SUPPORT FOR LEARNING SYNTHESISER PROGRAMMING

Mateusz Dykiert
University College London
m.dykiert@cs.ucl.ac.uk

ABSTRACT

When learning an instrument, students often like to emu-
late the sound and style of their favourite performers. The
learning process takes many years of study and practice. In
the case of synthesisers the vast parameter space involved
can be daunting and unintuitive to the novice making it
hard to define their desired sound and difficult to under-
stand how it was achieved. Previous research has pro-
duced methods for automatically determining an appro-
priate parameter set to produce a desired sound but this
can still require many parameters and does not explain or
demonstrate the effect of particular parameters on the re-
sulting sound. As a first step to solving this problem, this
paper presents a new approach to searching the synthe-
siser parameter space to find a sound, reformulating it as a
multi-objective optimisation problem (MOOP) where two
competing objectives (closeness of perceived sonic match
and number of parameters) are considered. As a proof-
of-concept a pareto-optimal search algorithm (NSGA-II) is
applied to CSound patches of varying complexity to gener-
ate a pareto front of non-dominating (i.e. “equally good”)
solutions. The results offer insight into the extent to which
the size and nature of parameter sets can be reduced whilst
still retaining an acceptable degree of perceived sonic match
between target and candidate sound.

1. INTRODUCTION

When learning an instrument, students often like to emu-
late the sound and style of their favourite performers. The
learning process takes many years of study and practice
and yet for software synthesisers, the user must deal with
complexities involved in specification of the timbre [1].
The vast parameter space makes it challenging for the inex-
perienced user to achieve a desired sound as a small change
in one parameter can alter the result quite significantly.
Several authors describe approaches to automatically de-
termine a set of synthesiser parameters that can produce
a desired target sound (see for example Horner [2], John-
son [3], Lai [4], and McDermott [5]). However, achieving
a target sound does not necessarily help a user to learn the
effect of particular parameters. What is required is both a
way of achieving desired sounds, and also guiding a user
in meaningful experimentation around that sound to aid

Copyright: (©2011 Mateusz Dykiert et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Nicolas Gold
University College London
n.gold@ucl.ac.uk

learning. This will require the development of underlying
technology for automatic parameter derivation and the de-
velopment of appropriate pedagogy and supporting tools.

As a first step towards this goal, this paper presents a re-
formulation of the synthesiser sound-matching problem as
a Multi-Objective Optimisation Problem (MOOP) where
two objectives are considered: closeness of sonic match,
and number of parameters used to achieve the match. Main-
taining an acceptable sonic match to the target sound while
reducing the number of parameters required to attain it
should aid an inexperienced user since the apparent com-
plexity of the synthesiser is reduced. Determining the ap-
propriate balance between the size of the parameter set and
the closeness of match is a difficult problem as the trade-
off may not be easy to judge (for example, it might be that
there are parameter sets that are considerably smaller than
the original but that do not substantially affect the sound,
or in other cases it may be that a single parameter can have
a major impact on the timbral quality). To gain insight
into these trade-offs and inspired by an analogous prob-
lem in software engineering (see [6]), we have applied a
multi-objective pareto-optimal search algorithm (NSGA-
II). Such algorithms generate a pareto front of non-dom-
inating (i.e. equally-good) solutions. Plotting these on a
graph then allows the trade-offs between the size of pa-
rameter set and sonic match to be more easily seen.

The paper makes the following contributions:

1. A reformulation of the search for synthesiser param-
eter sets as a multi-objective search problem.

2. A solution representation for encoding parameters
and fitness for use by the NSGA-II algorithm.

3. The results of an empirical study of the NSGA-II
algorithm applied to a number of CSound synthesis-
ers.

The remainder of the paper is organised as follows. Sec-
tion 2 presents the reformulation of parameter search as a
MOOP and introduces relevant theory. Section 3 describes
the solution representations. Section 4 describes the ex-
perimental configuration that led to the results discussed in
Section 5. Section 6 presents related work and Section 7
concludes.

