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Abstract

Background: Intervention with antiretroviral treatment (ART) and control of viral replication at the time of HIV-1
seroconversion may curtail cumulative immunological damage. We have therefore hypothesized that ART maintenance
over a very prolonged period in HIV-1 seroconverters could induce an immuno-virological status similar to that of HIV-1
long-term non-progressors (LTNPs).

Methodology/Principal Findings: We have investigated a cohort of 20 HIV-1 seroconverters on long-term ART (LTTS) and
compared it to one of 15 LTNPs. Residual viral replication and reservoirs in peripheral blood, as measured by cell-associated
HIV-1 RNA and DNA, respectively, were demonstrated to be similarly low in both cohorts. These two virologically matched
cohorts were then comprehensively analysed by polychromatic flow cytometry for HIV-1-specific CD4+ and CD8+ T-cell
functional profile in terms of cytokine production and cytotoxic capacity using IFN-c, IL-2, TNF-a production and perforin
expression, respectively. Comparable levels of highly polyfunctional HIV-1-specific CD4+ and CD8+ T-cells were found in
LTTS and LTNPs, with low perforin expression on HIV-1-specific CD8+ T-cells, consistent with a polyfunctional/non-cytotoxic
profile in a context of low viral burden.

Conclusions: Our results indicate that prolonged ART initiated at the time of HIV-1 seroconversion is associated with immuno-
virological features which resemble those of LTNPs, strengthening the recent emphasis on the positive impact of early
treatment initiation and paving the way for further interventions to promote virological control after treatment interruption.
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Introduction

Antiretroviral therapy (ART) is considered life-long once initiated

at the time of chronic HIV-1 infection. It remains unclear whether

we can change the course of the disease, decrease long-term

exposure to medication and promote control of viremia after

discontinuation of treatment initiated at the time of seroconversion

[1]. Residual reservoirs in long-lived CD4+ T-cells, in particular, are

understood to be responsible for the virological rebound observed

after treatment interruption [2,3]. Previous studies in early infection

using various treatment durations have shown variable degrees of

immune preservation and decrease of the saturation of peripheral

viral reservoirs overtime. We have therefore hypothesized that a very

prolonged treatment period initiated at seroconversion might allow

the preservation/reconstitution of HIV-1-specific immunity as well

as a substantial decline in viral burden and promote a non-

progressive type of infection. Therefore, in order to help clarify this

issue, we have used in this study as a comparator to long-term treated

seroconverters (LTTS) a population of long-term non-progressors

(LTNPs) which remains disease-free and spontaneously controls

CD4+ T-cell loss and viral replication in the absence of treatment.

We have concentrated our analysis on HIV-1-specific T-cells

which have been shown to play a substantial role in HIV-1

infection control. Previous studies have demonstrated an absence
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of correlation between the magnitude of interferon-gamma (IFN-

c) production and viremia levels. As a result the emphasis has been

recently put on their qualitative rather than quantitative features

[4,5]. The term ‘‘polyfunctional’’ is therefore commonly used to

define a type of T-cell immune responses that, in addition to

typical effector functions such as cytotoxic activity and secretion of

IFN-c or tumor necrosis-alpha (TNF-a), also comprises distinct T-

cell populations able to secrete interleukin-2 (IL-2) and to retain

proliferative capacity [5,6,7,8]. A polyfunctional CD8+ T-cell

profile has been associated with protective antiviral immunity in

several viral infections, including HIV-1 [6,9,10,11]. Cytotoxicity

is a further function by which CD8+ T-cells mediate anti-tumor

and anti-viral activity [12,13,14] and we have recently shown that

perforin expression is the most powerful correlate of cytotoxic

function in human viral infections [15].

Studies have indeed demonstrated that HIV-1-specific CD8+ T-

cells in LTNPs are functionally fit in terms of cytokine production

as well as proliferative and cytotoxic capacity, in contrast to what is

observed in chronic progressors [9,16,17,18,19,20]. Slow and

incomplete improvement of HIV-1-specific CD8+ T-cell function-

ality in progressors has been noted when ART is initiated during

chronic infection, even when maintained for prolonged periods

[19,21]. As a rule treatment interruption has been associated with

viral rebound which suggests that residual functional immunolog-

ical defects are still present after many years of treatment-induced

aviremia in chronically infected patients [21]. Recent studies have

indeed shown that polyfunctionality, proliferation and cytotoxicity

capacities are not recovered to the same extent as in LTNPs when

ART is initiated during the chronic stage of the infection [19,22].

However, preservation and enhanced reconstitution of these

immune functions as well as a substantial decrease of viral

reservoirs may occur with an early and prolonged treatment

intervention able to produce at the time of acute infection a rapid

viremia decline and subsequent prolonged aviremia.

In this study we have compared HIV-1-specific CD4+ and

CD8+ T-cell functionality, immune activation, HIV-1 reservoirs

and residual replication in peripheral blood of LTTS with those of

LTNPs. We have measured cell-associated HIV-1 DNA and RNA

levels to quantify reservoirs and residual viral replication,

respectively and assessed CD8+ T-cell immune activation by

CD38+ expression. HIV-1-specific CD4+ and CD8+ T-cell

responses (initially screened by IFN-c ELISpot assay) were

analysed by polychromatic intracellular cytokine staining (ICS)

in order to assess polyfunctionality as defined by the production of

multiple cytokines (IFN-c, IL-2 and TNF-a) and the ex-vivo

perforin expression by HIV-1-specific CD8+ T-cells.

Interestingly enough, similarly low levels of cell-associated HIV-

1 DNA and RNA as well as CD8+/CD38+ T-cells were detected

in peripheral blood in the two subject groups. We have also

demonstrated the presence of highly polyfunctional HIV-1-specific

CD4+ and CD8+ T-cells in all LTTS and LTNPs and little

perforin expression on HIV-1-specific CD8+ T-cells in both

cohorts.

Our study design allowed overcoming the recurrent bias of the

different viral burden present in previous studies which have

compared HIV-1 with other persistent human viral infections (e.g.

CMV, EBV vs. HIV) or cohorts of HIV-1 progressors vs. non-

progressors for immune correlates of viral control. We had in

contrast the unique opportunity to compare two cohorts of HIV-1-

infected subjects with a strikingly similar viral burden. This is of

relevance since immune correlates of virological control are known

to be associated with the extent of viral burden [5].

Our results therefore raise the possibility of HIV-1-specific T-

cell immune preservation/reconstitution with early and prolonged

ART in a context of low viral burden in peripheral blood and

provide a detailed comparison of HIV-1-specific T-cell profile in

subjects with similar viral burden in ART-induced and spontane-

ous control of viral replication. These data should guide further

therapeutic studies in HIV-1 seroconverters to investigate newer

therapeutic compounds aimed at further decreasing viral reser-

voirs and test the possibility of long-term control of viremia after

treatment discontinuation [23]. The comprehensive information

in terms of HIV-1-specific T-cell functional profile and viral

reservoirs in LTNPs provided here should also increase our

understanding of correlates of viral control and help contribute to

vaccine development.

Methods

Study population
The study included a total of 35 patients who were prospectively

enrolled into 2 cohorts between March 2007 and March 2008.

Their characteristics are described in Table 1.

The first cohort included 20 long-term ART-treated serocon-

verters (LTTS) who had chosen to initiate treatment at the time of

HIV-1 seroconversion and had been followed up in the same

treatment centre since diagnosis. They were selected from the

Royal Free Hospital (RFH) cohort of seroconverters at the Ian

Charleson Day Care Centre (ICDC) using our HIV database on

the basis of the following inclusion criteria: (a) ART for at least 4

years with no treatment interruption; (b) long-term aviremia (,50

HIV-1 RNA copies/mL) and (c) an absence of treatment failure

defined by a viral load above 400 HIV-1 RNA copies/mL.

