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Abstract 
 

Intestinal stem cells (ISCs) in the adult Drosophila midgut proliferate in order to self-

renew and produce differentiating daughter cells that replace those lost as part of 

normal gut function. Intestinal stress induces the activation of Upd/Jak/Stat signalling, 

which promotes intestinal regeneration by inducing rapid SC proliferation and faster 

tissue turnover.  

 

I have investigated the role of the Hippo (Hpo) pathway in the Drosophila midgut. The 

Hpo pathway regulates tissue size via the control of both apoptosis and proliferation 

during Drosophila development. In the midgut, Hpo pathway inactivation in either the 

SCs or their differentiated daughter cells, the enterocytes (ECs), induces a phenotype 

similar to that observed under stress situations, including increased proliferation and 

expression of Upd cytokines.  

 

Hpo pathway targets are induced by stresses such as bacterial infection, suggesting that 

the pathway functions as a sensor of cellular stress in the ECs. In addition, Yki, the pro-

growth transcription factor target of the pathway, is required in ISCs to drive the 

proliferative response to stress. Yki inactivation has no obvious effect on baseline 

homeostasis, while survival upon infection is affected by loss of Yki in either the ISCs 

or ECs. My findings suggest that the Hpo pathway is a mediator of the regenerative 

response in the midgut. 

 

In the final part of the project, I have addressed possible mechanisms of Yki activation, 

with a view to gaining further insight into Yki function in the ECs. The data suggest a 

possible link between the generation of reactive oxygen species, JNK signalling and 

Yki activation. Several explanations could account for the requirement of Yki 

expression in the ECs. Yki expression itself might induce stress in the ECs, leading to 

upd expression and the regenerative response. Alternatively, the Hpo pathway might 

function as a stress sensor, triggering Upd release in response to noxious stimuli. 
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Chapter 1. Introduction 

Overview  
The overall aim of my PhD was to address the role of the Hippo (Hpo) pathway in the 

adult posterior midgut. In order to highlight the main ideas and concepts behind my 

work, I begin by introducing Drosophila melanogaster as a model organism for the 

study of growth control. Several highly conserved pathways are known to regulate 

growth. Work in my PhD laboratory is focussed on one particular signalling network, 

the Hpo pathway. In the second part of my introduction, I describe our current 

understanding of Hpo pathway function in both Drosophila and mammals. I then go on 

to introduce the key concepts in stem cell (SC) biology and the SC populations 

previously studied in Drosophila, before giving a brief overview of the mammalian 

intestine, paying particular focus to the organisation and regulation of intestinal stem 

cells (ISCs). Finally, I present the adult Drosophila posterior midgut as a model system 

in which to investigate ISC biology. In this final section, I not only address midgut 

organisation but also highlight the range of signalling pathways shown to affect 

epithelial turnover. 

 

1.1 The fruit fly as model for growth control 

1.1.1 Drosophila melanogaster as a model organism 

Drosophila melanogaster, commonly known as the fruit fly, has been utilised in 

biological research for over one hundred years. Studies in Drosophila have provided 

insight into areas such as development, evolution, genetics and disease. As a model 

organism Drosophila offers several advantages. From a practical aspect, fruit flies are 

small, easy to handle and cheap to maintain (Greenspan, 1997). Their comparatively 

short generation time, of just 10 days when maintained at 25oC, makes Drosophila an 

ideal candidate for genetic experiments (Greenspan, 1997).  

 

Genetically, Drosophila not only benefit from having just four pairs of chromosomes 

(one sex chromosome and three autosomes), which facilitates genetic mapping, but also 
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show a high degree of genetic conservation. The sequencing of the Drosophila genome 

in 2000 enabled comparative genomics, with studies showing that over 70% of human 

disease related genes are conserved in the fly (Reiter et al., 2001). A host of resources 

and genetic techniques are now available to Drosophila researchers, including online 

databases and stock centres. The generation of transgenic flies is now a routine process, 

details of which can be found in section 2.1. 

 

1.1.2 Lifecycle of Drosophila melanogaster 

The optimal temperature for maintaining Drosophila is 25oC. Life cycle is temperature 

sensitive, 10 days at 25oC but 20 days when kept at 18 oC. Embryonic development lasts 

around 12-15 hours with fertilised females able to lay hundreds of eggs per day 

(Ashburner et al., 2005). Embryos hatch as first instar larvae (Figure 1.1). The larval 

phase involves exponential growth, with an approximately 200-fold increase in mass. 

The larval period of development can be divided into three moult-separated stages or 

instars and lasts four days in total, with moulting occurring at 24 and 48 hours. 

Proliferation occurs mainly in the nervous system and imaginal discs. Imaginal discs are 

sac-like epithelial structures that give rise to the adult external organs. At the end of the 

third instar the larvae stop feeding, wander out of the food and pupate (Ashburner et al., 

2005). 

 

During pupariation, the imaginal discs are subject to morphological changes and give 

rise to adult structures such as the wings and legs (Ashburner et al., 2005). The majority 

of other larval tissues degenerate by a process called histolysis. Some groups of cells, 

known as histoblasts, do however remain and go on to form internal structures like the 

digestive tract. Overall, metamorphosis lasts four to five days before adult flies emerge 

from the pupal case (Ashburner et al., 2005). Adults are sexually mature six to eight 

hours after eclosion. 
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Figure 1.1: Lifecycle of Drosophila melanogaster 

Image available on Flymove website – http://flymove.uni.muenster.de 
 

1.1.3 Growth regulatory processes in Drosophila 

A fundamental question in biology is how growing tissues sense when they have 

reached the correct size (Thompson, 2010). Understanding growth control during 

development can also offer vital insights into the processes underlying diseases 

affecting cell number, such as cancer and degeneration.  

 

1.1.3.1 Cell growth and division 

Cell number is increased via cell division, the process by which one cell replicates its 

DNA before dividing to form two daughter cells. Before a cell can undergo division, it 

is subject to a growth phase, in order that overall cell size is maintained. This process of 

cell growth, duplication and division is known as the cell cycle (Figure 1.2A). Cell 

proliferation refers to progression through the cell cycle followed by division (i.e. cell 

growth in combination with division) (Thomspon, 2010). 

 

The cell cycle consists of four main phases. DNA is replicated during S phase and 

division occurs during the M phase. These two phases are separated by G1 and G2, gap 

phases, that allow time for cell growth. The cell cycle is subject to tight regulation in 

order to ensure that division only occurs when necessary. For example, the cell cycle  
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Figure 1.2: Drosophila as a model organism for the study of growth control  

(A) Simplified schematic of the eukaryotic cell cycle machinery. Two of the major 
regulatory steps include CycE/Cdk2 regulation of G1/S transition (Knoblich et al., 
1994) and CycB/Cdk1 regulation of G2/M transition (Lehner and O'Farrell, 1990). 
CycB/Cdk1 is positively regulated by the Cdc25 phosphatase (String in Drosophila). 
(B) Apoptosis pathway in Drosophila. Note that the Hpo pathway target bantam 
encodes a developmentally regulated microRNA that controls cell proliferation and 
regulates the pro-apoptotic gene hid. (C) Wing imaginal disc. Cell proliferation during 
the larval stages results in a tissue consisting of around 50,000 cells. Posterior cells 
express Hedgehog (Hh), while anterior cells respond to Hh. Signalling initiated at the 
anterior/posterior boundary establishes a Dpp morphogen gradient, which is involved in 
disc patterning and proliferation. A Wingless (Wg) gradient at the dorsal/ventral 
boundary is also important to wing patterning and development. The wing disc goes on 
to form the adult wing, hinge region and notum. (D) The Insulin/PI3K pathway 
regulates cell growth via TOR signalling 
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will arrest if DNA damage is detected following replication (Malumbres and Barbacid, 

2005). Cyclin-dependent kinases (Cdks) and their cyclin binding partners regulate 

progression through the cell cycle via phosphorylation of targets involved in crucial cell 

cycle steps. Extracellular signals known as mitogens also regulate G1/S transition, these 

include EGF (epidermal growth factor), PDGF (platelet-derived growth factor) and 

MAPK (mitogen activated protein kinase) (Malumbres and Barbacid, 2005). 

 

Cell growth can occur in the absence of cell division. Many cells, including the ECs of 

the posterior midgut, undergo endocycles. These cells are said to be polyploid and 

continue to increase in size and ploidy through variant cell cycles, where the DNA 

replicates but division does not occur (Edgar and Orr-Weaver, 2001). 

 

1.1.3.2 Cell death  

Apoptosis is a type of programmed cell death. Other types of cell death include 

autophagy and necrosis. Apoptosis not only regulates organ size during development 

but also maintains tissue integrity in the adult by providing protection against damaged 

or infected cells (as reviewed by (Hay et al., 2004)). Cells undergoing apoptosis 

undergo several morphological changes including chromatin condensation, cell 

shrinkage, and loss of cell-contacts. Apoptosis involves caspase (protease) activation 

(Figure 1.2B). The apical caspase Dronc cleaves and activates an effector caspase such 

as Drice. Caspase activity is regulated by Drosophila IAPs (inhibitor of apoptosis 

proteins) (Meier et al., 2000). Diap1 can bind Dronc leading to Dronc ubiquitination 

and inactivation. Reaper, Grim and Hid induce apoptosis by binding and destabilising 

Diap1 (Goyal et al., 2000). 

 

In tissues with high turnover rates, apoptosis can be regulated by anoikis (Frisch and 

Screaton, 2001). Anoikis refers to ‘apoptosis induced by inadequate or inappropriate 

cell-matrix interactions’ (Frisch and Francis, 1994). The mechanism by which a loss of 

integrin-mediated cellular adhesion triggers the cell-death cascade is unclear. Loss of 

anoikis contributes to malignancy in colon cancer (Shanmugathasan and Jothy, 2000).  
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1.1.3.3 Regulation and co-ordination of cell growth 

Cell growth and death are regulated and co-ordinated through a number of mechanisms, 

including both local and systemic factors. The wing imaginal disc is a commonly used 

tissue in the study of the signalling events involved in coordinating cell growth and 

division (see Figure 1.2C) (Hariharan and Bilder, 2006).  

 

Local/intrinsic factors 

A number of intrinsic signalling pathways function in growth control, including Dpp 

(Decapentaplegic, Drosophila homolog of BMP, bone morphogenetic protein), Wg 

(Wingless, Wnt in mammals), PI3K (Phosphatidylinositol 3-kinases), Egfr/Ras/MAPK 

and Hpo. Disruption to pathways modulating more than one aspect of growth, such as 

the Hpo pathway, can have profound effects. Ras activation, for example, drives both 

cell division and growth through regulation of Myc, PI3K and MAPK signalling 

(Prober and Edgar, 2000). Although co-ordinated, cell growth and the cell cycle can be 

separated. Cell growth does not depend on cell division and can be increased in order to 

overcome reduced proliferation, thus maintaining overall tissue size with fewer but 

larger cells (Johnston et al., 1977, Neufeld et al., 1998, Weigmann et al., 1997). 

 

Morphogens are secreted signalling proteins involved in the regulation of tissue size, 

shape and patterning (Figure 1.2C) (as reviewed in (Dekanty and Milan, 2011)). 

Produced locally, they establish a diffusible signalling gradient in which expression is 

highest at the source. Regulation occurs at the level of morphogen synthesis, diffusion 

and degradation rates. 

 

A considerable degree of crosstalk exists between the different growth regulating 

pathways. Dying cells, for example, secrete Wg and Dpp morphogens and in doing so 

signal neighbouring cells to divide. This process is referred to as compensatory 

proliferation (Huh et al., 2004, Perez-Garijo et al., 2004, Ryoo et al., 2004). Conversely, 

faster dividing cells can induce their neighbours to undergo apoptosis (Moreno et al., 

2002, Li and Baker, 2007). This ability of fitter cells to eliminate their neighbours is 

known as cell competition (Morata and Ripoll, 1975).  
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Systemic/extrinsic factors 

Cell growth is also regulated by systemic factors. Nutritional status at both a cellular 

and systemic level can regulate tissue growth (as reviewed in (Hietakangas and Cohen, 

2009)). The TOR (target of rapamycin) pathway monitors cellular levels of amino acids. 

TOR signalling regulates growth through protein synthesis via ribosomal S6-Kinase 

activation and inhibition of eIF4E-BP (eukaryotic translation initiation factor 4E-

binding protein) (Wullschleger et al., 2006). The main mediator of systemic nutrient 

sensing is insulin-like signalling (IIS) (Figure 1.2D). The insulin/PI3K/Akt pathway 

coordinates growth on an organism-wide level. Drosophila insulin-like peptides (Dilps) 

bind to the insulin receptor (InR) (Brogiolo et al., 2001), which triggers the PI3K/Akt 

signalling cascade and ultimately TOR activation. The growth-promoting action of the 

Dilps is counteracted by the steroid hormone ecdysone. This balance is regulated by the 

fat body, the Drosophila equivalent to the mammalian liver and adipose tissue 

(Colombani et al., 2005). Ecdysone also signals the larval to pupal transition, bringing 

about the end of the feeding phase of development. 

 

1.2 The Hippo growth regulation pathway  

1.2.1 The Hpo pathway controls both cell cycle exit and apoptosis 

The highly conserved Salvador/Warts/Hippo signalling pathway is a key regulator of 

organ size (Figure 1.3 and Table 1.1) (Harvey and Tapon, 2007). First discovered in 

Drosophila, the pathway promotes both cell cycle exit and apoptosis and its 

deregulation can lead to cancer. The first core member of the pathway to be identified 

was Warts (Wts), which was recovered in a genetic mosaic screen designed to identify 

genes involved in cell growth and proliferation (Justice et al., 1995, Xu et al., 1995). 

Wts is a member of the Nuclear DBF2-related (NDR) family of serine/threonine kinases. 

Cells mutant for wts overproliferate leading to severe overgrowth in wing imaginal 

discs and epithelial tumours in adult tissues (Justice et al., 1995, Xu et al., 1995). 

Subsequent genetic screens led to the identification of other genes that elicit similar 

phenotypes when clonally deleted in imaginal discs, such as salvador (sav), hippo (hpo)  
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Figure 1.3: The Hippo pathway 

(A) Schematic representation of the Drosophila Hpo pathway in an epithelial cell. (B) 
Schematic representation of the mammalian Hpo pathway in an epithelial cell. P = a 
phosphorylation event.  
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and mob as a tumour suppressor (mats) (Kango-Singh et al., 2002, Tapon et al., 2002, 

Harvey et al., 2003, Pantalacci et al., 2003, Udan et al., 2003, Wu et al., 2003, Lai et al., 

2005). Genetic and molecular interaction data examining these proteins led to the 

concept of the Hippo (Hpo) pathway. 

1.2.2 The core kinase cascade  

Hpo signalling involves a core kinase cascade. The upstream kinase Hpo activates the 

downstream kinase Warts (Wts), in concert with two scaffold proteins Salvador (Sav) 

and Mats (Figure 1.3A) (Harvey et al., 2003, Pantalacci et al., 2003, Udan et al., 2003, 

Tapon et al., 2002, Jia et al., 2003, Kango-Singh et al., 2002, Wu et al., 2003, Lai et al., 

2005). Wts phosphorylates and inactivates Yorkie (Yki), a growth-promoting 

transcriptional co-activator (Huang et al., 2005). Yki promotes the expression of target 

genes including Diap1 (Drosophila inhibitor of apoptosis protein 1) and Cyclin E (Dong 

et al., 2007, Huang et al., 2005). 

 

1.2.2.1 Hpo and Wts kinases 

Hpo is a member of the Sterile20-like family of Serine/Threonine kinases. The ability of 

Hpo to trans or autophosphorylate was revealed in kinase assays and a conserved T195 

residue in the Hpo activation loop is crucial to its kinase activity (Pantalacci et al., 2003, 

Wu et al., 2003, Colombani et al., 2006). Hpo phosphorylates Wts on several serine and 

threonine residues and is responsible for Wts activation (Wu et al., 2003). Similarly, the 

mammalian orthologue of Hpo (Mst1/2) phosphorylates the Wts orthologue Lats1/2 

(Chan et al., 2005, Yu et al., 2010). MST1 and 2 are pro-apoptotic kinases implicated in 

liver tumour formation (Song et al., 2010, Lu et al., 2010). The mammalian Wts 

orthologues Lats1 and 2 interact with scaffold proteins MOB1A and MOB1B and are 

both implicated in growth control (Praskova et al., 2008).  

1.2.2.2 Sav and Mats adaptor proteins  

Sav and Mats are adaptor proteins. Sav was initially identified in a genetic screen 

seeking mutations that induce overproliferation but do not affect differentiation (Tapon 

et al., 2002, Kango-Singh et al., 2002). As with Hpo and Wts inactivation, Sav LOF in 
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the eye leads to extra inter-ommatidial cells and reduced apoptosis but does not affect 

photoreceptor differentiation. In the wing disc, sav mutation results in cells of normal 

size but which exhibit faster rates of proliferation (Harvey et al., 2003, Pantalacci et al., 

2003, Jia et al., 2003, Kango-Singh et al., 2002, Tapon et al., 2002, Udan et al., 2003, 

Wu et al., 2003). Co-expression of hpo/sav produces a stronger phenotype than hpo 

expression alone, while removal of either wts or sav can partially rescue the hpo 

overexpression phenotype (Jia et al., 2003, Wu et al., 2003, Udan et al., 2003). Sav has 

no catalytic domain but two WW domains, which can bind to Wts PPXY motifs (Tapon 

et al., 2002). Sav also binds to Hpo, via direct interaction between C-terminally located 

coiled-coiled regions, known as SARAH domains (Sav, RASSF, Hpo), found in both 

proteins (Pantalacci et al., 2003, Udan et al., 2003, Wu et al., 2003, Harvey et al., 2003, 

Jia et al., 2003). Hpo-Sav binding is required for Hpo phosphorylation of Wts, and Sav 

itself is also phosphorylated by Hpo (Pantalacci et al., 2003, Wu et al., 2003). 

 

Wts activity is regulated by an adaptor protein called Mats. Mats is a Hpo substrate, 

which binds to Wts, potentiating its kinase activity (Lai et al., 2005). Phosphorylated 

Mats has a higher affinity for Wts and thus increases Wts kinase activity (Wei et al., 

2007). Mats is activated at the plasma membrane and it has been suggested that it may 

function in targeting Wts to the cell membrane for interaction with the other core 

pathway members (Ho et al., 2010). The mammalian orthologues of Sav and Mats, 

Sav1/WW45 and MOB1 are mutated in several cancer cell lines, demonstrating a high 

degree of functional conservation with their Drosophila counterparts (Tapon et al., 2002, 

Lai et al., 2005). 

 

1.2.2.3 The transcriptional co-activator Yki 

Early studies in the Hpo signalling field showed that pathway inactivation affects cell 

cycle progression and cell death through increased expression of both cyclinE and diap1 

(Harvey et al., 2003, Jia et al., 2003, Kango-Singh et al., 2002, Pantalacci et al., 2003, 

Tapon et al., 2002, Udan et al., 2003, Wu et al., 2003). The discovery that Wts binds to 

Yki, the Drosophila homologue of YAP (Yes-associated protein), a known 

transcriptional co-activator, provided a possible mechanism by which Hpo signalling 
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might influence gene transcription (Huang et al., 2005, Yagi et al., 1999). Yki 

expression is required for the overgrowth phenotype of wts mutant tissue and 

overexpression of Yki protein phenocopies Hpo pathway LOF (Huang et al., 2005). As 

with Sav, Yki has two WW domains, which are necessary for its interaction with Wts 

PPXY motifs. In vitro kinase assays have confirmed that Yki is a substrate for Wts and 

that this phosphorylation results in reduced transcriptional activity (Huang et al., 2005). 

 

Yki harbours multiple Wts phosphorylation sites. Phosphorylation of the conserved 

Serine-168 is vital to Yki’s growth regulatory function (Dong et al., 2007, Oh and 

Irvine, 2008). In Hpo mutant cells, Yki is localised to the nucleus. However, upon Wts-

dependent phosphorylation of S-168, Yki binds to 14-3-3 and is sequestered in the 

cytoplasm, thereby reducing the expression of Yki target genes (Dong et al., 2007, Oh 

and Irvine, 2008, Ren et al., 2009). 

 

While Yki is responsible for driving growth in many tissues, it remains possible that 

other Hpo pathway targets do also exist. Equally, Hpo signalling might modulate targets 

via processes other than transcriptional regulation. Hpo can, for example, phosphorylate 

Diap1 leading to its degradation (Harvey et al., 2003, Pantalacci et al., 2003). 

 

Yki is an orthologue of mammalian YAP and its paralogue TAZ (Sudol, 1994, Kanai et 

al., 2000). Lats dependent phosphorylation of YAP S-127 corresponds to S-168 

phosphorylation of Yki, leading to inactivation and exclusion from the nucleus (Dong et 

al., 2007, Zhao et al., 2007, Zhang et al., 2008a, Hao et al., 2008). Lats1/2 can 

phosphorylate YAP/TAZ on several residues (Dong et al., 2007, Zhao et al., 2007, Hao 

et al., 2008, Lei et al., 2008, Oka et al., 2008). Phosphorylation of S-381 primes YAP 

for subsequent phosphorylation by a second kinase, believed to be Casein Kinase 1. 

This second phosphorylation step activates a phosphorylation-dependent degradation 

motif (phospho-degron). Recruitment of the E3 ubiquitin ligase SCFβ-TRCP by the 

activated phospho-degron then leads to polyubiquitination and degradation of YAP 

(Zhao et al., 2010). Unlike YAP and TAZ, Yki lacks a residue equivalent to S-381, 

suggesting that this mechanism is not conserved (Liu et al., 2010a). 
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1.2.2.4 Yki binding partners and targets 

In order to understand Yki function, it was vital to identify its TF binding partner(s). 

Yki itself exhibits no DNA binding capacity. Scalloped (Sd) encodes the only 

TEAD/TEF (TEA DNA binding domain/Transcription enhancer factor) TF member in 

Drosophila and is required for Yki’s growth regulatory function (Goulev et al., 2008, 

Wu et al., 2008, Zhang et al., 2008b). Yki and Sd form a complex that can bind directly 

to 26bp sequences, known as Hippo Response Elements (HREs), in the promoter region 

of target genes such as diap1 and cyclin E (Zhang et al., 2008b, Wu et al., 2008).  Diap1 

inhibits apoptosis and Cyclin E promotes cell cycle progression. However, these two 

proteins alone do not account for the overgrowth phenotype induced by Yki 

overexpression (Tapon et al., 2002, Jia et al., 2003, Udan et al., 2003, Lai et al., 2005). 

Yki also targets the bantam miRNA and bantam overexpression can partially rescue the 

Yki mutant phenotype (Nolo et al., 2006, Thompson and Cohen, 2006). Interestingly, 

bantam is also a target of the EGFR signalling pathway (Herranz et al., 2012). 

Importantly, there is no mammalian homologue of Bantam and it remains to be seen 

whether YAP/TAZ can also regulate miRNA expression. 

 

Yki is required in all imaginal cells for proliferation, while Sd is expressed at high 

levels in the developing wing pouch but not in dividing eye progenitor cells (Liu et al., 

2000, Campbell et al., 1992, Huang et al., 2005). Yki therefore has other TF binding 

partners. In the eye imaginal disc, Yki regulates gene expression in conjunction with the 

homeodomain TF Homothorax (Hth) and the zinc-finger TF Teashirt (Tsh) (Peng et al., 

2009). The expression of bantam is also regulated by another transcriptional complex 

between Yki and Mad, an effector of Dpp signalling (Oh and Irvine, 2011). Yki 

interaction with different binding partners might therefore be tissue-dependent and the 

availability of Yki partners could be a key factor in regulating Hpo pathway activity. 

 

The Hpo pathway has been linked to cell competition through the identification of 

dMyc, a well-known inducer of ribosome biogenesis and cell growth, as another Yki-Sd 

target (Neto-Silva et al., 2010, Ziosi et al., 2010). dMyc expression induces cell 

competition and leads to the death of surrounding WT cells in the developing wing (de 

la Cova et al., 2004, Moreno and Basler, 2004). Transcriptional induction of dMyc is 
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required for the competitive behaviour of Yki-expressing cells and dMyc also exerts 

negative feedback regulation on Yki (Neto-Silva et al., 2010, Ziosi et al., 2010). Other 

Yki targets include: E2F1 (Goulev et al., 2008), which may be involved in the cell-

autonomous regulation of proliferation; wg and vg expression in wing discs (Cho and 

Irvine, 2004, Zecca and Struhl, 2010); the EGFR ligands vein, keren and spitz (Ren et 

al., 2010, Zhang et al., 2009a), which might mediate non-autonomous functions of the 

Hpo pathway; and the Hpo pathway genes ex, kibra, crb and fj (Hamaratoglu et al., 

2006, Genevet et al., 2010, Cho et al., 2006, Genevet et al., 2009), which may constitute 

a pathway negative feedback loop. 

 

TEAD/TEF family TFs are also crucial to YAP mediated growth control, with at least 

one TEAD isoform expressed in every adult tissue (Cao et al., 2008, Nishioka et al., 

2009, Ota and Sasaki, 2008, Zhao et al., 2008, Zhao et al., 2009). Disruption of 

YAP/TEAD binding abolishes YAP induced proliferation and oncogenic transformation 

(Zhao et al., 2008). The best-characterised YAP/TEAD target is CTGF, which has an 

important role in proliferation and anchorage dependent growth (Zhao et al., 2008). 

YAP and TAZ also induce the expression of Amphiregulin and FGF1, which may 

account for the non cell-autonomous functions of the Hpo pathway (Zhang et al., 2009a, 

Hao et al., 2008).  

 

YAP/TAZ are also known to interact with a growing list of other TFs, which include 

Runx2, Smads, Pax3, Tbx5 and p73 (Vassilev et al., 2001, Hong et al., 2005, Hong and 

Yaffe, 2006, Komuro et al., 2003, Park et al., 2004, Varelas et al., 2008). TAZ interacts 

with a number of binding partners, some of which do not function with YAP. This may 

explain the varying Hpo pathway outputs observed in different contexts. YAP/TAZ 

interact with TEAD1-4 via a distinct N-terminal domain, whereas interaction with other 

TF partners occurs via WW domains. The issue of whether other TFs (e.g. chromatin 

remodellers) can associate with the YAP/TEAD complex is yet to be addressed (Cao et 

al., 2008, Nishioka et al., 2009, Ota and Sasaki, 2008, Zhao et al., 2008, Zhao et al., 

2009).  
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1.2.2.5 Additional regulators of Yki activity 

Yki is not only regulated by Wts-mediated phosphorylation but can also bind to 

upstream members of the Hpo pathway, including Ex, Hpo and Wts, increasing its 

cytoplasmic retention (Badouel et al., 2009, Oh and Irvine, 2008). Yki binding is 

mediated through WW domains, which often associate with proline-rich PPXY motifs. 

Wbp2 and Myopic (Mop) can directly interact with Yki through its WW domains and, 

in doing so, modulate Hpo signalling (Zhang et al., 2011c, Gilbert et al., 2011). Wbp2 

was initially identified as a YAP interacting protein and can contribute to both YAP and 

TAZ transcriptional activation (Chen et al., 1997, Dhananjayan et al., 2006, Chan et al., 

2010). In Drosophila, Wbp2 can act as an enhancer for Yki transcriptional activity 

(Zhang et al., 2011c). Mop is the Drosophila homologue of His-domain protein tyrosine 

phosphatase (HD-PTP). Mop expression represses Yki activity by acting as a 

cytoplasmic anchor (Gilbert et al., 2011). 

 

1.2.3 The Hpo pathway is regulated by multiple inputs  

The Hpo pathway has multiple functions in response to a variety of developmental cues 

and stress signals and, as a result, upstream regulation of the pathway is equally 

dynamic. Multiple inputs influence Hpo signalling, acting in both a coordinated and 

independent manner. Inputs act at various levels within the signalling cascade. Many of 

the upstream regulators of Hpo signalling are associated with the plasma membrane and 

increasing evidence suggests that these upstream components are involved in cell 

communication, providing information on the surrounding extracellular environment. 

Unlike many other signalling pathways, a soluble ligand for Hpo signalling has not yet 

been identified.  

 

1.2.3.1 Regulation of Hpo kinase activity 

RASSF 

The Ras association domain family (RASSF) oncogene was the first Hpo pathway 

inhibitor to be identified (Polesello et al., 2006). RASSF mutants are viable but smaller 

in size due to a reduction in cell number. Removal of one copy of hpo significantly 
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rescues the reduced size observed in RASSF mutants (Polesello et al., 2006). Co-

immunoprecipitation and binding assays have demonstrated that RASSF and Hpo 

interact via C-terminal SARAH domains, with RASSF competing with Sav for Hpo 

binding. RASSF associates with the dSTRIPAK (Drosophila Striatin-interacting 

phosphatase and kinase) PP2A (protein phosphatase 2A) phosphatase complex (Ribeiro 

et al., 2010). The kinase activity of Hpo is inhibited by the dSTRIPAK complex 

(Ribeiro et al., 2010). dSTRIPAK depletion results in increased Hpo phosphorylation 

and repression of Yki target genes in vivo. The exact mechanism by which RASSF 

inhibits Hpo is unknown but may involve binding to Hpo and thus enabling 

dephosphorylation by the dSTRIPAK complex. Interaction between RASSF family 

proteins and the Hpo orthologue MST is also observed in mammals and the fact that 

PP2A can control MST1/2 phosphorylation in tissue culture cells suggests that 

dSTRIPAK function may also be conserved (Avruch et al., 2006, Ikeda et al., 2009, 

Praskova et al., 2004, Guo et al., 2011). 

 

Tao1 

Tao1 is a Sterile20-like kinase, which is reported to regulate Hpo signalling (Poon et al., 

2011, Boggiano et al., 2011). Like Hpo, Tao1 activation restricts cell proliferation in 

developing wing imaginal discs. Tao1 phosphorylates T195 in the Hpo activation loop, 

a mechanism that is conserved in mammals and leads to Hpo activation. 

 

1.2.3.2 The Fat branch of the Hpo pathway 

Fat (Ft), a cell surface molecule with multiple cadherin repeats, is another regulator of 

Hpo signalling activity (Cho et al., 2006, Bennett and Harvey, 2006, Silva et al., 2006, 

Willecke et al., 2006, Tyler and Baker, 2007). Ft signalling is also a known mediator of 

planar cell polarity (PCP), a process by which cells sense their position in relation to 

other tissue axes and orient themselves accordingly, this modulation is independent of 

Hpo signalling (for review see (Sopko and McNeill, 2009). Ft forms transheterodimers 

with Dachsous (Ds) another cadherin expressed on neighbouring cells (Clark et al., 

1995). The golgi-kinase Four-jointed (Fj) modulates the Ft-Ds interaction by 

phosphorylating both the Ft and Ds extracellular domains (Villano and Katz, 1995, 
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Ishikawa et al., 2008, Brittle et al., 2010, Simon et al., 2010). Fj and Ds are expressed in 

opposite proximal-distal gradients, generating a gradient of active Ds-bound Ft, 

whereby each cell has more ligand bound Ft on its proximal side (Ma et al., 2003, Yang 

et al., 2002). Ft signalling requires the atypical myosin Dachs, which accumulates at the 

membrane when Ft is inactive (Mao et al., 2006). Dachs requires the 

palmitoyltransferase Approximated (App) for its membrane localisation (Matakatsu and 

Blair, 2008). Discs overgrown (Dco) phosphorylates ligand bound Ft in its intracellular 

domain and is required to polarise Dachs (Sopko et al., 2009, Feng and Irvine, 2009, 

Cho and Irvine, 2004). 

 

Ft activity influences the Hpo pathway partly by regulating the apical localisation and 

expression of Ex and also by preventing Dachs-dependent Wts degradation (Cho and 

Irvine, 2004, Bennett and Harvey, 2006, Willecke et al., 2006, Silva et al., 2006, Tyler 

and Baker, 2007). Fat mutants exhibit mild overgrowth reminiscent of Ex mutants. The 

mechanisms surrounding Ft mediated Hpo pathway regulation are relatively unclear and 

represent a topic of significant debate in the field. In the wing, Fj and Ds expression 

patterns are influenced by wing patterning signals (morphogen gradients) including Dpp, 

Wg and Notch. The “steepness hypothesis” suggests that the Ft-Ds module senses these 

morphogen gradients and translates them into growth regulation via the Hpo pathway 

(Lawrence et al., 2008). Evidence in favour of this proposal includes the fact that 

disruption of Dpp (BMP/TGFβ orthologue) alters Fj and Ds expression, while uniform 

Fj and Ds expression leads to reduced growth (Rogulja et al., 2008, Willecke et al., 

2008). An alternative view is that Ft signalling and the Dpp gradient act in a 

complementary but independent manner to regulate wing growth (Schwank et al., 2011). 

 

The relationship between Ft, Dpp and Hpo is somewhat complex. Not only is Ft-Yki 

possibly acting as a growth control effector of Dpp signalling (as described above) but 

the Hpo and Dpp/BMP/TGFβ pathways are also seemingly intertwined at the level of 

downstream TFs. YAP/Yki interact with the BMP/Dpp TF effector Smad1/Mad to 

transcriptionally regulate common target genes, while YAP/TAZ can also regulate 

Smad2/3 nuclear localisation (Alarcon et al., 2009, Oh and Irvine, 2011, Varelas et al., 

2010).  
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Mammals possess four Fat-related atypical cadherins (Fat 1-4). Fat4 is the orthologue of 

Drosophila Fat. There are also two Ds (Dchs1-2) and one Fj homologue (Fjx1) in 

mammals (Ashery-Padan et al., 1999, Nakajima et al., 2001, Rock et al., 2005, Tanoue 

and Takeichi, 2005). A connection between mammalian Fat- or Ds-related cadherins 

and core members of the Hpo pathway is yet to be elucidated.  

 

1.2.3.3 The Kibra-Expanded-Merlin (KEM) complex 

The Kibra-Expanded-Merlin (KEM) complex, comprised of three proteins found 

predominantly at the sub-apical region of epithelial cells, also regulates Hpo pathway 

activity. Ex and Mer are partially redundant FERM (4.1/ezrin/radixin/moesin) domain 

proteins, with loss of either protein leading to overproliferation (Hamaratoglu et al., 

2006, LaJeunesse et al., 1998, Boedigheimer et al., 1997). FERM domain proteins are 

believed to act as membrane-cytoskeleton linkers. Ex and Mer can both bind to the WW 

domain containing protein Kibra (Baumgartner et al., 2010, Genevet et al., 2010, Yu et 

al., 2010). Members of the complex can potentiate each other’s binding, with Kibra 

promoting Mer-Ex interaction and Ex promoting Kibra-Mer binding (Genevet et al., 

2010, Yu et al., 2010). 

 

The KEM complex is believed to induce Hpo pathway activity by recruiting core 

pathway members to the apical membrane for activation. Multiple interactions exist 

between the KEM complex and core pathway members, including Mer binding to Sav, 

Kibra binding to Hpo, Sav, Wts and Yki, and Ex interacting with both Hpo and Yki (Yu 

et al., 2010, Genevet et al., 2010, Baumgartner et al., 2010, Badouel et al., 2009, Oh et 

al., 2009a, McCartney et al., 2000). These various interactions possibly enable the 

integration of multiple upstream inputs or perhaps safeguard against the loss of a single 

component. KEM complex members can partially compensate for one another’s loss 

(Yu et al., 2010, Hamaratoglu et al., 2006, Baumgartner et al., 2010, Genevet et al., 

2010). The mechanisms controlling KEM activation remain unclear and may include 

responding to a receptor or physical property of the cell.  In Drosophila S2 cells, Kibra 

affects Wts activity but does not disrupt Wts-Yki binding, suggesting that Wts and Yki 
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might bind before being recruited to the KEM complex for kinase activation (Genevet 

et al., 2010). Interestingly, Kibra itself is also known to bind to Yki (Genevet and Tapon, 

2011). 

 

Ex also participates in Yki inhibition, sequestering Yki out of the nucleus. This mode of 

regulation is also conserved in mammals where Angiomotin (AMOT) and AMOT-like 

proteins sequester YAP/TAZ in the cytoplasm (Zhao et al., 2011, Wang et al., 2011, 

Chan et al., 2011). AMOT seemingly behaves as the functional equivalent to Ex, 

antagonising YAP/TAZ through membrane tethering, but exhibits little sequence 

homology with Ex. The FERM domain containing FRMD6 is the mammalian protein 

most obviously related to Ex, in terms of sequence homology, but lacks the PPXY motif 

needed to bind to the YAP/TAZ WW domain. FRMD6 expression can activate 

mammalian Hpo signalling, raising the possibility that the domains and function of Ex 

have been evolutionarily split between AMOT and FRMD6 (Angus et al., 2012). 

 

The human orthologue of Kibra (KIBRA) interacts with the Mer orthologue NF2 

(Neurofibromin 2) but not FRMD6 (Yu et al., 2010). KIBRA associates with Lats1/2 in 

mammalian cells, with overexpression resulting in YAP phosphorylation (Xiao et al., 

2011). 

 

1.2.3.4 Apical-basal polarity complexes  

Apical-basal polarity divides cells into two membrane domains, which are separated by 

cell-cell junctions. The separation of these two domains is achieved by the antagonistic 

action of the polarity complexes. The apical domain is specified by the Crumbs (Crb) 

and atypical protein kinase C (aPKC) complexes, while the basolateral domain is 

regulated by the Scribble (Scrib) complex, comprised of Scrib and Discs-large (Dlg), 

and Lethal giant larvae (Lgl) modules. 

 

Crumbs links Hpo signalling with polarity 

Several studies suggest that the apical transmembrane protein Crb can regulate Hpo 

signalling (Grzeschik et al., 2010, Ling et al., 2010, Robinson et al., 2010, Chen et al., 
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2010). Crb binds to and is required for Ex apical localisation. Interestingly, both Crb 

depletion and overexpression lead to Ex mislocalisation and overproliferation 

(Grzeschik et al., 2010, Ling et al., 2010, Robinson et al., 2010, Chen et al., 2010). The 

binding of Crb not only promotes Ex apical localisation but also leads to the 

phosphorylation and eventual degradation of Ex protein. This suggests a dual role for 

Crb, promoting both Ex activity and degradation, and thus fine-tuning Hpo pathway 

activity. AMOT, the apparent functional equivalent of Ex in mammals, also associates 

with junctional components, in particular the mammalian orthologues of aPKC and Crb 

(Wells et al., 2006). 

 

The Lethal giant larvae polarity complex 

Lgl can also promote Hpo pathway activation by antagonising aPKC (Grzeschik et al., 

2010). Overexpression of aPKC or loss of Lgl leads to mislocalisation of Hpo and 

increased colocalisation with its negative regulator RASSF. The mechanism of this 

regulation remains unclear. Human KIBRA is a known aPKC substrate, suggesting that 

aPKC might reduce Hpo activation by phosphorylation of scaffold proteins, such as 

Kibra and Ex, thereby modifying their binding affinities (Buther et al., 2004). Whether 

mammalian Lgl orthologues regulate Hpo signalling is yet to be elucidated. Another 

basolateral protein, Scrib, has also been linked to Hpo signalling in flies, zebrafish and 

human cells (Chen et al., 2012, Skouloudaki et al., 2009, Cordenonsi et al., 2011). In 

mammary epithelial cells, Scrib has been proposed to inhibit TAZ by scaffolding an 

MST/LATS/TAZ complex (Cordenonsi et al., 2011). 

 

1.2.3.5 The importance of cell-cell contact and apical junctions 

In recent years, a common theme has emerged in which many of the regulators of Hpo 

pathway activity are localised apically and at cell-cell junctions, placing them in an 

optimal position to inform the cell about changes in polarity, cell density and the 

surrounding environment. It is feasible that the apical domain, and more specifically the 

AJs, acts not only as a membrane anchor for components of the pathway but also has a 

role in sensing signals from neighbouring cells. Evidence in mammals supports a role 

for the Hpo pathway in cell-contact inhibition of growth, a property commonly lost in 
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cancer cells. Alterations in Hpo pathway activity are increasingly recognised as being 

associated with cancer development. In cells cultured at high density, YAP is 

phosphorylated by Lats1/2 and restricted to the cytoplasm. Upon wounding in a dense 

cell culture, YAP resumes an active nuclear location enabling the induction of cell 

proliferation. Hence, cell-contact, density and tension-sensing lead to Hpo pathway 

induced proliferation (Ota and Sasaki, 2008, Zhao et al., 2007). Furthermore, α-catenin, 

which binds YAP at the AJs in skin cells, has also been implicated in the regulation of 

contact inhibition (Schlegelmilch et al., 2011). Likewise, in addition to its role in cell-

cell adhesion, E-cad is proposed as being a direct mediator of contact inhibition of 

proliferation through Hpo signalling (Kim et al., 2011) 

 

In flies, Echinoid (Ed), an immunoglobulin domain-containing cell adhesion molecule, 

has been proposed to link cell-cell contact to Hpo signalling (Yue et al., 2012). Ed was 

found to physically interact with and stabilize Sav at AJs. This interaction is promoted 

by cell-contact and loss of Ed leads to elevated Yki activity. 

 

1.2.3.6 F-actin and the importance of the cytoskeleton 

Accumulation of F-actin due to mutation or downregulation of either of the two sub-

units of capping protein or expression of active formin leads to Yki activation and tissue 

overgrowth (Sansores-Garcia et al., 2011, Fernandez et al., 2011). Regulation of the 

Hpo pathway by the cytoskeleton is conserved in mammals, where in response to cell 

detachment or plating on a soft substrate, Lats1/2 is activated leading to YAP/TAZ 

phosphorylation, which results in anoikis or changes in cell fate (Dupont et al., 2011, 

Wada et al., 2011, Zhao et al., 2012). In addition, YAP/TAZ have been suggested to 

sense substrate stiffness in a Lats1/2-independent manner (Dupont et al., 2011). This 

raises the possibility that the Hpo pathway is a mediator of cell shape and mechanical 

stress in the regulation of cell physiology.  Micro-environmental physical and 

mechanical cues, such as membrane stiffness, are being increasingly recognised as 

regulators of cell behaviour. Cells translate these external stimuli into intracellular 

biochemical signals via mechanotransduction. Since the rigidity of the tumour 

microenvironment has been suggested to participate in tumour growth, the ability of 
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YAP/TAZ to respond to physical forces may represent an important oncogenic 

mechanism. 

 

1.2.3.7 Lim domain proteins 

Two LIM domain-containing proteins, Ajuba (Jub) and Zyxin (Zyx), are negative 

regulators of Wts (Das Thakur et al., 2010, Rauskolb et al., 2011). Jub interacts with 

both Sav and Wts and epistasis experiments have placed its activity between Hpo and 

Wts (Das Thakur et al., 2010). Zyx, on the other hand, was identified in an RNAi screen 

and appears to function specifically in the Fat branch of the Hpo pathway (Rauskolb et 

al., 2011). Hpo signalling has been linked to contact inhibition in mammalian cells 

(Zhao et al., 2007). In vertebrates, upon cell-cell contact, Jub proteins are recruited to 

the AJs (Marie et al., 2003). It is plausible that recruitment of Jub to the AJs enhances 

Wts activation by preventing Jub from interacting with Wts and Sav. Zyx is known to 

function in linking mechanical stress to cell behaviour (Hirata et al., 2008) and may 

therefore be a mechanosensitive element of the Hpo pathway. The issue of whether the 

vertebrate homologues of Zyx and Wts associate with one another is still to be 

addressed. 

 

1.2.3.8 Tissue Specific differences in upstream regulation 

The identity and relative importance of upstream inputs differs between tissues and 

developmental timing. While mutation of core pathway members induces a strong 

phenotype in both imaginal discs and the posterior follicle cells (PFCs), loss of function 

mutations for upstream regulators induce varying phenotypes. For example, loss of Mer 

and Kibra in the PFCs induces a phenotype akin to Hpo inactivation, whereas mutation 

in wing imaginal discs produces a phenotype much weaker than that observed in Hpo 

mutant discs (Baumgartner et al., 2010, Genevet et al., 2010, Hamaratoglu et al., 2006, 

MacDougall et al., 2001, Meignin et al., 2007, Milton et al., 2010, Pellock et al., 2007, 

Polesello and Tapon, 2007, Yu et al., 2008, Yu et al., 2010). On the other hand, Fat and 

Ex mutations both cause strong effects in imaginal discs, whereas Fat appears entirely 

dispensable in the ovary and Ex mutation induces only mild effects (Hamaratoglu et al., 
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2006, Meignin et al., 2007, Milton et al., 2010, Pellock et al., 2007, Polesello and Tapon, 

2007, Yu et al., 2008, Tyler and Baker, 2007). Upstream members of the pathway can 

also act partially redundantly in different tissues at different developmental stages, 

adding yet another level of complexity to pathway regulation. The basis for these 

differences remains unclear. 

 

1.2.4 A highly conserved signalling pathway  

The Hpo pathway is highly conserved throughout evolution. All members of the core 

cassette are conserved from yeast to humans. The yeast orthologues of Hpo, Mats and 

Wts are central components of the Mitotic Exit Network in budding yeast and the 

Septation Initiation Network in fission yeast (for review see (Hergovich and Hemmings, 

2012)). Hence, Ste20 kinases regulate NDR kinase activity throughout evolution via 

similar genetic cascades. 

 

The extent of functional conservation across species is evident from the fact that human 

YAP, Lats1, Mst2 and Mob1 can all be utilised in vivo to rescue the phenotype of their 

corresponding Drosophila mutation (Tao et al., 1999, Huang et al., 2005, Lai et al., 

2005, Wu et al., 2003). The phosphorylation cascade observed in fruit flies is also 

present in mammals. Mammalian Sav (Callus et al., 2006), Lats (Chan et al., 2005) and 

Mob1 (Hirabayashi et al., 2008, Praskova et al., 2008) are all Mst substrates and Mst 

auto-phosphorylation is crucial to its activity (Figure 1.3B and Table 1.1) (Glantschnig 

et al., 2002). Sav is required for phosphorylation of Lats by Mst (Lee et al., 2008), while 

Lats itself interacts with Mob1 in order to potentiate its own kinase activity (Praskova et 

al., 2008, Hergovich et al., 2006). Depending on the cellular context, Lats1/2 

phosphorylates YAP or TAZ (Zhang et al., 2008a). Phosphorylation inhibits YAP/TAZ 

function, promoting 14-3-3 binding and nuclear exit. Loss of Mst1/2 results in YAP-

dependent proliferation, resistance to apoptosis and organ overgrowth (Dong et al., 

2007, Lee et al., 2010, Zhao et al., 2008, Zhao et al., 2007, Song et al., 2010). 

 



Chapter 1 Introduction 

 41 

1.2.5 Cross-talk with other pathways  

A wealth of connections between the Hpo pathway and other signalling pathways have 

been identified. The incorporation of various signals enables cells to integrate 

information such as nutritional state, developmental stage and position. A significant 

amount of Hpo’s growth regulatory function involves the regulation of secreted factors, 

which activate other pathways. Examples of this form of growth control include 

regulation of the Wnt ligand Wg in the proximal part of the developing wing (Cho and 

Irvine, 2004, Cho et al., 2006, Neumann and Cohen, 1996), upregulation of the Notch 

ligand Serrate to promote leg growth (Mao et al., 2006, Buckles et al., 2001) and the 

activation of the secreted ligands EGFR (Zhang et al., 2009a, Dong et al., 2011) and 

CTGF in mammalian cells (Zhao et al., 2008, Zhang et al., 2008a, Shi-Wen et al., 2008). 

YAP has been linked to a number of oncogenic pathways including TGF-β, Wnt and 

EGF (Varelas and Wrana, 2011, Varelas et al., 2008, Imajo et al., 2012, Heallen et al., 

2011, Zhang et al., 2009a). Most recently, a degree of crosstalk has been identified 

between the IIS/TOR pathway and Hpo signalling, which also appears to be conserved 

in mammalian cells (James et al., 2009, Lopez-Lago et al., 2009, Xin et al., 2011, 

Strassburger et al., 2012). 

 

1.2.6 Multiple functions of the Hpo pathway 

Hpo pathway function has been implicated in processes other than growth control. Hpo 

and Wts participate in the refinement of sensory neuron dendritic arborisations, 

demonstrating a role in terminal differentiation (Emoto et al., 2006, Parrish et al., 2007). 

The Hpo pathway has also been implicated in cell fate decisions in the developing eye 

(Mikeladze-Dvali et al., 2005, Zhang et al., 2011b) as well as in the regulation of 

maturation of the posterior follicle epithelium (Polesello and Tapon, 2007) (Meignin et 

al., 2007, Yu et al., 2008). PFCs mutant for hpo, wts or sav, exhibit defects in 

apicobasal polarity and overproliferate, leading to multi-layering of the follicular 

epithelium. This overproliferation is due to an inability to respond to Notch maturation 

signals in Hpo pathway mutant PFCs. In wing imaginal discs, in addition to growth, 

Hpo signalling also regulates the size of the apical domain (Genevet et al., 2009, 
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Hamaratoglu et al., 2009). Finally, upon exposure to ionising radiation, Hpo signalling 

is activated by the p53-dependent DNA damage checkpoint, leading to an apoptotic 

response (Colombani et al., 2006).  

 

The mammalian Hpo pathway also performs multiple functions.  Hpo mediated 

restriction of CDX2 expression to the outer cells of the mouse embryo is crucial for 

lineage specification of the trophectoderm and inner cell mass (Nishioka et al., 2009), 

again demonstrating a role for the pathway in cell fate decisions. Lats-dependent 

inhibition of the cyclin-dependent kinase cdc2 and potential roles in centrosome 

duplication and the mitotic exit network have also implicated the pathway in cell cycle 

progression (Turenchalk et al., 1999, Tao et al., 1999) Bothos et al., 2005, Hergovich et 

al., 2009, Toji et al., 2004, Oh et al., 2010). 

 

Hence, depending on the context, Hpo signalling can have different functions including 

growth suppression, mediating stress-induced apoptosis and regulation of cell-fate 

decisions. Two of the main mechanisms enabling these different outcomes are the fact 

that Yki and YAP/TAZ have multiple binding partners and transcriptional targets (see 

section 1.2.2.4). 

 

1.2.7 Hpo signalling in stem cells and progenitor populations  

Alongside differentiated cell types, organs also harbour stem or progenitor cells (see 

section 1.3). Initial studies suggested that Hpo pathway function was restricted to the 

regulation of proliferation and apoptosis but recent evidence has implicated the Hpo 

pathway in the regulation of tissue-specific SC compartments. As discussed below, in 

several biological contexts, the Hpo pathway limits the expansion of tissue specific 

progenitor cells, providing a link between SC activity and the control of tissue size. One 

of the earliest findings in this area was that intestinal specific YAP expression or Mst1/2 

knockout leads to expansion of the SC compartment (Camargo et al., 2007, Zhou et al., 

2011). An in-depth discussion of the role of the Hpo pathway in the mammalian 

intestine can be found in Chapter 6.  
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1.2.7.1 Embryonic stem (ES) cells 

Hpo signalling modulation has been linked to maintenance of pluripotency in 

mammalian ES cells in culture (Lian et al., 2010, Varelas et al., 2008). YAP and 

TEAD2 are expressed at high levels in ES cells (Ramalho-Santos et al., 2002). 

Modulation of TEAD4, Lats2 and YAP expression has been linked to cell fate 

determination in early mouse embryos (Nishioka et al., 2009). Increased YAP 

expression in cultured ES cells increases pluripotency, while downregulation is 

associated with differentiation (Lian et al., 2010). YAP levels are reduced during ES 

cell differentiation and phosphorylation of S127 is increased, leading to reduced nuclear 

YAP. The Hpo pathway interplays with several important pathways linked to ES cell 

pluripotency, such as TGFβ/BMP signalling or LIF pathways, both in culture and in 

vivo (Varelas et al., 2010, Varelas et al., 2008, Alarcon et al., 2009, Tamm et al., 2011). 

YAP/TAZ are believed to maintain pluripotency by promoting the transcriptional 

activity of these pathways and inducing the expression of stemness genes.  

