medium, and high) were constructed for

the patients in the validation data to reflect the fact that, in practice, the characteristics

of the patients in the development and validation data may differ.

For the investigation into the effect of censoring, two types of censoring mechanism

were considered, random and administrative. Random censoring is more common in

clinical studies where patients are lost to follow-up throughout the course of the study,

and administrative censoring is more common in population-based studies where birth

cohorts are followed up until a fixed time point. The levels of censoring considered were

0%, 20%, 50%, and 80%, which combined with the risk profiles, results in a total of

24 validation scenarios for each clinical dataset. No development data were simulated

for this investigation. It was assumed that the risk model had been correctly specified

and perfectly estimated in order to assess the effect of censoring, rather than model

development.

Censoring was not introduced into the simulations that investigated the effect of

the omission of predictors, so as not to confound the results. Again, no development

data were simulated for this investigation although incorrectly specified risk models

were considered.
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3.4 Evaluation of the measures

3.4.2.2 Generating new survival and censoring times

To simulate validation data, new survival outcomes were generated from a true model

based on each of the real data sets. The true model was derived by fitting a Weibull

proportional hazards model to each dataset including all available predictors. The

estimates of the model parameters from these fitted models were then set as the “true”

values to simulate new outcomes using the Weibull distribution. The Weibull survival

times were simulated from the true model as

ti =

(
− log(ui)

exp(βTxi)

)1/γ

(i = 1, . . . , N),

where βTxi is the true prognostic index (PI) with observed predictor vector x, γ is the

true value of the shape parameter, and ui has a pseudo-random uniform distribution

on (0, 1).

To introduce random censoring, an additional Weibull distributed censoring time

was simulated with the same shape parameter as before but with the log hazard ratio

βTxi replaced by a scalar λ. Different choices of λ were used to give different propor-

tions of censoring. To generate administratively censored data, it was assumed that

individuals were recruited uniformly over the period from 0 to T ∗ and were censored at

the study end date T ∗, which was fixed in advance. The censoring times were simulated

from a uniform distribution on (0, T ∗) with different choices of T ∗ giving different pro-

portions of censoring. The observed times under both types of censoring mechanism

were obtained by taking the minimum of the survival and censoring times.

3.4.2.3 Generating validation data with different risk profiles

For each of the example datasets, validation data with three different risk profiles were

created. To create these validation datasets, patients were split into three tertile groups

based on their prognostic index PI=βTxi derived from the true model. These groups

may be viewed as low, medium, and high risk patients. Based on these risk groups, three

different validation datasets were created by sampling patients (without replacement)

in the following way:
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3.4 Evaluation of the measures

(a) low risk profile: 80% of the patients were sampled from the lowest tertile, 50%

from the middle tertile, and 20% from the highest tertile;

(b) medium risk profile: all patients from the 3 risk groups were used, which formed

a validation sample with a mix of high and low risk patients. By definition, this

dataset has the same risk profile as the observed (development) data;

(c) high risk profile: 20% of the patients were sampled from the lowest tertile, 50%

from the middle tertile, and 80% from the highest tertile.

The whole procedure was done once before simulating the outcome data. Due to the

sampling scheme considered, the sample sizes for the low and high risk profiles were

half that of the medium risk profile. To achieve equal sample sizes we doubled the size

of the low and high risk profile datasets by creating two “patients” based on each set

of the observed predictor values. However, the survival and censoring times were not

duplicated and were generated separately for each “patient”.

Table 3.1 summarises the risk profile of the patients in the above validation scenarios

in terms of the failure probability (1− S(t∗|x)) estimated at a single time-point t∗. In

the breast cancer simulations, the overall risk of failure was 27%, 34%, and 42% at 3

years for the patients from the low, medium, and high risk profile, respectively. The

difference between the 1st and 3rd tertiles of the failure probability (1−S(t∗|x)) for the

patients from the low risk profile was 32%, which was smaller than 42% and 43% for

the patients from the medium and high risk profiles, respectively. A similar pattern of

results was observed for the sudden cardiac death simulation, with an estimate of the

overall risk of death of 7%, 10%, and 13% by 15 years for the patients from the low,

medium, and high risk profiles, respectively.

For both datasets, the standard deviation of the true prognostic index (PI) for the

patients from the medium risk profile was the largest, compared to those for the pa-

tients from the low and high risk profiles, suggesting greater separation (discrimination)

between low-and high-risk patients. The distribution of the PI for the breast cancer

patients from the medium risk profile was approximately symmetric (normal) while it

was asymmetric for all other validation scenarios.
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Table 3.1: Risk profile of patients in validation scenarios, described by the failure prob-
ability (1 − Ŝ(t∗|x)) estimated at a single time point t∗: the overall probability and ter-
tiles (mean over 500 simulations of uncensored data, maximum Monte Carlo standard
error=0.0007). The distribution of the true prognostic index is also discussed.

Failure Probability Prognostic index
Data Risk profiles Overall tertile 1 tertile 2 tertile 3 Std. Skew. Kurt.

low risk 0.27 0.13 0.22 0.45 0.67 0.45 3.13
Breast cancer medium risk 0.34 0.15 0.30 0.57 0.75 0.06 2.55

high risk 0.42 0.22 0.40 0.65 0.68 -0.20 3.17

low risk 0.07 0.04 0.06 0.12 0.51 1.22 4.63
Sudden death medium risk 0.10 0.04 0.08 0.17 0.61 0.70 3.19

high risk 0.13 0.06 0.10 0.21 0.58 0.45 3.28
For breast cancer t∗ = 3 years and sudden death t∗ = 15 years. Std=Standard deviation, Skew=Skewness, and Kurt=Kurtosis

3.4.3 Assessing the effect of censoring

The aim was to investigate the effect of censoring on the performance of the validation

measures, and not the effect of model development. Therefore, all validation measures

were calculated for the true model, rather than for a model developed using development

data. Calculation of the calibration slope and Harrell’s C-index was performed using

Stata packages stcox and estat concordance respectively while user written Stata

codes were used for the other measures (Appendix B: Figure B.1). The results based on

these codes were consistent with those with the corresponding R-packages such as CPE

for K(β), pec for IBS, and f.surev for V and Stata package str2d for D statistic. A

reference value (or true value) was calculated for each validation measure by calculating

its average over a large number of uncensored survival simulations (10,000), for each of

the low, medium, and high risk populations. The effect of censoring was investigated by

calculating bias (referred to as ‘censoring bias’) as the mean of the difference between

the estimate of the measure and the reference value, over 500 simulations. The number

of simulations required (500) was determined using the formula provided by Burton

et al. [78], which is based on the true value of the measure of interest, the variability of

the measure, the level of accuracy of the measure we are willing to accept (within 2%

of the true value), and the normality of the estimated measure. This specification (500

simulations) provided reasonably low Monte Carlo standard error for the estimates of

the measures, which was the case for each of the scenarios.
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However, it is difficult to compare the different validation measures with each other

due to their differing scales. Therefore, a standardised bias was calculated as follows.

Let m̂g (g = 1, . . . , G) be the estimate of a measure for the gth simulation, m be the

corresponding reference value, and m0 be the null value that is obtained for the null

model, then the standardised bias contribution is

Bg =
m̂g −m
|m−m0|

× 100.

The standardised bias estimate Bg can be regarded as a random variable that follows

a Normal distribution according to the central limit theorem. A confidence interval for

standardised bias can be calculated assuming normality and using the empirical stan-

dard deviation of the estimated standardised bias. The empirical confidence intervals

are used to make conclusions on whether the bias for a validation measure is signifi-

cantly different from zero or whether the bias between two measures are significantly

different.

3.4.4 Assessing sensitivity to the exclusion of important predictors

The sensitivity of the validation measures to the exclusion of important predictors from

the model were also assessed. In this part, models with strong and weak predictors were

specified to examine whether the validation measures are able to distinguish between

the predictive ability of these models. To assess the sensitivity of the measures, first,

the most important predictors were identified by fitting multivariable Cox PH models

in the observed data and using the P-values calculated from likelihood ratio tests. The

most important predictor identified was excluded from the full model (say Model 1 that

contains all available predictors in the data), resulting in a reduced model (Model 2).

The validation measures were then used to validate Model 2. Further reduced models

were specified by omitting the next most important predictor, along with any others

already omitted. The validation measures were calculated for each of these reduced

models. All models were developed using the observed (original) data and validated by

calculating validation measures using the simulated validation data. In addition, the

model χ2 values for each of the fitted models was calculated in the validation data to
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assess how changes in the value of the validation measures were related to changes in

the model χ2 values.

To ensure that the results across the validation measures were comparable, the

estimates (average values over 500 simulations) were re-scaled with the full model set

at 100% and the null model at 0%. Furthermore, to examine how weak the reduced

models were (in terms of predictive ability) relative to the full model, the R2 values

were calculated by regressing the PI derived from the full model on the PIs derived

from the reduced models. This procedure is similar in idea to the ‘step-down’ approach

proposed by Harrell [40], where a full model is approximated to a reduced model.

3.5 Results and discussion

3.5.1 Results

3.5.1.1 Effect of censoring

Figure 3.1 shows the distribution of the validation measures, over 500 simulations,

for various degrees of censoring. Only the results for the medium risk profile breast

cancer patients with randomly censored survival times are presented. The horizontal

dashed line shows the reference value for each validation measure. The median val-

ues of C-index and IBS increased with the degree of censoring whereas the median

values of R2
IBS and V decreased with increased censoring. This suggests that mislead-

ing conclusions may be drawn regarding a model’s predictive performance when using

these measures in the presence of censoring. In particular, C-index may give an over-

optimistic estimate of model discrimination in the presence of censoring, whereas IBS,

R2
IBS and V are likely to be conservative. The median values for the other measures

were little affected by censoring. The inter-quartile range for the validation measures

generally increased with increased level of censoring. This was perhaps most noticeable

for IBS and R2
IBS . Similar results were obtained in the other simulation scenarios (not

shown).
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the true/reference value of the respective measure.

40



3
.5

R
e
su

lts
a
n

d
d

isc
u

ssio
n

Figure 3.2: Relative bias (%) with 95% confidence intervals for the C-index, K(β), D statistic, Calibration slope, and Integrated
Brier score (IBS). The first and second rows show the results for the breast cancer and sudden cardiac death simulations with
different risks profile (low, medium, and high), respectively. All simulations were under the random censoring mechanism.
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Figure 3.3: Relative bias (%) with 95% confidence intervals for R2
IBS and V . The first and second rows show the results for the

breast cancer and sudden cardiac death simulations with different risks profile (low, medium, and high), respectively. All simulations
were under the random censoring mechanism.
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patients with different risk profiles.
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Figure 3.2 shows the standardised bias for the C-index, K(β), D statistic, calibra-

tion slope (CS) and IBS, and Figure 3.3 shows bias for R2
IBS and V measures. The

results are from both the breast cancer and sudden cardiac death (SCD) simulations

when the censoring is random. The bias in CS and K(β) was negligible which is to

be expected since both are derived from the Cox model. The other measure, derived

from this model, the D statistic was biased in some scenarios. For example, the bias

was negligible in the medium risk breast cancer scenario, whereas the bias was often

high in the SCD scenarios. Further investigation suggests that the level of bias in D

corresponds to the level of skewness in the distribution of the prognostic indices (Fig-

ure 3.4). Royston and Sauerbrei [49] note that the D statistic is most accurate when

the prognostic index is normally distributed. The C-index, one of most widely used

measures in practice, showed increasing bias as the level of censoring increased, which

may be expected since it depends on the censoring mechanism. In addition, when there

are high levels of censoring, the proportion of patient pairs used in the calculation of

C-index is relatively small and may not be representative of the patient pairs in the

population [37, 48]. Further investigation suggests that the bias in C-index may be

acceptable for censoring up to 30% (additional results not shown). The measures of

predictive accuracy and explained variation were most affected by censoring, even at

low levels, despite their use of weighting to alleviate the effect of censoring. Similar

results were observed for the administrative censoring scenarios (Appendix A: Table

A.1).

3.5.1.2 Sensitivity to the exclusion of important predictors

In the breast cancer data, the Cox PH analysis identified number of lymph nodes

(lnod), progesterone status (progest), hormone therapy (hormon), and menopausal

status (menpst) as strong predictors and tumour grade (tgrad), age as moderate pre-

dictor, and tumour size (tsize) as weak predictor (Appendix A: Table A.2). In the

sudden cardiac death data, the analysis identified number of runs of ventricular tachy-

cardia (runvent), obstruction to blood flow (BF), and abnormal blood pressure response

to exercise (BP) as strong predictors while age and maximum thickness of heart muscle

(HM) as weak predictors (Appendix A: Table A.3).
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Following the procedures described in Section 3.4.4, first, a full model that included

all available predictors (both strong and weak predictors) was developed using the

observed data, then reduced models were fitted to the same data by excluding important

(strong) predictors. For each of these models, the value of the validation measures and

the model χ2 value were calculated in the simulated validation data. The predictive

ability of each of these models developed using the breast cancer data (5 in total

including the full model) are summarised in Table 3.2 in terms of R2 as discussed in

Section 3.4.4. It appears that the Model 5 was the weakest model, relative to the

full model. The reduction in the R2 values from the value for the full model to that

obtained for the Model 5 was relatively sharp for the high risk validation data than

those for the low and medium risk validation data.

Table 3.2: Models with different predictive abilities, relative to the full model, are sum-
marised in terms of R2 values. The results are from the breast cancer simulations with
different risk profiles. No censoring was considered.

Predictors Dropped R2

Models in the model predictor Low Med High
Full Model lnod+progest+hormon+menpst+age+tgrad+tsize - 1.00 1.00 1.00

Model 2 progest+hormon+menpst+age+tgrad+tsize lnod 0.61 0.64 0.57
Model 3 hormon+menpst+age+tgrad+tsize progest 0.47 0.44 0.30
Model 4 menpst+age+tgrad+tsize hormon 0.39 0.38 0.25
Model 5 age+tgrad+tsize menpst 0.37 0.35 0.23

Low=Low risk, Med=Medium risk, and High=High risk

Figure 3.5 shows the results of sensitivity of the measures for the breast cancer sim-

ulations. All the validation measures, except the calibration slope, showed monotonic

sensitivity to the omission of important predictors, although none were as sensitive as

model χ2 in the low and medium risk scenarios. The measures belonging to the cate-

gory of predictive accuracy and explained variation (V , IBS and R2
IBS) were the most

sensitive, with V closely following the model χ2 value in the high risk scenarios. This

may be because these measures are calculated using the individual predictions directly

and thus are more sensitive to changes in the prognostic strength of the model. The

least sensitive measures were C-index which may be expected since they are both pure

rank based measures and do not incorporate the actual difference between predictions.

It is worth noting that there was less variation across the measures in the high risk

scenarios.
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No censoring was considered.
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The value of the calibration slope was little affected by the omission of important

predictors when the risk profile of the validation data matched that of the develop-

ment data (Figures 3.5: Medium risk). In this situation, the relationship between the

outcome and the remaining predictors should be similar in both the development and

validation data, and hence the calibration slope should indicate good calibration (values

close to 1). If the risk profiles are different, then the relationship between the outcome

and the included predictors may be different in the development and validation data

due to the correlation between these predictors and the omitted predictors, and hence

some sensitivity may be observed. The level of sensitivity may be difficult to predict

since it depends on the strength of the predictors and the correlation between them.

Similar results were seen for the sudden cardiac death simulations (not shown).

3.5.1.3 Relationship between the validation measures

The relationships between the various measures, excluding CS, are shown in Figure 3.6

for the medium risk breast cancer scenario. There was very good agreement between

C-index, IBS, R2
IBS and V when there was no censoring, although these relationships

weakened considerably as censoring increased. Similar relationships were seen for the

low and high risk breast cancer scenarios (results not shown). Generally, these relation-

ships were weaker in the sudden cardiac death (SCD) scenarios (results not shown),

perhaps reflecting the lower amount of prognostic information available. However, there

was excellent agreement between K(β) and D in the breast cancer scenarios and this

relationship was robust to censoring. This relationship was weaker in the SCD scenarios

which may be due to non-normality of the prognostic indices.
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Figure 3.6: Empirical agreement between the measures by degrees of censoring. The results are from the medium risk breast
cancer simulation under the random censoring mechanism.
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3.5.2 Discussion and recommendations

When developing a risk prediction model for survival data it is essential that the per-

formance of the model is evaluated using appropriate validation measures. Although

a number of measures have been proposed, there is only limited guidance regarding

their use in practice. The aim of this research was to perform a simulation study based

on two clinical datasets with contrasting characteristics to investigate a wide range of

validation measures in order to make practical recommendations regarding their use.

Based on the simulation study, the measures of predictive accuracy (IBS) and

explained variation (V and R2
IBS) cannot be recommended for use with survival risk

models due to their poor performance in the presence of censored data. However, these

measures were all conservative with censored data so that high (or low for IBS) values

would still be indicative of a good risk model. Of the discrimination measures, K(β)

was not biased in the presence of censoring. The performance of D in the presence

of censoring depended on the distribution of the prognostic index. Provided that the

prognostic index was approximately normally distributed, the effect of censoring on

the bias in D was negligible. The C-index was affected by censoring and cannot be

recommended for use with data with more than 30% censoring. The sole calibration

measure under investigation, CS, was unbiased in the presence of censoring.

All the measures of discrimination, predicted accuracy and explained variation

showed sensitivity to the omission of important predictors from a model. However,

the ranked-based measure C-index was less sensitive than the other measures. The cal-

ibration slope showed only limited sensitivity to predictor omission since the developed

risk model effectively re-calibrates itself to compensate for the omitted predictors.

The validation measures differ in their flexibility regarding their assumptions and

the form of the risk model. The concordance measure C-index only require that the

risk model is able to rank the patients. In contrast, K(β) requires that the risk model

was fitted using the Cox proportional hazards model. The D statistic assumes that

proportional hazards holds and that the prognostic index is normally distributed. The

calibration slope measure, as described, also assumes proportional hazards although
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more general approaches are described by van Houwelingen [44]. The measures based

on predictive accuracy, IBS, R2
IBS , and V , only require that a survival function can

be calculated for all patients.

With respect to clinical interpretation, all of the measures considered in this paper

can be easily communicated to a non-statistical health researcher, except perhaps for

the calibration slope and IBS. The concordance measures can be readily communi-

cated in terms of correctly ranking patient pairs, and explained variation measures are

intuitive with their percentage scale. The D statistic also has a nice interpretation as

it can be communicated as a (log) relative risk between low and high risk groups of

patients.

In summary, based on the findings of this simulation study, K(β) can be recom-

mended for validating a risk model developed using the Cox proportional hazards model,

since it is both robust to censoring and reasonably sensitive to the omission of impor-

tant predictors. D can also be recommended provided that the distribution of the

prognostic index is approximately normal. It is more sensitive to predictor omission

than K(β) and can be calculated for models other than those fitted using the Cox

model. The calibration slope can be recommended as a measure of calibration since

it is not affected by censoring although it is less sensitive than the other measures to

the omission of important predictors. In practice, one might additionally investigate

calibration graphically by comparing observed and predicted survival curves for groups

of patients. This approach also has the benefit of being easy to communicate.

An important point to note is that the characteristics of the validation data should

be investigated before choosing the validation measures. In particular, the level of

censoring and the distribution of the prognostic index need to be checked, assuming

that the standard model assumptions such as proportional hazards hold. It is not clear

that this is routinely done in practice.
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3.6 Conclusion

This chapter investigated some of the validation measures that have been used for

independent survival outcomes. By means of a simulation study based on two real

datasets, this investigation compared their performance against criteria for a suitable

validation measure for a survival model. The results in the simulation study provided

guidelines for using these measures in practice, particularly when data have censoring.

The next chapter discusses the possible extensions of validation measures that have

been used for independent binary outcomes for use with correlated/clustered binary

outcomes.

51



Chapter 4

Measures for clustered binary

outcomes

4.1 Introduction

Clustered binary outcomes occur frequently in health care research. For example,

subjects could be nested in larger units such as hospitals, doctors, family, or geographic

regions. Due to clustering within larger units, outcomes in the same cluster often share

some common cluster level characteristics and thus tend to be correlated. Various

statistical models have been proposed in the last two decades to model the relationship

between predictors and outcomes in the presence of clustering, particularly focusing on

how to account for the effect of clustering. These models are typically grouped into

two broad classes: cluster-specific and population-averaged approaches [79, 80].

In the cluster-specific approach, the probability distribution of the outcomes is mod-

elled as a function of fixed predictors and one or more random terms. The random term

represents the effect of unobserved cluster-specific characteristics, which varies across

clusters following a specific distribution. This modelling approach is known as the

random effects model, for example, random effects logistic model for clustered binary

outcomes [81, 82]. In the population-averaged approach, the marginal or population

averaged expectation is modelled as a function of predictors, treating the correlation be-
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tween the outcomes within the same cluster as a nuisance parameter. Marginal logistic

models, with generalized estimating equations [83] for the estimation of the model pa-

rameters, are often used for modelling clustered binary outcomes. The estimates from

the random effects models have a conditional interpretation, given the cluster-specific

random effect, while the estimates from the marginal models have population-averaged

interpretation. The conditional estimates from a logistic model can be interpreted as

the effect of a unit change in the predictors for subjects belonging to the same clus-

ter, whereas the marginal estimates can be interpreted as the averaged effect of a unit

change in the predictors for all subjects in the population. Generally, the preference for

using one of these two classes of models depends on what type of inference a researcher

would like to draw in practice: conditional or marginal [84]. Lee and Nelder [85] and

Skrondal and Rabe-Hesketh [86] considered the random effects models as more general

form of models for analysing clustered binary data, from which the marginal models

can be derived by integrating out the random effects. It is thus possible to obtain both

conditional and marginal predictions from the random effects models.

Although the clustering of data within larger units is usually taken into account

in explanatory models in aetiological research, it is often ignored in risk prediction

research, both in the process of model development and the validation of the model’s

performance [87]. This work focuses on the use of random effects logistic models in risk

prediction for clustered binary outcomes. To understand the predictive ability of such

a model, it is essential to validate its predictive performance. Validation measures for

assessing the predictive ability of models for independent binary outcomes are reason-

ably well developed; see, for example, Omar et al. [10], Steyerberg et al. [24], Royston

and Altman [25], and Harrell et al. [40]. However, very limited research has been

conducted to develop validation measures for models with clustered binary outcomes.

This chapter discusses possible extensions of some of the existing validation measures

that could be used to assess the predictive ability of prognostic models based on the

random effects logistic models.

The C-index [45], and the D-statistic [49] are commonly used validation measures

to assess the discriminatory ability of prognostic models for independent binary out-
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comes. The calibration slope [39, 42] is commonly used to assess whether the model

predicts accurately for a group of subjects (calibration), and the Brier score [55] is often

used to assess accuracy for individual predictions (predictive accuracy). In this chapter,

these validation measures are extended for use with models for clustered binary out-

comes. The Hosmer-Lemeshow Chi-squared test statistic [41] is also used frequently to

assess a model’s calibration. This test assesses whether or not the observed event rates

match the expected event rates in subgroups of model population, where the groups

are identified from the deciles of the predicted risk of having the event. However, it is

not straightforward to evaluate this measure using a simulation study. Therefore, this

measure is not investigated for the models with clustered binary outcomes.

The chapter begins with a brief description of the proposed validation measures

for independent binary outcomes, then discusses the estimation of these measures for

clustered data. The methods are illustrated using data on patients who had undergone

heart valve surgery. A simulation study is conducted to evaluate the performance of

the validation measures under various clustered data scenarios.

4.2 Validation measures for independent binary outcomes

This section briefly describes some of the commonly used validation measures for inde-

pendent binary outcomes, starting with a description of notation based on the logistic

regression model.

4.2.1 Logistic regression model

Let Yi (i = 1, . . . , N) be a binary outcome (0/1) for the ith subject which follows

Bernoulli distribution with the probability πi = Pr(Yi = 1). The logistic regression

model can be used to model the relationship between the outcome and predictors and

is defined as

logit[Pr(Yi = 1|xi)] = log
( πi

1− πi

)
= βTxi,
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where βT is a vector of regression coefficients of length (p + 1), and xi is the ith row

vector of the predictor matrix X which has order N × (p + 1). The term ηi = βTxi

is known as the ‘prognostic index’. The predictive form of this model, used to predict

the probability of the event of interest, can be written as

π(β|xi) =
1

1 + exp[−βTxi]
.

Predictions from the model depend on the estimate of βT , which is typically obtained

by the method of maximum likelihood [88].

4.2.2 The C-index: definition

The C-index is a measure of concordance probability and is numerically identical to the

area under the receiver operating characteristic curve (AUC) [45], a graph of sensitivity

(true positive rate) against 1-specificity (false positive rate). The C-index is widely used

as a tool for assessing the discriminatory ability of standard logistic models because

of its straightforward clinical interpretation. The C-index equals to the proportion of

pairs in which the predicted event probability is higher for the subject who experienced

the event of interest than that of the subject who did not experience the event. For

a pair of subjects (i, j), where i and j correspond to those who experienced the event

and those who did not respectively, with event probabilities {π(β|xi), π(β|xj)}, the

C-index can be defined as

C = Pr[π(β|xi) > π(β|xj)|Yi = 1 & Yj = 0].

Since there exists a one-to-one transformation between π and βTx, the above proba-

bility expression can be written as

C = Pr[βTxi > β
Txj |Yi = 1 & Yj = 0].

The C-index from standard logistic regression models can be estimated using both

parametric and nonparametric approaches. Generally, under the parametric approach,

a distributional assumption is required for the prognostic index for the population who

55



4.2 Validation measures for independent binary outcomes

had experienced the event and for those who did not. Under the assumption of normal

distribution, the method of maximum likelihood may be used to estimate the C-index

[89, 90].

The widely used non-parametric approach to estimate the C-index is based on the

Mann-Whitney U statistic [91] and does not require any distributional assumptions

regarding the prognostic index. The C-index or AUC has been shown to be equal to

the U statistic when it (the area) is calculated using the trapezoidal rule [45, 92]. The

U statistic is usually computed to test whether the levels of a quantitative variable in

one population tend to be greater than those in a second population, without making

any distributional assumptions for the variable. In this chapter, both the parametric

and nonparametric approaches for estimating the C-index are discussed.