Seroconversion to HIV-1 was defined by: (a) negative HIV-1

antibody by ELISA and evidence of HIV-1 viremia $5,000 HIV-

1 RNA copies/mL plasma and/or (b) incomplete HIV Western

Blot with #3 bands and/or detuned assay with a value of ,0.6 for

clade B patients. At the time of seroconversion, median CD4+ T-

cell count was 474 (range: 187–1033) and plasma viral load

750.000 HIV-1 RNA copies/mL (range: 38.300–7.500.000).

Duration of ART was calculated from the day of initiation of

ART until the time of sampling. Treatment (2 non-nucleoside

analogues inhibitors of the HIV-1 reverse transcriptase and 1

boosted inhibitor of HIV-1 protease) was initiated shortly after the

diagnosis of HIV was made (median time from diagnosis to

treatment initiation: 13 days).

The second cohort included 15 long-term non-progressor

subjects (LTNPs) recruited at the Ian Charleson Day Centre

(ICDC) (n = 9) and Haemophilia Centre (n = 2) at the RFH in

London using the centre’s HIV database as a reference, and

referrals from University College Hospital, London (n = 1), North

Middlesex Hospital, London (n = 1), University Hospital of Wales,

Cardiff (n = 1) and at Victoria Hospital, Blackpool (n = 1) in the

UK. Inclusion criteria were: (a) $7 years of documented HIV-1

infection; (b) viremia ,1000 HIV-1 RNA copies/mL plasma in

.90% of measurements; (c) $500 CD4+ T-cells/mm3 in $90%

of measurements; (d) absence of AIDS-defining conditions; (e)

ART-naive except for zidovudine use for the prevention of

mother-to-child transmission (n = 2). Patients’ medical files were

reviewed in order to confirm inclusion criteria. Patient character-

istics are described on Table 1.

As shown in Table 1, the 2 cohorts were matched for major

clinical and laboratory parameters. Men who had sex with men

were in a majority in both cohorts although females were better

represented in LTNPs. Both cohorts were similar in terms of HIV-

1 viral load and CD4+ T-cell counts at the time of blood sampling.

Median CD4+ T-cell count was 783 (range: 433–1648) and 800

(range: 567–1412) for LTNPs and LTTS, respectively (P = 0.29).

Immuno-Virological Effects of Prolonged Early ART
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All LTTS and LTNP subjects were below 50 HIV-1 RNA copies/

ml at the time of sampling except for 4 LTNPs (381, 240, 636, 130

HIV-1 RNA copies/mL). Therefore, the vast majority of LTNPs

also fulfilled the criteria for elite controllers [24]. Median duration

of infection at the time of sampling was 13 years (range: 7–25) for

LTNPs and 6 years (range: 4–7) for LTTS.

Ethics Statement
Informed written consent was obtained from all subjects. The

study was approved by the Royal Free Hospital and NHS ethics

committees and the Institutional Review Board of the Centre

Hospitalier Universitaire Vaudois.

Blood sampling and PBMC isolation and storage
A single blood sample was performed at the ICDC at the RFH

in London for research purposes. Processing of EDTA samples for

virological and immunological analysis was performed at the

Department of Immunology at the RFH within 3 hours of

venopuncture. Peripheral blood mononuclear cells (PBMCs) were

isolated by Ficoll-Paque density gradient centrifugation from

heparinized blood and stored in 7.5% DMSO in liquid nitrogen.

We also performed on the day of blood sampling routine full

blood count, biochemistry, hepatitis B and C serology, CD4+ and

CD8+ T-cell counts, CD4+/CD8+ T-cell count ratio, CD8+/

CD38+ T-cell absolute counts and percentages, HIV-1 viremia

and viral clade and HLA class I determination. Levels of CD8+/

CD38+ T-cells were quantitated according to a previously

published method [25]. HIV-1 pol gene sequences for codons 1–

99 of the protease and 1–335 of reverse transcriptase (RT) were

obtained from whole EDTA blood samples using the VircoseqTM

HIV-1 genotyping system (Abbott Laboratories/Celera Diagnos-

tics, USA) according to the manufacturer’s instructions. Sequences

were analysed with a 3100-Avant Genetic Analyzer (Applied

Biosystems, UK) and edited using Seqscape v2.5 (Applied

Biosystems, UK). Subtypes were assigned by phylogenetic analysis

using the software MEGA v4 [26] and by comparing to known

reference HIV-1 sequences derived from the Los Alamos database

[27].

HLA class I genotyping
High-resolution sequence-based typing was carried out for

HLA-A and HLA-B, as previously described [28]. Briefly, generic

PCR co-amplification of both maternal and paternal alleles was

carried out to create PCR products specific for these loci. Cycle

sequencing using the Dye terminator method was then carried out

using ABI PrismH BigDyeH Terminator v3.1 chemistry. Sequenc-

ing was targeted at exons 2, 3 and 4. The results generated were

compared with previous LuminexH typing to remove any

ambiguous combinations not seen by this technique.

HLA-C genotyping was performed at an intermediate resolu-

tion level using LABTypeH SSO Typing Test according to the

manufacturer’s instructions. Data were analysed on a LuminexH
100 flow analyser.

Synthetic peptides used in IFN-c ELISpot and
polychromatic flow cytometry assay (ICS)

All peptides used in this study were HPLC purified (.80%

purity). We selected 191 HIV-1-derived epitopes (9/10-mers)

covering different regions (Gag, Env, Pol, Nef, Tat, Rev, Vpr, Vpu

and Vif) of HIV-1 from consensus strain IIIB. Only optimal CD8+

Table 1. Subjects Characteristics.

LTTSA (n = 20) LTNPsA (n = 15) P value (a = 0.003)

Males (%) 19 (95) 11 (73) 0.14

Age* (range) 40 (29–59) 41 (27–67) 0.5

Caucasian (%) 19 (95) 14 (93) 1

MSMB (%) 18 (90) 8 (53) 0.02 (N.S.)C

HTSB (%) 2 (10) 5 (33) 0.11

HAEMB (%) 0 (0) 2 (13) 0.18

Years of infection* (range) 6 (4–7) 13 (7–25) n.a.D

CD4+ T-cells* (cells/mL; range) 800 (567–1412) 783 (433–1648) 0.29

CD4+/CD8+ T-cell ratio* (range) 1.1 (0.65–3.70) 1.2 (0.31–1.90) 0.06

CD8+/CD38+ T-cells* (x109cells/L; range) 0.05 (0.008–0.274) 0.06 (0.016–0.534) 0.23

CD8+/CD38+ T-cells* (%; range) 7 (3–25) 6 (3–30) 0.28

pVLE* (HIV-1 RNA copies/mL) all ,50 11 ,50, 4 ,1000 n.a.D

Cell-associated HIV-1 RNA* (copies/106 PBMCs; range) 3.9 (0–36) 5.8 (0–10.3) 0.16

Cell-associated HIV-1 DNA* (copies/106 PBMCs; range) 47.7 (4.8–583.2) 19.7 (0.5–295.5) 0.10

Patients with HLA-B*5701 allele (%) 1 (5) 4 (27) 0.14

Patients with HLA-B*5701, -B*2705, -B*5801,
-B*5101, -B*1302 alleles (%)

5 (25) 6 (40) 0.45

Patients with HLA-B*3503, -B*5301, -B*1801 alleles (%) 3 (15) 2 (13) 1

ALTTS, long-term treated HIV-1 seroconverters; LTNPs: HIV-1 long-term non-progressors.
BMSM, men-having-sex-with-men; HTS, heterosexuals; HAEM, haemophiliacs.
CN.S., not statistically significant after Bonferroni correction for multiple testing (the cut-off for statistical significance is 0.003).
Dn.a, not applicable.
EpVL, plasma viral load.
*Median values at time of sampling.
doi:10.1371/journal.pone.0018164.t001
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T-cell epitopes with known HLA class I restriction were selected

[29]. Fine epitope mapping was thus performed on the predicted

HLA class I genotype according to Los Alamos database and

patient HLA class I genotype. The 191 optimal CD8+ T-cell

epitopes were tested individually in the polychromatic intracellular

cytokine staining (ICS) assay and organized into 28 pools of

multiple peptides based on a 14614 matrix such that each epitope

was present in precisely 2 pools [30]. Furthermore, a pool of 105

peptides (15-mers overlapping by 11 amino acids (aa) encompass-

ing the Gag protein (aa gag 1 - gag 432) of HIV-1 from consensus

strain IIIB was used in ICS in order to evaluate the response to this

protein by the CD4+ T-cell subset. In addition, a pool of peptides

(n = 23) most frequently recognized in Cytomegalovirus, Epstein

Barr Virus and Flu (pool CEF) infections was used to assess the

functional profile of non-HIV-specific CD8+ T-cell responses [31].

