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Abstract

Non-uniform weighted sampling (NUWS) is a sampling strategy, related to non-
uniform sampling (NUS) in the limit of long acquisition times, in which each
indirect increment of a multidimensional spectrum is sampled multiple times ac-
cording to some weighting function. As the spectrum is fully sampled it can be
processed in a conventional manner by the discrete Fourier transform, making the
analysis of sensitivity much more straightforward than for NUS data. Previously,
2–3 fold increases in signal-to-noise ratio (SNR) have been reported using NUWS.
However, as the sampling schedule acts as a window function, the observed SNR
must be compared with uniformly sampled data apodized using the same weight-
ing function. On doing this, we calculate more modest improvements of 10–
20% in SNR, and these are verified experimentally for spectra of α-synuclein and
YFP. Nevertheless, we prove that NUWS always improves the sensitivity com-
pared with identically processed uniformly sampled data, and when combined
with rapid recycling experiments such as the SOFAST-HMQC, NUWS methods
have the potential to make a useful and practical contribution to sensitivity-limited
measurements.
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1. Introduction

Since the inception of NMR spectroscopy, spectroscopists have sought to im-
prove the sensitivity of this intrinsically insensitive technique, for example through
pulse sequence design [1, 2, 3, 4, 5], the development of cryogenic probes [6],
and the application of dynamic nuclear polarisation [7, 8, 9]. Of course, as tech-
nology has developed, so has the desire to study increasingly large, complex or
dilute samples — as has the desire to make efficient use of valuable spectrom-
eter time. This is particularly true when recording spectra of high dimension-
ality, where the need to sample points uniformly over the Nyquist grid results
in the explosive growth of acquisition time as the number of dimensions is in-
creased. Non-uniform sampling (NUS) is an increasingly popular approach that
circumvents this sampling limit by sampling only a small fraction of points in the
indirect dimension, according to some predefined sampling schedule [10]. The
sparse data that results from such acquisition cannot be processed by the regular
discrete Fourier transform, and instead non-linear algorithms such as Maximum
Entropy, multi-dimensional decomposition (MDD) or forward-Maximum Entropy
(FM) [11, 12, 13, 14] are required to reconstruct the spectrum.

Sampling schedules in NUS are commonly generated randomly from a sam-
pling density function matched to the relaxation of the species being observed,
in order to sample a greater number of points at early times where the signal is
relatively strong. In addition, this may improve the ultimate signal-to-noise ratio
(SNR) of the experiment, making NUS methods attractive not just to sampling-
limited experiments, but also to sensitivity-limited measurements. An extreme
case of this strategy, in the limit of large numbers of scans, is non-uniform weighted
sampling (NUWS) [15, 16]. Here, all points on the Nyquist grid are sampled, but
with a variable number of scans proportional to the sampling density function
(Fig. 1). Clearly, this approach is only practical when the total number of scans is
very large, but we show here that with the advent of rapid recycling experiments
such as the SOFAST-HMQC where many scans are acquired each second [4, 5],
NUWS methods have become a practical prospect.

Previous works examining the sensitivity of NUWS acquisition have reported
2–3 fold increases in the SNR per unit experiment time, due to the concentra-
tion of spectrometer time on early increments with the highest signal [15, 16].
The approach may also be useful for sensitivity-limited solid-state NMR experi-
ments [17]. However, it is important to note that acquisition with a non-uniform
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sampling density has the same effect on signal intensities as applying a window
function to uniformly sampled data (Fig. 1). Given that this process of apodiza-
tion also increases the SNR, it is important to compare the sensitivity of NUWS
experiments on a like-for-like basis with apodized uniformly sampled data. Here
we show theoretically and experimentally that, when this is done, the ‘real world’
increase in SNR is on the order 10–20% rather than 200–300% as previously
suggested [15, 16]. Nevertheless, we prove that the change in SNR is always
favourable, and even these modest improvements may yet be useful for the study
of challenging, sensitivity-limited samples.