4.2.3 Non-parametric estimation of the C-index

Let η
(1)
i = βTxi|Yi = 1 and η

(0)
j = βTxj |Yj = 0 be the prognostic index derived

by the model for subject i who had experienced the event and for subject j who did

not, respectively. Further, let N1 and N0 be the number of events and non-events,

respectively. Considering all pairs (i, j), the C-index can be estimated by analogy to

the U statistic formulation [45, 91, 92] as

Cnp =
1

N1N0

N1∑
i=1

N0∑
j=1

I
(
η
(1)
i , η

(0)
j

)
, (4.1)

where

I
(
η(1), η(0)

)
=


1 if η(1) > η(0)

0.5 if η(1) = η(0)

0 if η(1) < η(0)
.

The value of Cnp ranges between 0.5 and 1: a value of 0.5 indicates that the model

has no ability to discriminate between low and high risk subjects, whereas a value of 1

indicates that the model can perfectly discriminate between these two groups.
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4.2.4 Parametric estimation of the C-index

Based on the central limit theorem, the prognostic index is likely to follow normal

distribution as the dimension of the parameter vector β increases [52]. The estimation

of the parametric C-index is as follows.

Let us assume that η
(1)
i = βTxi|Yi = 1 ∼ N(µ1, σ

2) and η
(0)
j = βTxj |Yj = 0 ∼

N(µ0, σ
2). Therefore, η

(1)
i − η

(0)
j ∼ N(µ1 − µ0, 2σ

2). By definition, the parametric

C-index is

Cp = Pr[η
(1)
i > η

(0)
j ]

= Pr[(η
(1)
i − η

(0)
j ) > 0].

After standardising the term η
(1)
i − η

(0)
j , Cp can be obtained as

Cp = Pr
[
Z <

µ1 − µ0√
2σ2

]
, Z ∼ N(0, 1)

= Φ

(
µ1 − µ0√

2σ2

)
, (4.2)

where Φ denotes the standard normal cumulative distribution function. The estimate

of Cp can be obtained by replacing µ1, µ0, and σ2 by their sample estimates x̄1, x̄0,

and S2, respectively.

4.2.5 D statistic

The D statistic [49] is a measure of prognostic separation and quantifies the separation

between two equal-sized prognostic groups obtained by dichotomising the predicted

prognostic indices at their median value. The D statistic for the logistic regression

model can be calculated by transforming the predicted prognostic index η̂i = βTxi to

a standard normal order statistic zi, in a manner similar to that for the Cox PH model.

A logistic model is then fitted to the validation data with z as the sole predictor:

logit(Yi = 1|zi) = βzzi.
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The estimated coefficient of z is an estimate of the D statistic, D̂, and the correspond-

ing estimated standard error of z is the standard error of D̂. D̂ is interpreted as the log

odds ratio of having the event of interest between low-and high-risk groups, where the

groups represent the lower and upper half of the predicted prognostic index, respec-

tively. The null value for D is 0, with increasing values indicating greater separation

(discrimination) between these two groups.

4.2.6 Relationship between the C-index and D statistic

The C-index and D statistic are closely related under the assumption of normality of

the prognostic index ηi = βTxi. Based on this assumption, an analytical relationship

between the parametric C-index and D-statistic is derived as follows.

Let us assume that

η
(1)
i = βTxi|Yi = 1 ∼ N(µ1, σ

2) with Pr(Yi = 1) = π1

and

η
(0)
j = βTxj |Yj = 0) ∼ N(µ0, σ

2) with Pr(Yj = 0) = π0.

Further, suppose that the conditional distribution of η given Y = y is

η|Y = y ∼ N
(
µy, 2σ

2
)

.

The above formulation corresponds to linear discriminant analysis (LDA) [93], which is

equivalent to logistic regression model [94]. In LDA, we assign subject i with prognostic

score ηi = βTxi to the population who had experienced the event with probability

Pr(Yi = 1|ηi). This probability can be expressed in terms of a logistic model as

Pr(Yi = 1|ηi) =
1

1 + exp[−(β0 + βηηi)]
, (4.3)

where β0 = − log
π1
π0

+
1

2

(µ21 − µ20)
2σ2

and βη =
(µ1 − µ0)

2σ2
.

Standardising the prognostic index η and then multiplying it by
√
π/8 gives the

term Z ′ (say), which is distributed as N(0, π/8). This standardised statistic is ap-

proximately equivalent to the standard normal order statistic Z which we obtained
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from η through a transformation when calculating the D statistic (see Section 4.2.5).

Therefore, the standardised versions of η(1) and η(0) can be written as

Z ′(1) ∼ N

(
µ1 − E(η)√

var(η)
,

2σ2

var(η)
π/8

)
= N

(
µ1 − E(η)√

2σ2
, π/8

)
and

Z ′(0) ∼ N

(
µ0 − E(η)√

var(η)
,

2σ2

var(η)
π/8

)
= N

(
µ0 − E(η)√

2σ2
, π/8

)
,

respectively. This formulation also corresponds to the LDA with the transformed vari-

able Z ′ and can be expressed in terms of a logistic regression model for the binary

outcome Y with Z ′ as a predictor:

Pr(Yi = 1|Z ′i = z′i) =
1

1 + exp[−(β0 + βz′z
′
i)]
.

Therefore, the D statistic is the coefficient of Z ′, βz′ , in the above model and can be

estimated approximately by analogy to βη in equation (4.3) as

D ≈ E[Z ′(1)]− E[Z ′(0)]

var(Z ′)

=

µ1−E(η)√
2σ2

− µ0−E(η)√
2σ2

π/8

= (8/π)

(
µ1 − µ0√

2σ2

)
. (4.4)

By using equation (4.2), equation (4.4) can be written as

D ≈ (8/π)Φ−1(Cp), (4.5)

where Φ−1(.) is the inverse standard normal distribution function. An illustration of

the above relationship is as follows. Under the null situation, if Cp = 0.5 indicating

no ability of the model (possibly the null model) to discriminate between the low and

high risk subjects, then D from equation (4.5) is equal to 0, indicating no separation

(discrimination) between those two groups. Similarly, if Cp = 0.75, the approximate
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equivalent value of D is 1.72, indicating reasonably good separation. Both the C-

index and D statistic have their own clinical interpretations: the former can be readily

communicated in terms of correctly ranking patient pairs and the latter can be commu-

nicated as a (log) relative risk between low and high risk groups of patients. Therefore,

to have different clinical interpretation in practice, one can quickly obtain the value of

the D statistic knowing the value the C-index and vice-versa, rather than calculating

from the model.

4.2.7 Calibration slope

The calibration slope (CS) assesses the calibration of the model by quantifying the

agreement between the observed outcome and prediction for a group of subjects. The

calibration slope can be obtained by fitting a logistic model with the prognostic index

η̂i = β̂Txi, calculated from the validation sample, as the only predictor in the model

[39, 42]:

logit[Pr(Yi = 1|η̂i)] = β0 + βηη̂i, (4.6)

where ĈS is equal to β̂η. If β̂η is close to 1 then it suggests that the prognostic indices

(log odds) derived from the model are accurate. If β̂η is somewhat different from 1, it

suggests that some form of re-calibration is necessary [24, 38, 40, 59, 95]. In particular,

a value much smaller than 1 indicates over-fitting, where risk estimates are too low for

low risk subjects and too high for high risk subjects (for more details, see Chapter 2).

4.2.8 Brier score

The Brier score (BS) assesses whether the predictions of the model for each subject are

accurate, by quantifying the averaged squared difference between the predicted event

probability and the actual outcome [55, 69]. For the logistic model with predicted

probability π̂(β̂|xi) for subject i, the Brier score is defined as

BS =
1

N

N∑
i=1

(yi − π̂(β̂|xi))2. (4.7)
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If the model is predicting perfectly then BS = 0, which is however unlikely to occur

in practice. Inaccuracy in predictions is indicated by positive value of the BS, and

higher values indicate greater inaccuracy. A Brier score value of about 0.33 indicates

that predictive ability of the model is not better than random guessing [55, 69].

4.3 Extension of the validation measures for clustered

data

This section discusses possible approaches to extend the validation measures discussed

above for use with models for clustered binary data. Here a random effects logistic

model is considered, where the intercept is the only random parameter. This type

of model is usually referred to as a ‘random-intercept logistic model’, which assumes

equal correlation between pairs of subjects in the same cluster. The section begins with

describing a random-intercept logistic model and approaches to make predictions using

this model, and then discusses how to obtain the validation measures for this model.

4.3.1 Random-intercept logistic model

Let Yij be a binary outcome variable (1/0) for the ith subject in the jth cluster of size nj

(i = 1, . . . , nj ; j = 1, . . . , J) and
∑J

j=1 nj = N . It is assumed that Yij ∼ Bernoulli(πij),

where πij = Pr(Yij = 1) is the probability of having the event of interest. The random-

intercept logistic model is an extension of the standard logistic model with an additional

cluster-specific random effect uj , where uj acts as an additive component with the

intercept of the model and varies randomly between clusters. The random effects

ujs represent the effects of cluster-specific unobserved predictor information and are

independent and identically distributed random variables. Typically ujs are normal

with mean 0 and variance σ2u. The variance parameter σ2u is interpreted as the variation

in the log-odds of having the event of interest between clusters. The random-intercept

logistic regression model is given by:

logit[Pr(Yij = 1|uj ,xij)] = log
( πij

1− πij

)
= βTxij + uj ,

61



4.3 Extension of the validation measures for clustered data

where βT is the vector of regression coefficients of length (p+ 1), and xij is the ith row

vector of the p-predictors.

4.3.2 Predictions from the model

The predictive form of the random effect logistic model, to predict the probability of

having the event, for subject i in cluster j is given by

π(β|uj ,xij) =
exp[η(β,xij , uj)]

1 + exp[η(β,xij , uj)]
, (4.8)

where η(β,xij , uj)=β
Txij +uj is referred to as the prognostic index. Predictions from

the model depend on the estimates of the model parameters (βT , σ2u) and the random

effect uj .

The model parameters can be estimated using adaptive Gaussian quadrature (AGQ)

[96–99] or penalized quasi-likelihood (PQL) [100–102]. Using the estimates of the model

parameters, the random effect uj for the jth cluster can be obtained by empirical

Bayes approach [86, 103–105], which is the most commonly used method for estimating

random effects. The empirical Bayes estimates are the means of the empirical posterior

distribution of uj , p(uj |yij ,xij ; β̂T , σ̂2u) with the parameters estimates (β̂T , σ̂2u) plugged

in, and are given by:

ûj = E(uj |yij ,xij ; β̂T , σ̂2u) =

∫
ujp(uj |yij ,xij ; β̂T , σ̂2u)duj , (4.9)

where p(uj |yij ,xij ; β̂T , σ̂2u) can be derived using Bayes theorem. The Bayes theo-

rem combines the prior distribution of uj , which is essentially N(0, σ2u), and the data

(yij ,xij). The above integrals do not have analytical solution and need to be solved

numerically. The estimated random effects may be useful to make inferences about

particular clusters and to identify outlying clusters [106, 107].

The random effects logistic model formulated in the above way can be used to make

both conditional (cluster-specific) and marginal (population-averaged) predictions. The

conditional predictions can be made either by using β̂T and plugging in the estimated

62



4.3 Extension of the validation measures for clustered data

random effects û or by using β̂T and setting the random effects at their mean value zero

(u = 0). Marginal predictions can be made by integrating the conditional prediction

π(β|u,x) given in equation (4.8) over the (prior) random effects distribution. For

convenience, these three forms of model prediction are denoted as πij(u), πij(0), and

πij(pa), respectively. Similarly, the prognostic indices derived from these predictive

functions are denoted by ηij(u), ηij(0), and ηij(pa), respectively. Note that πij(0) 6=
πij(pa), which holds for most models with non-linear link function.

As an alternative to πij(u), a clustered-averaged or posterior mean probability π̄ij(u)

can be obtained by integrating π(β|u,x) given in equation (4.8) over the posterior

distribution of the random effects for cluster j [86]. However, Skrondal and Rabe-

Hesketh [86] showed via simulation studies that both πij(u) and π̄ij(u) perform equally

and have equal mean squared error of predictions for a range of conditions in a clustered

data setting. This research considers πij(u) instead of π̄ij(u) as it can be obtained from

most standard softwares.

The decision to make either cluster-specific or population-averaged predictions should

depend on the research question. Some examples of cluster-specific predictions can be

found in [108–110] and population-averaged predictions in [111]. Generally, the use of

the above three approaches to prediction may also depend on whether the subjects for

whom predictions will be made belong to an existing cluster or to a new cluster. Skron-

dal and Rabe-Hesketh [86] and Oirbeek and Lesaffre [112] suggested that if subjects are

from an existing cluster, πij(u) is preferred as the effect of clustering (random effect)

for that cluster is known. If subjects are from a new cluster on which information is

usually unknown, either πij(0) or πij(pa) should be used, assuming that the new cluster

is sampled randomly.

This research discusses possible extensions of the standard validation measures de-

scribed in Section 4.2 for use with each of the above three different approaches to

prediction. The following sections discuss the calculation of these validation measures,

starting with an overview of the approaches proposed to calculate the measures for

clustered data.
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4.3.3 Approaches for the calculation of the validation measures for

clustered data

For clustered data, the näıve use of the existing validation measures for independent

outcomes may lead to misleading conclusions regarding the model’s predictive perfor-

mance. The näıve approach assesses the effects of the fixed predictors only, and the

predictive performance may change if clustering effects are considered in addition to the

effects of the fixed predictors. Furthermore, assessing the model’s performance within

each cluster may be of interest, particularly to identify outlying clusters, where, for

example, a cluster might represent a hospital.

Only limited research has been carried out to date to address these issues. One

approach suggested by Oirbeek and Lesaffre [112] is an adaptation of the concordance

measure for clustered survival outcomes (Harrell’s C-index [8] Chapter 3). Their ap-

proach results in three concordance measures each with its own interpretation. In turn,

these measures are based on a comparison of subjects: between clusters (‘between clus-

ter concordance’ or QB); within clusters (‘within cluster concordance’ or QW ); and

both between and within clusters (‘overall concordance’ or QO). QO is calculated as a

weighted sum of QB and QW , with weightings given by the proportion of between-and

within-cluster usable pairs, denoted by πB and πW respectively. Between-cluster pairs

consist of pair of subjects from different clusters only, whereas within-cluster pairs con-

sist of pair of subjects from the same cluster only. The ‘overall weighted concordance

measure’, QO, is given by:

QO = πBQB + πWQW , (4.10)

where

πB =
NB,usbl
NT,usbl

, πW =
NW,usbl
NT,usbl

,

QB =
NB,conc
NB,usbl

, QW =
1

J

J∑
j=1

QW,j =
1

J

J∑
j=1

nW,conc,j
nW,usbl,j

, (4.11)
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NT,usbl is the total number of usable pairs in the data, NB,usbl and NW,usbl are the

number of between-and within-cluster usable pairs respectively, NB,conc and NW,conc

are the number of between-and within-cluster concordance pairs respectively, and QW,j

is the ‘within-cluster concordance measure’ for cluster j. As discussed by Oirbeek

and Lesaffre [112] and Chebon [87], the ‘overall weighted measure’ QO depends on the

number and size of the clusters. Therefore, its value is difficult to compare across studies

with different clustering designs. The ‘within-cluster concordance measure’ QW is the

simple arithmetic mean of the cluster-specific concordance measure QW,j and hence

may be affected by the precision of the cluster-specific estimates of the measure.

This research proposes two approaches to calculate validation measures in the clus-

tered data setting, which results in an ‘overall’ and a ‘pooled cluster-specific’ measure.

In the ‘overall’ approach, one calculates the validation measure from a comparison of

subjects within and between clusters, and the resulting measure assesses the overall

predictive ability of the model. For example, the ‘overall C-index’ for clustered data

can be calculated by comparing all possible pairs of subjects in the data, where subjects

in a pair may come from the same cluster or from different clusters. Using the above

notation, the ‘overall C-index’, CO, can be written as:

CO =
NB,conc +NW,conc

NT,usbl
. (4.12)

CO has the same interpretation as the ‘overall weighted measure’ of Oirbeek and Lesaffre

QO in that it assesses the overall discriminatory ability of the model. In the rest of

the chapter, the notation CO will be replaced by Cre(u), Cre(0), and Cpa based on the

model predictions πij(u), πij(0), and π(pa), respectively.

In the ‘pooled cluster-specific’ approach, one calculates the validation measure for

each cluster based on its original definition for standard logistic model along with a

measure of precision. These measures are then pooled across clusters using the random-

effects summary statistic method often used in meta analysis [113] (for more details, see

Section 4.3.5). This approach yields a weighted average of the cluster-specific values,

referred to as a ‘pooled estimate’. The ‘pooled cluster-specific’ measure assesses the

65



4.3 Extension of the validation measures for clustered data

predictive ability of the predictors whose values vary within clusters. For example, a

‘pooled estimate’ of the cluster-specific C-indices of 0.75 can be interpreted as that the

ability of the model to discriminate between low-and high risk subjects is reasonable,

given that the subject-pairs are drawn from the same cluster. This ‘pooled’ measure

is similar to the ‘within cluster measure’ of Oirbeek and Lesaffre. However, unlike

Oirbeek and Lesaffre’s approach, this approach provides a weighted estimate, weighted

by the precision of the cluster-specific estimates of the validation measure. Therefore,

the ‘pooled estimate’ of the cluster-specific measures is less affected by clusters which

produce extreme estimates.

The calculations of the validation measures for each of these approaches are dis-

cussed in the following sections.

4.3.4 Estimation: Overall measure

4.3.4.1 The C-index for clustered data: definition

Based on the model’s three different approaches to prediction, three different definitions

of the C-index can be obtained as follows. For a pair of subjects (i, k) from clusters (j, l)

respectively, where i and k correspond to subject who had an event and those who did

not respectively, with event probability {πij(u), πkl(u)}, the concordance probability or

C-index for the random-intercept logistic model can be defined as

Cre(u) = Pr[πij(u) > πkl(u)]⇔ Pr[ηij(u) > ηkl(u)].

This applies to all possible pairs (i, k) in the data, where a pair may consist of subjects

from the same cluster or from different clusters. If subjects are from different clusters,

the cluster-specific random effect u values contribute in determining whether a pair is

concordant and in Cre(u), even if both subjects have the same predictor values. The

random effects u however do not contribute in determining a concordant pair if both

subjects are from the same cluster, as they share the same value of the random effect.

Based on the conditional event probabilities {πij(0), πkl(0)} (where the random
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effects u are set to zero), the above probability become

Cre(0) = Pr[πij(0) > πkl(0)]⇔ Pr[ηij(0) > ηkl(0)].

Similarly, based on population average probabilities {πij(pa), πkl(pa)}, the C-index can

be defined as

Cpa = Pr[πij(pa) > πkl(pa)]⇔ Pr[ηij(pa) > ηkl(pa)].

Note that πij(pa) is simply a transformed or re-scaled value of πij(0), re-scaled by

integrating out the random effect u in πij(u) to obtain population-averaged probability.

This has a one-to-one relationship with πij(0), and hence the rank orders based on both

πij(pa) and πij(0) will be identical. Therefore, Cpa is equal to Cre(0).

4.3.4.2 Nonparametric estimation of the C-index

Let η
(1)
ij (u) = ηij(u)|Yij = 1 be the prognostic index for the ith subject with an event

in the jth cluster, derived from πij(u). Similarly, let η
(0)
kj (u) = ηkj(u)|Ykj = 0 be the

prognostic index for the kth subject without an event in the jth cluster. Let n1j and

n0j be the number of subjects with an event and without an event respectively in the

jth cluster. The total number of subjects with an event is N1 =
∑

j n1j , and the total

number of subjects without an event is N0 =
∑

j n0j . Further, let J1 and J0 be the

total number of clusters with at least one subject with an event and one without an

event, respectively. Note that J ≤ (J1 + J0) ≤ 2J .

Extending equation (4.1), the non-parametric C-index for clustered binary outcomes

can be defined as

Cnpre(u) =
1

N1N0

J∑
j=1

J∑
l=1

nj∑
i=1

nl∑
k=1

I
(
η
(1)
ij (u), η

(0)
kl (u)

)
, (4.13)

where I(.) can be defined similarly as in Section 4.2.3. Cnpre(u) is analogous to the U

statistic derived by Obuchowski [114] for clustered data. The use of the U statistic
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in the context of clustered data has been further discussed in other studies; see, for

example, Rosner and Grove [115], Lee and Rosner [116], and Lee and Dehling [117].

The C-index based on πij(0) and πij(pa) can be obtained using the same approach

to that described in equation (4.13) but by replacing η
(1)
ij (u) and η

(0)
kl (u) by the corre-

sponding prognostic indices derived from πij(0) and πij(pa). The resulting C-indices

are denoted by Cnpre(0) and Cnppa , respectively. Since the rank orders based on πij(pa)

and πij(0) are identical, Cnppa = Cnpre(0).

The indices Cnpre(u) and Cnpre(0) are referred to as ‘conditional indices’, conditioned

on the random effect u, and assess the predictive ability of predictor effects β and the

random effects u, although Cnpre(0) is based on the mean value of the random effects at

zero. The Cnppa does not include the contribution of the random effects u, assesses the

predictive ability of the predictor effects β only, and has a marginal interpretation.

Note that Cnpre(u) > Cnppa if clustering exists in the data. If there is no clustering,

Cnpre(u) = Cnppa . This relationship is analogous to those derived by Oirbeek and Lesaffre

[112] for a concordance measure for clustered survival data. The relationship could be

explained using the following arguments. Let us consider a model with p predictors,

where its discriminatory ability is quantified by Cnppa . Let this model be extended by

adding at least one predictor (hence p+ 1 predictors altogether in the new model) and

the discriminatory ability of the extended model is quantified by Cnpre(u). For example,

if there is p fixed predictors in the model and an additional predictor represents the

the effect of clustering then Cnpre(u) is based on a model of p + 1 predictors. If the

additional predictor (that is, clustering) adds discriminative ability, then Cnpre(u) based

on the p+ 1 predictor model is greater than Cnppa obtained from the p predictor model.

If the additional predictor has no discriminative ability, both indices will be equal. In

the random-intercept logistic model, the random effects u estimate the clustering effect,

that is, the effect of unmeasured cluster level predictors that have not been included in

the model. Cnpre(u) is the result of combining both the random effects u and the predictor

effects β, whereas Cnppa is the result of the predictor effects β only. This implies that

68



4.3 Extension of the validation measures for clustered data

Cnpre(u) is expected to be greater than or equal to Cnppa , depending on whether clustering

exists or not. Similarly, Cnpre(u) > Cnpre(0) as Cnppa = Cnpre(0).

Confidence interval for Cnpre(u)

Several approaches have been proposed to estimate the variance of the area under

ROC curve in the absence of clustering [45, 118, 119]. However, Rockette et al. [120]

showed that all these approaches are approximately equivalent when sample size is

large. Obuchowski [114] extended the method of DeLong et al. [118] for use with

clustered data, following the concept of the design effect and effective sample size for

the clustered design proposed by Rao and Scott [121]. In this research, the method of

Obuchowski [114] is adapted to derive the variance expression for Cnpre(u).

Let us define following two components as

V1[η
(1)
ij (u)] =

1

N0

J0∑
l=1

nl∑
k=1

I
(
η
(1)
ij (u), η

(0)
kl (u)

)
(4.14)

for all η
(1)
ij (u), and

V0[η
(0)
kl (u)] =

1

N1

J1∑
j=1

nj∑
i=1

I
(
η
(1)
ij (u), η

(0)
kl (u)

)
(4.15)

for all η
(0)
kl (u), where V1[η

(1)
ij (u)] is the proportion of subjects without an event who had

prognostic index smaller than that of each subject with an event, and V0[η
(0)
kl (u)] is the

proportion of subjects with an event who had prognostic indices larger than that of

each subject without an event. It is obvious that
∑J1

j=1

∑nj

i=1 V1[η
(1)
ij (u)]/N1 = Cnpre(u)

and similarly,
∑J0

l=1

∑nl
k=1 V0[η

(0)
kl (u)]/N0 = Cnpre(u).

Following Obuchowski [114] and Rao and Scott [121], the sum of squares of the

proportions defined in equations (4.14)-(4.15) are computed as follows. Let V1[η
(1)
.j (u)]

and V0[η
(0)
.j (u)] be the sums of the components defined in (4.14) and (4.15), respectively.

Note that V1[η
(1)
.j (u)] is equal to zero if n1j = 0, and similarly, V0[η

(0)
.j (u)] is equal to
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zero if n0j = 0. Using the notations of Obuchowski [114] and DeLong et al. [118], the

sum of squares of the components in (4.14) and (4.15) can be defined as

S1 =
J1

(J1 − 1)N1

J1∑
j=1

[
V1[η

(1)
.j (u)]− n1jĈnpre(u)

]2
(4.16)

and

S0 =
J0

(J0 − 1)N0

J0∑
j=1

[
V0[η

(0)
.j (u)]− n0jĈnpre(u)

]2
, (4.17)

respectively, where n1jĈ
np
re(u) and n0jĈ

np
re(u) are the mean sum of the components defined

in (4.14) and (4.15), respectively. Further, let us define the following cross-product of

these two components as

S10 =
J

(J − 1)
=

J∑
j=1

[{
V1[η

(1)
.j (u)]− n1jĈnpre(u)

}{
V0[η

(0)
.j (u)]− n0jĈnpre(u)

}]
,

which takes into account the correlation between subjects with an event and those

without an event within the same cluster [114]. Finally, the variance of Ĉnpre(u) can be

estimated as

v̂ar[Ĉnpre(u)] =
1

N1
S1 +

1

N0
S0 +

2

N1N0
S10. (4.18)

As discussed by DeLong et al. [118], it can be shown by the central limit theorem that(
Ĉnpre(u) − Cnpre(u)

)
/
√

v̂ar[Ĉnpre(u)] is asymptotically N(0, 1) if limJ→∞ J1/J0 is bounded

and nonzero. The (1 − α)% confidence interval for Cnpre(u) can be obtained as Ĉnpre(u) ±

Zα/2

√
v̂ar[Ĉnpre(u)], where Zα/2 is the α/2 percentile of standard normal distribution.

