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Chapter 1 

Partial Identification with an 
N 

Independent Instrument 

1.1 Introduction 

A partially identified model is a model for which the parameters of interest cannot be uniquely 

determined by the observed data. In a sequence of seminal work, Manski (1989, 1990, 1994, 2003, 

2007) analyzes the missing data model with selection where some observations of outcome Y can be 

missing in a nonrandom way, and stimulated research in partial identification analysis (see Manski 

(2003, 2007) for an overview and economic applications). Manski (1990, 1994) introduces the 

use of an instrumental variable for partial identification analysis, and analyzes the identification 

region for the parameters, or for the distribution of outcomes, under various restrictions on the 

statistical relationship between the instrument and outcome. While the literature has analyzed the 

identification region of the parameters such as the mean of Y under moment-type restrictions,1 less is 

known about the identification region of the outcome distribution under a distributional restriction 

of statistical independence between instrument and outcome. 

In this paper, we focus on the instrument exclusion restriction; that is, an instrument Z that 

is specified to be statistically independent of the underlying outcome. The selection problems that 

this paper considers are the missing data problem and the counterfactual causal model with a binary 

treatment. 

In the missing data problem, the outcome Y is observed if the selection indicator D is one while 

it is missing if D is zero. The researcher has a random sample of (Y • D,D,Z) and the object of 

interest is / y , the population distribution of Y. For example, Y could be potential wages that are 

observed only for those who are employed, and the instrument Z is a variable that is specified to be 

independent of one's potential wage but may affect one's employment status. A list of instruments 

' The tight bounds for E(Y) under the mean independence, E(Y\Z) — E(Y), is analyzed by Manski (1994). 
Manski and Pepper (2000) derive the tight bounds for E(Y) under the restriction of monotonic outcome response; 
E(Y\Z = z) is increasing with respect to z. 

1 
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that has been used in this potential wage example includes, for example, the number of children, 

marital status, and a measure of out-of-work income. 

In the counterfactual causal model with a binary treatment, outcome variables are a pair of 

treatment outcome Y\ and control outcome YQ. Since for each individual we can observe only one of 

the potential outcomes, the counterfactual causal model always involves missing data. Interpreting 

the selection indicator D as an indicator for treatment status, we observe Y\ if D — 1 and Yo if 

D = 0, and data is a random sample of (Y0i,s,D, Z) where Y0bs = DY\ + (1 — D)Yo- Here, the 

object of interest is the distribution of potential outcomes (Y\, Yo). In particular, we focus on a pair 

of two marginal distributions of each potential outcome, / ^ and /y0, since the causal effects are 

defined as a functional of the potential outcome distributions. If individuals self-select to receive 

the treatment taking into account their potential outcomes, D is not independent of (Yj,Yo) and 

then point-identification of the potential outcome distributions fy1 and /y0 fails. 

This paper analyzes identification of outcome distributions in these models without imposing 

point-identifying restrictions. That is, our object of interest is the identification region: the set of 

outcome distributions that are compatible with the empirical evidence and the model restrictions. 

In the missing data problem, Manski (2003) analyzes the identification region for the outcome 

distribution / y under the independence restriction between Y and Z. The resulting expression there 

has a rather abstract form and a closed form expression is limited to the discrete outcome case. One 

of the contributions of this paper is therefore to provide a closed form expression of the identification 

region that is applicable to a wider range of settings, in particular, a continuous outcome. We use 

the expression for the identification region of / y under the exclusion restriction to examine the 

possibility of obtaining a narrower identification region by introducing the selection mechanism with 

latent utility (threshold crossing selection). We consider strengthening the exclusion restriction to 

the restriction that the instrument Z is jointly independent of Y and the selection heterogeneities. 