2. Materials and Methods
15N-labelled α-synuclein and 15N,13C-labelled YFP were expressed and puri-

fied as previously described [18]. A sample of α-synuclein was prepared at 5 µM
in 10 mM sodium phosphate buffer, pH 7.5, with 10% D2O and 0.01% DSS,
while YFP was prepared at 50 µM in Tico buffer (10 mM HEPES pH 8.0, 30 mM
NH4Cl, 20 mM MgCl2, 2 µM β-mercaptoethanol). NMR data were acquired on
a Bruker Avance III spectrometer equipped with a TXI cryogenic probe operating
at 16.4 T (700 MHz).

1H,15N SOFAST-HMQC spectra were recorded in triplicate using both uni-
form sampling, and cosine and cosine-squared NUWS. The NUWS pulse pro-
gram, and simple scripts for generating sampling schedules, are available from the
authors on request. For α-synuclein, uniformly sampled spectra were acquired at
277 K with 256 scans, 256 points in the indirect dimension with a sweep width
of 28 ppm, a recycling delay of 50 ms and a proton acquisition time of 50 ms,
corresponding to ca. 2 hrs per spectrum. YFP spectra were acquired in a simi-
lar manner at 283 K with 256 scans, 128 points in the indirect dimension with a
sweep width of 35 ppm, corresponding to ca. 1 hr per spectrum. Sampling densi-
ties for NUWS spectra were set to integer multiples of the four step phase cycle,
and were normalised such that the total acquisition time was equal to that of the
uniformly sampled experiment. Spectra were processed using nmrPipe [19]. Uni-
formly sampled spectra were apodized in both dimensions, while no apodization
was applied to the indirect dimension of NUWS spectra; zero filling was applied
to all spectra prior to Fourier transformation. Processed spectra were imported
into MATLAB for subsequent analysis.
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3. Theory

The theory of NMR sensitivity has been treated on many previous occasions,
and here we generalise the exposition of Ernst et al. [20] to a variable number
of scans. We consider a signal in the indirect dimension having an envelope s(t),
which for simplicity is taken to be on-resonance, hence s(t) = e−t/T2 . M incre-
ments are acquired with a variable number of scans, n(t), from times 0 to T such
that increment k is acquired at time kT/M. The number of scans, n(t), is nor-
malised such that the total number of scans, N, is constant (and equal to Mn,
where n is the mean number of scans):

N =

M−1∑
k=0

n
(
kT
M

)
=

M
T

∫ T

0
n(t) dt = Mn (1)

Following acquisition, the signal may be multiplied by a window function,
h(t). The peak height, Y , is given by the discrete Fourier transform of the signal,
which for an on-resonance signal is:

Y =

M−1∑
k=0

n
(
kT
M

)
h
(
kT
M

)
s
(
kT
M

)
=

M
T

∫ T

0
n(t)h(t)s(t) dt = Mnhs (2)

As the Fourier transform is simply a sum, the noise of individual scans, σ0, is
added in quadrature to determine the uncertainty in the peak height, σY :

σ2
Y =

M
T

∫ T

0

n(t)∑
1

σ2
0h(t)2 dt = σ2

0Mnh2 (3)

The signal-to-noise ratio (SNR), Y/σY , is therefore:

SNR =
M1/2

σ0
·

nhs

(nh2)1/2
(4)

We now examine the result of applying a net window function, w(t) = n(t)h(t).
The numerator in the SNR therefore becomes ws. It is a well-known result for
uniformly-sampled NMR that the SNR is maximised by a matched filter, i.e. when
w(t) = s(t) = e−t/T2 [20]. Other window functions are also commonly applied in
2D spectroscopy, such as cosine or cosine-squared functions, which may be more
effective at suppressing side lobes for short acquisition times. However, regardless
of the exact choice of w(t), and in contrast to the uniformly-sampled case, there is
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now extra freedom in the factoring of w(t) into n(t) and h(t). Therefore, with w(t)
fixed, maximising the SNR (Eq. 4) corresponds to minimising the denominator,
(nh2)1/2.