2. RELATED WORK

There are several applications of genetic algorithms to the
generation of synthesiser parameters to produce a sounds
similar to a given target.

mailto:m.dykiert@cs.ucl.ac.uk
mailto:n.gold@ucl.ac.uk
http://creativecommons.org/licenses/by/3.0/

Yee-King and Roth [7] present a software synthesiser pro-
grammer. Their Java-based system is capable of automati-
cally programming any VSTi compatible software synthe-
siser. A genetic algorithm provides the core of this system
with parameters encoded as real numbers from O to 1 into
a chromosome. The system uses proportionate roulette
wheel selection and uniform random crossover as genetic
operators. Mutation is achieved by adding a gaussian ran-
dom variable. The fitness function is based on MFCCs
compared between target and candidate solution to pro-
duce Square Root Mean Error. The system has been eval-
uated using expert users and produces close perceptually
matching sounds. We adopt the same fitness approach for
the calculation of sonic distance but our approach differs
in the consideration of the second fitness objective (num-
ber of parameters), and the GA operators.

McDermott et al. [5] also use a genetic algorithm to de-
duce the set of synthesiser parameters. A comprehensive
study of different fitness functions is presented, including
pointwise metric, perceptual metric (made up from cen-
troid, harmonicity and attack time), discrete Fourier trans-
form metric and composite metric derived from simpler
measures. They observe that all of these fitness functions
perform well on simple target, but their performance is
highly diminished when working on targets containing many
partials. Their conclusion is that the perceptual measure
is the most suitable for such computation. Our approach
follows this finding in using a perceptually driven metric
(although we use MFCC rather than the composite metric
suggested) but differs in that our aims is to reduce the size
of the parameter set.

Lai et al. [4] present another solution based on genetic
algorithms for FM synthesis. The system is evaluated us-
ing different fitness functions. The sonic match is deter-
mined using spectral centroid and spectral norm derived
from short time Fourier transform. Spectral centroid is
found to perform better than spectral norm used alone, but
much better results are obtained if these two functions are
combined together. The system is evaluated against a pi-
ano tone generated by a Yamaha MA3 FM synthesiser with
known pitch. Closely matched sounds are reported to be
generated. Our work shares a similar overall approach
but again, we differ in that we are undertaking a multi-
objective approach and are currently focusing on additive
synthesis (although FM would be an interesting avenue of
future work for our approach).

3. PROBLEM DEFINITION

This section defines the sonic matching problem more for-
mally as a MOOP. Multi-objective optimisation problems
have two or more equally important objectives to be inde-
pendently maximised (or minimised) simultaneously [8].
A synthesiser S, uses a set P of parameters to generate a
sound. Each parameter n,, is an integer in the range 0-127
(corresponding to the possible MIDI CC values sent, for
example, from a control surface). Although this restricts
the possible values available for each parameter, the com-
bination is still a large search space. If the parameters were

not restricted, many more iterations would be required be-
fore the algorithm converged on a set of good solutions.

An audio fragment A is a 0.5 second fragment of audio
of constant amplitude and pitch. The distance d between
two sounds A; and A5 is defined thus:

d= \/ZﬁO(ml’i St (1)

n

where n is the number of parameters, x; is the .A;’s MFCC
and x» the A5’s MFCC value.

The problem of sound matching with fewer parameters
can therefore be seen as one of minimising d while simul-
taneously minimising the arity of P.

3.1 Genetic algorithms

Genetic Algorithms (GAs) were first introduced by Hol-
land in 1975 [9]. They are inspired by biological pro-
cesses of evolution - selection, mutation, crossover, for
optimising and solving complex problems. Genetic algo-
rithms generate a random initial population which is then
evolved through reproduction, forming new populations
until a stopping condition is reached e.g. a specific number
of function evaluations or the solution of required fitness is
found.

3.1.1 Representation

The candidate solution is encoded into a chromosome. The
way that the values are encoded in a chromosome is im-
plementation dependent. Usually values are encoded as a
binary string.

3.1.2 Selection

Selection is used for determining parents used in crossover.
There exist many selection operators, such as roulette wheel
and tournament [9].

3.1.3 Crossover

Crossover exchanges selected genes from parents obtained
in selection. New offspring are created in this step [9].