We show that this joint independence restriction does not further narrow the identification region 

of / y . We also consider the identification gain of specifying the latent utility to be additively 

separable (threshold crossing selection with an additive error). We show that threshold crossing 

selection with an additive error, which is often imposed in the structural selection model, constrains 

the data generating process in a certain way but does not narrow the identification region further 

than instrument independence. These results imply that once instrument independence is imposed, 

threshold crossing selection is a redundant restriction in the sense that it does not further contribute 

to identifying / y . 

We extend the identification framework of the missing data model to the counterfactual causal 

model. Since we observe either one of the potential outcomes and the other is missing, we cannot 

avoid the missing data problem in identifying the causal effects. In particular, if the selection 

mechanism is nonrandom, that is, individual's participation to treatment depends on his underlying 

potential outcomes, then the potential outcome distributions cannot be identified. We derive the 

identification region of the distribution of the potential outcomes (Yj, YQ) under the restriction that 
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Z is jointly independent of (Yi,Ya) and the selection heterogeneities. We show that, in the coun-

terfactual causal model, the stronger restriction that Z is jointly independent of (Yi,Yo) and the 

selection heterogeneities can yield a strictly narrower identification region than the independence 

restriction between Z and (YI,YQ). This finding implies that adding independence of instrument 

and the selection heterogeneities provides additional identifying information for the potential out­

come distributions. This result contrasts the role of the instrument independence restriction in the 

counterfactual model with the one in the single missing outcome model, since, as we have mentioned 

above, such identification gain never arises in the single missing outcome model. Our identifica­

tion analysis clarifies the source of this identification gain and characterizes the condition for the 

distribution of data under which this identification gain is available. 

One advantage of focusing on the identification region (the set of feasible outcome distributions) 

is that it enables us to derive tight bounds for the parameters of the potential outcome distributions.2 

As an application of this way of constructing the tight parameter bounds, we provide the tight bounds 

for average treatment effects under instrument independence. For the case of binary potential 

outcomes,3 Balke and Pearl (1997) consider bounding the causal effects under the same independence 

restriction within the framework of causal networks. Their derivation of the bounds relies on a 

certain linear optimization procedure and hence it seems hard to obtain a closed-form expression 

of the bounds when potential outcome distributions have a large support such as continuous. In 

contrast, our closed-form expression for the bounds covers the continuous outcome case and its 

derivation does not use a linear optimization procedure. 

The remainder of the paper is organized as follows. Section 1.2 considers the single missing 

outcome model and derives the identification region of fy under instrument independence. It also 

provides a refutability result of instrument independence based on the emptiness of the identification 

region. Section 1.3 extends the identification framework developed in Section 1.2 to the counter-

factual causal model. We derive the identification region of the potential outcome distributions 

and the tight bounds for the average treatment effects. For simplicity of exposition, our analytical 

framework is limited to the case with a binary instrument in the main text. Appendix 1.A.7 dis­

cusses the case with a multi-valued discrete instrument. Section 1.4 concludes. Proofs are provided 

in Appendices. 

2 To the best of our knowledge, there is no consensus on the definition for the tightness (sharpness) of the bounds. 
In this paper, we define tightness of the parameter bounds as the range for the parameter functional where the domain 
is given by the identification region. 

3 Chen and Small (2006) derived the tight bounds for average treatment effects for the model with three-arm 
treatment using linear optimization procedure. 
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1.2 Single Missing Outcome Model: The Identification Re­

gion 

1.2.1 Setup and notation 

The random variable Y represents a scalar outcome and its support is denoted by y cR. The 

marginal distribution of Y is our main interest. We assume that the distribution of Y has a 

probability density function with respect to a dominating measure fi and we represent the distribution 

of Y in terms of the probability density function /y . 4 Note that Y need not be continuous and 

we can interpret fy(y) to be a probability mass at y when \i is the point mass measure. The 

reason to focus on the density rather than the cdf is that the identification region for the outcome 

distribution has a simpler expression when the data generating process and the outcome distributions 

are represented in terms of densities. 