The confidence interval for Cnppa and Cnpre(0) can be obtained using the same approach as

described above.
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4.3.4.3 Parametric estimation of the C-index

Similar to those for the standard logistic model, the parametric C-index for the ran-

dom effects logistic model can be estimated under the assumption of normality of the

prognostic index, ηij(u) = βTxij + uj , for the population who had experienced the

event and for those who did not.

For the fixed effects component of ηij(u), let us assume that βxij |Yij = 1 ∼
N(µ1, σ

2) and βxkl|Ykl = 0 ∼ N(µ0, σ
2). Since the random effects ujs are assumed

to vary across clusters following a normal distribution with mean zero and variance σ2u,

the outcome prevalence (number of events) is expected to vary across clusters. The

greater the level of clustering greater the variation in the prevalence is expected across

clusters. This could lead to a scenario where some of the clusters may appear with a

prevalence close to 100% while others with a prevalence close to 0%. For simplicity,

let us assume that there is one subject in a cluster. Further consider the notation uij

instead of uj and define u
(1)
ij and u

(0)
kl as the random effects for the cluster with a subject

who had experienced the event and one who did not, respectively. If one sketches the

distribution of u
(0)
kl and u

(1)
ij , their location parameters are expected to shift to some ex-

tent from zero towards −∞ and +∞ respectively, depending on the level of clustering.

Based on this premise, assume that u
(1)
ij ∼ N(γ1, σ

2
u) and u

(0)
kl ∼ N(γ0, σ

2
u).

Therefore,

η
(1)
ij (u)|Yij = 1 ∼ N(µ1 + γ1, σ

2 + σ2u)

and

η
(0)
kl (u)|Ykl = 0 ∼ N(µ0 + γ0, σ

2 + σ2u).

The C-index based on πij(u) can be defined as

Cpre(u) = Pr[η
(1)
ij (u) > η

(0)
kl (u)]

= Pr[(η
(1)
ij (u)− η(0)kl (u)) > 0]. (4.19)
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After standardising the term η
(1)
ij (u)− η(0)kl (u), Cpre(u) can be obtained as

Cpre(u) = Pr
[
Z <

(µ1 + γ1)− (µ0 + γ0)√
2σ2 + 2σ2u

]
, Z ∼ N(0, 1)

= Φ

(
(µ1 − µ0) + (γ1 − γ0)√

2σ2 + 2σ2u

)
,

where Φ denotes the standard normal cumulative distribution function. Replacing the

parameters (µ1, µ0, γ1, γ0, σ
2, σ2u) by the corresponding sample estimates (x̄1, x̄0, ū1, ū0, S

2, σ̂2u),

Cpre(u) can be estimated as

Ĉpre(u) = Φ

(
x̄1 − x̄0 + ū1 − ū0√

2S2 + 2σ̂2u

)
, (4.20)

The indices Cpre(0) and Cppa for πij(0) and πij(pa) respectively can be derived using

a similar approach to that discussed above, but replacing ηij(u) by the corresponding

prognostic indices ηij(0) and ηij(pa). All these versions of parametric C-indices have

the same interpretation to those with the non-parametric indices.

Confidence interval for Cpre(u)

Let us define δ̂ =
x̄1 − x̄0 + ū1 − ū0√

2S2 + 2σ̂2u
so that Ĉpre(u) = Φ(δ̂). Since Φ is a monotoni-

cally increasing function of δ̂, finding the variance for Ĉpre(u) using the Delta method

[122, 123] is equivalent to finding one for δ̂ [124].

According to the properties of normal distribution, x̄1, x̄0, ū1, and ū0 are indepen-

dent normal random variables with means and variances µ1 and σ2/N , µ0 and σ2/N ,

γ1 and σ2u/J , and γ0 and σ2u/J , respectively. Therefore,

µ̂ = (x̄1 − x̄0) + (ū1 − ū0) ∼ N
(
µ1 − µ0 + γ1 − γ0,

2σ2

N
+

2σ2u
J

)
, (4.21)
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and

(N − 1)S2

σ2
∼ χ2

N−1 and
(J − 1)σ̂2u

σ2u
∼ χ2

J−1 (4.22)

are mutually independent. Let σ̂2p = 2S2 + 2σ̂2u so that δ̂ =
µ̂

σ̂p
. Assuming σ̂2p and µ̂ to

be independent, the Delta method yields the following approximate variance expression

for δ̂:

var(δ̂) ≈

(
∂δ̂

∂µ̂

)2

var(µ̂) +

(
∂δ̂

∂σ̂p

)2

var(σ̂p) =
1

σ̂2p
var(µ̂) +

µ̂2

σ̂4p
var(σ̂p). (4.23)

Var(µ̂) is given in equation (4.21), whereas the Delta method is applied again to obtain

var(σ̂p) as:

var(σ̂p) = var(σ̂2p)
1
2 ≈

(
∂(σ̂2p)

1
2

∂σ̂2p

)2

var(σ̂2p) =
1

4σ̂2p
var(σ̂2p)

=
1

4σ̂2p

[
4var(S2) + 4var(σ̂2u)

]
=

1

4σ̂2p

[8(σ2)2

N − 1
+

8(σ2u)2

J − 1

]
; [using equation (4.22)]. (4.24)

Using equation (4.21) and (4.24) in equation (4.23) yields,

var(δ̂) ≈ 1

σ̂2p

[2σ2

N
+

2σ2u
J

]
+

µ̂2

4(σ̂2p)
3

[8(σ2)2

N − 1
+

8(σ2u)2

J − 1

]
. (4.25)

Substituting the estimates for the unknown parameters in equation (4.25) results in

v̂ar(δ̂) ≈
[2S2

N
+

2σ̂2u
J

]
(2S2 + 2σ̂2u)−1

+
(x̄1 − x̄0 + ū1 − ū0)2

4(2S2 + 2σ̂2u)3

[ 8S4

N − 1
+

8σ̂4u
J − 1

]
. (4.26)
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The (1− α)% CI for Ĉpre(u) is then given by

Φ
(
δ̂ ± Zα/2

√
v̂ar(δ̂)

)
, (4.27)

where Zα/2 is the α/2 percentile of the standard normal distribution. The confidence

interval for Cpre(0) and Cppa can be obtained using a similar approach to that discussed

above.

4.3.4.4 D statistic

The D statistic for the random effects logistic model can be obtained by transforming

the prognostic index η̂ij(u) to zij using the same approach as described for the standard

Cox model and then fitting a random-intercept logistic model to the validation sample

with zij as the only predictor. The model takes the following form:

logit(Yij = 1|uj , zij) = βzzij + uj , (4.28)

where D̂re(u) is equal to the coefficient of z and the standard error of D̂re(u) is equal to

standard error of β̂z. It is also equivalent to obtain D̂re(u) by fitting a standard logistic

model with zij as the only predictor, because the random effects are already included

in zij .

For πij(0) and πij(pa), D̂re(0) and D̂pa respectively can be obtained in a similar

manner to that described above by transforming the corresponding prognostic index to

zij . All these versions of D statistic have the same interpretation to those for C-index.

4.3.4.5 Calibration slope

The calibration slope (CS) for clustered binary outcomes can be obtained using the

same way to the standard logistic model but by fitting a random-intercept logistic

model with the prognostic index η̂ij(u), derived from πij(u), as the only predictor. The
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resulting model takes the following form:

logit(Yij = 1|uj , η̂ij(u)) = βuη̂ij(u) + uj . (4.29)

The estimated calibration slope, ĈSre(u), is equal to the estimate of βu. Similar to

D̂re(u), one can also obtain ĈSre(u) by fitting a standard logistic model.

The calibration slope ĈSre(0) and ĈSpa based on πij(0) and πij(pa) respectively

can be obtained using the same approach to that discussed above but by replacing

η̂ij(u) by the corresponding prognostic indices. All these versions of calibration slope

have the same interpretation to the standard calibration slope, based on the reference

value of one (see, Section 4.2.7).

4.3.4.6 Brier score

The Brier score (BS) for the random-intercept logistic model can be obtained by averag-

ing the squared differences between the predicted probabilities πij(u) and the observed

outcomes y. Extending equation (4.7), the Brier score for πij(u) can be obtained as

BSre(u) =
1

N

J∑
j=1

nj∑
i=1

(
yij − π̂ij(u)

)2
. (4.30)

Similarly, for πij(0) and πij(pa), the Brier score can be obtained by replacing π̂ij(u)

by their corresponding predicted probabilities π̂ij(0) and π̂ij(pa), respectively. The

resulting Brier scores are denoted by BSre(0) and BSpa, respectively. Unlike the same

versions of the rank-based validation measures, BSre(0) 6= BSpa as π(0) 6= π(pa).

In addition, it can be shown that BSre(u) ≤ BSpa using the same explanation as

discussed for showing that Cnpre(u) ≥ Cnppa , keeping in mind that the Brier score has an

inverse relationship with the C-index. For example, the Brier score for a model with

p predictors can decrease to some extent towards its minimum value of zero with the

inclusion of a predictor that adds predictive strength in the model, whereas the C-index

can increase to some extent towards it maximum value of one due to a similar inclusion.
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4.3.5 Estimation: Pooled cluster-specific measure

The ‘pooled cluster-specific’ measure involves estimation of validation measures for

each cluster and then pooling of these across clusters to obtain a weighted average.

The weights can be calculated based on the inverse of both the within cluster-and

between-cluster variances of the cluster-specific validation measures. The within clus-

ter variance is simply the estimated variance of the cluster-specific estimates of the

validation measures. For the between cluster variance, several estimation techniques

have been proposed in the literature of meta-analysis including the method of moments

[113] and maximum likelihood [125, 126]. In this thesis, the method of moment has been

used to estimate the between cluster variance, because of its simplicity. The estimated

between cluster variance is incorporated in the calculation of the pooled estimate of the

cluster-specific validation measures to take into account for the heterogeneity between

the clusters. This approach is commonly used in meta analysis to combine the results

of several studies. The detailed calculation of the pooled estimate of the cluster-specific

validation measures is described as follow.

Let θ̂j (j = 1, . . . , J) be the estimate of a validation measure for the jth cluster, and

σ̂2j be the corresponding estimated variance. The weighted average (pooled estimate)

of the cluster specific estimates can be calculated as

θ̂w = w̄−1
J∑
j=1

θ̂jŵj , (4.31)

where ŵj = 1/(σ̂2j + τ̂2), w̄ =
∑J

j=1 ŵj , and τ̂2 is the estimate of the between cluster

variance and can be obtained as

τ̂2 = max

{
0,

[∑J
j=1 âj(θ̂j − θ̄)2

]
− (J − 1)∑J

j=1 âj −
∑J

j=1 â
2
j/
∑J

j=1 âj

}
,

where âj = 1/σ̂2j and θ̄ =
∑J

j=1 âj θ̂j/
∑J

j=1 âj .

Assuming that the clusters are sufficiently large and there is at least a moderate
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number of clusters, confidence intervals can be obtained by using the following approx-

imation:

θ̂w ∼ N
(
θw, 1/

∑J
j=1wj

)
.

The 100(1− α)% confidence intervals for θw can be obtained as

θ̂w ± Zα/2
( J∑
j=1

ŵj

)−1/2
, (4.32)

where Zα/2 is the α/2 percentile of the standard normal distribution.

Using the above approach, the ‘pooled estimate’ of each of the validation measures

can be obtained. Similar to the ‘overall measure’, three different definitions for each of

the ‘pooled cluster-specific’ measures can be obtained based on the model predictions

πij(u), πij(0), and πij(pa). The resulting nonparametric C-indices, for example, are de-

noted by Cnpw,re(u), C
np
w,re(0), and Cnpw,pa, respectively. However, Cnpw,re(u)=C

np
w,re(0)=C

np
w,pa=C

np
w

(say). This is because the C-index is a rank-based statistic, and that the rank orders

between the subjects within a cluster for these three types of prediction are identical as

subjects from the same cluster share the same random effect u. This argument holds

for the parametric C-index and also for any other rank-based statistic, for example,

the D statistic. The resulting parametric C-index and D statistic are denoted by Cpw

and Dw, respectively.

Although the calibration slope is not a rank-based statistic, the ‘pooled estimate’

of the cluster-specific calibration slopes for all the three approaches to prediction are

also equal. The reason is as follows. Among these approaches, only πij(u) uses the

random effect u values. When calculating the calibration slope for a cluster j by fitting

a standard logistic model, ûj for that cluster is treated as a constant as all subjects

in a cluster have the same ûj . Therefore, the slope (calibration slope) of that logistic

model is not affected by ûj , except for the intercept which is essentially equal to ûj .

Therefore, the ‘pooled cluster-specific’ calibration slope, say CSw, for πij(u) is equal

to those for πij(0) and πij(pa).
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Similarly, the ‘pooled estimate’ of the cluster-specific Brier score can be obtained

for each of these predictions πij(u), πij(0), and πij(pa). The resulting measures are

denoted by BSw,re(u), BSw,re(0), and BSw,pa, respectively. Unlike the other measures,

these are not equal. This is because the Brier score quantifies the accuracy of individual

predictions, but the predictions from these three approaches are not equal. However,

these three ‘pooled’ Brier scores have their own interpretation based on πij(u), πij(0),

and πij(pa). Note that the analytical expression for the variance of the Brier score is

not available, and therefore bootstrap-based standard errors can be used to obtain the

‘pooled estimate’ of the cluster-specific Brier score.

4.4 Application to clustered binary data

In this section, an application of the above methods is illustrated using a real dataset

of patients undergoing heart valve surgery at different hospitals in the UK. The section

starts with a description of the data, which is followed by the analysis and results.

4.4.1 Heart valve surgery data

This dataset was based on patients who underwent aortic and/or mitral heart valve

surgery at 30 different hospitals in the UK. The clinical outcome of interest was in-

hospital mortality (alive/dead). The dataset consists of 32,839 patients, with a total

of 2,089 (6.3 percent) in-hospital deaths. The predictors of interest were age, gender,

body mass index (BMI), hypertension (no/yes), diabetes (no/yes), renal failure (none

or functioning transplant/ creatinine > 200 µmoL/ dialysis dependency), concomitant

CABG surgery (no/yes), concomitant tricuspid surgery (no/yes), preoperative arrhyth-

mias (no/atrial fibrillation or heart block/ventricular tachycardia or fibrillation), ejec-

tion fraction (<30%/30%-50%/>50%), operative priority (elective/urgent/emergency),

operation sequence (previous sternotomy; first/second/third or more), and the year of

surgery. The median cluster size was 1517 with an interquartile range (IQR): 1168

to 2098. The intra-cluster correlation (ICC) calculated using the method of analysis

of variance (ANOVA) [127, 128] was 0.06. The risk model based on this dataset has

already been developed by Ambler et al. [1]. The main focus here is to illustrate the

validation measures for clustered binary data.
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4.4.2 Analysis and results

4.4.2.1 Model development

The dataset was split into two parts: one part was used to develop the model and the

other to validate the model. The development data included all patients who underwent

surgery during the first five years, and a temporal validation was conducted by including

patients who underwent surgery in the subsequent three years. In this validation exer-

cise, both the development and validation datasets consisted of the same hospitals but

different patients. A prognostic model was developed based on the random-intercept

logistic regression model with normally distributed random effects and all available

predictors. Maximum likelihood estimation of the model parameters was performed

using adaptive Gaussian quadrature [97, 99] with 20 quadrature points per level. The

gllamm package in Stata version 11 [129] was used to fit the model. Inspection of the

residual plots suggested that the assumption of normality regarding the random effects

was reasonably satisfied.

The estimated model parameters are not reported here, except for the variance

parameter of the random effects, σ2u, which was estimated as 0.18. This corresponds to

an ICC = σ2u/(σ
2
u + π2/3) = 0.05, indicating weak correlation between patients within

a hospital, after accounting for the fixed predictors.

4.4.2.2 Model validation

The model was used to predict the probability of in-hospital mortality using three

different approaches πij(u), πij(0), and πij(pa) in the validation data. These predicted

probabilities are plotted in Figure 4.1 to observe the spread in predictions and to

see whether there are any differences between them. All three approaches showed

reasonable spread in predictions, with relatively high proportion of patients predicted to

have a low risk of in-hospital mortality and low proportion of patients predicted as high

risk. This reflects the observed risk, that is, about 6 percent of patients had experienced

in-hospital mortality following a heart valve surgery. The spread in predictions for all

the three approaches were similar; however, slightly a greater spread was observed for

predictions based on πij(u).
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Figure 4.1: Distribution of the predicted probability, Pr(Y = 1), by types of prediction
such as πij(u), πij(0), and πij(pa).

The predictive performance of the model in the validation data was evaluated by

using the validation measures described in Section 4.3. To calculate the validation

measures, the prognostic index ηij(u), ηij(0), and ηij(pa) based on the model’s three

different approaches to prediction were derived in the validation data. Some of the

validation measures, for example, the D statistic and the parametric C-index are based

on the assumption of normality of the prognostic index (PI). Therefore, the distributions

of the predicted PI for the patients who survived and those who died are presented

graphically in Figure 4.2, by types of prediction. It appears that the distributions of

the PI for the two groups of patients are approximately normal, which holds for all

types of prediction. Furthermore, there is a reasonable discrimination (or separation)

between these two groups of patients. The discriminatory ability for πij(u) appeared to
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Figure 4.2: Distribution of the predicted prognostic index (PI) or log odds for the popu-
lation who survived and those who died by types of prediction: (a) πij(0), (b) πij(u), and
(c) πij(pa).

be approximately equal to those for πij(0) and πij(pa). This is because the clustering

effect in these data is not strong.

Calculation of the validation measures was performed using user written Stata code

(Appendix B: Figure B.2), and the results are presented in Table 4.1. The ‘overall

estimates’ for all types of non-parametric C-index Cnpre(u), C
np
re(0), and Cnppa suggest rea-

sonably good discrimination between the high and low risk patients. The point estimate

Cnpre(u) was slightly greater than that of Cnpre(0) and Cnppa , although the 95% CIs of the

indices overlap each other. This is because the effect of clustering in these data was

weak. In addition, the estimates of Cnppa and Cnpre(0) were equal, indicating identical
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discrimination for both π̂ij(0) and π̂ij(pa). Similar findings were observed for the D

statistics and the parametric C-indices. The non-parametric C-index was also calcu-

lated based on Oirbeek and Lesaffre’s QO approach. The estimate was 0.784, which is

very close to that obtained for the analogous version Cnpre(u).

Table 4.1: Estimates of the validation measures for the model predicting in-hospital
mortality following heart valve surgery in the validation sample.

Overall Measures
Standard measures Adapted measures Estimates 95% CIs

Cnpre(u) 0.785 [0.776, 0.793]

Non Parametric C-index Cnpre(0) 0.774 [0.759, 0.789]

Cnppa 0.774 [0.759, 0.789]

Cpre(u) 0.785 [0.775, 0.794]

Parametric C-index Cpre(0) 0.775 [0.758, 0.790]

Cppa 0.775 [0.758, 0.790]

Dre(u) 1.85 [1.78, 1.92]

D statistic Dre(0) 1.76 [1.63, 1.87]

Dpa 1.76 [1.63, 1.87]

CSre(u) 1.01 [0.94, 1.08]

Calibration slope CSre(0) 0.98 [0.91, 1.06]

CSpa 0.99 [0.93, 1.07]

BSre(u) 0.049 -

Brier score BSre(0) 0.052 -

BSpa 0.051 -

Pooled Measures

Non-parametric C-index Cnpw 0.775 [0.757, 0.791]
Parametric C-index Cpw 0.774 [0.756, 0.790]

D statistic Dw 1.77 [1.63, 1.89]

Calibration slope CSw 0.99 [0.92, 1.07]

BSw,re(u) 0.051 [0.046, 0.056]

Brier score BSw,re(0) 0.053 [0.047, 0.059]

BSw,pa 0.052 [0.046, 0.058]

The ‘overall’ calibration slope CSre(u) was estimated to be 1.01 (95% CI : 0.94 to

1.08), which suggests that overall calibration for π̂ij(u) was reasonably good. Similar

results were observed for π̂ij(0) and π̂ij(pa). The estimates of BSre(u), BSre(0), and

BSpa suggest that all the approaches showed reasonably good accuracy in predicting
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in-hospital mortality. The estimate of BSre(u) for π̂ij(u) was slightly smaller than those

for π̂ij(pa) and π̂ij(0), again suggesting weak clustering in these data.

The ‘pooled estimates’ of the cluster-specific measures are also presented in Table

4.2. The estimates of both the parametric and non-parametric C-indices Ĉnpw and Ĉpw

suggest that the model has reasonable ability to discriminate between patients who died

in the hospital and those who survived, given that both patients in the pair considered

in the calculation belong to the same hospital. A similar result was observed for Dw.

The non-parametric C-index based on Oirbeek and Lesaffre’s QW approach was 0.773,

which is similar to Ĉnpw . The ‘pooled’ calibration slope CSw was estimated to be 0.99

(95% CI: 0.92 to 1.07), which indicates that the model has good calibration when

predicting within a cluster. The ‘pooled estimates’ of the Brier scores suggest that the

prediction error of π̂ij(u), π̂ij(0), and π̂ij(pa) were reasonably low. As with the ‘overall

estimates’, the ‘pooled estimate’ of the cluster-specific Brier score based on π̂ij(u) is

slightly smaller than those based on π̂ij(0) and π̂ij(pa).

The ‘pooled cluster-specific’ approach based on the random effects summary statis-

tic method provided the method-of-moments estimates of the between-cluster variances

of the cluster-specific measures, τ2, as 0.003, 0.036, 0.001, 0.001 for Cnpw , Dw, CSw, and

BSw, respectively. To examine whether the method-of-moments provided comparable

results with other available methods, τ2 was also estimated using the method of max-

imum likelihood (ML) and restricted maximum likelihood (REML). Both approaches

showed results similar to that obtained from the method-of-moments. Furthermore, the

random effects summary statistic method is usually preferred to a fixed effect method

as it may be considered to encompass the fixed effects method when τ2 zero.

The cluster (hospitals)-specific estimates (with their 95% CIs) of the validation

measures are plotted in Figure 4.3. Each of the four plots shows the rank order of

the hospitals based on the hospital-specific estimates of the validation measures. The

horizontal solid line based on the ‘pooled estimate’ represents the average performance

of the model within a hospital. The plots show the results of 25 hospitals, because

the model could not be applied to 5 of the hospitals as they did not contribute to
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Figure 4.3: Cluster (hospital)-specific estimates against their rank order: the C-index
(non-parametric), D statistic, calibration slope, and Brier score. Each horizontal solid line
indicates the ‘pooled estimate’ of the respective measures.

the validation data due to lack of events. This type of plot may be used to make a

comparison between hospitals and to identify hospitals where model performance is

good or poor, relative to the averaged performance. This type of comparison may also

shed some light on monitoring hospital performances. One could also compare the

observed and predicted deaths to evaluate hospital performance [130].

It can be seen in Figure 4.3 that the predictive ability of the model for some of

the hospitals were significantly worse (better) than the pooled averaged as the points

estimates of the validation measures, except the calibration slope, for these hospitals

were smaller (greater) than the ‘pooled estimate’ and the 95% CIs did not include the

average value. The point estimates of the calibration slope for some of the hospitals

somewhat different from 1 and 95% CI did not include this value, which indicates
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poor calibration of the model for these hospitals. The heterogeneity in the model

performance between hospitals may be caused by the unobserved patient or hospital

level characteristics. This may also suggest a mis-specification of the model for these

hospitals. Therefore, it would be important to investigate the factors which explain

this heterogeneity.

One issue that may be raised before making a comparison between hospitals based

on the hospital-specific estimates of the validation measures is to examine whether

these estimates are associated with the hospital sizes or hospital-specific prevalence

(mortality rate). It appears in Figure 4.3 that the estimates of the validation measures

for some of the hospitals with narrow CIs, which indicate some of the larger hospitals or

hospitals with higher prevalence, are still below the averaged line (horizontal solid line).

Furthermore, a scatter plot between the hospital-specific estimates of the validation

measures and the prevalence did not suggest an association between these two (results

not shown).

In summary, this illustration has showed that the ‘overall’ and ‘pooled’ estimates of

the validation measures have meaningful interpretations when assessing the predictive

ability of a model for clustered binary outcomes. In the next section, performance of

these validation measures for clustered data are evaluated using simulation studies.

4.5 Simulation study

In this section, the properties of both the point estimates and confidence intervals of

the validation measures such as bias, root Mean Squared Error (rMSE), and coverage

were investigated by simulation studies. Both development and validation data were

simulated from a true model. Prognostic models were developed using the simulated de-

velopment data and then evaluated using the corresponding simulated validation data.

The properties of the validation measures were investigated in a range of scenarios, cre-

ated by varying the number of clusters and their size and the intra-cluster correlation

coefficient (ICC) between subjects within the same cluster in the validation data, to see

how these measures perform across these scenarios. The aim was to identify scenarios
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where the validation measures did not perform adequately, for example, whether the

validation measures were affected by number of clusters, cluster size, and the level of

clustering. The section begins by describing the simulation design and is followed by

describing the strategies for evaluating the measures and the results.

4.5.1 Simulation design

4.5.1.1 True model

Clustered binary data were generated from a true model based on the random-intercept

logistic model with normally distributed random effects and one fixed predictor that

has a fixed effect. One of the aims was to generate data under different values of ICC,

to mimic scenarios with no, moderate, and high levels of clustering. Accordingly the

subject level variability (represented by the fixed predictor) was varied and the total

predictive variability that combines the fixed and random effects to represent both

the subject and cluster level characteristics has been fixed to a specific value over the

different ICC scenarios. For a sample of size N with J clusters, the predictor value

xij for the ith subject in the jth cluster (i = 1, . . . , nj ; j = 1, . . . , J) was generated

from N(0, 1), and the true random effects uj were from N(0, σ2u). Then the outcomes

yij were generated from the Bernuolli distribution with probability calculated from the

true random-intercept logistic model using

π(β0, β1|xij , uj) =
exp[η(β0, β1, xij , uj)]

1 + exp[η(β0, β1, xij , uj)]
. (4.33)

where η(β0, β1, xij , uj) = β0 + β1xij + uj is the true prognostic index with intercept β0

and slope β1. As X ∼ N(0, 1), β1X ∼ N(0, β21), and therefore η(β0, β1, xij , uj) follows

N(β0, β
2
1 +σ2u), assuming one subject per cluster. Note that β21 +σ2u represent the total

predictive variability in the log-odds of having the event, which can be decomposed into

subject level variability (β21) and cluster level variability (σ2u). Then the intra-cluster

correlation (ICC) between subjects within a cluster can be specified as σ2u/(β
2
1 + σ2u),

where relatively high values of σ2u indicate high ICC.