Interferon-gamma (IFN-c) enzyme-linked immunospot
(ELISpot) assay

Initial screening for HIV-1-specific CD8+ T-cell responses in the

2 study cohorts was performed by IFN-c ELISpot assay. The assay

was conducted on cryopreserved peripheral blood mononuclear

cells (PBMCs) using Becton Dickinson (BD, San Diego, USA)

human IFN-c ELISpot kit according to the provided protocol.

Briefly, PBMCs were plated at 106 cells/well after 4–6 hour resting.

Stimulation was performed in triplicates in the presence of 1 mg/

well of peptide (from the panel of 191 HIV-1 selected peptides

organized in a matrix pool) or 200 ng/well of staphylococcal

enterotoxin B (SEB) used as a positive control. In addition, a

negative control with medium alone was always included in each

test. Plates were stored at 37uC in a 5% CO2 incubator overnight,

washed, and coated with detection antibody for 2 hours at room

temperature. They were again washed and coated with avidin-

peroxidase for 1 hour at room temperature. Plates were then

washed and developed by addition of AEC (3-Amino-9-ethyl-

carbazole) substrate. Responses were expressed as net spot-forming

units (SFU) per 106 PBMCs. The following criteria were used to

define the technical validity of the assay and positive responses: (a)

The number of spot forming units (SFU)/106 PBMCs in the assay

background (unstimulated PBMCs) had to be ,50 and the positive

control responses to SEB .500 SFU/106 PBMCs; (b) Responses

were considered positive when $fourfold above background and

$55 SFU/106 PBMCs. HIV-1-specific T-cell responses were

further characterized using polychromatic intracellular cytokine

staining (ICS) in responders with IFN-c ELISpot responses in the

range of 100 SFU/106 cells or above.

Antibodies (Abs)
The following Abs were used in the ICS assay: CD8-PB, CD4-

ECD, IFN-c-APC, TNF-a-PECy7 and IL-2-PE (BD, San Diego,

USA), perforin-FITC (Biolegend, San Diego, USA) and CD3-

APCCy7 (Invitrogen, Carlsbad, USA).

Polychromatic intracellular cytokine staining (ICS)
Cryopreserved PBMCs were thawed and rested overnight in

R10 media (RPMI Glutamax-1 containing 10% heat-inactivated

fetal calf serum) at a concentration of 106 cells/mL. The following

day 1–26106 cells were stimulated for 6 h in 1 ml of R10 media in

the presence of Golgiplug [1 ml/ml, Becton Dickinson (BD), San

Diego, CA], purified soluble anti-CD28 Ab (0.5 mg/ml, BD San

Diego, CA) and 1 mg/ml of peptide [32]. An unstimulated (R10

only) and positive control (SEB 200 ng/ml) were included in each

assay. At the end of the stimulation period, cells were washed,

stained for dead cells using the Aqua LIVE/DEAD stain kit

(Invitrogen), permeabilized (Cytofix/Cytoperm, BD) and then

stained at RT for 30’ with CD3, CD4, CD8, IFN-c, TNF-a, IL-2

and, when indicated, perforin. Cells were then fixed and acquired

on an LSR SORP flow cytometer (BD). Data were analysed using

FlowJo software (version 8.8.2; Tree Star). For the analysis of

polyfunctionality, the FlowJo Boolean Gate Platform was used to

create 8 and 16 patterns of responses for the 3 or 4 tested

functions, respectively. The gating scheme used for all ICS assays

performed is shown in Data S1. Data were plotted and further

analysed with SPICE software (version 4.2.3; from M. Roederer,

National Institutes of Health, Vaccine Research Center, Bethesda,

MD). All reported values have been corrected for background.

The number of lymphocyte-gated events ranged between 66105

and 16106 in the flow cytometry experiments. The mean of the

background in the unstimulated controls +2 standard deviations

never exceeded 0.05%. An ICS result to be considered positive

had display more than 0.05% of cytokine-positive cells and to be

$threefold above background.

Virological studies
Cell-associated HIV-1 RNA and DNA levels were quantitated

using a previously published method [33] with a limit of detection of

3 copies/106 PBMCs. We have reported levels of copies per million

PBMCs as in other studies and not per CD4+ T-cells as CD4+ T-cell

counts in both cohorts were high and there was no predicted

dilution effect in the absence of variation in CD4+ T-cell counts.

Statistical analysis
Statistical significance (P values) of the results was calculated by

two tails student t-test using either Excel (Microsoft, Redmond,

WA) or SPICE 4.2.3. Correlations among variables were tested by

simple regression analysis. Proportions were compared with

Fisher’s exact test using GraphPad Prism version 3.0 (GraphPad

Software, San Diego, CA, USA). The level of significance was set

at P,0.05 and Bonferroni adjustment of P-values was applied in

case of multiple testing.

Results

HLA class I analysis in LTTS and LTNPs
Several lines of evidence have stressed in recent years the

importance of HLA class I genotype in predicting progression

[34,35,36] with certain alleles associated with a slower course of

the infection. Therefore, in order to exclude large differences in

the genetic background of our 2 cohorts, we assessed the HLA

class I genotype in all study patients. High- and intermediate-

resolution HLA class I typing was performed as described in the

method section for loci A and B, and for locus C, respectively. As

shown in Table 1, when evaluating the frequency of HLA alleles

known to be associated with slow (HLA-B*5701/02/03, *2705,

*5801, *5101, *1302) or rapid (HLA-B*5802, *3502/03, *5301,

*1801) disease progression [37], we found a trend towards a higher

frequency of HLA-B*5701 alleles in LTNPs as compared to LTTS

(27% of LTNPs vs. 5% of LTTS were B*5701+; P = 0.14) which

confirmed the previously described enrichment of this allele in

LTNPs and showed that this was the only major difference in

terms of HLA class I genotype between the two cohorts studied.

Similarly low levels of HIV-1 reservoirs, residual
replication and CD8+/CD38+ T-cells in LTTS and LTNPs
peripheral blood

Residual viral replication and persistence of HIV-1 in long-lived

reservoirs in resting CD4+ T-cells are associated with viral

Immuno-Virological Effects of Prolonged Early ART
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rebound upon treatment cessation and represent major obstacles

to eradication [3,38,39,40,41,42]. Cell-associated HIV-1 RNA

and DNA have been detected in the resting CD4+ T-cell

compartment in the peripheral blood of the majority of infected

individuals with undetectable viremia while on ART [43]. Their

levels have been used in several previous studies to quantify the

saturation of viral reservoirs and residual viral replication in

peripheral blood in aviremic subjects, respectively. Cell-associated

HIV-1 DNA levels have been correlated to the extent of

virological rebound after ART discontinuation in subjects with

treatment initiation during acute or chronic infection [44,45].

Recent studies have suggested that early treatment initiation may

accelerate HIV-1 decay both in blood and gut-associated

lymphoid tissue [42,46,47]. Therefore, in order to better quantify

viral burden in our two cohorts, we have used these two further

virological markers in addition to plasma viremia.