The main text of this paper focuses on a binary instrument Z £ {1,0} since this simplifies the 

illustration of our main results without losing any essentials of the problem. Our analysis for the 

binary instrument case can be extended to the case of a multi-valued discrete instrument with finite 

points of support, which is covered in Appendix l.A.6. 

We do not introduce covariates X into our analysis. When the exclusion restriction of the 

instrument is specified in terms of conditional independence of Z and Y given X, then the identifi­

cation analysis for fy shown below can be interpreted as the identification analysis for the outcome 

distribution conditional on each covariate value. Although this approach would be less practical 

in cases where some of the covariates are continuous, we do not discuss how to control for these 

covariates here.5 

The model has missing data. The outcome Y is randomly sampled from fy but we do not 

observe all the realizations of the sampled Y. We use D to denote the selection indicator: D = 1 

indicates Y is observed and D = 0 indicates Y is missing. The data is given as a random sample of 

(Y-D,D,Z). 

We represent the conditional distribution of (Y • D, D) given Z = 1 by P = (P(-), PmiS), 

P(A) = P r ( y e A | D = l , Z = l ) - P r ( D = l |Z = l) , Acy, 

Pmis = Pr(D = 0|Z = l) . 

Analogously, we represent the conditional distribution of (Y-D, D) given Z = 0 by Q = (Q(-), QTO»S), 

Q(A) = Pr(Y G A\D = 1,Z = 0) -Pr(D = 1\Z = 0), Acy, 

Qmis = Pr(£> = 0\Z = 0). 

4We assume that \i is known. In other words, we know the support of Y to be continuous or discrete with known 
points of support. 

5 When Z is presumed to be generated through a randomized mechanism, we do not need any covariate information 
for the purpose of identifying fy • 
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P(-) and Q(-) are the conditional distributions of the observed outcomes given Z multiplied by the 

selection probabilities Pr(D = 1\Z). Pmis and Qmis are simply the missing probabilities given 

Z: Note that a pair of P and Q uniquely characterizes the distribution of the data except for 

the marginal distribution of Z, which will not play an important role for identifying / y . Thus, we 

represent the data generating process of our model by a pair of P and Q. On the other hand, Pr(-) 

and /. each refers to the probability distribution and the probability density of the population that 

is characterized by a value of (Y,D,Z). 

We denote the density function of P(-) and Q(-) on y by p(y) and q(y), which are linked to the 

population density via the following identities, 

P(V) = fY\D,z(y\D = ^ z = l)Pr(D = 1\z = i) = fY,D\Z(y,D = i\z = i), 

q(y) = fY\D,z(y\D = ^Z = 0)Pr(D = l\Z = 0) = fY,D{z(y,D = l\Z = 0). 

It is important to keep in mind that the density functions p(y) and q(y) integrate to the selection 

probabilities Pr(D = \\Z = 1) that are smaller than one. Note that without further assump­

tions P and Q do not reveal any information for the shape of the missing outcome distributions, 

fy,D\z{y-, D = 0\Z — 1) and ]Y,D\Z{V, D — Q\Z = 0), except for their integral, 

Pmis = f fY,D\z{y,D = 0\Z = l)dfi, Qmis = f fY,D\z(y,D = 0\Z = 0)dfi. 
Jy Jy 

The model restrictions given below are restrictions for the population distribution of (Y, D, Z). 

Restriction-ER 

Exclusion Restriction in the single missing outcome model (ER): Y is statistically independent 

of Z. 

ER is a distributional restriction and cannot be represented by a finite number of moment 

restrictions if Y is continuous. A weaker version of instrument exogeneity common in econometrics 

is the mean independence restriction (MI, hereafter). 

Restriction-MI 

Mean Independence Restriction in the single missing outcome model (MI): Y is mean indepen­

dent of Z, E(Y\Z) = E(Y). 