 

1.2.7.2 Liver 

Knockdown of Mst1/2, Sav1 or Mer in the liver, or YAP overexpression, leads to an 

increase in liver size (Camargo et al., 2007, Zhang et al., 2010, Benhamouche et al., 

2010, Lee et al., 2010, Lu et al., 2010, Song et al., 2010, Zhou et al., 2009). Hpo 

inactivation results in an increase in the number of small cells with liver SC features, 

known as oval cells (OCs). One of the main drawbacks of these studies is that, in all 

cases, where an increase in OC numbers was observed, Hpo signalling had been 

genetically manipulated in the entire organ. As a result, it is unclear whether OC 

expansion is due to cell-autonomous effects in the OC population or non cell-

autonomous effects triggered in the hepatocyte lineage. In order to truly elucidate Hpo 

pathway function in the various liver cell types, cell-specific genetic manipulation is 

required. The data to date suggest that the Hpo pathway is required to restrict OC 

expansion, therefore maintaining quiescence of the liver SC pool and restricting the 

number of adult hepatocytes. The role of the Hpo pathway in liver repair and 

interactions with other signalling pathways are still to be investigated. 
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1.2.7.3 Skin 

Hpo pathway function has been associated with the continuous regeneration cycles, 

which occur in the skin. Embryos null for Sav1 exhibit a thickening of the epidermal 

layer, which coincides with increased proliferation, progenitor expansion, reduced 

apoptosis and an absence of differentiation (Lee et al., 2008). Equally, skin progenitor-

specific expression of YAP led to progenitor amplification and reduced differentiation, 

while YAP deletion impairs formation of the epidermis (Zhang et al., 2011a, 

Schlegelmilch et al., 2011). Skin-specific deletion of Mst1/2 surprisingly has no effect 

in mice up to five months, suggesting that the Hpo pathway can display tissue/context 

specific effects (Schlegelmilch et al., 2011). A critical upstream negative regulator of 

YAP in the context of the skin is the AJ component and tumour suppressor α-catenin 

(Schlegelmilch et al., 2011, Silvis et al., 2011). Evidence in the skin therefore supports 

the concept that AJs can act as molecular sensors of cell density and positioning. 

Increased cellular density leads to a higher number of AJs, which limits SC expansion 

by inactivating YAP. Lower cell numbers, such as in the growing embryo or upon 

wounding, would increase YAP levels in turn inducing proliferation. The role of the 

Hpo pathway in regeneration will be addressed in Chapter 6. 

 

1.2.7.4 Nervous system 

Neural progenitors generate the mature cells of the CNS. YAP expression colocalises 

with Sox-2, a marker for neural progenitor cells, in the progenitor zone of mouse, frog 

and chick neural tubes (Cao et al., 2008, Gee et al., 2011). Loss of either Mst1/2 or 

Lats1/2 results in progenitor expansion, partially due to upregulation of cell-cycle re-

entry and stemness genes along with the suppression of pro-differentiation genes (Cao 

et al., 2008). Conversely, YAP LOF leads to cell death and precocious neural 

differentiation (Cao et al., 2008). YAP expression is also high in cerebellar granule 

neural precursor cells (CGNPs), which are found in increased number in 

medulloblastomas (Fernandez-L et al., 2009). Shh induces YAP nuclear localisation, 

thereby stimulating YAP-driven proliferation of the CGNP population. YAP thus 
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induces proliferation of neural progenitors, possibly by serving as a link between 

different pathways. 

 

1.2.7.5 Heart 

Cardiac-specific YAP overexpression or deletion of the upstream kinases generates 

embryos with increased proliferation and cardiomyocyte number (Oh et al., 2009b, 

Matsui et al., 2008), while YAP deletion results in myocardial hypoplasia (Xin et al., 

2011). Genetic studies have demonstrated that YAP interacts with β-catenin to promote 

Wnt signalling (see section 1.4.4.1), which is itself a pro-proliferation and stemness 

signal in the heart (Heallen et al., 2011). Other studies have shown that YAP can 

activate the insulin-like growth factor signalling (IGF) pathway, which leads to 

inactivation of GSK-3β (Glycogen synthase kinase 3β), thereby blocking β− 

catenin  degradation and promoting cardiomyocyte proliferation (Xin et al., 2011, 

Shiojima and Walsh, 2006). YAP therefore promotes cardiomyocyte proliferation by 

both indirectly promoting Wnt signalling via the IGF pathway and directly binding to β-

catenin. 

 

1.2.7.6 The Hpo pathway can regulate SC proliferation, self-renewal and 

differentiation 

In summary, Hpo activation promotes SC quiescence and differentiation at the expense 

of proliferation in a number of embryonic and adult tissues. Interestingly, YAP 

overexpression has no effect on hematopoietic SC proliferation (Jansson and Larsson, 

2012). In order to uncover whether Hpo pathway activity can be modulated with a view 

to increasing the regenerative potential of terminally differentiated organs, a better 

understanding of the interplay between Hpo activity and other signalling pathways is 

required, as well as an improved understanding of the molecular mechanisms involved. 

Therapies involving the manipulation of the Hpo pathway will have to overcome the 

challenge represented by the risk of malignant transformation associated with prolonged 

YAP expression. Amplification of the YAP1 gene is found in several cancer types, 

including hepatocellular carcinoma, breast cancer, oral squamous cell carcinomas, 
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medulloblastomas, and oesophageal squamous cell carcinomas (Overholtzer et al., 2006, 

Fernandez-L et al., 2009, Snijders et al., 2005, Zender et al., 2006, Muramatsu et al., 

2011). Likewise, given the sensitivity of YAP/Yki to the mechanical environment, 

studies investigating the manipulation of the Hpo pathway in a SC therapy-oriented 

manner will require the generation of models, which truly recapitulate the physical 

properties of tissue-specific niches. 

 

1.3 Stem cells  

1.3.1 Definition of a stem cell 

Adult stem cells (SCs) have two essential characteristics. Firstly, they ensure their 

continued existence by generating more SCs (self-renewal). Secondly, they are able to 

produce all the differentiated cell lineages of their respective tissue (tissue-renewal).  

 

SCs are present in both the embryo and adult. Adult SCs are said to be multipotent, with 

the range of cell types they can give rise to being limited by the tissue in which they are 

located. These SCs play a vital role in tissue homeostasis, serving as a reservoir for cell 

replacement following cell death or injury. Tissue homeostasis is the process by which 

tissues maintain a relatively constant internal environment, regardless of conditions in 

the external environment. 

 

1.3.2 The stem cell niche  

SCs are often located in specific tissue microenvironments, known as niches. A SC 

niche can be defined as ‘a specific location in a tissue where SCs can reside for an 

indefinite period of time and produce progeny cells whilst self-renewing’ (Ohlstein et 

al., 2004). Niches have been identified in numerous tissues. Examples of tissues 

harbouring SC niches include the germline, skin, hair follicle, mammary gland, central 

and peripheral nervous systems and the digestive and respiratory tracts (Wagers, 2012). 

Some SC niches rely on surrounding non-epithelial cells (stromal), while others involve 

contact with the basement membrane (Morrison and Spradling, 2008) or neighbouring 
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epithelial cells (Sato et al., 2011). The Drosophila ovary provided the first 

characterisation of a SC niche at both a cellular and functional level (Xie and Spradling, 

2000). Both SC intrinsic factors and signals from the surrounding microenvironment 

regulate SC activity and niche size. 

 

1.3.3 Stem cell division and dynamics 

SCs can undergo both symmetric and asymmetric divisions. Symmetric divisions 

produce two daughter cells of the same fate, generally two SCs or two progenitor cells. 

Asymmetric divisions generate one SC and one less primitive daughter cell and are thus 

a conserved mechanism for establishing different cell fates (Horvitz and Herskowitz, 

1992). The majority of progress in our understanding of asymmetric division has come 

from studies in the Drosophila neuroblast (see section 1.3.4.3) (as reviewed in 

(Knoblich, 2010)). Asymmetric divisions ensure that the SC pool is maintained 

alongside the generation of differentiated cells. Long-term homeostasis can be achieved 

either by asymmetric cell division or population asymmetry (Watt and Hogan, 2000). 

Studies in systems including both the mammalian intestine and hair follicle have 

revealed that SCs can follow stochastic behavioural patterns, in which regular SC loss is 

compensated for by proliferation of neighbouring SCs (population asymmetry). This 

process is referred to as neutral drift and results in progressive expansion of some 

clones, while others become extinct (Lopez-Garcia et al., 2010, Snippert et al., 2010, 

Zhang et al., 2009b, Klein et al., 2010, Clayton et al., 2007). 

 

1.3.4 Stem cell populations in Drosophila 

SC niches function via common mechanisms. Using both the male and female 

Drosophila germline niches as a starting point, I will introduce some of the key 

concepts in SC regulation.  I will also briefly discuss other known Drosophila SC 

populations. A detailed description of current knowledge surrounding the murine 

intestinal SC population can be found in section 1.4.3. 
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1.3.4.1 Drosophila female germline  

The Drosophila ovaries consist of 16-18 ovarioles, each of which have a germline SC 

(GSC) niche at the tip, supporting two to three GSCs throughout pupal and adult life. 

Three types of somatic cell establish the GSC niche. The Cap cells ensure that the GSCs 

remain in contact with the niche via AJs (Song and Xie, 2002), adherence to the niche 

being a common feature of SC regulation. Quiescent escort cells are intermingled with 

the GSCs. The third somatic niche cell type is the terminal filament cell, which 

produces Upd and related cytokines. Upd secretion activates Jak/Stat signalling in the 

cap and escort cells leading to BMP activation (Decotto and Spradling, 2005, Wang et 

al., 2008, Lopez-Onieva et al., 2008). Regulation by local signalling is another common 

feature of SC niches. In the case of female GSCs, BMP signalling is sufficient for GSC 

self-renewal. BMP ligand expression by the cap cells leads to GSC BMP activity, which 

inhibits expression of the master differentiation gene bag-of-marbles (bam) (Chen and 

McKearin, 2003, Song et al., 2004). 

 

GSC divisions are asymmetric, giving rise to GSC daughter cells called cystoblasts. 

Asymmetry is achieved not through any inherent difference between daughter cells but 

because only one proximal daughter retains adhesive contact with the SC niche, while 

the more distal daughter is displaced activating bam transcription and differentiation 

(Chen and McKearin, 2003). Cystoblasts go on to form cystocytes, which eventually 

give rise to the oocyte and supporting nurse cells. 

 

The anteriorly localised germarium is also home to two somatic follicle SCs (FSCs), 

whose progeny surround the female germline (oocyte and nurse cells). FSC 

maintenance requires Hh, Wg and Dpp signalling, with adhesion through E.cadherin 

and β-catenin again crucial to niche function (Song and Xie, 2002). 

 

1.3.4.2 Drosophila male germline 

The testis is home to a large GSC niche regulating sperm production. 10-15 support 

cells form the hub, which is in contact with 7-12 GSCs. Each GSC is surrounded by two 
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somatic cyst SCs (CySCs), which also play a role in GSC maintenance. GSCs and 

CySCs undergo asymmetric divisions. GSCs give rise to gonialblasts, eventually 

leading to sperm production, while CySCs produce cyst cells, which exit the cell cycle, 

increase in size and encapsulate the developing spermatogonia and spermocytes. 

 

Similar to the case in the female germline, hub cells secrete Upd ligands, which trigger 

Jak/Stat activity in both the GSCs and CySCs. Stat is required for both CySC self-

renewal and GSC adhesion to the hub (Tulina and Matunis, 2001, Leatherman and 

Dinardo, 2008, Leatherman and Dinardo, 2010). GSC self-renewal is dependent upon 

BMP signalling from the somatic cells, as is the case in females, which inhibits bam 

transcription (McKearin and Ohlstein, 1995). SCs not only employ local signals in their 

regulation but are also subject to regulation by systemic factors. Maintenance of GSCs 

in both male and female Drosophila is directly affected by insulin signalling (IIS) 

originating from insulin-producing cells in the CNS (LaFever and Drummond-Barbosa, 

2005, Ueishi et al., 2009, Wang and Jones, 2011). 

 

GSCs divide asymmetrically via oriented divisions. In males, the division plane is 

oriented perpendicular to the hub (Yamashita et al., 2003). In females the GSC spindle 

is oriented perpendicular to the cap cells. One daughter cell therefore maintains contact 

with the niche and the other is displaced. Epigenetic mechanisms are also utilised in SC 

regulation. GSCs are subject to regulation of chromatin structure and transcriptional 

activity by chromatin remodellers. In females, systemic secretion of the steroid 

hormone, ecdysone, interacts with chromatin remodellers in order to positively regulate 

BMP signalling (Ables and Drummond-Barbosa, 2010). 

 

1.3.4.3 Drosophila neuroblast 

The neurons and glia of the Drosophila central nervous system (CNS) are generated by 

neural SC-like progenitors, termed neuroblasts. These are specified from the 

neuroectoderm via a process involving Notch signalling and proneural genes during 

embryogenesis. Once specified, neuroblasts delaminate before generating intermediate 

progenitor cells called ganglion mother cells (GMCs) via asymmetric divisions. 
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Differential cell fate is achieved via asymmetric segregation of fate determinants. The 

self-renewed neuroblast inherits apical protein complexes, while the GMC inherits basal 

protein complexes, which contain fate determinants such as the homeodomain protein 

Prospero (Knoblich et al., 1995, Spana and Doe, 1995). The GMC then divides a further 

time giving rise to neurons or glia. Similarly, in the Drosophila peripheral nervous 

system (PNS), sensory organ precursor (SOP) cells undergo several rounds of 

asymmetric division. Numb, a negative regulator of Notch signalling localises basally to 

the cortical crescent during both neuroblast and SOP mitosis (Uemura et al., 1989, Rhyu 

et al., 1994). 

 

1.3.4.4 Drosophila hindgut 

The identification of an adult ISC population in the Drosophila midgut (see section 1.5) 

(Ohlstein and Spradling, 2006, Micchelli and Perrimon, 2006), was followed by a study 

reporting that the adult hindgut also harbours an actively dividing ISC population 

(Takashima et al., 2008). Takashima and colleagues claim that a “hindgut proliferation 

zone” replaces spent cells. Wg signalling in the ISCs reportedly leads to proliferation, 

while Hh is required for differentiation, raising exciting parallels to the mammalian 

intestine (van den Brink et al., 2004, Pinto et al., 2003). Work published subsequently 

by Fox and Spradling argues against the existence of active hindgut ISCs (Fox and 

Spradling, 2009). Their study suggests that although rarely dividing cells do exist, they 

only divide when adjacent to dying cells, suggesting the presence of a quiescent hindgut 

ISC population. Interestingly, a relatively quiescent ISC population has also been 

shown to divide in response to intestinal stress in the mammalian intestine (see section 

1.4.3) (Yan et al., 2012).  

 

1.3.4.5 Drosophila malpighian tubules  

Drosophila have two pairs of malpighian tubules, which are functionally equivalent to 

the mammalian kidney. Multipotent renal and nephric SCs (RNSCs) identified in the 

MTs provide a further model system in which to study adult SCs (Singh et al., 2007). 

Autocrine Jak/Stat signalling, originating from the RNSCs themselves, regulates RNSC 
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self-renewal, seemingly independently of any external niche (Singh et al., 2007). Sav 

LOF in the RNSCs results in tumour formation via oncogenic Ras activation, 

suggesting a possible role for the Hpo pathway (Zeng et al., 2010). Most recently, work 

from the same lab, again utilising clonal analysis, identified a SC pool regulated by 

Jak/Stat signalling at the foregut/midgut junction, which they termed gastric stem cells 

(GaSCs) (Singh et al., 2011). A quiescent SC population is also believed to reside in the 

midgut copper cell region (Strand and Micchelli, 2011). 

 

1.3.5 Stem cells and ageing  

Tissue homeostasis and regenerative capacity decline with age (reviewed in (Jones and 

Rando, 2011)).  Ageing is not solely due to SC dysfunction but also related to local and 

systemic changes. It is hoped that developing approaches to delay, prevent or even 

reverse SC ageing, will yield improved results in the treatment of a number of age-

related diseases. Likewise, understanding the mechanisms, which regulate ageing is 

vital to regenerative medicine. 

 

Several factors reduce SC function and number in ageing organisms. Firstly, there is a 

failure of self-renewal in aged SCs. In flies, for example, spermatogenesis and 

oogenesis are decreased with age resulting from the presence of fewer GSCs and a 

reduced ability to self-renew (Boyle et al., 2007, Pan et al., 2007, Wallenfang et al., 

2006). These changes coincide with a reduction in the number of self-renewal factors 

and cell-cell adhesion molecules being expressed by the supporting niche. Dietary 

restriction is known to extend lifespan via effects on both IIS and TOR signalling 

(Clancy et al., 2002, Kenyon, 2001, Bjedov et al., 2010). Dilps are among the systemic 

factors known to affect GSC proliferation and maintenance in fruit flies (LaFever and 

Drummond-Barbosa, 2005, Ueishi et al., 2009, Wang and Jones, 2011). Reduced IIS 

has been documented in the ovaries of ageing fruit flies (Hsu and Drummond-Barbosa, 

2009).  

 

Cell-intrinsic changes such as genomic instability, changes in transcriptional/epigenetic 

regulators and changes in DNA damage responses also affect aged SC function. The 
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relative contribution of increased cellular senescence and apoptosis to tissue ageing is 

less clear. Senescence refers to irreversible cell cycle arrest, which can result in the 

secretion of factors, which might have negative effects on neighbouring cells (Campisi, 

2005). 

 

Ageing tissues not only demonstrate defects in SC self-renewal but progenitor 

differentiation. This can range from skewed fate distributions, to the generation of 

abnormal cell fates. One of the best examples of this is in the ageing Drosophila midgut 

(see section 1.5.8.1), where an accumulation of mis-differentiated daughter cells 

expressing both SC and differentiated cell markers coincides with a loss of homeostasis 

(Choi et al., 2008, Biteau et al., 2008, Park et al., 2009).  

 

1.3.6 Cancer stem cells 

The majority of tumours are monoclonal in origin (Vogelstein et al., 1985, Fialkow, 

1976). Thus, cells of origin must be able to generate the various cell types, which 

comprise the tumour. The cancer stem cell theory postulates that tumours are generated 

and maintained by a small subset of cells, which are able to self-renew generating the 

rest of the tumour population, these being termed cancer stem cells (as reviewed in 

(Reya et al., 2001)). This theory has existed for over 150 years. Despite growing 

support, it still remains possible that genetic changes could enable a differentiated cell 

to gain tumour-initiating properties. Colonic SCs, for example, can divide 

symmetrically or asymmetrically. The progeny of one SC will go on to dominate the 

niche and ultimately the entire crypt (monoclonal conversion), facilitating the spread of 

mutations within a crypt. Colorectal cancer (CRC) develops when a single cell is mutant 

for APC (Adenomatous polyposis coli), whether this initiating mutation has to occur in 

a SC remains unclear (van der Flier and Clevers, 2008).  

 

1.4 The mammalian intestine  

The mammalian digestive tract begins with food passing down the oesophagus to the 

stomach. The gastrointestinal (GI) tract then divides into the nutrient absorbing small 



Chapter 1 Introduction 

 53 

intestine followed by the large intestine (or colon) where further nutrient, water and 

electrolyte absorption occurs. The absorption and processing of nutrients is performed 

by the intestinal epithelium, termed mucosa.  

 

1.4.1 Organisation of the intestinal epithelium 

The small intestinal epithelium is composed of crypts and villi (Figure 1.4A). The 

crypts of Lieberkühn are a result of epithelial invaginations into the gut mucosa 

(Crosnier et al., 2006). Cell proliferation occurs in the crypts, while the villi extend into 

the intestinal lumen and are lined by a layer of columnar cells. On the basal side of the 

epithelium is the basement membrane (BM), a collagenous extra-cellular matrix 

(Sengupta and MacDonald, 2007). The space between the BM and outer musculature is 

divided into three layers: a dense layer of connective tissue termed the submucosa, an 

additional muscle layer called the muscularis mucosae and the lamina propria. The 

lamina propria contains connective tissue, lymph nodes (termed Peyer’s patches), 

immune cells, blood vessels and myofibroblasts. Cellular organisation in the colon is 

essentially similar to the small intestine except for the absence of villi and Paneth cells 

(Scoville et al., 2008).  

 

The adult posterior midgut, on which my study is focussed, is the Drosophila functional 

equivalent to the small intestine. In this section, I will therefore focus mainly on the 

small intestine. 
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Figure 1.4: Organisation of the mammalian small intestine 

(A) Organisation of the small intestine and reported ISC markers. Epithelial-derived Hh 
and Wnt ligands trigger stromal BMP production, which signals back to the epithelium 
to restrict proliferation. Lrig1 dampens EGF triggered SC expansion (Wong et al., 2012, 
Powell et al., 2012). (B) Cell lineages of the small intestine. (C-D) Role of Wnt and 
Notch signalling pathways adapted from (Radtke and Clevers, 2005). (C) Wnt-
responsive cells have a receptor complex consisting of a frizzled seven-transmembrane 
receptor (Fz) and Lrp5 or Lrp6. In the absence of secreted Wnt factor, the destruction 
complex (APC, axin, and the kinases CK1 and GSK3) induces degradation of β-catenin. 
Tcf is bound by co-repressors, such as Groucho, leading to Wnt target gene repression. 
Receptor activation blocks the destruction complex allowing β-catenin to bind to 
nuclear Tcf and activate target gene transcription. (D) Cell bound Jagged or Delta 
(Notch ligands) bind the Notch receptor leading to sequential proteolytic steps. This 
results in release of the NICD, which travels to the nucleus to complex with the TF CSL 
thereby activating target gene transcription.  



Chapter 1 Introduction 

 55 

 

1.4.2 Epithelial renewal  

Effective tissue homeostasis requires a fine balance between the removal of dead cells 

and production of new ones.  The GI tract is dependent on constant self-renewal, as 

ingested food, pathogens and toxins can damage the epithelium. The entire population 

of differentiated intestinal cells is replaced every few days, meaning that the intestinal 

epithelium renews itself more rapidly than any other tissue in the vertebrate body. Adult 

ISCs give rise to all the mature cell types of the intestinal epithelium and any imbalance 

in this process can lead to diseases, such as cancer (Radtke and Clevers, 2005). In the 

adult mammalian small intestine, the ISC population is located near the base of the 

crypts of Lieberkühn.  Each crypt gives rise to approximately 300 cells per day 

(Marshman et al., 2002).  This process is supported by four to six ISCs per crypt 

(Bjerknes and Cheng, 1999), whose progeny undergo transit-amplifying divisions as 

they migrate upwards (Figure 1.4A). The transit-amplifying cells (TA cells) have 

limited self-renewal capacity, dividing three to four times before their offspring become 

the differentiated cells, which occupy the villi. Upon reaching the villus tips, cells 

undergo apoptosis and are shed into the lumen (Figure 1.4A) (Heath, 1996). 

 

The differentiated intestinal cells can be divided into two main subgroups: the 

absorptive enterocyte (EC) lineage and the secretory lineage (Figure 1.4B) (Radtke and 

Clevers, 2005). The role of the absorptive cells is nutrient absorption and hydrolase 

secretion. The secretory cell lineage can be divided into three cell-types. Goblet cells 

secrete protective mucins, Enteroendocrine cells secrete hormones such as serotonin, 

substance P and secretin, and the Paneth cells, located at the bottom of the crypt, secrete 

antimicrobial agents. 

 

1.4.3 Adult intestinal stem cells 

The presence of a SC population in the adult crypts was first proven in experiments 

tracking the inheritance patterns of genetic marks randomly introduced to single crypt 

cells via somatic mutation (Bjerknes and Cheng, 1999, Bjerknes and Cheng, 2002). 
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Clones comprising marked cells of all intestinal lineages were generated, confirming 

that the original mutation had been induced in a single multipotent SC (Barker et al., 

2010). These early experiments did not however uncover the identity of the ISCs, since 

the mutations were induced at random. 

 

A number of assays have been utilised in the identification of SC populations and 

markers. Approaches include label retention, in vitro culture, transplantation and in vivo 

lineage tracing (as reviewed in (Snippert and Clevers, 2011)). Culture and 

transplantation strategies focus on stem cell potential, whereas lineage tracing measures 

the actual “stemness” of cells in vivo (Snippert and Clevers, 2011). Key to the use of 

lineage tracing strategies is the genetic marking of SCs, enabling the tracing of daughter 

populations. Some SC markers are still being proposed based on position within the 

crypt alone, indicating a need for further improvement in in vivo SC identification 

techniques (Barker et al., 2010). 

 

Two models of SC identity have dominated the ISC field. The +4 model, developed 

following early cell tracking experiments, suggests that a common cell origin exists at 

position +4 (Figure 1.4A) (Cairnie et al., 1965). The SC zone model arose in the 1970s 

when immature cycling cells, known as crypt base columnar cells (CBCs), were shown 

to be located between the Paneth cells (Cheng and Leblond, 1974). SC markers have 

been proposed for both CBCs and +4 SCs (Barker et al., 2010). The most reliable +4 

marker to date is Bmi-1, a component of the Polycomb transcriptional repressor 

complex (Sangiorgi and Capecchi, 2008). Lineage tracing experiments identified the 

Wnt target gene, Leucine-rich G protein-coupled receptor 5 (Lgr5) as a CBC marker 

(Barker et al., 2007, Barker and Clevers, 2010). Isolated Lgr5+ cells are capable of 

generating self-renewing intestinal organoids in vitro (Sato et al., 2009). The fact that 

Paneth cell ablation leads to a loss of the Lgr5+ SC compartment (Sato et al., 2011) and 

that isolated Lgr5+ cells can generate intestinal organoids in the absence of 

mesenchyme components, suggests that Paneth cell secretions could constitute the 

Lgr5+ niche (Sato et al., 2011). Work from Kim and colleagues, however argues against 

this, claiming that Paneth cells are also dispensable to CBC function (Kim et al., 2012). 
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Traditionally adult SCs were said to divide slowly in order to avoid exhaustion of the 

SC pool (Orford and Scadden, 2008). Recently, the notion that a rapidly dividing SC 

population might coexist with a more quiescent ‘reserve’ SC population has evolved (Li 

and Clevers, 2010). Bmi1 expressing +4 cells and Lgr5+ CBCs can both regenerate the 

intestinal epithelium (Barker et al., 2007, Sangiorgi and Capecchi, 2008). A hierarchy 

exists between these two lineages, whereby Lgr5+ CBCs are in fact dispensable for 

villus homeostasis. Bmi1+ cells represent a more quiescent SC population capable of 

replenishing the Lgr5 population when under high regenerative demand (Tian et al., 

2011, Yan et al., 2012). 

 

1.4.4 Key signalling pathways controlling intestinal crypt homeostasis 

Studies in mice have provided insight into the signalling pathways controlling various 

aspects of intestinal development and homeostasis (Scoville et al., 2008). The gut 

mesenchyme tissue provides some of these signals. A number of pathways including 

Notch, BMP, Wnt and JNK play key roles (Sancho et al., 2004, Sancho et al., 2009).  

1.4.4.1 Wnt 

Wnt genes encode secreted molecules. The three Wnt ligands responsible for canonical 

Wnt signalling in the intestine are Wnts 3, 6 and 9B, all of which are only expressed in 

crypt epithelial cells (Gregorieff et al., 2005).  β-catenin (Armadillo in flies) is a key 

molecule in the Wnt cascade. When the pathway is inactive, the scaffolding proteins 

APC and axin bind to β-catenin, targeting it for proteasomal degradation (Figure 1.4C). 

Upon Wnt ligand binding, β-catenin accumulates and binds to nuclear DNA binding 

proteins of the TCF/LEF family (Giles et al., 2003). Mutations in the APC tumour 

suppressor gene are associated with a large number of CRCs, establishing the Wnt 

pathway as a key regulator of SC and TA cell proliferation (Bienz and Clevers, 2000, 

Nakamura et al., 2007). Wnt signalling maintains crypt progenitor compartments and is 

expressed at higher levels in the ISCs compared to the TA cells (Figure 1.4A) (Fevr et 

al., 2007). 
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1.4.4.2 Notch  

Notch signalling regulates fate decisions and differentiation processes in various 

contexts, including the intestine. Upon ligand binding (Delta or Jagged in mammals) 

Notch proteins are cleaved by γ-secretase allowing the Notch intracellular domain 

(NICD) to translocate to the nucleus, resulting in an active transcriptional complex with 

CSL (RBP-J in vertebrates, Su(H) in flies) (Figure 1.4D) (Artavanis-Tsakonas et al., 

1999). Notch inactivation, for example by deletion of the Notch target Hes1, expands 

the secretory cell population and reduces the proliferative compartment (van Es et al., 

2005). Notch overactivation by NICD expression inhibits secretory lineages and 

amplifies the progenitor pool (Fre et al., 2005). Hence, Notch signalling is required for 

maintaining cells in a proliferative state and for lineage specification. It is believed that 

progenitors require both Notch and Wnt signals for continued proliferation, thus a 

complicated degree of crosstalk exists between these two pathways. 

 

1.5 The adult Drosophila posterior midgut 

My PhD project utilised the adult Drosophila posterior midgut as a model system in 

which to investigate ISC biology. In this section, I will give a general overview of the 

Drosophila GI tract before focussing on the adult posterior midgut. 

 

1.5.1 Structure of the Drosophila intestinal tract 

The adult Drosophila GI tract can be divided into three sections, namely the foregut, 

midgut and hindgut, each of which has a distinct function and cell composition (Figure 

1.5) (Royet, 2011). The foregut is a tube-like structure, which connects to the saliva-

secreting salivary glands and a temporary food storage pouch called the crop. 

Absorption begins in the midgut (Edgecomb et al., 1994). The proventriculus, the 

outermost extremity of the midgut, initiates the mechanical breakdown of food. A 

further role of the proventriculus is synthesis of the peritrophic matrix. The peritrophic 

matrix is a chitin-containing membrane, which lines the midgut. In a role analogous to 

mucous secretions in the mammalian intestine, it is important for gut structure, 
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facilitates digestion and is a line of defence against bacterial infection (Kuraishi et al., 

2011).  

 

The midgut is equivalent to the mammalian small intestine. The midgut lumen exhibits 

gradients of pH. First, is the near neutral anterior midgut, followed by a short, narrow, 

strongly acidic region and then a wider, increasingly alkaline section (Dubreuil, 2004). 

Iron and copper cells are essential to maintaining acidity in the middle “stomach-like” 

region (Shanbhag and Tripathi, 2009). The midgut-hindgut boundary is home to the 

renal-like Malpighian Tubules (see section 1.3.4.5) responsible for absorbing solutes, 

water and waste from the surrounding hemolymph and releasing them into the gut as 

solid nitrogenous compounds. The hindgut absorbs water and ions before waste 

expulsion via the rectum. Neurons from the CNS innervate all three sections of the GI 

tract (Spiess et al., 2008). The stomatogastric CNS is responsible for feeding and 

transition of food into the midgut (Schoofs et al., 2009). Distinct neurons innervate 

specific gut regions regulating functions such as diuresis control and pH (Cognigni et al., 

2011). 

 

 
Figure 1.5: Structure of the Drosophila gastrointestinal tract 
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1.5.2 Development of the adult midgut  

The Drosophila midgut, like the mammalian small intestine, derives from the endoderm. 

The hindgut and foregut are ectodermal in origin. The embryonic endoderm begins as 

anterior and posterior clusters of proliferating mesenchymal cells (Micchelli, 2011). 

During embyryogenesis, the endodermal midgut precursors undergo a mesenchymal to 

epithelial transition forming the larval midgut epithelium (Tepass and Hartenstein, 

1994). Larval midgut cells increase in size by endoreplication. The larval gut ultimately 

degenerates completely and is replaced during the late larval/early pupal stages. 

 

A pool of adult midgut progenitor cells (AMPs) is responsible for generating all 

epithelial cells of the adult gut (Jiang and Edgar, 2009). During larval development, 

AMPs proliferate in two distinct phases. At first, symmetrically dividing AMPs disperse, 

before later, by mid third instar, proliferating in distinct islands and eventually fusing 

during metamorphosis to form the adult midgut. Mitogenic signalling via 

EGFR/Ras/MAPK signalling is required for AMP proliferation. The EGFR ligand Vein 

is expressed by the visceral muscle (VM), while Spitz and Keren are expressed by the 

AMPs themselves (Jiang and Edgar, 2009). Ecdysone signalling also coordinates events 

during morphogenesis and acts directly on AMPs to regulate their expansion (Micchelli 

et al., 2010). 

 

In young larvae, AMPs are identifiable as small, diploid cells, which express both 

escargot (esg+), a member of the snail/slug superfamily of TFs and a marker for adult 

ISCs (see section 1.5.4), and the Notch ligand Delta (D1) (Jiang and Edgar, 2009, 

Mathur et al., 2010, Micchelli et al., 2010). The AMP division preceding island 

formation is asymmetric, giving rise to both a D1 positive AMP and a Notch reporter 

(Su(H)Gbe-LacZ) positive peripheral cell (PC) (Mathur et al., 2010). 

 

PCs were described previously as cells extending processes, which wrap around clusters 

of AMPs, but their function was unknown. The PC acts as a cell niche, instructing the 

AMPs to self-renew, repressing their differentiation and preventing the islands from 

merging. Similar to the Drosophila ovary and testes (see section 1.3.4), the PCs prevent 

premature AMP differentiation via BMP signalling. By late third instar, 20% of the 
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AMP islands have a second PC (Mathur et al., 2010). Upon metamorphosis, PCs 

undergo apoptosis. The AMPs are thus free to differentiate and the various AMP nests 

merge to form a continuous layer, which overgrows the former larval gut. One AMP per 

island does not differentiate and presumably becomes the future adult ISC. 

 

A number of questions are yet to be addressed with regards to gut development. For 

example, what triggers the initial asymmetric AMP division and later PC apoptosis? It 

has been suggested that the AMP, which initiates island formation could be the future 

adult ISC, but this is yet to be addressed experimentally. 

 

1.5.3 Cellular organisation of the posterior midgut 

The fly midgut and mammalian intestine share considerable similarities with regards to 

tissue organisation. The midgut epithelial monolayer is composed of large, absorptive 

enterocytes (ECs) aligned basally by the BM, under which are both longitudinal and 

circular muscles (the VM) (Figure 1.6A) (Jiang and Edgar, 2009). As is the case in the 

mammalian intestine, the midgut is home to a population of basally located adult ISCs 

(Figure 1.6B-B’). Unlike the mammalian crypts, extensive folding does not occur in the 

posterior midgut. The ECs exhibit apicobasal polarity with a distinct striated border on 

their apical surface (Figure 1.6C) (Micchelli and Perrimon, 2006). Microvilli on the 

apical surface of the ECs increase the surface area facing the lumen (Shanbhag and 

Tripathi, 2009). The peritrophic membrane, which helps prevent microbes from 

accessing the midgut epithelium, is located above the actin-rich apical brush border 

(Baumann, 2001, Gartner, 1970).  

 

Interspersed with the EC monolayer are the hormone-secreting enteroendocrine (EE) 

cells (Figure 1.6A). EE cells represent around 10% of epithelial cells in the gut. All 

known EE cells express Prospero (Pros) and different EE sub-populations are 

identifiable by their expression of different peptides such as allatostatin and tachykinin 

(Ohlstein and Spradling, 2006, Yoon and Stay, 1995, Siviter et al., 2000). The 

hormones produced by EE cells are involved in a range of functions such as nutrient 

utilisation, gastric motility and feeding behaviour. 
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Figure 1.6: Organisation of the Drosophila adult posterior midgut 

(A) Diagram of the adult midgut. (B-B’) Confocal micrographs of adult posterior 
midguts demonstrating the basal location of the small esg+ ISCs. Nuclei are stained 
with DAPI (blue), esg+ cells are marked by GFP (green) and Phalloidin is in red. Scale 
bars  = 20µm. (C) Schematic outline of posterior midgut ECs illustrating the 
composition of the membrane skeleton on the various membrane domains. Blue bars 
represent septate junctions (adapted from (Baumann, 2001)). 
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1.5.4 The adult posterior midgut intestinal stem cell population 

The discovery of somatic SCs in the midgut has established Drosophila as a model in 

which to study SC-mediated tissue homeostasis. The Spradling and Perrimon groups 

first described an actively proliferating adult midgut ISC population in 2006 (Micchelli 

and Perrimon, 2006, Ohlstein and Spradling, 2006). Focussing on the posterior midgut 

due to its cellular simplicity and using genetic mosaic analysis, both groups carried out 

lineage tracing experiments showing that the differentiated cells of the midgut arise 

from a common lineage. The intestinal epithelium includes both large polyploid nuclei 

and small, basally located diploid nuclei (Figure 1.6B-B’). The Perrimon group showed 

that, while both these populations are able to synthesise DNA (BrdU, 

Bromodeoxyuridine incorporation) only a small subset of the diploid cells actually 

undergo cell division, as assayed by Phospho-histone H3 (PH3) staining. These small, 

dividing cells are the adult posterior midgut ISC population. 

 

The basally located ISCs can give rise to both enterocytes (ECs) and small secretory EE 

cells, both of which undergo weekly turnover. ISCs can be identified by their small 

nuclear size and expression of the Notch ligand Delta (Dl). ISC self-renewal produces 

an identical daughter ISC along with an immature diploid daughter (progenitor) cell, 

termed the enteroblast (EB) (Figure 1.7A). ISCs and EBs both express the Snail/Slug 

family transcription factor escargot (esg+) (Ohlstein and Spradling, 2006, Micchelli 

and Perrimon, 2006). esg expression has previously been shown to be required for 

maintenance of diploidy (Fuse et al., 1994). These two esg+ cell populations are often 

found in pairs and can be distinguished based on expression of Dl in the ISC and 

Su(H)Gbe-LacZ (a transcriptional reporter of Notch signalling) in the EB. While the 

ISC is in contact with the BM, the EB is located more apically.  

 

In contrast to the mammalian TA cells, EBs undergo no transit divisions. 90% of EBs 

become absorptive ECs, identifiable by their large endoreplicating nuclei and Pdm1 

(Nubbin) expression (Figure 1.7A) (Lee et al., 2009, Micchelli and Perrimon, 2006, 

Ohlstein and Spradling, 2006).  The remaining 10% of cells produced are small, Pros+, 

EE cells.  
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Clonal expansion occurs from the basal ISC upwards. Individual SC clones have been 

shown to support approximately 15–20 cells in total. Dividing the total number of cells 

in the midgut by this figure gives an estimate of approximately 800–1,000 ISCs in the 

posterior midgut (Ohlstein and Spradling, 2006). Gut turnover rate varies greatly, even 

in healthy animals, and is strongly affected by age and diet (Jiang et al., 2009). 

 

1.5.4.1 Delta/Notch signalling regulates differentiation and cell-fate 

specification 

Notch signalling is a short-range communication pathway involved in the regulation of 

processes including proliferation, SC maintenance, fate specification, differentiation 

and cell death (see section 1.4.4.2 and Figure 1.4) (Artavanis-Tsakonas et al., 1999). 

Generally, the pathway links the cell fate decisions of neighbouring cells in a process 

termed lateral inhibition. In most Notch-dependent processes, a signal-sending cell, 

expressing Notch ligand (the transmembrane proteins Dl or Serrate in flies) activates 

Notch activity in a neighbouring cell via the Notch receptor (Figure 1.7B). 

 

Notch is an essential regulator of commitment and terminal differentiation in ISCs 

(Ohlstein and Spradling, 2006, Micchelli and Perrimon, 2006, Ohlstein and Spradling, 

2007, Bardin et al., 2010, Perdigoto et al., 2011). In contrast to the mammalian intestine, 

where Notch activation induces proliferation and progenitor cell expansion (Fre et al., 

2005, van Es et al., 2005), Notch signalling in the midgut drives cells into a post-mitotic 

state (Figure 1.7A).  The fact that there are no TA cells in the midgut could explain this 

apparent difference in Notch function. 

 

In both Drosophila and mammals, Notch activation favours absorptive differentiation at 

the expense of secretory cells (Bardin et al., 2010, Fre et al., 2005, Ohlstein and 

Spradling, 2007, van Es et al., 2005). Notch inactivation in the midgut blocks EC cell 

fate whilst increasing ISCs, EE cells and proliferation. Whilst commitment requires 

high levels of Notch signalling, presumably to prevent SC loss through differentiation,  

terminal differentiation to a particular cell fate can be achieved via lower levels of  
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Figure 1.7: Regulation of midgut homeostasis 

(A) Signalling pathways regulating midgut homeostasis (see text for details). (B) 
Dl/Notch signalling and ISC division (adapted from (Hou, 2010)). Dl is expressed on a 
newly emerged ISC, switching on Notch in the neighbouring EB. The NICD competes 
with Hairless for Su(H) and in doing so turns on Notch target genes, which inhibit Da-
dependent bHLH activity. ISC identity is therefore blocked in favour of differentiation. 
(C) The Jak/Stat signalling pathway. Binding of Upd ligands to the Dome receptor leads 
to activation of a receptor-associated kinase called Hopscotch (JAK). Cytoplasmic 
Stat92E can bind to phosphorylated Dome/Hop complexes via SH2 domains, resulting 
in Stat phosphorylation and dimerisation. Stat dimers can translocate to the nucleus and 
activate transcriptional targets (Beebe et al., 2010). 
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Notch activity (Perdigoto et al., 2011). 

 

Asymmetric Dl expression from ISC to EB is functionally required for differential 

Notch activation (Ohlstein and Spradling, 2007).  During mitosis, Dl is expressed in 

both daughter cells. Immediately following cell division, one cell retains punctate D1 

expression, while the other loses Dl and activates Notch targets and reporters (Ohlstein 

and Spradling, 2007, Bardin et al., 2010). Stable attachment between the two cells 

requires E-cadherin; when E-cadherin is not expressed, Notch is not activated and cell 

differentiation is blocked (Maeda et al., 2008). In ISCs, Notch targets are inhibited by 

Hairless and Suppressor of Hairless complexes (Su(H)) and chromatin modifications via 

the histone ubiquitin protease Scrawny (Buszczak et al., 2009). In EBs, activated Notch 

ICD binds Su(H), relieving the suppression of Notch target genes, this results in the 

suppression of bHLH TFs, such as daughterless, which normally inactivate genes 

required for cell fate (Figure 1.7B) (Bardin et al., 2010). This cascade of bHLH TF 

activation is conserved in mammalian ISC maintenance where daughterless 

homologues are expressed in Lgr5+ ISCs (Figure 1.7B) (van der Flier et al., 2009). 

 

1.5.4.2 Asymmetric division outcome versus population asymmetry 

Homeostasis requires a balance between SC proliferation and differentiation. As 

discussed in section 1.5.4.1, ISCs were initially suggested to follow a pattern of single 

SC asymmetry, with ISC division resulting in production of a daughter ISC and an EB.  

(Ohlstein and Spradling, 2006, Micchelli and Perrimon, 2006). To date, no asymmetric 

segregation of intracellular signalling components prior to division has been reported, 

suggesting that the division itself is symmetric, whilst the overall outcome of ISC 

divisions in young, healthy guts can be asymmetric. A slight tilt in division angle with 

respect to the BM has been described in ISC division, whereby the ISC maintains a 

greater degree of contact with the BM than its daughter cell, there is, however, no 

indication that this affects daughter cell fate (Ohlstein and Spradling, 2007). Likewise, 

no correlation has been found between spindle orientation and daughter cell fate. 
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Lineage tracing experiments have however shown that a clone derived from a single 

ISC can contain more than one Dl+ cell, suggesting the occurrence of symmetric 

divisions, which result in two daughter ISCs. Given that ISCs comprise approximately 

18% of the total cell population, one would expect each ISC to support a unit of around 

five to six cells. Clones of 10-20 cells have been described in several publications 

(Ohlstein and Spradling, 2006, Simons and Clevers, 2011) and the number of surviving 

clones declines rapidly following initial induction. Most recently, de Navascues et al 

have shown, using a combination of lineage analysis and mathematical simulation, that 

ISCs follow a pattern of population asymmetry (see section 1.3.3), with a proportion of 

the population undergoing symmetric self-renewal or differentiation of both daughters 

(de Navascues et al., 2012).  

 

It is plausible that a switch from a consistently asymmetric division outcome to 

symmetric divisions occurs in response to environmental challenges or intestinal stress. 

An increased number of ISCs is observed following starvation and refeeding, with work 

in the Bilder lab showing that ISCs drive tissue growth in response to food abundance 

by increasing division rate and driving symmetrical self-renewal divisions (McLeod et 

al., 2010, O'Brien et al., 2011). Likewise, the number of ectopic Dl expressing cells is 

increased following infection, oxidative stress or ageing and this could be due to ISC 

symmetric divisions in order to cope with the requirements of the tissue. It remains 

possible that the ISC population could be heterogeneous, whereby some ISCs are 

primarily involved in maintaining homeostatic growth and others are predominant 

during regeneration.  

 

1.5.5 Regulation of homeostatic proliferation in the posterior midgut 

The signalling events regulating homeostatic proliferation of ISCs have been 

characterised in detail, thanks to the availability of lineage-tracing techniques for 

lineages derived from mutant ISCs. Midgut ISCs are slow proliferating at baseline, only 

becoming highly proliferative when challenged (see section 1.5.8). In healthy guts, 

BrdU incorporation is only observed in 5-10% of all ISCs in a 48-hour window 

(Hochmuth et al., 2011). 
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1.5.5.1 Wingless signalling as a regulator of proliferation 

The Wnt/Wingless (Wg) signal transduction pathway regulates various developmental 

processes, including SC behaviour (see section 1.4.4.1 and Figure 1.4) (Cadigan and 

Nusse, 1997, Clevers, 2006). Wg is the fly homologue of Wnt1 (Rijsewijk et al., 1987) 

and controls segment polarity during larval development (Nusslein-Volhard and 

Wieschaus, 1980). The role of Wg in the Drosophila midgut is somewhat disputed (Lin 

et al., 2008, Lee et al., 2009, Cordero et al., 2009, Hou, 2010, Jiang and Edgar, 2011). 

Compared to other mitogenic signals, the effects of Wg signalling activity are relatively 

mild. Reduced levels of Wg are associated with ISC loss, whereas activation leads to 

hyperplasia.  

 

Initial reports from Lin and colleagues suggested that Wg secreted from the underlying 

VM acts upstream of Notch in order to regulate the balance between ISC self-renewal 

and differentiation (Lin et al., 2008). Work from the Micchelli lab argues in favour of a 

slightly different role for Wg signalling. As expected, APC loss results in an increase in 

the number of dividing cells. However, the presence of differentiated cells following 

APC inactivation would suggest that this increased proliferation cannot be explained 

solely by a Notch-dependent effect on self-renewal and cell fate, as suggested by Lin 

and colleagues (Lee et al., 2009, Cordero et al., 2009). Thus, Wnt activation is not 

sufficient to convert all ISC progeny to SCs and does not alter ISC self-renewal. It 

would therefore appear that APC is required specifically in the ISCs in order to regulate 

proliferation but is not required for ISC self-renewal or Notch-dependent cell-fate 

specification, as was suggested by Lin et al.  

 

In a separate study, Takashima et al showed that Wg is detected in the epithelial cells at 

the midgut-hindgut junction and not in the VM, arguing against Wg secretion by the 

VM as an ISC niche signal (Takashima et al., 2008). Hence, further studies are required 

in order to truly identify the source and function of midgut Wg activity. 
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1.5.5.2 The Jak/Stat pathway regulates ISC proliferation and EB 

differentiation 

 

Jak/Stat signalling has been implicated in the regulation of stem cells (SCs) in multiple 

tissues (Arbouzova and Zeidler, 2006) and is proposed to be a common regulator of SC 

proliferation, also promoting SC self-renewal efficiency in mouse embryonic SCs 

(Gregory et al., 2008).  The Drosophila Jak/Stat pathway consists of three leptin-like 

(IL-6 family) Unpaired (Upd) cytokines (Harrison et al., 1998, Gilbert et al., 2005, 

Hombria et al., 2005). The Upd cytokines bind to the Domeless (dome, Il-6R-like) 

receptor (Brown et al., 2001, Chen et al., 2002), thereby activating Hopscotch (hop), the 

fly Janus kinase (Jak) (Binari and Perrimon, 1994), which in turn regulates gene 

transcription through nuclear translocation of STAT92E, a STAT3-like TF (Figure 

1.7C) (Hou et al., 1996, Yan et al., 1996). Transcriptional targets of Stat92E include the 

receptor Dome and socs36E, a repressor of receptor-Jak complexes. 

 

Jak/Stat signalling is a major mitogenic signal for the midgut ISCs in both baseline 

homeostasis and regenerative conditions (Jiang et al., 2009, Lin et al., 2010, Beebe et al., 

2010, Liu et al., 2010b, Xu et al., 2011, Buchon et al., 2009b). Upd expression has been 

reported in epithelial cells, including ISCs (Jiang et al., 2009, Liu et al., 2010b). Upd3 

expression is mainly restricted to the ECs, while Upd 1 and 2 are commonly expressed 

in small progenitor cells. Reports of Upd expression in the VM suggest a possible 

Jak/Stat function as a niche signal in the regulation of ISC proliferation and 

maintenance (Lin et al., 2010). Upd activation leads to Jak/Stat signalling activity in the 

ISCs and EBs, which results in ISC proliferation and EB differentiation in order to 

replace lost/damaged cells (Figure 1.7A). In the midgut, Stat reporters are active in both 

ISCs and EBs, but not in terminally differentiated cells (Jiang et al., 2009, Beebe et al., 

2010, Liu et al., 2010b). 

 

Clones mutant for Jak/Stat exhibit a reduction in mature cell types due to a failure to 

differentiate. The majority of cells are EB-like progenitors, while the number of Dl+ 

cells remains normal or slightly reduced, suggesting that in healthy animals Jak/Stat is 

essential for differentiation but not ISC maintenance (Lin et al., 2010, Jiang et al., 2009, 
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Beebe et al., 2010). Epistasis data suggest that Jak/Stat signalling acts downstream or in 

parallel to Notch in regulating EB differentiation (Beebe et al., 2010, Jiang et al., 2009). 

Under conditions of adaptive homeostasis, Upd ligands, produced by epithelial cells, 

trigger Dl expression in the ISCs, suggesting that Jak/Stat signalling can act both 

upstream and downstream of Dl/Notch activity (Jiang et al., 2009, Buchon et al., 2009a). 

 

1.5.5.3 EGFR signalling regulates ISC proliferation 

The EGFR/Ras/MAPK signalling pathway is also required for midgut homeostasis 

(Figure 1.7A). Under baseline conditions, high levels of di-phospho-Erk (activated 

MAPK) can be found in ISCs and EBs. Silencing components of the EGFR/Ras/MAPK 

pathway results in reduced ISC division and compromises ISC survival (Buchon et al., 

2010, Jiang et al., 2011, Biteau and Jasper, 2011, Ren et al., 2010). The EGFR ligands, 

Spitz and Keren, are expressed in midgut epithelial cells. A third EGFR ligand, Vein, is 

expressed in the VM. Levels of all three ligands are increased upon infection (see 

section 1.5.8.2). The three EGFR ligands function redundantly to regulate EGFR 

pathway activity in the ISCs, which leads to their division. The MAPK p38 was also 

shown to be required for ISC proliferation downstream of PVR (PDGF/VEGF 

Receptor) (Park et al., 2009, Park et al., 2010). Unlike Jak/Stat, EGFR seemingly 

functions solely as a growth/proliferation factor, with no effect on fate specification or 

differentiation. ISC proliferation induced by the Jak/Stat pathway is reported to be 

EGFR-dependent (Jiang et al., 2011, Buchon et al., 2010). Importantly, EGFR 

signalling is known to play a similar role in the mammalian intestine (Roberts et al., 

2002). Several therapies targeting EGFR are clinically approved to treat colorectal 

cancer, which is commonly associated with gain-of-function K-Ras mutations.  

 

1.5.5.4 Insulin signalling regulates ISC proliferation in response to 

nutrient availability 

Systemic and midgut IIS levels (see section 1.1.3.3 and Figure 1.2D) regulate ISC 

proliferation (Amcheslavsky et al., 2009, Amcheslavsky et al., 2011, Biteau et al., 2010, 

McLeod et al., 2010, O'Brien et al., 2011, Choi et al., 2011). Neurosecretory cells in the 
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CNS express Dilps, which can influence ISC proliferation. Downstream mediators of 

the pathway such as the InR, PI3K and AKT are all essential to ISC growth and division 

following epithelial damage (Amcheslavsky et al., 2009, Amcheslavsky et al., 2011). 