To simulate data under different ICC scenarios, the values of σ2u were varied keeping
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the total predictive variability fixed to 1.42, and β1 was determined from β21 +σ2u = 1.42.

The choice of the value of the total predictive ability is arbitrary, but the aim was to

assess the performance of the validation measures for a model with reasonably strong

predictive ability. In addition, β0 was set to a fixed value of -1.8 to generate data with

a prevalence of approximately 20% for each of the ICC scenarios.

4.5.1.2 Simulation scenarios

A total of four ICC values such as 0%, 5%, 10%, and 20% were considered, to mimic

scenario with low, medium, and high level of clustering. Under each ICC value, develop-

ment datasets each with 100 clusters of size 100 were generated. For each development

set, validation datasets from several scenarios were generated, to represent scenarios

with small number of large clusters and large number of small clusters. The validation

scenarios considered were (i) 10 clusters of sizes 10 and 300, and (ii) 100 clusters of

sizes 10, 30, and 100. For each of the four ICC values, there are one development and

five validation scenarios, and in total four development and twenty validation scenar-

ios. For each of the development and validation scenarios, 500 datasets were generated.

This specification (500 replications) was determined following Burton et al. [78] and

provided very low Monte Carlo standard error for the validation measures for clustered

binary outcome. The level of clustering in the development and validation data were

kept equal, generating both data from the same ICC value. This would represent a

scenario where subjects in development and validation data are sampled from the same

population of clusters, where the level of clustering in both datasets are equal.

4.5.2 Strategies for evaluating the measures

4.5.2.1 Model fitting and calculation of the measures

A random-intercept logistic model with normally distributed random effects was fit-

ted to each of the development datasets. Maximum likelihood estimation based on

adaptive Gaussian quadrature [97, 99] was employed to obtain the estimates of the

model parameters, (β̂0, β̂1, σ̂
2
u). The gllamm package in Stata version 11 [129] was used

to obtain these estimates. To calculate the validation measures, the estimated event
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probabilities based on πij(u), πij(0), and πij(pa) and the associated predicted prog-

nostic indices ηij(u), ηij(0), and ηij(pa) were obtained in the corresponding simulated

validation datasets by plugging in the estimates of the model parameters from the

development data. The gllapred package was used to obtain these predictions.

To make predictions based on πij(u), the random effects u were estimated from the

validation data. The gllapred package calculates the empirical Bayes estimates of the

random effects in the validation data using equation (4.9), without fitting a model, but

using the estimates (β̂0, β̂1, σ̂
2
u) from the development data. This can be considered as

a re-calibration of the model based on the random effects. Finally the point estimates

and confidence intervals of the validation measures were calculated using user written

Stata code (Appendix B: Figure B.2).

4.5.2.2 Assessing the properties

The effects of the ICC, the number of clusters and their size on the validation measures

were investigated through simulation by estimating the empirical bias and rMSE of the

point estimates and coverage of the nominal 90% confidence intervals. The true values

of the ‘overall’ and ‘pooled’ validation measures were obtained empirically by averaging

the estimates of the measures over 100 very large simulated datasets (N=300,000 with

clusters J=1000). The ‘overall’ validation measures were calculated using the true

values of the regression parameters and the random effects. The rank-based ‘pooled’

measures (Cw and Dw) and the calibration slope (CSw) were calculated using the true

values of the regression parameters only as the random effects do not contribute to the

calculation of these measures (for more details see Section 4.3.5). However, the true

value of the ‘pooled’ Brier score was calculated using the true value of the regression

parameters and the random effects.

Bias in the estimate of the validation measure was calculated as the mean of the

differences between the true and estimated values for each validation measure, over 500

simulations. The rMSE was calculated as the square root of the mean of the squared

differences between the true and estimated values for each validation measure. Coverage

was calculated as the percentage of simulations where the estimated confidence interval
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contained the true value of the validation measure. Coverage was calculated for both

analytical and bootstrap based confidence intervals for each validation measure. In the

bootstrapping approach, 200 bootstrap samples were used, where the sample drawn

during each replication was a bootstrap sample of subjects within each cluster.

The validation measures have different scales and hence their bias and rMSE are

not directly comparable. Therefore, the bias was rescaled to a percentage in a similar

manner to that discussed in Chapter 3. Similarly, the rMSE was rescaled to a percentage

as

rMSE =

√√√√ 1

G

G∑
g=1

(
m̂g −m
|m−m0|

× 100

)2

,

where m̂g is the estimate for the gth simulation (g = 1, . . . , G), m is the true value and

m0 is the null value.

4.5.3 Results

4.5.3.1 The Overall validation measures

The relative bias in the ‘overall’ estimates of the validation measures were plotted

against different ICC values, for all the simulation scenarios. Figure 4.4 shows the

results for the validation measures based on the different approaches to prediction.

When there was no clustering in the data (ICC=0%), the validation measures in general

showed approximately unbiased estimates for all simulation scenarios, though the D

statistic and calibration slope showed a small amount of bias when both the number

of clusters and their sizes were small. In the presence of clustering (ICC > 0%), the

validation measures Cnpre(u), Dre(u), CSre(u), andBSre(u) showed approximately unbiased

estimates when the clusters were large. However, they showed bias for the small clusters.

The bias associated with Cnpre(u), Dre(u), and CSre(u) increased with increasing ICC while

for BSre(u), it decreased. The results for the parametric C-index were similar to those

for the non-parametric C-index (not shown). Since both these C-indices had similar

results for all the stimulation scenarios, no results for the parametric C-index will be

shown in the rest of the chapter.
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bias for the different estimates of a validation measure based on the model prediction π̂ij(u), π̂ij(0), and π̂ij(pa).
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For all simulation scenarios, both Cnpre(0) and Cnppa showed substantial negative bias

(but of equal amount) in the presence of clustering, and the bias increased with increas-

ing ICC values. Similar results were observed for Dre(0) and Dpa. Furthermore, for all

simulation scenarios, the bias associated with BSre(0) and BSpa were positively corre-

lated with the ICC values. The calibration slopes CSre(0) and CSpa were not affected

by the level of clustering, but were affected by the number and size of the clusters, for

example, 10 clusters of size 10.

Figure 4.5: Agreement between the estimated (û) and the true random effects u in the
validation data. The results are from the different simulation scenarios under ICC=20%:
number of clusters (a) 10 of size 10, (b) 10 of size 300, (c) 100 of size 10, and (d) 100 of
size 100. Figure 2b shows nine points, because two points amongst the ten correspond to
the same values and hence represents one point.

The reason for bias in the validation measures based on π̂ij(u) when the clusters

are small is possibly due to the poor estimation of the random effects. To investigate

this, the empirical Bayes estimates of the random effects from the validation data were
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Figure 4.6: Relative bias (%) in the ‘overall’ estimates of the validation measures for
πij(u) when they were calculated using the true values of the random effects u, rather than
the estimates. The results are from the different simulation scenarios (clusters×size).

plotted against their true values in Figure 4.5. It appears that the random effects were

poorly estimated especially when the cluster sizes were small and the level of clustering

was high. Figure 4.5 shows that there was poor agreement between the estimated and

the true values of the random effects when the clusters were small (Figure 4.5(a) and

(c)), but there was close agreement when the clusters were large (Figure 4.5(b) and (d)).

The empirical Bayes estimates are conditionally biased, that is, conditional expectation

of random effects given the population value of the random effects E(ûj |uj , xij σ̂u) 6= 0,

which pull the empirical Bayes towards 0, the mean of the prior distribution [86]. This

is because the prior dominates the likelihood when cluster sizes are small.

When the empirical Bayes estimates of the random effects were replaced by their
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true values in the calculation of the validation measures while still using the estimates

of the fixed predictors, the measures showed a reasonably good performance, even for

the small clusters (Figure 4.6). These results are analogous to those derived by Oirbeek

and Lesaffre [131]. However, Dre(u) and CSre(u) were slightly biased when the number

and size of the clusters were small, even if clustering did not exist. This implies that

these two measures are affected by small sample size. The validation measures based

on π̂ij(0) and π̂ij(pa), excluding the calibration slope (CS), showed bias in the presence

of clustering. This is because all these measures ignore the actual contribution of the

random effects and therefore underestimate the true value.

The relative rMSE of the ‘overall’ estimates of the validation measures are presented

for different ICC values, for the various simulation scenarios in Figure 4.7. Figure 4.7

shows the results for all validation measures based on the model’s different approaches

to prediction. The validation measures in general had high rMSE for small clusters.

The measures based on π̂ij(u) had low rMSE for all ICC values when the clusters were

large. The validation measures based on π̂ij(0) and π̂ij(pa) had low rMSE when there

was no clustering and the clusters were large. However, the rMSE associated with these

measures, except for the calibration slope, increased with increasing ICC values.

Coverage of nominal 90% confidence intervals (CIs) for each of the validation mea-

sures based on both analytical and bootstrap standard errors (SEs) are reported in

Table 4.2. The table shows the results for the validation measures based on π̂ij(u).

Coverage for BSre(u) based on analytical CIs is not reported as it is not available.

The estimated coverage for Cnpre(u), Dre(u), and CSre(u), based on both analytical and

bootstrap CIs, were approximately close to the nominal 90% value when the clusters

were large. When the clusters were small, both the analytical and bootstrap CIs had

poor coverage, because the point estimates of the measures were biased. Similar results

were observed for BSre(u) based on bootstrap based CIs. In general, coverage for all

the simulation scenarios decreased slightly with increasing ICC as their SE decreased.

All the validation measures based on π̂ij(0) and π̂ij(pa) had good coverage when the

clusters were large and there was no clustering, but they had poor coverage when the

level of clustering was high as their point estimates were biased (results not shown).
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Figure 4.7: Relative rMSE (%) of the ‘overall’ estimates of the validation measures for different ICC values. The results are from
the different simulations scenarios (clusters×size). Each column represents plots of rMSE for different estimates of a validation
measure based on π̂ij(u), π̂ij(0), and π̂ij(pa).
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Table 4.2: Coverage (%) of nominal 90% confidence intervals (CIs) of the ‘overall’ val-
idation measures. The confidence interval are based on both analytical and bootstrap
standard errors. Maximum Monte Carlo Standard Error=2.25%.

Coverage (analytical CIs)

Cnpre(u) Dre(u)

Cluster Size ICC 0% 5% 10% 20% 0% 5% 10% 20%

10 10 91 87 78 77 92 84 81 79
300 90 88 87 85 90 86 83 81

10 89 79 65 58 88 83 72 57
100 30 87 78 68 60 90 72 63 54

100 90 86 85 84 89 83 80 78

CSre(u) BSre(u)
10 10 93 75 86 81 - - - -

300 89 87 88 86 - - - -

10 88 69 49 35 - - - -
100 30 88 56 45 30 - - - -

100 87 83 84 82 - - - -

Coverage (normal-based bootstrap CIs)

Cnpre(u) Dre(u)

10 10 84 85 84 82 93 95 95 87
300 90 89 88 87 90 88 87 86

10 85 84 83 75 86 82 78 70
100 30 86 82 74 66 85 80 73 64

100 89 85 86 84 91 85 84 80

CSre(u) BSre(u)
10 10 93 95 94 97 94 91 88 87

300 88 87 87 86 89 90 88 87

10 88 87 84 82 88 87 84 82
100 30 86 78 72 76 87 87 85 83

100 89 88 88 84 88 89 86 85

The above simulation study was performed using data with equal cluster sizes.

However, most real datasets have clusters of unequal sizes. Therefore, further simula-

tion studies were performed to investigate the performance of the validation measures

in this scenario. Two validation scenarios were considered with 30 clusters of either

median size 50 (IQR: 29 to 90) or 145 (IQR: 54 to 365). The same ICC values were con-

sidered as before. The relative biases of the ‘overall’ validation measures are presented

in Figure 4.8. In general, these results are similar to those obtained for the simulations

based on equal cluster sizes. The results for rMSE and coverage were also similar to

those obtained before (not shown).
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Figure 4.8: Relative bias (%) in the ‘overall’ estimates of the validation measures for different ICC values. The results are from
the different simulation scenarios based on unequal cluster sizes: 30 clusters with median sizes 50 or 145. Each column represents
plots of bias for the different estimates of a validation measure based on the model prediction π̂ij(u), π̂ij(0), and π̂ij(pa).
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4.5.3.2 The Pooled cluster-specific validation measures

The bias in the ‘pooled’ estimates of the cluster-specific validation measures were plot-

ted for different values of the ICC, for various simulation scenarios in Figure 4.9. The

rank-based measures (Cw, Dw) and the calibration slope (CSw) were unbiased when

clusters were large, but they showed large bias for small clusters. The Brier score

BSw,re(u) based on πij(u) includes the random effects and was therefore affected by

the ICC when the clusters were small, as the random effects were poorly estimated for

these clusters. However, BSw,re(u) was unbiased when the clusters were large. Both

BSw,re(0) and BSw,pa based on πij(0) and πij(pa) respectively also showed bias in the

presence of clustering, even when the clusters were large (results not shown).

Figure 4.9: Relative bias (%) in the ‘pooled’ estimate of the validation measures for dif-
ferent ICC values. The results are from the different simulations scenarios (clusters×size).
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Figure 4.10: Relative bias (%) in the ‘pooled’ estimates of the C-index and D statistic
when calculating bias against the ‘overall’ true values. The results are from the different
simulations scenarios (clusters×size).

The extent of bias in the ‘pooled’ estimates of the validation measures was also

compared with the ‘overall’ true values, since these values are able to capture the

variability between the clusters (cluster characteristics) in addition to the subject-level

variability (subject characteristics). Only results for the C-index (Cw) and D statistic

(Dw) are presented in Figure 4.10. The measures were approximately unbiased when

the clusters were large and there was no clustering. However, the bias increased with

increasing ICC values, even with the large clusters.

The possible reason for bias in the ‘pooled’ estimates of the cluster specific measures

when the clusters are small is as follows. The prevalence of the outcome was set at 20%

for the simulations. However, the number of events varied between the clusters for high
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values of the ICC. The minimum number of events required per cluster to calculate the

non-parametric C-index and the Brier score is one and is two for the parametric C-

index, D statistic, and calibration slope. When calculating a validation measure based

on small clusters, if the number of events for a cluster was too low, the cluster was

ignored. Thus the calculation of the ‘pooled estimate’ was often based on a reduced

number of clusters, resulting in bias. In Table 4.3, the number of dropped clusters is

reported. This shows that approximately 12-20% of small clusters were dropped as they

did not have at least one event to calculate Cnpw and BSw,re(u), whereas 50-55% clusters

were dropped for the calculation of Dw and CSw. Consequently, for the simulation

scenarios with small clusters, the bias in Dw and CSw was larger than that for Cnpw and

BSw,re(u). However, when the clusters were large, hardly any clusters were dropped,

resulting in unbiased pooled estimates.

Table 4.3: Distribution of the number of clusters dropped when calculating validation
measures within a cluster. The results are presented by the number of events required to
calculate a measure. Each figure is the average over 500 simulations.

Number of events required
One event Two events

Clusters Size ICC 0% 5% 10% 20% 0% 5% 10% 20%

10 10 1.2 1.5 1.6 1.8 4.9 4.9 5.1 5.2
300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01

10 12.2 14.5 17.4 20.2 49.3 50.2 51.6 53.5
100 30 0.1 0.4 0.9 1.3 1.9 3.6 6.3 10.1

100 0.0 0.0 0.01 0.11 0.0 0.01 0.08 0.34

The estimated rMSE for the ‘pooled estimate’ of the cluster-specific measures are

presented for different ICC values in Figure 4.11. All the ‘pooled’ cluster-specific mea-

sures had very low rMSE when clusters were large, but had high rMSE for small clusters.

The coverage of nominal 90% CIs for the ‘pooled estimate’ of the cluster-specific mea-

sures based on analytical SEs are reported in Table 4.4. For all simulation scenarios

with different ICC values, the measures had good coverage when the clusters were

large. However, the coverage was poor when the clusters were small, because the point

estimates of the measures were biased.
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Figure 4.11: Relative rMSE (%) of the ‘pooled’ estimates of the validation mea-
sures for different ICC values. The results are from the different simulations scenarios
(clusters×size).

The relative biases in the ‘pooled’ estimates of the cluster-specific measures obtained

from the simulations based on unequal cluster sizes are presented in Figure 4.12. These

results are similar to those observed in the simulations that used equal cluster sizes.

The results for rMSE and coverage were also similar to those obtained before (not

shown).
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Table 4.4: Coverage (%) of nominal 90% confidence intervals (CIs) for the ‘pooled’ esti-
mates of the cluster-specific measures. The CIs are based on analytical standard errors of
the measure. Maximum Monte Carlo Standard Error = 2.37%.

Coverage (analytical CIs)

Cnpw Dw

Clusters Size ICC 0% 5% 10% 20% 0% 5% 10% 20%

10 10 92 89 88 88 89 86 88 91
300 90 91 90 89 90 91 90 91

10 55 56 58 57 97 91 95 96
100 30 89 90 90 91 55 56 55 59

100 89 90 89 89 84 85 87 88

CSw BSw,re(u)
10 10 90 97 92 91 82 75 71 67

300 87 89 89 88 90 89 88 89

10 97 92 97 87 80 75 70 63
100 30 62 68 67 70 86 85 83 84

100 86 84 85 84 87 88 84 86

Figure 4.12: Relative bias (%) in the ‘pooled’ estimate of the validation measures for
different ICC values. The results are from the simulations based on unequal cluster sizes.

101



4.6 Conclusion

4.6 Conclusion

This chapter has described an adaptation of the C-index, D statistic, calibration slope,

and Brier score for use with models for clustered binary outcomes. Two approaches

are proposed: an ‘overall’ and a ‘pooled cluster-specific’ measures. Each approach

produces three different values depending on the model predictions π̂ij(u), π̂ij(0), and

π̂ij(pa). The decision regarding which predictions to use should depend on the research

objective.

The new validation measures were illustrated using a dataset of patients who un-

derwent heart valve surgery. The results showed that both the ‘overall’ and ‘pooled

cluster-specific’ validation measures have a meaningful interpretation in a clustered

data setting. The properties of the measures were evaluated by a simulation study in

a range of clustered data scenarios. The simulation results showed that the ‘overall’

validation measures based on π̂ij(u) showed reasonable performance when there was

clustering in the data and the clusters were reasonably large, possibly due to the fact

that the random effects were better estimated in larger clusters. The empirical Bayes

estimates of the random effects are poorly estimated when the clusters are small, in

other words, do not have sufficient number of events [86]. This is because the prior

dominates the likelihood, which pulls the empirical Bayes towards 0, the mean of the

prior distribution. When the empirical Bayes estimates were replaced by the true val-

ues of the random effects while still using the fixed predictor effects, the measures

showed good performance even for the small clusters. The ‘overall’ measures based

on π̂ij(0) and π̂ij(pa) performed poorly when there was a moderate level of clustering

in the data, because they ignore the effect of clustering. The ‘pooled cluster-specific’

measures showed bias when the cluster sizes were small. This is because this approach

ignores information from some of these clusters due to lack of events to calculate the

measures.

In general, both the ‘overall’ and ‘pooled cluster-specific’ measures are recommended

to use to assess the predictive ability of the cluster-data model. However, one needs

to check whether the clusters are sufficiently large (for example, greater than 30) and

each of these contains at least two events before using the ‘pooled’ measures.
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Similar to the measures for independent survival outcomes, the validation measures

for binary outcome differ in their flexibility regarding their assumptions and the form

of the prognostic model. Both the parametric C-index and D statistic assume that

the prognostic index derived from the model is distributed as normal. In contrast,

the non-parametric C-index only requires that the prognostic model is able to rank the

patients. The calibration slope assumes that the model is correctly specified. The Brier

score only requires that a risk algorithm can be calculated for all patients. One needs

to be aware of these before choosing the measures. In practice, the non-parametric

C-index, calibration slope, and Brier score are recommended since they are free from

a distributional assumption of the prognostic index. The parametric C-index and D

statistic can be used only if the prognostic index is normally distributed.

In practice, when validating the model using subjects from the same cluster as

that of the development data, predictions using the estimate of the random effects,

π̂ij(u), and the validation measures based on this approach are recommended. This is

because the random effects for the clusters are known and validation measures based

on this approach showed reasonable performance in the simulation study. It would not

be straightforward to use this approach for validating model using subjects from new

clusters, since the random effects of the new cluster are unknown. In this situation,

firstly, one may inspect the characteristics of the new clusters to see whether these are

similar to those of the development data. Then it may be reasonable to assume that

the clusters in the development and validation data come from the same population of

clusters and thus the level of clustering in both datasets are approximately equal. In

this case, one could assess the equality in the level of clustering between development

and validation data by using the confidence intervals for the variance parameters of

the random effects estimated from both datasets or using F-test, provided that the

number of cluster is reasonably large and the random effects are normally distributed.

If equality holds then one could make predictions based on π̂ij(u) and use the validation

measures based on this approach. In this case, the random effects can be estimated

from the validation data using the estimates of the variance parameter of the random

effects from the development data. Then one could consider this as a form of model re-

calibration. However, equality in the level of clustering between two datasets is unlikely

in practice.
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If the type of between cluster heterogeneity is different between the validation and

development datasets, marginal predictions π̂ij(pa) or conditional predictions that set

the random effects at their mean value of zero, π̂ij(0), could be used if ICC is less than

0.05.

In summary, it is important to investigate the validation data before choosing the

validation measures. In particular, one needs to check whether the validation data

involve the same (or different) clusters as the development data, the level of clustering,

cluster size, prevalence, and the distribution of prognostic index.

Using a similar approach to that discussed in this chapter, the next chapter dis-

cusses possible extensions of some of the validation measures for independent survival

outcomes discussed in Chapter 3 for use with models for clustered survival outcomes.
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Chapter 5

Measures for clustered survival

outcomes

5.1 Introduction

The last chapter has investigated the use of validation measures for clustered binary

outcomes. This chapter focuses on validation measures for clustered survival outcomes.

Although a number validation measures for standard survival models have been devel-

oped (see, Chapter 3), very limited work has been done validation measures for models

with clustered survival outcomes. This chapter discusses possible extensions of some

of the standard validation measures for use with risk models that can handle clustered

survival outcomes.

Frailty models are extensions of standard survival models with a frailty term or

random effect included in the models [132–134]. These models are often used to anal-

yse clustered survival data and have a cluster-specific or conditional interpretation,

given the frailty. A possible alternative to the frailty models are the standard survival

models with an adjustment, for the clustering of the data, for standard errors of the

regression parameters [135–137]. These models have a population-averaged or marginal

interpretation and are referred to as ‘marginal models’. Generally, preference for using

one of these two classes of models depends on the research question. However, frailty
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model may be considered to be a more general type of model for analysing clustered

survival data, because marginal interpretation of the predictors, can be derived from

the frailty model by integrating out the frailty term [134]. This research discusses the

use of frailty models in risk predictions for clustered survival data.

Some of the more commonly used validation measures for standard survival models

have been considered in Chapter 3. For example, the calibration slope [44] is used

to assess the calibration of a standard survival model. Similarly, Harrell’s C-index

[40], Gönen and Heller’s K(β) [48], and Royston and Sauerbrei’s D [49] have been

developed to assess discrimination, and Graf et al’e IBS and its R2 extension assess

both calibration and discrimination. In this chapter, these measures are extended for

use with frailty models.

This chapter is organised as follows. Section 5.2 discusses the extensions of the val-

idation measures mentioned above for use with clustered survival data. In Section 5.3,

an application of the methods is illustrated using child mortality data from Bangladesh.

Section 5.4 discusses simulation studies to evaluate the performance of the measures,

and Section 5.5 ends this chapter with a discussion and conclusion.

5.2 Extension of the validation measures for use with clus-

tered survival data

This section begins with a description of basic notation based on the Proportional

Hazards (PH) frailty model and is followed by the detailed calculation of the validation

measures for use with the PH frailty models.

5.2.1 The Proportional Hazards frailty model

Let us suppose that we have data (tij , δij ,xij) (i = 1, . . . , nj ; j = 1, . . . , J) onN subjects

from J different clusters of size nj and
∑J

j=1 nj = N , where for the ith subject belonging

to the jth cluster, tij is the observed time, δij is 1 if the event of interest is experienced

at tij or 0 otherwise (right censoring), and xij is the ith row vector of the p-predictors.
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To take account of the clustering effect, the standard proportional hazards (PH) model

is extended to the PH frailty model by introducing a frailty term ωj for the jth cluster.

These frailties ωjs represent the effect of unobserved cluster-level predictors and vary

across clusters. Since all subjects in the same cluster share the same frailty, this model

is also called a shared frailty model. The hazard function of the PH shared frailty

model takes the following form:

h(t|xij , ωj) = ωjh0(t) exp(βTxij)

= h0(t) exp(βTxij + lnωj)

= h0(t) exp(βTxij +$j) (5.1)

where $j(= lnωj) is the log frailty, and βTxij +$j is known as the prognostic index.

The frailties are independent and identically distributed random variables that have

a probability distribution f(ω|θ), called the frailty distribution. Popular frailty distri-

butions are the Gamma distribution and the inverse Gaussian distribution, which are

all well-known members of the power variance family [138]. In this Chapter, the one

parameter Gamma distribution [139] is considered as the frailty distribution because

of its computational convenience. The frailties ωjs follow a Gamma distribution with

mean 1 and variance θ, which is estimated from the data. The variance parameter θ

is interpreted as a measure of heterogeneity in the risk of failures across clusters. If

θ = 0, then values of ω are all identical to 1, which implies that there is no effect of

clustering and the survival times are independent within as well as between clusters.