3.1.4 Mutation

In order to maintain diversity of solutions within genera-
tions, the mutation operator randomly changes a gene of
newly created offspring during crossover [9].

4. SOLUTION

This section describes the algorithms used and provides
more detailed insight into our approach.

4.1 Parameter Encoding

Synthesiser parameters can have different types and value
ranges. This introduces complexities for genetic algorithms
due to the requirement of different type encodings within
the chromosome. The complexity is carried forward to mu-
tation and crossover operators, which need to make sure
that the particular operation does not create invalid (out of
range) solutions. Following certain standards can reduce

this complexity. For example, Yee-King and Roth [7] use
a VST compatible backend, hence parameters are encoded
as real numbers from 0 to 1. We follow a similar idea,
adopting the MIDI specification where most continuous
controllers conform to a range of integers between 0 and
127. This uniform way of storing values ensures that the
parameter is always valid and within the range specified.
A secondary list of parameters is maintained for lookup of
maximum and minimum values for the further value pro-
jection required for generating candidate solutions.

In the case of the CSound patches used, we need to project
the value into a real parameter range. In order to achieve
this we use the following equation:

(a—b)
128

t = v+ b, 2)

where ¢ is the actual parameter value, a is the actual max-
imum parameter value, b is the actual minimum parameter
value and v is the value stored in a chromosome.

4.2 Fitness Assignment

With the transformation of the problem into multi-objective
optimisation problem, two fitness functions must be de-
fined. This section describes the two fitness functions used
in the test system.

4.2.1 Sonic Match

The first objective needs to be evaluated to classify how
similar the candidate and target sounds are. In order to
achieve this, we use Mel-Frequency Cepstral Coefficients
(MFCC). The concept was originally introduced as mea-
sures for speech recognition [10] but its application in
music has been growing ever since MFCCs provide per-
ceptually meaningful means for the classification of audio
signals.
MFCCs are computed in four steps [11]:

1. Applying the discrete Fourier transform on a win-
dowed sound segment.

2. Mapping powers from resulting spectrum onto Mel
scale.

3. Convolving warped power spectrum with triangular
band-pass filter and taking natural logarithm of the
result.

4. Final computation of MFCC using Equation 3.

Davis and Mermelstein in [12] express the computation
of MFCC:s as:

20
1
MFCC; = Xycos{i(k — Fagl F=12 M,

k=0
3
where M is the number of cepstrum coefficients and Xy,
is the low-energy output of kth filter.
In a similar approach to the work of Yee-King and Roth

[7], the fitness is expressed as the RMS Error of the MFCCs.

4.2.2 Number of Parameters

The second objective function must determine when a par-
ticular parameter has no effect on the sound generated dur-
ing computation (in other words, for all practical purposes,
that parameter is redundant). Each parameter has a value
which causes no effect on the sound. These values are spe-
cific to the individual parameters, for example, a high-pass
filter will not have any effect if the cut-off frequency is be-
low the level at which humans can perceive sound. To cal-
culate the number of parameters which actually have any
effect, we sum all parameters for which the no-effect con-
dition is false.

4.3 NSGA-II

Algorithm 1 shows the NSGA-II algorithm defined by Deb
etal. [13].

Initially, a random parent population Fj is created. So-
lutions are evaluated for fitness. Offspring population Q,
is created by selection using binary tournament, crossover
and mutation.

Algorithm 1 NSGA-II - main loop
while stopping condition not met do
Ry =P, UQ,
F = fast-non-dominated-sort(R;)
PtJr] = (Z)andi =1
while |P; 1| + |F)| < N do
crowding-distance-assignment(F)
Piy1 =P UF
i=i+l
end while
Sort(Fy, <x)
Prp1 =Py UFR 1 (N = [Prga])]
Qy+1 = make-new-pop(F;41)
t=t+1
end while

NSGA-II introduces elitism to maintain the best solutions
found so far. Each individual in the population (i.e. a set
of parameter values) is assessed for the number of effec-
tive parameters and sonic match closeness. A fast non-
dominated sorting algorithm is used to sort the popula-
tion into different fronts. Each front has a different non-
dominated rank, hence NSGA-II algorithm assigns a spe-
cial fitness value to each solution according to the front on
which it is located. Crowding distance is used as a second
internal fitness value assigned according to the magnitude
of the distance. Crowding distance is said to be an density
estimate of the front.