Reduced IIS or overexpression of the downstream TF Foxo limits ISC proliferation and 

extend lifespan (Biteau et al., 2010).  

 

Nutritional state, oxidative stress and DNA damage all significantly affect Dilp 

expression (Slaidina et al., 2009, Wang et al., 2005, Karpac et al., 2011). Nutrition 

affects Tsc/TOR signalling. The Tsc protein complex, consisting of Tsc1 and 2, 

negatively regulates TOR to control translation and cell growth. Loss of Tsc leads to 

excess ISC growth and division defects, indicating that the complex is an essential 

regulator of midgut ISC growth (Amcheslavsky et al., 2011). Nutrient deprivation or 

reduced IIS also reduces EC growth (Choi et al., 2011). When the InR is mutated, 

higher levels of DE-cadherin are observed between ISCs and EBs leading to prolonged 

cell-contact and inhibition of proliferation. This work suggests that ISCs might 

indirectly sense changes in nutritional status through contact with their daughters, 

potentially linking tissue growth to ISC proliferation (Choi et al., 2011). 

 

Recently, using the Twin spot MARCM system to mark diving ISCs in different colours, 

O’Brien and colleagues showed that increased symmetric ISC division is a key 

mechanism for feeding-induced growth of the midgut (O'Brien et al., 2011). Well-fed 

flies have a higher number of ISCs and larger guts, but the relative fraction of ISCs in 

relation to total gut cell number remains constant. Upon starvation, this increased gut 

size and ISC number is reverted. Dilp3 expression in the VM is required and sufficient 

for this feeding-induced ISC activation. O’Brien et al suggest that local Dilp production 

in the VM synergises with systemic Dilp production in order to fine tune SC activity 

during adaptive growth. One possibility is that signalling from the fat body, which is a 

key sensor of nutrient availability, might trigger VM Dilp production, as is the case in 

glial cells (Sousa-Nunes et al., 2011). 
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1.5.6 The midgut ISC niche 

Whether midgut ISCs are located in niches similar to those observed in other 

Drosophila tissues is still to be fully elucidated. The ECs and surrounding muscle may 

both have a niche-like function, since both secrete mitogens important in controlling SC 

proliferation (Buchon et al., 2009a, Jiang and Edgar, 2009, Jiang et al., 2009, Lin et al., 

2008, Lin et al., 2010). Wnt, EGF and Upds have all been proposed as being secreted 

from the VM (Lin et al., 2008, Jiang et al., 2011, Biteau and Jasper, 2011, Lin et al., 

2010, Xu et al., 2011). Simultaneous disruption of Wg, Jak/Stat and EGFR signalling in 

triple mutant clones leads to rapid and complete elimination of ISCs (Xu et al., 2011). 

This not only supports the notion that the VM could be a component of the ISC niche 

but also suggests that ISCs are governed by a robust mechanism, whereby signalling 

pathways compensate for one another in order to maintain the ISC population. 

 

Several lines of evidence argue against the importance of the VM in ISC regulation. 

Firstly, ISC self-renewal and differentiation are regulated primarily by Notch signalling, 

seemingly independent of any signal from the VM. Whilst the EGFR ligand Vein is 

upregulated during regeneration, this is not required in order for compensatory 

proliferation to occur (Jiang and Edgar, 2009). Induction of two other EGFR ligands, 

Spitz and Keren, is also observed in the ECs during regeneration, suggesting a 

significant amount of EGFR signalling comes from the epithelium itself. Similarly the 

epithelial cells are the primary source of Upd cytokines (Jiang et al., 2009, Buchon et al., 

2009b). The most important component of the midgut niche might therefore be the 

epithelial cells themselves. 

 

1.5.7 The gut microbiome and immune system  

The intestine not only encounters pathogenic bacteria but is also home to a number of 

resident commensal microorganisms. The intestinal immune response must therefore 

discriminate between these different populations. Numerous microbiome studies have 

begun to examine the Drosophila and human microbiota in both health and disease 

demonstrating that intestinal homeostasis is disrupted when the indigenous microbiota 
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are altered (Corby-Harris et al., 2007, Ren et al., 2007). Intestinal homeostasis therefore 

requires maintenance of commensals, elimination of pathogenic bacteria and regulation 

of inflammation and regeneration. 

 

The Drosophila midgut combines physical defence to bacteria, in the form of the 

peritrophic membrane, with a molecular response. The gut immune response has two 

main components. An initial oxidative burst of reactive oxygen species (ROS) 

generated by the NADPH oxidase enzyme Dual Oxidase (Duox) and the synthesis of 

antimicrobial peptides (AMPs) controlled by the Immune deficiency (Imd) pathway 

(reviewed in (Lemaitre and Hoffmann, 2007)). If bacteria do traverse the gut epithelium 

and enter the hemolymph, specialised hemocytes are responsible for the phagocytosis 

and encapsulation of these invading pathogens. The main tissue involved in the humoral 

and systemic response to infection is the fat body, which acts as both a storage organ 

and a site of AMP and growth factor production. Interaction between the gut, 

hemocytes and fat body has to date been minimally explored. Recently, however, Wu 

and colleagues demonstrated that larval midgut infection induces an innate immune 

response in the fat body. Midgut ROS production, as well as the presence of hemocytes, 

was shown to be critical to communication between the midgut and fat body (Wu et al., 

2012). 

  

1.5.7.1 The Dual oxidase enzyme regulates midgut ROS generation 

Intestinal redox homeostasis, mediated by the Duox enzyme and subsequent ROS 

elimination by immune-regulated catalase (IRC), is essential to host survival upon 

pathogenic infection (Ha, 2005, Ha et al., 2005, Ha et al., 2009). Gut–microbe 

interactions induce different amounts of Duox-dependent ROS production and a balance 

between the ROS levels required to eliminate bacteria and ROS-induced damage to the 

epithelium must be maintained.  

 

Duox enzymes are members of the NADPH (nicotinamide adenine dinucleotide 

phosphate) oxidase (NOX) family. Humans have five NOXs along with Duox 1 and 2. 



Chapter 1 Introduction 

 74 

Duox 2 is primarily localised to the apical membrane of ECs. In Drosophila, there are 

two NADPH oxidase homologues, Nox and Duox, only Duox is present in the midgut. 

NOX enzymes catalyse the reduction of oxygen, generating superoxide anion, which 

can lead to hydrogen peroxide (H2O2) production. Duox proteins form a conserved 

family of molecules, which contain, in addition to the NADPH domain, an N-terminal 

extracellular peroxidase domain (PHD). Enzymatic assays have demonstrated that the 

PHD of Drosophila Duox can use H2O2 as a substrate to generate the highly 

microbicidal HOCl. The PHD of Duox is therefore vital to microbial clearance and host 

survival (Ha, 2005). 

 

Duox enzymatic activity is regulated by the ‘Duox activity’ pathway, which involves a 

Gαq-PLCβ-Ca2+ linear cascade (Figure 1.8A). The Duox activity pathway is basally 

activated by small amounts of non-peptidoglycan (PG) ligands. Most pathogenic 

bacteria are gram-positive, meaning that they express high levels of PG in their cell wall. 

The exact identity of the non-PG ligand(s) responsible for Duox activation is unknown, 

while PG is the only known agonist for the IMD pathway. Low levels of ROS generated 

by the Duox activity pathway control microbiota proliferation. The Duox activity 

pathway negatively regulates the ‘Duox expression’ pathway (Figure 1.8A). The large 

amounts of microbial ligands, both PG and non-PG, present in the gut following 

pathogenic infection trigger the ‘Duox expression’ pathway, which maximizes ROS 

production in order to fight infection (Ha et al., 2009, Ha, 2005). Such mechanisms of 

Duox regulation are highly conserved in humans (Ha et al., 2009). Duox knockdown 

flies are unable to control bacteria in the gut and are therefore highly susceptible to 

infection. 

 

1.5.7.2 The IMD pathway regulates midgut AMP production 

NFκB activation is a common innate immune response to intestinal infection. 

Drosophila have two NFκB signalling pathways, IMD and Toll, but lack an adaptive 

immune system. Both pathways function in the fat body to regulate the systemic 

immune response. The IMD pathway has homology to the Tumour Necrosis Factor-α 

pathway in mammals and regulates most of the genes whose transcription is altered by  
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Figure 1.8: Midgut response to bacterial infection 

(A) The DUOX-activity pathway is basally activated by small amounts of non-PG 
ligands to produce ROS, which is sufficient to maintain healthy gut–microbe 
interactions. The basal DUOX-activity pathway negatively controls the DUOX-
expression pathway. Upon infection, infectious bacteria dominate, leading to the 
presence of large amounts of non-PG and PG ligands. Under such conditions, the 
DUOX-activity pathway is strongly activated to enhance DUOX activity. Strong PLC-
β activation triggers the DUOX-expression pathway, possibly through PKC. Large 
amounts of PG also activate the DUOX-expression pathway. The DUOX-expression 
pathway is hence activated in both a PG-dependent and independent manner. Adapted 
from (Bae et al., 2010). (B) The IMD pathway. Upon direct interaction with bacteria, 
PGRP-LC recruits the adaptor IMD. IMD interacts with FADD, which binds to the 
apical caspase Dredd. Relish is phosphorylated by the IKK signaling complex, which is 
activated by TAK1. Once phosphorylated, Relish is cleaved by Dredd and its N-
terminal transactivating domain translocates to the nucleus in order to drive AMP 
production, the Relish inhibitory domain remains in the cytoplasm. 
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midgut infection (Buchon et al., 2009a). AMPs produced by the IMD pathway during 

infection eliminate bacteria. Prolonged AMP production can, however, have detrimental 

effects to the host. In the absence of infection, small amounts of PG from commensal 

bacteria activate the IMD pathway leading to nuclear translocation of the NFkB 

homolog Relish. In these steady-state conditions, Caudal, a homeobox TF, represses 

transcription of many of the Relish-dependent AMPs, thus maintaining appropriate 

AMP levels for preservation of the normal flora community structure. Upon pathogenic 

infection, Caudal no longer suppresses AMP production (Figure 1.8B) (Ryu et al., 

2008). 

 

1.5.8 The intestinal response to stress or injury 

A substantial amount of attention following the discovery of adult ISCs in Drosophila 

has focussed on the midgut response to injury, infection and aging and how these 

processes influence gut physiology and overall fitness. As discussed in section 1.5.5, 

ISC regulation involves systemic, muscle-derived, local and cell-intrinsic signals, all of 

which are integrated in order to adapt ISC function in response to physiological or 

environmental challenges (Figure 1.9). ISCs respond to stress or injury by increasing 

their proliferative activity. This occurs in response to infection (Apidianakis et al., 2009, 

Buchon et al., 2009a, Buchon et al., 2009b, Chatterjee and Ip, 2009, Cronin et al., 2009, 

Jiang et al., 2009), oxidative stress (Biteau et al., 2008, Buchon et al., 2009b, Choi et al., 

2008), DNA damage (Amcheslavsky et al., 2009) and other factors that induce tissue 

damage or apoptosis (Amcheslavsky et al., 2009, Jiang et al., 2009). 

 

1.5.8.1 Intestinal epithelial regeneration 

The JNK signalling pathway  

The Jun-N-terminal kinase (JNK) signalling pathway increases stress tolerance and 

lifespan in both flies and worms (Oh et al., 2005, Wang et al., 2003, Wang et al., 2005). 

JNK is an evolutionarily conserved stress-activated protein kinase and is activated by a 

number of intrinsic and environmental challenges, including oxidative stress and DNA 
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damage. In mammals, these stimuli activate members of the JNK kinase kinase family, 

which go on to phosphorylate and activate MKK family kinases resulting in JNK 

phosphorylation on Serine/Threonine and Tyrosine residues. JNK has both nuclear and 

cytoplasmic targets, most of which are TFs, including the AP-1 family members Jun 

and Fos (for a review of JNK signalling see (Johnson and Nakamura, 2007, Weston and 

Davis, 2007)). 

 

Flies have only one JNK, Basket (bsk) and two JNK kinases. The MKK7 homolog 

Hemipterous (Hep) mediates the majority of JNK activity in flies, while dMKK4 has 

been less studied. The JNK-specific phosphatase, puckered (puc), is an important AP-1 

target in flies, restricting JNK activity in a negative feedback loop (McEwen and Peifer, 

2005, Martin-Blanco et al., 1998). The diverse effects of JNK activation are context-

dependent and frequently involve interaction with other signalling pathways.  

 

The ageing Drosophila midgut 

The ageing Drosophila midgut is characterised by an increase in proliferation 

accompanied by the presence of misdifferentiated daughter cells expressing ISC 

markers as well as markers of differentiated cell types (Choi et al., 2008, Biteau et al., 

2008, Park et al., 2009). These polyploid misdifferentiated cells are seemingly EBs 

unable to terminally differentiate into fully functional ECs. The accumulation of these 

misdifferentiated cells, many of which retain esg expression, contributes to age-related 

deterioration of the epithelium and midgut dysplasia (Biteau et al., 2008). Increased 

JNK signalling activity is observed in ISCs and EBs of old flies. JNK activation induces 

ISC proliferation and leads to ectopic Dl activation in the ISC lineage (Biteau et al., 

2008). Activation of JNK signalling in ISCs causes age-related epithelial deterioration, 

while reducing JNK activity can prevent age-associated changes in gut morphology. 

Expression of the JNK phosphatase, Puc, is required to restrain proliferation in healthy 

animals, suggesting that regulation of JNK signalling activity is crucial to maintaining 

normal midgut homeostasis (Biteau et al., 2008). Incidentally, a strong reduction in JNK 

activity reduces lifespan due to complete inhibition of ISC proliferation (Biteau et al., 

2008) 

 



Chapter 1 Introduction 

 78 

p38 and PVF2 are required for ISC regulation in ageing flies (Biteau et al., 2008, Choi 

et al., 2008, Park et al., 2009). PVF2, a PVR ligand, is upregulated in midgut 

progenitors in ageing flies leading to ISC proliferation (Choi et al., 2008).  

 

The midgut stress response 

Midgut regeneration is also induced by tissue damage. Whereas ageing is seemingly 

linked to disruption of intestinal homeostasis due to progenitor misdifferentiation, cell-

damaging agents induce a regenerative response to tissue damage. Several approaches 

have been utilised in the study of the midgut response to tissue damage, most of which 

involve feeding the flies different tissue-damage inducing agents. Approaches have 

included: the induction of oxidative stress using Hydrogen peroxide or Paraquat (Biteau 

et al., 2008, Chatterjee and Ip, 2009, Choi et al., 2008), disruption to the basement 

membrane using Dextran Sulphate Sodium (DSS) (Amcheslavsky et al., 2009), damage 

to ECs using bleomycin (Amcheslavsky et al., 2009) and the expression of pro-

apoptotic genes leading to EC cell death (Jiang et al., 2009). 

 

JNK signalling is required for ISC activation following damage due to oxidative stress 

(Biteau et al., 2008). Activation of JNK in midgut ECs presumably promotes their 

elimination, which in turn induces compensatory proliferation via the secretion of Upd 

and EGFR ligands. In the ISCs, JNK activation not only protects cells from oxidative 

damage but also induces proliferation (Biteau et al., 2008, Buchon et al., 2009b). JNK is 

also responsible for the misdifferentiation, by inducing higher levels of Dl expression in 

progenitor cells, as is seen in ageing guts, but any beneficial function of this in 

regeneration is unclear.  

 

EGFR signalling is also required for ISC proliferation induced by JNK activity (Biteau 

and Jasper, 2011). EC apoptosis or JNK activation leads to Vein expression in the VM 

(Jiang et al., 2011). The AP-1 TF Fos is phosphorylated by JNK and the EGFR 

responsive MAPK, Erk on distinct sites (Ciapponi et al., 2001). Fos phosphorylation by 

JNK activates ISC proliferation. Hence, Fos is required for both homeostatic and stress-

induced proliferation by integrating JNK and EGFR signalling (Figure 1.9). 
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While JNK signalling has been implicated in the cellular stress response of multiple 

Drosophila tissues, a mitogenic role for JNK in ISCs is more surprising (Goberdhan and 

Wilson, 1998). However, work in the mouse intestine has also reported a role for JNK 

signalling in intestinal crypt proliferation and enhancement of tumour development in 

the colon (Sancho et al., 2009).  

 

Cellular redox state and ISC proliferation 

A low concentration of intracellular ROS is increasingly understood to be necessary for 

stemness and pluripotency (Ito et al., 2004, Liu et al., 2009, Smith et al., 2000, Tothova 

et al., 2007). ISC intracellular redox state is regulated by Nrf2 and its negative regulator 

Keap1 (Hochmuth et al., 2011). Nrf2 maintains a low redox state in quiescent ISCs. Gut 

damage results in inhibition of Nrf2 by Keap1 leading to increased ISC ROS levels and 

ISC proliferation (Figure 1.9). Loss of redox management accelerates age-related 

degeneration of the midgut epithelium (Hochmuth et al., 2011). Hence, while 

transiently high ROS expression induces proliferation, persistently high levels disrupt 

midgut homeostasis. Age-dependent gut dysplasia can be delayed by progenitor 

expression of Jafrac1, a peroxiredoxin, which detoxifies ROS (Biteau et al., 2010). 

Interestingly, Jafrac1 expression also extended lifespan by 20-25%. Redox state must 

therefore be carefully balanced between protecting ISCs from oxidative stress and 

activating ISCs in response to damage. 

 

 



Chapter 1 Introduction 

 80 

 
Figure 1.9: Key signalling pathways in the midgut 

Local and systemic cues must be integrated with ISC intrinsic signals in order to adjust 
proliferation rate in response to tissue demand. The pathways required for stress/injury-
induced ISC proliferation are shown in red. Figure adapted from (Biteau et al., 2011). 
 

1.5.8.2 The intestinal response to infection 

Several groups have examined the midgut response to infection using different bacterial 

species including Erwinia carotovora (Ecc15, non-lethal gram-negative), Serratia 

marcescens (lethal), and Pseudomonas (Buchon et al., 2009a, Cronin et al., 2009, 

Chatterjee and Ip, 2009, Jiang et al., 2009). Oral infection stimulates ISC division and 

midgut turnover, similar to that observed following other forms of intestinal damage 

(Buchon et al., 2009a, Jiang et al., 2009, Cronin et al., 2009). Studies examining 

changes in gene expression upon infection showed that infection triggers a combination 

of immune, stress and developmental signalling pathways, providing an unexpected link 

between infection and epithelial renewal (Cronin et al., 2009, Buchon et al., 2009a). 

mRNA expression-profiling experiments using guts from infected flies showed that, as 

expected, the majority of the genes affected by midgut infection are regulated by the 

IMD pathway, with levels unchanged in an IMD mutant background (Buchon et al., 

2009a). Surprisingly, however, developmental pathways including Notch, Jak/Stat, and 

EGFR were also activated, suggesting that the gut response to infection involves diverse 

aspects of gut physiology. 
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IMD pathway 

Bacterial recognition and subsequent activation of the IMD pathway were found to be 

dispensable for ISC division and EB differentiation in response to infection, 

demonstrating that PG is not a trigger for ISC activation (Buchon et al., 2009b). 

Ingestion of bacteria induces widespread apoptosis. Given the intestinal renewal 

observed following infection is reminiscent of that induced by tissue damaging agents 

(see section 1.5.8.1), it is plausible to suggest that bacteria induced apoptosis in ECs is 

responsible for ISC proliferation (Buchon et al., 2009b, Jiang et al., 2009, 

Amcheslavsky et al., 2009, Chatterjee and Ip, 2009). 

 

Jak/Stat signalling 

Following infection, increased expression of Upd3 in the ECs activates Jak/Stat 

signalling in the ISCs leading to regenerative proliferation (Figure 1.9). Stat activation 

in the ISCs also induces immune effectors such as Drosomycin 3 (an AMP) in the ECs 

(Buchon et al., 2009a). Loss of Jak/Stat signalling is sufficient to block midgut 

proliferative regeneration (Buchon et al., 2009b). Gut injury induced using forceps also 

results in localised Upd3 expression (Buchon et al., 2009b). The cellular and molecular 

mechanisms leading to Upd3 upregulation by ECs are currently unknown, although it 

has been suggested that cell damage and ROS production are likely factors. 

Interestingly, the cytokine interleukin-6 and Stat3 are involved in the induction of 

mammalian intestinal inflammation and cancer (Atreya and Neurath, 2008). 

 

JNK signalling 

The role of JNK signalling in intestinal infection varies depending on the type of 

pathogen used. Pathogens such as P.entomophila or P.aeruginosa, which directly 

damage mature ECs, primarily induce JNK activity in the mature EC population, 

presumably promoting their elimination (Jiang et al., 2009, Apidianakis et al., 2009). By 

contrast, infection utilising non-pathogenic bacteria, such as Ecc15, which damages the 

gut via an oxidative burst, activate JNK in both mature ECs and progenitor cells, similar 

to the effects observed with oxidative damaging agents (Buchon et al., 2009b). JNK 

signalling is required for ISC survival following Ecc15 infection, seemingly due to 
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activation of stress response genes, which protect the ISCs from oxidative damage 

(Buchon et al., 2009b). As is the case for EC ablation or apoptosis, JNK signalling is 

not required in ECs for the proliferative response to infection (Buchon et al., 2009b, 

Jiang et al., 2009). Thus, JNK activity is not required in the ECs for Jak/Stat or EGFR 

ligand production. 

 

Non-microbicidal effects of Duox activation 

In the absence of Duox expression, Jak/Stat signalling is reduced and delayed indicating 

that a Duox-dependent oxidative burst is essential to Upd3 production following 

infection (Buchon et al., 2009b). In mammals, ROS have been shown to activate growth 

and proliferation via Jak2 and Stat3 (Jay et al., 2008). ROS can regulate many 

signalling pathways, acting as intracellular second messengers, but whether ROS are 

direct inducers of Jak/Stat signalling in this particular context is still unclear (Bae et al., 

2000). It remains to be elucidated whether microbe/damage-induced ROS act as direct 

inducers of SC signalling or simply cause tissue damage, which in turn signals to SCs 

via other means. 

 

Role of indigenous bacteria 

The signalling pathways regulating regenerative proliferation following infection are 

essentially the same as those involved in steady-state homeostasis, indicating that 

during infection bacteria activate a molecular and cellular response, which occurs 

naturally in uninfected guts. Consistent with this, flies lacking commensal bacteria 

exhibit reduced ISC division and epithelial renewal, suggesting that under normal 

conditions, gut microbiota stimulate these pathways, promoting a basal level of 

epithelium renewal (Buchon et al., 2009b). The Jak/Stat and JNK pathways maintain 

gut homeostasis in response to infection. Old flies exhibit increased numbers of gut 

microbes leading to chronic Jak/Stat and JNK activation, which is thought to cause the 

disorganisation and overproliferation observed in aged guts. Flies lacking Jak/Stat or 

JNK succumb to bacterial infection much earlier and are generally EC depleted, 

highlighting the physiological importance of intestinal renewal (Buchon et al., 2009b). 

The host is also more susceptible to infection when Notch is depleted, indicating the 

importance of ISC differentiation to survival upon infection (Jiang et al., 2009). 
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EGFR pathway and midgut cell death 

The EGFR pathway is implicated in several stages of epithelial renewal. ISC 

proliferation, the generation and morphogenesis of new ECs and the elimination of 

damaged cells are all EGFR dependent (Jiang et al., 2011, Buchon et al., 2010, Biteau 

and Jasper, 2011). Buchon and colleagues have characterised the different stages of the 

regenerative response to infection showing an initial 40% decrease in midgut length due 

to EC cell death (Buchon et al., 2010). Cell death only occurs once cells have been 

expelled from the epithelium into the lumen, similar to anoikis in mammalian guts 

(Gilmore, 2005). Cell loss is initially buffered by EB differentiation followed by ISC 

proliferation, with gut repair complete within two days. Infection increases EGFR 

ligand expression in both the ISCs and ECs. Reduced EGFR signalling not only 

prevents proliferation but ECs no longer delaminate resulting in apoptosis within the 

epithelium (Buchon et al., 2010). EGFR therefore seemingly mediates the disassembly 

of EC cell-cell junctions enabling anoikis to occur.  

 

EGFR signals via the Ras/MAPK pathway. Interestingly, Ragab and colleagues have 

shown that Ras/MAPK signalling negatively regulates the IMD pathway in the gut 

(Ragab et al., 2011). This negative regulation is dependent upon the PDGF/VEGF 

receptor (PVR). The PVR ligand PVF2 is activated in ISCs and EBs following 

oxidative stress (Choi et al., 2008). This could suggest that PVR expression activates 

Ras/MAPK signalling in the ISCs, which in turn leads to inhibition of the IMD pathway, 

thus preventing excessive AMP production and therefore enabling ISC function to be 

maintained. 

 

1.6 Aim of PhD project: A role for the Hippo pathway in the 

adult posterior midgut? 

The identification of ISCs in the adult Drosophila posterior midgut has provided a new 

model system in which to investigate ISC biology (Ohlstein and Spradling, 2006, 

Micchelli and Perrimon, 2006). A better understanding of ISC biology should 

ultimately assist in the diagnosis and treatment of a range of diseases affecting the GI 
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tract. Similarities between the mammalian and fly GI tracts are not limited to structure 

but also include physiology and turnover. The mammalian small intestine and fly 

midgut are both comprised of absorptive and secretory epithelial cells with tissue 

turnover supported by a population of adult ISCs. In both systems tissue turnover takes 

approximately one week. The high degree of conservation with respect to the signalling 

pathways controlling intestinal development and regeneration combined with the 

genetic amenability of the fruit fly make the Drosophila posterior midgut an excellent 

candidate for studying ISC physiology.  

 

When I first began my PhD, the Drosophila ISC field was still very much in its infancy. 

Many of the signalling pathways involved in regulating midgut homeostasis were still to 

be identified, including a full characterisation of any possible role for the Hpo pathway. 

The highly conserved Hpo signalling pathway is a known regulator of organ size 

(Harvey and Tapon, 2007) but has seldom been studied in Drosophila adult homeostasis. 

My initial aim was therefore to examine Hpo pathway function in the context of the gut, 

with a view to gaining a better understanding of the regulation of midgut homeostasis. 
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Chapter 2. Materials & Methods 

2.1 Drosophila manipulations and genetic techniques 

Drosophila have one X chromosome and three pairs of autosomes. Chromosome four is 

mostly heterochromatic. Meiotic recombination only occurs in females.  

 

2.1.1 Techniques for generating fly stocks 

2.1.1.1 Balancer chromosomes 

Balancer chromosomes (or “balancers”) are a valuable resource in Drosophila research. 

Balancers have multiple inversions, which suppress the occurrence of recombination 

between two homologous chromosomes at meiosis. The use of balancers enables stocks 

carrying a homozygous lethal mutation to be stably maintained across generations. 

Balancers usually carry a dominant visible marker and are homozygous lethal, allowing 

the generation of stocks in which flies carry one copy of a mutation of interest and one 

copy of the balancer chromosome. The presence of visible markers, such as changes in 

eye colour or bristle size, enables geneticists to track their mutation of interest 

throughout a cross scheme. Balancers are available for the X, second and third 

chromosomes and include FM7a, CyO and TM3. Given the X chromosome must exist 

in a hemizygous state in males, most X chromosome balancers do not carry 

homozygous lethal mutations but instead carry recessive mutations, which result in 

female sterility. 

 

2.1.1.2 Recombination 

Meiotic recombination in females allows two loci of interest, located on the same 

chromosome, to be put in cis. As an example, the cross scheme used to create a stock 

carrying both the puce69 (puc-lacZ) reporter and UAS-yki transgene on the third 

chromosome (as used in Figure 5.9) is shown below. When crossed to an EC specific 

Gal4 driver, this stock allowed puckered expression to be visualized upon Yki 

overexpression: 
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♀ ♀     w ; UAS-yki / TM3       X          ♂♂    w ; puce69 / TM3        

 

F1:      ♀ ♀     w ; UAS-yki / puce69     X          ♂♂    w ; TM3 / TM6B        

 

F2:      Single  ♂     w ; UAS-yki , puce69  / TM3    X     ♀ ♀    w ; TM3 / TM6B        

 

F3:      Stock establishment:     ♀ ♀    X    ♂♂   w ; UAS-yki , puce69  / TM3  

 

Initially, flies carrying the UAS-yki transgene were crossed to puce69 males. At the F1 

stage, virgins carrying both UAS-yki and puce69 (identified by a lack of the TM3 marker 

Sb) were crossed to males carrying balancers for the appropriate chromosome, in this 

case the third. Recombination occurs in the germline of these females, resulting in the 

generation of recombinant males carrying both UAS-yki and puce69 on the same 

chromosome. The further the distance between the two loci, the greater the frequency of 

recombination events. Individual recombinant males are then crossed to balancer 

virgins. In order to check flies of the correct genotype have been established, one can 

either use PCR or check for the presence of a visible marker, such as eye colour. Stocks 

are only established from F2 males shown to be carrying both loci of interest. 

 

2.1.1.3 Use of double balancer stocks 

Often two loci of interest are located on different autosomes. Double balancers can be 

used to generate and maintain stocks carrying both loci of interest. I used the second 

and third chromosome balancer T(2;3)SM6a-TM6B,Tb (from here on referred to as 

SM66B) on several occasions during my PhD. SM6a and TM6B cannot be segregated in 

this context because of translocation. The cross scheme used to create a stock carrying 

both the UAS-bsk-RNAi (2nd) and UAS-yki (3rd) transgenes, generated for use in 

epistasis experiments (Figure 5.9), is shown below: 
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♀ ♀     w ; UAS-bsk-RNAi (2nd)     X     ♂♂    w ; UAS-yki / TM3        

 

F1:      ♀ ♀     w ; Sp / SM66B      X      ♂♂    w ; UAS-bsk-RNAi / +; UAS-yki / + 

 

F2:  Single  ♂     w ; UAS-bsk-RNAi ; UAS-yki /  SM66B    X    ♀ ♀    w ; Sp / SM66B      

 

F3:  Stock establishment:   ♀ ♀     X    ♂♂      w ; UAS-bsk-RNAi ; UAS-yki /  SM66B   

 

2.1.2 The use of P-elements in Drosophila 

Transposable elements (or transposons) are thought to constitute 10-20% of the 

Drosophila genome. Transposable elements are parasitic DNA fragments, which can 

integrate into genomic DNA and ‘jump’ to different chromosomal locations (Engels, 

1992). P-elements are a class of transposon found in Drosophila. Roughly 2.9kb in 

length, P-elements contain a four exon-coded transposase enzyme and 31bp perfect 

inverted terminal repeats (ITR). A range of P-element based genetic techniques are 

commonly used in Drosophila, such as the generation of transgenics, mutagenesis, 

analysis of gene expression patterns, gene replacement and clonal analysis. Many of the 

stocks used in this study were initially generated using such techniques. 

 

2.1.2.1 Generation of transgenics 

P-elements can be used as vectors in the generation of transgenic animals (Rubin and 

Spradling, 1982, Spradling and Rubin, 1982). The gene of interest is inserted into a P-

element based plasmid where the transposase gene is replaced with a marker gene (such 

as eye colour). The plasmid is then microinjected into pre-blastoderm embryos in the 

presence of a functional transposase. When the P-element randomly inserts into the 

genome of the germline, transformant flies will emerge, which can be selected and 

maintained by screening for the marker gene present in the P-element sequence.   
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2.1.2.2 Mutagenesis by P-element insertion into the Drosophila genome 

There are four general techniques for inducing mutagenesis in Drosophila - chemical, 

irradiation, insertional mutagenesis and homologous recombination. Chemical 

mutagenesis yields mostly point mutations. Radiation primarily results in 

rearrangements (i.e. translocations, duplications, deletions and inversions) (Greenspan, 

1997). Insertional mutagenesis gives the best leverage for rapid molecular cloning of 

the mutated gene. 

 

The insertion of a P-element into the region of a gene can result in a loss of function 

(LOF) phenotype. A large number of single insertion P-element lines have now been 

generated and are readily available from Drosophila stock centres (Bellen et al., 2004). 

Since P-elements harbour a degree of insertion point bias, other transposons, such as 

Piggyback and Minos, have been used to improve overall coverage. 

 

Exogenous DNA sequences can also be inserted into the Drosophila genome using P-

element based techniques. The insertion of a P-element containing the cDNA of a given 

gene downstream of a UAS sequence, for example, enables overexpression of a protein 

of interest (see section 2.1.3). Gene silencing can be induced through integration of P-

element vectors coding for dsRNA hairpin constructs, which activate the RNA 

interference (RNAi) machinery. RNAi fly lines are now available for most Drosophila 

transcripts. It is also possible to create transgenic fly lines controlling either 

overexpression or downregulation of a protein of interest in a spatially and/or 

temporally controlled manner. 

 

2.1.2.3 Mutagenesis by imprecise P-element excision 

P-element mobilisation by the transposase creates a double-stranded DNA break at the 

original insertion site. The break is sometimes repaired aberrantly, giving rise to loss of 

DNA around the insertion site (imprecise excision). Imprecise excisions can be used to 

generate LOF alleles in genes located close to the insertion site.  
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2.1.2.4 Visualising expression patterns by enhancer trapping 

Enhancer trapping involves the use of a P-element containing the LacZ gene (or another 

reporter) under the control of a minimal promoter, and the selection of re-insertion lines. 

Enhancer elements present in the chromatin near the reintegration site affect LacZ gene 

expression. This technique has been used to identify genes with interesting expression 

patterns during development (O'Kane and Gehring, 1987). An example of an enhancer 

trap line used in this study is ex-LacZ (P[lacW]ex697) (Hamaratoglu et al., 2006). 

 

2.1.3 Generation of mosaic tissues in Drosophila 

Genetic mosaic techniques allow genetic manipulations to be induced in a subset of 

cells or tissues (clones) (Blair, 2003), providing a way of examining genetic changes, 

which would be lethal if applied to the entire organism (Perrimon, 1998). Clonal 

analysis allows mutant cells to be studied alongside control cells within the same tissue. 

Genetic mosaic techniques have also been used to trace cell lineage and in the study of 

cell-autonomy of gene function (Blair, 2003).  

 

2.1.3.1 The FLP-FRT system (and loss of function clones) 

The FLP-FRT system is adapted from yeast, with its use in Drosophila first 

demonstrated in 1989 (Golic and Lindquist, 1989). This technique relies on site-specific 

recombination between two FRT (FLPase recombination target) sites catalysed by the 

yeast FLP recombinase (FLPase). Clonal analysis of approximately 95% of Drosophila 

genes is now possible thanks to the generation of stable fly lines containing FRT sites 

inserted at the base of each major chromosomal arm. P-element based plasmids were 

used to insert the FRT sequences (Xu and Rubin, 1993).  

 

In order to generate mosaics, one must firstly recombine the mutation of interest onto a 

chromosome with an FRT site at the base of the chromosome arm. These flies are then 

crossed to a line containing a WT homologous chromosome with the same FRT site, a 

distal cell marker (usually GFP alternatively LacZ) and the FLPase (see Figure 2.1A). 
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The presence of a transgene expressing FLPase under the control of a heat shock 

promoter ensures that when the next generation of developing flies are subjected to a 

heat shock (37oC), mitotic recombination occurs between the two FRT sites. 

Recombination between the two FRT sites, resulting in the exchange of chromatids 

between two homologous chromosomes, occurs at random and only in a small 

percentage of cells. Following FLP-induced recombination and chromosome 

segregation, daughter cells of different genotypes can be produced. One daughter cell 

will be homozygous for the mutation (GFP negative) and the other will carry two copies 

of the cell marker (WT, GFP positive). Surrounding cells, which did not undergo 

recombination will also be GFP-positive (heterozygous for the mutation and marker). 

The mutant cell will continue to divide, giving rise to a mutant clone; likewise, the WT 

sister cell will divide giving rise to a WT clone, known as the twinspot (cells carrying 

two copies of GFP). 

 

2.1.3.2 The Gal4-UAS system for loss or gain of function analysis 

The Gal4-UAS system has been adapted from yeast and enables the study of both 

overexpression and LOF phenotypes (Brand and Perrimon, 1993). The yeast TF Gal4 

binds to UAS (Upstream Activating Sequence) sites located in the 5’ UTR of genes (see 

Figure 2.1B). In flies, one transgene will express the Gal4 TF under the control of a 

specific promoter, while another transgene will harbour the UAS sequences upstream of 

a gene of interest. When the two transgenes are expressed together, Gal4 binds to the 

UAS sequences to drive expression of a gene of interest. Use of a UAS-GFP transgene 

enables the areas of gene expression to be labelled (Brand and Perrimon, 1993).  

 

The use of tissue-specific promoters with known patterns of gene expression enables 

researchers to observe protein overexpression in a specific tissue or cell-type (as 

demonstrated by the midgut progenitor-specific esg-Gal4 and EC-specific MyoIA-Gal4 

drivers used in this study). The Gal4-UAS system also allows LOF function analysis by 

expressing dominant negative forms of a protein of interest or RNAi constructs (Dietzl 

et al., 2007).  
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Figure 2.1: Generation of mosaic tissues in Drosophila – FLP/FRT and Gal4-UAS 

(A) Schematic representation of the FLP/FRT technique. (B) Schematic representation 
of the Gal4-UAS system 
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The timing of Gal4 expression can be regulated in a number of ways, including 

incorporation of drug or hormone sensitivity into the Gal4. In this study, I have used a 

temperature sensitive version of the Gal4 inhibitor Gal80 (Gal80ts ) (Lee and Luo, 1999) 

as a means of controlling the Gal4-UAS system. Tubulin-driven Gal80 expression can 

inhibit Gal4 activity. Fly lines combining the temperature sensitive Gal80 with a Gal4 

construct include the two main drivers used in this study, esgts and MyoIAts. At the 

permissive temperature (18oC), Gal80ts blocks Gal4 activity, but when shifted to a 

higher restrictive temperature (29 oC), Gal80ts no longer blocks Gal4. 

 

2.1.3.3 The FLPout technique 

The FLP/FRT and Gal4-UAS systems are combined to generate positively marked 

clones in what is known as the FLPout technique (see Figure 2.2A)(Pignoni and 

Zipursky, 1997, Ito et al., 1997, de Celis and Bray, 1997). These positively marked 

mutant clones are easier to spot in dense tissue. In this technique, the Gal4 gene is 

separated from a constitutive promoter by a “stuffer”, comprising two FRT sites and a 

transcription termination site and, as a result, is silenced at baseline. FLP activity, 

generally under the control of the heat-shock promoter, is used to induce random 

recombination between the FRT sites leading to the removal of the “stuffer”. Removal 

of the “stuffer” results in constitutive Gal4 expression in that sub-set of cells and their 

descendants. This technique, combined with a UAS-GFP present on the same 

chromosome as the FLPout construct, in order to visualise the cells in which 

recombination had taken place (FLPout clones), was for example used in Figure 3.12.  

 

2.1.3.4 The MARCM (mosaic analysis with a repressible cell marker) 

system 

The MARCM system combines the FLP-FRT and Gal4-UAS techniques allowing the 

generation of positively marked LOF clones (see Figure 2.2B) (Lee and Luo, 1999). At 

least six transgenes are required for MARCM analysis: two homologous FRT sites, one 

FLP recombinase, one UAS-marker, one Gal4 driver and the tub-Gal80 transgene  
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Figure 2.2 Generation of mosaic tissues in Drosophila – FLPout and MARCM 

(A) Schematic representation of the FLPout technique. (B) Schematic representation of 
the MARCM system. 
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(which is placed downstream of the FRT site and in trans to the gene of interest) (Lee 

and Luo, 1999). Upon heat-shock induced FLP expression, random recombination 

events can result in one daughter cell carrying no tubGal80 expression (homozygous 

mutant), thus enabling Gal4 to drive UAS-GFP expression, leading to the appearance of 

GFP positive clones. Mutant clones are generated when a mutation in a gene of interest 

is provided on an FRT site identical to the FRT site in the tub-Gal80 transgene (as 

performed in Figure 3.8D-D” for example). Using this technique, it is also possible to 

induce clones, which simultaneously overexpress one gene of interest whilst being 

homozygous mutant for another. This is useful for epistasis experiments but was not 

used in this study. Since labelled cells are the progeny of one cell and the production of 

marked clones after mitotic recombination depends upon subsequent cell division, the 

MARCM technique has been used in midgut lineage tracing experiments and as a direct 

means to assay proliferation (Micchelli and Perrimon, 2006). 

 

2.2 Tissue sample preparation 

2.2.1 General fly husbandry  

Flies were maintained in vials of standard fly food media (see recipe below) on a 12 

hour light-dark cycle. On average, genetic crosses were set up using 13 female and 5-6 

male flies. 

 

Fly Food (50L) 

50L H2O 
360g Agar 
3600g Maize 
3600g Malt 
1200ml Molasses 
440g Soya 
732g Yeast 
280ml of acid mix (500ml Propionic acid + 32ml Orthophosphoric acid) 
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2.2.2 Temperature shift experiments 

Two gut specific drivers were used in this study. To restrict transgene expression to 

progenitor cells, expression was placed under the control of the ISC/EB driver esg-Gal4, 

and temporally restricted using temperature-sensitive Gal80 under the control of the 

tubulin promoter (esg-Gal4;tub-Gal80ts,UAS-GFP referred to as esgts) (Micchelli and 

Perrimon, 2006, McGuire et al., 2003). MyoIAGal4 is an enhancer trap inserted in the 

gut-specific brush border myosin IA gene (Morgan et al., 1994). The inducible Myo1A-

Gal4, tub-Gal80ts system (referred to as MyoIAts) drives UAS expression in midgut ECs 

(Jiang et al., 2009).   

 

Crosses using the Gal80ts system were set up and maintained at 18°C, the permissive 

temperature, until adulthood.  Crosses were transferred to a fresh vial every seven days. 

Adults were maintained at 18°C for 1-2 days post-eclosion before being shifted to 29°C 

routinely for six days prior to dissection. Adult flies were transferred to fresh food vials 

every three days. Flies were shifted to the restrictive temperature for shorter periods in 

time-course experiments (days indicated in Figure 3.2).  

 

2.2.3 FLPout clones in the gut 

For adult gut FLPout clones, crosses were set up and cultured at room temperature (RT).  

Crosses were transferred to a fresh vial every five days. Flies were heat-shocked for 30 

minutes five days after eclosion and dissected five days later.  For pucRNAi analysis 

flies were analysed 0, 1 and 2 days after heat shock (Figure 5.8).  

 

2.2.4 FLPout clones in wing imaginal discs 

For wing imaginal disc FLPout clones (Figure 4.4), crosses were established at 25°C. 

Crosses were transferred to a fresh vial every day. Larvae were heat shocked for 10 

minutes 72 hours A.E.D (after egg deposition) and dissected 120 hours A.E.D (Pignoni 

et al., 1997). 
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2.2.5 MARCM clones 

MARCM clones were generated as previously described (Lee and Luo, 1999). Crosses 

were raised at RT, adult female flies were heat shocked for 45 minutes five days after 

eclosion and dissected 5-10 days after clone induction. Analysis of BrdU+ cells per 

clone was performed by simultaneous co-staining in flies fed BrdU for 10 hours on day 

seven of clone growth (Figures 3.14). Epithelial architecture of hpo mutant clones was 

analysed in 14-day old clones to allow continued overproliferation (Figure 3.3H-H’). 

Clones were analysed seven days after induction for Figure 3.5F. Clones were analysed 

10 days after induction for Figures 3.8D-E” and 3.13. 

 

2.2.6 List of genotypes used in this study 

Figure Genotype 

Figure 3.1   

(A-A”)  yw;esgGal4;tubGal80ts,UAS-GFP 

(B-B”)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

(C-C”)  yw;esgGal4,UAS-wts-RNAi;tubGal80tsUAS-GFP 

Figure 3.2    

(A)  yw;esgGal4;tubGal80ts,UAS-GFP 

(B)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

Figure 3.3    

(A, F)  yw;esgGal4;tubGal80ts,UAS-GFP 

(B)  yw;UAS-Notch-RNAi,esgGal4;tubGal80tsUAS-GFP 

(C, G)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

(D-D”)   y,w,hsflp;esg-LacZ;Act>CD2>Gal4,UAS-GFP  

(E-E”) y,w,hsflp;esg-LacZ;Act>CD2>Gal4,UAS-GFP/UAS-yki 

(H-H’)  w;FRT42Dhpo42-47/y,w,hsFlp,UASGFP-NLS;FRT42DTubGal80,TubGal4 

Figure 3.4   

(A-A’, D)  yw;esgGal4;tubGal80ts,UAS-GFP 

(B-B’, D)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

(C-C’)  yw;esgGal4,UAS-wts-RNAi;tubGal80tsUAS-GFP 

Figure 3.5   

(A, E)  yw;esgGal4;tubGal80ts,UAS-GFP 

(B, E)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

(C, E)  yw;esgGal4,UAS-wts-RNAi;tubGal80tsUAS-GFP 
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(D)  yw; esgGal4; tubGal80ts UAS-GFP, UAS-yki 

(F) 
w;P[ry+hs-neoRFRT]42DP[mini-w+,hs-pmyc]45F/y,w,hsFlp,UASGFP-NLS; 

FRT42DTubGal80,TubGal4 

(F) FRT42Dhpo42-47/y,w,hsFlp,UASGFP-NLS;FRT42DTubGal80, tubGal4 

(F) 
y,w;eyFLP;FRT82Bsavshrp1/y,w,hsFlp,UAS-GFP-CD8;+;TubGal4,FRT82B, 

tubGal80 

Figure 3.6   

(A-A’)  yw, Su(H)Gbe-LacZ; esgGal4; tubGal80ts UAS-GFP 

(B-B’)  yw , Su(H)Gbe-LacZ; esgGal4; tubGal80ts UAS-GFP, UAS-yki 

(C-C’’) w,Su(H)Gbe-LacZ; MyoIAGal4;tubGal80tsUAS-GFP,UAS-yki 

Figure 3.7   

(A, D)  yw;esgGal4;tubGal80ts,UAS-GFP 

(B, D)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

(C, D)  yw;esgGal4,UAS-wts-RNAi;tubGal80tsUAS-GFP 

Figure 3.8   

(A-A’)  yw;esgGal4;tubGal80ts,UAS-GFP 

(B-B’)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

(C-C’)  yw;esgGal4,UAS-wts-RNAi;tubGal80tsUAS-GFP 

(D-D”)   
yw;+;FRT82b,wtslatsX1/ywTubGAL4 hsFLP 122 UAS-nucGFPmyc;;FRT82B CD21 

y+ TubG80.LL3. 

(E-E”)  ywTubGAL4 hsFLP 122 UAS-nucGFPmyc;;FRT82B CD21 y+ TubG80.LL3 

Figure 3.9   

(A-A’’, D)  w;MyoIAGal4;tubGal80ts,UAS-GFP 

(B-B’’, D) w;MyoIAGal4;tubGal80tsUAS-GFP,UAS-yki 

(C-C”, D)  w;MyoIAGal4,UAS-wtsRNAi;tubGal80tsUAS-GFP  

Figure 3.10   

(A-B”)  w;MyoIAGal4, esg-LacZ;tubGal80ts,UAS-GFP 

(C-E)  w;MyoIAGal4, esg-LacZ;tubGal80tsUAS-GFP,UAS-yki 

Figure 3.11   

(A, D, E)  w;MyoIAGal4;tubGal80ts,UAS-GFP 

(B, D, E)  w;MyoIAGal4;tubGal80tsUAS-GFP,UAS-yki 

(C, D)  w;MyoIAGal4,UAS-wtsRNAi;tubGal80tsUAS-GFP  

Figure 3.12   

(A-A’’)  y,w,hsflp,Upd-LacZ;+;Act>CD2>Gal4,UAS-GFP  

(B-B’’)  y,w,hsflp,Upd-LacZ;+;Act>CD2>Gal4,UAS-GFP/UAS-yki 

(C-C”)  y,w, Su(H)Gbe-LacZ;+;Act>CD2>Gal4,UAS-GFP  

(D-D”)  y,w, Su(H)Gbe-LacZ;+;Act>CD2>Gal4,UAS-GFP/UAS-yki 

Figure 3.13   
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(A-A’’,C-C’’)   
yw;+;FRT82b,wtslatsX1/ywTubGAL4 hsFLP122 UASnuc GFPmyc; ; FRT82B 

CD21 y+ TubG80.LL3. 

(B-B”, D-D’’)  ywTubGAL4 hsFLP 122 UAS-nucGFPmyc; ;FRT82B CD21 y+ TubG80.LL3 

Figure 3.14   

(A-B’,D,E)  
y,w;eyFLP;FRT82Bsavshrp1/y,w,hsFlp,UAS-GFP-CD8;+;TubGal4,FRT82B, 

tubGal80 

(C-E)  y,w,hsFlp,UAS-GFP-CD8;+;TubGal4,FRT82B,tubGal80/FRT82B 

Figure 4.1   

(A-A’’)  y,w,hsflp,Upd-LacZ;+;Act>CD2>Gal4,UAS-GFP  

(B-B’’)  y,w,hsflp,Upd-LacZ;+;Act>CD2>Gal4,UAS-GFP/UAS-yki 

Figure 4.2   

(A-A”) 
Upd-lacZ;+;FRT82b,wtslatsX1/ywTubGAL4hsFLP122UAS-nucGFPmyc;;FRT82B 

CD21 y+ TubG80.LL3. 

(B-B”)  
Upd-lacZ;+;FRT82b/ ywTubGAL4 hsFLP122UAS-nucGFPmyc;;FRT82B CD21 y+ 

TubG80.LL3 

(C-C”) Upd-lacZ;FRT42Dhpo42-47/y,w,hsFlp,UASGFP-NLS;FRT42DTubGal80, tubGal4 

(D-D”) 
Upd-lacZ;FRT42DykiB5,hpo42-47/y,w,hsFlp,UASGFP-NLS;FRT42D 

TubGal80,TubGal4 

Figure 4.3   

(A-A”)  w,hsf;upd3Gal4-UASGFPtub>y+>yki 

(B)  yw;esgGal4/statRFP;tubGal80tsUAS-GFP 

(C-C’)  yw;esgGal4/statRFP;tubGal80tsUAS-GFP,UAS-yki 

(D-D’)  w;MyoIAGal4/statRFP;tubGal80ts  

(E-E’,G)  w;MyoIAGal4/statRFP;tubGal80ts/UAS-yki 

(F-F’)  w;MyoIAGal4/UAS-wtsRNAi;tubGal80ts/statRFP 

Figure 4.4   

 (A-B’’)  y,w,hsflp, Upd-LacZ; +; Act>CD2>Gal4, UAS-GFP / UAS-yki 

Figure 4.5   

(A,E,I)  yw;esgGal4;tubGal80tsUAS-GFP 

(B,F,I)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

(C,G,I)  yw;esgGal4,UAS-statRNAi;tubGal80tsUAS-GFP 

(D,H,I) yw;esgGal4,UAS-statRNAi;tubGal80tsUAS-GFP,UAS-yki 

Figure 4.6:   

(A,E,I)  w;MyoIAGal4;tubGal80ts,UAS-GFP 

(B,F,I)  w;MyoIAGal4; tubGal80tsUAS-GFP,UAS-yki 

(C,G,I)  w;MyoIAGal4, UAS-statRNAi; tubGal80ts UAS-GFP 

(D,H,I) i w;MyoIAGal4,UAS-statRNAi;tubGal80tsUAS-GFP,UAS-yk 

Figure 4.7:   
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(A-A’)  ywTubGAL4 hsFLP 122 UAS-nucGFPmyc; ;FRT82B CD21 y+ TubG80.LL3 

(B-B’)  
yw;+;FRT82b,wtslatsX1/ywTubGAL4hsFLP122UASnuc GFPmyc;;FRT82B CD21 

y+ TubG80.LL3. 