When we are mainly interested in point-identifying the mean of Y in the selection model, MI is 

typically sufficient and we do not require the full statistical independence (see, e.g., Andrews and 

Schafgans (1998)). However, in the partial identification context, these restrictions are different 

in terms of the identifying information for the mean since the bounds for E(Y) under ER can be 

strictly narrower than the bounds for E(Y) under MI (see Appendix 1.A.3 for further details). 
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ER is a stable restriction between the instrument and outcome while MI is not (Pearl (2000)). 

In other words, ER would persist for every distributional parametrization for the outcome and 

instrument, while MI is not preserved, for example, with respect to a nonlinear transformation of 

Y. Since we are often not sure about the right measure of Y so as to validate MI, it is hard to 

argue that an instrument satisfies MI but does not satisfy ER (e.g., can we justify the instrument 

with respect to which the log wage is mean independent while the raw wage is not?). 

1.2.2 The identification region of fY under the exclusion restriction 

We present the identification region of fY under ER. ER implies that the conditional distribution 

of Y given Z does not depend on Z, fy = fy\z- By applying the law of total probability to the 

conditional distribution fy\z, w e c a n decompose fy into the conditional density of the observed Y 

given Z and that of the missing outcomes. Using the notation introduced above, we have 

My) = fy\z{y\Z = 1) = p(y) + fY,D\Z(y, D = 0\Z = 1), 

Mv) = fY\z(y\z = o) = q(y) + fY,D]z(y,D = o\z = o). 

ER allows us to interpret that the observed outcome distributions p(y) and q(y) provide distinct 

identifying information for the common fy. We aggregate these identifying information for fy by 

taking the envelope, 

£(y) = max.{p(y),q(y)}. 

We refer to f(y) as the envelope density and the area below the envelope density as the integrated 

envelope S(P, Q) = j y f(y)dfi.6 

The formal definition of the identification region under ER is stated as follows. 

Definition 1.2.1 (the identification region under ER) Given a data generating process P and 

Q, the identification region for fy under ER, IRfY (P, Q), is the set of fy for each of which we can 

find a joint probability distribution of (Y, D, Z) that is compatible with the data generating process 

and ER. 

This definition for the identification region under ER is equivalent to the set of fy that yields 

nonnegative missing outcome distributions fy,D\z(y,D = 0\Z = 1) and fytD\z(y>D = Q\Z — 0) 

through (1.2.2.1) (see the proof of Proposition 2.1 in Appendix A). This implies, without any 

restrictions on the missing outcome distribution, the conditions for fy to be contained in IRfY (P, Q) 
a r e fy(y) >p(y) and /y(y) > q(y) A*-a.e. Hence, IRfY(P,Q) is obtained as 

IRfY(P, Q) = Ff™(P, Q) = | / y : J fY(y)dv = 1, fY(y) > /(j/) M-a.e. | . (1.2.2.2) 

"Note that the envelope density is not a probability density function on y since it does not necessarily integrate 
to unity. 
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Figure 1.1: Consider the case with a continuous Y and a binary Z. The dotted curve represents 
fy the probability density of the outcome Y. The identities (1.2.2.1) and the nonnegativity of the 
missing outcome densities require that the two densities p(y) and q(y) must lie below fy- This 
implies that any fy which cover both p(y) and q(y) are compatible with ER and the empirical 
evidence p(y) and q(y). Hence, the identification region of fy is obtained as the collection of 
the probability distributions such that the individual densities each cover both p(y) and q{y). The 
right-hand side figure shows the envelope density f{y) — max{p(y), q(y)}. The integrated envelope 
5(P, Q) = f f(y)dy is the area below the envelope density (shaded area). If S(P, Q) exceeds one, 
then, no probability density function can cover the entire envelope density and we obtain the empty 
identification region. 

Figure 1.1 provides a graphical illustration for the identification region. 