When comparing cell-associated HIV-1 DNA and RNA

between the two cohorts, we found that all study subjects had

similarly low levels. Results are shown in Table 1. The median

number of copies of cell-associated HIV-1 DNA per 106 PBMCs

was 47.7 (range 583.2–4.8) and 19.7 (range 295.5–0.5) in LTTS

and LTNPs, respectively (P = 0.10). Median HIV-1 RNA levels

were 3.9 (range 45.8–0.7) and 5.8 copies per 106 PBMCs (range

10.3–1.4) in LTTS and LTNPs (P = 0.16), respectively. Altogether

these results show strong similarities between the two cohorts using

virological markers aimed at further assessing viral reservoirs and

residual replication in peripheral blood in these aviremic subjects.

T-cell immune activation is known to play an important role in

HIV pathogenesis and is linked to CD4+ T-cell decline and disease

progression [48,49]. Although CD38 can also be expressed on the

surface of thymocytes and naı̈ve T-cells, it is widely used as an

activation marker in HIV infection. We have previously described

that early initiation of ART at seroconversion is associated with

decreasing levels of CD8+/CD38+ T-cells [25]. The expression of

CD38 on HIV-1-specific CD8+ T-cells has been shown to be low

in LTNP cohorts and similar to that found in successfully treated

patients [48,50]. However, comparative data between LTTS and

LTNPs for CD8+/CD38+ T-cells are not available and this marker

could be an indicator of the extent of immune reconstitution which

is taking place with prolonged ART initiated at seroconversion.

In this study, we were able to show further similarities between

the two cohorts in terms of CD8+ T-cell activation as measured by

CD38 expression. Both displayed normal levels of CD8+/CD38+

T-cells (normal range for absolute count: 0.2–0.86109/L and

percentage: 3–22% of lymphocytes). Median absolute CD8+/

CD38+ T-cell counts and percentages were 0.06 and 0.056109/L

(P = 0.23) and 6% and 7% (P = 0.28) for LTNPs and LTTS,

respectively.

Similar magnitude and functional profile of HIV-1 Gag-
specific CD4+ T-cell responses in LTTS and LTNPs

We wanted to investigate in details the effect of prolonged

treatment started in early infection on HIV-1-specific CD4+ T-

cells as these cells play a central role in sustaining CD8+ T-cell

functions. It has been previously demonstrated that HIV-1-specific

CD4+ T-cell functional profile is driven by the level of antigen

exposure: the cytokine producing pattern is skewed towards IFN-c
only production in viremic individuals but can be rescued by ART

intervention [51,52].

It was thus important to further characterize HIV-1-specific CD4+

T-cell functional profile in a seroconverter cohort with long-term

treatment and to compare it with LTNPs. Moreover, our LTTS and

LTNP cohorts were shown to be highly homogenous for low viral

burden thus providing the opportunity to compare the HIV-1-specific

CD4+ T-cell functional profile in conditions of ART-induced vs.

spontaneous controlled viremia. HIV-1-specific CD4+ T-cells were

therefore characterized in a randomly selected subgroup of 25 subjects

(16 LTTS and 9 LTNPs) for IFN-c, TNF-a and IL-2 production

upon stimulation with the Gag peptide pool. A representative example

of results for each cohort is shown in Figure 1A.

We demonstrated that Gag-specific CD4+ T-cell responses were

detected in all subjects. When quantifying the amount of IFN-c,

TNF-a and IL-2-producing cells upon stimulation with the Gag

peptide pool, LTTS and LTNPs showed overall similar levels as

shown in Figure 1B. After subtraction of the background, the total

cytokine response was 0.28% and 0.33% of CD4+ T-cells in LTTS

and LTNPs, respectively (P = 0.28). The mean percentage of Gag-

specific CD4+ T-cells producing IFN-c was 0.15% (range 0.01%–

0.61%) and 0.21% (range 0.03%–0.46%) in LTTS and LTNPs,

respectively (P = 0.20). Values in LTTS and LTNPs for TNF-a
were 0.24% (range 0.02%–0.63%) and 0.35% (range 0.05%–

0.70%) (P = 0.10) and for IL-2 0.12% (range 0.02%–0.27%) and

0.19% (range 0.04%–0.51%) (P = 0.08).

We next analysed the Gag-specific CD4+ T-cell functional

profile based on its ability to secrete one or more cytokines. As

shown in Figure 1C, a similar polyfunctional profile, as defined by

the presence of HIV-1-specific CD4+ T-cells producing simulta-

neously more than one cytokine was present. Polyfunctional CD4+

T-cell populations accounted for more than 50% of the total

response in both cohorts (61% in LTTS and 64% in LTNPs;

P = 0.39). In particular, the mean percentage of the ‘triple positive’

population, i.e. the cells producing simultaneously IFN-c, IL-2 and

TNF-a, was 30% (range 11%–49%) and 33% (range 3%-69%) in

LTTS and LTNPs, respectively (P = 0.32).

We were therefore able to demonstrate robust and polyfunc-

tional HIV-1-Gag-specific CD4+ T-cell responses of similar

intensity and functional profile in both cohorts.

Higher breadth and magnitude of HIV-1-specific CD8+ T-
cell responses in LTNPs as compared to LTTS

Robust HIV-1-specific CD8+ T-cells have been described in

LTNPs in contrast to those found in aviremic patients receiving

effective ART during chronic infection [18,22,53,54]. In order to

clarify whether early treatment initiation could lead to a different

pattern of responses than the one found in treated chronic

infection, we initially screened our subjects for HIV-1-specific

CD8+ T-cell responses by IFN-c ELISpot assay using the epitope

matrix pool described in the method section. High levels of IFN-c-

producing T-cells were detected in all subjects but the breadth and

magnitude of responses, however, differed between the two

cohorts. A higher mean number of responding pools (14 versus

8; P = 0.0005) and SFU/106 PBMCs (665 versus 426; P = 0.00001)

was found in LTNPs as compared to LTTS.

We then performed fine epitope mapping by matching subjects’

HLA class I genotype with ELISpot assay results according to the

Los Alamos database of HLA class I restriction. HIV-1-specific T-

cell responses were further characterized in patients with IFN-c
ELISpot responses in the range of 100 SFU/106 cells or above by

ICS analysis for IFN-c, IL-2 and TNF-a production upon

stimulation with the optimal mapped CD8+ T-cell peptides. Thus,

103 epitope-specific CD8+ T-cell responses (63 from LTNPs and

40 from LTTS) were analysed by ICS. Representative examples of

these responses are shown in Figure 2A and B.

In line with the ELISpot data, we found a higher breadth of

responses in LTNPs by ICS analysis with LTTS and LTNPs

subjects targeting a median of 2 (range 1–5) and 5 (range 1–9)

epitopes, respectively (P = 0.001). These results were still signifi-

cant when HLA-B*5701+ subjects were removed from the
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analysis, indicating that the higher number of targeted epitopes in

LTNPs was independent of the HLA-B*5701 imbalance between

the 2 cohorts.

Alongside the higher breadth, the increased magnitude of

responses found in LTNPs by ELISpot assay was confirmed by

ICS analysis, although not reaching statistical significance, when

we determined the percentage of IFN-c-, TNF-a- and IL-2-

producing CD8+ T-cells following stimulation with specific

peptides (Figure 3A). After subtraction of the background, the

total cytokine response was 0.37% and 0.50% of HIV-1 specific

CD8+ T-cells in LTTS and LTNPs, respectively (P = 0.06). The

mean percentage of epitope-specific IFN-c-producing CD8+ T-

cells was 0.34% (range 0.03%–1.18%) and 0.47% (range 0.04%–

1.85%) in LTTS and LTNPs, respectively (P = 0.07). Respective

values in LTTS and LTNPs for TNF-a production were 0.31%

(range 0%–1%) and 0.40% (range 0.02%–1.51%) (P = 0.08) and

for IL-2 production 0.19% (range 0.01%–0.75%) and 0.24%

(range 0%–1.30%) (P = 0.11).