(C-D’)  FRT42DykiB5/y,w,hsFlp,UASGFP-NLS;FRT42D TubGal80,TubGal4 

(E-E’, I-I’’’)  yw;esgGal4;tubGal80tsUAS-GFP 

(F-F’)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

(G-G’)  w;MyoIAGal4;tubGal80ts,UAS-GFP 

(H-H’)  w;MyoIAGal4; tubGal80tsUAS-GFP,UAS-yki 

Figure 4.8:   

(A-C’)  yw;esgGal4;tubGal80tsUAS-GFP 

Figure 4.9:   

(A)  w1118 

(B-C”)  y,w;ex-LacZ/cyo 

Figure 4.10:   

(A,C,E,G,I)  w;esgGal4;tubGal80tsUAS-GFP 

(B,D,F,H,I)  w;esgGal4,UAS-yki-RNAI;tubGal80tsUAS-GFP 

Figure 4.11:   

(A,C,E,F,H)  w;MyoIAGal4;tubGal80tsUAS-GFP 

(B,D,E,G) P w;MyoIAGal4,UAS-yki-RNAi;tubGal80tsUAS-GF 

(H)  w;MyoIAGal4,UAS-hpo;tubGal80tsUAS-GFP 

Figure 4.12:   

(A,B)  yw;esgGal4;tubGal80tsUAS-GFP 

(A,B)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

(A,B)  w;esgGal4,UAS-yki-RNAi;tubGal80tsUAS-GFP 

(C,D)  w;MyoIAGal4;tubGal80tsUAS-GFP 

(C,D)  w;MyoIAGal4; tubGal80tsUAS-GFP,UAS-yki 

(C,D)  w;MyoIAGal4,UAS-yki-RNAi;tubGal80tsUAS-GFP 

Figure 4.13:   

(A and C)  yw;esgGal4;tubGal80tsUAS-GFP 

(B and D)  w;MyoIAGal4;tubGal80tsUAS-GFP 

(B)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

(C)  w;esgGal4,UAS-yki-RNAi;tubGal80tsUAS-GFP 

(D)  w;MyoIAGal4; tubGal80tsUAS-GFP,UAS-yki 

(D)  w;MyoIAGal4,UAS-yki-RNAi;tubGal80tsUAS-GFP 

Figure 5.1:   

(A-A’,E)  w;MyoIAGal4;tubGal80tsUAS-GFP 

(B-B’, E)  w;MyoIAGal4; tubGal80tsUAS-GFP,UAS-yki 

(C-C’, E)  w;MyoIAGal4,UAS-kib-RNAi,UAS-kib-RNAi; tubGal80tsUAS-GFP 
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(D-D’, E)  w;MyoIAGal4,UAS-kib-RNAi; tubGal80tsUAS-GFP,UAS-mer-RNAi 

Figure 5.2:   

(A-B’) fj-LacZ  

(C-D’)  yw;sp/cyo;HRE-diap1-GFP/Tm6b 

Figure 5.3:   

(A-D, G-J”)  yw;esgGal4;tubGal80tsUAS-GFP 

(E-E’)  w;MyoIAGal4; tubGal80tsUAS-GFP 

(F-F’)  w;MyoIAGal4; tubGal80tsUAS-GFP,UAS-yki 

Figure 5.4:   

(A)  w1118 

(A) UAS-yki/TM3 

(B)  yw;esgGal4;tubGal80tsUAS-GFP 

(B)  yw;esgGal4;tubGal80tsUAS-GFP,UAS-yki 

Figure 5.5:   

(A-B)  w;MyoIAGal4; tubGal80tsUAS-GFP 

(A-B)  w;MyoIAGal4,UAS-relish-RNAi; tubGal80tsUAS-GFP 

(A-B)  w;MyoIAGal4; tubGal80tsUAS-GFP,UAS-dredd-RNAi 

(A-B)  w;MyoIAGal4,UAS-tak1-RNAi; tubGal80tsUAS-GFP 

(A-B)  w;MyoIAGal4,UAS-dFADD-RNAi; tubGal80tsUAS-GFP 

Figure 5.6:   

(A) w;MyoIAGal4; tubGal80tsUAS-GFP,UAS-yki 

(A)  w;MyoIAGal4,UAS-duox-RNAi; tubGal80tsUAS-GFP,UAS-yki 

(A, B, C)  w;MyoIAGal4;tubGal80tsUAS-GFP 

(A, D, E)  w;MyoIAGal4,UAS-duox-RNAi;tubGal80tsUAS-GFP 

Figure 5.7:   

(A)  w;MyoIAGal4;tubGal80tsUAS-GFP 

(A)  w;MyoIAGal4,UAS-duox-RNAi;tubGal80tsUAS-GFP 

(A)  w;MyoIAGal4; tubGal80tsUAS-GFP,UAS-yki 

(B)  yw;esgGal4,ex-LacZ;tubGal80tsUAS-GFP 

Figure 5.8:   

(A) y,w,hsflp; +; Act>CD2>Gal4, UAS-GFP / UAS-pucRNAi  

Figure 5.9:   

(A-A’)  w;MyoIAGal4;tubGal80tsUAS-GFP 

(B-B’)  w;MyoIAGal4;tubGal80tsUAS-GFP/UAS-hepCA 

(C)  w;MyoIAGal4,UAS-puc;tubGal80tsUAS-GFP 

(D)  w;MyoIAGal4,UAS-bskRNAi;tubGal80tsUAS-GFP 

(E)  w;MyoIAGal4,UAS-puc;tubGal80tsUAS-GFP/UAS-yki 

(F) w;MyoIAGal4,UAS-bskRNAi;tubGal80tsUAS-GFP/UAS-yki 
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(G-G’)  w;MyoIAGal4;tubGal80tsUAS-GFP/puce69 

(H-H’)  w;MyoIAGal4;tubGal80tsUAS-GFP/puce69,UAS-yki 

Table 2: List of genotypes 

2.3 Dissection and immunostaining protocols 

2.3.1 Gut dissection and immunostaining 

10x Fly PBS (Phosphate Buffer Solution) (1L)   PBST 

76.1g NaCl        Fly PBS 
18.8g Na2HPO4 (sodium phosphate dibasic)     0.1% Triton X-100 
4.1g NaH2PO4 (sodium phosphate monobasic) 
Add ddH2O (doubly distilled) up to 1L and autoclave 
 

Gut fixative (8ml) 

2ml 16% paraformaldehyde 
4ml Fly PBS 
2ml H2O 
 

2.3.1.1 Gut immunostaining protocol 

Female adult flies were dissected on a silicon pad in ice-cold 1x Fly PBS.  The entire 

gastrointestinal (GI) tract was dissected using a light microscope and tweezers. The 

Malpighian Tubules were removed and discarded from the rest of the gut. The GI tract 

was then placed in a small glass depression well, covered with a sheet of foil to protect 

from the light and fixed in 0.5X Fly PBS with 4% paraformaldehyde for 30 minutes at 

RT. Samples were then transferred to eppendorfs containing 0.1% Triton X-100 (PBST) 

using tweezers. A maximum of seven guts were placed in any one eppendorf. The 

following steps were all carried out with agitation on a Vari-Mix platform rocker 

(Thermo Scientific). Samples were washed three times in 0.1% PBST, permeabilised 

for 30 minutes in 0.3% PBST and pre-blocked for one hour in 10% Normal Goat Serum 

(NGS, MP Biomedicals), before incubation with primary antibody overnight at 4°C 

(generally in a volume of 300µl).  Samples were washed a further four times in PBST 

and pre-blocked for one hour before incubation with secondary antibody for 3-4 hours 

at RT.  Samples were then washed three times in PBST followed by a single wash with 
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PBS. Whole guts were mounted in Vectashield (Vector) containing DAPI (4',6-

diamidino-2-phenylindole).  

 

2.3.1.2 Antibody pre-absorption protocol 

The majority of antibodies were pre-absorbed using larval tissue in order to improve 

staining quality. Ten fixed and permeabilised inverted larvae were added to an 

eppendorf containing 300µl of the antibody of interest (at ten times the concentration to 

be used experimentally) in PBST. Antibodies were incubated with the larval tissue for 

3-4 hours at RT. The solution was then removed and stored at 4oC for up to four weeks. 

 

2.3.1.3 BrdU (Bromodeoxyuridine) incorporation protocol 

Flies carrying seven day old MARCM clones were transferred to food containing BrdU 

(100µg/ml in PBS) mixed into the upper layer and dissected ten hours later (Figure 

3.14). 

 

2.3.1.4 Table of midgut cell markers 

Cell Type Marker 

Intestinal Stem Cell Delta (cytoplasmic vesicles) 

  esg-GFP, esg-lacZ (marks all ISCs and EBs) 

  PH3 (marks actively dividing ISCs) 

Enteroblast 

Su(H)Gbe-LacZ (nuclear with some cytoplasmic bleed 

through) 

  esg-GFP, esg-lacZ  (marks all ISCs and EBs) 

Enterocyte Pdm-1 (nuclear) 

  DAPI (large polyploid nuclei) 

  MyoIA-LacZ, MyoIA-GFP (also known as Myo31DF) 

Enteroendocrine cell Prospero (nuclear) 

Table 3: Midgut cell markers 
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2.3.2 Wing imaginal disc dissection and immunostaining 

Wing disc fixative (8ml) 

2ml 16% paraformaldehyde 
6ml Fly PBS 
 

2.3.2.1 Wing disc immunostaining protocol 

Wing imaginal discs were dissected in 1x PBS and then fixed in 4% paraformaldehyde 

for 22 minutes. All other steps were conducted as described in section 2.3.1.1. 

 

2.3.3 Gut sections 

For cryosections, midguts were dissected, fixed and embedded in O.C.T Tissue-Tek 

medium (Sakura) according to standard procedures and subsequently processed for 

immunofluorescence staining as above. For optical sections, orthogonal representations 

of z-stacks spanning the midgut epithelium were presented using Nikon NIS-elements 

imaging software. 

 

2.3.4 Table of Antibodies 

          Antibody Species Concentration                 Source 

aPKC (sc-216) Rabbit 1 in 500 Santa Cruz 

Arm (N2 7A1) Mouse 1 in 10 DSHB 

Beta-galactosidase Rabbit 1 in 500 Cappell 

Beta-galactosidase Mouse 1 in 500 Promega 

BrdU Mouse 1 in 100 BD Biosciences 

Delta  Mouse 1 in 100 DSHB 

DE.Cadherin  Rat 1 in 20 DSHB 

Pdm-1  Rabbit 1 in 100 W.Chia 

PH3  Rabbit 1 in 1000 Upstate Biotechnology 

PH3 Mouse 1 in 1000 Upstate Biotechnology 
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Prospero  Mouse 1 in 20 DSHB 

Yki  Rabbit 1 in 500 Ken Irvine 

Yki69 (aa381-395) Rat 1 in 100 Eurogentec SA, Belgium 

Rhodamine Red X 

(RRX) Mouse 1 in 500 

Jackson 

ImmunoResearch 

Rhodamine Red X 

(RRX) Rabbit 1 in 500 

Jackson 

ImmunoResearch 

Rhodamine Red X 

(RRX) Rat 1 in 500 

Jackson 

ImmunoResearch 

Rhodamine Phalloidin   1 in 500 Molecular Probes 

Table 4: Antibodies 

2.4 Imaging and image analysis 

2.4.1 Microscopy and Imaging 

Flies were sorted and dissected using a dissection microscope (Leica MZ7s) with 

external light source. 

 

Fluorescence images were generally acquired on a Zeiss LSM510 confocal microscope. 

Figure 3.3A-C was obtained using a Leica SP5. Figures 3.3G-H’, 3.14 and 4.2C-D” 

were obtained using a Nikon A1Rsi. Images were generated using XY acquisitions and 

a 40X water objective (zoom 1x, 2x or 4x). The pinhole was set at 2.5µm, with the only 

exception being Figure 4.4, pinhole 1µm. 

 

Images were processed using ImageJ Fiji and Adobe Photoshop. Figures were compiled 

using Adobe Illustrator. 

 

2.4.2 Quantification  

Dl positive cell numbers were quantified from square areas 115.2µm across (Figures 

3.4D and 3.9D).  Pros positive cell numbers were also quantified from square areas 

115.2µm across (Figure 3.7). For MARCM clone analysis, number of BrdU positive 
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cells per clone was obtained by manual counting after confocal imaging and 3D 

projection of confocal slices (Figure 3.14). Total number of proliferating cells was 

calculated by counting PH3 positive cells for entire guts (Figures 3.5E and F, 3.11D, 

4.5I, 4.6I, 4.10I, 4.11E and H, 4.13A and C, 5.1E, 5.4B, 5.5, 5.6A and 5.7A). Survival 

rates were calculated as a percentage of the total number of flies at day 0 (Figures 4.12 

and 4.13B and D). Graphs were generated using Prism5 or Microsoft Excel (Figures 

3.14, 4.3G, 4.9A and 5.8) 

 

2.4.3 Statistical Analysis 

The statistical significance of the difference between the various measured genotypes 

was examined using a two-tailed Mann-Whitney non-parametric test, (also called the 

rank sum test) using Prism. The number of samples analysed and p-values are shown in 

the relevant figure legends. To perform the Mann-Whitney test, Prism first ranks all the 

values from low to high, the smallest number gets a rank of one. The largest number 

gets a rank of N, where N is the total number of values in the two groups. Prism then 

sums the ranks in each group, and reports the two sums. If the sums of the ranks are 

very different, the P value will be small. The P value is the probability that the results 

could have occurred by chance. One can reject the null hypothesis when the P value is 

less than the significance level.  

 

2.5 Feeding assays and survival experiments 

2.5.1 Bacterial Infection 

For gut infections, crosses and infections were essentially performed as described in 

(Jiang et al., 2009). The Pseudomonas entomophila (P.e) glycerol stock used was 

originally received from Bruce Edgar (ZMBH, Heidelberg) and stored at -80°C. P.e 

cultures were grown in conical flasks at 30°C for two x overnight in L-Broth (LB) 

medium with selection on 100 µg/ml rifampicin (Sigma). Cultures were spun down at 

4000 rpm using an eppendorf 5810R centrifuge. The bacterial pellet was then 

resuspended in a one in ten volume of the initial bacterial culture volume using 5% 
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sucrose/PBS (Fischer Scientific).  0.5 ml of this concentrated bacterial suspension was 

mixed with a spatula into the upper few mm of fly food in a standard 10ml vial. 5% 

sucrose/PBS without bacteria was used as a control. A small piece of folded filter paper 

(Schleicher and Schuell) was added to the vial to prevent the flies from drowning. Flies 

were starved for two hours prior to oral infection. For RNAi experiments, crosses were 

maintained at 18°C and adult flies were shifted to 29°C for 4-5 days before infection.  

For rescue experiments, P.e infected flies were transferred to food lacking bacteria but 

containing 100 U/mL penicillin and 100 µg/ml streptomycin in PBS (Gibco) (Figure 

4.9A).  

 

LB, 1L 

10g Tryptone 
5g Yeast extract 
5g NaCl 
1ml 1M NaOH 
 

2.5.2 Dextran Sulphate Sodium (DSS) Treatment 

For DSS treatment, crosses and DSS feeding were essentially performed as described in 

(Amcheslavsky et al., 2009). DSS was stored at RT (MP Biochemical). A 3% DSS, 5% 

sucrose solution was made. A small piece of 6cm2 folded tissue (Kimberley-Clark) was 

secured to the bottom of an empty fly food vial using double sided tape. 0.5mls of 3% 

DSS, 5% sucrose solution was then pipetted onto the tissue. 5% sucrose solution 

without DSS was used as a control. For RNAi experiments, crosses were maintained at 

18°C and adult flies were shifted to 29°C for 4-5 days before DSS treatment. Flies were 

transferred to a fresh vial of DSS after 24 hours and treated with DSS for 48 hours in 

total (Figure 4.13).  

 

2.5.3 Hydrogen Peroxide (H2O2) Treatment 

H2O2 treatment was essentially performed following the same method as used for DSS 

treatment. 30% H2O2 solution was stored at 4°C (Sigma). 0.5mls of 0.1% (Figure 5.7) or 

0.2% (Figure 5.7B) H2O2 with 5% sucrose solution was pipetted onto a piece of tissue 
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at the bottom of an empty fly food vial. 5% sucrose solution without H2O2 was used as a 

control. Crosses were maintained at 18°C, adult flies were shifted to 29°C for 4-5 days 

before H2O2 treatment. Flies were transferred to a fresh vial of H2O2 after 24 hours and 

were treated with H2O2 for 48 hours in total (Figure 5.8) before dissection.  

 

2.5.4 Axenic food preparation 

Axenic fly food was prepared using our regular fly food recipe (see section 2.2.1). Food 

was allowed to cool to 60°C before the addition of a cocktail of antibiotics. Final 

antibiotic concentrations were: Tetracycline 10mg/ml (Sigma), Kanamycin 100mg/ml 

(Sigma), Ampicillin 100mg/ml (Sigma) and Erythromycin 50mg/ml (Sigma). All fly 

stocks used in the axenic feeding study were maintained on the germ-free food for two 

generations in order to eliminate the gut flora. Adult flies were crushed in 0.5ml PBS 

and the solution was spread onto LB agar plates (LB + 1% agar) in order to observe 

bacterial growth overnight at 37°C (Figure 5.4A). Experimental crosses and the 

resultant adult flies were set up and maintained on the axenic food until dissection 

(Figure 5.4B). 

 

2.5.5 Survival experiments 

For survival experiments, crosses were maintained at 18°C and adult flies were shifted 

to 29°C for 2-3 days before infection (Figure 4.12) or treatment with DSS (Figure 4.13). 

Flies were then transferred to a vial containing either P.e (Figure 4.12) or DSS (Figure 

4.13) for two consecutive days (flies were transferred to a fresh vial of DSS on day two). 

The number of living flies was counted roughly every 12 hours in order to monitor 

survival. Flies maintained on control food were monitored alongside their experimental 

counterparts. Following the initial two-day “stress treatment”, flies were transferred to 

fresh vials of standard fly food every three days. 
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2.6 Molecular Biology 

2.6.1 Genomic DNA extraction 

Genomic DNA was prepared from adult Drosophila males (1-3 males per extraction) 

homogenised in 200µl of PBS. DNA was extracted using the Quiagen DNeasy Blood 

and Tissue Kit (cultured cells protocol). 2µl of extracted DNA was then used in a 20µl 

PCR reaction. 

 

2.6.2 Polymerase Chain Reaction (PCR) 

PCR fragments were amplified using the Taq PCR Master-mix kit (Quiagen) and a 

PTC-200 Peltier thermal cycler (MJ Research). DNA fragments were amplified from 

the template DNA using oligonucleotide primers specifically designed to flank the 

region of interest. Primers were typically 20-30 nucleotides in length and manufactured 

by Sigma-Aldrich (see 2.6.3 Table of Primers).  

 

A typical 20µl PCR reaction was composed of the following reagents: 

10µl Taq PCR Master-mix 

1µl 5’ primer (10µm) 

1µl 3’ primer (10µm) 

2µl Template DNA 

6µl Distilled H2O 

 

A typical PCR program was as follows: 

1) 95oC for 5 minutes 

2) 95oC for 30 seconds (Denaturation) 

3) 55oC for 30 seconds (Annealing) 

4) 72oC for 1 minute per kb of product (Extension) 

5) Go to step (2) – 32 cycles 

6) 72oC for 10 minutes 

7) 4oC for ever 
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2.6.3 Table of primers for fly genotyping  

Primer Name Primer Sequence 

Flp 5' CCTAAGGTGCTTGTTCGTCAGTTTG 

Flp 3' GTGATATTATCCCATTCCATGCGG 

5’ Gal4 TTCTTCTGTCGACGATGTGC 

3’ Gal4 GCGGTCTCGTTATTCTCAGC 

5’ Gal80 GTGGCCAGCCATTATGAAGT 

3’ Gal80 GGTAGGTTTGCCACCTTTGA 

GFP Forward GGAGTACAACTACAACAGCC 

GFP Rev CTTCGGGCATGGCGGACTTG 

5' LacZ TTCACTGGCCGTCGTTTTACAACGTCGTGA   

3' LacZ ATGTGAGCGAGTAACAACCCGTCGGATTCT   

Neo2 AGAGGCGCTTCGTCTACGGAGCGACA 

Hsp70 CGGCAAGCAGGCATCGCCATGGGTC 

pMF3L CCAGCAACCAAGTAAATCAAC  

Stat-RNAI CGCGAATTCCGCCCTCATCCAACGCATCT 

Bsk RNAi CGCGAATTCCGCCGCAAAGGAACTTGGAA 

Notch RNAi CGCGAATTCGCACCGAAAAGCAGGGCAAC 

5’ UAS hep CCTCGTCATCATCCTCATCCGCATCC 

3’ UAS hep CCACATTGCCGCTAGTCCCATTGCC 

5’ UAS puc CCTCAAGTACATGCAAATACCTGCCAG 

3’ UAS puc GGATTGCTAGGACTATTCAGGTGCGG 

5' UAS yki CCAGCAGCAATACAAACAGCC 

3' UAS yki CTGGGATCATTCCATGAAGTCGTTC 

Table 5: Primers 

2.6.4 Gel electrophoresis 

PCR products were run on 0.8% agarose gels (50µl 0.5x TAE + 0.4g agarose 

(Invitrogen) + 1µl Ethidium Bromide (Roche). Gels were imaged using an IMAGO 

compact imaging system. 
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TAE 

40mM Tris Acetate 
1mM EDTA 
 

2.6.5 Quantitative Reverse-Transcription PCR (qRT-PCR) 

Ten guts of the relevant genotype were collected (as described in section 2.3.1), placed 

in an eppendorf, and frozen in liquid Nitrogen. Guts were later disrupted and 

homogenised in Trizol (Invitrogen), using a small hand-held motor driven pestle. Total 

RNA was isolated using Trizol and cleaned by column purification and on-column 

DNAse I treatment (Quiagen). 1.5 µg of RNA was reverse transcribed (SuperScript III 

cDNA Synthesis Kit, Invitrogen) using random hexamers to produce cDNA. To 

measure mRNA levels, qPCRs were carried out on reverse-transcribed mRNA. RT-

qPCR was performed on cDNA corresponding to 3.75ng input RNA on a LightCycler 

480 II using SYBR Green I (Roche). Experiments were performed in triplicates. 

Relative fold differences in expression levels of target genes were calculated as a ratio 

to the mean of three reference genes dp1 (dodeca-satellite-binding protein 1), rp49 

(ribosomal protein 49) and myo1A for the analysis of short-term effects of PE infection 

(Figure 4.9), and to the mean of dp1 and rp49 for the analysis of long-term Yki 

expression (Figure 4.3 and 5.8). 

 

2.6.6 Table of primers for qRT-PCR 

Primer Name Primer Sequence 

CycE-F  ACAAATTTGGCCTGGGACTA 

CycE-R  GGCCATAAGCACTTCGTCA 

Diap1-F GAAAAAGAGAAAAGCCGTCAAGT 

Diap1-R  TGTTTGCCTGACTCTTAATTTCTTC 

Dp1-F  CCGCAAATTCGACAGAGAC 

Dp1-R  CGCAACATTTCGTTTTTCTG 

Ex-F  GATGCTGGACACCGAACTC 

Ex-R  CTTGCTCTCGGGATCTGC 
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Myo1A-F  GAAGCTGGAGTGCAGGACTT 

Myo1A-R  GATGGATCCGTTTTGGAATC 

Puc-F  GCCACATCAGAACATCAAGC 

Puc-R  CCGTTTTCCGTGCATCTT 

Rp49-F  CGGATCGATATGCTAAGCTGT 

Rp49-R  CGACGCACTCTGTTGTCG 

Socs36E-F  ACGCAACACAGCAGCAAG 

Socs36E-R  GGACACGGATGTGGATGC 

Upd1-F  CCTACTCGTCCTGCTCCTTG 

Upd1-R TGCGATAGTCGATCCAGTTG 

Upd2-F CATCGTCATCCTCATCATCG 

Upd2-R  ATGTTCCGCAAGTTTTCGAG 

Upd3-F  AAATTCGACAAAGTCGCCTG 

Upd3-R  TTCCACTGGATTCCTGGTTC 

Yki-F  GCGCCTTGCCGCCGGGATG 

Yki-R  GCTGGCGATATTGGATTCTG 

Table 6: Primers for qRT-PCR 
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Chapter 3. Results  

A role for the Hippo pathway in the adult Drosophila 

posterior midgut 

3.1 Aims of this project 

3.1.1 Overall Aim 

At the start of my project, the majority of studies investigating the Hpo pathway had 

focussed on developmental contexts, particularly on its role in limiting tissue growth. 

Hpo pathway function in adult organisms has been relatively less explored. Growth 

control in the maintenance of adult homeostasis is a distinct process, whereby dying 

cells have to be replaced in the absence of tissue mass increase. The initial aim of my 

project was therefore to address whether the pathway might have a role in the adult fly.  

 

As a key regulator of developmental organ growth, it was reasonable to hypothesise that 

the Hpo pathway might play a role in restricting regenerative growth in adult tissues. 

The Hpo pathway is known to be deregulated in various types of cancer (reviewed in 

(Fernandez and Kenney, 2010)). Understanding what role the pathway plays in adult 

homeostasis and abnormal growth could therefore be of significance to cancer therapy 

and regenerative medicine.  

 

3.1.2 The adult posterior midgut 

The adult population of ISCs in the Drosophila posterior midgut were discovered two 

years prior to the start of my PhD (Ohlstein and Spradling, 2006, Micchelli and 

Perrimon, 2006). This finding not only provided a new model system in which to 

investigate SC biology but also a new adult model system in which to utilise Drosophila 

genetic tools to develop our understanding of various signalling pathways. 

 

Further support for an in-depth investigation into the role of the Hpo pathway in the 

adult posterior midgut came one year later. A study from Camargo et al showed that in 
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the mouse intestine, overexpression of YAP1, the mammalian orthologue of Yki, results 

in expansion of the progenitor cell compartment. It thus became clear that the Hpo 

pathway might play a role in regulating growth in the intestine (Camargo et al., 2007).  

 

3.1.3 Initial approach 

My initial aim was to investigate whether Hpo pathway inactivation had any effect in 

the adult posterior midgut, the Drosophila equivalent of the small intestine. To examine 

the effect of Hpo pathway inactivation in the midgut, I began by inducing Yki 

overexpression, which phenocopies hpo or wts loss in imaginal discs (Huang et al., 

2005). To ensure transgene expression was restricted to progenitor cells in the adult 

midgut, expression was placed under the control of the ISC/EB driver esg-Gal4, and 

temporally restricted using temperature-sensitive Gal80 under the control of the tubulin 

promoter (esg-Gal4;tub-Gal80ts,UAS-GFP from here on referred to as esgts) (Micchelli 

and Perrimon, 2006, McGuire et al., 2003). Adult flies were shifted to the restrictive 

temperature (29°C) in order to activate transgene expression, and later dissected 

(detailed timings of temperature shifts can be found in Chapter 2). 

 

Although Yki overexpression has been shown to phenocopy hpo or wts loss in imaginal 

discs, throughout this study I have tried to avoid relying solely on overexpression when 

drawing conclusions on Hpo pathway function in the midgut. Misexpression of the Yki 

transgene is not necessarily representative of endogenous Yki function. In order to 

address this issue, where possible loss-of-function experiments using a wts-RNAi line 

or MARCM clones mutant for members of the Hpo pathway were also generated. 

However, since YAP amplification has been reported in a number of cancer types 

(Steinhardt et al., 2008, Zender et al., 2006, Fernandez and Kenney, 2010), my 

overexpression experiments may be analogous to intestinal tumourigenesis.  
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3.2 Effects of Hpo pathway inactivation in ISCs 

3.2.1 Hpo pathway inactivation induces an increase in the number of 

esg+ cells 

esgts-driven expression of Yki led to an increase in the number of esg+ ISCs and EBs 

compared to controls (Figure 3.1A-B”).  An increase in the number of esg+ cells was 

also apparent when the upstream kinase Wts was silenced in the ISCs and EBs (Figure 

3.1C-C”).  No obvious phenotype was observed upon esgts-driven expression of an hpo-

RNAi construct (data not shown), although only one hpo-RNAi line was tested.  

 

The appearance of this mutant phenotype was characterised in more detail by examining 

different regions of the gut at various time points post-temperature shift (Figure 3.2). As 

detailed in Chapter 2, crosses we set up at 18°C and adult flies were maintained at 18°C 

for 1-2 days post-eclosion, before shifting to the non-permissive temperature (29°C). 

This 1-2 day delay was to avoid transgene expression having an effect on the final 

stages of gut development in the young adult flies.  

 

An increase in esg+ cells was occasionally observed as early as 24 hours post-

temperature shift (day three in Figure 3.2), with small clusters of cells beginning to 

form (Figure 3.2B). By day seven, these small clusters formed larger patches. The same 

phenotype was apparent at various locations along the midgut (Figure 3.2B). The 

strongest phenotype, in terms of a consistent increase in esg+ cells, was observed in the 

posterior midgut (Figure 3.1) and in a small patch of tissue located in the anterior 

midgut. I therefore decided to focus the study on the posterior midgut since the cellular 

organisation and esg expression pattern in this region is better characterised (Ohlstein 

and Spradling, 2006, Micchelli and Perrimon, 2006, Ohlstein and Spradling, 2007).  

 

It is important to note that one of the drawbacks of using the midgut as a model system 

is the level of variability. Gut homeostasis is a carefully controlled process and factors 

such as age and diet can have rapid and significant effects on homeostatic balance. 

Unsurprisingly, at an early stage in the project, it became apparent that flies reared at 

the same temperature, on the same diet and aged for the same length of time, often  
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Figure 3.1: Hpo pathway inactivation in ISCs induces an increase in esg-positive cell 

number 

Confocal micrographs of adult posterior midguts of increasing magnification. (A-C’’) 
esgts-driven expression of Yki (B-B’’) or wts-RNAi (C-C’’) in ISCs and EBs leads to an 
increase in esg+ cells compared to control (A-A’’), but no obvious effect on pros+ cell 
numbers.  Nuclei are stained with DAPI (blue), esg+ cells are marked by GFP (green) 
and Pros is in red.  Scale bars = 20µm.  
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Figure 3.2: Time course of Yki expression in ISCs in different regions of the midgut 

Confocal micrographs of adult midguts at different time points following shift to the 
non-permissive temperature in order to observe progression of the phenotype.  Images 
from the medial and anterior midgut are shown. (A-B) esgts-driven expression of Yki 
(B) induces a gradual increase in numbers of esg+ cells and PH3 marked mitoses in 
various regions of the midgut when compared to control (A). Nuclei are stained with 
DAPI (blue), esg+ cells are marked by GFP (green) and PH3 is in red. Yki 
overexpression could induce clumping of esg+ cells after just 24hrs (day three) at the 
non-permissive temperature.  By day seven large patches of esg+ cells are present.  
Scale bar = 20µm. 
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exhibited a large degree of variability in terms of esg+ cell number and proliferation. 

This is also true for the Yki overexpression phenotype and generally of other 

mutant/overexpression phenotypes I examined. In order to overcome this, experimental 

timings and diet were carefully controlled (as detailed in Chapter 2) and large numbers 

of guts were used for all experiments in order to control for environmental variability. 

 

3.2.2 Hpo pathway inactivation affects the size of esg+ cells 

Notch signalling has previously been shown to promote ISC differentiation (Micchelli 

and Perrimon, 2006, Ohlstein and Spradling, 2006). I wanted to see how the Yki 

overexpression phenotype compared to Notch loss of function.  As expected, Notch 

depletion caused an increase in the number of small, esg+ cells representing ISC-like 

tumours due to a blockage in differentiation (Figure 3.3B). In contrast, Yki 

overexpression led to overproliferation and the formation of patches of esg+ cells which 

had a mixture of small nuclei typical of ISCs and EBs (Figure 3.3C, arrowheads) and 

much larger nuclei (Figure 3.3C, arrow). The induction of Yki overexpressing Flipout 

clones also caused an increase in esg+ cell size (Figure 3.3D-E”).  

 

Transverse cryosections through the midgut showed that esgts-driven expression of Yki 

leads to increased numbers of progenitor cells (esg+), an enhanced cell density of 

differentiated cell types (esg-) and an increased thickness of the epithelium (Figure 

3.3F-G). This was also apparent in optical sections through MARCM clones mutant for 

the upstream kinase hpo compared to the surrounding non-mutant epithelium (Figure 

3.3H-H’). I therefore concluded that inactivation of the Hpo pathway in the posterior 

midgut leads to an accumulation of esg+ cells, both smaller (ISCs/progenitors) and 

larger, as well as a thickening of the epithelium.  

 

3.2.3 Hpo pathway inactivation promotes Dl expression 

In order to examine whether esg+ cells retain SC characteristics upon Yki expression, I 

examined the expression of Dl, currently the best-characterised ISC-specific marker  
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Figure 3.3: Yki overexpression increases esg-positive cell number and size 

(A-C) esgts-driven expression of Yki (C) or Notch-RNAi (B) in ISCs and EBs induces 
an increase in esg+ cell number compared to control (A). Yki overexpression induces 
the appearance of esg+ cells with large nuclei (arrow), but smaller nuclei remain 
(arrowheads). (D-E”) Flipout clones overexpressing Yki (E-E’’) induce an increase in 
size and number of esg+ cells compared to control (D-D”). (F-G) Orthogonal 
cryosections of the adult midgut epithelium showing that esgts-driven expression of Yki 
(G) leads to increased nuclear density and number of basally located esg+ cells (arrows) 
compared to control (F). (H-H’) Orthogonal section of a two-week-old MARCM hpo 
clone (H-H’) shows increased epithelial thickness (arrows) compared to surrounding 
control tissue. Nuclei are stained with DAPI (blue), esg+ cells marked by GFP (green in 
A-C and F-G) and β-Galactosidase (red in D-E’’), Phalloidin (A-C, F-G) and armadillo 
(β-catenin) staining (H-H’) are in red. Flipout (D-E’’) or MARCM (H, H’) clones are 
marked with GFP in green. Scale bar  = 10µm (A-C) Scale bars  = 20µm (D-H”). Panels 
A-C generated by C.Polesello. F-H’ are data from A.Kohlmaier. 
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(Ohlstein and Spradling, 2007).  In WT (wild type) guts, Dl-expressing cells are not 

found immediately adjacent to one another, presumably since Dl can block its own 

expression by inducing Notch signalling in neighbouring cells (Figure 3.4A-A’). 

Following Yki overexpression, I observed an increase in the number of cells expressing 

Dl (Figure 3-4B-B’), possibly suggesting an increase in ISC number.  Moreover, Dl 

expression was no longer restricted to small cells, with some larger esg+ cells now 

being Dl+ (Figure 3.4B’).  Given the apparent increase in cell size and Dl expression, it 

is unclear whether these larger Dl+ cells are true ISCs. From here on in I therefore refer 

to this population of large Dl+ cells as “ISC-like cells”.  

 

Quantification of the number of Dl+ cells upon Yki overexpression showed the number 

of Dl+ cells per unit area to be significantly increased (Figure 3.4D). Since the total 

number of midgut epithelial cells or cell density were not taken into account, it is not 

possible to conclude whether the proportion of Dl+ cells in relation to the total midgut 

cell population is increased or whether the apparent increase in Dl+ cells per unit area 

merely reflects a general increase in cell number and density within the midgut. 

Silencing the Hpo pathway using a wts-RNAi construct also resulted in the appearance 

of clusters of Dl+ cells (Figure 3.4C-C’). Interestingly, not only was the number and 

often size of Dl+ cells increased but the level of Dl being expressed by individual cells 

was also enhanced (Figure 3.4 B’, C’ compared to A’). 

 

3.3 Hpo pathway inactivation promotes proliferation in the 
midgut 

Increased Dl+ cell number and thickening of the epithelium suggest an overproliferation 

phenotype. This issue was addressed using phospho-Histone H3 (PH3) staining, which 

marks condensed chromatin during mitosis and therefore dividing cells. In control flies, 

I observed few PH3+ cells in the gut (Figure 3.5A, E). Hpo signalling disruption by Yki 

overexpression or Wts depletion in progenitor cells (ISCs and EBs) caused a marked 

increase in PH3+ cell numbers (Figure 3.5 B-C and E). PH3 staining coincided with the 

increase in number of esg+ cells but varied greatly between individual guts, and 



Chapter 3 Results 

 

 120 

 

 
Figure 3.4: Hpo pathway inactivation promotes Delta expression 

(A-C’) esgts-driven expression of Yki (B-B’) or wts-RNAi (C-C’) induces increased 
numbers of Dl+ cells compared to control (A-A’). Nuclei are stained with DAPI (blue), 
esg+ cells are marked by GFP (green) and Dl is in red. Scale bars = 20µm. (D) 
Quantification of Dl+ cells. esgts-driven expression of Yki significantly increases the 
number of Dl+ cells in a given area in adult midguts compared to control (p<0.0001, 
n>19). 
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Figure 3.5: Loss of Hpo signalling increases proliferation in the midgut 

(A-C) esgts-driven expression of Yki (B) or wts-RNAi (C) increases the number of 
PH3+ cells compared to control (A). (D) Dividing cells are Dl+ when Yki is 
overexpressed in ISCs and EBs, as is the case in WT guts. Nuclei stained with DAPI, 
esg+ cells are marked by GFP (green) and PH3 (A-C) and Dl (D) are in red. Scale bar  
= 20µm. (E) Quantification of PH3+ cells. esgts-driven expression of Yki or wts-RNAi 
significantly increases the total number of PH3+ cells in adult midguts compared to 
control. In both cases p<0.0001, n>15. (F) hpo42-47 or savshrp1 mutant MARCM clones 
increased mitotic rates (PH3+ cells/gut) along the entire midgut compared to control 
clones. p<0.0001, n=12. Panel F was generated by A. Kohlmaier. 
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according to position within the gut (Figure 3.2B). Quantification of PH3 foci in 

populations of guts revealed a significant increase in the number of dividing cells upon 

Hpo pathway inactivation (Figure 3.5E). In addition, we used the MARCM approach to 

generate hpo or sav mutant clones and assess their impact on global midgut proliferation 

rate. Loss of either hpo or sav in MARCM clones significantly increased total number 

of PH3+ cells (Figure 3.5F). 

 

Quantification of the total number of PH3+ cells clearly demonstrates an increase in the 

number of dividing cells at a given time in the midgut. This increase in the number of 

PH3+ cells could suggest that midgut ISCs and ISC-like cells are dividing at a faster 

rate and hence more PH3+ cells can be seen at any particular moment in time. Equally, 

it is also possible that the increased number of PH3+ cells is merely a reflection of a 

general increase in the number of cells capable of dividing. Hence, given that the data in 

Figure 3.5 do not take into account overall cell number and density it is difficult to 

conclude whether the behaviour of individual dividing cells has been altered (such as 

proliferation rate or division outcome) or whether more cells capable of dividing are 

present.  

 

The cells undergoing mitosis were ISC-like in the sense that they were labelled for Dl 

(Figure 3.5D). The true identity of these Dl+ ISC-like cells remains unclear. It is 

possible that their larger size is a result of faster rates of cell growth (mass 

accumulation) in order to accommodate the need to generate more differentiated 

progeny. A further possibility is that the appearance of large Dl+ cells is due to an 

alternative population of cells (i.e non-ISCs) being induced to divide. The observation 

that no Su(H)Gbe-LacZ (Notch) positive EB re-entered mitosis (Figure 3.6B’; n=10 

guts) argues against the possibility that Yki activation causes EB dedifferentiation or 

interferes with exit from the mitotic cycle in specified EBs. Equally, cells expressing 

markers for the differentiated cell types of the midgut were never seen to divide. 

Although the majority of Dl+ cells present in the midgut following Yki overexpression 

are increased in size, a population of small, Dl+ cells is still apparent and may represent 

the “true” ISC population (data not shown). 
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3.3.1 Study of MARCM clones in the midgut 

It must be noted that, from my observations, even blank control MARCM clones 

generally lead to elevated numbers of PH3+ cells in midgut tissue. Use of the MARCM 

technique proved difficult at various stages of my project. In particular, it was difficult 

to control clone number, resulting in either too few or too many clones (leading to 

fusion of multiple clones). As a result, I was unable to complete as many experiments as 

I would have liked using this technique. For example, ideally one would be able to 

assess the number of cells per clone in Hpo pathway mutant MARCM clones. My 

results suggest that this number is increased in hpo mutant MARCM clones but I have 

never been able to complete this experiment to my full satisfaction. The difficulty of 

generating MARCM clones, along with the level of variability seen following Yki 

overexpression in the ISCs, highlights further the need to complete a range of genetic 

analyses when drawing conclusions on studies in the gut. 

 

3.3.2 Parallels between Hpo pathway inactivation and gut regeneration 

The increase in cell size following Hpo pathway inactivation suggests that the Yki 

overexpression phenotype is not solely due to the increase in proliferation. Many, but 

not all, of the large esg+ cells present in midguts following Hpo pathway inactivation 

are Dl+. The Yki overexpression phenotype bears a striking resemblance to the midgut 

regenerative response. Several laboratories have observed that following stress stimuli 

such as infection with bacteria, tissue damage or JNK signalling, the midgut responds 

by increasing ISC Dl levels in order to promote differentiation into functional ECs 

(Amcheslavsky et al., 2009, Biteau et al., 2008, Buchon et al., 2009a, Buchon et al., 

2009b, Cronin et al., 2009, Jiang et al., 2009). This increase in Dl levels is accompanied 

by an increase in the number and size of the esg+ cells.  The presence of large esg+ 

cells has been suggested to be indicative of a faster rate of cell turnover in the gut: as 

the production of ECs accelerates, the relatively slow rate of GFP decay results in some 

differentiated cells retaining the esg>GFP marker. Hence, Hpo pathway inactivation 

induces a phenotype akin to gut regeneration. 
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3.4 Effect of Hpo pathway inactivation on midgut terminal 
differentiation 

Next, I studied whether Hpo signalling affects the terminal differentiation of midgut 

cells. The EBs undergo no transit amplifying divisions and give rise to one of two cell 

types – the secretory EE cells and absorptive ECs (Micchelli and Perrimon, 2006, 

Ohlstein and Spradling, 2006). Notch signalling is required to drive cells into a post-

mitotic state and also functions in specifying cell fate (Ohlstein and Spradling, 2007). 

Notch activation favours absorptive differentiation at the expense of secretory cells 

(Ohlstein and Spradling, 2007, Bardin et al., 2010). Notch mutant clones contain an 

excess of D1+ ISCs and high numbers of pros+ EE cells at the expense of ECs, while 

Notch activation leads to terminal differentiation of ECs (Micchelli and Perrimon, 

2006). 

 

3.4.1 Hpo pathway inactivation alters Notch reporter levels 

To determine if the increase in Dl levels affects Notch signalling activity, the expression 

of the Notch reporter Su(H)Gbe-LacZ was examined (Furriols and Bray, 2001).  

Su(H)Gbe-LacZ is normally expressed by the EBs (Figure 3.6A-A’ arrow) as a result of 

Dl expression in the ISCs (Figure 3.6A-A’ arrowhead) (Micchelli and Perrimon, 2006, 

Ohlstein and Spradling, 2006, Ohlstein and Spradling, 2007). Unsurprisingly, Yki 

overexpression resulted in increased numbers of Notch reporter-positive cells, with 

diffuse Su(H)Gbe-LacZ levels throughout the esg+ area, presumably reflecting the 

increase in the number of Dl+ cells (Figure 3.6B-B’). Despite the increase in the 

number of Dl+ and Su(H)Gbe-LacZ+ cells, these markers remain expressed in separate 

cells, except in rare cases where cells expressing Su(H)Gbe-LacZ also had very low 

levels of Dl (Figure 3.6C-C’’’).  

 

The presence of cells positive for both Dl and Su(H)Gbe-LacZ might reflect an 

increased rate of progenitor production triggered by accelerated ISC division. As the 

number of ISCs and EBs increases in a single location, the process of lateral inhibition,  
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Figure 3.6: Hpo pathway inactivation alters Notch reporter levels 

(A-B’) Overexpression of Yki in ISCs and EBs (B-B’) induces increased staining for 
the Notch reporter Su(H)Gbe-LacZ compared to control (A-A’) with dividing cells 
remaining negative for the Notch reporter. (C-C’’’) esgts-driven expression of wts-
RNAi (C-C’’’) induces an increase in both Dl and Su(H)Gbe-LacZ  levels, but these 
markers are only very rarely found to be expressed in the same cell (arrow in C’’’). 
Nuclei stained with DAPI (A’), PH3+ cells (B’) and D1 (C-C’’’) are in blue, esg+ cells 
are marked by GFP (green), β-Galactosidase (A-C’’’) is in red. Scale bar = 20µm. 
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which is thought to downregulate Dl expression in the EBs, may be too slow to 

accommodate the extra cells, resulting in the appearance of intermediates between the 

EB and ISC fates. 

 

3.4.2 Hpo pathway inactivation does not prevent EE differentiation  

Secretory EE cells represent ~10% of differentiated cells in the midgut and can be 

marked by Pros staining (Figure 3.7A). As highlighted in section 3.2, Yki 

overexpression leads to an increase in the number of esg+ cells. An obvious possibility 

was that Yki might act via Notch signalling. If this were the case, one would expect the 

number of EE cells to be reduced upon Yki overexpression, as is the case in Notch 

mutants. I observed no apparent change in the number of EE cells per unit area in 

response to Hpo pathway inactivation using esgts (Figure 3.7B-D and 3.1). This result 

demonstrates that EE cell number is not increased upon Yki overexpression. The 

approach taken in Figure 3.7D does not however rule out the possibility that the ratio of 

EEs versus total cell number may in fact be reduced, since any change in cell density 

was not taken into account when Pros+ cells were quantified. The possibility therefore 

remains that Hpo pathway inactivation may have an effect on cell fate specification. 

This could in theory be due to alterations on cell division outcome, for example cells 

might be pushed to divide symmetrically to produce more ISCs/ISC-like cells rather 

than differentiated cells. Regardless of this uncertainty surrounding the effect of Hpo 

pathway inactivation on cell division outcome, one can still conclude that differentiated 

cells can be generated even in the absence of Hpo signalling activity. 

 

3.4.3 Hpo pathway inactivation does not prevent EC differentiation  

The class II POU domain transcription factor Pdm-1 stains the large polyploid nuclei of 

ECs (Figure 3.8A-A’) (Lee et al., 2009). Hpo pathway inactivation does not block EC 

differentiation, since a dense network of Pdm-1+ cells is still observed in Yki 

overexpressing and wts-RNAi guts (Figure 3.8B-B’ and C-C’). However, a close study 

of Pdm-1 expression in both UAS-yki and wts-RNAi backgrounds revealed that some  
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Figure 3.7: Hpo pathway inactivation does not prevent EE differentiation 

(A-C) esgts-driven expression of Yki (B) or wts-RNAi (C) does not alter EE cell number 
per unit area compared to control (A). Nuclei are stained with DAPI (blue), esg+ cells 
are marked by GFP (green) and Pros is in red. Scale bar = 20µm.  (D) Quantification of 
Pros+ cells in the indicated genotypes (n>15). 
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Figure 3.8: Hpo pathway inactivation does not prevent EC differentiation 

(A-C’) esgts-driven expression of Yki (B-B’) or wts-RNAi (C-C’) increases EC nuclear 
size compared to control (A-A’). (D-E”) Pdm1 staining in 10 day old wts mutant 
MARCM clones (D-D”) reveals that terminal differentiation can still occur as in WT 
MARCM clones (E-E”). Nuclei are stained with DAPI (blue), esg+ cells marked by 
GFP (A-C’) and MARCM clones marked by GFP (D-E’) are in green, and Pdm1 is in 
red. Scale bars = 20µm.  
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Pdm-1+ cells retain esg expression (Figure 3.8B, C). In addition, many of the Pdm-1+ 

cells appeared to be larger than control ECs (compare Figure 3.8B-B’ to Figure 3.8A-

A’). It is plausible that this larger cell size is due to increased endoreplication as a result 

of yki overexpression (see section 3.6.1). Sustained esgGFP expression in ECs has been 

suggested to be indicative of an increased differentiation rate upon gut regenerative 

growth, which would cause a perdurance of GFP expression in differentiated cells 

(Jiang et al., 2009).  To further demonstrate that hpo pathway inactivation does not 

abolish terminal differentiation, I generated wts mutant MARCM clones (figure 3.8D-

E”) and confirmed the presence of Pdm-1+ cells. Thus, Hpo pathway inactivation leads 

to increased ISC proliferation, while still allowing terminal differentiation to proceed. 

This is in contrast to Notch inactivation, which prevents terminal differentiation 

(Ohlstein and Spradling, 2007). 

 

3.5 Effects of Hpo pathway inactivation in ECs 

Expression induced by the esgts driver is mostly restricted to ISCs and EBs, although 

some transcript and protein product is likely to persist in ECs, given that there are no 

transit-amplifying divisions in the ISC lineage. Since Hpo pathway inactivation elicits a 

phenotype similar to that observed upon stress signalling activation in ECs 

(Amcheslavsky et al., 2009, Biteau et al., 2008, Buchon et al., 2009a, Buchon et al., 

2009b, Cronin et al., 2009, Jiang et al., 2009), I decided to examine the effects of Yki 

overexpression specifically in this cell population.  MyoIAGal4 is an enhancer trap 

inserted in the gut-specific brush border myosin IA gene (Morgan et al., 1994). The 

inducible Myo1AGal4, tubGal80ts system (from here on referred to as MyoIAts) drives 

UAS expression in midgut ECs (Figure 3.9A) (Jiang et al., 2009).   

 

3.5.1 Hpo pathway inactivation in ECs triggers Delta expression 

I used the MyoIAts system combined with UAS-GFP in order to drive UAS-yki in the 

polyploid ECs. When restricted to the EC population, UAS-yki overexpression induced 

a strong increase in Dl staining (Figure 3.9B-B”) along with clusters of small esg+ cells 

and some perduring esg-LacZ expression in ECs (Figure 3.10A-D”).  Quantification of  
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Figure 3.9: Hpo pathway inactivation in ECs triggers Delta expression 

(A-C’’) MyoIAts-driven expression of Yki (B-B’’) or wts-RNAi (C-C”) in ECs induces a 
marked increase in the number of Dl+ cells per unit area compared to control (A-A’’). 
Nuclei are stained with DAPI (blue), ECs are marked by GFP (green) and Dl is in red. 
Scale bars = 20µm. (F) Quantification of Dl+ cells per unit area in the indicated 
genotypes (p<0.0001, n>10). 
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Figure 3.10: Hpo pathway inactivation in ECs increases esg-positive cell numbers 

(A-D”) MyoIAts-driven expression of Yki (C-D”) results in increased numbers of esg+ 
cells, many of which have large nuclei compared to WT (A-B’’). Nuclei are stained 
with DAPI (blue), ECs are marked by GFP (green) and β-Galactosidase marking esg+ 
cells is in red. (E) MyoIAts-driven expression of Yki (E) results in an increase in basally 
located Dl positive cells. Nuclei are stained with DAPI (blue), ECs are marked by GFP 
(green) and Dl is in red. Scale bars = 20µm. 
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the number of Dl+ cells showed that the number of Dl+ cells per unit area was 

significantly increased when Yki was overexpressed in the ECs (Figure 3.9D). Similar 

results were seen when MyoIAts was used to drive wts-RNAi in the ECs (Figure 3.9C-

C”) with small clusters of D1+ cells starting to form. Upon closer examination, it is 

clear that the majority of the Dl+ cells in these mutant guts remain basally located, as is 

the case for Dl+ ISCs in WT guts (Figure 3.10E). This observation suggests that, while 

some of the Dl+ cells are increased in size, they remain ISC-like in terms of location. 

3.5.2 Hpo pathway inactivation in ECs triggers increased proliferation 

The observed increase in the number of esg+ and Dl+ cells could be suggestive of a 

faster rate of ISC proliferation, as was the case following Hpo pathway inactivation 

under the esg promoter. Indeed, higher PH3+ cell numbers were observed in 

MyoIAtsUAS-yki and MyoIAtsUAS-wts-RNAi guts, indicating that Hpo pathway 

inactivation in ECs can potently trigger midgut proliferation (Figure 3.11A-D). In 

accordance with this increased proliferation, cell density is also increased in 

MyoIAtsUAS-yki guts compared to controls (Figure 3.11E). As was the case in Figure 

3.5, it is unclear whether this increased number of PH3+ cells is due to a change in the 

behaviour of individual ISC and ISC-like proliferating cells (such as increased 

proliferation rate) or merely represents an overall increase in the number of dividing 

cells present in the midgut. 