Two limiting cases are considered here: firstly, the conventional approach in
which h(t) = w(t) and n(t) = a is constant; and secondly the NUWS approach in
which h(t) = 1 and n(t) = aw(t). In both cases, a is a normalisation factor which
must be chosen in order to satisfy Eq. 1. In the first case (uniform sampling),
N = M

T

∫ T

0
a dt = aM and therefore a = N/M = n, as expected. Thus, the

denominator of Eq. 4 is (nh2)1/2 = (n · w2)1/2, and the overall SNR is:

SNRunif =
N1/2

σ0
·

ws

(w2)1/2
(5)

In the second case (NUWS), N = M
T

∫ T

0
aw(t) dt = awM hence a = n/w. The

denominator of Eq. 4 therefore becomes (nh2)1/2 = N1/2w2, and the overall SNR
is:

SNRNUWS =
N1/2

σ0
·

ws
w

(6)

Thus, comparing Eqs. 5 and 6, the relative sensitivity resulting from NUWS
compared with conventional sampling, when both have been processed with the
same window function, w(t), is:

SNRNUWS

SNRunif
=

(w2)1/2

w
(7)

To examine whether or not there is a true sensitivity gain resulting from NUWS,
we consider the relative magnitudes of the top and bottom halves of the above
expression. Taking their squares, Jensen’s inequality proves that w2 ≥ w2 and
therefore that SNRNUWS ≥ SNRunif. Thus, we have shown that the sensitivity of an
NMR experiment in which a window function is applied via NUWS will always
be at least as good as that resulting from conventional processing of uniformly
sampled data.

3.1. Specific cases
To study practical aspects of the theory developed above we examine, as func-

tions of the acquisition time Taq and the relaxation time T2, the sensitivity of three
commonly applied window functions: the matched exponential, and cosine and
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cosine-squared functions. The SNR associated with each window function is cal-
culated for both uniform sampling and NUWS, and in each case the SNR is a
function only of the dimensionless ratio τ = Taq/T2 (Table 1). The calculated
SNRs are plotted in Fig. 2A–C, and illustrate the greater sensitivity of NUWS
over uniform sampling under all conditions, as expected from the theoretical ar-
guments above.

Table 1 also shows the relative improvement in sensitivity calculated for NUWS
over uniform sampling. Increases in SNR of 11 and 22% are expected for cosine
and cosine-squared window functions respectively, independent of the acquisition
time (Fig. 2B,C). We note that, although modest, these improvements translate to
larger savings in the acquisition time required for a given SNR, of 19 and 33%
respectively.

In contrast, the case of the matched exponential function is more complex and
varies with the relative acquisition time (Table 1). For short acquisition times,
the sensitivities of NUWS and uniform sampling are almost identical (Fig. 2A).
This reflects the fact that the exponential function is almost constant when Taq �

T2, and therefore the NUWS sampling density is essentially uniform. However,
large gains are found when Taq � T2. Under these conditions, the net window
function w(t) is close to zero for much of the acquisition period. This is a highly
wasteful strategy for uniformly sampled data, as much of the acquired data is
simply deleted. In contrast, with NUWS data in this region is not acquired at
all, and the acquisition time is instead allocated to earlier increments containing
stronger signals. In this sense, the acquisition time Taq is a poorly defined quantity,
for in the NUWS case data are not acquired beyond ca. 3T2, irrespective of how
large Taq may be.

It is also useful to compare the relative sensitivities of different window func-
tions under either uniform sampling or NUWS conditions. The uniform sam-
pling case (Fig. 2D) illustrates the well-known result that the matched filter (the
matched exponential) provides optimal sensitivity under all circumstances. How-
ever, this is not true for NUWS, where we observe that the cosine-squared window
function provides greater sensitivity until Taq > 2.4T2 (Fig. 2E). This finding re-
flects the more rapid decrease of the cosine-squared function compared to the
matched exponential, for short acquisition times, resulting in acquisition being
more strongly biased towards early increments with greater signal.