We next determined whether HIV-1-specific CD8+ T-cell

responses targeting viral proteins or epitopes shown to be

associated with viral control (‘‘favourable epitopes’’) [55,56,57]

and those restricted by the HLA-B*5701 allele showed different

levels of cytokine production. Gag responses were shown to

contribute substantially to the higher magnitude of responses

found in LTNPs. As shown in Figure 3B, IFN-c, TNF-a and IL-2

production by CD8+ T-cells upon stimulation with Gag peptides

was significantly higher in LTNPs than in LTTS. After subtraction

of the background, the mean percentage of Gag-specific CD8+ T-

cells producing IFN-c was 0.22% and 0.54% in LTTS and

LTNPs, respectively (P = 0.01). Respective values in the LTTS and

LTNP groups for TNF-a were 0.18% and 0.46% (P = 0.01) and

for IL-2 0.11% and 0.26% (P = 0.02). In contrast, CD8+ T-cell

responses targeting proteins other than Gag were of similar

intensity in both cohorts (data not shown). When comparing

between the two cohorts responses targeting ‘‘favourable epitopes’’

(Data S2 A) and HLA-B*5701-restricted responses (Data S2 B), we

found similar levels of IFN-c, TNF-a and IL-2 production which

matched those observed for CD8+ T-cell responses targeting

epitopes other than the ‘‘favourable’’ ones and which were

restricted by HLA class I alleles other than HLA-B*5701 (data not

shown). However, these analyses were limited by the small number

of responses targeting ‘‘favourable epitopes’’ (n = 2) and HLA-

B*5701-restricted responses (n = 2) in LTTS. In addition, we

found that the majority of ‘‘favourable epitope’’-targeting (5 out of

7) and HLA-B*5701-restricted responses (7 out of 13) in LTNPs

were directed towards the Gag region and were among the

strongest responses that we could observe.

In line with a recent report [58], the trend for stronger HIV-1-

specific CD8+ T-cell responses and lower cell-associated HIV-1

DNA in LTNPs as compared to LTTS resulted in a higher ratio of

these 2 parameters in LTNPs (0.45 vs. 0.03; P = 0.02). However,

the statistically significant difference was lost when we analysed the

ratio of Gag-specific CD8+ T-cells and cell-associated HIV-1 DNA

(0.33 vs. 0.02; P = 0.06).

Of interest, we found that the trend towards a lower magnitude

of CD8+ T-cell responses observed in LTTS was HIV-1 specific.

Figure 1. Functional cytokine profile of HIV-1 Gag-specific CD4+ T-cells. (A) Shown are two representative flow cytometry profiles of Gag-
specific CD4+ T-cell responses from a LTTS (dot plots on the left) and a LTNP (dot plots on the right) subject. The production of IL-2, TNF-a and IFN-c
was measured upon 6 hours of in vitro stimulation with the Gag peptide pool. (B) Cumulative data (mean6SE) on the percentage of IFN-c-, IL-2- and
TNF-a-producing HIV-1 specific CD4+ T-cells following stimulation with the Gag peptide pool. (C) Cumulative data of the simultaneous analysis of IFN-
c, IL-2 and TNF-a production. All possible combinations of IFN-c, IL-2 and TNF-a production are shown on the x axis, whereas the percentage of the
various cytokine-producing cell subsets within HIV-specific CD4+ T-cells is shown on the y axis. Pie charts summarize the data, and each slice
corresponds to the proportion of virus-specific CD4+ T-cells positive for a given combination of T-cell functions. LTTS: long-term treated HIV-1
seroconverters; LTNPs: HIV-1 long-term non-progressors.
doi:10.1371/journal.pone.0018164.g001
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In a subgroup of 19 subjects (12 LTTS and 7 LTNPs) for whom

suitable numbers of PBMCs were available, we characterized

CD8+ T-cell responses based on IFN-c, TNF-a and IL-2

production upon stimulation with CMV, EBV and Flu peptides

(CEF pool). Our results showed that LTTS displayed stronger

CD8+ T-cell responses than LTNPs (data not shown).

Overall, these data show that the breadth and magnitude of

HIV-1-specific CD8+ T-cell responses differed between the two

groups. Although LTTS showed strong virus-specific CD8+ T-cell

responses, these were more robust and diverse in LTNPs.

Frequency of distinct optimal HIV-1-specific CD8+ T-cell
epitope recognition

We have shown a wider breadth of HIV-1-specific CD8+ T-cell

responses in LTNPs and next investigated whether this was

matched by a different frequency of epitope-targeting.

We first assessed whether viral proteins were targeted with

similar frequencies in the two cohorts and found a trend towards

LTNPs targeting more Gag and RT-Pol epitopes and LTTS

targeting more Env epitopes. However, the frequencies of

recognition were too low to allow solid comparisons between the

two groups.

We next evaluated the frequency of ‘‘favourable epitopes’’

targeted among all recognized HIV-1-specific CD8+ T-cell

epitopes in both cohorts. Four ‘‘favourable epitopes’’ were

included in the panel of 191 optimal CD8+ T-cell epitopes used

in the ICS assay: KK10-B*2705, TW10-B*5701, HW9-B*5701

and DA9-B*1402. We found that these epitopes were among the

most commonly recognized ($40%) in both cohorts. The

frequency of recognition was 67%, 60%, 40% and 100% for

KK10-B*2705, TW10-B*5701, HW9-B*5701 and DA9-B*1402,

respectively. Moreover, LTNPs recognized more frequently the

‘‘favourable epitopes’’ than LTTS (13% vs. 5%; P = 0.24). This

difference was mainly explained by the higher frequency of the

HLA-B*5701 allele in LTNPs since 50% (2 out of 4) of the

‘‘favourable epitopes’’ tested in the ICS assay were HLA-B*5701-

Figure 2. Flow cytometry profiles of HIV-1-specific CD8+ T-cells. (A) Shown are two representative flow cytometry profiles of HIV-1-specific
CD8+ T-cell responses from two LTTS subjects: left panels from subject #LED-020 (stimulation with a gp41 epitope, aa 46–54) and right panels from
subject #GOV-005 (stimulation with a nef epitope, aa 73–82). (B) Shown are two representative flow cytometry profiles of HIV-1-specific CD8+ T-cell
responses from two LTNP subjects: left panels from #DEN-015 (stimulation with a nef epitope, aa 116–124) and right panels from #AAC-002
(stimulation with a p24 epitope, aa 162–172). IL-2, TNF-a and IFN-c production was measured upon 6 hours of in vitro stimulation with optimal HIV-1
peptides. LTTS: long-term treated HIV-1 seroconverters; LTNPs: HIV-1 long-term non-progressors.
doi:10.1371/journal.pone.0018164.g002
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restricted. We could also confirm [35] that epitopes restricted by

HLA-B alleles were more frequently recognized than those

restricted by HLA-A (P = 0.005) or -C alleles (P = 0.066).

We observed that in HLA-B*5701+ patients HIV-1-specific

CD8+ T-cell responses were largely focused on epitopes restricted

by this allele. Among the 5 HLA-B*5701+ patients (4 LTNPs and

1 LTTS), 3 had 100%, 1 had 80% and 1 had 60% of CD8+ T-cell

responses targeting epitopes restricted by this allele. These data

confirm previous reports [36,59] of the preferential targeting of

HLA-B*5701 restricted epitopes in patients positive for this allele.