 

3.6 Non cell-autonomous effects of Hpo pathway inactivation 

The ability of Yki expression in the ECs to induce proliferation of the neighbouring 

ISCs suggests that Hpo pathway inactivation in the ECs triggers a non cell-autonomous 

proliferation signal. To further investigate the non cell-autonomous effects of Hpo 

pathway repression, I examined Dl expression in a clonal context.  The induction of Yki 

overexpressing Flipout clones revealed an increase in Dl expression both within the 

clones and in the surrounding WT tissue (Figure 3.12A-B’’).  Unsurprisingly, clonal 

Yki expression also induced ectopic Notch activation in neighbouring cells (Figure 

3.12C-D”). This is most likely due to the increase in Dl levels. In further support of a 

non cell-autonomous role for the Hpo pathway in the gut, wts mutant MARCM clones  
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Figure 3.11: Hpo pathway inactivation in ECs triggers proliferation in the midgut 

(A-C) MyoIAts-driven expression of Yki (B) or wts-RNAi (C) in ECs induces an 
increase in the number of PH3+ cells compared to control (A). Nuclei are stained with 
DAPI (blue), ECs are marked by GFP (green) and PH3 is in red. Scale bar = 20µm. (D) 
Quantification of PH3+ cells in the indicated genotypes (p<0.0001, n>15 ). (E) MyoIAts-
driven expression of Yki significantly increases cellularity. Cell numbers were 
quantified by counting all nuclei in an epithelial sheet of given surface area in the 
posterior midgut region after z-projection and normalization to tissue size. Data shown 
as mean and standard error of the mean. p<0.01, n=5 guts (>1500 nuclei). Panel E was 
generated by A.Kohlmaier. 
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Figure 3.12: Hpo pathway inactivation induces non cell-autonomous effects 

(A-B’’) Flipout clones overexpressing Yki (B-B’’) induce an increase in Dl staining in 
the surrounding WT tissue compared to control (A-A’’). Nuclei are stained with DAPI 
(blue), GFP is green and Dl is in red. (C-D”) Flipout clones overexpressing Yki (D-D”) 
induce an increase in Notch reporter levels compared to control (C-C”). Nuclei are 
stained with DAPI (blue), GFP is green and β-Galactosidase is in red. Scale bar = 
20µm. 
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led to the formation of large Dl+ cells in the surrounding tissue (Figure 3.13A-B”). As a 

control, I have also shown that wts mutant MARCM clones in the gut lead to increased 

levels of ex using an ex-LacZ enhancer trap line (Figure 3.13C-D”) (Hamaratoglu et al., 

2006). Ex, a known target of the Hpo pathway, was only upregulated in the mutant 

clone areas as expected. 

 

3.6.1 Increased rates of DNA synthesis 

In order to address the increased cell size observed upon Hpo pathway inactivation, our 

collaborator Alexander Kohlmaier assayed DNA synthesis rates by feeding flies food  

containing BrdU for 10 hours. This showed an increased frequency of replicating cells 

in sav mutant clones (Figure 3.14). Interestingly, the increase in BrdU was not restricted 

to the small dividing cells but was also apparent in larger nuclei. These data therefore 

indicate not only accelerated proliferation of ISCs but also increased endoreplication of 

ECs. This observation suggests that the increase in cell and nuclear size upon Hpo 

pathway inactivation is, at least in part, due to increased endoreplication. Again, these 

effects were not confined to cells within the mutant clones, confirming the non-

autonomous effect of Hpo pathway inactivation (Figure 3.14B-B’, E).  

 

3.7 Conclusions and discussion 

In this first part of my project, I have characterized the Hpo pathway inactivation 

phenotype in different cell types of the adult posterior midgut. Yki overexpression or 

Wts inactivation increased the number of proliferating midgut cells, though terminal 

differentiation was not blocked. The function of Yki in proliferation is well documented, 

so this first result regarding the induction of proliferation when Yki is expressed in 

progenitor cells was not surprising. Careful examination of the phenotype soon 

suggested that the effects of Yki expression are not merely restricted to cell-autonomous 

induction of proliferation. Pathway silencing in differentiated ECs non-autonomously 

induced strong cell proliferation. These observations led me to draw parallels between 

Hpo silencing and the regenerative response to intestinal stress, which elicits a very 
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Figure 3.13: Non cell-autonomous effects of Hpo pathway inactivation in MARCM clones 

(A-B’’) Non cell-autonomous induction of Dl in cells neighbouring 10-day old wts 
mutant MARCM clones (A-A’’) compared to control clones (B-B’’). Nuclei are stained 
with DAPI (blue), GFP is green and Dl is in red. (C-D’’) wts mutant MARCM clones 
(C-C’’) exhibit increased levels of ex-LacZ compared to control (D-D’’). Nuclei are 
stained with DAPI (blue), GFP is green and β-Galactosidase is in red. Scale bar = 
20µm. 
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Figure 3.14: Increased BrdU incorporation rates in Sav mutant MARCM clones 

(A-C’) Cell-autonomous and non cell-autonomous increases in DNA replication rates 
(BrdU incorporation) upon induction of savshrp1 mutant MARCM clones (A-B’) 
compared to neutral clones (C-C’). Nuclei are stained with DAPI (blue), GFP is green 
and BrdU is in red. (D) BrdU labelling rates were quantified as the percentage of BrdU 
positive cells per MARCM clone (cell autonomy) in savshrp1 mutant compared to neutral 
clones after 3D confocal imaging of the entire clone and subsequent 3D projection. 
P<0.0001. (E) Number of BrdU positive nuclei within all midgut cells including clone 
and non-clone tissue (non-cell autonomy). P<0.01.  Scale bars = 20µm. Data in this 
figure were generated by A.Kohlmaier. 
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similar effect (Amcheslavsky et al., 2009, Biteau et al., 2008, Buchon et al., 2009a, 

Buchon et al., 2009b, Cronin et al., 2009, Jiang et al., 2009). 

 

The overgrowth phenotype seen following Yki expression in ECs is even more marked 

than that observed upon Yki expression in ISCs, potentially indicating that the esgts  

phenotype may in fact be caused by perduring Yki overexpression in the ECs 

(observations later in the project would argue against this – see section 4.5.2).   

 

3.7.1 How does the Drosophila Hpo pathway inactivation phenotype 

compare to studies in the mouse intestine?  

In the mammalian intestine, endogenous YAP1 expression is restricted to the 

progenitor/SC compartment with activation leading to expansion of this population 

(Camargo et al., 2007). Given that inhibition of Notch signalling using γ-secretase 

inhibitors suppresses the YAP1 phenotype, the activity of YAP1 in this respect is 

proposed to be via Notch, although this has not been investigated genetically. In fact, it 

is unclear whether this Notch dependency of YAP1-induced expansion of the 

proliferative compartment is due to a direct effect of YAP1 on Notch signalling, or 

whether the requirement for Notch in ISC self-renewal simply leads to ISC depletion in 

the γ-secretase inhibitor-treated animals.  

 

In the Drosophila midgut, Notch signalling promotes differentiation rather than self-

renewal (Ohlstein and Spradling, 2006, Micchelli and Perrimon, 2006). The Yki 

overexpression phenotype described here does not appear to be due to disruption of 

Notch signalling since no block in differentiation was apparent.  Previous work 

demonstrates reduced Notch signalling in Hpo mutant clones (Polesello and Tapon, 

2007, Yu et al., 2008, Genevet et al., 2009). This has been suggested to result from 

reduced Notch endocytosis, thereby preventing cleavage by γ-secretase.  It is possible 

that while Yki overexpression may lead to a slight reduction in levels of Notch activity, 

this could be overridden by the presence of high levels of the Notch ligand Dl in 

neighbouring cells.   
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In the Drosophila midgut, both commitment (i.e. exit from self-renewal) and terminal 

differentiation are controlled by Notch signalling (Ohlstein and Spradling, 2006, 

Micchelli and Perrimon, 2006, Ohlstein and Spradling, 2007). It has been shown that 

these two roles require distinct levels of Notch activity - commitment requires high 

Notch activity, whereas terminal differentiation can occur with lower Notch activity 

(Perdigoto et al., 2011). From a cell-fate perspective, the role of Notch signalling 

appears conserved from flies to mammals. In the mouse intestine, Notch has been 

directly implicated in intestinal lineage specification, with high Notch signalling levels 

favouring absorptive differentiation. When Notch signalling is blocked, the whole cell 

population stops proliferating and becomes secretory goblet cells (van Es et al., 2005). 

 

In the mouse intestine, Notch has been reported to promote proliferation (rather than 

differentiation) (Fre et al., 2005, van Es et al., 2005). Fre et al showed that Notch 

activation is capable of amplifying the progenitor pool while inhibiting cell 

differentiation (Fre et al., 2005). A more recent study has shown that Notch signalling 

modulates proliferation and differentiation of intestinal crypt base columnar stem cells 

(CBCs) (Vandussen et al., 2012). A number of CBC SC markers are now available 

including Lgr5, Ascl2 and Olfm1 and these cells are considered to be responsible for 

maintaining the crypt epithelium (Barker et al., 2007, van der Flier et al., 2009). 

VanDussen et al demonstrate an absence of the CBC marker Lgr5-GFP following 

Notch pathway inhibition with DBZ, supporting the notion that Notch signalling is 

required for CBC self-renewal (Vandussen et al., 2012). This recent work would 

suggest that the role of Notch signalling differs from flies to mammals with Notch 

maintaining SC proliferation in the mouse intestine but promoting progenitor cell 

commitment in the fruit fly midgut. 

 

It is still somewhat unclear whether YAP1 (or Notch) induces an increase in the SC 

rather than committed progenitor cell population in mice.  Therefore, it is too early to 

conclude that the Drosophila and mammalian intestine are different with respect to the 

role of the Notch and Hpo pathways. My results in flies do, however, indicate that 

Notch and Hpo signalling have distinct functions. Finally, whether the YAP1-induced 

increase in the proliferating progenitor/SC compartment is dependent on secreted 



Chapter 3 Results 

 

 140 

factors has not yet been explored (Camargo et al., 2007). 

 

3.7.2 Does the Hpo pathway play a role in regulation of midgut cell 

death? 

An interesting question I would have liked to address is whether Yki activation in either 

the ISCs or ECs induces apoptosis. It is feasible that expression of a pro-growth signal, 

like Yki in cells, which are already committed to a particular fate, could result in 

apoptosis. 

 

I have tried several techniques for studying cell death in the midgut but unfortunately all 

have had limited success, even when tested in conditions known to induce apoptosis in 

the midgut (such as JNK signalling activation and bacterial infection). My approaches 

to date have included the use of TUNEL to label fragmented DNA (Gavrieli et al., 

1992), anti-activated Drosophila effector caspase drICE and anti-activated caspase-3 

staining (recently demonstrated successfully in the midgut by O’Brien et al (O'Brien et 

al., 2011)). Most recently, I have tested the Apoliner system, which is thought to be 

detected before other markers of apoptosis (Bardet et al., 2008). The Apoliner sensor 

comprises two fluorophores, mRFP and eGFP, linked by an efficient and specific 

caspase cleavage site. Upon caspase activation, the sensor is cleaved and eGFP 

translocates to the nucleus, leaving mRFP at the membranes. Although initial progress 

using Apoliner appeared promising, I have been unable to confirm whether this 

technique is truly reliable in the midgut.  

 

I believe the difficulty in observing cell death in the midgut is most probably due to the 

nature of the cell death process in this system. Upon infection, it has been shown that 

damaged ECs delaminate from the rest of the epithelium and are forced into the lumen 

(Buchon et al., 2010). These delaminating cells have fragmented nuclei with multiple 

large vacuoles, suggesting they are undergoing cell death. This process by which 

apoptosis is induced by loss of cell attachment is known as anoikis (Frisch and Francis, 

1994). Importantly, caspase 3 staining was shown to only be detectable once cells had 

detached from the epithelium. As a result, dying cells could only be visualised using 
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histological sections (Buchon et al., 2010).  Given the small size of the Drosophila 

midgut, this is a technically challenging approach to observing apoptosis, both in terms 

of finding the correct location and generating sufficient data for quantification.  

 

My results to date suggest that Yki does not induce widespread apoptosis in the midgut, 

supporting the notion that the proliferative response induced by Yki expression is not 

simply a by-product of EC apoptosis. 

 

3.7.3 A role for the Hpo pathway in midgut regeneration? 

The clear non-cell autonomous effect of Yki overexpression in the ECs on cell 

proliferation raises the question of how Yki expression in the ECs elicits such a strong 

response in the ISCs. Yki expression was seen not only to induce proliferation but also 

to increase the size of esg+ cells. Large esg+ cells are known to be a hallmark of 

midgut regeneration and are thought to represent faster gut turnover. The parallels 

between Yki-induced tissue overproliferation and damage-induced tissue growth would 

suggest that Yki might play a role in midgut regeneration. I will address this possibility 

in Chapter 4. 
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Chapter 4. Results 

The Hippo pathway is a mediator of the Drosophila 

midgut regenerative response 

4.1 Aims of this project 

In chapter 3, I characterised the Hpo pathway inactivation phenotype in the adult 

midgut. Hpo pathway inactivation in either progenitor cells or differentiated ECs led to 

a proliferative phenotype highly reminiscent of the adult midgut regenerative response. 

How adult ISCs respond to damage, switching from a homeostatic to a rapid 

proliferative state, in order to regenerate damaged tissue, is unclear. Here, I examine 

whether the Hpo pathway plays an important role in the intestinal response to stress. I 

begin by firstly addressing how Yki activation in the ECs induces ISC proliferation. 

 

4.1.1 A role for the Jak/Stat signalling pathway 

Several groups have examined how the Drosophila midgut responds to various forms of 

stress uncovering a role for Jak/Stat signalling in this process (Amcheslavsky et al., 

2009, Biteau et al., 2008, Buchon et al., 2009a, Jiang et al., 2009, Cronin et al., 2009).  

The Jak/Stat signalling pathway has been implicated in the regulation of SCs in multiple 

tissues and is proposed to be a common regulator of SC proliferation, also promoting 

SC self-renewal efficiency in mouse embryonic SCs (Gregory et al., 2008).  In the 

midgut, Stat reporters are active in both ISCs and EBs, but not in terminally 

differentiated cells (Jiang et al., 2009, Beebe et al., 2010, Liu et al., 2010b). Unpaired 

cytokines (Upds, the ligands for the Jak/Stat pathway in Drosophila) are produced by 

ECs in response to a wide range of stress situations, such as apoptosis, JNK signalling 

or bacterial infection (Jiang et al., 2009, Buchon et al., 2009b). This leads to activation 

of Jak/Stat signalling in ISCs and EBs, promoting their division and differentiation, 

thereby accelerating midgut tissue renewal. The Jak/Stat pathway therefore regulates 

ISC proliferation, although its precise role in baseline homeostasis remains unclear 

(Beebe et al., 2010). 



Chapter 4 Results 

 

 143 

 

The strong non cell-autonomous effect of Yki expression in the ECs on cell 

proliferation, and the parallels between Yki-induced tissue overproliferation and 

damage-induced tissue growth, led me to hypothesize that Yki activation may influence 

ISC behaviour via Jak/Stat signalling. 

 

4.2 The Hpo pathway and Jak/Stat signalling activity 

4.2.1 Induction of Upd1 expression upon Hpo pathway inactivation 

Cytokines of the Upd family are upregulated by intestinal stress (Buchon et al., 2009b). 

In turn, the Upd ligands activate the Jak/Stat pathway, promoting ISC proliferation. 

upd-lacZ is an enhancer trap, which reports upd1 transcription (Chao et al., 2004). Yki 

expression in flipout clones led to an increase in upd-LacZ levels compared to control 

clones (Figure 4.1A-B”). Occasionally, upd-lacZ activation in cells neighbouring large 

Yki-expressing clones was also observed, suggesting a small degree of non cell-

autonomy (arrowheads in Figure 4.1B’). Mutating wts in MARCM clones revealed 

increased levels of upd-lacZ expression compared to the surrounding midgut tissue, 

although not all clones were equally affected (Figure 4.2A-B”). Similar effects were 

confirmed in hpo-mutant MARCM clones (Figure 4.2C-C”). upd-lacZ expression was 

no longer observed in MARCM clones deficient for both hpo and its downstream target 

yki (Figure 4.2D-D”). Thus, Hpo pathway inactivation leads to upd1 expression in a yki-

dependent manner. 

 

4.2.2 Hpo pathway inactivation induces Upd3 expression 

Upd3 is reported to be the main mediator of the midgut response to bacterial infection 

(Jiang et al., 2009). I used a tubulin Flipout transgenic to drive clonal Yki expression in 

the gut (Dong et al., 2007, Huang et al., 2005), and monitored upd3 expression with a 

UAS-GFP driven by an upd3-GAL4 enhancer trap. Clonal overexpression of Yki 

induced a robust induction of upd3>GFP in ECs (Figure 4.3A-A”). Hpo pathway 

downregulation therefore promotes midgut regeneration by inducing transcription of  
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Figure 4.1: Yki activation induces expression of Upd1 

(A-B”) Clones overexpressing Yki (B-B’’) induce an increase in levels of the Jak/Stat 
ligand upd1 compared to control (A-A’’). Arrowheads indicate occasional upd-lacZ 
expression in cells neighbouring mutant tissue. Nuclei are stained with DAPI (blue), 
mutant clones are marked by GFP (green) and β-Galactosidase is in red. Scale bar = 
20µm.  
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Figure 4.2: Hpo pathway inactivation induces Upd expression 

(A-B’’) upd-lacZ expression is increased in five day old wts-mutant MARCM clones 
(A-A’’) compared to control clones (B-B’’).  (C-C”) upd-lacZ expression is increased 
in hpo-mutant MARCM clones compared to the surrounding midgut tissue. (D-D”) 
upd-lacZ induction is abolished in hpo,yki double mutant MARCM clones.  Nuclei are 
stained with DAPI (blue), mutant clones are marked by GFP (green) and β-
Galactosidase is in red. Scale bars = 20µm. Panels C-D” were generated by 
A.Kohlmaier. 
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upd genes in a yki-dependent manner. This Yki-induced increase in EC Upd3 levels is 

presumably the signal, which stimulates ISC proliferation. 

 

4.2.3 Hpo pathway inactivation increases Jak/Stat signalling activity 

The transcriptional activity of the Jak/Stat signalling pathway can be monitored using a 

Stat92E reporter driving the expression of RFP (10XStat-RFP, M.Zeidler). Expression 

of Yki in esg+ cells (Figure 4.3B-C’) or ECs (Figure 4.3D-E’) led to an increase in 

Jak/Stat reporter expression. This increase was mainly apparent basally, where the ISCs 

and EBs are located (Figure 4.3E-F’ and data not shown) and was also visible following 

wts-inactivation (Figure 4.3F-F’). Our collaborator, Alexander Kohlmaier, used 

Reverse-Transcription quantitative Polymerase Chain Reaction (RT-qPCR) to 

quantitatively show that expression of all three upd genes and the endogenous Jak/Stat 

target socs36e are elevated when Yki is overexpressed in the ECs (Figure 4.3G). 

Together, these results show that Hpo pathway disruption in the ECs leads to increased 

abundance of Jak/Stat ligands and an increase in Stat transcriptional activity.  

 

4.2.4 Hpo pathway inactivation in wing imaginal discs alters Upd 
expression 

To determine whether upd transcriptional regulation by Yki is a general phenomenon, I 

induced Yki overexpression flipout clones in wing imaginal discs.  I observed that Upd-

LacZ levels were also increased in wing discs (arrowhead in Figure 4.4A-A’’). 

Interestingly, upd-LacZ upregulation was not seen in all clones; for example upd 

expression was not upregulated in Yki flipout clones located in the wing pouch (arrow 

in Figure 4.4A-A’’). In WT 3rd instar larval wings, five separate domains are known to 

express upd, particularly in the hinge region (Bach et al., 2007). Since upd upregulation 

in Yki clones is only observed in the wing hinge, the response is only seen close to the 

endogenous upd-expressing area. This suggests that, although Yki can promote upd 

expression in certain cellular contexts, this regulation is likely to involve other 

transcription regulators. 
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Figure 4.3: Increased Jak/Stat activity following Yki overexpression 

(A-A”) Clonal overexpression of Yki leads to increased upd3>GFP expression. Nuclei 
are stained with DAPI (blue), GFP is green and Yki is in red.  (B-C’) esgts-driven 
expression of Yki (C-C’) increases StatRFP reporter levels compared to control (B). (D-
F’) MyoIAts-driven expression of Yki (E-E’) or wts-RNAi (F-F’) increases StatRFP 
reporter levels compared to control (D-D’). Nuclei are stained with DAPI (blue), RFP is 
in red and ECs marked by GFP are in green. Scale bars = 20µm. (G) Induction of all 
three Upd cytokines following MyoIAts-driven expression of Yki measured by RT-
qPCR. Panel G was generated by A.Kohlmaier. 
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Figure 4.4: Hpo pathway inactivation in wing imaginal discs alters Upd expression 

Confocal micrographs of wing imaginal discs. (A-B’’) Clones overexpressing Yki (B-
B’’) in wing imaginal discs show an increase in levels of the Jak/Stat cytokine upd. 
Note that increased upd-LacZ was not seen in all yki overexpressing clones (arrowhead 
compared to arrow in A-A’).  upd expression is increased when yki flipout clones are in 
regions where upd is developmentally expressed.  Cells overexpressing Yki are marked 
with GFP (green) and β-Galactosidase is in red.  Scale bars = 20µm. 
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4.2.5 Jak/Stat signalling is required in ISCs for Yki-induced proliferation 

To test whether the Hpo pathway is dependent on Jak/Stat signalling in order to induce 

ISC proliferation, I performed genetic epistasis experiments (Figure 4.5 and 4.6). 

Expression of a stat-RNAi construct suppressed the increased proliferation and Dl 

levels seen upon Yki overexpression in progenitor cells (Figure 4.5). In contrast, stat-

RNAi expression in the ECs did not suppress the Yki induced non cell-autonomous 

regenerative response (Figure 4.6), suggesting that Yki-induced ISC proliferation 

requires Stat activity in the ISCs, but not the ECs. 

 

4.3 Yki is activated by intestinal stress 

Jak/Stat signalling plays a key role in midgut regeneration following various forms of 

stress (Buchon et al., 2009b, Jiang et al., 2009). Having linked Yki activation to Jak/Stat 

signalling activity, I tested whether Hpo signalling plays a role in responding to 

intestinal stress.   

 

4.3.1 Verification of Yki antibody staining in the midgut 

Yki transcriptional activity is dependent on its nuclear localisation, which is 

antagonised by Hpo signalling. Characterisation of any possible role of Yki in the 

intestinal regenerative response therefore involved examining its expression and 

subcellular expression pattern. I began by testing two different Yki antibodies (Figure 

4.7). Endogenous Yki is 418 amino acids long. Yki69 is an antibody generated in the 

Tapon lab recognizing amino acids 381-395 in the C-terminus of Yki (referred to as 

Yki69 in all figures). The other Yki antibody used in this study (referred to as Yki in all 

figures) was generated in the laboratory of Kenneth Irvine using the full-length 

bacterially expressed protein as an immunogen (Oh and Irvine, 2008).   

 

In WT guts, Yki expression with both antibodies is relatively low in all cell types 

(Figure 4.7A and E). Yki levels are often slightly higher in small cells – presumably  
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Figure 4.5: Yki-induced proliferation is dependent on Jak/Stat signalling 

(A-H) The esgts-Yki-induced overproliferation and increase in Dl+ cells (B and F) is 
rescued by co-expression of stat-RNAi (D and H). Nuclei are stained with DAPI (blue), 
esg+ cells are marked by GFP (green), PH3 (A-D) and Dl (E-H) are in red. Scale bar = 
20µm. Quantification of PH3+ cells per midgut. (I) esgts-driven expression of stat-
RNAi significantly rescues Yki-induced proliferation (p<0.0001, n>20). 
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Figure 4.6: Stat-RNAi expression in ECs does not suppress Yki-induced proliferation 

(A-H) The MyoIAts-Yki-induced overproliferation and increase in Dl+ cells (B and F) is 
not rescued by co-expression of stat-RNAi (D and H). Nuclei are stained with DAPI 
(blue), ECs are marked by GFP (green), PH3 (A-D) and Dl (E-H) are in red. Scale bar = 
20µm. Quantification of PH3+ cells per midgut. (I) MyoIAts-driven expression of stat-
RNAi does not rescue Yki-induced proliferation in ECs (n>15).  
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Figure 4.7: Validation of Yki antibody stainings in the midgut 

(A-D’) Nuclear Yki antibody staining in seven-day-old wts-mutant MARCM clones (B-
B’) compared control clones (A-A’). Yki antibody staining is reduced in yki-mutant 
MARCM clones (C-D’). (E-H’) esgts or MyoIAts-driven expression of Yki increases 
Yki69 antibody staining. Nuclei are stained with DAPI (blue), GFP is green, Yki 
staining is in red. (I-I’’’) Overlapping expression of two different Yki antibodies. GFP 
is green, Yki staining is in red and Yki69 staining is blue. Scale bar = 20µm. 
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ISCs. The specificity of the Irvine Yki antibody was confirmed in wts-mutant MARCM 

clones. Wts is known to phosphorylate Yki resulting in Yki inactivation and retention in 

the cytoplasm (Oh and Irvine, 2008). In the GFP positive clones mutant for wts, Yki 

nuclear staining was increased compared to the surrounding WT tissue (Figure 4.7B-B’). 

Complementary to this first result, examination of clones mutant for ykiB5, a protein null 

allele generated by homologous recombination (Huang et al., 2005), showed a decrease 

in Yki antibody staining  (Figure 4.7C-D’). 

 

The Yki69 antibody did not give such clear results when tested in wts MARCM clones 

(data not shown) but can be used effectively when studying high levels of Yki 

expression (Figure 4.7E-H’). Figure 4.7I-I”’ illustrates the increased levels of Yki 

antibody staining occasionally apparent in WT guts and demonstrates the corresponding 

staining patterns observed with the two different Yki antibodies. 

 

Interestingly, esgts-driven Yki expression in the ISCs did not appear to affect Yki 

staining levels in the ECs (Figure 4.7E-F’). This would suggest that the proliferative 

response observed following esgts-driven Yki expression (see Chapter 3) is indeed due 

to a progenitor-specific effect and not a result of any persistence in protein expression in 

the differentiated ECs.  

 

4.3.2 Increased Yki antibody staining following P.e infection 

Ingestion and enteric infection with Pseudomonas entomophila (P.e) is reported to kill 

ECs and activate JNK signalling (Vodovar et al., 2005).  P.e infection leads to induction 

of Upd/Jak/Stat signalling, which drives ISC mitoses and intestinal regeneration 

(Buchon et al., 2009b, Jiang et al., 2009).  

 

I examined Yki protein expression using the Irvine anti-Yki antibody, which had 

performed best in the antibody validation tests (Figure 4.7) (Oh and Irvine, 2008). Yki 

expression was mainly cytoplasmic under standard conditions (Figure 4.8A-A’). Upon 

24hr P.e infection, a strong increase in Yki levels was noted in the esg+ cells 
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(ISCs/EBs) and some ECs (Figure 4.8B-B’). Although I could not reliably detect 

increased endogenous Yki in all EC nuclei after oral P.e infection, Yki staining in some 

EC nuclei did appear to be slightly increased. These experiments suggest that Yki 

activity is triggered in both the EC and ISC/EB population by intestinal stress. This 

raises the possibility that Yki functions as a stress sensor, relaying information about the 

health of the epithelium to the ISCs. 

 

Also of note is the Yki expression pattern seen in a subset of the pros+ EE cells. On 

several occasions, in WT non-stressed guts, increased Yki antibody staining was 

observed not only in esg+ cells but also in the small esg- cells (Figure 4.8C-C’). Co-

staining Yki with the EE cell marker Prospero revealed that these small esg- cells are a 

subset of the EE population. The role of Yki in EE cells has not been investigated 

further. I have since obtained a pros-GAL4 line, which will allow me to study Yki 

function in this cell population. 

 

4.3.3 Increased Yki transcriptional activity following P.e infection 

To monitor Hpo pathway activity during tissue damage, we also measured the 

expression of two well-characterised Yki targets, ex and diap1 (Huang et al., 2005, 

Hamaratoglu et al., 2006) by RT-qPCR at various time points after P.e infection (Figure 

4.9A – A.Kohlmaier). Both ex and diap1 were significantly and rapidly induced upon 

P.e infection, up to 6 fold and 2.6 fold, respectively. Importantly, this activation 

preceded the induction of ISC proliferation. As expected for a regenerative response, 

upds 2 and 3, socs36e and the JNK target puckered (puc), are also induced with the 

same kinetics. Cyclin E levels are elevated, presumably as part of the proliferative 

response. The induction of both ex and diap1 was prevented when the P.e-infected flies 

were treated with antibiotics (Figure 4.9A, lower panel). To determine in which cells 

Yki activity responds to stress signals, I examined ex expression using the ex-LacZ 

enhancer trap line (Hamaratoglu et al., 2006). P.e infection induced a rapid increase in 

ex expression in the large ECs (Figure 4.9B-C”). Hence, Yki transcriptional activity is 

induced in response to intestinal stress. 
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Figure 4.8:  Intestinal stress results in increased Yki levels 

(A-B’) 24 hour P.e infection leads to increased Yki levels in esg+ progenitors and ECs 
(B-B’) compared to mock infected guts (A-A’). Nuclei are stained with DAPI (blue), 
esg+ cells are marked by GFP (green), Yki is in red. (C-C’) Yki staining is often 
increased in a subset of pros+ cells. Nuclei are stained with DAPI (blue), Pros is green 
and Yki is in red. Scale bars = 20µm.  
 



Chapter 4 Results 

 

 156 

 
Figure 4.9: Intestinal stress leads to induction of Yki targets 

(A) RT-qPCR shows Yki target induction (expanded, diap1) immediately upon P.e 
infection (top panel) and reversal of Yki target mRNA abundance following antibiotic 
treatment (bottom panel). (B-C’’) Increased ex-LacZ activity following 24 hours of P.e 
infection (C-C”) compared to mock infected guts (B-B”). Nuclei are stained with DAPI 
(blue) and β-Galactosidase is in red. Scale bars = 20µm. Panel A was generated by 
A.Kohlmaier. 
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4.4 Is Hpo pathway activity required for the intestinal response 
to stress? 

4.4.1 Requirement for Yki in ISCs for the proliferative response to P.e 

infection 

To test Yki function in the regenerative response, I suppressed Yki expression in 

ISC/EBs or ECs by RNAi, and measured P.e-induced proliferation using PH3 staining 

(Figures 4.10 and 4.11). P.e infection is known to lead to an increase in the number of 

esg+ progenitors and actively dividing ISCs (compare Figure 4.10 C to A) (Jiang et al., 

2009). Yki inactivation by RNAi had no obvious effect in non-stressed guts with 

regards to D1 or PH3 staining (Figure 4.10 B and F compared to A and E). Given the 

low levels of proliferation in WT guts, any decrease in proliferation would be difficult 

to detect. As expected, P.e infection led to an increase in the number of PH3+ dividing 

cells (Figure 4.10I). Interestingly, silencing Yki in the ISCs/EBs using esgts fully 

suppressed the P.e-induced proliferative response (Figure 4.10I). Together with the 

stress-induced increase in Yki expression in ISCs/EBs shown in Figure 4.8, this 

demonstrates that Yki is required in ISCs for stress-induced proliferation.  

 

4.4.2 Requirement for Yki in ECs for the proliferative response to P.e 

infection 

When Yki expression was suppressed using RNAi in the ECs, only a partial (though 

statistically significant; p=0.018) suppression of the P.e-induced proliferative response 

occurred (Figure 4.11A-E). Although the Hpo pathway responds to intestinal stress 

(Figure 4.8 and 4.9), it may not be absolutely required in ECs for triggering Jak/Stat-

induced regeneration. A more trivial explanation for this result is that suppressing Yki 

by RNAi in the dividing ISCs may be more effective than in the post-mitotic ECs, 

where yki transcript and Yki protein are not diluted by cell division. Given that ECs are 

rapidly shed following infection and replaced by new preECs (which have elevated Yki 

protein levels due to the infection), it is probably difficult to fully deplete Yki in ECs 

before they are sloughed off. Yki69 antibody staining is reduced following MyoIAts 

driven expression of Yki in the ECs, suggesting that Yki protein is indeed at least  



Chapter 4 Results 

 

 158 

 
Figure 4.10: Yki is required in ISCs for the midgut regenerative response to bacterial 

infection 

(A-H) P.e infection induces a proliferative response with increased numbers of esg+ 
cells, mitoses, Dl+ ISC-like cells and midgut size (A, C, E, G). esgts-driven expression 
of yki–RNAi (B and F) causes a reduction in the midgut regenerative response to 
infection (D and H). Nuclei are stained with DAPI (blue), esg+ cells are marked by 
GFP (green), PH3 (A-D) and Dl (E-H) are in red.  Scale bar = 20µm. Quantification of 
PH3+ cells upon bacterial infection (I). esgts-driven expression of a yki-RNAi construct 
prevents the regenerative response seen in WT midguts upon bacterial infection (I) 
(p<0.001, n>10).  
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Figure 4.11: Yki is required in ECs for the midgut regenerative response to bacterial 

infection 

(A-D) MyoIAts-driven expression of yki–RNAi (D) partially prevents the midgut 
regenerative response to stress (C). Nuclei are stained with DAPI (blue), ECs are 
marked by GFP (green), PH3 is in red. Quantification of PH3+ cells upon bacterial 
infection (E). MyoIAts-driven expression of yki-RNAi partially rescues the midgut 
regenerative response following bacterial infection (E) (p=0.018, n>14). (F-G) MyoIAts-
driven expression of yki–RNAi (G) reduces Yki antibody staining compared to control 
(F). Scale bars = 20µm. Quantification of PH3+ cells upon bacterial infection (H). 
MyoIAts-driven expression of Hpo rescues the midgut regenerative response following 
bacterial infection (H) (p<0.0001, n>11). 
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partially depleted. Silencing endogenous Yki in the ECs by overexpressing hpo 

significantly reduces the number of proliferating cells upon P.e infection (Figure 

4.11H); supporting the argument that Yki is required both in the ISCs and ECs for 

stress-induced proliferation. Yki inactivation by RNAi or via hpo overexpression did 

not induce any effect on proliferation in unchallenged guts, suggesting that the main 

physiological role of Yki in the midgut is in the regenerative response. 

 

4.4.3 Yki is required in both ISCs and ECs for survival upon P.e infection 

Having shown that Yki expression is required in the midgut proliferative response, I 

then addressed whether Yki is needed for survival upon infection. Lifespan was initially 

monitored in unchallenged flies maintained at 29oC. The doses of P.e used in this study 

are sub-lethal. In keeping with the data from Figures 4.10 and 4.11, Yki inactivation by 

RNAi in either the ISCs or ECs had no effect on survival in unchallenged flies (Figure 

4.12 A and C), again suggesting that Yki is not essential for baseline homeostasis. 

Interestingly, Yki overexpression in the differentiated ECs almost halved lifespan 

(Figure 4.12C). Similarly, Yki overexpression in either the progenitor or EC population, 

when in combination with bacterial infection, significantly reduces lifespan (Figure 4.12 

B and D). This reduction in survival is presumably a result of continuously high levels 

of proliferation and the resultant strain on midgut homeostasis. Silencing Yki by RNAi, 

with either driver, dramatically reduced survival following P.e infection (Figure 4.12 B 

and D). Yki is therefore required in both ISCs and ECs for survival upon bacterial 

infection. 

 

4.4.4 Yki is required in ISCs but not ECs for DSS induced regenerative 

proliferation  

Bacterial infection is by no means the only method of inducing a midgut regenerative 

response. ECs respond to a range of stress stimuli, such as apoptosis, JNK signalling 

and oxidative stress (Buchon et al., 2009b, Amcheslavsky et al., 2009, Biteau et al., 

2008). To build upon the results seen with P.e infection, I tested the role of Yki using  
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Figure 4.12: Yki is required in both ISCs and ECs for survival upon bacterial infection 

(A-D) yki-RNAi expression in either ISCs (A) or ECs (C) does not affect lifespan in the 
absence of infection. yki-RNAi expression in either ISCs (B) or ECs (D) reduces 
survival time following bacterial (P.e) infection. MyoIAts-driven expression of Yki 
reduces lifespan in the absence of infection (C). (n>20). 
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another means of inducing intestinal stress. Feeding flies Dextran Sulphate Sodium 

(DSS) stimulates midgut proliferation (Amcheslavsky et al., 2009). When included in 

the drinking water of experimental mammals, DSS induces intestinal injury resembling 

ulcerative colitis in humans (Kawada et al., 2007). In flies, DSS feeding disrupts BM 

organisation, leading to an increase in cell division (Amcheslavsky et al., 2009). In 

contrast, P.e infection is reported to kill ECs and activate JNK signalling (Vodovar et 

al., 2005).  

 

Following two days of DSS feeding (3% DSS in 5% sucrose solution), a proliferative 

response is induced (Figure 4.13A and C). Inactivation of Yki by RNAi in the ISCs, but 

not the ECs, prevents the proliferative response to DSS. Hence, Yki is required in the 

ISCs for the proliferative response to both P.e infection and DSS treatment. Unlike P.e 

infection, which only mildly affects survival, 3% DSS treatment killed flies within only 

one week. Yki inactivation had no effect on survival, perhaps indicative of the rapid 

effects of DSS treatment on lifespan (Figure 4.13B and D). 

 

4.5 Conclusions and discussion 

In Chapter 3, I characterised the Hpo pathway inactivation phenotype of the adult 

posterior midgut. Here, I have built upon those findings showing that Yki 

overexpression triggers increased levels of upd transcription and Stat reporter activity. 

Upon intestinal stress, Yki is activated in ECs and translocates to the nucleus, triggering 

Upd3 production (Figure 4.14). The secretion of Upd3 from ECs then activates Jak/Stat 

signalling in the ISCs, inducing their proliferation. Concurrently, Yki also appears to be 

required in the ISCs in order for regenerative proliferation to occur (Figure 4.14). 

Whether Yki is a target of Stat signalling in the ISCs is unclear. Hence, Yki appears to 

function in differentiated ECs as part of the stress response pathway and in ISCs as a 

driver of the proliferative response to stress. 

 

 

 



Chapter 4 Results 

 

 163 

 
Figure 4.13: Yki is required in ISCs but not ECs for DSS induced regenerative 

proliferation 

(A-D) esgts-driven expression of yki–RNAi rescues DSS induced regenerative 
proliferation (A) (p<0.0001, n>13). MyoIAts-driven expression of yki–RNAi (C) did not 
significantly affect DSS induced regenerative proliferation (B). yki-RNAi expression in 
either ISCs (C) or ECs (D) does not affect survival following DSS feeding. (n>20). 
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Figure 4.14: Model for the role of Yki in intestinal regeneration 

Yki activation in ECs leads to the induction of Upd3, which triggers Jak/Stat signalling 
activity in the ISCs. Yki is required in the ECs as part of the stress response pathway 
and in ISCs for proliferative regeneration. 
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4.5.1 Is the transcriptional upregulation of Upd cytokines by Yki a general 

phenomenon?  

Yki activation in the ECs leads to Upd secretion (Figures 4.1-4.3). There is a precedent 

for a non-autonomous role of Yki via a secreted factor. Overexpression of YAP1, the 

mammalian orthologue of Yki, in MCF10A mammary epithelial cells, enhances the 

proliferation of neighbouring cells through the induction of Amphiregulin, a ligand for 

the Epidermal Growth Factor Receptor (EGFR) (Zhang et al., 2009a). This mechanism 

appears to be conserved in flies, where Yki can induce the expression of the EGFR 

ligand Vein (Zhang et al., 2009a). The Connective Tissue Growth Factor (CTGF) is also 

a common direct YAP target, which is important for cell growth (Zhao et al., 2008, 

Urtasun et al., 2011). Thus, non-autonomous functions of the Hpo pathway may prove 

to be an important feature with respect to growth control. 

 

It is unclear at this point whether Yki affects Upd secretion directly. Yki is a 

transcriptional co-activator. The Scalloped (Sd) TF is the best characterised of Yki’s TF 

partners and is required for its growth control function in the wing (Wu et al., 2008, 

Zhang et al., 2008b, Goulev et al., 2008). However, I did not find any Sd binding sites 

in the promoter region of any of the three upd genes. Although Yki activity clearly 

responds to stress, it is also possible that inactivation of the Hpo pathway itself causes 

stress in the ECs (possibly by blocking or delaying physiological cell death or driving 

inappropriate cell growth), and that this might lead to the upregulation of Upd signalling 

via a distinct sensor. 

 

Clonal Yki overexpression in wing imaginal discs led to increased upd-LacZ levels 

(Figure 4.4.). Interestingly, upd-lacZ upregulation was only seen close to the 

endogenous Upd expressing areas in the wing hinge (Bach et al., 2007). This could 

suggest either that Yki can promote Upd expression only in certain cellular contexts 

(possibly in the presence of other transcription factors) or that Yki promotes sustained 

expression of Upd but is unable to initiate its transcription.  
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4.5.2 A dual role for Yki in the intestinal regenerative response 

4.5.2.1 Yki function in ISCs 

My data point to a clear function for Yki in the ISCs. First, Yki expression is increased 

in ISCs upon intestinal stress (Figure 4.8). Second, silencing Yki in ISCs abolished the 

proliferative response to P.e infection (Figure 4.10). This ‘cell-autonomous’ growth-

promoting function is similar to the known role of Yki as a growth driver in Drosophila 

imaginal discs and mammalian tissues. Indeed, Yki family proteins have been reported 

to promote progenitor cell proliferation in the mouse intestine and tissue regeneration in 

both the Cricket leg and mouse liver (Bando et al., 2009; Camargo et al., 2007; Dong et 

al., 2007). The possible function of the Hpo pathway as a general regulator of 

regeneration will be discussed in more depth in Chapter 6.  

 

The results examining the role of Yki in the ISCs (Figures 4.8-4.10) support the 

argument that the proliferative effect observed following esgts-driven Yki 

overexpression (see Chapter 3) is in fact due to Yki activity in the ISCs, rather than the 

esg-GAL4 driver leading to unwanted transgene expression in the ECs. This is also 

supported by the observation that Yki staining does not increase in the ECs when Yki is 

overexpressed using the esgts driver (Figure 4.7F-F’). 

 

Yki overexpression in the ISCs no longer induces proliferation when expressed in 

combination with a Stat-RNAi construct (Figure 4.5). This result suggests that Yki is 

acting upstream (or in parallel) to Jak/Stat signalling in the ISCs. It remains unclear 

whether Yki requires Stat activity in the ISCs in order to drive regenerative proliferation. 

Numerous signalling pathways play a role in maintaining homeostasis in unchallenged 

guts, possibly resulting in a higher degree of redundancy between different pathways 

than is present under stress conditions. I did not observe any effect when Yki was 

depleted under baseline conditions, suggesting that Yki might only function in 

regenerative growth or upon loss of a tumour suppressor. However, the possibility of a 

role for Yki in basal ISC proliferation, or ISC maintenance and survival still warrants 

further study.  
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4.5.2.2 Yki function in ECs 

The data in Figures 4.11 and 4.12 point to a dual role for Yki in the intestinal 

regenerative response. Yki’s role in the ISCs is in the regulation of regenerative 

proliferation. The role of Yki in the ECs is less clear and is an area I will further explore 

in Chapter 5. Several possible explanations could account for the requirement of Yki 

expression in the ECs for regeneration. Yki expression itself might induce stress in the 

ECs, leading to upd expression and the regenerative response. For example, Yki 

activation could promote the expression of anti-apoptotic genes (e.g. diap1), which lead 

to the prolonged presence of ‘undead’ ECs in the epithelium resulting in continued pro-

proliferative signalling emanating from the dying cells (Perez-Garijo et al., 2004, Huh 

et al., 2004). In that case, Yki function might normally be to protect cells from 

apoptosis, allowing them to survive long enough to send pro-regeneration signals to the 

ISCs. This would ensure that epithelial integrity is maintained while new cells are being 

generated. Unfortunately, as discussed in section 3.7.2, my attempts to assess apoptosis 

in the midgut were unsuccessful.  

 

Alternatively, the Hpo pathway might function as a stress sensor in intestinal cells, 

triggering Upd cytokine release in response to noxious stimuli. This is a particularly 

interesting possibility since such sensors have not yet been identified. Importantly, the 

mammalian Hpo pathway has been implicated in contact inhibition of growth in 

cultured epithelial cells (Zhao et al., 2007). EC cell loss might therefore inactivate the 

Hpo pathway due to local changes in cellular density, leading to Yki de-repression and 

activation of the regenerative response. Further experimentation is required in order to 

distinguish between these possibilities.  

 

4.5.2.3 Yki function in EE cells 

I have not examined the role of Yki in the secretory EE cells. The small, pros+ EE cells 

make up ~10% of the midgut differentiated cell population. Until recently, I had not 

found a reliable pros-GAL4 line for use in the midgut. As shown in Figure 4.7C-C’, in 

several WT guts I have observed increased Yki protein levels in a subset of EE cells. 
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Within the pros+ population are subsets of EE cells expressing different peptides 

including Tachykinin and Allatostatin (Siviter et al., 2000) (Yoon and Stay, 1995, 

Ohlstein and Spradling, 2006). It is still unclear if regulatory peptides expressed in the 

midgut EE cells act in a paracrine manner on nearby cells and neurons, or if they act on 

distant targets such as the brain, in order to influence metabolism or feeding behaviour 

(Park et al., 2011). Uncovering which members of the pros+ EE population are 

expressing the higher levels of Yki protein and whether this expression pattern is altered 

in situations of intestinal stress could prove informative with regard to the function of 

different EE subpopulations. 

 

4.5.3 How is Yki activated upon intestinal stress? 

How does stress activate Yki in the ISCs and ECs? In the case of the ECs, 

understanding Yki activation could provide clues as to Yki function in this cell 

population. My data suggest that at least part of the Yki accumulation occurs due to a 

post-transcriptional mechanism, since Yki transcript levels were not greatly affected by 

P.e infection (Figure 4.9). Whether this is mediated via canonical Hpo signalling 

remains to be established. 

 

4.5.3.1 Upstream regulators of the Hpo pathway 

The picture surrounding upstream regulation of the Hpo pathway is becoming 

increasingly complex. Upstream regulators can broadly be divided into three main 

classes: those acting via the atypical cadherin Fat, the Kibra-Expanded-Merlin (KEM) 

complex and the apicobasal polarity proteins (aPKC, LGL and Crumbs).  

 

One simple explanation for Yki activation in the ECs would be that disruption to the 

adherens junctions (AJs) and a resultant loss in epithelial integrity might silence the 

Hpo pathway. The trans-membrane protein Crumbs, as well as several other apicobasal 

polarity determinants and apical scaffold proteins, can promote Hpo pathway activity 

and Yki silencing (Genevet et al., 2010, Yu et al., 2010, Baumgartner et al., 2010, Das 

Thakur et al., 2010, Chen et al., 2010, Robinson et al., 2010, Ling et al., 2010, 
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Grzeschik et al., 2010). However, Crumbs is known to be absent from endodermal 

epithelia, such as the midgut (Tepass et al., 1990, Baumann, 2001). 

 

Like the intestine, the mammalian epidermis is a rapidly regenerating epithelial tissue, 

whose maintenance is reliant on a population of SCs (Fuchs, 2007). Loss of some AJ 

components, such as α-catenin, triggers severe epidermal hyper-proliferation 

(Vasioukhin et al., 2001). Studies in mice have shown that α-catenin can act as a 

membrane tether for YAP1, the mammalian orthologue of Yki, preventing its nuclear 

import (Schlegelmilch et al., 2011, Silvis et al., 2011, Zhang et al., 2011a). By 

inhibiting YAP1, α-catenin regulates epidermal SC proliferation and in doing so 

prevents skin cancer formation. The relationship between α-catenin and Yki in flies has 

not been investigated. It is certainly possible that a similar mechanism of Yki activation 

might be operating in the fly gut.  

 

The mammalian Hpo pathway has been implicated in contact inhibition of growth in 

cultured cells (Zhao et al., 2007). EC cell loss might therefore inactivate the Hpo 

pathway due to local changes in cellular density and/or disruption of polarity 

determinants, leading to Yki de-repression and activation of the regenerative response. 

In this context, the Hpo pathway might thus be a guardian of “epithelial health”, 

inducing a regenerative proliferative response following cellular damage. Unfortunately, 

it will always be difficult to directly prove that epithelial damage is causal in Yki 

stimulation or secondary to Yki activity. The role that upstream regulators of the Hpo 

pathway might play in the midgut regenerative response will be examined further in 

Chapter 5. 

 

4.5.3.2 Interaction with other stress signalling pathways 

A further mechanism by which intestinal stress could induce Yki activity is via 

interaction with other signalling pathways. The JNK pathway is activated in damaged 

ECs following intestinal injury and is sufficient to induce ISC proliferation 

(Amcheslavsky et al., 2009, Biteau et al., 2008, Buchon et al., 2009b, Jiang et al., 2009). 

Two recent studies have shown a requirement for Yki activity in wing imaginal disc 
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regeneration (Sun and Irvine, 2011, Grusche et al., 2011). It is suggested that, in the 

context of wing regeneration, Yki activity is regulated by JNK signalling, although the 

molecular mechanism remains unclear (Sun and Irvine, 2011).  

 

The JNK pathway could be responsible for Yki activation in the ECs. JNK signalling is 

required for the midgut proliferative response to Erwinia carotovora (Ecc15) (Buchon 

et al., 2009b), but not to P.e infection (Jiang et al., 2009). Given that Yki expression in 

the ECs is required for optimal proliferation upon P.e infection, it is unlikely that JNK 

activity is the sole mechanism for Yki activation. Evidence for a connection between 

JNK and Hpo signalling in regeneration will be discussed further in Chapters 5 and 6. 

 

The bacteria of the gut also play an important role in intestinal homeostasis. Commensal 

bacteria must be maintained, microbial pathogens need to be eliminated and the 

inflammatory response must be tightly controlled. In the Drosophila gut, the generation 

of reactive oxygen species (ROS) by the NADPH oxidase enzyme Duox provides an 

efficient barrier against microbes (Ha, 2005, Ha et al., 2005). The induction of 

antimicrobial peptides (AMPs) acts as a second line of defence to gram-negative 

bacterial infection and is regulated by the Immune Deficiency (IMD) pathway (Nehme 

et al., 2007). Studies have addressed the role of the midgut immune response in 

intestinal regeneration and highlighted the fact that epithelial renewal is an essential part 

of gut host defence (Buchon et al., 2009a, Lee, 2009). Activation of the Duox and IMD 

pathways occurs at an early stage in the response to infection, raising the possibility that 

Yki activation may be due to one of these pathways. Alternatively, Yki expression itself 

might disrupt the epithelium and ROS/AMP production could be by-products of this 

disruption.  

 

4.5.4 Do different forms of stress activate Yki? 

Yki is required in both ISCs and ECs in response to P.e infection. A better 

understanding of Yki activation and function in the regenerative response may come 

from studying other forms of intestinal stress. DSS is believed to damage BM 

organisation (Amcheslavsky et al., 2009).  Following DSS treatment, Yki is required in 
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the ISCs and not the ECs for regenerative proliferation (Figure 4.13). Given the basal 

location of the ISCs, Yki-dependent regenerative proliferation might, in this instance, be 

activated by damage to the BM, independent of any signal coming from the ECs. 

Examining to what extent Yki is required in response to other means of inducing 

intestinal stress, such as bleomycin (a DNA-damaging agent), paraquat (free-radical 

inducing drug) and JNK pathway activation (Amcheslavsky et al., 2009, Choi et al., 

2008, Biteau et al., 2008), could provide further insight into Yki intestinal function. 
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Chapter 5. Results 

Further investigation into the function and regulation of 

Yki in the Drosophila midgut regenerative response 

5.1 Aims of this project 

In Chapter 4, I presented results demonstrating a dual role for Yki in intestinal 

regeneration. In the ISCs, Yki controls proliferation, while Yki’s function in the ECs 

remains less clear. In this final part of my project, I aim to uncover how Yki activation 

is regulated in the midgut, with a view to gaining a better understanding of Yki function 

in the ECs. As outlined in section 4.5.3, a number of mechanisms could be responsible 

for Yki activation. These include regulation by upstream members of the pathway, 

activation due to a loss of epithelial organisation and interplay with other signalling 

pathways.  