3.2. Analysis of quantisation errors
In any experiment, due to the finite number of scans, it is impossible to apply a

perfectly smooth window function w(t) through weighted sampling alone. Instead,
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the sampling density n(t) approximates this function as a series of rectangular
steps, quantised in integer multiples of the phase cycle. The Fourier transformed
spectrum that results will therefore be convolved with a series of sinc functions,
which risks introducing a ‘quantisation error’ into the final spectrum.

To assess the magnitude of such errors, synthetic FIDs were generated and
analysed following multiplication by a series of cosine-squared sampling density
functions, having between 2 and 50 sampling levels. We also investigated the
effect of the acquisition time Taq, which was varied between T2 and 3T2. An FID
with no relaxation was also considered, reflecting the limiting case of a very short
acquisition time.

A selection of sampling density functions n(t), and the resulting signals s(t)n(t),
are shown in Fig. 3A-C (blue and red curves respectively). Uniformly sampled
data, apodized with a smooth window function, are also shown for comparison
(green and black curves). Fig. 3D-F shows the transformed spectra, and it can
be observed that in all but the extreme case of two sampling levels (Fig. 3C,F),
NUWS does not appear to result in large quantisation errors.

To assess this in a more systematic manner, the quantisation error was defined
as the maximum error in the NUWS spectrum compared to the uniformly sampled
and smoothly apodized reference spectrum, expressed relative to the peak height.
This is plotted in Fig. 3G for a range of sampling levels and acquisition times.
We observe that the quantisation error decreases rapidly as the number of sam-
pling levels increases, as the sampling density function provides an increasingly
good approximation to a smooth window function. The error is largest for small
acquisition times, which is easily understood as the signal is largest under such
circumstances, hence the discontinuities in the sampling density function are also
most apparent.

We find that, in all circumstances, only five sampling levels are required to re-
duce the quantisation error to below 5%, and with twenty levels the error is under
1%. As will be demonstrated in the following section, such sampling schedules
can be readily accommodated experimentally. Therefore, for all but extreme sam-
pling schedules, we do not expect quantisation errors to be a significant source of
error within NUWS spectra.

4. Experimental results

To provide experimental validation of the theoretical predictions above, uni-
formly sampled and NUWS 1H-15N SOFAST-HMQC spectra were recorded in
triplicate on a sample of α-synuclein, a 14 kDa intrinsically disordered protein,
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at a low concentration (5 µM). Experiments were acquired with both cosine and
cosine-squared sampling densities. 256 points were acquired in the indirect di-
mension, with an average of 256 scans per increment, and the NUWS sampling
schedules were restrained to integer multiples of the four step phase cycle. This
provided between 100 and 128 sampling levels, which is expected to be more than
sufficient to avoid quantisation errors (Fig. 3). Each spectrum could be acquired
in 2 hours.

Fig. 4 shows SOFAST-HMQC spectra of α-synuclein acquired or processed
with cosine and cosine-squared window functions. In each plot, contours have
been set at constant multiples of the noise level, from which the small improve-
ment provided by the NUWS method can be observed. As expected, the line-
shapes of NUWS spectra are in excellent agreement with those from uniformly
sampled data (Fig. 4E-H). To examine the change in sensitivity in more detail,
Fig. 4E-H marks a series of cross-sections through the spectra, the profiles of
which are plotted in Fig. 4I-L. Intensities have been normalised to show the SNR
directly. The increased sensitivity provided by NUWS methods can again be iden-
tified, particularly in the case of the cosine-squared window function (Fig. 4K,L).
Sensitivity increases of 15 ± 3% and 23 ± 1% were observed for the cosine and
cosine-squared window functions respectively, in good agreement with theoretical
expectations of 11% and 22% respectively (Table 1).