Similar levels of polyfunctional HIV-1-specific CD8+ T-cell
responses in both cohorts

A growing body of evidence indicates that the independent

assessment of single functions may not be particularly informative,

whereas the simultaneous analysis of multiple parameters can

provide a more accurate picture of CD8+ T-cell functionality. In

particular, polyfunctional CD8+ T-cells (i.e. CD8+ T-cells

exhibiting simultaneously multiple functions) have been associated

with protective antiviral immunity and the control of viral

infections [6,9,10,11]. In the present study we had the unique

opportunity to compare the level of HIV-1 specific CD8+ T-cell

polyfunctionality between these two cohorts which were matched

for viral burden.

We therefore analysed and compared the HIV-1-specific CD8+

T-cell functional profile in LTTS and LTNPs by simultaneously

analyzing IFN-c, IL-2 and TNF-a production in the previously

characterized 103 epitope-specific CD8+ T-cell responses. Each

response was characterized for the presence of 8 possible different

types of cell populations with various patterns of cytokine

production. As shown in Figure 4A, both cohorts showed similar

proportions of HIV-1-specific CD8+ T-cell populations with a

given pattern of cytokine production (all P.0.05) and a similar

global functional profile (P = 0.5; Figure 4B).

We next focused on the triple-positive cell population (i.e. CD8+

T-cells producing simultaneously IFN-c, IL-2 and TNF-a) and

restricted the analysis of polyfunctionality to this subset. As shown

in Figure 4A, this population accounted on average for a similar

proportion of the total HIV-1-specific CD8+ T-cell responses in

both cohorts. Among the HIV-1-specific CD8+ T-cells responding

to peptide stimulation, 43% and 39% were triple-positive in LTTS

and LTNPs, respectively (P = 0.12). However, we observed a large

variability in the level of polyfunctionality which ranged from 82%

to 16% in LTTS and from 78% to 2% in LTNPs. We further

analysed our data in order to verify if HIV-1-specific CD8+ T-cell

responses with high or low proportions of triple-positive cells were

detected in different subjects or within the same subjects. In other

words, we assessed whether various individuals had different

patterns of functional profiles or if responses with different

functional profiles could be detected within the same individual.

To address this issue, we analysed the level of polyfunctionality per

subject (Figure 4C) and found that most subjects showed responses

clustering within similar levels of triple-positive cells (i.e. LTNP

subject #10 vs. #13). However, in a few patients responses

differed in terms of the levels of triple-positive cells (i.e. LTNP

subject #6) showing different levels of polyfunctionality of HIV-1-

specific CD8+ T-cell responses within the same subject.

Taken together, these data demonstrate that LTTS and LTNPs

display comparable levels of polyfunctional CD8+ T-cell responses

and that factors independent of the group affiliation, i.e. LTTS or

LTNPs, are associated with the level of polyfunctionality.

Levels of HIV-1-specific CD8+ T-cell polyfunctionality are
associated with the type of targeted epitope and HLA
class I restriction

Although an overall similar degree of HIV-1-specific CD8+ T-

cells polyfunctionality was demonstrated in the LTTS and LTNP

groups, we found some variability in terms of some of the HIV-1-

specific CD8+ T-cell responses in both groups. We therefore

attempted to characterize the factors that might explain these

different levels of polyfunctionality in two cohorts shown to have a

similar viral burden.

We first investigated whether the observed variability in

polyfunctionality was associated with the subjects’ clinical and

laboratory parameters, such as age, levels of CD4+ and CD8+ T-

cells, CD4+/CD8+ T-cell ratio, CD8+/CD38+ T-cell count, cell-

associated HIV-1 DNA and RNA in peripheral blood, and days

from diagnosis to ART initiation in LTTS. Based on simple

Figure 3. Comparison of the magnitude of HIV-1-specific CD8+ T-cell responses between LTTS and LTNPs. Cumulative data (mean6SE)
of the percentage of IFN-c-, IL-2- and TNF-a-producing HIV-1 specific CD8+ T-cells following 6 hours of in vitro stimulation with optimal CD8+ T-cell
HIV-1 peptides (A) or with optimal CD8+ T-cell Gag-derived peptides (B). LTTS: long-term treated HIV-1 seroconverters; LTNPs: HIV-1 long-term non-
progressors.
doi:10.1371/journal.pone.0018164.g003
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regression analysis, none of these parameters was found to be

significantly associated with the proportion of triple-positive HIV-

1-specific CD8+ T-cells except for the level of proviral DNA in

LTNPs. Of interest, levels of polyfunctionality and cell-associated

HIV-1 DNA were shown to be inversely correlated in this group

(P = 0.016).

We then considered factors described to be associated with T-

cell polyfunctionality, such as the type of targeted viral region,

epitope and HLA class I restriction. With regard to the type of

targeted viral protein, responses against Gag have been associated

with a better clinical outcome [55], even in the absence of

protective HLA alleles [56]. As shown in Figure 5A, when

considering various functional HIV-1-specific CD8+ T-cell

populations individually, we found some differences among viral

regions, however, the overall HIV-1-specific CD8+ T-cell

functional profile did not differ according to the type of targeted

Figure 4. Functional cytokine profile of HIV-1-specific CD8+ T-cells. (A) Cumulative data of the simultaneous analysis of IFN-c, IL-2 and TNF-a
production. All possible combinations of IFN-c, IL-2 and TNF-a production are shown on the x axis, whereas the percentage of the distinct cytokine-
producing cell subsets within HIV-specific CD8+ T-cells is shown on the y axis. Pie charts (B) summarize the data and each slice corresponds to the
proportion of HIV-1 specific CD8+ T-cells positive for a given combination of T-cell functions. (C) Per subject analysis of the proportion of CD8+ T-cells
producing simultaneously 3 cytokines (IFN-c + IL-2 + TNF-a). All the responses identified are shown per subject and the mean of responses is shown
in red for each subject. Results from only 19 out of 20 LTTS subjects are shown as CD8+ T-cell responses to optimal epitopes were not identified in
one subject, even though CD4+ and CD8+ T-cell responses upon stimulation with Gag peptide pool were detected. LTTS, long-term treated HIV-1
seroconverters; LTNPs: HIV-1 long-term non-progressors.
doi:10.1371/journal.pone.0018164.g004
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viral protein, as demonstrated by a similar functional profile of

responses targeting Gag, Nef, Env or RT-Pol proteins (all P.0.1;

Figure 5A).

Recent data have also shown that the type of targeted epitope

plays an important role in shaping the functional profile of HIV-1-

specific CD8+ T-cell response and that responses targeting

‘‘favourable epitopes’’ are correlated with good prognosis in terms

of viral control [57]. Accordingly, when pooling together all the

HIV-1-specific CD8+ T-cell responses targeting ‘‘favourable

epitopes’’ (n = 9) and comparing them to those that did not

(n = 94), we found a different functional profile between the two

types of responses and a higher degree of polyfunctionality

associated with ‘‘favourable epitope’’-targeting responses (P = 0.03;

Figure 5B). The mean proportion of triple-positive HIV-1-specific

CD8+ T-cells was shown to be 51.47% for ‘‘favourable epitope’’

(range 12.26%–68.51%) and 39.72% for non-‘‘favourable epitope’’-

targeting responses (range 1.80%–81.58%) (P = 0.02; Figure 5B).

Besides the type of targeted viral protein and epitope, HLA-B

restriction in general and HLA-B*5701 and B*2705 in particular

have been associated with better control of HIV-1 infection

[32,34,35,36,60,61,62]. Therefore, we analysed the level of

polyfunctionality based on the type of HLA class I-restriction in

our two cohorts. As shown in Figure 5C, HIV-1-specific CD8+ T-

cell responses restricted by HLA-B alleles (n = 59) did not display a

different functional profile compared to those restricted by HLA-A

or C (n = 44; P.0.2). In contrast, as shown in Figure 5D, HIV-1-

specific CD8+ T-cell responses restricted by HLA-B alleles

associated with slow HIV-1 disease progression (n = 21) [37] were

significantly more polyfunctional than those which were not

(n = 82; P = 0.002) with a proportion of triple-positive CD8+ T-

cells of 49% (range 37.86%–68.51%) versus 39%, respectively

(range 1.79%–81.58%; P = 0.01). We found that HLA-B*5701-

restricted responses (n = 15), in particular, were responsible for this

higher degree of polyfunctionality. In fact, when HLA-B*5701-

restricted responses were removed from the analysis, the difference

in functional profile was lost (P = 0.4). It is thus possible to

hypothesize that the higher level of polyfunctionality shown for

responses targeting ‘‘favourable epitopes’’ was driven by the HLA-

B*5701 restriction since 55% of these responses (5 out of 9) were

HLA-B*5701-restricted.