When θ is large, values of ω are more dispersed, indicating greater heterogeneity in the

cluster specific baseline hazards ωjh0(t). The variance parameter θ can also be used to

estimate the intra-cluster correlation coefficient Kendall’s τ , which is equal to θ/(2+θ).

Various estimation methods have been proposed for estimating the model param-

eters, the fixed predictor effects βT , the variance parameter of the frailty, θ, and the

cumulative baseline hazard function H0(t) =
∫ t
0 h0(u)du. These include the expectation

maximisation (EM) algorithm [134, 140, 141], and the penalised likelihood approach

[133, 134]. For a semiparametric shared gamma frailty model, both approaches have

been shown to provide similar results [134].
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5.2.2 Predictions from the frailty model

The predictive form of the PH frailty model can be written in terms of the survival

function as

S(t|xij , ωj) = [S0(t)]
exp(βTxij+$j). (5.2)

To make predictions, one uses the estimates of βT and S0(t) and the estimate of the

log frailty $j . One approach to obtain the estimate of $j is empirical Bayes estima-

tion [133, 142]. Briefly, the empirical Bayes estimates are the means of the posterior

distribution of the frailty distribution, given the estimated model parameters and the

data.

Similar to the random-intercept logistic model discussed in Chapter 4, the frailty

model can be used to predict the survival probability using three different approaches

depending on how the frailties are used in the predictions. These are conditional

predictions obtained by either plugging in the estimated log-frailties $̂j or specifying

the frailty at their mean value 1 (or the log-frailty at 0), and marginal predictions

obtained by integrating out the frailty term from the conditional frailty model. The

resulting marginal survival function takes the following form for marginal predictions:

S(t|xij) =

∫
S(t|xij , ω)f(ω|θ)dω.

For convenience, these three approaches to prediction are denoted by S(t|ω), S(t|1),

and S(t), respectively. This chapter only discusses the extension of the validation

measures for use with S(t|ω). However, the validation measures for S(t|1) and S(t) can

be derived in an analogous way to those derived for S(t|ω).

5.2.3 Approaches for the calculation of the validation measures

As in Chapter 4, an ‘overall’ and a ‘pooled cluster-specific’ measures are considered to

calculate validation measures for clustered survival data. Briefly, the ‘overall’ measure

can be estimated by comparing the subjects within as well as between clusters, and the

resulting estimate assesses the overall predictive ability of the model. For the ‘pooled
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cluster-specific’ measure, one calculates the validation measure for each cluster, and

these estimates are pooled across clusters using the random effects summary statistic

methods described in Chapter 4. The ‘pooled cluster-specific’ measure does not com-

pare subjects across clusters and thus assess the predictive ability of the predictors

whose values vary within a cluster. The detailed calculations of validation measures

for each these approaches are considered in the following sections of this chapter.

5.2.4 Estimation: Overall measures

5.2.4.1 Harrell’s C-index

Harrell’s C-index is an estimator of concordance probability and is based on the idea

that, for a randomly selected pair of subjects, a survival model should predict a lower

survival probability for the subject who fails earlier than that for the subject who fails

later. The overall C-index is the proportion of all usable pairs in which predictions and

outcomes are concordant (see Section 3.3.3.1, Chapter 3). This definition is adapted

here for use with clustered data in the following way. A randomly selected pair of

subjects i and k from clusters j and l respectively, with survival times tij and tkl is

said to be a usable pair if tij 6= tkl. For censored data, a pair is usable if the shorter

time corresponds to an event. With corresponding predicted survival probabilities

S(t|xij , ωj) and S(t|xkl, ωl), a usable pair is said to be concordant if either S(t|xij , ωj) <
S(t|xkl, ωl) and tij < tkl or S(t|xij , ωi) > S(t|xkl, ωl) and tij > tkl. Otherwise, the pair

is said to be discordant. The concordance probability for clustered survival data can

be defined as

Cre = Pr
[
S(t|xij , ωi) < S(t|xkl, ωl)|tij < tkl

]
,

or equivalently

Cre = Pr
[
(βTxij +$j) > (βTxkl +$l)|tij < tkl

]
.

This applies to all possible pairs (i, k) in the data, where the pairs can be formed

by taking subjects from the same cluster or from different clusters. If subjects are

from different clusters, their frailty values contribute in determining whether the pair
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is concordant, even if both subjects have the same predictor values. However, the

frailties do not contribute in determining a concordant pair if both subjects in the pair

are from the same cluster, as they share the same frailty value.

Comparing all possible pairs (i, k), in which at least one subject of a pair had

an event, with observed data {(tij , δij ,xij), (tkl, δkl,xkl)}, the C-index then can be

calculated for the frailty model as

Ĉre =

J∑
j=1

J∑
l=1

nj∑
i=1

nl∑
k=1

[
I
(

(β̂Txij + $̂j) > (β̂Txkl + $̂l) & tij < tkl & δij = 1
)]

J∑
j=1

J∑
l=1

nj∑
i=1

nl∑
k=1

[
I(tij < tkl & δij = 1)

] , (5.3)

where I(·) is the indicator function, β̂T is the estimate of βT , and $̂j is the empirical

Bayes estimate of the log frailty $j .

Confidence interval for Cre

The method discussed by Pencina and D’Agostino [75] for the C-index for indepen-

dent survival data is adapted to derive a confidence interval for Cre for clustered data.

Let us define

cijkl = 1 if the pair (i, k) from clusters (j, l) is concordant

= 0 if discordant. (5.4)

Further let cij be the number of subjects in the dataset that are concordant with the

ith subject from the jth cluster, then applying the above definition

cij =
J∑
l=1

nl∑
k=1

cijlk. (5.5)
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Considering the entire sample, the unconditional probability of concordance

πc = Pr
[
(βTxij +$j) > (βTxkl +$l) & tij < tkl

]
can be estimated as

π̂c =
1

N(N − 1)

J∑
j=1

nj∑
i=1

cij . (5.6)

Similarly, if we let dij be the corresponding number of subjects that are discordant

with the ith subject from the jth cluster, then the estimated unconditional probability

of discordant is

π̂d =
1

N(N − 1)

J∑
j=1

nj∑
i=1

dij . (5.7)

As discussed by Pencina and D’Agostino [75], π̂c and π̂d are unbiased estimates of πc

and πd, respectively. Note that πc + πd = 1 if there are no ties. Using the relationship

between Harrell’s C-index and the modified Kendall’s τm [143] developed by Pencina

and D’Agostino [75], Ĉre defined in equation (5.3) can be written as

Ĉre =
π̂c

π̂c + π̂d
=

1

2
(τ̂m + 1), (5.8)

where τ̂m =
π̂c − π̂d
π̂c + π̂d

is an estimate of τm.

Using these estimates, the following expression can be written:

√
N(Ĉre − Cre) =

√
N

(
π̂c

π̂c + π̂d
− πc
πc + πd

)
=

√
N(πdπ̂c − πcπ̂d)

(π̂c + π̂d)(πc + πd)
,

which is asymptotically equivalent to

ρ =

√
N(πdπ̂c − πcπ̂d)

(πc + πd)2
.
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By virtue of the central limit theorem, the above statistic is approximately normally

distributed for large N [75, 143]. Since π̂c and π̂d are unbiased estimates of πc and

πd, respectively, it can be shown that E[ρ] = 0. Therefore, Ĉre is an asymptotically

unbiased and normal estimator of Cre [75]. Using the result of Pencina and D’Agostino

[75], the variance expression for ρ can be written as

var(ρ) =
4

(πc + πd)4
(π2dπcc − 2πcπdπcd + π2cπdd),

where, for three subjects (i, k, r) from clusters (j, l, s) respectively,

πcc = Pr[i is concordant with both k and r],

πdd = Pr[i is discordant with both k and r],

πcd = Pr[i is concordant with k but discordant with r],

πdc = Pr[i is discordant with k but concordant with r].

The last two probabilities are equal, since k and r can be interchanged.

These probabilities can be estimated from data in the following way. The term πcc

is interpreted as the probability that a given subject from a given cluster is concordant

with two other randomly selected subjects from any clusters. For subject i from cluster

j, the possible number of pairs of subjects that are concordant with i can be calculated

as
cij !

(cij − 2)!
= cij(cij − 1), where cij can be calculated using equation (5.5). Summing

over all subjects and clusters and dividing by all possible number of ordered triples,
N !

(N − 3)!
= N(N − 1)(N − 2), the following estimate for πcc can be obtained:

π̂cc =
1

N(N − 1)(N − 2)

J∑
j=1

nj∑
i=1

cij(cij − 1).
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Similarly, πdd and πcd can be estimated as

π̂dd =
1

N(N − 1)(N − 2)

J∑
j=1

nj∑
i=1

dij(dij − 1) and

π̂cd =
1

N(N − 1)(N − 2)

J∑
j=1

nj∑
i=1

cijdij ,

respectively. Therefore, the estimate of var(ρ) can be written as

v̂ar(ρ) =
4

(π̂c + π̂d)4
(π̂2dπ̂cc − 2π̂cπ̂dπ̂cd + π̂2c π̂dd).

Finally, the confidence interval for Cre can be constructed as:

Ĉre ± zα/2

√
v̂ar(ρ)

N
,

where zα/2 denotes the α/2 percentile of the standard normal distribution.

5.2.4.2 Gonen and Heller’s K(β)

Gonen and Heller’s K(β) [48] is also an estimator of concordance probability under the

Cox PH model (see, Chapter 3). In this chapter, the method of Gonen and Heller [48]

is adapted to derive a concordance probability estimator Kre(β|ω) for the PH frailty

model. Kre(β|ω) is a function of the regression parameters, the predictor distribution,

and the frailty parameter.

For a pair of subjects (i, k) from clusters (j, l) respectively with corresponding prog-

nostic indices (log hazards) {βTxij +$j ,β
Txkl +$l}, the concordance probability

Kre(β|ω) = Pr
[
tkl>tij |(β

Txij +$j) > (βTxkl +$l)
]
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can be calculated for the PH frailty model as

Kre(β|ω) = Pr
[
T (βTxkl +$l) > T (βTxij +$j)

]
=

∫ ∞
0

S(t|xkl, ωl)dS(t|xij , ωj)

=
1

1 + exp[βT (xkl − xij) + ($l −$j)]
,

where T (βTxij +$j) represents the survival time that corresponds to βTxij +$j . If

one considers all possible pairs (i, k), Kre(β|ω) can be estimated as

Kre(β̂|ω̂) =
1

N(N − 1)

J∑
j=1

J∑
l=1

nj∑
i=1

nl∑
k=1

[
I
(

(β̂Txij + $̂j) > (β̂Txkl + $̂l)
)

1 + exp[β̂T (xkl − xij) + ($̂l − $̂j)]

]

=
1

N(N − 1)

J∑
j=1

J∑
l=1

nj∑
i=1

nl∑
k=1

[
I
(

[β̂T (xkl − xij) + ($̂l − $̂j)] < 0
)

1 + exp[β̂T (xkl − xij) + ($̂l − $̂j)]

]

=
1

N(N − 1)

J∑
j=1

J∑
l=1

nj∑
i=1

nl∑
k=1

[
I
(

(β̂Txklij + $̂lj) < 0
)

1 + exp[β̂Txklij + $̂lj ]

]
(5.9)

where xklij and $̂lj represent the differences xkl − xij and $̂l − $̂j , respectively.

Kre(β̂|ω̂) is a conditional concordance probability estimator of the PH frailty model as

β̂ is conditional on the frailty ω.

Asymptotic variance of Kre(β|ω)

The method of Gonen and Heller [48] for the standard K(β̂) is adapted here to

derive an asymptotic variance expression for Kre(β̂|ω̂). The estimator Kre(β̂|ω̂) is a

non-smooth function of β̂ and $̂. As a result, Kre(β̂|ω̂) is a nondifferentiable statistic

for which it is difficult to obtain a local linear approximation to Kre(β̂|ω̂), from which

the asymptotic distribution of Kre(β̂|ω̂) and the corresponding asymptotic variance can

be derived. To address this problem, a smooth approximation to the above estimator

can be obtained following Gonen and Heller [48] who used kernel smoothing technique
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[144] as

K̃re(β̂|ω̂) =
1

N(N − 1)

J∑
j=1

J∑
l=1

nj∑
i=1

nl∑
k=1

[
Φ
(
− (β̂Txijkl + $̂jl)/h

)
1 + exp[β̂Txklij + $̂lj ]

]
, (5.10)

where h is the bandwidth which controls the amount of smoothing, and Φ is the stan-

dard normal cumulative distribution. Note that for N → ∞, h → 0 and therefore

Φ(u/h) → I(u > 0). As suggested by Gonen and Heller [48], we choose h so that

Nh4 → 0 as N gets large. Based on this condition, it can be shown that the asymp-

totic distributions of the non-smoothed estimator Kre(β̂|ω̂) and the smoothed estimator

K̃re(β̂|ω̂) are equal, and the variance of Kre(β̂|ω̂) can be calculated using a linearisa-

tion argument based on the Taylor series expansion for smoothed K̃re(β̂|ω̂). Following

Gonen and Heller [48] the bandwidth used in the above approximation is chosen as

h = 0.5σ̂N−1/3, where σ̂ is the estimated standard deviation of the predicted prognos-

tic index β̂Txij + $̂j . The term N−1/3 confirms the asymptotic condition Nh4 → 0

required for the asymptotic equivalence of the smooth and non-smooth concordance

probability estimator.

The asymptotic variance of K̃re(β̂|ω̂) can be obtained by calculating its first-order

Taylor series expansion. Using the results of Gonen and Heller [48] the variance ex-

pression can be written as:

var[K̃re(β̂|ω̂)] ≈ var[K̃re(β0|ω)] +

[
∂K̃re(β|ω)

∂β

]T∣∣∣∣∣
β=β0

var(β̂|ω̂)

[
∂K̃re(β|ω)

∂β

]∣∣∣∣∣
β=β0

,(5.11)

which can be estimated by plugging in the estimates of the various components of

this expansion. The variance of β̂|ω̂ can be computed from the inverse of the Fisher

information matrix. The asymptotic variance of K̃re(β̂0|ω̂) can be estimated from data

based on the U -statistic formulation. The U -statistic is a class of statistics in statistical

estimation theory that produces minimum variance unbiased estimator, for more details
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see Hoeffding [145] and Lee [146]. The resulting estimate is:

v̂ar[K̃re(β0|ω)] =
1

{N(N − 1)}2
J∑
j=1

J∑
l=1

nj∑
i=1

nl∑
k=1

nl∑
r 6=k

[υijkl − K̃(β̂|ω̂)][υijrl − K̃(β̂|ω̂)],

where υijkl = Φ
(
−(β̂Txijkl+$̂jl)/h

)[
1+exp[β̂Txklij+$̂lj ]

]−1
. The partial derivative

vector
∂K̃re(β|ω)

∂β
can be estimated at β = β̂ and is given by

∂K̃re(β|ω)

∂β

∣∣∣∣∣
β=β̂

=

J∑
j=1

J∑
l=1

nj∑
i=1

nl∑
k=1

nl∑
r 6=k

[
φ
(
− (β̂Txklij + $̂lj)/h

)
1 + exp[β̂Txklij + $̂lj ]

[−xklij/h]

+
Φ
(
− (β̂Txklij + $̂lj)/h

)
(

1 + exp[β̂Txklij + $̂lj ]
)2 exp[β̂Txklij + $̂lj ][−xklij ]

]
,

where φ is the normal density. For notational convenience, Kre instead of K̃re(β̂|ω̂) is

used in the rest of the chapter.

5.2.4.3 Royston and Sauerbrei’s D

The D statistic quantifies the separation between subjects with low and high predicted

risks, as predicted by the model. The D statistic for the frailty model, Dre, can be

obtained by transforming the prognostic index η̂re = β̂Txij + $̂j to a normal order

statistic z in a similar way to that described for the standard Cox model and then

fitting a PH frailty model with z as the only predictor. The resulting model takes the

following form:

h(t|z, ωj) = ωjh0(t) exp(βzz),

where Dre = β̂z and has the same interpretation to the standard D statistic. One can

also obtain Dre by fitting a standard Cox model with z, since the frailties are already

included in z.
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5.2.4.4 Calibration slope

The calibration slope for the PH frailty model, denoted by CSre, can be obtained by

fitting a PH frailty model (or a standard Cox model) with the estimated prognostic

index η̂re obtained for validation sample as the only predictor:

h(t|η̂re, ωj) = ωjh0(t) exp(βηre η̂re),

where CSre(= β̂ηre) is the coefficient of η̂re in the above frailty model, and has the

same interpretation to the standard calibration slope.

5.2.4.5 Brier score

The Brier score for the frailty risk model can be calculated by comparing the predicted

survival probabilities Ŝ(t|xij , ω̂) with the observed outcomes at time t over the study

period and averaging over the N subjects. Let Yij(t) be the observed outcome that

takes value 1 if the ith subject from the jth cluster is alive at t, and 0 if not. If a

subject is alive at time t, the predicted survival probability should ideally be close to

1, otherwise it should be close to 0. The Brier score can be estimated as

BSre(t) =
1

N

J∑
j=1

nj∑
i=1

(
Yij(t)− Ŝ(tij |xij , ω̂j)

)2
W (t, Ĝ). (5.12)

The weights W (t, Ĝ) are to compensate for earlier censoring and are given by

W (t, Ĝ) =
1{tij ≤ t}δij

Ĝ(tij)
+

1{tij > t}
Ĝ(t)

,

where Ĝ(t) is the Kaplan-Meier estimate of the probability of being uncensored at time

t. The corresponding integrated Brier score (IBS) is the cumulative Brier score over

the interval [0, τ ] and can be calculated for the PH frailty model as

IBSre(τ) =

∫ τ

0
BSre(t)dW (t), (5.13)
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where W (t) is a function to weight the contribution of the Brier score at individual

time point, and τ is chosen as a time before the last event time.

5.2.5 Estimation: Pooled cluster-specific measures

The estimation of the pooled cluster-specific measure for the frailty model is similar

to that discussed for the random-intercept logistic model. For example, the pooled

cluster-specific Harrell’s C-index is calculated as follows.

Let ĉj be the estimate of the C-index for the jth cluster with its estimated variance

s2j (j = 1, . . . , J), and τ2 be the between cluster variance. Then the pooled C-index

can be obtained as

Ĉw = w̄−1
J∑
j=1

ĉjŵj

where ŵj = 1/(s2j + τ̂2), w̄ =
∑J

j=1 ŵj , and τ2 can be estimated using the method of

DerSimonian and Laird [113], which was described in Section 4.3.5, Chapter 4.

Similarly, pooled estimates for K(β), D-statistic, calibration slope, and integrated

Brier score (IBS) can be obtained in a similar manner and the resulting measures are

denoted by Kw, Dw, CSw, and IBSw, respectively. Since analytical standard errors are

not available for IBS, bootstrap based standard errors obtained (from 200 bootstrap

samples) for each of the clusters are used to calculate the pooled estimate of IBSw.

All these ‘pooled’ validation measures have the same interpretation to the analogous

versions of the ‘pooled’ validation measures for clustered binary data.

5.3 Application to child mortality data

In this section, the validation measures described above are illustrated using data on

mortality of children under the age of five in Bangladesh. The following sections de-

scribe the data and present the analysis and results.
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5.3.1 Child mortality data

Data on the mortality of children under five in Bangladesh were obtained from the

database of the Bangladesh Demographic and Health Survey (BDHS) [147, 148]. The

BDHS is a nationally representative survey that has been carried out once every two

years since 1993 as part of the world-wide Demographic and Health Survey (DHS)

programme, which has been carried out mostly in developing countries. This survey

collects information on the reproductive history of women and their socio-demographic

and health status, immunisation, and child mortality. Although the women were inter-

viewed at one time point, they were asked to give information on predictors at the time

of the event or before the event occurred as approximately. Therefore, although this

is a survey design, it can be considered as a retrospective cohort study. The strategic

objective of this survey is to improve the collection and use of data by host countries for

programme monitoring and evaluation and for policy development decisions. Here the

aim is to develop a risk model using data on mortality of children under five. The model

may be useful to the country’s health care providers to offer advice to women who are

planning pregnancy and to identify high risk groups. Data used for this analysis were

extracted from the 2004 and 2007 BDHS databases. Data collected in 2004 were used

to develop the risk model and a ‘temporal validation’ of the model was conducted using

data collected in 2007.

In each of the both 2004 and 2007 surveys, a total of 361 clusters were selected

according to the country’s geographical locations. For more details, see BDHS reports

[147, 148]. Figure 5.1 shows the geographical location of urban and rural clusters across

the country. From each cluster, 30 households, on average, were selected using an equal

probability systematic sampling scheme. All married women age 10-49 in the selected

households were interviewed to collect information on the survival history for each birth

along with relevant background information. For this analysis, only singleton births

that occurred in the 5 years preceding the interview were selected. Clustering was

considered at only the cluster/geographical-location level, and one birth per household

was randomly selected to avoid clustering of children at the household level. The risk

model was developed using the data on 6,776 singleton births (with 440 events/deaths)

collected in 2004, and the model was validated using data on 6,052 singleton births
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(with 325 events/deaths) collected in 2007. In both datasets, survival times of more

than 90% of the children were reported to be censored.

 

Figure 5.1: Map of Bangladesh indicating the distribution of the urban and rural sampling
points (a total of 361 clusters), visited in the 2007 BDHS survey. Source: 2007 BDHS
report.

The distribution of the clusters by the number of births per cluster (cluster size)

and by the number of deaths per cluster is presented in Figure 5.2. For both the

development and validation data, the distributions of the clusters by the number of

births per cluster were approximately the same, with the median number of births per

cluster reported as 20 (IQR: 16 to 25) and 18 (IQR: 14 to 23) during the period of

1999-2004 and 2002-2007, respectively. Similarly, the distribution of the clusters by

the number of deaths per cluster for both datasets were similar, with both average

deaths per cluster reported as 1.2 during the period of 1999-2007. From the total of

361 clusters, 132 clusters in the development data and 179 clusters in the validation

120



5.3 Application to child mortality data

data had no deaths. The reason for similarities between these two datasets may be due

to the fact that both were sampled from the same population of clusters, where clusters

represent the geographical location.

Figure 5.2: Distribution of clusters in both the development and validation data by the
number of births per cluster (a,c) and by the number of deaths per cluster (b,d).

The outcome time-to-event (death/survived) was measured in days and was cal-

culated for the births in the 5 years preceding the interview by subtracting the date

of birth from the date of death or from the date of interview. The median follow-up

times for the children in the development and validation datasets were 870 days and

900 days, respectively. The predictors included in the risk model were maternal age,

mother’s education, household’s socio-economic status, child’s birth order, and birth

spacing which included both preceding and subsequent birth intervals. These predic-

tors were found to be significantly associated with child mortality in previous studies

in this area [149–155].
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Maternal age was measured as the age (in years) of the mother at the birth of the

child and had a non-linear relationship with outcome. A log transformation was unable

to make the relationship linear and therefore maternal age was categorised, as in the

BDHS report, as 14-19, 20-29, and 30+ years. Mother’s education was categorized

based on the number years of schooling the mother had attained: no-education (0 year

of schooling), primary (5 years), secondary (10 years), and higher (11+ years). House-

hold socio-economic status (poorest/poorer/middle/richer/ richest) was determined by

calculating a wealth index for each household using a principal component analysis of

the assets owned (yes/no) by the household. The 1st quintile of the index was referred

to as the ‘poorest’ and the 5th quintile as the ‘richest’.

The predictors based on child’s birth order and birth spacing were categorized in

a similar way to that described in previous studies [149, 154, 155]. Child’s birth order

was categorised as first birth, order 2-4, and order 5+. The preceding birth interval

was categorised as short (≤20 months), medium (21-36 months), long (37+ months),

following the first birth. Similarly, the subsequent birth interval was categorised as

short, medium, long, following the last birth. Since the information on the first birth is

similar in both ‘child’s birth order’ and ‘preceding birth interval’, these two predictors

were combined together to create a single predictor defined as ‘birth-order/preceding-

birth-interval’. The categories of this combined predictor was defined as first birth,

order 2-4/short, order 2-4/medium, order 2-4/long, order 5+/short, order 5+/medium,

order 5+/long.

5.3.2 Analysis and results

5.3.2.1 Model development

Using the Cox PH model with shared gamma frailty parameters, a prognostic model

of child mortality was developed using the development data. The model parameters

(β, θ) were estimated using penalised likelihood estimation [133]. The Stata package

stcox using the shared option was used to fit the model. The results are presented

in Table 5.1. All the predictors in the model were found to be statistically significant

at the 5% level of significance. The predictor subsequent-birth-interval showed the

strongest association with the outcome. The frailty parameter θ is estimated as 0.11,
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which corresponds to the intra-cluster correlation calculated as θ/(2 + θ) = 0.05. This

suggests that the effect of clustering is weak; there is a low variation between the

clusters in the risk of failures.

Table 5.1: Estimates of the PH frailty model in the development data

Variables HR 95% CI P-value

Maternal Age <0.01
14-19 yrs 1.00 -
20-29 yrs 1.01 [0.77, 1.32]
30+ yrs 1.72 [1.15, 2.56]
Mother’s education <0.05
no education 1.00 -
primary 0.70 [0.55, 0.89]
secondary 0.75 [0.56, 1.01]
higher 0.57 [0.31, 1.04]
Birth order/preceding birth interval <0.01
first birth 1.91 [1.39, 2.62]
2-4/short 1.77 [1.15, 2.72]
2-4/medium 1.41 [1.04, 1.93]
2-4/long 1.00 -
5+/short 1.74 [1.03, 2.92]
5+/medium 1.28 [0.85, 1.94]
5+/long 1.06 [0.68, 1.64]
Subsequent birth interval <0.001
short 1.00 -
medium 0.29 [0.22, 0.39]
long 0.21 [0.13, 0.33]
last birth 0.12 [0.09, 0.16]
Socio-economic status <0.05
poorest 1.00 -
poorer 0.74 [0.55, 0.99]
middle 1.02 [0.77, 1.34]
richer 0.68 [0.48, 0.94]
richest 0.74 [0.53, 1.04]

Variance parameter θ (SE) 0.11 (0.07) - -

5.3.2.2 Model Validation

The model was then used to predict the survival probability in the validation data,

and the predictive performance of the model was assessed using the validation mea-

sures described in Section 5.2. To calculate the validation measures, the frailties, the

survival probabilities S(t|ω), and the associated prognostic indices were estimated in
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the validation data, using the estimated model parameters from the development data.