4.4 Random Search

To provide a comparison with NSGA-II, we have also run
the experiments using the Random Search (RS) algorithm
in jMetal [14]. This technique was used to check the valid-
ity of the formulated problem, as NSGA-II should have no
problem outperforming random search.

Name | # Params | Filter 1 Filter 2 Filter 3

S1 20 - - -

S2 21 Low-Pass | - -

S3 21 High-Pass | - -

S4 22 Band-Pass | - -

S5 22 Low-Pass | High-Pass | -

S6 24 Low-Pass | High-Pass | Band-Pass
S7 24 Band-Pass | Low-Pass | High-Pass

Table 1. This table describes filters used within CSound
patches and the number of parameters which the patch ac-
cepts.

5. EXPERIMENTAL SETUP

Each experiment used a different target sound which was
randomly generated using the same CSound patch. Each
experiment was executed 8 times for each CSound patch
for both NSGA-II and Random Search. The length of the
target and all generated sounds was limited to 0.5s. The
amplitude and fundamental frequency are constant.

In our system we are using MFCC implementation in
Java from Comirva project [15] and the NSGA-II imple-
mentation of jMetal [14].

The CSound patch used in the experiments is made up
from two oscillators which use composite waveforms gen-
erated by functions using GEN10 routines. Each function
specifies 10 relative strengths of each fixed harmonic par-
tial. The composite waveforms created are added together
to produce a sound. This represents a CSound patch called
S1. The Table 1 outlines the different orchestra files used
by the system.

5.1 EA Parameters and Operators

Each experiment has been run for 5000 fitness function
evaluations. The initial population size was set to 100, and
similarly, the archive population was also set to 100. All
experiments used the same operators: single point crossover,
bit flip mutation and tournament selection. All experiments
were run with crossover probability P. = 0.7 and muta-
tion probability to P, = 1/n (where n is the number of
parameters). Synthesiser parameters were encoded as inte-
gers, in range from 0 to 127, to provide uniform and MIDI
compatible representation in a chromosome.

6. RESULTS

In this study we investigate the feasibility of our concept
to reduce the number of parameters necessary to achieve a
desired sound. In order to achieve this, we use the seven
different CSound patches outlined in Table 1. The patches
have a similar base structure, but they differ in complex-
ity. Patches S6 and S7 contain the same components, but
different arrangements and signal routing.

The results are shown in Figure 1. Each subfigure shows
the NSGA-II obtained non-dominated front with all solu-
tions generated by Random Search algorithm (the point
cloud in each diagram). The lines joining points on the

pareto front are not themselves meaningful but are sim-
ply included to show the front more clearly. Subfigures
a-g represent typical runs of the experiment (5000 func-
tion evaluations) on seven patches described. Figure 2
presents results for the S1 patch over 20000 function eval-
uations. Clearly, the increased number of function evalua-
tions increased the closeness of the match and minimised
the number of parameters more than an experiment with
5000 function evaluations. This situation is not always the
case with other patches - sometimes the sonic match can-
not be better, and the number of parameters required is not
minimised further.

The results obtained show that the NSGA-II algorithm
usually obtains a solution with a closer sonic match to
the target than Random Search. NSGA-II is also better in
minimising the number of parameters having an effect on
the generated sound, finding such solutions more quickly
and with more success. The lower extreme of the param-
eter number of parameter space is explored much further
than with Random Search, converging on more suitable
solutions. On average NSGA-II finds a solution requiring
around two parameters less than equivalent solution ob-
tained by RS. Subfigure Figure 1(a) clearly shows a good
example of this; comparing similar sonic match values, the
best solution obtained by NSGA-II algorithm has 17 pa-
rameters whereas the Random Search solution requires 20.

The repeated runs of the same experiment are fairly con-
sistent and follow a similar trend.

The NSGA-II solution will scale better, judging by ex-
periments involving S6 and S7 as it handles parameter op-
timisation better in more complicated patches. Both S6 and
S7 have 24 parameters and the number of parameters is re-
duced the most in comparison to other simpler experiments
involving 18 parameters.