Overall, our data demonstrate that the targeting of various viral

regions was associated with a similar HIV-1-specific CD8+ T-cell

Figure 5. Analysis of HIV-1-specific CD8+ T-cell polyfunctionality. Cumulative data of the analysis of simultaneous IFN-c, IL-2 and TNF-a
production comparing CD8+ T-cell responses targeting distinct viral regions (A), targeting ‘favourable vs. ‘other than favourable’ epitopes (B),
restricted by HLA-B vs. HLA-A or -C alleles (C) and restricted by HLA class I alleles associated with slow disease progression (‘protective’) vs. all others
HLA class I alleles (D). All possible combinations of IFN-c, IL-2 and TNF-a production are shown on the x axis, whereas the percentage of each
cytokine-producing cell subset within HIV-specific CD8+ T-cells is shown on the y axis. Only significant differences of a given virus-specific CD8+ T-cell
response versus all others are shown. + denotes a P value ,0.05. Pie charts summarize the data, and each slice corresponds to the proportion of
virus-specific CD8+ T-cells positive for a given combination of T-cell functions. LTTS: long-term treated HIV-1 seroconverters; LTNPs: HIV-1 long-term
non-progressors.
doi:10.1371/journal.pone.0018164.g005
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functional profile, whereas ‘‘favourable epitope’’-targeting and

HLA-B*5701 restriction were associated with a higher degree of

polyfunctionality.

Ex-vivo perforin expression is low and similar in both
cohorts

Cytotoxicity is the main mechanism by which CD8+ T-cells

exert their antiviral activity with perforin as one of the most

important mediators of T-cell cytotoxicity [15]. Dysfunctional

perforin expression has been described at HIV seroconversion

[63], however, the impact of early and prolonged treatment on this

marker remains unknown. In order to compare perforin levels

between LTTS and LTNPs, we have analysed its ex-vivo

expression in a randomly selected subset of 24 subjects (14 LTTS

and 10 LTNPs). Seventy-one optimal epitope-specific CD8+ T-cell

responses (31 in LTTS and 40 in LTNPs) were characterized

based on IFN-c, IL-2, TNF-a and perforin expression, using the

anti-perforin antibody clone B-D48 which is suitable for ICS

assays. A representative example is shown in Figure 6A. The

average perforin expression was found to be similarly low in both

cohorts, even though a trend for a higher expression in LTNPs was

observed: the mean percentage of virus-specific IFN-c+ CD8+ T-

cells expressing perforin was 0.031% (range 0.00%–0.40%) and

0.057% (range 0.00%–0.36%) in LTTS and LTNPs, respectively

(P = 0.12). As shown in Figure 6B, the relative contribution of

perforin to the HIV-1-specific CD8+ T-cell response was similar in

both cohorts: the mean proportion of HIV-1-specific CD8+ T-cells

expressing perforin was 8% in LTTS and LTNPs (range 0.00%–

43.74% and 0.00%–48.26%, respectively; P = 0.45).

In addition, we have found that the dominant virus-specific

CD8+ T-cell populations were either perforin2 and IL-22, or

perforin+ and IL-22, or IL-2+ and perforin2 (Figure 6B). This

observation confirms in HIV-1-specific CD8+ T-cells our previous

observation in CMV-specific CD8+ T-cell responses of the

divergent expression of perforin and IL-2, which is consistent

with their respective role in cytotoxic and proliferative capacities

[64].

Overall, we have demonstrated that under conditions of long-

term controlled viremia, either spontaneously or with antiretrovi-

ral treatment, perforin expression on HIV-1-specific CD8+ T cells

was low. This finding is consistent with the low antigenic exposure

in both cohorts.

Discussion

We have comprehensively characterized T-cell responses in

peripheral blood in two cohorts with long-term controlled viremia

in the presence or absence of ART. As such we have addressed the

question of the impact of a prolonged period of successful treatment

initiated very early after HIV-1 seroconversion on HIV-1-specific

T-cell responses in a homogenous, laboratory-defined, single clinic-

based LTTS cohort with LTNPs as a comparator. Instead of the

conventionally used five parameters (i.e. IFN-c, TNF-a, IL-2, MIP-

1b and CD107a), we have focused on those which we believe are

most relevant to assess HIV-1 T-cell functionality (i.e. IFN-c, TNF-

a and IL-2) and have also included the assessment of perforin

expression in our analysis. Proliferative capacity and cytotoxicity

have been associated with IL-2 secretion and perforin expression,

respectively [9,15,32,51,52,64,65,66,67,68]. Thus our data provide

indirect information on these two key functions of antiviral CD8+ T-

cells. We have further characterized these two cohorts in terms of

levels of immune activation and viral burden.

The potential for the immune system to regenerate and avoid

the damage inflicted by chronic exposure to the virus and its

immunopathology with treatment initiation theoretically pro-

foundly differentiates the acute and chronic stages of HIV-1

infection, although early immune defects have been described

[63]. Short treatment periods at the time of seroconversion have

been associated with some degree of HIV-1-specific T-cell

preservation and reconstitution in terms of IFN-c-producing

HIV-1-specific T-cells [69]. The duration of ART-induced

aviremia and nadir CD4+ T-cell levels have recently been shown

to be important factors for CD4+ T-cell recovery, strongly

suggesting that the timing of ART initiation and its duration are

of crucial importance in terms of immune reconstitution [70]. This

is supported by evidence of immunovirological control upon ART

interruption in 5 HIV-infected individuals who had received very

early and prolonged treatment [71].

In contrast to some recent data describing that the recovery of

polyfunctionality, proliferation and cytotoxicity does not occur to

the same extent in aviremic subjects on ART initiated during the

chronic phase of the infection as in LTNPs [19], our results

demonstrate the presence of strong polyfunctional HIV-1-specific

CD4+ and CD8+ T-cell responses associated with low perforin

expression in HIV-1-specific CD8+ T-cells in LTTS. These data

are consistent with a polyfunctional/non-cytotoxic profile in a

context of low viral burden as demonstrated by several virological

markers used in this study. Similar results were found in LTNPs,

although we observed a higher breadth and a trend towards a

higher magnitude of HIV-1-specific CD8+ T-cell responses which

were mainly driven by strong anti-Gag responses. Extensive

demonstration has been made of the absence of correlation

between the magnitude and breadth of HIV-1-specific IFN-c-

producing T-cells and virological control in previous studies in

acute and chronic infection [72,73,74]. In contrast, several lines of

evidence point towards the fact that slow or non-progressive HIV-

1 infection, such as in LTNPs, is associated with polyfunctional

HIV-1-specific T-cell responses [6,9,10,74] as these have been

associated with virological control in several studies. Our results

therefore argue for a very substantial degree of immune

preservation/reconstitution of polyfunctional HIV-1-specific T-

cells with early and prolonged treatment initiation in association

with low viral burden.