User written Stata code was used to calculate the validation measures (Appendix B:

Figure B.3).

Figure 5.3: (a) Distribution of the predicted prognostic index η̂re = β̂Txij + $̂j (b)
Kaplan-Meier survival function at the tertiles of the predicted prognostic index.

Some of the validation measures are based on a normality assumption of the pre-

dicted prognostic index. Therefore, the distribution of the predicted prognostic index

is presented in Figure 5.3(a); there appears to be some skewness towards the right,

however it is perhaps not unreasonable to consider the distribution of the predicted

prognostic index as normal. Furthermore, to examine the spread in survival predic-
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tions as predicted by the model in the validation data, Kaplan-Meier survival function

at the tertiles of the predicted prognostic index is presented in Figure 5.3(b). This plot

suggests that the model had good ability to separate (discriminate) children with low

risk of mortality from those with high risk.

The estimates of the validation measures are presented in Table 5.2. The concor-

dance statistic Cre was estimated as 0.750 (95% CI:0.723 to 0.785), which suggests

that the model has reasonably good ability to discriminate between low and high risk

children. However, Kre suggests relatively a lower ability for discrimination, with an

estimate of 0.686 (95% CI: 0.669 to 0.701). The possible reason for this difference is

similar to that for the standard C-index that Cre may be affected by the high degree

of censoring in the child mortality data. The estimate of the D statistic (Dre) also

suggests moderate discrimination between low and high risk children. Similar to the

standard D and K statistics, both Dre and Kre may not be affected by the censoring

in this dataset. The calibration slope (CSre) suggests that the model has good overall

calibration. The extent of inaccuracy in the individual survival prediction (IBSre) was

estimated to be 0.07, suggesting reasonably lower inaccuracy in survival predictions.

Additionally, the Brier score calculated at each time point was plotted against the ob-

served time points in Figure 5.4, to see the model’s predictive accuracy over the entire

follow-up period. Two additional plots of the Brier score for the null model and the

model with all fixed predictors only (frailties set to one) were obtained, to examine the

difference in predictive accuracy between these three models. The survival prediction

error (the Brier score) was lower when the predictions were made by the model with

all the fixed predictors along with the frailties compared to those obtained from the

model with only fixed predictors and the null model.

The ‘pooled’ estimate of the cluster-specific C-indices, Cw, indicates a good discrim-

ination between low and high risk children belonging to the same cluster, whereas Kw

indicates relatively less discrimination, and Dw suggested poor discrimination between

these two groups (Table 5.2). However, these ‘pooled’ estimates are smaller than their

corresponding ‘overall’ estimates, although the frailty effects in these data were not that

strong. Similarly the ‘pooled’ estimate of the cluster-specific calibration slopes (CSw)
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Table 5.2: Estimates of the validation measures based on the validation data

Overall measures

Measures’ name Notations Estimate 95% CI

Harrell’s C-index Cre 0.750 [0.723, 0.785]
Gonen and Heller’s K(β) Kre 0.686 [0.669, 0.701]
D-statistics Dre 1.52 [1.29, 1.74]
Calibration slope CSre 1.01 [0.91, 1.09]
Integrated Brier score IBSre 0.07 [-]

Pooled cluster-specific measures

Harrell’s C-index Cw 0.701 [0.671,0.742]
Gonen and Heller’s K(β) Kw 0.649 [0.626, 0.679]
D-statistics Dw 0.89 [0.65, 1.13]
Calibration slope CSw 0.64 [0.48, 0.81]
Integrated Brier score IBSw 0.06 [0.05, 0.07]

Figure 5.4: Brier scores over the entire follow-up period. The results are obtained for
the predictions from the model with all fixed predictors and the frailties, the model with
all fixed predictors only, and the null model.

suggests worse calibration than the ‘overall’ calibration. This difference may be caused

by the cluster size of the child mortality data, where clusters are reasonably small and

several of the clusters have no events. These clusters were dropped due to the lack

of events to calculate the measure and the pooled estimate was based on the reduced
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number of clusters. The reason is similar to those described for ‘pooled cluster-specific’

measures for clustered binary data in pages 98-99, Section 4.5.3.2, Chapter 4. However,

the estimate of the ‘pooled’ Brier score (IBSw = 0.06) was close to that of the ‘overall’

Brier score.

Since the cluster-specific estimates are useful in detecting outlying clusters (regions),

these estimates with their level of uncertainty are plotted against the rank order of the

clusters in Figure 5.5. Each horizontal solid line indicates the ‘pooled estimate’ of the

respective measure. Figure 5.5 shows the estimates for 76 clusters only. It was not

possible to estimate the validation measures for the rest of the clusters as the required

number of events to enable the calculation of the measures were not observed in these

clusters. Note that to enable the calculation, some of the measures, for example, Cw

requires at least one event, and the other measures, for example, Dw requires two events

(see, Section 5.2). This plot made a comparison between clusters (regions) in terms

of the model performance. The results shows that the predictive ability of the model

for some of the clusters were significantly worse (better) than the average performance.

This heterogeneity in the model predictive performance between the clusters (regions)

may be caused by unobserved cluster (region) level characteristics. Therefore, it may

be important to identify the factor which explains this heterogeneity.

In summary, this illustration of the validation measures using the child mortal-

ity data showed that both the ‘overall’ and ‘pooled cluster-specific’ measures have a

meaningful interpretation in a clustered survival data setting. However, the valida-

tion measures appeared to provide different conclusions regarding the model’s predic-

tive performance. For example, the C-index suggested strong discrimination, whereas

K(β) suggested moderate discrimination. Furthermore, while the ‘overall’ estimates

of both the D-statistic and calibration slope indicated a reasonably good predictive

performance of the model, their ‘pooled’ estimate indicated very poor performance.

These dissimilarities may be caused by high degree of censoring in the child mortality

data and/or by the small clusters. Therefore, in the next section, a simulation study is

conducted to evaluate the performance of the measures in a range of conditions based

on a clustered survival data setting.
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5.4 Simulation study

A simulation study was conducted to evaluate the bias, rMSE, and coverage of the esti-

mate of the validation measures. Both development and validation data were simulated.

Models were developed using the simulated development data and then evaluated using

the corresponding simulated validation data. The properties of the measures were as-

sessed in various clustered survival data scenarios, constructed by varying the number

of clusters and their size, the intra-cluster correlation between patients within a cluster,

and the degree of censoring in the validation data. In practice, censoring is common in

survival data, and some of the validation measures for standard survival models were

found to be considerably affected by censoring (see, Chapter 3). In addition, number

of clusters and their sizes and the intra-cluster correlation may influence their perfor-

mance. The validation measures for clustered binary data were found to be affected by

small clusters and the level of ICC. The simulation studies would help in identifying

which factors affected the performance of the validation measures.

5.4.1 Simulation design

5.4.1.1 True model

To simulate clustered survival data, a PH frailty model with Weibull baseline hazard

with shape parameter γ = 1.1 and scale parameter µ = 1 was chosen as a true model.

The frailty distribution was chosen as Gamma with mean 1 and variance θ. For a sample

ofN subjects with J clusters, the predictor value xij for the ith subject in the jth cluster

was generated from the standard normal distribution (i = 1, . . . , nj ; j = 1, . . . , J). The

clustered survival data were then generated as follows:

(i) the frailty value ωj for the jth cluster was generated from a Gamma distribution

with mean 1 and variance θ.

(ii) the survival times t∗ij were generated as

t∗ij =

(
− log(vij)

µ exp(βxij)ωj

)1/γ

where vij ∼ U(0, 1).
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(iii) to generate random right-censored data, a pseudo-random Weibull distributed

censoring times cij were also generated in a similar manner to that used to gen-

erate the survival times, but the term exp(βxij) was replaced by a scalar λ.

Different choices of λ were used to produce different degrees of censoring.

(iv) the observed survival times were calculated as tij = min(t∗ij , cij), and the censoring

indicator as δij = 1 if t∗ij ≤ cij .

The value of the frailty parameter θ was varied to generate data with different levels

of clustering, and the regression coefficient β was set to 1.35 for all simulation settings,

indicating strong predictor. The value of β was chosen arbitrarily, but the aim was to

deal with a model with strong prognostic ability.

5.4.1.2 Simulation scenarios

To create scenarios with no, moderate, and high levels of clustering, the values of the

frailty parameter θ were set to 0, 0.58, and 0.98, respectively. For each value of θ, devel-

opment datasets each with 50 clusters of size 30 were generated without considering any

censoring. For each development dataset, validation data from various scenarios were

generated, to mimic scenarios with large number of small clusters and small number of

large clusters. The validation data were also simulated to have low, moderate, and high

degrees of censoring. The validation scenarios considered were: (a) 10 clusters of sizes

10, 30, and 50, and (b) 50 clusters of sizes 10 and 30. For each of these scenarios, four

different degrees of censoring: 0%, 20%, 50%, and 80% were considered. This resulted

in 20 validation scenarios for each of the three values of the frailty parameter θ, thus

60 altogether. For each of the development and validation scenarios, 500 datasets were

generated. Similar to the simulation design discussed in Chapters 3 and 4, this specifi-

cation (500 simulations) was also determined following Burton et al. [78] and provided

very low Monte Carlo error for the validation measures for clustered survival data.

The levels of clustering in the development and the corresponding validation datasets

were set to equal, by generating both datasets from the same value of θ. This would

represent a scenario where clusters in both the development and validation datasets

are from the same population of clusters.
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5.4.2 Strategies for evaluating the measures

5.4.2.1 Model fitting and calculation of the validation measures

A Cox PH hazard model with shared gamma frailty was fitted to each of the devel-

opment datasets. The model parameters were estimated using penalised likelihood

estimation [133]. These estimates were used to obtain the empirical Bayes estimates

of the frailties and the predicted survival probability Ŝ(t|ω̂) in the corresponding sim-

ulated validation datasets. Then the point estimates and confidence intervals for the

validation measures were calculated for each of the validation datasets.

5.4.2.2 Assessing the properties of the measures

The effects of censoring, number of clusters and their size, and intra-cluster correlation

were investigated by assessing the empirical bias, empirical rMSE, and coverage of

nominal 90% confidence intervals for the validation measures. The true values of the

validation measures were obtained empirically by averaging over 100 simulations of very

large uncensored datasets (N=100,000 with J=500 clusters). In each simulated dataset,

the ‘overall’ validation measures were calculated using the true regression parameter

(β) and the frailty values. Since the true value of the frailty parameter θ was varied

to create the scenarios with different levels of clustering, true values of the ‘overall’

measures were calculated as above for each value of θ. However, similar to the measures

for clustered binary data, the true value of the rank-based ‘pooled’ measures (Cw, Kw,

and Dw) and the calibration slope CSw were calculated using the true value of the

regression parameter (β) only, because the frailties do not contribute to the calculation

of these measures (see Section 5.2.5). The IBS for each cluster however includes the

frailties. Thus the true value of the ‘pooled’ IBS (IBSw) was calculated using both the

true value of the regression parameter (β) and the frailties.

The bias in the estimate of the validation measure was calculated as the mean of

the difference between the estimate and the true value, over 500 simulations. Similarly,

rMSE was calculated as the square root of the mean of the squared difference between

the estimate and the true value. Coverage was calculated as the proportion of simula-

tions where the estimated confidence interval contained the true value. Analytical as
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well as bootstrap CIs (with 200 bootstrap samples) were used to calculate coverage.

The bias and rMSE were rescaled to a percentage in a similar way to that discussed in

Chapter 3 and Chapter 4.

5.4.3 Results

5.4.3.1 The Overall validation measures

The empirical (sampling) distribution of the ‘overall’ estimates of the validation mea-

sures, by different degrees of censoring, is summarised using box plots. Figure 5.6 shows

the results for the simulation scenario with 10 clusters of size 100 where clustering was

high (θ = 0.98). The horizontal dashed lines show the true values of the measures. The

inter-quartile range for each of the validation measures increases with the degree of cen-

soring. The medians for CSre, Kre, and Dre are approximately close to the true value,

suggesting correct inference regarding the model’s predictive performance. However,

the medians for Cre and IBSre increased with increasing degree of censoring, which

indicates that misleading conclusions could be drawn regarding the model’s predictive

performance in the presence of censoring. Cre performed adequately for up to 20%

censoring, however IBSre was affected even with 20% censoring. Similar results were

observed for the other simulation scenarios (not shown). These results are analogous

to those for the standard validation measures for independent survival outcomes.

The relative percentage of bias induced by censoring was plotted against the degree

of censoring in Figure 5.7. For the uncensored survival simulations, all the validation

measures under investigation were approximately unbiased, particularly when cluster

sizes were large and there was no clustering. For the censored survival simulations,

Cre and IBSre showed bias, which increased with increasing degree of censoring. This

was the case for all simulation scenarios. The effect of censoring was also observed

for Dre and CSre particularly when the cluster sizes were small and there was some

degree of clustering. Bias in all these cases suggest the possibility of reaching misleading

conclusions regarding the model’s predictive performance. However, Kre was unbiased

in the presence of censoring, which was the case for all simulation scenarios. In addition,

the validation measures, in general, were affected by non-zero intra-cluster correlation

(θ > 0) when clusters were small.
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Figure 5.6: Empirical (sampling) distribution of the validation measures by degree of censoring, summarised using box plots. The
results are from the simulations with 10 clusters of size 100 under θ = 0.98. The horizontal (dashed) lines indicate the true values
of the measures.
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different simulation scenarios based on the number of clusters, their sizes, and the frailty parameter θ.
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The reasons for bias in Cre and IBSre induced by censoring are similar to those

discussed for the standard C-index and IBS for independent survival data (see Section

3.5.2, Chapter 3). Briefly, these measures are calculated by comparing the predicted

survival probability with the observed survival status of the two categories of subjects:

those who developed the event and those who did not. For the dataset with large

amount of censoring, there are far fewer comparisons than the value what we would

obtain if the actual survival times were available, which may result in bias. The possible

reason for bias caused by the non-zero intra-cluster correlation when the clusters are

small is that the empirical Bayes estimates for the frailties were poorly estimated for

small clusters. This reason is analogous to that discussed for validation measures for

clustered binary outcomes.

In general, the relative rMSE (%) of the validation measures increased with in-

creasing degree of censoring (Figure 5.8). The increase was sharp for Cre and IBSre

as their point estimates were biased. However, for the measures whose point estimates

were unbiased in the presence of censoring, for example, Kre, there was also a steady

increase, because of increasing empirical standard error. For all validation measures,

the rMSE was low for the scenario with large number of large clusters while it was high

for the scenario with small number of small clusters. The rMSE of the measures was

also affected by the non-zero intra cluster correlation as their bias affected. Amongst

the validation measures, rMSE was lowest for Kre, followed by Dre and CSre, and it

was the highest for Cre and IBSre.

Coverage of nominal 90% confidence intervals for the ‘overall’ validation measures

were calculated based on bootstrap standard errors. Table 5.3 presents the results for all

simulation scenarios with high clustering. For the uncensored survival simulations with

large clusters, coverage for all the validation measures was close to the nominal 90%

value. When the clusters were small, the measures showed somewhat poor coverage as

the point estimates were biased. For the censored survival simulations, the validation

measures which were unbiased had good coverage. Similar results were observed for

the other simulation scenarios (not shown). The results regarding coverage for the

validation measures were similar to that discussed above when analytical standard

errors were used (not shown).
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Figure 5.8: Relative rMSE (%) of the ‘overall’ estimates of the validation measures for different degrees of censoring. The results
are from the different simulation scenarios.
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Table 5.3: Estimated coverage of nominal 90% confidence intervals for the ‘overall’ mea-
sures. The confidence intervals were calculated based on bootstrap standard errors. The
results are from all simulation scenarios where the level of clustering was high (θ = 0.98).
Maximum Monte Carlo Standard Error=2.4%.

Overall measures
Cluster × size Censoring Cre Kre Dre CSre IBSre

0 88 87 80 79 81
10×10 20 80 86 78 75 77

50 63 86 72 68 65
80 30 84 65 56 32

0 85 88 83 88 85
10×30 20 80 88 84 87 82

50 50 87 84 80 53
80 25 88 86 75 31

0 91 90 89 91 88
10×100 20 77 91 89 89 82

50 51 89 88 87 55
80 28 88 89 84 25

0 87 86 84 82 85
50×10 20 83 86 80 75 79

50 50 84 68 55 54
80 25 86 54 41 29

0 91 90 87 89 89
50×30 20 70 91 88 89 80

50 51 90 88 85 43
80 30 89 87 80 23

The agreement between the validation measures was also investigated by using

scatter plot matrix and the Pearson correlation coefficient, r. Figure 5.9 shows the

results for the survival simulations with 50 clusters of size 30 where the level of clustering

was high. The measures closely agree with each other for the uncensored survival

simulations, but the agreement becomes weaker, particularly between Cre and IBSre,

with higher degrees of censoring. For example, the correlation between Cre and IBSre

was -0.99 for 0% censoring and reduced to -0.52 for 80% censoring. Similar results

were observed for all other simulation scenarios (not shown). This finding is analogous

to those for the standard validation measures for independent survival data (Section

4.5.1.3, Chapter 3).
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Figure 5.9: Agreement between the validation measures for different degrees of censoring. The results are from the simulations
with 50 clusters of size 30 under θ = 0.98. The r values indicate the estimated Pearson correlation coefficients between the measures.
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5.4.3.2 Pooled cluster-specific validation measures

The relative bias and rMSE for the ‘pooled’ estimates of the cluster-specific validation

measures were plotted against the degree of censoring in Figures 5.10 and 5.11, respec-

tively. In general, the pooled estimates of the cluster-specific validation measures were

affected by the cluster size, with small sizes producing greater bias and higher rMSE.

Similar to the ‘overall’ estimates, Kw, Dw, and CSw were not affected by censoring

when the clusters were large. However, Cw and IBSw were affected by censoring, even

for large clusters. The bias in IBSw increased with censoring up to 50 percent and then

decreased. The probable reason for the decrease is that a very small number of events

was observed for each cluster for the simulations with 80 percent censoring, resulting

in low values of the Brier score and hence in IBSw. For example, for the clusters of

size 10, the simulations with 80 percent censoring provide just two events on average,

and therefore the IBSw underestimated the true value. Amongst the ‘pooled’ cluster-

specific validation measures, only IBSw includes frailties and appeared to be affected

by the level of clustering when the clusters were small. This is because the frailties

were not well estimated for these clusters.

The reason for bias in the ‘pooled cluster-specific’ validation measures when the

cluster sizes are small is similar to those discussed for the measures for clustered binary

data (Section 4.5.3.2, Chapter 4). With the simulations with 80 percent censoring,

approximately 20% small clusters did not have the required number of events to calcu-

late the measures and were ignored. The pooled estimate was based on the available

clusters, which resulted in bias.

Coverage of nominal 90 percent confidence intervals for the ‘pooled’ cluster specific

validation measures were calculated based on analytical standard errors. Table 5.4

presents the results for all simulation scenarios under a high level of clustering (θ =

0.98). For the uncensored survival simulations with large clusters, coverage for all the

validation measures was close to the nominal 90% value. For the censored survival

simulations, the unbiased validation measures had good coverage. Of these, Kw had

best coverage performance.
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Figure 5.10: Relative bias (%) in the ‘pooled estimates’ of cluster-specific validation measures for different degrees of censoring.
The results are from the different simulation scenarios.
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Figure 5.11: Relative rMSE (%) of the ‘pooled estimates’ of the cluster-specific validation measures for different degrees of
censoring. The results are from the different simulation scenarios.
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In general, the pooled cluster-specific validation measures had poor coverage for

the censored survival simulations with small clusters, as their point estimates were

biased. Similar results were observed for the other simulations scenarios (not shown).

In addition, the validation measures had similar coverage performance to that discussed

above when bootstrap standard errors were used (not shown).

Table 5.4: Coverage of 90% nominal confidence intervals for the ‘pooled cluster-specific’
measures. The confidence intervals were calculated based on analytical standard errors.
The results are from the different simulation scenarios under θ = 0.98. Maximum Monte
Carlo Standard Error=2.5%.

Pooled cluster-specific measures
Cluster × size Censoring Cw Kw Dw CSw IBSw

0 90 87 87 78 88
10×10 20 86 87 75 86 71

50 71 83 70 75 72
80 74 77 65 70 20

0 88 90 88 91 86
10×30 20 84 90 89 91 84

50 75 90 89 91 81
80 63 84 89 88 35

0 91 90 89 90 89
10×100 20 82 90 90 91 83

50 55 89 90 90 84
80 30 89 91 91 41

0 61 84 42 55 73
50×10 20 54 86 32 49 74

50 35 88 25 31 73
80 72 78 10 14 19

0 91 89 87 89 88
50×30 20 88 90 87 88 81

50 69 89 84 86 84
80 32 88 76 75 38

5.5 Conclusion

This chapter has discussed extensions of some of the standard validation measures for

use with models for clustered survival data, using the same approach discussed for clus-

tered binary data. This has lead to an ‘overall measure’ and a ‘pooled cluster-specific

measure’, for each of the standard measures. Each of these approaches have three

different definitions based on the model’s conditional predictions using the frailties,
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S(t|ω), or setting the frailties at their mean, S(t|1), and the marginal predictions S(t).

This chapter has discussed the validation measures for use with S(t|ω). The validation

measures for S(t|1) and S(t) can be derived in a similar manner to that discussed for

S(t|ω).

The illustration of the validation measures using child mortality data from Bangladesh

showed that the measures have meaningful interpretations in clustered survival settings.

The statistical properties of the measures are also evaluated using simulation studies.

The validation measures, in general, behaved similarly as their corresponding standard

measures for independent survival data, particularly in the presence of censoring. The

‘overall’ K statistic (Kre) was not affected by censoring. The effect of censoring on the

D statistic (Dre) was negligible except for the small clusters, which is to be expected

since the distribution of the prognostic index was specified as normal. Based on central

limit theorem, the prognostic index, in practice, is likely to be normally distributed

as the number of predictors in the model increases. The effect of censoring on the

calibration slope (CSre) was also negligible in all simulation scenarios, except when the

clusters were small and the intra-cluster correlation exists. The C-index (Cre) showed

bias in the presence of censoring; the bias was acceptable for censoring up to 30%.

The IBS (IBSre ) performed poorly even when there is small amount of censoring in

the data. The ‘overall’ validation measures, in general, were affected by the non-zero

intra-cluster correlation particularly when the clusters were small, possibly due to the

fact that the frailties are poorly estimated for these clusters. The pattern of the effect

of censoring on the ‘pooled cluster-specific’ measures were similar to the correspond-

ing ‘overall’ measures. The ‘pooled’ measures, in general, were affected by the small

clusters when the level of censoring was high. This is because this approach ignores

some of the clusters due to lack of events to calculate the measures. These findings are

similar to those with the validation measures for clustered binary outcome (Chapter

4).

Similar to the standard validation measures for independent survival outcome, these

validation measures also differ in their flexibility regarding their assumptions and the

form of the prognostic model. The C-indices (Cre and Cw) only require that the
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prognostic model is able to rank the patients. However, the K statistics (Kre and

Kw) require that the prognostic model was fitted using the proportional hazards (PH)

frailty model, that is, the proportional hazards assumption given the frailty holds.

The D statistics (Dre and Dw) assume that proportional hazards holds and that the

prognostic index is normally distributed. Similarly, the calibration slopes (CSre and

CSw) also assumes proportional hazards given the frailty. The predictive accuracy

measure IBS (IBSre and IBSw) only requires that a survival function given the frailty

can be calculated for all patients. In addition, all these measures have the same clinical

interpretation as their corresponding standard measures.

A similar pattern of recommendations regarding the practical use of these measures

for censored data can be made to those with the standard measures. The K statistic

(Kre and Kw) and calibration slope (CSre and CSw) can be recommended for validating

prognostic models developed with PH frailty model. The D statistic (Dre and Dw) can

be recommended provided that the distribution of prognostic index is normal. The C-

index (CSre and CSw) can be used when there is a relatively low amount of censoring,

for example, not more than 30%. The IBS (IBSre and IBSw) cannot be recommended

as they are affected by censoring. Generally, both the ‘overall’ and ‘pooled cluster-

specific’ measures are recommended to use in practice. However, one needs to check

whether the cluster sizes are sufficiently large (for example, greater than 30) before

using the ‘pooled’ measures.

Similar to the analogous measures for clustered binary data, the validation measures

based on the model’s conditional predictions using frailty, S(t|ω), can be recommended

for validating models using subjects from the same clusters as that of the development

data. It would not be straightforward to use these methods when validation data in-

volve subjects from new clusters. In this case, validation measures based on marginal

predictions S(t) or conditional predictions setting the frailties at their mean, S(t|1),

could be used. If validation data involve several clusters with moderate to high vari-

ability between the clusters, these methods may not produce optimal results. One

alternative possibility is to investigate the characteristics of the new clusters to see

whether they are similar to that of the existing clusters of the development data. Then
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it may be reasonable to assume that clusters in both datasets were sampled from the

same population of clusters. In this case, one could estimate frailties from validation

data using the estimate of the frailty parameters from the development data and use

them to make predictions. If this happens, one may consider this as a form of model

re-calibration.

In summary, before choosing the validation measures, it is very important to check

the characteristics of the validation data. For example, one needs to check whether the

validation data involve the same or different clusters to those with the development

data, the level clustering, cluster size, the level of censoring, and the distribution of the

prognostic index.
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Chapter 6

Summary and Conclusions

6.1 Summary of the research

Prognostic models play a vital role in the clinical management of patients by providing

useful information regarding a patient’s future health status. These models also have

an important application in monitoring the performances of health institutions after

adjusting for the case mix of patients. Therefore, it is essential for prognostic models

to have the ability to make accurate predictions. One of the key requirements in

the prognostic modelling process is the availability of useful and reliable validation

measures to assess the predictive ability of these models. This research focuses on

validation measures for prognostic models for binary and survival outcomes. The thesis

starts with a motivation for this research in Chapter 1, followed by a description of the

general procedure for validating a prognostic model and a literature review of some

commonly used or proposed validation measures for binary and survival outcomes in

Chapter 2.