 

5.2 Role of upstream regulators of the Hpo pathway in midgut 

Yki activation  

Upstream branches of Hpo pathway regulation include the Kibra-Expanded-Merlin 

(KEM) complex, proteins that signal via the atypical cadherin Ft and the apicobasal 

polarity proteins (see section 1.2.3). How the different upstream branches of the 

pathway interact with one another and their relative contribution to Hpo signalling still 

remains to be fully elucidated. The significance of these different inputs will most likely 

vary in different organs and contexts. Often the loss of one branch of upstream 

regulation only has a mild effect on growth, presumably due to redundancy and 

feedback loops.  

 

5.2.1 Input from the Kibra-Expanded-Merlin (KEM) complex 

The KEM complex is predominantly located in the subapical region of the cell. The 

WW domain-containing protein Kibra binds to the FERM domain-containing proteins 
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Merlin (Mer) and Expanded (Ex). Together, these three proteins are thought to help 

recruit the core Hpo kinase cassette to the apical membrane for activation (Genevet et 

al., 2010, Yu et al., 2010, Baumgartner et al., 2010). The precise mechanism by which 

the KEM complex is controlled is unclear. Regulation could involve a specific receptor 

or even a physical property of the cell, such as a change in tension or adhesion. 

Silencing of kibra in the ECs, alone or in combination with mer-RNAi, resulted in an 

increase in the number of Dl+ cells per unit area (Figure 5.1A-D’) and higher levels of 

proliferation (Figure 5.1E), suggesting that the KEM complex is involved in Yki 

regulation in the adult midgut. 

 

5.2.2 Midgut expression pattern of Hpo pathway targets 

The Ft signalling pathway is another major upstream regulator of Hpo signalling (Silva 

et al., 2006, Willecke et al., 2006, Cho et al., 2006, Bennett and Harvey, 2006). I have 

not investigated Ft signalling function in the gut but I did examine the expression 

pattern of the Golgi kinase Four-jointed (Fj), one of its regulators (Villano and Katz, 

1995, Ishikawa et al., 2008, Brittle et al., 2010, Simon et al., 2010). Fj, like two other 

upstream regulators of the Hpo pathway, Ex and Mer, is also a transcriptional target of 

the pathway (Cho et al., 2006, Hamaratoglu et al., 2006). The Hpo pathway therefore 

regulates Ft signalling via a negative feedback loop. fj expression, revealed by a fj-LacZ 

enhancer trap, appears to be restricted to the small midgut progenitor cells (Figure 

5.2A-A’). Increased fj-LacZ expression is observed following P.e infection, presumably 

coinciding with the increase in the number of ISCs (Figure 5.2B-B’). A similar 

expression pattern was apparent for another Yki target, diap1. diap1-GFP expression 

appeared to be restricted to a population of small cells (Figure 5.2C-D’).  

 

5.2.3 Role of epithelial organisation 

The apicobasal cell polarity proteins Lgl, aPKC and Crumbs affect cell proliferation and 

survival by modulating Hpo pathway activity (Robinson et al., 2010, Grzeschik et al., 

2010). In addition, the mammalian Hpo pathway has been implicated in contact 

inhibition of growth in cultured cells (Zhao et al., 2007). A loss of epithelial polarity or  
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Figure 5.1: Inactivation of upstream components of the Hpo pathway induces Dl 

expression 

(A-D’) MyoIAts-driven expression of kib-RNAi,kib-RNAi (C-C’) or kib-RNAi;mer-RNAi 
(D-D’) in ECs induces an increase in the number of Dl+ cells per unit area compared to 
control (A-A’). Note Dl levels are comparable to MyoIAts-driven expression of Yki (B-
B’). Nuclei are stained with DAPI (blue), ECs are marked by GFP (green) and Dl is in 
red. Scale bar = 20µm. Quantification of PH3+ cells per midgut.  (E) MyoIAts-driven 
expression of kib-RNAi,kib-RNAi or kib-RNAi,mer-RNAi in ECs induces ISC 
proliferation. (p<0.001, n>14). 
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Figure 5.2: Gut expression patterns of Yki targets: Diap1 and Fj 

(A-B’) fj-lacZ expression appears to be restricted to the progenitor cell population (A-
A’). fj-lacZ expression is increased upon P.e infection (B-B’ compared to A-A’). (C-
D’) diap1-GFP expression is restricted to small cells (C-C’). diap1-GFP expression is 
increased upon P.e infection (D-D’ compared to C-C’). Nuclei are stained with DAPI 
(blue), β-Galactosidase (A-B’) and GFP (C-D’) are in green. Scale bar = 20µm. 
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integrity is therefore another possible mechanism of Yki activation in the midgut. AJs 

are composed mainly of homophilic Drosophila E-cadherin (DE-cadherin) and the 

adaptor proteins Armadillo (β-catenin) and α-catenin (Tepass et al., 2001). I therefore 

examined the localization of AJ components upon bacterial infection. Armadillo and 

DE-cadherin outline the membranes of all cell-types in the midgut and are most highly 

expressed at junctions between ISCs (Figure 5.3A-B, E-E’, G-H’) (Micchelli and 

Perrimon, 2006, Baumann, 2001). Armadillo staining highlights the increase in ISC 

number apparent following P.e infection and general disruption to cellular organisation 

(Figure 5.3C-D). A similar effect is observed with DE-cadherin when Yki is 

overexpressed in the ECs (Figure 5.3F-F’). The extent of midgut overproliferation 

following Yki overexpression makes it difficult to assess whether the EC AJs are 

significantly disrupted. Since I did not observe much of a change, it is difficult to argue 

that disruption to EC junctions or polarity is a key event in Yki activation in this context. 

I observed no obvious effect when α-catenin was silenced in the gut (data not shown). 

 

Apicobasal polarity is crucial to the formation of cell-cell contacts (Tepass et al., 2001, 

St Johnston and Ahringer, 2010). The aPKC complex, composed of aPKC, Par6, and 

Bazooka, localises subapically and is important for the formation and maintenance of 

the apical domain (Tepass et al., 2001). aPKC has been shown to influence Hpo apical 

localisation (Grzeschik et al., 2010). In the midgut, aPKC is expressed in esg+ cells and 

a subpopulation of EE cells (Figure 5.3I-J”). To assess the role of aPKC and other 

polarity proteins in the midgut, I expressed various RNAi lines and looked for any 

resultant effect on proliferation or esg+ cell number (data not shown). The results were, 

however, highly variable and as a result this line of investigation was not pursued. It 

will be difficult to assess whether the dramatic changes in epithelial organisation and 

polarity are causal in, occur in parallel to, or are a direct consequence of, Yki activation 

in the midgut. The development of midgut live imaging techniques would presumably 

help to address this issue. 
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Figure 5.3: Gut expression patterns of epithelial junctional proteins: Armadillo and 

DE.cadherin 

(A-D) Armadillo staining is increased following P.e infection (C-D compared to A-B). 
(E-F’) MyoIAts-driven expression of Yki increases DE.cadherin levels (F-F’ compared 
to E-E’). (G-H’) Apical localisation of Armadillo. (I-J”) aPKC is expressed in esg+ 
and EE cells. Nuclei are stained with DAPI (blue). esg+ cells (A-D, G-J”), ECs (E-F’) 
and Arm (I-J”) are in green. Αrm (A-D), E.cad (E-H’) and aPKC (I-J”) are in red. Scale 
bar = 20µm. 



Chapter 5. Results 

 

 178 

5.3 The Immune Deficiency (IMD) pathway and Yki activation 

ROS generation by the Duox enzyme and the production of AMPs following IMD 

pathway activation are the first lines of defence against midgut pathogens (Ha et al., 

2005). The signalling pathways produced by different types of gut-microbe interaction 

are involved in determining ISC activity (Buchon et al., 2009a, Chatterjee and Ip, 2009, 

Cronin et al., 2009, Jiang et al., 2009). As two of the earliest steps in the midgut 

response to infection, the IMD and Duox pathways are both candidates for having a role 

in Yki activation.  

 

5.3.1 Influence of the midgut commensal bacteria  

The gut commensal bacteria activate basal levels of Upd expression and subsequent 

Jak/Stat-dependent midgut cell turnover (Buchon et al., 2009b). This role was 

uncovered by comparing flies reared in germ-free (axenic) conditions to conventionally 

reared animals. In addition, an alternative scenario to explain the effect of Yki 

expression in ECs or ISCs would be that excess Yki activity might compromise 

epithelial integrity, allowing commensal bacteria to penetrate the intestinal barrier, 

inducing ISC proliferation via an immune response. To test whether the gut commensal 

bacteria are required for Yki induced proliferation, I overexpressed Yki in the ISCs of 

flies raised on axenic medium (Figure 5.4). After two generations on axenic medium, 

guts were dissected, homogenized in PBS and spread on LB plates, showing a dramatic 

reduction in the number of bacteria present in both the WT and UAS-yki fly stocks 

(Figure 5.4A). esgts-driven yki expression induced ISC proliferation even in the absence 

of bacteria, demonstrating that gut commensals are not required for Yki induced 

proliferation (Figure 5.4B). 

 

5.3.2 Silencing IMD pathway components during P.e infection 

IMD pathway activation is a possible candidate for Yki activation, since IMD activity 

corresponds to P.e infection. Interestingly, TAK1, a member of the IMD pathway, is a 

MAPKKK for JNK, presenting the possibility that the IMD pathway could affect Yki  
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Figure 5.4: Intestinal commensal bacteria are not required for the proliferative response 

to Hpo pathway inactivation 

LB plates showing gut bacteria levels (A). Flies raised in axenic conditions have 
reduced gut bacteria levels (A). (B) esgts-driven expression of Yki is still able to induce 
proliferation in the absence of the gut commensal flora. (P<0.0001, n>14). 
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via JNK (see section 5.5).  With this in mind, I examined the proliferative response to 

P.e infection whilst silencing different members of the IMD pathway by RNAi. In the 

absence of Yki, proliferative regeneration does not occur (Figure 4.10). Inactivation of 

the IMD pathway did not significantly affect the proliferative response, suggesting that 

IMD pathway activity is not required for Yki expression (Figure 5.5). A reduction in the 

number of PH3 positive cells was observed 12 hours after infection when the IMD 

caspase Dredd was silenced; however after 24 hours this was no longer the case and this 

was not investigated further (Figure 5.5A compared to B). Thus, Yki activation upon 

infection seemingly occurs independently of the IMD pathway.  

 

5.4 Generation of ROS by the Dual Oxidase enzyme and Yki 
activation 

ROS, generated by the Duox enzyme, are highly reactive and diffusible molecules with 

an ability to act as intracellular messengers. In an infectious microbial situation, the 

number of infectious bacteria becomes dominant over harmless commensals and the 

DUOX-expression pathway is activated to enhance DUOX activity (Ha et al., 2009). 

The ROS levels required to eliminate bacteria must be balanced with ROS-induced 

damage to the epithelium. Silencing Duox activity by RNAi significantly reduced the 

midgut proliferative response to infection (Figure 5.6A). Duox inactivation in the 

presence of Yki overexpression does not reduce regenerative proliferation (Figure 5.6A), 

suggesting that Yki functions either downstream or independently of Duox activity. To 

address this issue further, I examined Yki expression following P.e infection in the 

absence of Duox (Figure 5.6B-E). Duox inactivation did not appear to prevent Yki 

induction upon infection entirely, with Yki staining perhaps less nuclear when 

compared to WT stressed guts (Figure 5.6E compared to 5.6C). Further study is needed 

to confirm any change definitively, given the variability of Yki staining and the absence 

of a null mutant for Duox. 
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Figure 5.5: Silencing members of the IMD pathway does not severely affect the 

proliferative response to infection 

Quantification of PH3+ cell numbers following P.e infection when members of the 
IMD pathway have been silenced (A-B). MyoIAts-driven expression of dredd-RNAi 
reduces the proliferative response following 12-hour P.e infection (p<0.004, n>12). 
Silencing members of the IMD pathway in ECs using the MyoIAts driver does not 
significantly affect levels of proliferation 24 hours after P.e infection (B). 
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Figure 5.6: Loss of Duox enzyme activity reduces the proliferative response to infection 

Quantification of PH3+ cell numbers following P.e infection (A). MyoIAts-driven 
expression of duox-RNAi reduces the proliferative response to infection (P<0.0006, 
n>18). MyoIAts-Yki-induced overproliferation is not rescued by co-expression of duox-
RNAi. (B-E) MyoIAts-driven expression of duox-RNAi might reduce Yki levels 
following P.e infection (E compared to C). Nuclei are stained with DAPI (blue), ECs 
are marked by GFP (green) and Yki69 is in red. Scale bar = 20µm. 
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5.4.1 Midgut response to Hydrogen Peroxide treatment 

Duox has both a trans-membrane NADPH oxidase domain, which produces Hydrogen 

peroxide (H2O2) and an extracellular peroxidase homology domain (PHD), which 

breaks down H2O2 (Ritsick et al., 2004, Ha, 2005). 0.1% H2O2 treatment increases the 

number of dividing PH3 positive cells (Figure 5.7A) (Buchon et al., 2009b). 

Interestingly, silencing Duox by RNAi prevented H2O2 induced proliferation (Figure 

5.7A), suggesting that H2O2 treatment cannot be used to mimic Duox enzyme activity in 

the midgut. The requirement of Duox for H2O2 induced proliferation is presumably 

because H2O2 is a substrate for Duox’s extracellular PHD (Ha, 2005). This finding 

suggests that either the generation of microbicidal secondary oxidants, such as HOCl, or 

Tyrosine crosslinking of extracellular matrix/membrane proteins, both of which can be 

catalyzed by the Duox PHD using H2O2 as a substrate (Ha, 2005, Donko et al., 2005), 

are responsible for ISC proliferation in response to H2O2 treatment or Duox activation. 

It would be interesting to probe this mechanism further and identify the signalling 

pathways in question. H2O2 treatment did not affect Yki-target expression, as assayed 

by ex-LacZ expression, again suggesting that H2O2 treatment alone is not sufficient to 

mimic the effects of Duox activation (Figure 5.7B) (Hamaratoglu et al., 2006).  

 

5.5 Does the Hpo pathway interact with JNK signalling in the 
midgut? 

The JNK pathway is also part of the regenerative response and its ectopic activation is 

sufficient to induce ISC proliferation (Amcheslavsky et al., 2009, Biteau et al., 2008, 

Buchon et al., 2009a, Jiang et al., 2009, Cronin et al., 2009). Two recent studies in wing 

imaginal discs have shown a requirement for Yki activity in wing disc regeneration 

(Sun and Irvine, 2011, Grusche et al., 2011). In the context of wing regeneration, Yki 

activity is thought to be regulated by JNK signalling (Sun and Irvine, 2011).  
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Figure 5.7: Hydrogen Peroxide treatment induces proliferation but does not affect Hpo 

pathway target expression 

Quantification of PH3+ cells following 0.1% H2O2 treatment (A). H2O2 treatment 
induces proliferation but not when Duox is silenced in the ECs. (P<0.004, n>12). (B) 
H2O2 treatment does not result in an increase in ex-LacZ reporter levels. Nuclei are 
stained with DAPI (blue), esg+ cells are marked by GFP (green) and β-Galactosidase is 
in red. Scale bar = 20µm. 
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5.5.1 JNK pathway activation increases Yki target expression 

In an experiment carried out by our collaborator Alexander Kohlmaier, JNK activation 

induced by silencing of the JNK phosphatase Puc, led to a three-fold increase in Yki 

target gene expression (Figure 5.8). These results provide a further example of Yki 

transcriptional activity being induced in response to intestinal stress and suggest that 

JNK signalling could regulate midgut Yki activity directly. 

 

5.5.2 Yki activity is downstream or in parallel to the JNK pathway 

The relationship between the JNK pathway and Yki activation was examined further 

using immunofluorescence. Expression of a constitutively activated version of the JNK 

kinase Hemipterous (Hep) in the ECs induces gut regeneration within 24 hours of 

transgene expression. HepCA expression also induced Yki expression (Figure 5.9 A-B’). 

Yki expression was visibly increased in the ISCs and became more nuclear in the ECs 

(Figure 5.9 B-B’). Silencing JNK activity either by overexpression of Puc or 

inactivation of Basket (bsk, the Drosophila JNK) had no obvious effect on Dl 

expression at baseline (Figure 5.9C-D). In genetic epistasis experiments, a reduction in 

JNK activity did not affect the ability of Yki overexpression to induce a proliferative 

response (see increased number of Dl positive ISCs in Figure 5.9 E-F), consistent with 

Yki activity functioning downstream of JNK signalling. 

 

Puc is not only a potent suppressor of JNK activity but also a downstream target of the 

pathway (Martin-Blanco et al., 1998). A puc-lacZ reporter line can be used to assess 

JNK activity levels in the midgut epithelium (Martin-Blanco et al., 1998, Wang et al., 

2005). Puc-lacZ expression in the midgut increases with age and when flies are given 

the ROS-inducing drug paraquat (Biteau et al., 2008). Yki expression in ECs led to an 

increase in puc-lacZ expression (Figure 5.9 G-H’), adding another degree of complexity 

to the interaction between the Hpo and JNK pathways. When considered alongside the 

fact that Yki expression in the ECs reduces lifespan (Figure 4.12), it is interesting to 

speculate that Yki expression speeds up the midgut ageing process. Most likely, the  
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Figure 5.8: JNK signalling promotes Yki activity in the midgut 

(A) RT-qPCR analysis in adult midguts. Increased abundance of expanded and diap1 
(Yki target genes) mRNAs are observed upon de-repression of JNK pathway activity by 
RNAi mediated inhibition of Puckered expression. The regenerative response is 
documented by increased Jak/Stat signalling (upd cytokines, socs36E). Data in this 
figure were generated by A.Kohlmaier. 
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Figure 5.9: Yki functions downstream of JNK pathway activity  

(A-B’) MyoIAts-driven expression of constitutively activated Hep (B-B’) increases Yki 
staining levels compared to control (A-A’). (C-F) Silencing JNK signalling activity (C 
and D) does not prevent the increase in Dl staining seen following MyoIAts-driven 
expression of Yki (E and F). (G-H’) MyoIAts-driven expression of Yki increases puc-
lacZ levels (H-H’) compared to control (G-G’). Nuclei are stained with DAPI (blue). 
ECs are marked by GFP (green). Yki (Α−Β’), Dl (C-F) and β-Galactosidase (G-H’) are 
in red. Scale bar = 20µm. 
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resultant overproliferation following Yki expression in the ECs triggers JNK pathway 

activity indirectly. 

 

5.6 Conclusions and discussion 

I investigated potential mechanisms of Yki activation in the midgut regenerative 

response. However, the function and mechanism of Yki activation in the ECs remains 

unclear. While inactivation of members of the upstream KEM complex induced midgut 

proliferation, I was not able to fully address the contribution of other Hpo pathway 

upstream inputs on midgut Yki activity, such as Ft signalling. Signalling by the IMD 

pathway does not appear to affect Yki activation. ROS generation, by the Duox enzyme, 

remains a possible mechanism for triggering Yki expression, as does JNK signalling, 

which was shown to induce Yki activity. 

 

5.6.1 Yki activation upon intestinal stress 

Although Yki activity clearly responds to stress, it is also possible that inactivation of 

the Hpo pathway itself causes stress in the ECs (possibly by blocking or delaying 

physiological cell death or driving inappropriate cell growth), and that this might lead to 

the upregulation of Upd signalling via a distinct sensor. As a result, it will be difficult to 

delineate whether factors such as loss of cell polarity and epithelial integrity are 

responsible for, or occur as a result of, Yki activation. 

 

5.6.2 The JNK pathway as a regulator of Hpo pathway activity in the 

midgut 

JNK activation can induce Yki activity and expression (Figures 5.9 and 5.10). JNK 

pathway inactivation did not affect the ability of Yki to induce proliferation, suggesting 

that Yki acts downstream of JNK in the midgut. A more informative experiment would 

be to test whether JNK activation can induce regenerative proliferation in the absence of 

Yki, however this is technically challenging. JNK activation in the ECs for only a short 
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period of time is enough to kill the flies. This would not allow sufficient time for 

downregulation of Yki protein by RNAi. A better approach would be to temporally 

separate Yki RNAi from JNK activation by using both the Gal80ts and the Q systems 

(Potter et al., 2010). This would enable Yki inactivation prior to JNK activation. A 

second approach would be to generate MARCM clones mutant for yki, whilst activating 

JNK activity. As described in section 3.3.1, I have had difficulty with the generation of 

MARCM clones in the midgut. 

 

JNK pathway activity is dispensable for ISC division during infection with sub-lethal 

doses of P.e (Buchon et al., 2009b, Jiang et al., 2009). Since Yki is required for 

regenerative proliferation, JNK signalling alone cannot be solely responsible for Yki 

activity. JNK activation in the midgut is also shown to induce Jak/Stat signalling (Jiang 

et al., 2009), while my results also suggest that Yki promotes JNK activity (Figure 

5.9H-H’), making it difficult to delineate a straightforward hierarchical relationship 

between JNK and Hpo pathway activity.  

 

5.6.3 Duox enzyme activity as a regulator of Yki activation in the gut 

Jak/Stat signalling and ISC division are not dependent on the IMD pathway in order to 

respond to gut-microbe interactions (Jiang et al., 2009). Silencing the IMD pathway did 

not appear to affect Yki activation in the midgut (Figure 5.5-5.6), suggesting that the 

IMD pathway does not regulate Hpo pathway activity.  

 

Duox enzyme activity and ROS generation remain possible mechanisms of Yki 

activation. ROS have been shown to regulate a variety of signalling pathways through 

oxidative inactivation of critical redox-sensitive signalling proteins (Lee, 2009, Rhee et 

al., 2000). Duox enzyme activity is required for the proliferative response to both P.e 

(Figure 5.6) and Ecc15 infection (Buchon et al., 2009b). Duox-RNAi expression no 

longer prevented regenerative proliferation when expressed alongside UAS-yki (Figure 

5.6). 
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ROS generation can lead to cellular and tissue damage, while tissue damage is in turn 

known to provoke ROS generation (Niethammer et al., 2009). Given the pleiotropic 

effects of ROS on cell physiology, it will be difficult to clarify whether ROS directly 

induce SC signalling or simply cause tissue damage, which in turn signals to SCs via 

other means. Since it is currently unknown how tissue damage can be transformed into 

a physiological signal for SC activation, it is tempting to speculate that ROS induced 

tissue damage is sensed by Yki.  

 

Wnt, Jak/Stat and JNK signalling have all been shown to be under redox control in 

various contexts (Funato et al., 2006, Junn et al., 2000, Liu et al., 2004). ROS 

production occurs at injury sites in the epithelia of humans, plants and zebrafish and is 

important in wound healing (Kanta, 2011). Recent studies demonstrating the importance 

of JNK-dependent Yki activation in Drosophila wing imaginal disc regeneration 

provide further support for a possible link between ROS generation, JNK signalling and 

Yki activation in the midgut (Grusche et al., 2011, Sun and Irvine, 2011). 

 

5.6.4 Future experimental directions 

The range of upstream branches known to regulate the Hpo pathway in developmental 

contexts would suggest that regulation of Yki activation in the midgut is most likely 

dependent upon numerous inputs. Yki is required for midgut regeneration in response to 

several different forms of stress, again suggesting that regulation is not via a single 

mechanism. Two of the best candidates for Yki activation in the context of the midgut 

are Duox-dependent ROS generation and JNK signalling activity. Since H2O2 treatment 

did not appear to mimic Duox activity, it will be important to test whether Duox 

expression is itself sufficient to trigger Yki activity and to also address whether Duox 

expression can induce proliferation in the absence of Yki. Given the role of Yki in wing 

imaginal disc regeneration, the influence of Duox expression on Yki activity should 

also be examined in this context.  
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Chapter 6. Discussion 

During my PhD, I have uncovered a role for the Hpo pathway in the regulation of 

Drosophila intestinal regeneration. In summary, I have shown that Yki, the downstream 

transcriptional co-activator for the Hpo signalling pathway, is required both in ISCs and 

ECs in order for regenerative proliferation to occur following the induction of intestinal 

stress. My study not only suggests an important role for Hpo signalling in regeneration, 

but also provides a novel link between Hpo signalling and Jak/Stat pathway activity, 

whereby Yki expression in the ECs leads to secretion of Jak/Stat pathway ligands (see 

Figure 4.14), thereby enhancing Jak/Stat signalling activity. Numerous mammalian 

studies have begun to address the role of the Hpo pathway in various SC populations, 

including the intestine (see section 1.2.7). However, unlike my work, the majority of 

these studies have not examined the different possible roles the pathway might play in 

SCs versus their differentiated progeny.  

 

6.1 The Hpo pathway as a component of the intestinal 
regenerative response 

6.1.1 Other studies examining Yki activity in the Drosophila posterior 

midgut 

Alongside my own work, which was published in collaboration with Alexander 

Kohlmaier (Edgar lab, Heidelberg) (Shaw et al., 2010), three other groups have also 

published similar findings regarding the Hpo pathway and intestinal SC regeneration 

(Staley and Irvine, 2010, Ren et al., 2010, Karpowicz et al., 2010). I will use these 

publications as a basis for my discussion of our current understanding of Hpo pathway 

function in the midgut. 
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6.1.1.1 The role of the Hpo pathway in the intestinal regenerative 

response 

In general, all four publications regarding Hpo pathway activity in the midgut are in 

agreement that, while endogenous levels of Yki are not required for maintaining 

baseline intestinal homeostasis (Shaw et al., 2010, Staley and Irvine, 2010, Karpowicz 

et al., 2010), Yki activity is required for proliferative regeneration upon intestinal stress. 

My work, and that of Ren and colleagues, demonstrates that the Hpo pathway exhibits 

both autonomous and non-autonomous effects on ISC proliferation. Karpowicz et al 

focussed their study on the cell-autonomous requirement for Yki in the ISCs. In contrast, 

Staley and Irvine did not observe any cell-autonomous effect when Yki was 

overexpressed in the progenitor population. This discrepancy probably reflects the 

relative strength of the Yki transgenes used in our various studies. I used a WT UAS-yki 

transgene (Huang et al., 2005) whereas Staley and Irvine drove expression of UAS-yki-

S168A:V5, a targeted insertion (Oh and Irvine, 2009). Although in principle the S168A 

mutant should be more potent, we have observed that the untagged transgene has a 

stronger effect in imaginal discs, either because of the insertion site or because the tag 

disrupts a C-terminal motif required for full Yki function. 

 

Staley and Irvine report a non-autonomous function for the Hpo pathway in midgut 

regeneration, consistent with my work. Interestingly, they observed that the 

regenerative response elicited by the DNA damaging agent bleomycin was also partially 

reduced by Yki depletion. Similar to our study, this suggests a general role for Yki in 

the intestinal damage response. In Figure 4.13, I demonstrated that Yki activation is 

required specifically in the ISCs/EBs for ISC proliferation stimulated by DSS, a notion 

supported by work from Ren and colleagues.  

 

I have demonstrated a requirement for Yki in both the ISCs and ECs upon bacterial 

infection (Figures 4.10 and 4.11). Karpowicz et al also observed reduced levels of 

infection-induced proliferation in the absence of Yki in the ISCs. However, they did not 

test the requirement of Yki expression in the differentiated ECs. Interestingly, Ren et al 

observed no effect on regenerative proliferation in response to either bleomycin or 

bacterial infection when Yki was silenced in either the ISCs/EBs or ECs. They instead 
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suggest that bleomycin and P.e, which are both known to induce damage in the ECs, 

stimulate ISC proliferation via a Yki-independent process. The increased nuclear Yki 

expression observed in the ECs upon either infection or bleomycin treatment (Figure 

4.8 and (Staley and Irvine, 2010)), coupled with the non cell-autonomous effects of Yki 

activation in the ECs, would argue against this suggestion. I have since obtained the Yki 

RNAi fly line used in the Ren study and intriguingly also find it to have no effect on 

regenerative proliferation in response to bacterial infection.  

 

6.1.1.2 Regulation of Yki activity in the midgut 

In Chapter 5, I began to address several of the possible upstream mechanisms of Yki 

regulation. Hpo pathway activity in the midgut is most likely regulated by a range of 

inputs. A branch of upstream Hpo pathway regulation, which I have not investigated, is 

Ft/Ds signalling. Karpowicz and colleagues have shown that knockdown of Hpo, Wts, 

Mer, Ex or Ft can increase the frequency of midgut ISC division (Karpowicz et al., 

2010). Ds is believed to act as a ligand to Ft (Willecke et al., 2008, Matakatsu and Blair, 

2006, Rogulja et al., 2008). In the Karpowicz study, ISCs/EBs were shown to express Ft, 

whilst their differentiated progeny exhibited higher levels of Ds, suggesting that 

ISCs/EBs might signal via the Ft/Ds cadherins in order to regulate tissue expansion. 

Damage caused by intestinal stress most likely affects cell-cell junctions and polarity. 

Given Ft is an adhesion molecule one can speculate that a loss of polarity or cell-cell 

contact might lead to disruption of the Ft-Ds interaction, which would result in reduced 

Hpo pathway activation and thus proliferation. 

 

Interestingly, both my work and that of the Irvine laboratory shows that increased JNK 

signalling can drive Yki activation, suggesting a link between the two pathways in 

mediating the proliferative stress response (Figures 5.8-5.9 and (Staley and Irvine, 

2010)). JNK activation induces nuclear Yki expression. However, unlike JNK 

activation, Yki expression does not induce a visible increase in apoptosis or caspase 

cleavage (Staley and Irvine, 2010). JNK mediates the response to tissue damage in a 

diverse range of contexts, such as ageing, toxins and infection. The fact that Yki is 

activated in response to JNK in the midgut raises the possibility that Hpo signalling 
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might play a general role in the regenerative response to tissue damage. Thus, it is 

important that the link between JNK and Hpo signalling in regeneration is studied 

further (see section 6.2.2).  

 

Another outstanding question is whether Yki activity is regulated by phosphorylation or 

whether increased activity upon midgut stress merely reflects increased Yki protein 

levels (Figure 4.8). Upon bacterial infection, Yki transcript levels are not greatly 

affected, suggesting that at least part of the Yki accumulation occurs due to a post-

transcriptional mechanism (Figure 4.9). Typically, Hpo signalling regulates Yki 

activation via phosphorylation, resulting in cytoplasmic retention. In mammals, YAP 

stability is regulated by coordinated phosphorylation of a phospho-degron by Lats and 

CK1 through SCFβ-TRCP. I found that silencing the Drosophila homologue of SCFβ-TRCP , 

slimb1 had no obvious effect on Yki levels or proliferation (data not shown). The YAP 

phospho-degron does not appear to be conserved in Drosophila, suggesting that other 

E3 ligases could be acting on Yki in the gut (T.Maile, personal communication) (Liu et 

al., 2010a). An in vivo or cell-based screen for ubiquitin ligases or deubiquitinating 

enzymes involved in Yki degradation may provide interesting insights into Yki 

regulation in the midgut. 

 

6.1.1.3 Signalling downstream of Yki 

Loss of Hpo activity results in elevated Jak/Stat signalling levels, suggesting a link 

between these two pathways in mediating the proliferative response to stress (Staley and 

Irvine, 2010, Shaw et al., 2010, Karpowicz et al., 2010, Ren et al., 2010). Yki induced 

proliferation is blocked in the absence of Jak/Stat signalling activity in the ISCs (Figure 

4.5 and (Karpowicz et al., 2010)). Hpo signalling is reported to have both autonomous 

and non-autonomous effects on growth (Zhang et al., 2009a) and in Figures 4.1 to 4.3, I 

demonstrated that Yki activation in the ECs induces proliferation via the secretion of 

Upd cytokines. This is particularly relevant to tumour formation, where the release of 

secreted molecules by tumour cells has been shown to induce autocrine tumour growth 

and to recruit stromal cells, which promote metastasis (Hanahan and Weinberg, 2000, 

Orimo and Weinberg, 2006, Wu et al., 2010). A microarray study in cultured 
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mammalian cells has shown that YAP can regulate members of the interleukin family of 

cytokines, suggesting that a regulatory connection between Hpo and Jak/Stat signalling 

might be conserved (Hao et al., 2008). Stat regulation in Hpo-driven cancers is yet to be 

evaluated. 

 

As discussed in Chapter 1, several points of potential crosstalk have been identified 

between the Hpo pathway and various other signalling networks. Ren et al found that 

alongside elevation of all three Upd cytokines, Yki overexpression in the ISCs/EBs also 

caused an increase in levels of all three EGFR ligands. While Yki expression exerted no 

significant effect on wg, upd3 and vn mRNA levels were increased 40 and eight-fold 

respectively, while inhibition of EGFR signalling activity was found to prevent 

proliferation upon Yki expression in MARCM clones (Ren et al., 2010). YAP activation 

in cultured breast epithelial cells drives proliferation non cell-autonomously via EGFR 

ligand expression, demonstrating a conserved link between Hpo and EGFR (Zhang et 

al., 2009a). 

 

Yki activation in the ISCs induces expression of common Hpo pathway targets 

including ex, cycE, bantam, and diap1. It is unclear whether Yki affects upd and vn 

secretion by directly binding to their promoter region. Knockdown of Sd, the best 

characterised of Yki’s TF partners, suppresses Yki induced proliferation, suggesting 

that Sd plays a role in regulating Yki target gene expression in the midgut (Ren et al., 

2010). However, Yki overexpression in the wing pouch, where Sd levels are high, does 

not lead to upd expression (Figure 4.4), arguing against a general role for the Yki/Sd 

complex in upd transcription. Since Yki is a co-activator and has a range of TF binding 

partners, its target genes are dictated by which of its partners are expressed in a 

particular tissue. It is therefore possible that Yki has a direct role on Upd/EGFR ligand 

transcription, but only when the right combination of factors is present. In this respect, 

Teashirt and Homothorax, which are expressed in the wing hinge where I observed 

upregulation of upd-lacZ in Yki clones, would be interesting candidates to test in the 

midgut. Alternatively, Yki could regulate upd indirectly by promoting the expression of 

one or more TF(s). 
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6.1.1.4 Pez function is essential to Hpo pathway activity in the midgut 

Recently, a new Hpo signalling component was identified in the Drosophila midgut 

(Poernbacher et al., 2012). Pez is an evolutionarily conserved FERM domain containing 

protein, which also contains a protein tyrosine phosphatase (PTP) domain (Edwards et 

al., 2001). Pez function, but not its PTP domain, is essential to Hpo signalling, 

specifically in the midgut. The identification of a seemingly gut-specific member of the 

Hpo pathway raises the possibility that other, as yet unidentified, gut-specific Yki 

regulators, binding partners and targets may exist. Pez binds to Kibra, but not to Ex or 

Mer, and in doing so restricts Yki activity. Hence, Pez and Kibra appear to act in a 

complex to regulate Hpo signalling in the midgut. Pez inactivation results in increased 

proliferation and expression of both Upd and Vn. Kibra inactivation, as shown in Figure 

5.1, also results in a proliferative phenotype, as does mutation of Ex or Mer (Karpowicz 

et al., 2010). Thus, the KEM complex clearly has an effect on Yki activity in the midgut. 

Whether this is solely through Pez or involves other mechanisms, for example, links 

with apicobasal polarity proteins, as has been demonstrated in other contexts (see 

section 1.2.3.4), is still to be clarified.  

 

6.1.2 Role of the Hpo pathway in the mammalian intestine 

Recent studies have begun to assess the role of the Hpo pathway in the mammalian 

intestine. Endogenous YAP expression appears to be restricted to the crypt 

compartment (Camargo et al., 2007). Intestinal expression of inducible YAP-S127A 

protein results in the expansion of undifferentiated progenitor cells, a phenotype similar 

to that observed following YAP activation in the skin (Zhang et al., 2011a, 

Schlegelmilch et al., 2011). Aberrant Notch signalling was shown to be potentially 

responsible for YAP-mediated proliferation in the small intestine (Camargo et al., 2007). 

 

In the colon, YAP is detected in the nuclei of cells but does not appear to be driving 

proliferation, since YAP elimination does not affect the abundance of dividing cells 

(Zhou et al., 2011). Similarly, biallelic deletion of YAP causes no obvious intestinal 

defects under normal homeostasis (Cai et al., 2010). Thus, in contrast to ES and iPS 
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cells, where YAP is required for maintaining pluripotency, under normal conditions 

YAP appears to be largely dispensable in the intestine. 

 

When the Hpo pathway is inhibited, intestinal homeostasis is disrupted. Conditional 

deletion of Mst1/2 results in a phenotype similar to that observed upon YAP 

overexpression, with the expansion of progenitor cells and onset of colonic polyps 

(Zhou et al., 2011). Mst1/2 LOF also coincides with a loss of secretory cell lineages, a 

phenotype observed upon Notch activation. This differs from the Hpo pathway 

inactivation phenotype in the fly midgut where cell fate and terminal differentiation do 

not appear to be altered. Deletion of Sav1 in the intestine results in a similar but milder 

phenotype when compared to Mst1/2 LOF (Cai et al., 2010). In both cases, Hpo 

pathway inactivation leads to a reduction in YAP phosphorylation and increase in YAP 

nuclear localisation (Zhou et al., 2011, Cai et al., 2010). Genetic ablation of one YAP 

allele is sufficient to suppress the excess proliferation observed in both Mst1/2 and Sav1 

knockout mice. Given the large amounts of constitutively active 36-KDa Mst1 

polypeptide observed in WT crypts, it would appear that under baseline conditions 

canonical Hpo pathway components actively restrict Yap nuclear localisation and 

transcriptional activity to a level, which is insufficient to promote proliferation. This 

regulation appears to be similar to the situation in the fly midgut where Wts activation 

is required to restrict Yki activity and proliferation during baseline homeostasis (Figure 

3.5C). 

 

The aberrant proliferation induced by YAP in ISCs is, to some extent, dependent on 

activation of the Wnt and Notch signalling pathways. In Mst1/2 null mice, β-catenin 

levels are largely unchanged but its transcriptional activity is enhanced, leading to the 

induction of Wnt target genes (Zhou et al., 2011). Likewise, depletion of YAP in 

SW480 colon adenocarcinoma cells causes an 80% reduction in β-catenin 

transcriptional activity (Zhou et al., 2011) and endogenous YAP co-precipitates with β-

catenin in CRC cells (Imajo et al., 2012). It is unclear whether this relationship between 

β-catenin and Hpo signalling is conserved in flies. A greater understanding of Hpo 

pathway interaction with other signalling pathways, such as Notch, Wnt and Jak/Stat, in 
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the intestine should hopefully shed light on possible therapeutic strategies for the 

treatment of intestinal diseases.  

 

Although seemingly dispensable for normal homeostasis, YAP protein levels are 

dramatically increased in the crypts of mice treated with DSS (Cai et al., 2010). Similar 

to the requirement of Yki in flies treated with DSS, YAP deletion leads to a significant 

increase in mortality and reduced body weight in mice subjected to DSS treatment. The 

possibility that Yki/YAP might only be required to drive growth under regenerative 

conditions or upon loss of a tumour suppressor suggests that YAP may prove to be an 

interesting therapeutic target. This is similar to the case of Focal Adhesion Kinase, 

which is reported to be required for intestinal regeneration and tumour growth, but not 

homeostasis (Ashton et al., 2010). The fact that Yki/YAP is dispensable for homeostatic 

ISC proliferation does not mean it has no role in this process. It is plausible that 

maintenance of baseline homeostasis is so crucial to survival that it is placed under the 

control of several redundant signalling pathways (e.g. Yki, EGFR, Wg, IIS, Jak/Stat). In 

agreement with this notion, combined inactivation of Wg, Jak/Stat and EGFR leads to 

rapid stem cell attrition, while separate inactivation does not (Xu et al., 2011). 

 

6.1.3 Clinical implications of Hpo pathway activity in the intestine 

Colorectal cancer is commonly associated with persistent inflammation and a continual 

regenerative response. In the mammalian intestine, YAP appears to be present in a 

poised state. Loss of cell-cell contact/intestinal damage results in a lack of Hpo pathway 

input, enabling increased YAP abundance and nuclear activity. YAP, in turn, cooperates 

with β-catenin in order to activate genes involved in SC expansion and intestinal repair. 

The activation of YAP in regulating ISC regeneration indicates that Hpo deficiency may 

contribute to tumourigenesis in the intestine. 

 

Deletion of Mst1/2 results in the formation of colonic adenomas within 3 months (Zhou 

et al., 2011). Similarly, when exposed to DSS induced injury, Sav1 mutant mice exhibit 

a YAP-dependent enhancement of tumourigenesis (Cai et al., 2010). High levels of 

YAP expression are also present in human colonic cancers and cancer derived cell lines 
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(Steinhardt et al., 2008, Zhou et al., 2011, Konsavage et al., 2012). A two-fold increase 

in YAP mRNA levels has been observed in human CRC, although YAP 

phosphorylation levels are yet to be evaluated (Zhou et al., 2011). Diminished YAP 

phosphorylation in hepatocellular carcinoma suggests a loss of inhibitory input from the 

core Hpo kinase cascade (Camargo et al., 2007). Interestingly, whereas in previous 

studies the Hpo pathway has been shown to restrict YAP nuclear localisation when cells 

are contact inhibited (Zhao et al., 2007), studies in plated colon cancer cells show YAP 

nuclear localisation, even at high cell density (Konsavage et al., 2012). Resistance to 

contact inhibition of growth is a known feature of cancer cells. It is therefore possible 

that nuclear accumulation of YAP might be a general mechanism enabling this cancer 

cell characteristic. 

 

Identifying the cell of origin in carcinomas resulting from mutations in upstream 

members of the Hpo pathway is another important area of future research. For example, 

in some cases, NF2 mutation has been shown to result in hepatocellular carcinoma, 

originating from hepatocytes (Zhang et al., 2010). In other cases, NF2 mutation is 

reported to result in mice, which simultaneously exhibit a mixture of both 

hepatocellular carcinoma and cholangiocarcinoma, originating from the oval (precursor) 

cells (Benhamouche et al., 2010). Thus, a better understanding of the physiological role 

of Hpo pathway activity in progenitors versus their progeny will have important 

conceptual implications for our understanding of Hpo-induced tumourigenesis. YAP 

overexpression across a number of human cancer types is observed at a higher 

frequency than can be explained by amplification of the YAP locus or LOF mutations in 

Sav1 and NF2, which appear relatively uncommon in comparison. The mechanisms 

leading to YAP activation/overexpression across the tumour spectrum is another area 

for future inquiry. 

 

The most direct therapeutic strategy for YAP depletion would be the use of anti-sense 

RNA or RNAi. Given the apparent dispensability of YAP function in the healthy adult 

colon, YAP inactivation might not cause major toxicity in healthy cells. The complexity 

and range of upstream inputs acting on the Hpo pathway core kinase cascade, along 

with the range of determinants affecting YAP nuclear localisation, makes the 



Chapter 6. Discussion 

 

 200 

manipulation of upstream members a less attractive therapeutic approach. Indeed, Pan 

and colleagues have recently reported a screen for small molecules inhibitors of the 

YAP/TEAD interaction. Using this approach, they identify verteporfin as a YAP/TEAD 

interaction inhibitor, and show that this compound can revert the hepatomegaly induced 

by loss of NF2/Merlin in mice (Liu-Chittenden et al., 2012). Given the range of YAP-

interacting TFs, this approach may need to be tailored to block different YAP/TF 

interactions, since the identity of YAP binding partners could differ from one cancer to 

the next. 

 

6.2 The Hpo pathway as a regulator of regeneration 

My study is amongst the first suggesting a non-autonomous role for the Hpo pathway in 

regeneration, rather than a direct cell-autonomous effect on proliferation. It will be 

interesting to see how the Hpo pathway is regulated in the midgut and if this non-

autonomous, regenerative function is conserved in other contexts and organisms. 

 

6.2.1 Yki and regeneration 

Alongside the Drosophila midgut, a role for the Hpo pathway has also been 

demonstrated in both Cricket leg and wing imaginal disc regeneration (Bando et al., 

2009, Grusche et al., 2011, Sun and Irvine, 2011).   

 

Compensatory cell proliferation, the ability of dying cells to stimulate the proliferation 

of their neighbours, was first characterised in wing imaginal discs. Two studies have 

demonstrated that Yki is activated in wing discs in response to tissue damage (Sun and 

Irvine, 2011, Grusche et al., 2011). The regenerative response to tissue damage 

(whether it be induced surgically, genetically or by irradiation) is substantially impaired 

in the absence of just one copy of Yki. Mechanisms shown to contribute to Yki 

regulation during normal development, such as Ft-Ds signalling, were found to affect 

Yki activity during regenerative growth but are seemingly not sufficient to account for 

Yki hyperactivation, since regeneration still occurs in the absence of Dachs (Grusche et 

al., 2011). The most likely scenario is that multiple upstream inputs are responsible for 
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sensing tissue damage and, in turn, activating Yki. 

 

6.2.2 JNK signalling and the regulation of Yki activity 

Wing imaginal disc compensatory proliferation and regeneration is known to involve 

JNK signalling activity (Bergantinos et al., 2010, Ryoo et al., 2004). While JNK 

signalling is not necessary for Yki activation during normal development (Igaki, 2009), 

Sun and colleagues demonstrated a requirement in wing disc regeneration (Sun and 

Irvine, 2011), suggesting that JNK activity provides a context-specific input on the Hpo 

pathway. Similar to my observations in the gut (see section 5.6.2), it is unclear whether 

JNK influences Yki activity directly in this context. JNK might regulate Yki via a single 

mechanism or might alternatively affect several upstream Hpo pathway regulators. In 

mammals, JNK has been shown to directly phosphorylate YAP in order to regulate 

apoptosis (Tomlinson et al., 2010). A more in depth biochemical understanding of how 

JNK regulates Yki in other contexts is clearly required. 

 

The role of JNK signalling is clearly complex, since JNK is known to be pro-apoptotic 

in some contexts (Kanda and Miura, 2004). This complexity is demonstrated by the 

JNK-Yki interplay in different classes of tumour. Yki is activated in tumours associated 

with lgl mutation (Grzeschik et al., 2010, Ling et al., 2010, Menendez et al., 2010). In 

wing imaginal discs, this activation requires JNK (Sun and Irvine, 2011). However, in 

tumours associated with scrib mutation, JNK is pro-apoptotic and exhibits anti-

proliferative effects. In this context, it is in fact downregulation of JNK activity, which 

results in Yki activation, suggesting that the JNK pathway can repress Yki activity in 

certain contexts (Chen et al., 2012). 

 

6.3 Progress in the Drosophila midgut field 

Since the initial discovery of a population of adult SCs in the fly midgut in 2006, work 

in the field has focussed mainly on identifying the signalling pathways regulating ISC 

activity. Understanding the processes governing ISC lineages is vital to the study of SC 

dynamics and there still remain fundamental questions pertaining to how the different 



Chapter 6. Discussion 

 

 202 

signalling pathways regulate these processes. Studying the emergence of ISCs during 

development, which would be easier in flies than mammals, might offer clues as to how 

they are programmed and thus regulated. In particular, finding the origins of the adult 

ISCs and their larval precursors (the AMPs), when these cells are specified (embryo or 

larvae) and what elements in the environment (ECM, other cells, secreted factors) they 

interact with could provide insight into the mechanisms regulating SC behaviour in the 

adult. Given the role of the Hpo pathway in gut regeneration, one might imagine that 

Hpo pathway function could also contribute to adult gut development during the pupal 

stages, but this remains to be investigated. 

 

Numerous markers are now available for studying intestinal homeostasis and these can 

be used in combination with ever improving lineage-tracing techniques. Most recently, 

Twin-spot MARCM, a new lineage tracing method based on mitotic segregation, was 

used to highlight the presence of both symmetric and asymmetric divisions in the 

midgut (Yu et al., 2009, de Navascues et al., 2012, O'Brien et al., 2011). A similar 

approach has been utilised in the mouse intestine and yielded complementary results 

(Snippert et al., 2010). It is unclear at this point how the ratio of symmetric to 

asymmetric divisions is regulated in different contexts and whether, as would appear to 

be the case in the mammalian intestine, some ISCs are mainly homeostatic, whilst 

others are predominantly active during adaptive growth.  

 

Alongside developing our understanding of SC homeostasis, studies in the midgut have 

provided insight into processes such as ageing and regeneration. Often, as is the case 

with the Hpo pathway, whilst researchers have been able to identify the signalling 

pathways involved in these processes, it has remained difficult to elucidate how they are 

activated and in what order. The development of midgut ex vivo culture and live 

imaging will hopefully enable some of these questions to be answered.  
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6.4 Concluding remarks - The Hpo pathway as a general 
sensor of epithelial health 

The growing evidence for Hpo pathway activity in regeneration, coupled with numerous 

studies demonstrating interplay between the Hpo pathway and polarity/cell-cell contact, 

has led to the concept that the Hpo pathway might function as a general sensor of 

epithelial integrity and health. The emerging picture of a pathway regulated by 

numerous inputs including polarity, mechanical forces and stress signals, raises the 

possibility that, by integrating these signals, the Hpo pathway regulates not only growth 

during development but also tissue homeostasis through its function in regeneration. In 

the future, it will be interesting to assess whether Hpo pathway activity can regulate 

regeneration in organisms exhibiting more extensive regenerative capacities, such as 

urodeles, hydra or planaria. 