In rare cases, the random search has produced a singular
very, very good solution with a large number of parame-
ters.

Extended runs of the experiments, including 10k and 20k
function evaluations, have shown that the NSGA-II algo-
rithm outperforms Random Search. With increased num-
ber of iterations, RS has improved slightly, and some solu-
tions with reduced number of parameters are obtained.

The performance of the test system is fairly good and
consistent. The time it takes to perform an experiment with
5000 iterations is around 6 minutes on a machine with In-
tel Core i3 2.4GHz processor with 4GB RAM. The running
time increases linearly to 13 minutes for 10k and 27 min-
utes for 20k function evaluations.

7. CONCLUSIONS AND FUTURE WORK

This paper has presented a reformulation of the search for
synthesiser parameters as a multi-objective optimisation
problem to reduce the complexity of synthesiser program-
ming. Two objectives were considered: the closeness of
sonic match (in common with other previous methods in
this area), and the number of effective parameters in the

1RMSE (Sonic Match) 1/RMSE (Sonic Match) 1/RMSE (Sonic Match)

1/RMSE (Sonic Match)

Figure 1. Graphs showing pareto front obtained by NSGA-II vs solutions generated by Random Search algorithm

Random Search
NSGA-2 ——

4+

-24 222 -20 -18 -16 -14
-1*Mumber of parameters

(a) S1 patch, max 20 parameters

Random Search +
NSGA-2 —¢—

.

-24 222 -20 -18 -16 -14
-1*MNumber of parameters

(c) S3 patch, max 21 parameters

Random Search -+
NSGA-2 —¢—

-24 222 -20 -18 -16 -14
-1*MNumber of parameters

(e) S5 patch, max 22 parameters

Random Search -+
NSGA-2 —¢—

-24 222 -20 -18 -18 -14
-1"Number of parameters

(g) S7 patch, max 24 parameters

1/RMSE (Sonic Match) 1/RMSE (Sonic Match)

1RMSE (Sonic Match)

005

0.04

003

0.02

0.01

005

0.04

003

002

0.01

005

0.04

003

002

0.01

Random Search
NSGA-2 ——

¥

+
-24 =22 -20 -18 -16 -14

-1*Mumber of parameters

(b) S2 patch, max 21 parameters

Random Search +
NSGA-2 —¢—
+ i
1+
-+ i
=
-24 222 -20 -18 -18 -14

-1*MNumber of parameters

(d) S4 patch, max 22 parameters

Random Search -+
NSGA-2 —¢—

-24 222 -20 -18 -16 -14
-1*MNumber of parameters

(f) S6 patch, max 24 parameters

0.05
Random Search +
— NSGA-2 —¢—
S 0.04 1
®
=
2 003
c
[w]
)
g 0% M
4]
g 0.01
= +
0
-24 22 -20 18 -16 14
-1*Number of parameters

Figure 2. S1 experiment, 20k function evaluations.

generating set. A state of the art pareto-optimal search al-
gorithm (NSGA-II) was applied to generate a pareto front
of non-dominant solutions. The results were also com-
pared to Random Search.

The results indicate that it is possible to reduce the size
of the parameter set whilst still maintaining a good match
to the target sound. Using a pareto-optimal search algo-
rithm to generate pareto fronts allows insight into the trade-
off between the size of parameter set and the closeness of
match, showing where further reductions in the size of the
set make large differences to the match distance. The use
of a single synthesiser (CSound) means that it is possible
that results may not generalise to others. This is counter-
balanced by the fact that the synthesis method used here
is standard additive synthesis and the parameters are ex-
pressed in a MIDI compatible form, amenable to use with
other synthesisers.

There are a number of directions for future work. Further
investigation of the content of patches on the pareto front
is expected to offer more comprehensive insight into the
parameters that are most easily eliminated. Other standard
search algorithms will be tried to improve the efficiency
of the pareto front generation. It is possible that a hybrid
co-evolutionary approach of genetic programming and ge-
netic algorithms will offer the possibility of further simpli-
fication by modifying the architecture as well as the param-
eter set. More complex synthesiser architectures will also
be investigated (for example, the DX7 implementation in
CSound) and subsequently non-CSound synthesisers pro-
grammed via MIDI.