The theory developed above predicts that the change in sensitivity resulting
from NUWS should be independent of the relaxation behaviour of the system be-
ing studied, at least in the case of cosine and cosine-squared window functions
(Table 1). As α-synuclein is an intrinsically disordered protein with slow trans-
verse relaxation, to test this we have acquired a set of SOFAST-HMQC spectra for
the contrasting case of YFP, a 27 kDa protein, at 283 K. As for α-synuclein, uni-
formly sampled and NUWS spectra were acquired with cosine and cosine-squared
window functions. The resulting spectra are plotted in Fig. 5A-D. Resonances are
significantly broader compared to α-synuclein, but a number of isolated peaks can
be identified and cross-sections through these resonances are shown in Fig. 5E-
H. These show that lineshapes are reproduced well in NUWS spectra, and again
the increase in SNR can be identified. Analysis of three repeated measurements
identified SNR increases of 10 ± 2% and 25 ± 5% for cosine and cosine-squared
window functions respectively, again in agreement with theoretical expectations
(Table 1).

The above examples have demonstrated that NUWS methods accurately re-
produce peak intensities with the expected improvement in SNR, while visual
examination of the spectra also indicates that lineshapes are well preserved in

8



NUWS spectra. However, as a final control we have sought to test this in a quan-
titative manner, and in Fig. 6 the intensities at every point in the NUWS spectra of
YFP shown in Fig. 5 are plotted against those in the equivalently processed uni-
formly sampled spectrum. For both cosine and cosine-squared window functions,
the correlation observed between the uniformly sampled and NUWS spectra was
extremely high (r2 ≈ 0.99999), indicating that spectra are faithfully reproduced
at every point. Gradients obtained from linear regression analyses indicated SNR
increases of 10% and 21% for cosine and cosine-squared window functions re-
spectively, in excellent agreement with predictions from theory (Table 1).

5. Discussion

In this manuscript, we have examined the ‘real world’ improvements in NMR
sensitivity that result from the use of non-uniform weighted sampling during the
acquisition process. A like-for-like comparison of NUWS spectra with apodized
uniformly sampled spectra is essential to avoid unrealistic expectations of 2–3 fold
increases in SNR [15, 16]. When this is done, as shown here, SNR improvements
are more modest, of the order 10–20% (Table 1). Nevertheless, we have rigorously
proved that the sensitivity of NUWS experiments will always be greater than (or,
at worst, equal to) the sensitivity of uniformly sampled experiments.

The close correspondence between NUS and NUWS methods has been noted
previously [15]. NUS sampling schedules are generated randomly or quasi-randomly
according to some density functions — but in the limit of long acquisition times
with large numbers of scans, this becomes identical to the sampling density, n(t),
employed in NUWS. Therefore, we should not expect any spontaneous improve-
ments in sensitivity to arise as the acquisition time is reduced. Moreover, as the
discrete Fourier transform is already a power-conserving transform, i.e. the full in-
formation content of the input data is preserved, non-linear algorithms employed
in the reconstruction of NUS data cannot be expected to improve the sensitiv-
ity further. This has been proved explicitly for maximum entropy methods [21]:
apparent increases in the SNR ratio were traced only to a non-linear scaling of
intensities, while the relative ordering of peaks was preserved. Therefore, we
suggest here that the NUWS limit provides a useful basis on which to assess the
relative sensitivity of NUS sampling schemes, free from the complexities of non-
linear processing methods, and allowing a full and equal comparison with uni-
formly sampled data. The results presented here indicate that, as described here
for NUWS, we should not expect large ‘real world’ increases in sensitivity to arise
from the application of NUS methods.
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Experimentally, the use of NUWS methods offers a number of advantages
and disadvantages. NUWS can be readily implemented on spectrometers and re-
quires no additional hardware or software beyond a script to generate sampling
schedules. The data can be processed in a conventional manner using the discrete
Fourier transform. As this is a linear transform this has the advantage, compared
with many NUS methods, of preserving peak intensities — and processing can
be performed directly at the spectrometer console. However, it is necessary to
choose the window function prior to acquisition, which removes the possibility
of optimising the window function iteratively during the data processing stage.
Moreover, as little or no data is acquired at long evolution times, it is not possible
to extend the FID to longer acquisition times using linear prediction. However,
as linear prediction is best applied to data with high SNR, and given that the
NUWS method will be of greatest utility to dilute samples requiring long acqui-
sition times, this limitation may be of minimal practical significance. Finally, just
as is the case for uniform sampling it is also necessary to optimise the acquisi-
tion time according to the relaxation properties of the system being observed in
order to obtain the desired balance of sensitivity and spectral resolution. Where a
variety of linewidths are present in a spectrum, this poses the same optimisation
problem as for uniform sampling. A possibility offered by NUWS methods, how-
ever, is to exchange the increase in sensitivity on longer evolution times for the
indirect dimension, providing increased resolution with a SNR comparable to that
of a lower resolution, uniformly sampled spectrum.