The literature review on the validation measures for binary and survival outcomes

suggests that validation measures for models for independent binary outcomes are well

developed. Although a number of measures have been proposed in the last two decades,

there is only limited guidance regarding their use in practice. A common feature of

survival data is censoring and ideally the validation measures should not be affected
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by censoring, however for some measures this may not be the case [52, 53]. This thesis

reviews, in Chapter 3, a wide range of validation measures proposed for independent

survival outcomes and evaluates their performances using an extensive simulation study

in order to make practical recommendations for their use.

In risk prediction research, patients’ health outcomes are often clustered within a

larger unit, for example, outcomes measure on patients in a hospital, and are likely to

be correlated. Ignoring this clustering may lead to incorrect predictions. Therefore, one

needs to consider this clustering both in the process of model development and valida-

tion of its predictive ability. Random effects logistic and frailty models are often used

to develop models for clustered binary and survival outcomes, respectively. However,

only limited work has been done to develop validation measures to assess the predic-

tive ability of these models. The rest of this thesis focuses on validation measures that

could be used with random effects logistic and frailty models to make risk predictions

for clustered binary (Chapter 4) and survival outcomes (Chapter 5), respectively.

6.2 Summary of the methods and results

6.2.1 Validation measures for independent survival outcomes

The investigation, in Chapter 3, focuses on validation measures for independent survival

outcomes that have the potential of being routinely used in practice. The measures are

selected on the basis of their ease of interpretation and communication, and their avail-

ability or ease of implementation in commonly used statistical software. The validation

measures selected include the calibration slope [44] from the category of calibration

measures; Graf et al’s integrated Brier score (IBS) [55] from the category of predictive

accuracy measures; Harrell’s C-index [8], Gönen and Heller’s K statistic [48] and Roys-

ton and Sauerbrei’s D [49] from the discrimination measures; and Graf et al’s R2
IBS [55]

and Schemper and Henderson’s V [23] from the explained variation category. Using

a simulation study based on two clinical datasets with contrasting characteristics, the

performance of the validation measures are compared with respect to their robustness

to the degree of censoring and sensitivity to the exclusion of important predictors from

the model.
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The results from simulation study suggest that the calibration slope (CS) and K

statistic showed negligible bias induced by censoring, which is to be expected since

both are derived from the Cox model. The performance of D statistic depended on

the distribution of the prognostic index derived from the model. Provided that the

prognostic index is normally distributed, the bias in D was negligible. By central

limit theorem, the prognostic index, in practice, is likely to be normally distributed as

the number of predictors in the model increases. The C-index, the most widely used

measure, showed increasing bias with the increasing level of censoring, which may be

expected as it depends on the censoring mechanism. The bias may be acceptable for

censoring up to 30%. The measures of predictive accuracy and explained variation

(IBS, R2
IBS , and V ) performed poorly in the presence of censoring, despite their use

of weighting to alleviate the effect of censoring. The bias in all cases suggests that it

is possible to reach misleading conclusions regarding a prognostic model’s predictive

performance using these measures in the presence of censoring. Censoring is a common

feature in survival data and typically the degree of censoring will exceed 20% in most

real clinical datasets. Thus validations measures for censored survival data need to be

selected after careful consideration.

All the validation measures investigated, except the calibration slope, showed sen-

sitivity to the omission of important predictors from a model. However, the ranked-

based measure, the C-index, was less sensitive than the other measures, which may be

expected as it does not incorporate the actual difference between predictions. The cal-

ibration slope showed only limited sensitivity to omission of important predictor since

the developed risk model effectively re-calibrates itself to compensate for the omitted

predictors.

The validation measures differ in their flexibility regarding their assumptions and

the form of the prognostic model. Of the discrimination measures, the C-index only

require that the prognostic model is able to rank the patients. In contrast, K(β) re-

quires that the prognostic model was fitted using the Cox proportional hazards model.

The D statistic assumes that proportional hazards holds and that the prognostic index

is normally distributed. The calibration slope also assumes proportional hazards, al-
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though more general approaches are described by van Houwelingen [44]. The measures

based on predictive accuracy, IBS, R2
IBS , and V , only require that a survival function

can be calculated for all patients.

Based on the findings of this simulation study, of the discrimination measures, K(β)

can be recommended for validating a prognostic model developed using the Cox pro-

portional hazards model, since it is both robust to censoring and reasonably sensitive

to the omission of important predictors. The D statistic can also be recommended

provided that the distribution of the prognostic index derived from the model is ap-

proximately normal. It is more sensitive to predictor omission than K(β) and can be

calculated for models other than those fitted using the Cox model. The C-index was

affected when data have high level of censoring and cannot be recommended for use

with data with more than 30% censoring. The calibration slope can be recommended

as a measure of calibration since it is not affected by censoring although it is less sen-

sitive than the other measures to the omission of important predictors. In practice,

one might additionally investigate calibration graphically by comparing observed and

predicted survival curves for groups of patients. This approach also has the benefit of

being easy to communicate. The measures of predictive accuracy (IBS) and explained

variation (V and R2
IBS) cannot be recommended for use with survival risk models due

to their poor performance in the presence of censored data. However, these measures

were all conservative with censored data so that high (or low for IBS) values would

still be indicative of a good prognostic model.

In practice, it is very important to investigate the characteristics of the validation

data before choosing the validation measures. In particular, one needs to check the level

of censoring and the distribution of the prognostic index, assuming that the standard

model assumptions such as proportional hazards hold. It is not clear that this is

routinely done in practice.

6.2.2 Validation measures for clustered data

Chapter 4 shows extensions of some of the standard validation measures for use with

models for clustered binary outcomes. These are the C-index [45] and D-statistic
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[49] (both assess discrimination), the calibration slope [39, 42] (assesses calibration),

and the Brier score [55] (assesses predictive accuracy). Two approaches, termed as

the ‘overall’ and ‘pooled cluster-specific’ are proposed to calculate these measures for

clustered data. Each approach can produce three different measures depending on how

the random effects estimates are used in predictions from the model. For example,

conditional predictions can be obtained by either using the random effects estimates in

predictions or setting them at their mean value of zero. Marginal predictions can be

obtained by integrating out the random effects.

The new validation measures are illustrated by developing a model that predicts

in-hospital mortality following heart valve surgery in UK hospitals and validating its

predictive performance. Both the ‘overall’ and ‘pooled cluster-specific’ measures are

shown to have meaningful interpretation in a clustered data setting. Additionally,

the separate cluster-specific estimates can be used to identify clusters where model

performance is either good or poor compared to the average performance. It would

be of great interest to investigate the factors which explain this heterogeneity. One

possibility is the unobserved cluster level characteristics or mis-specification of the

model. Simulation studies were conducted to evaluate the performance of the measures

under a range of conditions related to clustered data. The ‘overall’ measures based on

the conditional predictions using the estimates of the random effects showed reasonably

good performance in a range of conditions, except for those where the clusters were

small. This is because the empirical Bayes estimates of the random effects were poorly

estimated for these clusters. These findings are similar to those obtained by Oirbeek

and Lesaffre [131]. The validation measures based on the marginal predictions and

the conditional predictions that set the random effects to be zero performed poorly in

the presence of clustering, because they ignore the effect of clustering. In general, the

‘pooled cluster-specific’ measures had reasonably good performance when the clusters

were large. They showed bias for small clusters, since this approach ignores information

from clusters that have very few events.

The validation measures for clustered binary outcome also differ in their flexibility

regarding their assumptions and the form of the prognostic model. Therefore one
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needs to be careful about these before choosing the measures. Both the parametric

C-index and D statistic require that the prognostic index derived from the model

should be normally distributed. In contrast, the non-parametric C-index only requires

that the prognostic model is able to rank the patients. The calibration slope (CS)

assumes that the model is correctly specified. The Brier score only requires that a

risk algorithm can be calculated for all patients. In practice, the non-parametric C-

index, calibration slope, and Brier score are recommended since they are free from

a distributional assumption of the prognostic index. The parametric C-index and D

statistic can be used provided that the prognostic index is normally distributed.

In Chapter 5, the calibration slope, Harrell’s C-index, K statistic, D statistic, and

the Integrated Brier score (IBS) are extended for use with proportional hazards frailty

model for clustered survival outcomes, using the same approach as that discussed for

clustered binary outcomes. This chapter discusses the use of these measures only for

model’s conditional predictions that use empirical Bayes estimates of the frailties. Us-

ing this approach, it is straightforward to extend the measures for use with marginal

predictions and conditional predictions that set the frailties to be one or log-frailties to

be zero. An application of these validation measures is illustrated using child mortality

data from Bangladesh. A simulation study was conducted to assess the effect of censor-

ing on these measures under various clustered survival data scenarios. The validation

measures behaved similarly as the corresponding standard measures for independent

survival data, particularly in the presence of censoring. For example, the ‘overall’ K

statistic (Kre) showed good performance against censoring in a range of conditions.

The prognostic index was specified as normal throughout the simulations and thus the

effect of censoring on the D statistic (Dre) was negligible when the clusters were large.

Similar results were observed for the calibration slope. However, the C-index (Cre)

was affected by censoring; the bias was acceptable for censoring up to 30%. Similar

to the standard measures, IBS (IBSre) had poor performance even when data have

small amount of censoring. In general, the measures were affected by the non-zero

intra-cluster correlation particularly when the clusters were small, possibly due to the

poor estimation of the frailties. Similar to the analogous measures for clustered binary

data, the ‘pooled’ measures had poor performance for the small clusters, probably due

to ignoring the clusters that have few events.
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Similar to the standard measures, the validation measures for clustered survival

data differ in their flexibility regarding their assumptions and the form of the prognostic

model. The C-index (Cre and Cw) only requires that the prognostic model is able to

rank the patients. However, the K statistic (Kre and Kw) requires that the prognostic

model was fitted using the proportional hazards (PH) frailty model. The D statistic

(Dre and Dw) assumes that proportional hazards given the frailty holds and that the

prognostic index is normally distributed. Similarly, the calibration slope (CSre and

CSw) also assumes proportional hazards given the frailty. The predictive accuracy

measure IBS (IBSre and IBSw) only requires that a survival function given the frailty

can be calculated for all patients. One should be aware of these before choosing the

measures.

A similar pattern of recommendations regarding the practical use of these measures

for censored data can be made to those with the standard measures. For example, the

K statistic (Kre and Kw) and calibration slope (CSre and CSw) can be recommended

for validating prognostic model developed with PH frailty model. The D statistic (Dre

and Dw) can be recommended provided that the distribution of prognostic index is

normal. The C-index (Cre and Cw) cannot be recommended for censoring more than

30%. IBS (IBSre and IBSw) cannot be recommended.

In practice, both the ‘overall’ and ‘pooled cluster-specific’ measures are recom-

mended to use when validating models for clustered data. However, one needs to

investigate whether the clusters in the validation data are sufficiently large (for exam-

ple, greater than 30) and each of these contains at least two events before using the

‘pooled’ measures.

An important issue that one should consider when validating model for clustered

data is whether the validation data involve the same clusters as the development data

or involve new clusters. If the clusters are the same for which the random effects are

known, conditional predictions using the random effects and the validation measures

based on this approach are recommended to assess the predictive ability of the model.

It is not straightforward to use this approach for validating model using subjects from
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6.2 Summary of the methods and results

new clusters, since the random effects are unknown. In such circumstances, one option

would be to investigate the characteristics of the new clusters to see whether they

match those of the clusters in the development data. For example, when predicting

clinical outcomes in hospitals one could investigate the prevalence of the outcome,

the geographical location, the experience of the clinicians, staff to patient ratios, and

information on other relevant factors that could be obtained from routinely collected

hospital data. If these important characteristics are similar for the development and

validation hospitals, it may then be appropriate to assume that the development and

validation hospitals come from the same population. Then the random effects could be

estimated from the validation data using the information from the development data,

provided that the number of patients in each hospital is not small, for example, not

less than 30. When the random effects are estimated from the validation data and

used in the predictions, this may be considered as a form of model re-calibration. One

could also inspect the value of the between cluster variance in the development data

to examine how closely it agrees with that in the validation data and infer whether it

is reasonable to use predictions based on the random effects from the validation data.

Thus the estimate of the between cluster variance for development data clusters will

need to be published along with the risk algorithm by the model developers. If the

number of clusters in both validation and development data are of reasonable size, one

could use more formal method of comparison such as examining whether the confidence

intervals for the between cluster variances from the two datasets overlap or use F-test

(for models with normally distributed random effects). However, the equality in the

level of clustering between both datasets may be unlikely in practice.

Alternatively, the marginal predictions or conditional predictions setting the ran-

dom effects at their mean value and the validation measures based on these approach

could be used. However, if the validation dataset involves several new clusters, and there

is a moderate to high degree of variation between these clusters, then the validation

measures based on these two approaches may not produce optimal results regarding

the model predictive performance. However, they are conservative with the level of

clustering so that high (low for Brier score) values would still imply a model with good

predictive ability. However, any form of validation for clustered data would require

expert statistical skills and thus may not be suitable to be done by clinicians
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6.3 Conclusions

6.3 Conclusions

This research describes and evaluates a range of existing and new statistical measures

for validating prognostic models for both independent survival outcomes and clustered

binary and survival outcomes. In one part of this research (Chapter 3), recommen-

dations for the practical use of some of the validation measures for standard survival

models have been presented. In other parts (Chapters 4 and 5), this research extended

the calibration slope (CS), C-index, D statistic, K statistic, and Brier score for use

with models for clustered binary and survival outcomes. The use of these measures

when making predictions in validation data that includes either the same or different

clusters to those in the development data are also discussed.

An important point to note is that one needs to investigate the characteristics of

the validation data before choosing the validation measures. In particular, one needs

to check whether the clusters in the validation data are the same or different to those

with the development data, the level clustering, cluster size, the level of censoring (for

survival outcome), and the distribution of the prognostic index.

6.4 Possibilities for future research

A number of areas have been identified where further research is possible. These are

now described as follows.

In Chapter 3, the investigation of validation measures for standard survival models

is conducted based on the Cox proportional hazards model under a range of scenar-

ios. Further investigation could be conducted based on other survival models such as

lognormal and accelerated failure time (AFT) models to assess whether the measures

perform well for these models. Based on the simulation results one could recommend

whether these measures are generalisable to all of these survival models. In addition,

further investigation may be required to see whether the measures are sensitive to model

mis-specification (if a wrong model is fitted).
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6.4 Possibilities for future research

In Chapter 4 and 5, the ‘overall’ validation measures that use the random effects

showed bias when the clusters are small. The bias is due to the use of the empirical

Bayes estimates of the random effects that are not well estimated for small clusters.

Therefore, methods for estimating random effects for small clusters would be another

area of research. Simple alternatives are to consider empirical Bayes mode rather than

empirical Bayes mean of the posterior distribution of the random effects or to fit clusters

as fixed effects rather than random effects.

The validation measures for clustered data are estimated and assessed only under

the Normal or Gamma distribution of the random or frailty effects for the logistic

and Cox models, respectively. Therefore, estimation and assessment of the validation

measures assuming other distributions of the random effects, for example, log-normal

(random effects logistic models) and inverse Gaussian (frailty models), could be an area

of further research. With this one could assess the sensitivity of the measures to the

distribution of the random or frailty effects.

The simulation studies for clustered data were conducted by generating data from a

true model based on random effects logistic or frailty models. A possible alternative to

these models are marginal models. It may be interesting if one generates clustered data

where the true model is marginal and assess the performance of the validation measures

based on the random effects models. This would help us to assess the sensitivity of the

measures to model mis-specification (a random effects or frailty model is fitted where

true model is marginal).

In reality there is likely to be imbalance in the cluster sizes. A more detailed

investigation could be conducted to assess whether the degree of imbalance in cluster

sizes for validation data may affect the performance of the validation measures, both

for binary and survival outcomes.

It may also be of interest to examine how the validation measures developed for

clustered data respond to omission of important predictors.
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6.4 Possibilities for future research

External validation in prognostic modelling process is essential. Therefore, future

research is required to identify the best approach to validate a model’s predictive per-

formance through an external validation exercise where the validation data include a

number of new clusters

Further work could involve in devising approaches to investigate the performance

of Hosmer-Lemeshow test for clustered binary data.
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Appendix A

Additional Results for Chapter 3

Table A.1 describes the results of the breast cancer and sudden cardiac death simula-

tions with different risk profiles, under administrative censoring mechanism. Table A.2

shows the estimates of the Cox PH model obtained from breast cancer data. Similarly,

Table A.3 shows the Cox PH estimates obtained from sudden cardiac death data.
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Table A.1: Relative bias (%) and 95% CIs are given by censoring proportions. The results are from the (a) breast cancer simulations
(maximum Monte Carlo standard error (%)=0.88) and (b) sudden cardiac death simulations (maximum Monte Carlo standard error
(%)=0.82), with different risks profile (low, medium, and high) and under administrative censoring mechanism.

CS IBS D K(β) C-index V R2
IBS

Scenarios % cens bias CIs bias CIs bias CIs bias CIs bias CIs bias CIs bias CIs

0 -0.4 [-0.9, 0.2] -0.7 [-1.4, 0.0] -0.5 [-1.1, 0.1] -0.2 [-0.7, 0.3] -0.8 [-1.4, -0.3] -0.4 [-0.8, 0] -0.3 [-0.6, 0]
low 20 -0.1 [-0.7, 0.6] 2.1 [1.6, 2.7] 1.4 [0.8, 2.1] -0.4 [-0.9, 0.1] 2.0 [1.3, 2.6] -8.3 [-9.8, -7.1] -3.3 [-6.7, -0.1]

50 -0.2 [-0.9, 0.5] 10.4 [9.5, 11.5] 4.0 [3.2, 4.9] -0.6 [-1.2, 0.0] 5.6 [4.7, 6.4] -19.4 [-20.9, -17.8] -7.3 [-12.1, -2.3]
80 0.2 [-0.8, 1.3] 19.4 [17.8, 21.1] 7.8 [6.6, 9.1] -0.4 [-1.2, 0.5] 11.5 [10.2, 12.7] -39.2 [-40.8, -37.8] -18.2 [-24.4, -12.5]

0 -0.3 [-0.8, 0.3] 0.5 [-0.2, 1.2] -0.3 [-0.8, 0.3] 0.1 [-0.5, 0.3] -0.2 [-0.7, 0.3] -0.3 [-0.7, 0.1] 0.1 [-0.3, 0.5]
(a) medium 20 0.0 [-0.5, 0.5] 2.2 [1.6, 3.8] 0.4 [-0.2, 1.0] 0.1 [-0.3, 0.5] 1.7 [1.1, 2.2] -10.2 [-11.7, -8.9] -4.1 [-8.2, -0.1]

50 0.2 [-0.5, 0.9] 11.5 [10.5, 12.5] 0.8 [-0.1, 1.6] 0.2 [-0.4, 0.7] 4.5 [3.7, 5.2] -21.1 [-22.6,-19.5] -8.0 [-12.9, -3.2]
80 0.7 [-0.4, 1.8] 16.5 [14.8, 18.3] 0.8 [-0.3, 1.9] 0.3 [-0.5, 1.2] 7.7 [6.5, 8.8] -31.9 [-33.2, -30.1] -14.9 [-20.5, -8.6]

0 0.2 [-0.4, 0.8] -0.3 [-0.8, 0.2] 0.2 [-0.4, 0.8] 0.0 [-0.5, 0.5] -0.2 [-0.8, 0.4] 0.3 [-0.1, 0.7] -0.3 [-0.7, 0.1]
high 20 -0.4 [-1.0, 0.3] 2.8 [1.8, 3.3] 1.2 [0.5, 1.8] -0.5 [-1.0, 0.0] 1.3 [0.4, 1.9] -8.2 [-10.4, -6.4] -3.6 [-10.7, -0.6]

50 0.1 [-0.7, 0.9] 10.5 [9.5, 11.1] 2.2 [1.5, 3.0] -0.2 [-0.8, 0.4] 2.6 [1.6, 3.4] -18.3 [-20.2, -16.5] -10.8 [-15.0, -6.6]
80 1.0 [-0.1, 2.2] 14.5 [13.6, 15.5] 2.8 [1.8, 3.9] 0.3 [-0.6, 1.3] 3.9 [2.8, 5.2] -38.1 [-39.3, -36.8] -16.5 [-21.5, -11.4]

0 0.2 [-0.2, 0.7] 0.1 [-0.3, 0.5] 0.1 [-0.4, -0.5] 0.2 [-0.3, 0.7] 0.2 [-0.3, 0.7] -0.3 [-0.7, 0.1] -0.1 [-0.6, 0.5]
low 20 -0.1 [-0.5, 0.4] 2.7 [2.2, 3.2] 3.5 [2.9, 3.9] -0.1 [-0.5, 0.3] 3.1 [2.5, -3.6] -9.8 [-12.7, -7.8] -11.9 [-14.2, -12.0]

50 -0.2 [-0.7, 0.3] 11.1 [10.2, 12.0] 8.7 [7.5, 9.9] -0.1 [-0.6, 0.4] 9.1 [8.2, 10.1] -24.1 [-28.1, -20.9] -16.3 [-18.5, -14.1]
80 0.1 [-0.7, 0.8] 18.6 [17.1, 20.1] 17.6 [16.5, 18.7] 0.5 [-0.1, 1.1] 17.7 [15.7, 19.6] -43.7 [-47.3, -39.2] -25.2 [-29.5, -21.0]

0 0.0 [-0.4, 0.4] -0.2 [-0.5, 0.1] 0.0 [-0.4, 0.4] 0.2 [-0.1, 0.5] 0.1 [-0.3, 0.5] 0.5 [-0.1, 1.0] 0.3 [-0.2, 0.8]
(b) medium 20 0.1 [0.0, 0.2] 4.6 [4.1, 5.1] 2.7 [2.3, 3.1] 0.2 [-0.2, 0.5] 2.7 [2.3, 3.1] -10.9 [-12.1, -10.0] -7.8 [-8.9, -6.7]

50 -0.1 [-0.4, 0.3] 10.2 [9.7, 11.0] 7.1 [6.5, 7.6] 0.2 [-0.2, 0.6] 7.5 [6.9, 8.0] -17.7 [-19.6, -15.6] -14.3 [-16.4, -11.8]
80 0.1 [-0.4, 0.5] 17.7 [16.7, 18.8] 11.2 [10.3, 12.3] 0.2 [-0.4, 0.8] 13.9 [13.0, 14.7] -35.2 [-38.7, -32.4] -21.9 [-24.1, -21.4]

0 -0.1 [-0.4, 0.3] 0.5 [-0.1, 1.1] 0.1 [-0.2, 0.4] -0.1 [-0.3, 0.1] 0.5 [0.3, 0.9] 0.3 [-0.2, 0,8] 0.3 [-0.2, 0.8]
high 20 0.1 [-0.4, 0.5] 3.3 [2.8, 3.8] 1.8 [1.5, 2.0] 0.3 [-0.1, 0.7] 2.4 [1.9, 2.8] -12.5 [-14.8, -10.3] -6.7 [-8.8, -4.6]

50 -0.1 [-0.6, 0.3] 8.5 [7.4, 9.6] 4.1 [3.6, 4.5] 0.2 [-0.3, 0.7] 5.8 [5.2, 6.3] -25.1 [-29.1, -21.0] -10.4 [-12.7, -8.1]
80 0.4 [-0.4, 1.1] 12.4 [11.4, 13.4] 7.4 [6.7, 8.2] 0.1 [-0.5, 0.7] 10.6 [9.7, 11.5] -35.1 [-39.1, -31.3] -20.2 [-23.6, -17.1]
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Table A.2: The Cox model estimates for the breast cancer data

Predictors Meas. scale Mean(SD)/% HR 95% CI P-value

lymph nodes (lnod) log 1.16(0.94) 1.61 [1.41, 1.83] < 0.001

progesterone status (progst) log 3.35(1.93) 0.82 [0.76, 0.89] < 0.001

hormone no 64.1 1.00 < 0.01
yes 35.9 0.68 [0.53, 0.87]

menopausal status (menst) pre 42.3 1.00 < 0.01
post 57.7 1.33 [0.95, 1.88]

age ≤ 45 22.3 1.00 0.068
45-60 50.3 0.66 [0.46, 0.94]
> 60 27.4 0.65 [0.41, 1.02]

tumour grade (tgrad) 1 11.8 1.00 0.102
≥ 2 64.7 1.69 [1.03, 2.77]
3 23.5 1.74 [1.01, 3.00]

tumour size (tsize) log 3.27(0.46) 1.21 [0.93, 1.56] 0.151

-2loglikelihood= 3436.10; Likelihood Ratio=138.91 with d.f=9

Table A.3: The Cox model estimates for the sudden cardiac death data

Predictors Meas. scale Mean(SD)/% HR 95% CI P-value

runs-ventricular-tachycardia (runvent) none 83.5 1.00 < 0.001
1 10.4 2.40 [1.32, 4.33]

2+ 6.1 2.69 [1.36, 5.28]

obstruction to blood flow (BF) mmHg 30.8(35.2) 1.01 [1.00, 1.02] < 0.001

blood pressure during exercise (BP) normal 74.7 1.00 < 0.01
abnormal 25.3 1.82 [1.14,2.89]

thickness of heart muscle (HM) mm 19.5(6.1) 1.04 [1.00,1.07] < 0.05

age years 37.8 (16.2) 0.98 [0.97, 1.00] 0.11

-2loglikelihood= 1032.70; Likelihood Ratio=36.03 with d.f=6
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Appendix B

Stata code for validation

measures

Figure B.1: Stata code for calculating D-statistic, Gonen and Heller’
K, Integrated Brier score, and Schemper and Henderson’ V measures
for independent survival data.

set obs 500

qui gen index=_n

qui gen IBSx=.

qui gen IBS0=.

qui gen IRsq=.

qui gen V=.

qui gen D=.

qui gen K=.