 

 



Reference List 

 

 204 

Reference List 
 

Ables, E. T. & Drummond-Barbosa, D. 2010. The steroid hormone ecdysone 
functions with intrinsic chromatin remodeling factors to control female germline stem 
cells in Drosophila. Cell Stem Cell, 7, 581-92. 
Alarcon, C., Zaromytidou, A. I., Xi, Q., Gao, S., Yu, J., Fujisawa, S., Barlas, A., 
Miller, A. N., Manova-Todorova, K., Macias, M. J., Sapkota, G., Pan, D. & 
Massague, J. 2009. Nuclear CDKs drive Smad transcriptional activation and turnover 
in BMP and TGF-beta pathways. Cell, 139, 757-69. 
Amcheslavsky, A., Ito, N., Jiang, J. & Ip, Y. 2011. Tuberous sclerosis complex and 
Myc coordinate the growth and division of Drosophila intestinal stem cells. The Journal 
of Cell Biology, 16. 
Amcheslavsky, A., Jiang, J. & Ip, Y. 2009. Tissue Damage-Induced Intestinal Stem 
Cell Division in Drosophila. Cell stem cell. 
Angus, L., Moleirinho, S., Herron, L., Sinha, A., Zhang, X., Niestrata, M., 
Dholakia, K., Prystowsky, M., Harvey, K., Reynolds, P. & Gunn-Moore, F. 2012. 
Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals 
and antagonizes oncogenic YAP. Oncogene, 31, 238-250. 
Apidianakis, Y., Pitsouli, C., Perrimon, N. & Rahme, L. 2009. Synergy between 
bacterial infection and genetic predisposition in intestinal dysplasia. Proceedings of the 
National Academy of Sciences of the United States of America. 
Arbouzova, N. I. & Zeidler, M. P. 2006. JAK/STAT signalling in Drosophila: insights 
into conserved regulatory and cellular functions. Development, 133, 2605-16. 
Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. 1999. Notch signaling: cell fate 
control and signal integration in development. Science, 284, 770-6. 
Ashburner, M., Golic, KG & Hawley, RS. 2005. Drosophila: A laboratory handbook, 
Second edition. Cold Spring Harbor Laboratory Press.  
Ashery-Padan, R., Alvarez-Bolado, G., Klamt, B., Gessler, M. & Gruss, P. 1999. 
Fjx1, the murine homologue of the Drosophila four-jointed gene, codes for a putative 
secreted protein expressed in restricted domains of the developing and adult brain. 
Mech Dev, 80, 213-7. 
Ashton, G. H., Morton, J. P., Myant, K., Phesse, T. J., Ridgway, R. A., Marsh, V., 
Wilkins, J. A., Athineos, D., Muncan, V., Kemp, R., Neufeld, K., Clevers, H., 
Brunton, V., Winton, D. J., Wang, X., Sears, R. C., Clarke, A. R., Frame, M. C. & 
Sansom, O. J. 2010. Focal adhesion kinase is required for intestinal regeneration and 
tumorigenesis downstream of Wnt/c-Myc signaling. Dev Cell, 19, 259-69. 
Atreya, R. & Neurath, M. F. 2008. Signaling molecules: the pathogenic role of the IL-
6/STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer. 
Curr Drug Targets, 9, 369-74. 
Avruch, J., Praskova, M., Ortiz-Vega, S., Liu, M. & Zhang, X. F. 2006. Nore1 and 
RASSF1 regulation of cell proliferation and of the MST1/2 kinases. Methods Enzymol, 
407, 290-310. 
Bach, E. A., Ekas, L. A., Ayala-Camargo, A., Flaherty, M. S., Lee, H., Perrimon, N. 
& Baeg, G. H. 2007. GFP reporters detect the activation of the Drosophila JAK/STAT 
pathway in vivo. Gene Expr Patterns, 7, 323-31. 
Badouel, C., Gardano, L., Amin, N., Garg, A., Rosenfeld, R., Le Bihan, T. & 
McNeill, H. 2009. The FERM-domain protein Expanded regulates Hippo pathway 



Reference List 

 

 205 

activity via direct interactions with the transcriptional activator Yorkie. Developmental 
cell, 16, 411-20. 
Bae, Y., Choi, M. & Lee, W. J. 2010. Dual oxidase in mucosal immunity and 
host‚Äìmicrobe homeostasis. Trends in Immunology, 31, 278-287. 
Bae, Y. S., Sung, J. Y., Kim, O. S., Kim, Y. J., Hur, K. C., Kazlauskas, A. & Rhee, 
S. G. 2000. Platelet-derived growth factor-induced H(2)O(2) production requires the 
activation of phosphatidylinositol 3-kinase. J Biol Chem, 275, 10527-31. 
Bando, T., Mito, T., Maeda, Y., Nakamura, T., Ito, F., Watanabe, T., Ohuchi, H. & 
Noji, S. 2009. Regulation of leg size and shape by the Dachsous/Fat signalling pathway 
during regeneration. Development, 136, 2235-45. 
Bardet, P. L., Kolahgar, G., Mynett, A., Miguel-Aliaga, I., Briscoe, J., Meier, P. & 
Vincent, J. P. 2008. A fluorescent reporter of caspase activity for live imaging. 
Proceedings of the National Academy of Sciences of the United States of America, 105, 
13901-5. 
Bardin, A., Perdigoto, C., Southall, T., Brand, A. & Schweisguth, F. 2010. 
Transcriptional control of stem cell maintenance in the Drosophila intestine. 
Development (Cambridge, England), 137, 705-714. 
Barker, N., Bartfeld, S. & Clevers, H. 2010. Tissue-Resident Adult Stem Cell 
Populations of Rapidly Self-Renewing Organs. Cell stem cell, 7, 656-670. 
Barker, N. & Clevers, H. 2010. Leucine-Rich Repeat-Containing G-Protein-Coupled 
Receptors as Markers of Adult Stem Cells. Gastroenterology, 138, 1681-1696. 
Barker, N., van Es, J. H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., 
Haegebarth, A., Korving, J., Begthel, H., Peters, P. J. & Clevers, H. 2007. 
Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 
449, 1003-7. 
Baumann, O. 2001. Posterior midgut epithelial cells differ in their organization of the 
membrane skeleton from other drosophila epithelia. Experimental cell research, 270, 
176-87. 
Baumgartner, R., Poernbacher, I., Buser, N., Hafen, E. & Stocker, H. 2010. The 
WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell, 18, 309-16. 
Beebe, K., Lee, W. C. & Micchelli, C. A. 2010. JAK/STAT signaling coordinates stem 
cell proliferation and multilineage differentiation in the Drosophila intestinal stem cell 
lineage. Dev Biol, 338, 28-37. 
Bellen, H. J., Levis, R. W., Liao, G., He, Y., Carlson, J. W., Tsang, G., Evans-Holm, 
M., Hiesinger, P. R., Schulze, K. L., Rubin, G. M., Hoskins, R. A. & Spradling, A. 
C. 2004. The BDGP gene disruption project: single transposon insertions associated 
with 40% of Drosophila genes. Genetics, 167, 761-81. 
Benhamouche, S., Curto, M., Saotome, I., Gladden, A., Liu, C., Giovannini, M. & 
McClatchey, A. 2010. Nf2/Merlin controls progenitor homeostasis and tumorigenesis 
in the liver. Genes & development, 24, 1718-1730. 
Bennett, F. C. & Harvey, K. F. 2006. Fat cadherin modulates organ size in Drosophila 
via the Salvador/Warts/Hippo signaling pathway. Curr Biol, 16, 2101-10. 
Bergantinos, C., Corominas, M. & Serras, F. 2010. Cell death-induced regeneration 
in wing imaginal discs requires JNK signalling. Development, 137, 1169-79. 
Bienz, M. & Clevers, H. 2000. Linking colorectal cancer to Wnt signaling. Cell, 103, 
311-20. 
Binari, R. & Perrimon, N. 1994. Stripe-specific regulation of pair-rule genes by 
hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev, 8, 300-12. 



Reference List 

 

 206 

Biteau, B., Hochmuth, C. & Jasper, H. 2011. Maintaining Tissue Homeostasis: 
Dynamic Control of Somatic Stem Cell Activity. Cell stem cell, 9, 402-411. 
Biteau, B., Hochmuth, C. E. & Jasper, H. 2008. JNK activity in somatic stem cells 
causes loss of tissue homeostasis in the aging Drosophila gut. Cell stem cell. 
Biteau, B. & Jasper, H. 2011. EGF signaling regulates the proliferation of intestinal 
stem cells in Drosophila. Development (Cambridge, England). 
Biteau, B., Karpac, J., Supoyo, S., Degennaro, M., Lehmann, R. & Jasper, H. 2010. 
Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS 
genetics, 6, e1001159. 
Bjedov, I., Toivonen, J. M., Kerr, F., Slack, C., Jacobson, J., Foley, A. & Partridge, 
L. 2010. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila 
melanogaster. Cell Metab, 11, 35-46. 
Bjerknes, M. & Cheng, H. 1999. Clonal analysis of mouse intestinal epithelial 
progenitors. Gastroenterology, 116, 7-14. 
Bjerknes, M. & Cheng, H. 2002. Multipotential stem cells in adult mouse gastric 
epithelium. Am J Physiol Gastrointest Liver Physiol, 283, G767-77. 
Blair, S. 2003. Genetic mosaic techniques for studying Drosophila development. 
Development (Cambridge, England), 130, 5065-5072. 
Boedigheimer, M. J., Nguyen, K. P. & Bryant, P. J. 1997. Expanded functions in the 
apical cell domain to regulate the growth rate of imaginal discs. Dev Genet, 20, 103-10. 
Boggiano, J., Vanderzalm, P. & Fehon, R. 2011. Tao-1 Phosphorylates Hippo/MST 
Kinases to Regulate the Hippo-Salvador-Warts Tumor Suppressor Pathway. 
Developmental cell, 21, 888-895. 
Bothos, J., Tuttle, R. L., Ottey, M., Luca, F. C. & Halazonetis, T. D. 2005. Human 
LATS1 is a mitotic exit network kinase. Cancer Res, 65, 6568-75. 
Boyle, M., Wong, C., Rocha, M. & Jones, D. L. 2007. Decline in self-renewal factors 
contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell, 1, 
470-8. 
Brand, A. H. & Perrimon, N. 1993. Targeted gene expression as a means of altering 
cell fates and generating dominant phenotypes. Development, 118, 401-15. 
Brittle, A. L., Repiso, A., Casal, J., Lawrence, P. A. & Strutt, D. 2010. Four-Jointed 
Modulates Growth and Planar Polarity by Reducing the Affinity of Dachsous for Fat. 
Current biology : CB. 
Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R. & Hafen, E. 2001. 
An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like 
peptides in growth control. Curr Biol, 11, 213-21. 
Brown, S., Hu, N. & Hombria, J. C. 2001. Identification of the first invertebrate 
interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr Biol, 11, 1700-5. 
Buchon, N., Broderick, N., Poidevin, M., Pradervand, S. & Lemaitre, B. 2009a. 
Drosophila Intestinal Response to Bacterial Infection: Activation of Host Defense and 
Stem Cell Proliferation. Cell Host & Microbe. 
Buchon, N., Broderick, N. A., Chakrabarti, S. & Lemaitre, B. 2009b. Invasive and 
indigenous microbiota impact intestinal stem cell activity through multiple pathways in 
Drosophila. Genes Dev, 23, 2333-44. 
Buchon, N., Broderick, N. A., Kuraishi, T. & Lemaitre, B. 2010. Drosophila EGFR 
pathway coordinates stem cell proliferation and gut remodeling following infection. 
BMC Biology, 8, 152. 



Reference List 

 

 207 

Buckles, G. R., Rauskolb, C., Villano, J. L. & Katz, F. N. 2001. Four-jointed 
interacts with dachs, abelson and enabled and feeds back onto the Notch pathway to 
affect growth and segmentation in the Drosophila leg. Development, 128, 3533-42. 
Buszczak, M., Paterno, S. & Spradling, A. 2009. Drosophila Stem Cells Share a 
Common Requirement for the Histone H2B Ubiquitin Protease Scrawny. Science. 
Buther, K., Plaas, C., Barnekow, A. & Kremerskothen, J. 2004. KIBRA is a novel 
substrate for protein kinase Czeta. Biochem Biophys Res Commun, 317, 703-7. 
Cadigan, K. M. & Nusse, R. 1997. Wnt signaling: a common theme in animal 
development. Genes Dev, 11, 3286-305. 
Cai, J., Zhang, N., Zheng, Y., De Wilde, R., Maitra, A. & Pan, D. 2010. The Hippo 
signaling pathway restricts the oncogenic potential of an intestinal regeneration program. 
Genes & development, 24, 2383-2388. 
Cairnie, A. B., Lamerton, L. F. & Steel, G. G. 1965. Cell proliferation studies in the 
intestinal epithelium of the rat. II. Theoretical aspects. Exp Cell Res, 39, 539-53. 
Callus, B. A., Verhagen, A. M. & Vaux, D. L. 2006. Association of mammalian 
sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil 
domains, leads to its stabilization and phosphorylation. FEBS J, 273, 4264-76. 
Camargo, F., Gokhale, S., Johnnidis, J., Fu, D., Bell, G., Jaenisch, R. & 
Brummelkamp, T. 2007. YAP1 Increases Organ Size and Expands Undifferentiated 
Progenitor Cells. Current Biology. 
Campbell, S., Inamdar, M., Rodrigues, V., Raghavan, V., Palazzolo, M. & 
Chovnick, A. 1992. The scalloped gene encodes a novel, evolutionarily conserved 
transcription factor required for sensory organ differentiation in Drosophila. Genes Dev, 
6, 367-79. 
Campisi, J. 2005. Senescent cells, tumor suppression, and organismal aging: good 
citizens, bad neighbors. Cell, 120, 513-22. 
Cao, X., Pfaff, S. L. & Gage, F. H. 2008. YAP regulates neural progenitor cell number 
via the TEA domain transcription factor. Genes Dev. 
Chan, E. H., Nousiainen, M., Chalamalasetty, R. B., Schafer, A., Nigg, E. A. & 
Sillje, H. H. 2005. The Ste20-like kinase Mst2 activates the human large tumor 
suppressor kinase Lats1. Oncogene, 24, 2076-86. 
Chan, S., Lim, C., Chong, Y., Pobbati, A., Huang, C. & Hong, W. 2011. Hippo 
Pathway-independent Restriction of TAZ and YAP by Angiomotin. Journal of 
Biological Chemistry, 286, 7018-7026. 
Chan, S., Lim, C., Huang, C., Chong, Y., Gunaratne, H., Hogue, K., Blackstock, 
W., Harvey, K. & Hong, W. 2010. WW domain-mediated interaction with Wbp2 is 
important for the oncogenic property of TAZ. Oncogene, 11. 
Chao, J. L., Tsai, Y. C., Chiu, S. J. & Sun, Y. H. 2004. Localized Notch signal acts 
through eyg and upd to promote global growth in Drosophila eye. Development, 131, 
3839-47. 
Chatterjee, M. & Ip, Y. 2009. Pathogenic stimulation of intestinal stem cell response 
in drosophila. Journal of cellular physiology. 
Chen, C., Gajewski, K., Hamaratoglu, F., Bossuyt, W., Sansores-Garcia, L., Tao, C. 
& Halder, G. 2010. The apical-basal cell polarity determinant Crumbs regulates Hippo 
signaling in Drosophila. Proceedings of the National Academy of Sciences, 107, 15810-
15815. 



Reference List 

 

 208 

Chen, C., Schroeder, M., Kango-Singh, M., Tao, C. & Halder, G. 2012. Tumor 
suppression by cell competition through regulation of the Hippo pathway. Proceedings 
of the National Academy of Sciences, 109, 484-489. 
Chen, D. & McKearin, D. 2003. Dpp signaling silences bam transcription directly to 
establish asymmetric divisions of germline stem cells. Curr Biol, 13, 1786-91. 
Chen, H. I., Einbond, A., Kwak, S. J., Linn, H., Koepf, E., Peterson, S., Kelly, J. W. 
& Sudol, M. 1997. Characterization of the WW domain of human yes-associated 
protein and its polyproline-containing ligands. J Biol Chem, 272, 17070-7. 
Chen, H. W., Chen, X., Oh, S. W., Marinissen, M. J., Gutkind, J. S. & Hou, S. X. 
2002. mom identifies a receptor for the Drosophila JAK/STAT signal transduction 
pathway and encodes a protein distantly related to the mammalian cytokine receptor 
family. Genes Dev, 16, 388-98. 
Cheng, H. & Leblond, C. P. 1974. Origin, differentiation and renewal of the four main 
epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of 
the four epithelial cell types. Am J Anat, 141, 537-61. 
Cho, E., Feng, Y., Rauskolb, C., Maitra, S., Fehon, R. & Irvine, K. D. 2006. 
Delineation of a Fat tumor suppressor pathway. Nat Genet, 38, 1142-50. 
Cho, E. & Irvine, K. D. 2004. Action of fat, four-jointed, dachsous and dachs in distal-
to-proximal wing signaling. Development, 131, 4489-500. 
Choi, N., Lucchetta, E. & Ohlstein, B. 2011. Nonautonomous regulation of 
Drosophila midgut stem cell proliferation by the insulin-signaling pathway. 
Proceedings of the National Academy of Sciences, 14. 
Choi, N. H., Kim, J. G., Yang, D. J., Kim, Y. S. & Yoo, M. A. 2008. Age-related 
changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth 
factor. Aging Cell. 
Ciapponi, L., Jackson, D. B., Mlodzik, M. & Bohmann, D. 2001. Drosophila Fos 
mediates ERK and JNK signals via distinct phosphorylation sites. Genes Dev, 15, 1540-
53. 
Clancy, D. J., Gems, D., Hafen, E., Leevers, S. J. & Partridge, L. 2002. Dietary 
restriction in long-lived dwarf flies. Science, 296, 319. 
Clark, H. F., Brentrup, D., Schneitz, K., Bieber, A., Goodman, C. & Noll, M. 1995. 
Dachsous encodes a member of the cadherin superfamily that controls imaginal disc 
morphogenesis in Drosophila. Genes Dev, 9, 1530-42. 
Clayton, E., Doupe, D. P., Klein, A. M., Winton, D. J., Simons, B. D. & Jones, P. H. 
2007. A single type of progenitor cell maintains normal epidermis. Nature, 446, 185-9. 
Clevers, H. 2006. Wnt/beta-catenin signaling in development and disease. Cell, 127, 
469-80. 
Cognigni, P., Bailey, A. P. & Miguel-Aliaga, I. 2011. Enteric neurons and systemic 
signals couple nutritional and reproductive status with intestinal homeostasis. Cell 
metabolism, 13, 92-104. 
Colombani, J., Bianchini, L., Layalle, S., Pondeville, E., Dauphin-Villemant, C., 
Antoniewski, C., Carre, C., Noselli, S. & Leopold, P. 2005. Antagonistic actions of 
ecdysone and insulins determine final size in Drosophila. Science, 310, 667-70. 
Colombani, J., Polesello, C., Josue, F. & Tapon, N. 2006. Dmp53 activates the Hippo 
pathway to promote cell death in response to DNA damage. Curr Biol, 16, 1453-8. 
Corby-Harris, V., Pontaroli, A. C., Shimkets, L. J., Bennetzen, J. L., Habel, K. E. 
& Promislow, D. E. 2007. Geographical distribution and diversity of bacteria 



Reference List 

 

 209 

associated with natural populations of Drosophila melanogaster. Appl Environ 
Microbiol, 73, 3470-9. 
Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., 
Inui, M., Montagner, M., Parenti, A., Poletti, A., Daidone, M., Dupont, S., Basso, 
G., Bicciato, S. & Piccolo, S. 2011. The Hippo Transducer TAZ Confers Cancer Stem 
Cell-Related Traits on Breast Cancer Cells. Cell, 147, 759-772. 
Cordero, J., Vidal, M. & Sansom, O. 2009. APC as a master regulator of intestinal 
homeostasis and transformation: from flies to vertebrates. Cell cycle (Georgetown, Tex), 
8, 2926-31. 
Cronin, S. J., Nehme, N. T., Limmer, S., Liegeois, S., Pospisilik, J. A., Schramek, 
D., Leibbrandt, A., Simoes Rde, M., Gruber, S., Puc, U., Ebersberger, I., 
Zoranovic, T., Neely, G. G., von Haeseler, A., Ferrandon, D. & Penninger, J. M. 
2009. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic 
bacterial infection. Science, 325, 340-3. 
Crosnier, C., Stamataki, D. & Lewis, J. 2006. Organizing cell renewal in the 
intestine: stem cells, signals and combinatorial control. Nat Rev Genet. 
Das Thakur, M., Feng, Y., Jagannathan, R., Seppa, M. J., Skeath, J. B. & 
Longmore, G. D. 2010. Ajuba LIM Proteins Are Negative Regulators of the Hippo 
Signaling Pathway. Current biology : CB. 
de Celis, J. F. & Bray, S. 1997. Feed-back mechanisms affecting Notch activation at 
the dorsoventral boundary in the Drosophila wing. Development, 124, 3241-51. 
de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L. A. 2004. 
Drosophila myc regulates organ size by inducing cell competition. Cell, 117, 107-16. 
de Navascues, J., Perdigoto, C. N., Bian, Y., Schneider, M. H., Bardin, A. J., 
Martinez-Arias, A. & Simons, B. D. 2012. Drosophila midgut homeostasis involves 
neutral competition between symmetrically dividing intestinal stem cells. EMBO J, 31, 
2473-85. 
Decotto, E. & Spradling, A. C. 2005. The Drosophila ovarian and testis stem cell 
niches: similar somatic stem cells and signals. Dev Cell, 9, 501-10. 
Dekanty, A. & Milan, M. 2011. The interplay between morphogens and tissue growth. 
EMBO Rep, 12, 1003-10. 
Dhananjayan, S. C., Ramamoorthy, S., Khan, O. Y., Ismail, A., Sun, J., 
Slingerland, J., O'Malley, B. W. & Nawaz, Z. 2006. WW domain binding protein-2, 
an E6-associated protein interacting protein, acts as a coactivator of estrogen and 
progesterone receptors. Mol Endocrinol, 20, 2343-54. 
Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., Fellner, M., Gasser, B., 
Kinsey, K., Oppel, S., Scheiblauer, S., Couto, A., Marra, V., Keleman, K. & 
Dickson, B. J. 2007. A genome-wide transgenic RNAi library for conditional gene 
inactivation in Drosophila. Nature, 448, 151-6. 
Dong, A., Gupta, A., Pai, R., Tun, M. & Lowe, A. 2011. The human adenocarcinoma-
associated gene, AGR2, induces expression of amphiregulin through hippo pathway co-
activator YAP1 activation. Journal of Biological Chemistry, 22. 
Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S. A., Gayyed, 
M. F., Anders, R. A., Maitra, A. & Pan, D. 2007. Elucidation of a universal size-
control mechanism in Drosophila and mammals. Cell, 130, 1120-33. 
Donko, A., Peterfi, Z., Sum, A., Leto, T. & Geiszt, M. 2005. Dual oxidases. Philos 
Trans R Soc Lond B Biol Sci, 360, 2301-8. 



Reference List 

 

 210 

Dubreuil, R. R. 2004. Copper cells and stomach acid secretion in the Drosophila 
midgut. Int J Biochem Cell Biol, 36, 745-52. 
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., 
Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., Elvassore, N. & Piccolo, S. 
2011. Role of YAP/TAZ in mechanotransduction. Nature, 474, 179-183. 
Edgar, B. A. & Orr-Weaver, T. L. 2001. Endoreplication cell cycles: more for less. 
Cell, 105, 297-306. 
Edgecomb, R. S., Harth, C. E. & Schneiderman, A. M. 1994. Regulation of feeding 
behavior in adult Drosophila melanogaster varies with feeding regime and nutritional 
state. J Exp Biol, 197, 215-35. 
Edwards, K., Davis, T., Marcey, D., Kurihara, J. & Yamamoto, D. 2001. 
Comparative analysis of the Band 4.1/ezrin-related protein tyrosine phosphatase Pez 
from two Drosophila species: implications for structure and function. Gene, 275, 195-
205. 
Emoto, K., Parrish, J. Z., Jan, L. Y. & Jan, Y. N. 2006. The tumour suppressor 
Hippo acts with the NDR kinases in dendritic tiling and maintenance. Nature, 443, 210-
3. 
Engels, W. R. 1992. The origin of P elements in Drosophila melanogaster. Bioessays, 
14, 681-6. 
Feng, Y. & Irvine, K. D. 2009. Processing and phosphorylation of the Fat receptor. 
Proc Natl Acad Sci U S A, 106, 11989-94. 
Fernandez, B., Gaspar, P., Bras-Pereira, C., Jezowska, B., Rebelo, S. & Janody, F. 
2011. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth 
in Drosophila. Development (Cambridge, England), 10. 
Fernandez, L. A. & Kenney, A. M. 2010. The Hippo in the room: a new look at a key 
pathway in cell growth and transformation. Cell Cycle, 9, 2292-9. 
Fernandez-L, A., Northcott, P., Dalton, J., Fraga, C., Ellison, D., Angers, S., Taylor, 
M. & Kenney, A. 2009. YAP1 is amplified and up-regulated in hedgehog-associated 
medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. 
Genes & development, 23, 2729-2741. 
Fevr, T., Robine, S., Louvard, D. & Huelsken, J. 2007. Wnt/beta-catenin is essential 
for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol, 27, 
7551-9. 
Fialkow, P. J. 1976. Clonal origin of human tumors. Biochim Biophys Acta, 458, 283-
321. 
Fox, D. T. & Spradling, A. C. 2009. The Drosophila hindgut lacks constitutively 
active adult stem cells but proliferates in response to tissue damage. Cell stem cell, 5, 
290-7. 
Fre, S., Huyghe, M., Mourikis, P., Robine, S., Louvard, D. & Artavanis-Tsakonas, 
S. 2005. Notch signals control the fate of immature progenitor cells in the intestine. 
Nature, 435, 964-8. 
Frisch, S. M. & Francis, H. 1994. Disruption of epithelial cell-matrix interactions 
induces apoptosis. J Cell Biol, 124, 619-26. 
Frisch, S. M. & Screaton, R. A. 2001. Anoikis mechanisms. Curr Opin Cell Biol, 13, 
555-62. 
Fuchs, E. 2007. Scratching the surface of skin development. Nature, 445, 834-42. 



Reference List 

 

 211 

Funato, Y., Michiue, T., Asashima, M. & Miki, H. 2006. The thioredoxin-related 
redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through 
dishevelled. Nat Cell Biol, 8, 501-8. 
Furriols, M. & Bray, S. 2001. A model Notch response element detects Suppressor of 
Hairless-dependent molecular switch. Curr Biol, 11, 60-4. 
Fuse, N., Hirose, S. & Hayashi, S. 1994. Diploidy of Drosophila imaginal cells is 
maintained by a transcriptional repressor encoded by escargot. Genes Dev, 8, 2270-81. 
Gartner, L. P. 1970. Submicroscopic morphology of the adult drosophila midgut. J 
Baltimore Coll Dent Surg, 25, 64-76. 
Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. 1992. Identification of programmed 
cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol, 119, 
493-501. 
Gee, S. T., Milgram, S. L., Kramer, K. L., Conlon, F. L. & Moody, S. A. 2011. Yes-
associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression 
in the neural plate border zone. PLoS One, 6, e20309. 
Genevet, A., Polesello, C., Blight, K., Robertson, F., Collinson, L. M., Pichaud, F. 
& Tapon, N. 2009. The Hippo pathway regulates apical-domain size independently of 
its growth-control function. J Cell Sci, 122, 2360-70. 
Genevet, A. & Tapon, N. 2011. The Hippo pathway and apicobasal cell polarity. The 
Biochemical journal, 436, 213-224. 
Genevet, A., Wehr, M. C., Brain, R., Thompson, B. J. & Tapon, N. 2010. Kibra is a 
regulator of the Salvador/Warts/Hippo signaling network. Developmental cell, 18, 300-
8. 
Gilbert, M., Tipping, M., Veraksa, A. & Moberg, K. 2011. A Screen for Conditional 
Growth Suppressor Genes Identifies the Drosophila Homolog of HD-PTP as a 
Regulator of the Oncoprotein Yorkie. Developmental cell, 20, 700-712. 
Gilbert, M. M., Weaver, B. K., Gergen, J. P. & Reich, N. C. 2005. A novel 
functional activator of the Drosophila JAK/STAT pathway, unpaired2, is revealed by an 
in vivo reporter of pathway activation. Mech Dev, 122, 939-48. 
Giles, R. H., van Es, J. H. & Clevers, H. 2003. Caught up in a Wnt storm: Wnt 
signaling in cancer. Biochim Biophys Acta, 1653, 1-24. 
Gilmore, A. P. 2005. Anoikis. Cell Death Differ, 12 Suppl 2, 1473-7. 
Glantschnig, H., Rodan, G. A. & Reszka, A. A. 2002. Mapping of MST1 kinase sites 
of phosphorylation. Activation and autophosphorylation. J Biol Chem, 277, 42987-96. 
Goberdhan, D. C. & Wilson, C. 1998. JNK, cytoskeletal regulator and stress response 
kinase? A Drosophila perspective. Bioessays, 20, 1009-19. 
Golic, K. G. & Lindquist, S. 1989. The FLP recombinase of yeast catalyzes site-
specific recombination in the Drosophila genome. Cell, 59, 499-509. 
Goulev, Y., Fauny, J. D., Gonzalez-Marti, B., Flagiello, D., Silber, J. & Zider, A. 
2008. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-
suppressor pathway in Drosophila. Curr Biol, 18, 435-41. 
Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. 2000. Induction of 
apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO 
J, 19, 589-97. 
Greenspan, R. J. 1997. Fly pushing : the theory and practice of Drosophila genetics, 
Plainview, N.Y., Cold Spring Harbor Laboratory Press. 



Reference List 

 

 212 

Gregorieff, A., Pinto, D., Begthel, H., Destree, O., Kielman, M. & Clevers, H. 2005. 
Expression pattern of Wnt signaling components in the adult intestine. 
Gastroenterology, 129, 626-38. 
Gregory, L., Came, P. J. & Brown, S. 2008. Stem cell regulation by JAK/STAT 
signaling in Drosophila. Semin Cell Dev Biol, 19, 407-13. 
Grusche, F., Degoutin, J., Richardson, H. & Harvey, K. 2011. The 
Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila 
melanogaster. Developmental biology, 350, 255-266. 
Grzeschik, N. A., Parsons, L. M., Allott, M. L., Harvey, K. F. & Richardson, H. E. 
2010. Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two 
distinct mechanisms. Curr Biol, 20, 573-81. 
Guo, C., Zhang, X. & Pfeifer, G. P. 2011. The tumor suppressor RASSF1A prevents 
dephosphorylation of the mammalian STE20-like kinases MST1 and MST2. J Biol 
Chem, 286, 6253-61. 
Ha, E. 2005. A Direct Role for Dual Oxidase in Drosophila Gut Immunity. Science 
(New York, NY), 310, 847-850. 
Ha, E. M., Lee, K., Seo, Y., Kim, S. H., Lim, J., Oh, B., Kim, J. & Lee, W. J. 2009. 
Coordination of multiple dual oxidase regulatory pathways in responses to commensal 
and infectious microbes in drosophila gut. Nature immunology, 10, 949-957. 
Ha, E. M., Oh, C. T., Ryu, J. H., Bae, Y. S., Kang, S. W., Jang, I. H., Brey, P. T. & 
Lee, W. J. 2005. An antioxidant system required for host protection against gut 
infection in Drosophila. Developmental cell, 8, 125-32. 
Hamaratoglu, F., Gajewski, K., Sansores-Garcia, L., Morrison, C., Tao, C. & 
Halder, G. 2009. The Hippo tumor-suppressor pathway regulates apical-domain size in 
parallel to tissue growth. Journal of cell science, 122, 2351-9. 
Hamaratoglu, F., Willecke, M., Kango-Singh, M., Nolo, R., Hyun, E., Tao, C., 
Jafar-Nejad, H. & Halder, G. 2006. The tumour-suppressor genes NF2/Merlin and 
Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat 
Cell Biol, 8, 27-36. 
Hanahan, D. & Weinberg, R. A. 2000. The hallmarks of cancer. Cell, 100, 57-70. 
Hao, Y., Chun, A., Cheung, K., Rashidi, B. & Yang, X. 2008. Tumor suppressor 
LATS1 is a negative regulator of oncogene YAP. J Biol Chem, 283, 5496-509. 
Hariharan, I. K. & Bilder, D. 2006. Regulation of imaginal disc growth by tumor-
suppressor genes in Drosophila. Annual review of genetics, 40, 335-61. 
Harrison, D. A., McCoon, P. E., Binari, R., Gilman, M. & Perrimon, N. 1998. 
Drosophila unpaired encodes a secreted protein that activates the JAK signaling 
pathway. Genes Dev, 12, 3252-63. 
Harvey, K. & Tapon, N. 2007. The Salvador-Warts-Hippo pathway - an emerging 
tumour-suppressor network. Nat Rev Cancer, 7, 182-91. 
Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. 2003. The Drosophila Mst ortholog, 
hippo, restricts growth and cell proliferation and promotes apoptosis. Cell, 114, 457-67. 
Hay, B. A., Huh, J. R. & Guo, M. 2004. The genetics of cell death: approaches, 
insights and opportunities in Drosophila. Nat Rev Genet, 5, 911-22. 
Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R. & 
Martin, J. 2011. Hippo Pathway Inhibits Wnt Signaling to Restrain Cardiomyocyte 
Proliferation and Heart Size. Science (New York, NY), 332, 458-461. 
Heath, J. P. 1996. Epithelial cell migration in the intestine. Cell Biol Int, 20, 139-46. 



Reference List 

 

 213 

Hergovich, A. & Hemmings, B. A. 2012. Hippo signalling in the G2/M cell cycle 
phase: Lessons learned from the yeast MEN and SIN pathways. Semin Cell Dev Biol. 
Hergovich, A., Kohler, R. S., Schmitz, D., Vichalkovski, A., Cornils, H. & 
Hemmings, B. A. 2009. The MST1 and hMOB1 Tumor Suppressors Control Human 
Centrosome Duplication by Regulating NDR Kinase Phosphorylation. Current biology : 
CB. 
Hergovich, A., Schmitz, D. & Hemmings, B. A. 2006. The human tumour suppressor 
LATS1 is activated by human MOB1 at the membrane. Biochem Biophys Res Commun, 
345, 50-8. 
Herranz, H., Hong, X. & Cohen, S. M. 2012. Mutual Repression by Bantam miRNA 
and Capicua Links the EGFR/MAPK and Hippo Pathways in Growth Control. Curr 
Biol, 22, 651-7. 
Hietakangas, V. & Cohen, S. M. 2009. Regulation of tissue growth through nutrient 
sensing. Annu Rev Genet, 43, 389-410. 
Hirabayashi, S., Nakagawa, K., Sumita, K., Hidaka, S., Kawai, T., Ikeda, M., 
Kawata, A., Ohno, K. & Hata, Y. 2008. Threonine 74 of MOB1 is a putative key 
phosphorylation site by MST2 to form the scaffold to activate nuclear Dbf2-related 
kinase 1. Oncogene, 27, 4281-92. 
Hirata, H., Tatsumi, H. & Sokabe, M. 2008. Zyxin emerges as a key player in the 
mechanotransduction at cell adhesive structures. Commun Integr Biol, 1, 192-195. 
Ho, L. L., Wei, X., Shimizu, T. & Lai, Z. C. 2010. Mob as tumor suppressor is 
activated at the cell membrane to control tissue growth and organ size in Drosophila. 
Dev Biol, 337, 274-83. 
Hochmuth, C., Biteau, B., Bohmann, D. & Jasper, H. 2011. Redox Regulation by 
Keap1 and Nrf2 Controls Intestinal Stem Cell Proliferation in Drosophila. Cell stem cell, 
8, 188-199. 
Hombria, J. C., Brown, S., Hader, S. & Zeidler, M. P. 2005. Characterisation of 
Upd2, a Drosophila JAK/STAT pathway ligand. Dev Biol, 288, 420-33. 
Hong, J. H., Hwang, E. S., McManus, M. T., Amsterdam, A., Tian, Y., Kalmukova, 
R., Mueller, E., Benjamin, T., Spiegelman, B. M., Sharp, P. A., Hopkins, N. & 
Yaffe, M. B. 2005. TAZ, a transcriptional modulator of mesenchymal stem cell 
differentiation. Science, 309, 1074-8. 
Hong, J. H. & Yaffe, M. B. 2006. TAZ: a beta-catenin-like molecule that regulates 
mesenchymal stem cell differentiation. Cell Cycle, 5, 176-9. 
Horvitz, H. R. & Herskowitz, I. 1992. Mechanisms of asymmetric cell division: two 
Bs or not two Bs, that is the question. Cell, 68, 237-55. 
Hou, S. 2010. Intestinal stem cell asymmetric division in the Drosophila posterior 
midgut. Journal of cellular physiology, 224, 581-584. 
Hou, X. S., Melnick, M. B. & Perrimon, N. 1996. Marelle acts downstream of the 
Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. 
Cell, 84, 411-9. 
Hsu, H. J. & Drummond-Barbosa, D. 2009. Insulin levels control female germline 
stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci U S A, 106, 
1117-21. 
Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. 2005. The Hippo signaling 
pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, 
the Drosophila Homolog of YAP. Cell, 122, 421-34. 



Reference List 

 

 214 

Huh, J. R., Guo, M. & Hay, B. A. 2004. Compensatory proliferation induced by cell 
death in the Drosophila wing disc requires activity of the apical cell death caspase 
Dronc in a nonapoptotic role. Curr Biol, 14, 1262-6. 
Igaki, T. 2009. Correcting developmental errors by apoptosis: lessons from Drosophila 
JNK signaling. Apoptosis, 14, 1021-8. 
Ikeda, M., Kawata, A., Nishikawa, M., Tateishi, Y., Yamaguchi, M., Nakagawa, K., 
Hirabayashi, S., Bao, Y., Hidaka, S., Hirata, Y. & Hata, Y. 2009. Hippo Pathway-
Dependent and -Independent Roles of RASSF6. Science Signaling, 2, ra59-ra59. 
Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A. & Nishida, E. 2012. A 
molecular mechanism that links Hippo signalling to the inhibition of Wnt/Œ≤-catenin 
signalling. The EMBO Journal, 14. 
Ishikawa, H. O., Takeuchi, H., Haltiwanger, R. S. & Irvine, K. D. 2008. Four-
jointed is a Golgi kinase that phosphorylates a subset of cadherin domains. Science, 321, 
401-4. 
Ito, K., Awano, W., Suzuki, K., Hiromi, Y. & Yamamoto, D. 1997. The Drosophila 
mushroom body is a quadruple structure of clonal units each of which contains a 
virtually identical set of neurones and glial cells. Development, 124, 761-71. 
Ito, K., Hirao, A., Arai, F., Matsuoka, S., Takubo, K., Hamaguchi, I., Nomiyama, 
K., Hosokawa, K., Sakurada, K., Nakagata, N., Ikeda, Y., Mak, T. W. & Suda, T. 
2004. Regulation of oxidative stress by ATM is required for self-renewal of 
haematopoietic stem cells. Nature, 431, 997-1002. 
James, M. F., Han, S., Polizzano, C., Plotkin, S. R., Manning, B. D., Stemmer-
Rachamimov, A. O., Gusella, J. F. & Ramesh, V. 2009. NF2/merlin is a novel 
negative regulator of mTOR complex 1, and activation of mTORC1 is associated with 
meningioma and schwannoma growth. Mol Cell Biol, 29, 4250-61. 
Jansson, L. & Larsson, J. 2012. Normal hematopoietic stem cell function in mice with 
enforced expression of the Hippo signaling effector YAP1. PLoS One, 7, e32013. 
Jay, D. B., Papaharalambus, C. A., Seidel-Rogol, B., Dikalova, A. E., Lassegue, B. 
& Griendling, K. K. 2008. Nox5 mediates PDGF-induced proliferation in human 
aortic smooth muscle cells. Free Radic Biol Med, 45, 329-35. 
Jia, J., Zhang, W., Wang, B., Trinko, R. & Jiang, J. 2003. The Drosophila Ste20 
family kinase dMST functions as a tumor suppressor by restricting cell proliferation and 
promoting apoptosis. Genes Dev, 17, 2514-9. 
Jiang, H. & Edgar, B. A. 2009. EGFR signaling regulates the proliferation of 
Drosophila adult midgut progenitors. Development. 
Jiang, H. & Edgar, B. A. 2011. Intestinal stem cells in the adult Drosophila midgut. 
Experimental cell research. 
Jiang, H., Grenley, M. O., Bravo, M. J., Blumhagen, R. Z. & Edgar, B. A. 2011. 
EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and 
regeneration in Drosophila. Cell stem cell, 8, 84-95. 
Jiang, H., Patel, P. H., Kohlmaier, A., Grenley, M. O., McEwen, D. G. & Edgar, B. 
A. 2009. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the 
Drosophila midgut. Cell, 137, 1343-55. 
Johnson, G. L. & Nakamura, K. 2007. The c-jun kinase/stress-activated pathway: 
regulation, function and role in human disease. Biochim Biophys Acta, 1773, 1341-8. 
Johnston, G. C., Pringle, J. R. & Hartwell, L. H. 1977. Coordination of growth with 
cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res, 105, 79-98. 



Reference List 

 

 215 

Jones, D. L. & Rando, T. A. 2011. Emerging models and paradigms for stem cell 
ageing. Nat Cell Biol, 13, 506-12. 
Junn, E., Han, S. H., Im, J. Y., Yang, Y., Cho, E. W., Um, H. D., Kim, D. K., Lee, 
K. W., Han, P. L., Rhee, S. G. & Choi, I. 2000. Vitamin D3 up-regulated protein 1 
mediates oxidative stress via suppressing the thioredoxin function. J Immunol, 164, 
6287-95. 
Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. 1995. The 
Drosophila tumor suppressor gene warts encodes a homolog of human myotonic 
dystrophy kinase and is required for the control of cell shape and proliferation. Genes 
Dev, 9, 534-46. 
Kanai, F., Marignani, P. A., Sarbassova, D., Yagi, R., Hall, R. A., Donowitz, M., 
Hisaminato, A., Fujiwara, T., Ito, Y., Cantley, L. C. & Yaffe, M. B. 2000. TAZ: a 
novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ 
domain proteins. EMBO J, 19, 6778-91. 
Kanda, H. & Miura, M. 2004. Regulatory roles of JNK in programmed cell death. J 
Biochem, 136, 1-6. 
Kango-Singh, M., Nolo, R., Tao, C., Verstreken, P., Hiesinger, P. R., Bellen, H. J. 
& Halder, G. 2002. Shar-pei mediates cell proliferation arrest during imaginal disc 
growth in Drosophila. Development, 129, 5719-30. 
Kanta, J. 2011. The role of hydrogen peroxide and other reactive oxygen species in 
wound healing. Acta Medica (Hradec Kralove), 54, 97-101. 
Karpac, J., Younger, A. & Jasper, H. 2011. Dynamic coordination of innate immune 
signaling and insulin signaling regulates systemic responses to localized DNA damage. 
Dev Cell, 20, 841-54. 
Karpowicz, P., Perez, J. & Perrimon, N. 2010. The Hippo tumor suppressor pathway 
regulates intestinal stem cell regeneration. Development (Cambridge, England), 137, 
4135-45. 
Kawada, M., Arihiro, A. & Mizoguchi, E. 2007. Insights from advances in research 
of chemically induced experimental models of human inflammatory bowel disease. 
World J Gastroenterol, 13, 5581-93. 
Kenyon, C. 2001. A conserved regulatory system for aging. Cell, 105, 165-8. 
Kim, N., Koh, E., Chen, X. & Gumbiner, B. 2011. E-cadherin mediates contact 
inhibition of proliferation through Hippo signaling-pathway components. Proceedings 
of the National Academy of Sciences, 108, 11930-11935. 
Kim, T. H., Escudero, S. & Shivdasani, R. A. 2012. Intact function of Lgr5 receptor-
expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci U S A, 
109, 3932-7. 
Klein, A. M., Nakagawa, T., Ichikawa, R., Yoshida, S. & Simons, B. D. 2010. 
Mouse germ line stem cells undergo rapid and stochastic turnover. Cell stem cell, 7, 
214-24. 
Knoblich, J. A. 2010. Asymmetric cell division: recent developments and their 
implications for tumour biology. Nat Rev Mol Cell Biol, 11, 849-60. 
Knoblich, J. A., Jan, L. Y. & Jan, Y. N. 1995. Asymmetric segregation of Numb and 
Prospero during cell division. Nature, 377, 624-7. 
Knoblich, J. A., Sauer, K., Jones, L., Richardson, H., Saint, R. & Lehner, C. F. 
1994. Cyclin E controls S phase progression and its down-regulation during Drosophila 
embryogenesis is required for the arrest of cell proliferation. Cell, 77, 107-20. 



Reference List 

 

 216 

Komuro, A., Nagai, M., Navin, N. E. & Sudol, M. 2003. WW domain-containing 
protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the 
carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem, 278, 
33334-41. 
Konsavage, W., Kyler, S., Rennoll, S., Jin, G. & Yochum, G. 2012. Wnt/¬†-catenin 
signaling regulates Yes-associated protein (YAP) gene expression in colorectal 
carcinoma cells. Journal of Biological Chemistry, 19. 
Kuraishi, T., Binggeli, O., Opota, O., Buchon, N. & Lemaitre, B. 2011. Genetic 
evidence for a protective role of the peritrophic matrix against intestinal bacterial 
infection in Drosophila melanogaster. Proceedings of the National Academy of Sciences 
of the United States of America, 108, 15966-71. 
LaFever, L. & Drummond-Barbosa, D. 2005. Direct control of germline stem cell 
division and cyst growth by neural insulin in Drosophila. Science, 309, 1071-3. 
Lai, Z. C., Wei, X., Shimizu, T., Ramos, E., Rohrbaugh, M., Nikolaidis, N., Ho, L. 
L. & Li, Y. 2005. Control of cell proliferation and apoptosis by mob as tumor 
suppressor, mats. Cell, 120, 675-85. 
LaJeunesse, D. R., McCartney, B. M. & Fehon, R. G. 1998. Structural analysis of 
Drosophila merlin reveals functional domains important for growth control and 
subcellular localization. J Cell Biol, 141, 1589-99. 
Lawrence, P. A., Struhl, G. & Casal, J. 2008. Do the protocadherins Fat and 
Dachsous link up to determine both planar cell polarity and the dimensions of organs? 
Nat Cell Biol, 10, 1379-82. 
Leatherman, J. & Dinardo, S. 2010. Germline self-renewal requires cyst stem cells 
and stat regulates niche adhesion in Drosophila testes. Nature Cell Biology, 12, 806-811. 
Leatherman, J. L. & Dinardo, S. 2008. Zfh-1 controls somatic stem cell self-renewal 
in the Drosophila testis and nonautonomously influences germline stem cell self-
renewal. Cell Stem Cell, 3, 44-54. 
Lee, J. H., Kim, T. S., Yang, T. H., Koo, B. K., Oh, S. P., Lee, K. P., Oh, H. J., Lee, 
S. H., Kong, Y. Y., Kim, J. M. & Lim, D. S. 2008. A crucial role of WW45 in 
developing epithelial tissues in the mouse. EMBO J, 27, 1231-42. 
Lee, K. P., Lee, J. H., Kim, T. S., Kim, T. H., Park, H. D., Byun, J. S., Kim, M. C., 
Jeong, W. I., Calvisi, D. F., Kim, J. M. & Lim, D. 2010. The Hippo-Salvador 
pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. 
Proceedings of the National Academy of Sciences of the United States of America. 
Lee, T. & Luo, L. 1999. Mosaic analysis with a repressible cell marker for studies of 
gene function in neuronal morphogenesis. Neuron, 22, 451-61. 
Lee, W. C., Beebe, K., Sudmeier, L. & Micchelli, C. A. 2009. Adenomatous 
polyposis coli regulates Drosophila intestinal stem cell proliferation. Development, 136, 
2255-64. 
Lee, W. J. 2009. Bacterial-modulated host immunity and stem cell activation for gut 
homeostasis. Genes & development, 23, 2260-5. 
Lehner, C. F. & O'Farrell, P. H. 1990. The roles of Drosophila cyclins A and B in 
mitotic control. Cell, 61, 535-47. 
Lei, Q. Y., Zhang, H., Zhao, B., Zha, Z. Y., Bai, F., Pei, X. H., Zhao, S., Xiong, Y. 
& Guan, K. L. 2008. TAZ promotes cell proliferation and epithelial-mesenchymal 
transition and is inhibited by the hippo pathway. Molecular and cellular biology, 28, 
2426-36. 



Reference List 

 

 217 

Lemaitre, B. & Hoffmann, J. 2007. The host defense of Drosophila melanogaster. 
Annual review of immunology, 25, 697-743. 
Li, L. & Clevers, H. 2010. Coexistence of Quiescent and Active Adult Stem Cells in 
Mammals. Science (New York, NY), 327, 542-545. 
Li, W. & Baker, N. E. 2007. Engulfment is required for cell competition. Cell, 129, 
1215-25. 
Lian, I., Kim, J., Okazawa, H., Zhao, J., Zhao, B., Yu, J., Chinnaiyan, A., Israel, 
M., Goldstein, L., Abujarour, R., Ding, S. & Guan, K. 2010. The role of YAP 
transcription coactivator in regulating stem cell self-renewal and differentiation. Genes 
& development, 24, 1106-1118. 
Lin, G., Xu, N. & Xi, R. 2008. Paracrine Wingless signalling controls self-renewal of 
Drosophila intestinal stem cells. Nature. 
Lin, G., Xu, N. & Xi, R. 2010. Paracrine Unpaired Signaling through the JAK/STAT 
Pathway Controls Self-renewal and Lineage Differentiation of Drosophila Intestinal 
Stem Cells. Journal of molecular cell biology, 2, 37-49. 
Ling, C., Zheng, Y., Yin, F., Yu, J., Huang, J., Hong, Y., Wu, S. & Pan, D. 2010. 
The apical transmembrane protein Crumbs functions as a tumor suppressor that 
regulates Hippo signaling by binding to Expanded. Proceedings of the National 
Academy of Sciences, 107, 10532-10537. 
Liu, C. Y., Zha, Z. Y., Zhou, X., Zhang, H., Huang, W., Zhao, D., Li, T., Chan, S. 
W., Lim, C. J., Hong, W., Zhao, S., Xiong, Y., Lei, Q. Y. & Guan, K. L. 2010a. The 
Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron 
and recruiting the SCFbeta-TrCP E3 ligase. The Journal of biological chemistry. 
Liu, J., Cao, L., Chen, J., Song, S., Lee, I. H., Quijano, C., Liu, H., Keyvanfar, K., 
Chen, H., Cao, L. Y., Ahn, B. H., Kumar, N. G., Rovira, II, Xu, X. L., van 
Lohuizen, M., Motoyama, N., Deng, C. X. & Finkel, T. 2009. Bmi1 regulates 
mitochondrial function and the DNA damage response pathway. Nature, 459, 387-92. 
Liu, T., Castro, S., Brasier, A. R., Jamaluddin, M., Garofalo, R. P. & Casola, A. 
2004. Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine 
phosphatases. J Biol Chem, 279, 2461-9. 
Liu, W., Singh, S. R. & Hou, S. X. 2010b. JAK-STAT is restrained by Notch to 
control cell proliferation of the Drosophila intestinal stem cells. J Cell Biochem. 
Liu, X., Grammont, M. & Irvine, K. D. 2000. Roles for scalloped and vestigial in 
regulating cell affinity and interactions between the wing blade and the wing hinge. Dev 
Biol, 228, 287-303. 
Liu-Chittenden, Y., Huang, B., Shim, J. S., Chen, Q., Lee, S. J., Anders, R. A., Liu, 
J. O. & Pan, D. 2012. Genetic and pharmacological disruption of the TEAD-YAP 
complex suppresses the oncogenic activity of YAP. Genes Dev, 26, 1300-5. 
Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. 2010. Intestinal Stem 
Cell Replacement Follows a Pattern of Neutral Drift. Science (New York, NY). 
Lopez-Lago, M. A., Okada, T., Murillo, M. M., Socci, N. & Giancotti, F. G. 2009. 
Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates 
integrin-dependent mTORC1 signaling. Mol Cell Biol, 29, 4235-49. 
Lopez-Onieva, L., Fernandez-Minan, A. & Gonzalez-Reyes, A. 2008. Jak/Stat 
signalling in niche support cells regulates dpp transcription to control germline stem cell 
maintenance in the Drosophila ovary. Development, 135, 533-40. 
Lu, L., Li, Y., Kim, S. M., Bossuyt, W., Liu, P., Qiu, Q., Wang, Y., Halder, G., 
Finegold, M. J., Lee, J. S. & Johnson, R. L. 2010. Hippo signaling is a potent in vivo 



Reference List 

 

 218 

growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci U S 
A, 107, 1437-42. 
Ma, D., Yang, C. H., McNeill, H., Simon, M. A. & Axelrod, J. D. 2003. Fidelity in 
planar cell polarity signalling. Nature, 421, 543-7. 
MacDougall, N., Lad, Y., Wilkie, G. S., Francis-Lang, H., Sullivan, W. & Davis, I. 
2001. Merlin, the Drosophila homologue of neurofibromatosis-2, is specifically 
required in posterior follicle cells for axis formation in the oocyte. Development, 128, 
665-73. 
Maeda, K., Takemura, M., Umemori, M. & Adachi-Yamada, T. 2008. E-cadherin 
prolongs the moment for interaction between intestinal stem cell and its progenitor cell 
to ensure Notch signaling in adult Drosophila midgut. Genes Cells. 
Malumbres, M. & Barbacid, M. 2005. Mammalian cyclin-dependent kinases. Trends 
Biochem Sci, 30, 630-41. 
Mao, Y., Rauskolb, C., Cho, E., Hu, W. L., Hayter, H., Minihan, G., Katz, F. N. & 
Irvine, K. D. 2006. Dachs: an unconventional myosin that functions downstream of Fat 
to regulate growth, affinity and gene expression in Drosophila. Development 
(Cambridge, England), 133, 2539-51. 
Marie, H., Pratt, S. J., Betson, M., Epple, H., Kittler, J. T., Meek, L., Moss, S. J., 
Troyanovsky, S., Attwell, D., Longmore, G. D. & Braga, V. M. 2003. The LIM 
protein Ajuba is recruited to cadherin-dependent cell junctions through an association 
with alpha-catenin. J Biol Chem, 278, 1220-8. 
Marshman, E., Booth, C. & Potten, C. S. 2002. The intestinal epithelial stem cell. 
Bioessays, 24, 91-8. 
Martin-Blanco, E., Gampel, A., Ring, J., Virdee, K., Kirov, N., Tolkovsky, A. M. & 
Martinez-Arias, A. 1998. puckered encodes a phosphatase that mediates a feedback 
loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev, 12, 557-
70. 
Matakatsu, H. & Blair, S. S. 2006. Separating the adhesive and signaling functions of 
the Fat and Dachsous protocadherins. Development, 133, 2315-24. 
Matakatsu, H. & Blair, S. S. 2008. The DHHC palmitoyltransferase approximated 
regulates Fat signaling and Dachs localization and activity. Curr Biol, 18, 1390-5. 
Mathur, D., Bost, A., Driver, I. & Ohlstein, B. 2010. A transient niche regulates the 
specification of Drosophila intestinal stem cells. Science, 327, 210-3. 
Matsui, Y., Nakano, N., Shao, D., Gao, S., Luo, W., Hong, C., Zhai, P., Holle, E., 
Yu, X., Yabuta, N., Tao, W., Wagner, T., Nojima, H. & Sadoshima, J. 2008. Lats2 
is a negative regulator of myocyte size in the heart. Circ Res, 103, 1309-18. 
McCartney, B. M., Kulikauskas, R. M., LaJeunesse, D. R. & Fehon, R. G. 2000. 
The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded 
function together in Drosophila to regulate cell proliferation and differentiation. 
Development, 127, 1315-24. 
McEwen, D. G. & Peifer, M. 2005. Puckered, a Drosophila MAPK phosphatase, 
ensures cell viability by antagonizing JNK-induced apoptosis. Development, 132, 3935-
46. 
McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K. & Davis, R. L. 2003. 
Spatiotemporal rescue of memory dysfunction in Drosophila. Science, 302, 1765-8. 
McKearin, D. & Ohlstein, B. 1995. A role for the Drosophila bag-of-marbles protein 
in the differentiation of cystoblasts from germline stem cells. Development, 121, 2937-
47. 