Acknowledgments

We thank the members of CREST (in particular Shin Yoo
and Mark Harman) for useful discussions and are grateful
to the Computer Science Department at University College
London for supporting this work.

8. REFERENCES

[1] R.Boulanger and J. Ffitch, “Teaching software synthe-
sis through Csound’s new modelling opcodes,” in Pro-
ceedings of the International Computer Music Confer-
ence, 1998.

[2] A. Horner, J. Beauchamp, and L. Haken, “Machine
tongues XVI: Genetic algorithms and their application
to FM matching synthesis,” Computer Music Journal,
vol. 17, no. 4, pp. 17-29, 1993.

[3] C. Johnson, “Exploring the sound-space of synthe-
sis algorithms using interactive genetic algorithms,” in
Proceedings of the AISB Workshop on Artificial Intel-
ligence and Musical Creativity, Edinburgh, 1999.

[4] Y. Lai, S. Jeng, D. Liu, and Y. Liu, “Automated
optimization of parameters for FM sound synthesis
with genetic algorithms,” in International Workshop on
Computer Music and Audio Technology, 2006.

[5] J. McDermott, N. Griffith, and M. O’Neill, “Toward
user-directed evolution of sound synthesis parameters,”
Applications on Evolutionary Computing, pp. 517—
526, 2005.

[6] Y. Zhang, M. Harman, and S. Mansouri, “The multi-
objective next release problem,” in Proceedings of the
9th annual conference on Genetic and evolutionary
computation. ACM, 2007, pp. 1129-1137.

[71 M. Yee-King and M. Roth, “Synthbot: An unsuper-
vised software synthesizer programmer,” in Proceed-
ings of the International Computer Music Conference,
2008.

[8] K. Deb, Multi-objective optimization using evolution-
ary algorithms. Wiley, 2001.

[9] J. Holland, Adaptation in natural and artificial sys-
tems: an introductory analysis with applications to bi-
ology, control, and artificial intelligence. The Univer-
sity of Michigan Press, Ann Arbor, 1975.

[10] P. Mermelstein, “Distance measures for speech
recognition, psychological and instrumental,” Pattern
Recognition and Artificial Intelligence, vol. 116, 1976.

[11] F. Zheng, G. Zhang, and Z. Song, “Comparison of dif-
ferent implementations of MFCC,” Journal of Com-
puter Science and Technology, vol. 16, no. 6, pp. 582—
589, 2001.

[12] S. Davis and P. Mermelstein, “Comparison of paramet-
ric representations for monosyllabic word recognition
in continuously spoken sentences,” IEEE Transactions
on Acoustics, Speech and Signal Processing, vol. 28,
no. 4, pp. 357-366, 1980.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan,
“A fast and elitist multiobjective genetic algorithm:
NSGA-IL,” IEEE transactions on evolutionary compu-
tation, vol. 6, no. 2, pp. 182-197, 2002.

[14] J. Durillo, A. Nebro, and E. Alba, “The jMetal frame-
work for multi-objective optimization: design and ar-
chitecture,” in IEEE Congress on Evolutionary Com-
putation (CEC), 2010, pp. 4138—4325.

[15] M. Schedl, “The CoMIRVA Toolkit for Visualizing
Music-Related Data,” Department of Computational
Perception, Johannes Kepler University Linz, Tech.
Rep., June 2006.

	 1. Introduction
	 2. Related Work
	 3. Problem Definition
	3.1 Genetic algorithms
	3.1.1 Representation
	3.1.2 Selection
	3.1.3 Crossover
	3.1.4 Mutation

	 4. Solution
	4.1 Parameter Encoding
	4.2 Fitness Assignment
	4.2.1 Sonic Match
	4.2.2 Number of Parameters

	4.3 NSGA-II
	4.4 Random Search

	 5. Experimental Setup
	5.1 EA Parameters and Operators

	 6. Results
	 7. Conclusions and Future Work
	 8. References