local reps 500

local seed=6734535

set seed ‘seed’

forvalues j=1/‘reps’{

preserve

***generating data***

qui set obs 500

local haz=0.2 // this gives 20% censoring on average

qui gen x=invnormal(runiform()) // x from standard normal

qui gen xb0=1.2*x // beta=1.2

qui gen t_fail=(-1/exp(xb0)*log(uniform()))^(1/0.45) //shape=0.45 and scale=1

qui gen t_cens=(-1/(‘haz’)*log(uniform()))^(1/0.45)

qui gen time_sm=min(t_fail,t_cens)

qui gen byte d=(t_fail<=t_cens)

160



***fitting Cox Model***

qui stset time_sm, f(d)

qui stcox x, nohr basesurv(bsurv) // model with covariates x

predict xb, xb

qui stcox, estimate basesurv(st0) // null model

***D statistics***

sort xb

gen z= invnorm(((_n-3/8)/(_N+1/4)))/sqrt(8/_pi)

qui stcox z, nohr

local D=_b[z]

***Gonen & Heller’s K***

qui tempvar Phi

qui gen double Phi=.

qui gen wv=1

qui local i=1

qui while ‘i’<=_N {

qui local x=xb[‘i’]

qui tempvar phi Fhi

qui gen float phi=wv if xb<‘x’

qui replace phi= 0 if xb>‘x’

qui gen float Fhi=phi/(1+exp(xb-‘x’))

qui sum Fhi, meanonly

qui replace Phi=r(sum) if _n==‘i’

qui drop phi Fhi

qui local i=‘i’+1

}

qui sum Phi, meanonly

qui gen sumPhi=r(sum)

qui gen K=2*sumPhi/(_N*(_N-1))

***Graf et al.’s IBS and IRsq, and Schemper and Henderson’s V***

qui sort time_sm

qui gen tm_d=time_sm if d==1

qui sum tm_d

local tau=r(max) //maximum event-time; we calculate IBS up-to this time point

qui gen yt=0 if time_sm<=‘tau’

qui replace yt=1 if time_sm>‘tau’

qui sts gen km=s //K-M survival probability to calculate weight function

set obs 501

qui replace _t=‘tau’ in 501

ipolate km _t, gen(ks2) epolate

qui summarize ks2 if _t==‘tau’

local gt1=r(mean)

qui gen wt1=(1-km)/(1-‘gt1’) // calculate weight function to use in IBS

qui gen exb=exp(xb)

qui gen delta=1 if d==0

qui replace delta=0 if d==1
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qui stset time_sm, f(delta) // censoring indicator reverse

qui sts gen gt=s //calculate K-M estimate of not being censored

qui gen wt=1/gt //calculate weight to compensate earlier censoring

tempvar Mt Mt0 Bst Bst0

qui gen double Mt=.

qui gen double Mt0=.

qui gen double Bst=.

qui gen double Bst0=.

sort time_sm

qui gen sumd=sum(d) if d==1

qui gen wv=1

qui gen bsurvj=bsurv if d==1 // baseline survival probability at each event-time

qui gen st0j=st0 if d==1 // survival estimate of null model at each event-time

local i=1

while ‘i’<=_N {

sort time_sm

local time=time_sm[‘i’]

local st0=st0[‘i’]

local st0j=st0j[‘i’]

local bsurv=bsurv[‘i’]

local bsurvj=bsurvj[‘i’]

local wtg=wt[‘i’]

tempvar y st bs bs0 mt mt0 stj

qui gen float y=wv if time_sm>‘time’ //actual survival status at each time point

qui replace y= 0 if time_sm<‘time’

qui gen float st=(‘bsurv’)^exb //based on model with x at each observed time

qui gen float stj=(‘bsurvj’)^exb //based on model with x at each event-time

*Brier score********

qui gen float bs=d*(1-y)*(0-st)^2*(wt)+y*(1-st)^2*(‘wtg’)//from model with x

sum bs, meanonly

qui replace Bst=r(mean) if _n==‘i’

qui gen float bs0=d*(1-y)*(0-‘st0’)^2*(wt)+y*(1-‘st0’)^2*(‘wtg’)//from null model

sum bs0, meanonly

qui replace Bst0=r(mean) if _n==‘i’

*Mtx and Mt0 part of V*******

qui gen float mt=y*(1-stj)+(1-y)*stj+(1-d)*(1-y)*((1-stj)*(stj/st)

+stj*(1-stj/st)) if d==1 // based on model with x

sum mt, meanonly

qui replace Mt=r(mean) if _n==‘i’

qui gen float mt0=y*(1-‘st0j’)+(1-y)*‘st0j’+(1-d)*(1-y)*((1-‘st0j’)*(‘st0j’/‘st0’)

+‘st0j’*(1-‘st0j’/‘st0’)) if d==1 // based on null model

sum mt0, meanonly

qui replace Mt0=r(mean) if _n==‘i’

drop y st bs bs0 mt mt0 stj

local i=‘i’+1

}

***Integrated BS***
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qui integ Bst wt1 if yt==0, trapezoid gen(BS_x)

local IBSx=r(integral) //integrated Brier score based on the model with x

qui integ Bst0 wt1 if yt==0, trapezoid gen(BS_0)

local IBS0=r(integral) //integrated Brier score based on the null model

local IRsq=1-‘IBSx’/‘IBS0’ // R-square

***Dx and D0 part of V***

qui gen w=sumd/gt if d==1

qui replace Mt0=Mt0*w

qui replace Mt=Mt*w

qui sum w if yt==0

local sumw=r(sum)

qui sum Mt0 if yt==0

local Mt00=r(sum)

local D0=‘Mt00’/‘sumw’

qui sum Mt if yt==0

local Mtx=r(sum)

local Dx=‘Mtx’/‘sumw’

local V=1-‘Dx’/‘D0’

**line Bst Bst0 time_sm if yt==0 //to draw graph for BS over the entire follow-period

restore

qui replace IBSx=‘IBSx’ if index==‘j’

qui replace IBS0=‘IBS0’ if index==‘j’

qui replace IRsq=‘IRsq’ if index==‘j’

qui replace V=‘V’ if index==‘j’

qui replace D=‘D’ if index==‘j’

}

Figure B.2: Stata code for calculating validation measures for clus-
tered binary data: C-index, D-statistic, Calibration slope, and Brier
score.

qui set obs 500

local seed=1677445

qui gen index=_n

qui gen Cre=.

qui gen Dre=.

qui gen CSre=.

qui gen BSre=.

qui gen seCre=.

qui gen seDre=.

qui gen seCSre=.

set seed ‘seed’

local reps=500

forvalues j=1/‘reps’{

preserve
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********************************

*generate development data*

********************************

qui set obs 10000

qui gen rnd=uniform()

qui xtile cluster=rnd, n(100)

qui gen u=invnormal(runiform())

qui bysort cluster:replace u=u[1]

qui gen x=invnormal(runiform())

local total sigmau+sigmae=1.4 //varying sigmau gives different ICC values

*local sigmau=0.0 // ICC 0%

*local sigmau=0.44 // ICC 5%

*local sigmau=0.68 // ICC 10%

local sigmau=0.88 // ICC 20%

local sigmae=sqrt(1.4^2-‘sigmau’^2)

qui gen z=-1.8+‘sigmae’*x+‘sigmau’*u

qui gen p=1/(1+exp(-z))

qui gen y=(runiform()<p)

***Fitting random intercept logistic model*****

qui gllamm y x, i(cluster) link(logit) family(binomial) adapt nip(20)

qui estimates store gllamm

clear

******************************************************

*generate validation data of 10 clusters of size 300*

******************************************************

qui set obs 3000

qui gen rnd=uniform()

qui xtile cluster=rnd, n(10)

qui gen u=invnormal(runiform())

qui bysort cluster:replace u=u[1]

qui gen x=invnormal(runiform())

local total sigmau+sigmae=1.4 //total variability is fixed

*local sigmau=0.0 // ICC 0%

*local sigmau=0.44 // ICC 5%

*local sigmau=0.68 // ICC 10%

local sigmau=0.88 // ICC 20%

local sigmae=sqrt(1.4^2-‘sigmau’^2)

qui gen z=-1.8+‘sigmae’*x+‘sigmau’*u

qui gen p=1/(1+exp(-z))

qui gen y=(runiform()<p)

******************************************************************

*calculation of the C-index, D-statistic and Brier score measures*

******************************************************************

qui estimates restore gllamm // estimates from development data are restored

qui gllapred eb, u fsample // empirical Bayes estimates from validation data

qui gllapred condpred, mu us(ebm) fsample // cond. pred. with random effect(u)
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qui gllapred margpred, mu marginal fsample // marginal predictions

qui gen zeta1=0

qui gllapred condpred0, mu us(zeta) fsample // cond. pred. with u set to zero

qui gen xb=ln(condpred/(1-condpred))

qui gen xb0=ln(condpred0/(1-condpred0))

qui gen xbm=ln(margpred/(1-margpred))

**** nonparametric Overall C-index****

qui sum xb if y==1

local N1=r(N)

qui sum xb if y==0

local N0=r(N)

tempvar Phi

qui gen double Phi=.

qui gen wv=1

sort cluster y xb

local i=1

while ‘i’<=_N {

tempvar phi Fhi

local x=xb[‘i’]

if y[‘i’]==1 {

sort cluster

qui by cluster:gen float phi=wv if xb<‘x’ & y==0

qui by cluster:replace phi= 0.5*wv if xb==‘x’ & y==0

qui by cluster:replace phi= 0 if xb>‘x’ & y==0

qui by cluster:egen float Fhi=sum(phi)

qui by cluster:replace Fhi=0 if _n!=1

sum Fhi, meanonly

qui replace Phi=r(sum) if _n==‘i’

}

else {

qui by cluster:gen float phi=wv if xb>‘x’ & y==1

qui by cluster:replace phi= 0.5*wv if xb==‘x’ & y==1

qui by cluster:replace phi= 0 if xb<‘x’ & y==1

qui by cluster:egen float Fhi=sum(phi)

qui by cluster:replace Fhi=0 if _n!=1

sum Fhi, meanonly

qui replace Phi=r(sum) if _n==‘i’

}

qui drop phi Fhi

local i=‘i’+1

}

qui gen Phi1=Phi if y==1

qui by cluster:egen theta00=sum(Phi1)

qui by cluster:replace theta00=0 if _n!=1

sum theta00, meanonly

qui gen theta22 =r(sum)

local Cre=theta22/(‘N1’*‘N0’)

qui drop theta00 theta22 Phi1
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****SE of C-index****

qui by cluster:gen v10=Phi/(‘N0’) if y==1

qui by cluster:egen v10_s=sum(v10)

qui by cluster:gen v01=Phi/(‘N1’) if y==0

qui by cluster:egen v01_s=sum(v01)

sort cluster y

qui by cluster y:gen Ng=_N

qui by cluster:gen mi=Ng if y==1

qui by cluster:egen m=mean(mi)

qui by cluster: replace m=0 if m==.

qui by cluster:gen ni=Ng if y==0

qui by cluster:egen n=mean(ni)

qui by cluster: replace n=0 if n==.

qui by cluster:gen D10_1=(v10_s-m*‘Cre’)

qui by cluster:gen D10=D10_1^2 if _n==1

qui by cluster:replace D10=0 if _n!=1

qui by cluster:gen D01_1=(v01_s-n*‘Cre’)

qui by cluster:gen D01=D01_1^2 if _n==1

qui by cluster:replace D01=0 if _n!=1

qui tab cluster if y==1

local N10=r(r)

qui tab cluster if y==0

local N01=r(r)

qui egen S10=sum(D10)

qui replace S10=(S10*‘N10’)/((‘N10’-1)*‘N1’)

qui egen S01=sum(D01)

qui replace S01=(S01*‘N01’)/((‘N01’-1)*‘N0’)

qui by cluster:gen DD=D10_1*D01_1

qui by cluster:replace DD=0 if _n!=1

qui egen DD1=sum(DD)

qui tab cluster

local I=r(r)

qui gen S11=(DD1*‘I’)/(‘I’-1)

qui gen var_Cbcn=S10/‘N1’+S01/‘N0’+(2*S11)/(‘N1’*‘N0’)

local seCre=sqrt(var_Cbcn)

qui drop v* S* D* mi ni Ng

****D-statistics****

sort xb

qui gen zre= invnorm(((_n-3/8)/(_N+1/4)))/sqrt(8/_pi)

qui logit y zre

local Dre=_b[zre]

local seDre=_se[zre]

***CalibrationSlope***

qui logit y xb

local CSre=_b[xb]

local seCSre=_se[xb]
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***Brier score***

qui gen bs=(y-condpred)^2

sum bs, meanonly

local BSre=r(mean)

*******************************

di ‘j’

restore

qui replace Cre=‘Cre’ if index==‘j’

qui replace Dre=‘Dre’ if index==‘j’

qui replace CSre=‘CSre’ if index==‘j’

qui replace BSre=‘BSre’ if index==‘j’

qui replace seCre=‘seCre’ if index==‘j’

qui replace seDre=‘seDre’ if index==‘j’

qui replace seCSre=‘seCSre’ if index==‘j’

}

Figure B.3: Stata code for calculating validation measures for clus-
tered survival data: Harrell’s C-index, Gonen and Heller’s K, D statis-
tic, Integrated Brier score (IBS).

qui set obs 500

qui gen index=_n

qui gen Cre=.

qui gen Kre=.

qui gen Dre=.

qui gen CSre=.

qui gen seCre=.

qui gen seKre=.

qui gen seDre=.

qui gen seCSre=.

qui gen IBSx=.

qui gen IBS0=.

qui gen IRsq=.

local reps=500

forvalues j=1/‘reps’{

preserve

***************************

*generate development data

***************************

set obs 1500

gen cluster=int(uniform()*50)+1

*local theta=0.0 // no corr

local theta=0.58 // moderate corr

*local theta=0.98 // high corr

local beta=1.35

local lambda=0.0 //censoring 0%

local gamma=1.1
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gen mu=rgamma(1/‘theta’, ‘theta’)

qui bysort cluster:replace mu=mu[1]

qui gen x=invnormal(runiform())

qui gen xb0=‘beta’*x

qui gen t_fail=(-1/(mu*exp(xb0))*log(uniform()))^(1/‘gamma’)

*qui gen t_fail=(-1/(exp(xb0))*log(uniform()))^(1/‘gamma’) // if theta=0

qui gen t_cens=(-1/(mu*‘lambda’)*log(uniform()))^(1/‘gamma’)

*qui gen t_cens=(-1/(‘lambda’)*log(uniform()))^(1/‘gamma’) // if theta=0

qui gen time_sm=min(t_fail,t_cens)

qui gen byte d=(t_fail<=t_cens)

qui stset time_sm, f(d)

***Fit PH frailty model***

qui stcox x, nohr shared(cluster)

local sebeta=_se[x]

qui estimates store stcox

clear

****************************

*generate validation data

**************************

set obs 1500

gen cluster=int(uniform()*50)+1

*local theta=0.0 // no corr

local theta=0.58 // moderate corr

*local theta=0.98 // high corr

local beta=1.35

*local lambda=0.0 //censoring 0%

local lambda=0.20 //censoring 20%

*local lambda=0.99 //censoring 50%

*local lambda=5.0// censoring 80%

local gamma=1.1

gen mu=rgamma(1/‘theta’, ‘theta’)

qui bysort cluster:replace mu=mu[1]

qui gen x=invnormal(runiform())

qui gen xb0=‘beta’*x

qui gen t_fail=(-1/(mu*exp(xb0))*log(uniform()))^(1/‘gamma’)

*qui gen t_fail=(-1/(exp(xb0))*log(uniform()))^(1/‘gamma’) // if theta=0

qui gen t_cens=(-1/(mu*‘lambda’)*log(uniform()))^(1/‘gamma’)

*qui gen t_cens=(-1/(‘lambda’)*log(uniform()))^(1/‘gamma’) // if theta=0

qui gen time_sm=min(t_fail,t_cens)

qui gen byte d=(t_fail<=t_cens)

qui stset time_sm, f(d)

******************************************

*Calculation of validation measures

******************************************

qui estimates restore stcox

predict xbf, xb

qui stcox, estimate shared(cluster) offset(xbf)
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predict xbu,effects

qui gen xb=xbf+xbu

qui sort cluster

qui egen sdx=sd(xb)

qui gen h=(0.5*sdx)/(_N)^(1/3)

tempvar Phi Psi Psi0 Chi Chi0

qui gen double Phi=.

qui gen double Psi=.

qui gen double Psi0=.

qui gen double Chi=.

qui gen double Chi0=.

qui gen double Chij=.

qui gen double Dhij=.

qui gen wv=1

qui gen xb_1=xb if d==1

qui gen time_1=time_sm if d==1

local i=1

while ‘i’<=_N {

local x=xb[‘i’]

local x1=xb_1[‘i’]

local time1=time_1[‘i’]

tempvar fhi Fhi chi chi0 fhi0 Fhi0 Csi0 chij dhij chij0 dhij0

sort cluster

qui by cluster:gen float fhi=normal(-(xb-‘x’)/h)/(1+exp(xb-‘x’))

qui by cluster:egen float Fhi=sum(fhi)

qui by cluster:replace Fhi=0 if _n!=1

sum Fhi, meanonly

qui replace Phi=r(sum) if _n==‘i’

qui by cluster:gen float chi=wv if xb<‘x1’

qui by cluster:replace chi= 0 if xb>‘x1’

qui by cluster:gen float chi0=wv if time_sm>‘time1’

qui by cluster:replace chi0= 0 if time_sm<‘time1’

qui by cluster:gen float fhi0=chi*chi0

qui by cluster:egen float Fhi0=sum(fhi0)

qui by cluster:replace Fhi0=0 if _n!=1

qui by cluster:egen float Csi0=sum(chi0)

qui by cluster:replace Csi0=0 if _n!=1

sum Fhi0, meanonly

qui replace Chi=r(sum) if _n==‘i’

sum Csi0, meanonly

qui replace Chi0=r(sum) if _n==‘i’

qui by cluster:egen chij=count(fhi0) if fhi0==1

qui by cluster: replace chij=0 if chij==.

qui by cluster: egen chij0=mean(chij)

qui by cluster:replace chij0=0 if _n!=1

sum chij0, meanonly

qui replace Chij=r(sum) if _n==‘i’

qui by cluster: egen dhij=count(fhi0) if fhi0==0

qui by cluster: replace dhij=0 if dhij==.
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qui by cluster: egen dhij0=mean(dhij)

qui by cluster:replace dhij0=0 if _n!=1

sum dhij0, meanonly

qui replace Dhij=r(sum) if _n==‘i’

drop fhi Fhi chi chi0 fhi0 Fhi0 Csi0 chij dhij chij0 dhij0

local i=‘i’+1

}

qui by cluster:egen Kn0=sum(Phi)

qui by cluster:replace Kn0=0 if _n!=1

sum Kn0, meanonly

qui gen sumPhi=r(sum)

qui gen Knre=2*sumPhi/(_N*(_N-1))

local Kre=Knre

qui by cluster:egen C1=sum(Chi)

qui by cluster:replace C1=0 if _n!=1

sum C1, meanonly

qui gen sumChi1=r(sum)

qui by cluster:egen C0=sum(Chi0)

qui by cluster:replace C0=0 if _n!=1

sum C0, meanonly

qui gen sumChi0=r(sum)

qui gen Cre=sumChi1/sumChi0

local Cre=Cre

***SE of C for clustered data***

qui by cluster:egen Chij0=sum(Chij)

qui by cluster:replace Chij0=0 if _n!=1

sum Chij0, meanonly

gen sumChij0=r(sum)

gen Pc=sumChij0/(_N*(_N-1))

qui by cluster:egen Dhij0=sum(Dhij)

qui by cluster:replace Dhij0=0 if _n!=1

sum Dhij0, meanonly

qui gen sumDhij0=r(sum)

gen Pd=sumDhij0/(_N*(_N-1))

qui by cluster:gen Ch=Chij*(Chij-1)

qui by cluster:gen Dh=Dhij*(Dhij-1)

qui by cluster:egen Ch0=sum(Ch)

qui by cluster:replace Ch0=0 if _n!=1

sum Ch0, meanonly

gen sumCh0=r(sum)

gen Pcc=sumCh0/(_N*(_N-1)*(_N-2))

qui by cluster:egen Dh0=sum(Dh)
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qui by cluster:replace Dh0=0 if _n!=1

sum Dh0, meanonly

gen sumDh0=r(sum)

gen Pdd=sumDh0/(_N*(_N-1)*(_N-2))

qui by cluster:gen ChDh=Chij*Dhij

qui by cluster:egen ChDh0=sum(ChDh)

qui by cluster:replace ChDh0=0 if _n!=1

sum ChDh0, meanonly

gen sumChDh0=r(sum)

gen Pcd=sumChDh0/(_N*(_N-1)*(_N-2))

gen var_p=(4/(Pc+Pd)^4)*(Pd^2*Pcc-2*Pc*Pd*Pcd+Pc^2*Pdd)

local seCre=sqrt(var_p/_N)

****SE of Kre****

local i=1

while ‘i’<=_N {

local x=xb[‘i’]

local xi=x[‘i’]

tempvar phi dji phi0 Dji

sort cluster

qui by cluster:gen float phi=(normal(-(xb-‘x’)/h)/(1+exp(xb-‘x’))-Knre)

*(normal(-(xb[_n+1]-‘x’)/h)/(1+exp(xb[_n+1]-‘x’))-Knre)

qui by cluster:gen float dji=(-(x-‘xi’)/h)*normalden(-(xb-‘x’)/h)*(1+exp(xb-‘x’))^(-1)

+normal(-(xb-‘x’)/h)*(-(x-‘xi’))*exp(xb-‘x’)*(1+exp(xb-‘x’))^(-2)

qui by cluster:egen float phi0=sum(phi)

qui by cluster:replace phi0=0 if _n!=1

sum phi0, meanonly

qui replace Psi=r(sum) if _n==‘i’

qui by cluster:egen float Dji=sum(dji)

qui by cluster:replace Dji=0 if _n!=1

sum Dji, meanonly

qui replace Psi0=r(sum) if _n==‘i’

drop phi dji phi0 Dji

local i=‘i’+1

}

qui by cluster: egen Knre0=sum(Psi)

qui by cluster:replace Knre0=0 if _n!=1

sum Knre0, meanonly

qui gen sumPsi=r(sum)

qui gen var_Knre0=(4*sumPsi)/(_N*(_N-1))^2

qui by cluster: egen Dji0=sum(Psi0)

qui by cluster:replace Dji0=0 if _n!=1

sum Dji0, meanonly

qui gen sumPsi0=r(sum)

qui gen Delji=(2*sumPsi0)/(_N*(_N-1))

qui gen var_Knre=var_Knre0+Delji*‘sebeta’^2*Delji
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local seKre=sqrt(var_Knre)

qui drop Ch* Dh* Ph* Ps* sumCh* sumDh* Pd* Pc* var_p

****D and calibration Slope******

sort xb

qui gen z = invnorm(((_n-3/8)/(_N+1/4)))/sqrt(8/_pi)

qui stcox z, nohr

local Dre=_b[z]

local seDre=_se[z]

qui stcox xb, nohr basesurv(bsurv)

local CSre=_b[xb]

local seCSre=_se[xb]

*** IBS*********

qui sort time_sm

qui gen tm_d=time_sm if d==1

qui sum tm_d

local tau=r(max) //maximum event-time; we calculate IBS up-to this time point

qui gen yt=0 if time_sm<=‘tau’

qui replace yt=1 if time_sm>‘tau’

qui sts gen km=s

set obs 1501

qui replace _t=‘tau’ in 1501

ipolate km _t, gen(ks2) epolate

qui summarize ks2 if _t==‘tau’

local gt1=r(mean)

qui gen wt1=(1-km)/(1-‘gt1’)

qui gen exb=exp(xb)

local gamma=1.1

qui gen st0=km

qui gen delta=1 if d==0

qui replace delta=0 if d==1

qui stset time_sm, f(delta)

qui sts gen gt=s

****************************

tempvar Bst Bst0

qui gen double Bst=.

qui gen double Bst0=.

qui sort time_sm

qui gen wt=1/gt

qui sort time_sm

local i=1

while ‘i’<=_N {

local time=time_sm[‘i’]

local st0=st0[‘i’]

local wtg=wt[‘i’]

local bsurv=bsurv[‘i’]

tempvar bs bs0 y st

qui gen float y=wv if time_sm>‘time’
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qui replace y= 0 if time_sm<‘time’

qui gen float st=(‘bsurv’)^exb

qui gen float bs=d*(1-y)*(0-st)^2*(wt)+y*(1-st)^2*(‘wtg’)

*qui gen float bs=(y-st)^2 // if there is no censoring

sum bs, meanonly

qui replace Bst=r(mean) if _n==‘i’

qui gen float bs0=d*(1-y)*(0-‘st0’)^2*(wt)+y*(1-‘st0’)^2*(‘wtg’)

*qui gen float bs0=(y-‘st0’)^2 // if there is no censoring

sum bs0, meanonly

qui replace Bst0=r(mean) if _n==‘i’

drop bs bs0 y st

local i=‘i’+1

}

qui integ Bst wt1 if yt==0, trapezoid gen(BS_x)

local IBSx=r(integral)

qui integ Bst0 wt1 if yt==0, trapezoid gen(BS_0)

local IBS0=r(integral)

local IRsq=1-‘IBSx’/‘IBS0’

line Bst Bst0 time_sm if yt==0

di ‘j’ // print number of simulations completed

restore

qui replace Cre=‘Cre’ if index==‘j’

qui replace Kre=‘Kre’ if index==‘j’

qui replace Dre=‘Dre’ if index==‘j’

qui replace CSre=‘CSre’ if index==‘j’

qui replace seCre=‘seCre’ if index==‘j’

qui replace seKre=‘seKre’ if index==‘j’

qui replace seDre=‘seDre’ if index==‘j’

qui replace seCSre=‘seCSre’ if index==‘j’

qui replace IBSx=‘IBSx’ if index==‘j’

qui replace IBS0=‘IBS0’ if index==‘j’

qui replace IRsq=‘IRsq’ if index==‘j’

}
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