However, causality cannot be inferred at this stage without

further evidence to prove that the type of polyfunctional HIV-1-

specific T-cell responses as described in our LTNP and LTT

cohorts is indeed one of the mechanisms by which virological

control is achieved. Some previous data have suggested that T-cell

functionality reflects antigen exposure rather than the mechanism

by which viremia is controlled due to the absence of polyfunctional

T-cells in some virological controllers, the possibility to induce

polyfunctional responses by ART and the virologic rebound upon

successful treatment cessation [21,51,52,66,75,76,77,78]. Howev-

er, beside its association with virological control in HIV-1

infection, a T-cell polyfunctional profile is indeed present in

HIV-2 infected subjects who have an overall better prognosis than

those with HIV-1 [79]. Other types of infection such as

coccidiomycosis and the mouse model of Leishmania major infection

have also shown association of control with polyfunctional T-cells

[80,81].

We are well aware that formal demonstration of the potential

impact of these responses on virological rebound in LTTS would

require treatment discontinuation. Previous trials with shorter

duration of ART initiated at the time of PHI have not shown

overall virological control except in few subjects. These subjects

might have controlled plasma viremia even in the absence of

treatment as it is not possible to exclude a LTNP/elite controller-

type of status at this stage of the infection [73]. If indeed viral

Immuno-Virological Effects of Prolonged Early ART

PLoS ONE | www.plosone.org 11 April 2011 | Volume 6 | Issue 4 | e18164



reservoirs do continue to decrease overtime with early ART

initiation maintained over several years, it is tempting to imagine a

situation somewhat similar to minimal residual disease in

leukaemia whereby the immune system might be able to contain

the infection for prolonged periods of time in some patients as

recently described by Hocqueloux et al [71].

The results of the present study provide several important

insights into the features of HIV-specific CD8+ T-cell responses in

subjects with low viral burden and long-term viral control in the

presence or absence of treatment. We have shown that HIV-1-

specific CD8+ T-cell polyfunctionality was associated with the type

of targeted epitope and HLA restriction, both during natural

(LTNPs) and ART-induced (LTTS) viral control. Epitopes shown

to be associated with slow disease progression and HLA-B*5701-

restricted responses were associated with a higher degree of

polyfunctionality. In contrast, the level of polyfunctionality did not

differ among HIV-1-specific CD8+ T-cell responses targeting

other viral proteins.

We have described in a previous study [15] that perforin

expression is modulated in vitro and in vivo by antigenic exposure.

Consistently, we have confirmed here that under conditions of

similar low viral burden the ex-vivo expression of perforin is low.

The trend for higher perforin expression in LTNPs as compared to

LTTS is in line with data from a recent study [22]. One could

speculate that the lower level of perforin observed in our LTTS

cohort was due to ART-mediated control of viremia in contrast to

LTNPs where further immune-based mechanisms may be needed

to control viremia in the absence of treatment. However, our data

do not allow us to formally exclude a residual decrease in perforin

expression in treated seroconverters, even after a prolonged ART

period.

The overall slightly lower levels of perforin expression by HIV-

1-specific CD8+ T-cells observed in our study compared to those

found by Hersperger and colleagues [22] are possibly due to

differences in viral burden between the two cohorts as aviremia

might have been more prolonged in our LTNP subjects (11

subjects with permanent aviremia at ,50 and 4 subjects with

,1000 HIV-1 RNA copies/mL in at least 90% measurements

over 7 years vs. ,75 or ,50 HIV-1 RNA copies/mL in at least 3

measurements over 1 year, respectively). Consistent with the lower

perforin expression, IL-2 production was about four times higher

in our LTNP cohort compared with the other study. We [64] and

others [82] have indeed shown that IL-2 and perforin expression

by virus-specific CD8+ T-cells is divergent.

We have added for comparative purposes between our two

cohorts further virological markers beside plasma viremia

Figure 6. HIV-1-specific CD8+ T-cell perforin expression in LTTS and LTNPs. (A) Representative flow cytometric plots of perforin vs. IFN-c,
TNF-a and IL-2 expression are shown from one representative LTTS subject upon 6 hours in vitro stimulation with a Nef epitope, aa 73–82. (B)
Cumulative data of the simultaneous analysis of perforin, IFN-c, IL-2 and TNF-a expression. All possible combinations of perforin, IFN-c, IL-2 and TNF-a
expression are shown on the x axis, whereas the percentage of the various marker-expressing cell subsets within HIV-1 specific CD8+ T-cells is shown
on the y axis. Only significant differences of a given virus-specific CD8+ T-cell response versus all the others are shown. + denotes a P value,0.05. Pie
charts summarize the data, and each slice corresponds to the proportion of virus-specific CD8+ T-cells positive for a certain combination of T-cell
functions. LTTS: long-term treated HIV-1 seroconverters; LTNPs: HIV-1 long-term non-progressors.
doi:10.1371/journal.pone.0018164.g006
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measurements such as cell-associated HIV-1 DNA and RNA

which are aimed at better characterizing viral burden in

peripheral blood. We could show that both cohorts were not

different in terms of cell-associated HIV-1 DNA and RNA levels in

blood, in contrast to what has recently been described in subjects

who had been treated in chronic infection for a similar duration as

our LTTS cohort [54]. However, caution should be applied in the

interpretation of viral reservoir levels in terms of viral rebound as it

might still occur upon treatment cessation even in patients with

extremely low viral burden [83]. The low level of reservoirs in

LTTS suggests that long-term ART is associated with a decrease

of their saturation overtime as previously described [42,84]

although we do not have longitudinal virological data from our

cohort to conclusively prove it and we have not investigated the

extent of gut reservoirs. Our results argue in favour of either an

incomplete saturation of reservoirs at the time of initiation of ART

at PHI or a more rapid decrease as compared to ART-treated

chronic infection as suggested by Chun et al [41].

In summary, our results demonstrate that subjects treated with

ART for several years at the time of seroconversion show great

similarity with LTNPs in terms of polyfunctional HIV-1-specific

T-cell responses, level of immune activation, residual viral

replication and saturation of HIV-1 reservoirs in peripheral blood.

These data should help define new types of interventions aimed at

optimizing ART timing and duration and implementing novel

therapeutic interventions in order to further deplete peripheral

reservoirs, enhance protective cellular immune responses and

promote virological control post-stopping treatment.

Supporting Information

Data S1 Gating strategy for identification of CD4+ and
CD8+ T-cells. Shown is a representative example of HIV-1 Gag-

specific responses from LTTS subject JIM-014 upon 6-hour in vitro

stimulation with the Gag peptide pool. This figure illustrates the

gating strategy used in the comprehensive analysis of cytokine

production and cytotoxic capacity as measured by IFN-c, IL-2 and

TNF-a production and perforin expression, respectively, in the

ICS assay. After initial gating on lymphocytes using forward and

side scatter properties, gating on forward scatter area (FSC-A)

versus height (FSC-H) was used to remove doublets. Events were

further gated on IFN-c versus the dead cell marker to remove dead

cells. CD3+ T-cells were gated on the remaining live cells.

CD3+CD8+ T-cells were selected based on CD8+ staining and

CD4+ T-cells were then excluded. Cells within these individual

response gates were then entered into Boolean gating analysis to

generate frequencies for all possible combinations (i.e., positive or

negative) of the distinct functions (FlowJo software, version 8.8.2;

TreeStar). LTTS: long-term treated HIV-1 seroconverters;

LTNPs: HIV-1 long-term non-progressors.

(PPT)

Data S2 Analysis of the magnitude of HIV-1-specific
CD8+ T-cell responses. (A) Cumulative data (mean6SE) on

the percentage of IFN-c-, IL-2- and TNF-a-producing HIV-1

specific CD8+ T-cells following 6 hours of in vitro stimulation with

‘favourable’ epitopes (i.e. optimal CD8+ T-cell epitopes known to

be associated with good viral control). (B) Cumulative data

(mean6SE) on the percentage of IFN-c, IL-2 and TNF-a
production in HLA-B*5701-restricted CD8+ T-cell responses.

LTTS: long-term treated HIV-1 seroconverters; LTNPs: HIV-1

long-term non-progressors.

(PPT)
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