In conclusion, we have shown here, theoretically and experimentally, that
NUWS acquisition provides only limited increases in NMR sensitivity when com-
pared with uniformly sampled data processed with the same window function, and
have argued that these findings will apply equally to NUS data. We note however
that small SNR improvements can translate into more substantial reductions in
acquisition time. When coupled with rapid recycling experiments such as the
SOFAST-HMQC, we expect that these methods may be of utility for the study
of challenging and sensitivity-limited samples, such as solid-state NMR [17],
solution-state NMR of proteins or metabolites at natural abundance [14, 22, 23],
or large, dilute systems such as ribosome nascent-chain complexes [24, 25].
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parison of the sensitivity of various window functions, as indicated in the legend, for the case of
(D) uniform sampling, and (E) NUWS acquisition.
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Figure 3: Simulated lineshapes for the analysis of quantisation artefacts and the dependence on the
number of sampling levels, n. (A–C) Quantised sampling densities (blue) approximating a smooth
cosine-squared window function (green), and synthetic FIDs simulated for an on-resonance signal
following uniform sampling (black) or NUWS (red) acquisition. (D–F) Simulated lineshapes fol-
lowing Fourier transformation of the synthetic FIDs in (A–C). (G) Dependence of the maximum
quantisation error on the number of sampling levels and the acquisition time.
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Figure 4: Comparison of the sensitivity of 1H-15N SOFAST-HMQC spectra of α-synuclein (5 µM,
277 K) recorded with identical acquisition times by uniform sampling and NUWS. (A–D) Uni-
formly sampled spectra were acquired and processed with (A) cosine and (C) cosine-squared win-
dow functions, and are compared with NUWS spectra acquired with (B) cosine and (D) cosine-
squared sampling densities. Contours show identical SNR levels in all spectra. (E–H) Magni-
fied plot of a small region in the spectra above. Dashed lines indicate the location of the one-
dimensional slices that are plotted in (I–L), which plot the SNR obtained in three replicates of the
spectra shown in (A–H).
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Figure 5: Comparison of the sensitivity of 1H-15N SOFAST-HMQC spectra of YFP (50 µM,
283 K) recorded with identical acquisition times by uniform sampling and NUWS. (A–D) Uni-
formly sampled spectra were acquired and processed with (A) cosine and (C) cosine-squared win-
dow functions, and are compared with NUWS spectra acquired with (B) cosine and (D) cosine-
squared sampling densities. Contours show identical SNR levels in all spectra. Dashed lines
indicate the location of the one-dimensional slices that are plotted in (E–H), which plot the SNR
obtained in three replicates of the spectra shown in (A–D).
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Figure 6: Analysis of the correlation between uniformly sampled and NUWS 1H-15N SOFAST-
HMQC spectra of YFP (Fig. 5). The SNR of every point in the NUWS spectrum (1H chemical
shifts between 6 and 11 ppm) is plotted against that of a comparable uniformly sampled spectrum,
for cosine and cosine-squared window functions as indicated. Lines of best fit are plotted, with
slopes as indicated (r2 > 0.99999 in both cases).

matched exponential cosine cosine-squared
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3

[
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]
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√
2τ(1−e−2τ)
2(1−e−τ) 1.11 1.22

Table 1: Calculation and comparison of the relative sensitivities of uniform and non-uniform
weighted sampling for three commonly applied window functions, w(t), computed for a signal,
s(t), with a relaxation constant T2 and observed for an acquisition time Taq, expressed in terms of
the dimensionless ratio τ = Taq/T2.
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