Reference List 

 

 219 

McLeod, C., Wang, L., Wong, C. & Jones, D. 2010. Stem Cell Dynamics in Response 
to Nutrient Availability. Current Biology, 6. 
Meier, P., Silke, J., Leevers, S. J. & Evan, G. I. 2000. The Drosophila caspase 
DRONC is regulated by DIAP1. EMBO J, 19, 598-611. 
Meignin, C., Alvarez-Garcia, I., Davis, I. & Palacios, I. M. 2007. The salvador-
warts-hippo pathway is required for epithelial proliferation and axis specification in 
Drosophila. Curr Biol, 17, 1871-8. 
Menendez, J., Perez-Garijo, A., Calleja, M. & Morata, G. 2010. A tumor-
suppressing mechanism in Drosophila involving cell competition and the Hippo 
pathway. Proceedings of the National Academy of Sciences, 107, 14651-14656. 
Micchelli, C. A. 2011. The origin of intestinal stem cells in Drosophila. Developmental 
dynamics : an official publication of the American Association of Anatomists. 
Micchelli, C. A. & Perrimon, N. 2006. Evidence that stem cells reside in the adult 
Drosophila midgut epithelium. Nature. 
Micchelli, C. A., Sudmeier, L., Perrimon, N., Tang, S. & Beehler-Evans, R. 2010. 
Identification of adult midgut precursors in Drosophila. Gene expression patterns : GEP. 
Mikeladze-Dvali, T., Wernet, M. F., Pistillo, D., Mazzoni, E. O., Teleman, A. A., 
Chen, Y. W., Cohen, S. & Desplan, C. 2005. The growth regulators warts/lats and 
melted interact in a bistable loop to specify opposite fates in Drosophila R8 
photoreceptors. Cell, 122, 775-87. 
Milton, C. C., Zhang, X., Albanese, N. O. & Harvey, K. F. 2010. Differential 
requirement of Salvador-Warts-Hippo pathway members for organ size control in 
Drosophila melanogaster. Development (Cambridge, England), 137, 735-43. 
Morata, G. & Ripoll, P. 1975. Minutes: mutants of drosophila autonomously affecting 
cell division rate. Dev Biol, 42, 211-21. 
Moreno, E. & Basler, K. 2004. dMyc transforms cells into super-competitors. Cell, 
117, 117-29. 
Moreno, E., Basler, K. & Morata, G. 2002. Cells compete for decapentaplegic 
survival factor to prevent apoptosis in Drosophila wing development. Nature, 416, 755-
9. 
Morgan, N. S., Skovronsky, D. M., Artavanis-Tsakonas, S. & Mooseker, M. S. 
1994. The molecular cloning and characterization of Drosophila melanogaster myosin-
IA and myosin-IB. J Mol Biol, 239, 347-56. 
Morrison, S. J. & Spradling, A. C. 2008. Stem cells and niches: mechanisms that 
promote stem cell maintenance throughout life. Cell, 132, 598-611. 
Muramatsu, T., Imoto, I., Matsui, T., Kozaki, K., Haruki, S., Sudol, M., Shimada, 
Y., Tsuda, H., Kawano, T. & Inazawa, J. 2011. YAP is a candidate oncogene for 
esophageal squamous cell carcinoma. Carcinogenesis, 32, 389-98. 
Nakajima, D., Nakayama, M., Kikuno, R., Hirosawa, M., Nagase, T. & Ohara, O. 
2001. Identification of three novel non-classical cadherin genes through comprehensive 
analysis of large cDNAs. Brain Res Mol Brain Res, 94, 85-95. 
Nakamura, T., Tsuchiya, K. & Watanabe, M. 2007. Crosstalk between Wnt and 
Notch signaling in intestinal epithelial cell fate decision. Journal of gastroenterology, 
42, 705-710. 
Nehme, N. T., Liegeois, S., Kele, B., Giammarinaro, P., Pradel, E., Hoffmann, J. A., 
Ewbank, J. J. & Ferrandon, D. 2007. A model of bacterial intestinal infections in 
Drosophila melanogaster. PLoS Pathog, 3, e173. 



Reference List 

 

 220 

Neto-Silva, R., De Beco, S. & Johnston, L. 2010. Evidence for a Growth-Stabilizing 
Regulatory Feedback Mechanism between Myc and Yorkie, the¬†Drosophila Homolog 
of Yap. Developmental cell, 19, 507-520. 
Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. 1998. Coordination 
of growth and cell division in the Drosophila wing. Cell, 93, 1183-93. 
Neumann, C. J. & Cohen, S. M. 1996. Distinct mitogenic and cell fate specification 
functions of wingless in different regions of the wing. Development, 122, 1781-9. 
Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. 2009. A tissue-scale 
gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 459, 
996-9. 
Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta, N., 
Hirahara, S., Stephenson, R. O., Ogonuki, N., Makita, R., Kurihara, H., Morin-
Kensicki, E. M., Nojima, H., Rossant, J., Nakao, K., Niwa, H. & Sasaki, H. 2009. 
The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to 
distinguish mouse trophectoderm from inner cell mass. Developmental cell, 16, 398-410. 
Nolo, R., Morrison, C. M., Tao, C., Zhang, X. & Halder, G. 2006. The bantam 
microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol, 16, 1895-904. 
Nusslein-Volhard, C. & Wieschaus, E. 1980. Mutations affecting segment number 
and polarity in Drosophila. Nature, 287, 795-801. 
O'Brien, L., Soliman, S., Li, X. & Bilder, D. 2011. Altered Modes of Stem Cell 
Division Drive Adaptive Intestinal Growth. Cell, 147, 603-614. 
O'Kane, C. J. & Gehring, W. J. 1987. Detection in situ of genomic regulatory 
elements in Drosophila. Proc Natl Acad Sci U S A, 84, 9123-7. 
Oh, H. & Irvine, K. D. 2008. In vivo regulation of Yorkie phosphorylation and 
localization. Development, 135, 1081-8. 
Oh, H. & Irvine, K. D. 2009. In vivo analysis of Yorkie phosphorylation sites. 
Oncogene, 28, 1916-27. 
Oh, H. & Irvine, K. D. 2011. Cooperative Regulation of Growth by Yorkie and Mad 
through bantam. Developmental cell, 20, 109-122. 
Oh, H., Kim, M., Song, S., Kim, T., Lee, D., Kwon, S., Choi, E. & Lim, D. 2010. 
MST1 Limits the Kinase Activity of Aurora B to Promote Stable Kinetochore-
Microtubule Attachment. Current Biology, 20, 416-422. 
Oh, H., Reddy, B. V. & Irvine, K. D. 2009a. Phosphorylation-independent repression 
of Yorkie in Fat-Hippo signaling. Developmental biology. 
Oh, S., Lee, D., Kim, T., Kim, T. S., Oh, H. J., Hwang, C. Y., Kong, Y. Y., Kwon, K. 
S. & Lim, D. S. 2009b. Crucial role for Mst1 and Mst2 kinases in early embryonic 
development of the mouse. Mol Cell Biol, 29, 6309-20. 
Oh, S. W., Mukhopadhyay, A., Svrzikapa, N., Jiang, F., Davis, R. J. & Tissenbaum, 
H. A. 2005. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear 
translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A, 102, 
4494-9. 
Ohlstein, B., Kai, T., Decotto, E. & Spradling, A. 2004. The stem cell niche: theme 
and variations. Curr Opin Cell Biol. 
Ohlstein, B. & Spradling, A. 2006. The adult Drosophila posterior midgut is 
maintained by pluripotent stem cells. Nature. 
Ohlstein, B. & Spradling, A. 2007. Multipotent Drosophila intestinal stem cells 
specify daughter cell fates by differential notch signaling. Science. 



Reference List 

 

 221 

Oka, T., Mazack, V. & Sudol, M. 2008. Mst2 and Lats kinases regulate apoptotic 
function of Yes kinase-associated protein (YAP). J Biol Chem, 283, 27534-46. 
Orford, K. W. & Scadden, D. T. 2008. Deconstructing stem cell self-renewal: genetic 
insights into cell-cycle regulation. Nat Rev Genet, 9, 115-28. 
Orimo, A. & Weinberg, R. A. 2006. Stromal fibroblasts in cancer: a novel tumor-
promoting cell type. Cell Cycle, 5, 1597-601. 
Ota, M. & Sasaki, H. 2008. Mammalian Tead proteins regulate cell proliferation and 
contact inhibition as transcriptional mediators of Hippo signaling. Development 
(Cambridge, England), 135, 4059-69. 
Overholtzer, M., Zhang, J., Smolen, G. A., Muir, B., Li, W., Sgroi, D. C., Deng, C. 
X., Brugge, J. S. & Haber, D. A. 2006. Transforming properties of YAP, a candidate 
oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A, 103, 12405-
10. 
Pan, L., Chen, S., Weng, C., Call, G., Zhu, D., Tang, H., Zhang, N. & Xie, T. 2007. 
Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. 
Cell Stem Cell, 1, 458-69. 
Pantalacci, S., Tapon, N. & Leopold, P. 2003. The Salvador partner Hippo promotes 
apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol, 5, 921-7. 
Park, J., Kim, Y., Kim, J., Lee, S., Park, S., Yamaguchi, M. & Yoo, M. 2010. 
Regulation of the Drosophila p38b gene by transcription factor DREF in the adult 
midgut. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1799, 
510-519. 
Park, J., Kwon, J. & Marion-Poll, F. 2011. Heterogeneous Expression of Drosophila 
Gustatory Receptors in Enteroendocrine Cells. PloS one, 6, e29022. 
Park, J. S., Kim, Y. S. & Yoo, M. A. 2009. The role of p38b MAPK in age-related 
modulation of intestinal stem cell proliferation and differentiation in Drosophila. Aging, 
1, 637-51. 
Park, K. S., Whitsett, J. A., Di Palma, T., Hong, J. H., Yaffe, M. B. & Zannini, M. 
2004. TAZ interacts with TTF-1 and regulates expression of surfactant protein-C. J Biol 
Chem, 279, 17384-90. 
Parrish, J. Z., Emoto, K., Jan, L. Y. & Jan, Y. N. 2007. Polycomb genes interact with 
the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory 
neuron dendrites. Genes Dev, 21, 956-72. 
Pellock, B. J., Buff, E., White, K. & Hariharan, I. K. 2007. The Drosophila tumor 
suppressors Expanded and Merlin differentially regulate cell cycle exit, apoptosis, and 
Wingless signaling. Dev Biol, 304, 102-15. 
Peng, H. W., Slattery, M. & Mann, R. S. 2009. Transcription factor choice in the 
Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam 
in the progenitor domain of the Drosophila eye imaginal disc. Genes & development. 
Perdigoto, C. N., Schweisguth, F. & Bardin, A. J. 2011. Distinct levels of Notch 
activity for commitment and terminal differentiation of stem cells in the adult fly 
intestine. Development (Cambridge, England), 138, 4585-95. 
Perez-Garijo, A., Martin, F. A. & Morata, G. 2004. Caspase inhibition during 
apoptosis causes abnormal signalling and developmental aberrations in Drosophila. 
Development, 131, 5591-8. 
Perrimon, N. 1998. New advances in Drosophila provide opportunities to study gene 
functions. Proc Natl Acad Sci U S A, 95, 9716-7. 



Reference List 

 

 222 

Pignoni, F., Hu, B. & Zipursky, S. L. 1997. Identification of genes required for 
Drosophila eye development using a phenotypic enhancer-trap. Proc Natl Acad Sci U S 
A, 94, 9220-5. 
Pignoni, F. & Zipursky, S. L. 1997. Induction of Drosophila eye development by 
decapentaplegic. Development, 124, 271-8. 
Pinto, D., Gregorieff, A., Begthel, H. & Clevers, H. 2003. Canonical Wnt signals are 
essential for homeostasis of the intestinal epithelium. Genes Dev, 17, 1709-13. 
Poernbacher, I., Baumgartner, R., Marada, S., Edwards, K. & Stocker, H. 2012. 
Drosophila Pez Acts in Hippo Signaling to Restrict Intestinal Stem Cell Proliferation. 
Current Biology, 8. 
Polesello, C., Huelsmann, S., Brown, N. H. & Tapon, N. 2006. The Drosophila 
RASSF homolog antagonizes the hippo pathway. Curr Biol, 16, 2459-65. 
Polesello, C. & Tapon, N. 2007. Salvador-warts-hippo signaling promotes Drosophila 
posterior follicle cell maturation downstream of notch. Curr Biol, 17, 1864-70. 
Poon, C., Lin, J., Zhang, X. & Harvey, K. 2011. The Sterile 20-like Kinase Tao-1 
Controls Tissue Growth by Regulating the Salvador-Warts-Hippo Pathway. 
Developmental cell, 21, 896-906. 
Potter, C., Tasic, B., Russler, E., Liang, L. & Luo, L. 2010. The Q System: A 
Repressible Binary System for Transgene Expression, Lineage Tracing, and Mosaic 
Analysis. Cell, 141, 536-548. 
Powell, A. E., Wang, Y., Li, Y., Poulin, E. J., Means, A. L., Washington, M. K., 
Higginbotham, J. N., Juchheim, A., Prasad, N., Levy, S. E., Guo, Y., Shyr, Y., 
Aronow, B. J., Haigis, K. M., Franklin, J. L. & Coffey, R. J. 2012. The pan-ErbB 
negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor 
suppressor. Cell, 149, 146-58. 
Praskova, M., Khoklatchev, A., Ortiz-Vega, S. & Avruch, J. 2004. Regulation of the 
MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and 
NORE1, and by Ras. Biochem J, 381, 453-62. 
Praskova, M., Xia, F. & Avruch, J. 2008. MOBKL1A/MOBKL1B phosphorylation 
by MST1 and MST2 inhibits cell proliferation. Curr Biol, 18, 311-21. 
Prober, D. A. & Edgar, B. A. 2000. Ras1 promotes cellular growth in the Drosophila 
wing. Cell, 100, 435-46. 
Radtke, F. & Clevers, H. 2005. Self-renewal and cancer of the gut: two sides of a coin. 
Science. 
Ragab, A., Buechling, T., Gesellchen, V., Spirohn, K., Boettcher, A. L. & Boutros, 
M. 2011. Drosophila Ras/MAPK signalling regulates innate immune responses in 
immune and intestinal stem cells. The EMBO Journal. 
Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. 
2002. "Stemness": transcriptional profiling of embryonic and adult stem cells. Science, 
298, 597-600. 
Rauskolb, C., Pan, G., Reddy, B. V., Oh, H. & Irvine, K. D. 2011. Zyxin links fat 
signaling to the hippo pathway. PLoS Biol, 9, e1000624. 
Reiter, L. T., Potocki, L., Chien, S., Gribskov, M. & Bier, E. 2001. A systematic 
analysis of human disease-associated gene sequences in Drosophila melanogaster. 
Genome Res, 11, 1114-25. 
Ren, C., Webster, P., Finkel, S. E. & Tower, J. 2007. Increased internal and external 
bacterial load during Drosophila aging without life-span trade-off. Cell Metab, 6, 144-
52. 



Reference List 

 

 223 

Ren, F., Wang, B., Yue, T., Yun, E. Y., Ip, Y. T. & Jiang, J. 2010. Hippo signaling 
regulates Drosophila intestine stem cell proliferation through multiple pathways. 
Proceedings of the National Academy of Sciences of the United States of America. 
Ren, F., Zhang, L. & Jiang, J. 2009. Hippo signaling regulates Yorkie nuclear 
localization and activity through 14-3-3 dependent and independent mechanisms. 
Developmental biology. 
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. 2001. Stem cells, cancer, 
and cancer stem cells. Nature, 414, 105-11. 
Rhee, S. G., Bae, Y. S., Lee, S. R. & Kwon, J. 2000. Hydrogen peroxide: a key 
messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE, 
2000, pe1. 
Rhyu, M. S., Jan, L. Y. & Jan, Y. N. 1994. Asymmetric distribution of numb protein 
during division of the sensory organ precursor cell confers distinct fates to daughter 
cells. Cell, 76, 477-91. 
Ribeiro, P., Josue, F., Wepf, A., Wehr, M., Rinner, O., Kelly, G., Tapon, N. & 
Gstaiger, M. 2010. Combined Functional Genomic and Proteomic Approaches Identify 
a PP2A Complex as a Negative Regulator of Hippo Signaling. Molecular cell, 39, 521-
534. 
Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D. & Nusse, R. 
1987. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to 
the segment polarity gene wingless. Cell, 50, 649-57. 
Ritsick, D. R., Edens, W. A., McCoy, J. W. & Lambeth, J. D. 2004. The use of 
model systems to study biological functions of Nox/Duox enzymes. Biochem Soc Symp, 
85-96. 
Roberts, R. B., Min, L., Washington, M. K., Olsen, S. J., Settle, S. H., Coffey, R. J. 
& Threadgill, D. W. 2002. Importance of epidermal growth factor receptor signaling in 
establishment of adenomas and maintenance of carcinomas during intestinal 
tumorigenesis. Proc Natl Acad Sci U S A, 99, 1521-6. 
Robinson, B. S., Huang, J., Hong, Y. & Moberg, K. H. 2010. Crumbs regulates 
Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein expanded. 
Curr Biol, 20, 582-90. 
Rock, R., Schrauth, S. & Gessler, M. 2005. Expression of mouse dchs1, fjx1, and fat-j 
suggests conservation of the planar cell polarity pathway identified in Drosophila. Dev 
Dyn, 234, 747-55. 
Rogulja, D., Rauskolb, C. & Irvine, K. D. 2008. Morphogen control of wing growth 
through the Fat signaling pathway. Dev Cell, 15, 309-21. 
Royet, J. 2011. Epithelial homeostasis and the underlying molecular mechanisms in the 
gut of the insect model Drosophila melanogaster. Cellular and Molecular Life Sciences, 
68, 3651-3660. 
Rubin, G. M. & Spradling, A. C. 1982. Genetic transformation of Drosophila with 
transposable element vectors. Science, 218, 348-53. 
Ryoo, H. D., Gorenc, T. & Steller, H. 2004. Apoptotic cells can induce compensatory 
cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell, 7, 
491-501. 
Ryu, J. H., Kim, S. H., Lee, H. Y., Bai, J. Y., Nam, Y. D., Bae, J. W., Lee, D. G., 
Shin, S. C., Ha, E. M. & Lee, W. J. 2008. Innate immune homeostasis by the 
homeobox gene caudal and commensal-gut mutualism in Drosophila. Science (New 
York, NY), 319, 777-82. 



Reference List 

 

 224 

Sancho, E., Batlle, E. & Clevers, H. 2004. Signaling pathways in intestinal 
development and cancer. Annu Rev Cell Dev Biol, 20, 695-723. 
Sancho, R., Nateri, A., De Vinuesa, A., Aguilera, C., Nye, E., Spencer-Dene, B. & 
Behrens, A. 2009. JNK signalling modulates intestinal homeostasis and tumourigenesis 
in mice. The EMBO Journal, 28, 1843-1854. 
Sangiorgi, E. & Capecchi, M. R. 2008. Bmi1 is expressed in vivo in intestinal stem 
cells. Nature genetics, 40, 915-20. 
Sansores-Garcia, L., Bossuyt, W., Wada, K., Yonemura, S., Tao, C., Sasaki, H. & 
Halder, G. 2011. Modulating F-actin organization induces organ growth by affecting 
the Hippo pathway. The EMBO Journal, 11. 
Sato, T., Van Es, J., Snippert, H., Stange, D., Vries, R., van den Born, M., Barker, 
N., Shroyer, N., van de Wetering, M. & Clevers, H. 2011. Paneth cells constitute the 
niche for Lgr5 stem cells in intestinal crypts. Nature, 469, 415-418. 
Sato, T., Vries, R., Snippert, H., Van De Wetering, M., Barker, N., Stange, D., Van 
Es, J., Abo, A., Kujala, P., Peters, P. & Clevers, H. 2009. Single Lgr5 stem cells 
build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459, 262-
265. 
Schlegelmilch, K., Mohseni, M., Kirak, O., Pruszak, J., Rodriguez, J., Zhou, D., 
Kreger, B., Vasioukhin, V., Avruch, J., Brummelkamp, T. & Camargo, F. 2011. 
Yap1 Acts Downstream of  α-Catenin to Control Epidermal Proliferation. Cell, 144, 
782-795. 
Schoofs, A., Niederegger, S. & Spiess, R. 2009. From behavior to fictive feeding: 
anatomy, innervation and activation pattern of pharyngeal muscles of Calliphora vicina 
3rd instar larvae. J Insect Physiol, 55, 218-30. 
Schwank, G., Tauriello, G., Yagi, R., Kranz, E., Koumoutsakos, P. & Basler, K. 
2011. Antagonistic Growth Regulation by Dpp and Fat Drives Uniform Cell 
Proliferation. Developmental cell, 20, 123-130. 
Scoville, D. H., Sato, T., He, X. C. & Li, L. 2008. Current view: intestinal stem cells 
and signaling. Gastroenterology, 134, 849-64. 
Sengupta, N. & MacDonald, T. T. 2007. The role of matrix metalloproteinases in 
stromal/epithelial interactions in the gut. Physiology (Bethesda), 22, 401-9. 
Shanbhag, S. & Tripathi, S. 2009. Epithelial ultrastructure and cellular mechanisms of 
acid and base transport in the Drosophila midgut. J Exp Biol, 212, 1731-44. 
Shanmugathasan, M. & Jothy, S. 2000. Apoptosis, anoikis and their relevance to the 
pathobiology of colon cancer. Pathol Int, 50, 273-9. 
Shaw, R. L., Kohlmaier, A., Polesello, C., Veelken, C., Edgar, B. A. & Tapon, N. 
2010. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila 
adult midgut regeneration. Development (Cambridge, England). 
http://dev.biologists.org/content/137/24/4147.full 
Shi-Wen, X., Leask, A. & Abraham, D. 2008. Regulation and function of connective 
tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth 
Factor Rev, 19, 133-44. 
Shiojima, I. & Walsh, K. 2006. Regulation of cardiac growth and coronary 
angiogenesis by the Akt/PKB signaling pathway. Genes Dev, 20, 3347-65. 
Silva, E., Tsatskis, Y., Gardano, L., Tapon, N. & McNeill, H. 2006. The tumor-
suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling 
pathway. Curr Biol, 16, 2081-9. 



Reference List 

 

 225 

Silvis, M., Kreger, B., Lien, W., Klezovitch, O., Rudakova, G., Camargo, F., Lantz, 
D., Seykora, J. & Vasioukhin, V. 2011. α-Catenin Is a Tumor Suppressor That 
Controls Cell Accumulation by Regulating the Localization and Activity of the 
Transcriptional Coactivator Yap1. Science Signaling, 4, ra33-ra33. 
Simon, M. A., Xu, A., Ishikawa, H. O. & Irvine, K. D. 2010. Modulation of 
Fat:Dachsous Binding by the Cadherin Domain Kinase Four-Jointed. Current biology : 
CB. 
Simons, B. & Clevers, H. 2011. Strategies for Homeostatic Stem Cell Self-Renewal in 
Adult Tissues. Cell, 145, 851-862. 
Singh, S. R., Liu, W. & Hou, S. X. 2007. The adult Drosophila malpighian tubules are 
maintained by multipotent stem cells. Cell stem cell. 
Singh, S. R., Zeng, X., Zheng, Z. & Hou, S. X. 2011. The adult Drosophila gastric and 
stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut 
junction in the cardia (proventriculus). Cell cycle (Georgetown, Tex), 10. 
Siviter, R. J., Coast, G. M., Winther, A. M., Nachman, R. J., Taylor, C. A., Shirras, 
A. D., Coates, D., Isaac, R. E. & Nassel, D. R. 2000. Expression and functional 
characterization of a Drosophila neuropeptide precursor with homology to mammalian 
preprotachykinin A. J Biol Chem, 275, 23273-80. 
Skouloudaki, K., Puetz, M., Simons, M., Courbard, J. R., Boehlke, C., Hartleben, 
B., Engel, C., Moeller, M. J., Englert, C., Bollig, F., Schafer, T., Ramachandran, H., 
Mlodzik, M., Huber, T. B., Kuehn, E. W., Kim, E., Kramer-Zucker, A. & Walz, G. 
2009. Scribble participates in Hippo signaling and is required for normal zebrafish 
pronephros development. Proc Natl Acad Sci U S A, 106, 8579-84. 
Slaidina, M., Delanoue, R., Gronke, S., Partridge, L. & Leopold, P. 2009. A 
Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev Cell, 17, 
874-84. 
Smith, J., Ladi, E., Mayer-Proschel, M. & Noble, M. 2000. Redox state is a central 
modulator of the balance between self-renewal and differentiation in a dividing glial 
precursor cell. Proc Natl Acad Sci U S A, 97, 10032-7. 
Snijders, A. M., Schmidt, B. L., Fridlyand, J., Dekker, N., Pinkel, D., Jordan, R. C. 
& Albertson, D. G. 2005. Rare amplicons implicate frequent deregulation of cell fate 
specification pathways in oral squamous cell carcinoma. Oncogene, 24, 4232-42. 
Snippert, H. & Clevers, H. 2011. Tracking adult stem cells. EMBO reports, 12, 113-
122. 
Snippert, H. J., van der Flier, L. G., Sato, T., van Es, J. H., van den Born, M., 
Kroon-Veenboer, C., Barker, N., Klein, A. M., van Rheenen, J., Simons, B. D. & 
Clevers, H. 2010. Intestinal crypt homeostasis results from neutral competition between 
symmetrically dividing Lgr5 stem cells. Cell, 143, 134-44. 
Song, H., Mak, K. K., Topol, L., Yun, K., Hu, J., Garrett, L., Chen, Y., Park, O., 
Chang, J., Simpson, R. M., Wang, C. Y., Gao, B., Jiang, J. & Yang, Y. 2010. 
Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor 
suppression. Proceedings of the National Academy of Sciences of the United States of 
America. 
Song, X., Wong, M. D., Kawase, E., Xi, R., Ding, B. C., McCarthy, J. J. & Xie, T. 
2004. Bmp signals from niche cells directly repress transcription of a differentiation-
promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. 
Development, 131, 1353-64. 



Reference List 

 

 226 

Song, X. & Xie, T. 2002. DE-cadherin-mediated cell adhesion is essential for 
maintaining somatic stem cells in the Drosophila ovary. Proc Natl Acad Sci U S A, 99, 
14813-8. 
Sopko, R. & McNeill, H. 2009. The skinny on Fat: an enormous cadherin that regulates 
cell adhesion, tissue growth, and planar cell polarity. Current opinion in cell biology. 
Sopko, R., Silva, E., Clayton, L., Gardano, L., Barrios-Rodiles, M., Wrana, J., 
Varelas, X., Arbouzova, N. I., Shaw, S., Saburi, S., Matakatsu, H., Blair, S. & 
McNeill, H. 2009. Phosphorylation of the tumor suppressor fat is regulated by its ligand 
Dachsous and the kinase discs overgrown. Curr Biol, 19, 1112-7. 
Sousa-Nunes, R., Yee, L. L. & Gould, A. P. 2011. Fat cells reactivate quiescent 
neuroblasts via TOR and glial insulin relays in Drosophila. Nature, 471, 508-12. 
Spana, E. P. & Doe, C. Q. 1995. The prospero transcription factor is asymmetrically 
localized to the cell cortex during neuroblast mitosis in Drosophila. Development, 121, 
3187-95. 
Spiess, R., Schoofs, A. & Heinzel, H. G. 2008. Anatomy of the stomatogastric nervous 
system associated with the foregut in Drosophila melanogaster and Calliphora vicina 
third instar larvae. J Morphol, 269, 272-82. 
Spradling, A. C. & Rubin, G. M. 1982. Transposition of cloned P elements into 
Drosophila germ line chromosomes. Science, 218, 341-7. 
St Johnston, D. & Ahringer, J. 2010. Cell Polarity in Eggs and Epithelia: Parallels and 
Diversity. Cell, 141, 757-774. 
Staley, B. K. & Irvine, K. D. 2010. Warts and Yorkie Mediate Intestinal Regeneration 
by Influencing Stem Cell Proliferation. Current biology : CB. 
Steinhardt, A. A., Gayyed, M. F., Klein, A. P., Dong, J., Maitra, A., Pan, D., 
Montgomery, E. A. & Anders, R. A. 2008. Expression of Yes-associated protein in 
common solid tumors. Hum Pathol, 39, 1582-9. 
Strand, M. & Micchelli, C. A. 2011. Quiescent gastric stem cells maintain the adult 
Drosophila stomach. Proceedings of the National Academy of Sciences of the United 
States of America. 
Strassburger, K., Tiebe, M., Pinna, F., Breuhahn, K. & Teleman, A. A. 2012. 
Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev Biol. 
Sudol, M. 1994. Yes-associated protein (YAP65) is a proline-rich phosphoprotein that 
binds to the SH3 domain of the Yes proto-oncogene product. Oncogene, 9, 2145-52. 
Sun, G. & Irvine, K. D. 2011. Regulation of Hippo signaling by Jun kinase signaling 
during compensatory cell proliferation and regeneration, and in neoplastic tumors. 
Developmental biology, 350, 139-151. 
Takashima, S., Mkrtchyan, M., Younossi-Hartenstein, A., Merriam, J. R. & 
Hartenstein, V. 2008. The behaviour of Drosophila adult hindgut stem cells is 
controlled by Wnt and Hh signalling. Nature. 
Tamm, C., Bower, N. & Anneren, C. 2011. Regulation of mouse embryonic stem cell 
self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. Journal of 
cell science, 124, 1136-1144. 
Tanoue, T. & Takeichi, M. 2005. New insights into Fat cadherins. J Cell Sci, 118, 
2347-53. 
Tao, W., Zhang, S., Turenchalk, G. S., Stewart, R. A., St John, M. A., Chen, W. & 
Xu, T. 1999. Human homologue of the Drosophila melanogaster lats tumour suppressor 
modulates CDC2 activity. Nat Genet, 21, 177-81. 



Reference List 

 

 227 

Tapon, N., Harvey, K. F., Bell, D. W., Wahrer, D. C., Schiripo, T. A., Haber, D. A. 
& Hariharan, I. K. 2002. salvador Promotes both cell cycle exit and apoptosis in 
Drosophila and is mutated in human cancer cell lines. Cell, 110, 467-78. 
Tepass, U. & Hartenstein, V. 1994. Epithelium formation in the Drosophila midgut 
depends on the interaction of endoderm and mesoderm. Development, 120, 579-90. 
Tepass, U., Tanentzapf, G., Ward, R. & Fehon, R. 2001. Epithelial cell polarity and 
cell junctions in Drosophila. Annu Rev Genet, 35, 747-84. 
Tepass, U., Theres, C. & Knust, E. 1990. crumbs encodes an EGF-like protein 
expressed on apical membranes of Drosophila epithelial cells and required for 
organization of epithelia. Cell, 61, 787-99. 
Thompson, B. J. & Cohen, S. M. 2006. The Hippo pathway regulates the bantam 
microRNA to control cell proliferation and apoptosis in Drosophila. Cell, 126, 767-74. 
Thompson, B. J. 2010. Developmental control of cell growth and division in 
Drosophila. Curr Opin Cell Biol., 22, 1-7 
Tian, H., Biehs, B., Warming, S., Leong, K., Rangell, L., Klein, O. & De Sauvage, F. 
2011. A reserve stem cell population in small intestine renders Lgr5-positive cells 
dispensable. Nature, 6. 
Toji, S., Yabuta, N., Hosomi, T., Nishihara, S., Kobayashi, T., Suzuki, S., Tamai, K. 
& Nojima, H. 2004. The centrosomal protein Lats2 is a phosphorylation target of 
Aurora-A kinase. Genes Cells, 9, 383-97. 
Tomlinson, V., Gudmundsdottir, K., Luong, P., Leung, K. Y., Knebel, A. & Basu, 
S. 2010. JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell 
Death Dis, 1, e29. 
Tothova, Z., Kollipara, R., Huntly, B. J., Lee, B. H., Castrillon, D. H., Cullen, D. E., 
McDowell, E. P., Lazo-Kallanian, S., Williams, I. R., Sears, C., Armstrong, S. A., 
Passegue, E., DePinho, R. A. & Gilliland, D. G. 2007. FoxOs are critical mediators of 
hematopoietic stem cell resistance to physiologic oxidative stress. Cell, 128, 325-39. 
Tulina, N. & Matunis, E. 2001. Control of stem cell self-renewal in Drosophila 
spermatogenesis by JAK-STAT signaling. Science, 294, 2546-9. 
Turenchalk, G. S., St John, M. A., Tao, W. & Xu, T. 1999. The role of lats in cell 
cycle regulation and tumorigenesis. Biochim Biophys Acta, 1424, M9-M16. 
Tyler, D. M. & Baker, N. E. 2007. Expanded and fat regulate growth and 
differentiation in the Drosophila eye through multiple signaling pathways. Dev Biol, 
305, 187-201. 
Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. 2003. Hippo promotes 
proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol, 5, 914-
20. 
Ueishi, S., Shimizu, H. & Y, H. I. 2009. Male germline stem cell division and 
spermatocyte growth require insulin signaling in Drosophila. Cell Struct Funct, 34, 61-9. 
Uemura, T., Shepherd, S., Ackerman, L., Jan, L. Y. & Jan, Y. N. 1989. numb, a 
gene required in determination of cell fate during sensory organ formation in 
Drosophila embryos. Cell, 58, 349-60. 
Urtasun, R., Latasa, M. U., Demartis, M. I., Balzani, S., Goni, S., Garcia-Irigoyen, 
O., Elizalde, M., Azcona, M., Pascale, R. M., Feo, F., Bioulac-Sage, P., Balabaud, 
C., Muntane, J., Prieto, J., Berasain, C. & Avila, M. A. 2011. Connective tissue 
growth factor autocriny in human hepatocellular carcinoma: oncogenic role and 
regulation by epidermal growth factor receptor/yes-associated protein-mediated 
activation. Hepatology, 54, 2149-58. 



Reference List 

 

 228 

van den Brink, G. R., Bleuming, S. A., Hardwick, J. C., Schepman, B. L., 
Offerhaus, G. J., Keller, J. J., Nielsen, C., Gaffield, W., van Deventer, S. J., 
Roberts, D. J. & Peppelenbosch, M. P. 2004. Indian Hedgehog is an antagonist of 
Wnt signaling in colonic epithelial cell differentiation. Nat Genet, 36, 277-82. 
van der Flier, L. G. & Clevers, H. 2008. Stem Cells, Self-Renewal, and 
Differentiation in the Intestinal Epithelium. Annual review of physiology. 
van der Flier, L. G., van Gijn, M. E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, 
D., Begthel, H., van den Born, M., Guryev, V., Oving, I., Van Es, J., Barker, N., 
Peters, P. J., van de Wetering, M. & Clevers, H. 2009. Transcription factor achaete 
scute-like 2 controls intestinal stem cell fate. Cell, 136, 903-12. 
van Es, J. H., van Gijn, M. E., Riccio, O., van den Born, M., Vooijs, M., Begthel, H., 
Cozijnsen, M., Robine, S., Winton, D. J., Radtke, F. & Clevers, H. 2005. 
Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and 
adenomas into goblet cells. Nature, 435, 959-63. 
Vandussen, K., Carulli, A., Keeley, T., Patel, S., Puthoff, B., Magness, S., Tran, I., 
Maillard, I., Siebel, C., Kolterud, A., Grosse, A., Gumucio, D., Ernst, S., Tsai, Y., 
Dempsey, P. & Samuelson, L. 2012. Notch signaling modulates proliferation and 
differentiation of intestinal crypt base columnar stem cells. Development (Cambridge, 
England), 139, 488-497. 
Varelas, X., Sakuma, R., Samavarchi-Tehrani, P., Peerani, R., Rao, B. M., 
Dembowy, J., Yaffe, M. B., Zandstra, P. W. & Wrana, J. L. 2008. TAZ controls 
Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-
renewal. Nat Cell Biol, 10, 837-48. 
Varelas, X., Samavarchi-Tehrani, P., Narimatsu, M., Weiss, A., Cockburn, K., 
Larsen, B., Rossant, J. & Wrana, J. 2010. The Crumbs Complex Couples Cell 
Density Sensing to Hippo-Dependent Control of the TGF-Œ≤-SMAD Pathway. 
Developmental cell, 19, 831-844. 
Varelas, X. & Wrana, J. 2011. Coordinating developmental signaling: novel roles for 
the Hippo pathway. Trends in cell biology, 9. 
Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. 2001. 
Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-
catenin in skin. Cell, 104, 605-17. 
Vassilev, A., Kaneko, K. J., Shu, H., Zhao, Y. & DePamphilis, M. L. 2001. 
TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-
associated protein localized in the cytoplasm. Genes Dev, 15, 1229-41. 
Villano, J. L. & Katz, F. N. 1995. four-jointed is required for intermediate growth in 
the proximal-distal axis in Drosophila. Development, 121, 2767-77. 
Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., Boccard, 
F. & Lemaitre, B. 2005. Drosophila host defense after oral infection by an 
entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S A, 102, 11414-9. 
Vogelstein, B., Fearon, E. R., Hamilton, S. R. & Feinberg, A. P. 1985. Use of 
restriction fragment length polymorphisms to determine the clonal origin of human 
tumors. Science, 227, 642-5. 
Wada, K., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. 2011. Hippo pathway 
regulation by cell morphology and stress fibers. Development (Cambridge, England), 
138, 3907-3914. 
Wagers, A. J. 2012. The stem cell niche in regenerative medicine. Cell Stem Cell, 10, 
362-9. 



Reference List 

 

 229 

Wallenfang, M. R., Nayak, R. & DiNardo, S. 2006. Dynamics of the male germline 
stem cell population during aging of Drosophila melanogaster. Aging Cell, 5, 297-304. 
Wang, L. & Jones, D. 2011. The effects of aging on stem cell behavior in Drosophila. 
Experimental Gerontology, 46, 340-344. 
Wang, L., Li, Z. & Cai, Y. 2008. The JAK/STAT pathway positively regulates DPP 
signaling in the Drosophila germline stem cell niche. J Cell Biol, 180, 721-8. 
Wang, M. C., Bohmann, D. & Jasper, H. 2003. JNK signaling confers tolerance to 
oxidative stress and extends lifespan in Drosophila. Dev Cell, 5, 811-6. 
Wang, M. C., Bohmann, D. & Jasper, H. 2005. JNK extends life span and limits 
growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell, 
121, 115-25. 
Wang, W., Huang, J. & Chen, J. 2011. Angiomotin-like Proteins Associate with and 
Negatively Regulate YAP1. Journal of Biological Chemistry, 286, 4364-4370. 
Watt, F. M. & Hogan, B. L. 2000. Out of Eden: stem cells and their niches. Science, 
287, 1427-30. 
Wei, X., Shimizu, T. & Lai, Z. C. 2007. Mob as tumor suppressor is activated by 
Hippo kinase for growth inhibition in Drosophila. EMBO J, 26, 1772-81. 
Weigmann, K., Cohen, S. M. & Lehner, C. F. 1997. Cell cycle progression, growth 
and patterning in imaginal discs despite inhibition of cell division after inactivation of 
Drosophila Cdc2 kinase. Development, 124, 3555-63. 
Wells, C. D., Fawcett, J. P., Traweger, A., Yamanaka, Y., Goudreault, M., Elder, 
K., Kulkarni, S., Gish, G., Virag, C., Lim, C., Colwill, K., Starostine, A., 
Metalnikov, P. & Pawson, T. 2006. A Rich1/Amot complex regulates the Cdc42 
GTPase and apical-polarity proteins in epithelial cells. Cell, 125, 535-48. 
Weston, C. R. & Davis, R. J. 2007. The JNK signal transduction pathway. Curr Opin 
Cell Biol, 19, 142-9. 
Willecke, M., Hamaratoglu, F., Kango-Singh, M., Udan, R., Chen, C. L., Tao, C., 
Zhang, X. & Halder, G. 2006. The fat cadherin acts through the hippo tumor-
suppressor pathway to regulate tissue size. Curr Biol, 16, 2090-100. 
Willecke, M., Hamaratoglu, F., Sansores-Garcia, L., Tao, C. & Halder, G. 2008. 
Boundaries of Dachsous Cadherin activity modulate the Hippo signaling pathway to 
induce cell proliferation. Proc Natl Acad Sci U S A, 105, 14897-902. 
Wong, V. W., Stange, D. E., Page, M. E., Buczacki, S., Wabik, A., Itami, S., van de 
Wetering, M., Poulsom, R., Wright, N. A., Trotter, M. W., Watt, F. M., Winton, D. 
J., Clevers, H. & Jensen, K. B. 2012. Lrig1 controls intestinal stem-cell homeostasis 
by negative regulation of ErbB signalling. Nat Cell Biol, 14, 401-8. 
Wu, M., Pastor-Pareja, J. C. & Xu, T. 2010. Interaction between Ras(V12) and 
scribbled clones induces tumour growth and invasion. Nature, 463, 545-8. 
Wu, S., Huang, J., Dong, J. & Pan, D. 2003. hippo encodes a Ste-20 family protein 
kinase that restricts cell proliferation and promotes apoptosis in conjunction with 
salvador and warts. Cell, 114, 445-56. 
Wu, S., Liu, Y., Zheng, Y., Dong, J. & Pan, D. 2008. The TEAD/TEF family protein 
Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. 
Developmental cell, 14, 388-98. 
Wu, S. C., Liao, C. W., Pan, R. L. & Juang, J. L. 2012. Infection-induced intestinal 
oxidative stress triggers organ-to-organ immunological communication in Drosophila. 
Cell Host Microbe, 11, 410-7. 



Reference List 

 

 230 

Wullschleger, S., Loewith, R. & Hall, M. N. 2006. TOR signaling in growth and 
metabolism. Cell, 124, 471-84. 
Xiao, L., Chen, Y., Ji, M. & Dong, J. 2011. KIBRA Regulates Hippo Signaling 
Activity via Interactions with Large Tumor Suppressor Kinases. Journal of Biological 
Chemistry, 286, 7788-7796. 
Xie, T. & Spradling, A. C. 2000. A niche maintaining germ line stem cells in the 
Drosophila ovary. Science, 290, 328-30. 
Xin, M., Kim, Y., Sutherland, L., Qi, X., McAnally, J., Schwartz, R., Richardson, 
J., Bassel-Duby, R. & Olson, E. 2011. Regulation of Insulin-Like Growth Factor 
Signaling by Yap Governs Cardiomyocyte Proliferation and Embryonic Heart Size. 
Science Signaling, 4, ra70-ra70. 
Xu, N., Wang, S. Q., Tan, D., Gao, Y., Lin, G. & Xi, R. 2011. EGFR, Wingless and 
JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol, 
354, 31-43. 
Xu, T. & Rubin, G. M. 1993. Analysis of genetic mosaics in developing and adult 
Drosophila tissues. Development, 117, 1223-37. 
Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. 1995. Identifying tumor 
suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein 
kinase. Development, 121, 1053-63. 
Yagi, R., Chen, L. F., Shigesada, K., Murakami, Y. & Ito, Y. 1999. A WW domain-
containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J, 
18, 2551-62. 
Yamashita, Y. M., Jones, D. L. & Fuller, M. T. 2003. Orientation of asymmetric stem 
cell division by the APC tumor suppressor and centrosome. Science, 301, 1547-50. 
Yan, K., Chia, L., Li, X., Ootani, A., Su, J., Lee, J., Su, N., Luo, Y., Heilshorn, S., 
Amieva, M., Sangiorgi, E., Capecchi, M. & Kuo, C. 2012. The intestinal stem cell 
markers Bmi1 and Lgr5 identify two functionally distinct populations. Proceedings of 
the National Academy of Sciences, 109, 466-471. 
Yan, R., Small, S., Desplan, C., Dearolf, C. R. & Darnell, J. E., Jr. 1996. 
Identification of a Stat gene that functions in Drosophila development. Cell, 84, 421-30. 
Yang, C. H., Axelrod, J. D. & Simon, M. A. 2002. Regulation of Frizzled by fat-like 
cadherins during planar polarity signaling in the Drosophila compound eye. Cell, 108, 
675-88. 
Yoon, J. G. & Stay, B. 1995. Immunocytochemical localization of Diploptera punctata 
allatostatin-like peptide in Drosophila melanogaster. J Comp Neurol, 363, 475-88. 
Yu, H. H., Chen, C. H., Shi, L., Huang, Y. & Lee, T. 2009. Twin-spot MARCM to 
reveal the developmental origin and identity of neurons. Nat Neurosci, 12, 947-53. 
Yu, J., Poulton, J., Huang, Y. C. & Deng, W. M. 2008. The hippo pathway promotes 
Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity. 
PLoS One, 3, e1761. 
Yu, J., Zheng, Y., Dong, J., Klusza, S., Deng, W. M. & Pan, D. 2010. Kibra functions 
as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin 
and Expanded. Dev Cell, 18, 288-99. 
Yue, T., Tian, A. & Jiang, J. 2012. The Cell Adhesion Molecule Echinoid Functions 
as a Tumor Suppressor and Upstream Regulator of the Hippo Signaling Pathway. 
Developmental cell, 13. 



Reference List 

 

 231 

Zecca, M. & Struhl, G. 2010. A feed-forward circuit linking wingless, fat-dachsous 
signaling, and the warts-hippo pathway to Drosophila wing growth. PLoS biology, 8, 
e1000386. 
Zender, L., Spector, M. S., Xue, W., Flemming, P., Cordon-Cardo, C., Silke, J., 
Fan, S. T., Luk, J. M., Wigler, M., Hannon, G. J., Mu, D., Lucito, R., Powers, S. & 
Lowe, S. W. 2006. Identification and validation of oncogenes in liver cancer using an 
integrative oncogenomic approach. Cell, 125, 1253-67. 
Zeng, X., Singh, S. R., Hou, D. & Hou, S. 2010. Tumor suppressors Sav/scrib and 
oncogene ras regulate stem-cell transformation in adult Drosophila malpighian tubules. 
Journal of cellular physiology, 224, 766-774. 
Zhang, H., Pasolli, H. & Fuchs, E. 2011a. Yes-associated protein (YAP) 
transcriptional coactivator functions in balancing growth and differentiation in skin. 
Proceedings of the National Academy of Sciences, 108, 2270-2275. 
Zhang, J., Ji, J. Y., Yu, M., Overholtzer, M., Smolen, G. A., Wang, R., Brugge, J. 
S., Dyson, N. J. & Haber, D. A. 2009a. YAP-dependent induction of amphiregulin 
identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol, 11, 
1444-50. 
Zhang, J., Smolen, G. A. & Haber, D. A. 2008a. Negative regulation of YAP by 
LATS1 underscores evolutionary conservation of the Drosophila Hippo pathway. 
Cancer Res, 68, 2789-94. 
Zhang, L., Ren, F., Zhang, Q., Chen, Y., Wang, B. & Jiang, J. 2008b. The 
TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ 
size control. Developmental cell, 14, 377-87. 
Zhang, N., Bai, H., David, K. K., Dong, J., Zheng, Y., Cai, J., Giovannini, M., Liu, 
P., Anders, R. A. & Pan, D. 2010. The Merlin/NF2 Tumor Suppressor Functions 
through the YAP Oncoprotein to Regulate Tissue Homeostasis in Mammals. 
Developmental cell, 19, 27-38. 
Zhang, T., Zhou, Q., Pignoni, F. & Bergmann, A. 2011b. Yki/YAP, Sd/TEAD and 
Hth/MEIS Control Tissue Specification in the Drosophila Eye Disc Epithelium. PloS 
one, 6, e22278. 
Zhang, X., Milton, C., Poon, C., Hong, W. & Harvey, K. 2011c. Wbp2 cooperates 
with Yorkie to drive tissue growth downstream of the Salvador‚ Warts‚ Hippo pathway. 
Cell Death and Differentiation, 10. 
Zhang, Y. V., Cheong, J., Ciapurin, N., McDermitt, D. J. & Tumbar, T. 2009b. 
Distinct self-renewal and differentiation phases in the niche of infrequently dividing 
hair follicle stem cells. Cell Stem Cell, 5, 267-78. 
Zhao, B., Kim, J., Ye, X., Lai, Z. C. & Guan, K. L. 2009. Both TEAD-binding and 
WW domains are required for the growth stimulation and oncogenic transformation 
activity of yes-associated protein. Cancer Res, 69, 1089-98. 
Zhao, B., Li, L., Lu, Q., Wang, L., Liu, C., Lei, Q. & Guan, K. 2011. Angiomotin is 
a novel Hippo pathway component that inhibits YAP oncoprotein. Genes & 
development, 25, 51-63. 
Zhao, B., Li, L., Tumaneng, K., Wang, C. Y. & Guan, K. L. 2010. A coordinated 
phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). 
Genes & development, 24, 72-85. 
Zhao, B., Li, L., Wang, L., Wang, C., Yu, J. & Guan, K. 2012. Cell detachment 
activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes & 
development, 26, 54-68. 



Reference List 

 

 232 

Zhao, B., Wei, X., Li, W., Udan, R. S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, 
J., Li, L., Zheng, P., Ye, K., Chinnaiyan, A., Halder, G., Lai, Z. C. & Guan, K. L. 
2007. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact 
inhibition and tissue growth control. Genes Dev, 21, 2747-61. 
Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Lin, J. D., Wang, C. Y., Chinnaiyan, 
A. M., Lai, Z. C. & Guan, K. L. 2008. TEAD mediates YAP-dependent gene 
induction and growth control. Genes Dev, 22, 1962-71. 
Zhou, D., Conrad, C., Xia, F., Park, J. S., Payer, B., Yin, Y., Lauwers, G. Y., 
Thasler, W., Lee, J. T., Avruch, J. & Bardeesy, N. 2009. Mst1 and Mst2 maintain 
hepatocyte quiescence and suppress hepatocellular carcinoma development through 
inactivation of the Yap1 oncogene. Cancer Cell, 16, 425-38. 
Zhou, D., Zhang, Y., Wu, H., Barry, E., Yin, Y., Lawrence, E., Dawson, D., Willis, 
J. E., Markowitz, S. D., Camargo, F. D. & Avruch, J. 2011. Mst1 and Mst2 protein 
kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition 
of Yes-associated protein (Yap) overabundance. Proceedings of the National Academy 
of Sciences of the United States of America, 108, E1312-20. 
Ziosi, M., Baena-Lopez, L. A., Grifoni, D., Froldi, F., Pession, A., Garoia, F., 
Trotta, V., Bellosta, P. & Cavicchi, S. 2010. dMyc functions downstream of Yorkie to 
promote the supercompetitive behavior of hippo pathway mutant cells. PLoS genetics, 6. 
 
 