Notice that !F^V(P,Q) becomes empty if and only if the integrated envelope 5(P,Q) exceeds 

one. This is because the probability density function fy must integrate to one by definition and 

there do not exist any probability distributions that cover the entire envelope if 5(P, Q) > 1. Thus, 

refutability of ER depends only on the integrated envelope 5(P, Q) and testing the emptiness of the 

identification region is reduced to inferring 8(P, Q) from data. 

The next proposition summarizes the identification region of fy and the refutability property for 

ER in the single missing outcome model. If Y is discrete, this proposition is reduced to Corollary 

2.3 of Manski (2003). 

Proposition 1.2.1 (the identification region under ER) Assume that the probability distribu­

tion ofY has a density fy with respect to a dominating measure /x. Let f(y) be the envelope density 

and 5(P, Q) be the integrated envelope defined by 

f_(y) = max{p(y),q(y)}, 5(P, Q) = f f_{y)dpL. (1.2.2.3) 
Jy 

(i) The identification region of fy under ER, IRfY (P, Q), is 
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(ii) IRfY (P, Q) is empty if and only if 6{P, Q) > 1. 

When IRfY{P,Q) is nonempty, each /y e IRfY(P,Q) has the representation of a mixture of 

two probability densities weighted by S = S(P, Q), 

fy(y) = 6 (£(y)/S) + (l - 8)i{y), (1.2.2.4) 

where f{y)/S is the normalized envelope density depending only on the data generating process and 

7(y) is a probability density function that can be arbitrarily chosen to span the identification region. 

Thus, another way to view IRfY (P, Q) is the set of probability distributions generated from (1.2.2.4) 

by choosing an arbitrary probability density 7(2/). 

By this way of representing IRfY (P, Q), Fy the cdf of Y whose density belongs to IRfY (P, Q) 

is written as 

FY(V)= f l(t)d^ + (l-S)r(y), 

where T(-) is the cdf of 7(-). Since we can choose any values between zero and one for r(y), the 

tight cdf bounds of Y are obtained as 

f l(t)dfi < FY(y) < f l(t)d/i + 1-6. (1.2.2.5) 
J(-oo,y] J(-oo,y] 

Note that these cdf bounds can be strictly narrower than the cdf bounds constructed in Blundell et 

al. (2007) (see Appendix 1.A.2). 

The tight bounds for the mean E(Y) also follow from (1.2.2.4). Let Y have a compact support 

y = [yi,yu]. By specifying 7(2/) as the degenerate distribution at the lower or upper bound of the 

outcome support, we obtain the tight bounds for E(Y) under ER, 

(1 - 6)yi + f yf_{y)dii < E{Y) < f »/(j/)d/i + (1 - S)yu. (1.2.2.6) 
Jy Jy 

Since ER is stronger than MI, these mean bounds are equally or strictly narrower than the 

tight mean bounds under MI constructed in Manski (1994). In Appendix 1.A.3, we compare the 

tight bounds of E(Y) obtained from the exclusion restriction with the ones obtained from the mean 

independence restriction. A sufficient condition for these two bounds for E(Y) to be identical is 

that the data generating process reveals either p(y) > q(y) fi-a.e. or q(y) > p(y) /x-a.e., that is, one 

of the observed densities covers the other. 

1.2.3 Does selection equation help to identify /y? 

The structural selection model formulates the selection mechanism as 
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D = I{v(Z,U) > 0 } , (1.2.3.7) 

where v(Z, U) is the latent utility to rationalize the individual selection process, and U represents 

the unobserved individual heterogeneities that affect one's selection response and are possibly de­

pendent on the outcome V. Recall that ER only implies independence between the outcome Y and 

instrument Z, while it is Silent about a statistical relationship between the selection heterogeneity 

U and instrument Z. In the case where we believe Z to be independent of any individual hetero­

geneities, we might want to explicitly impose joint independence between Z and (F, U). In that 

case, can we further narrow the identification region by strengthening ER to joint independence? 

As we will discuss further in Section 1.3.3, an importance of this question can be highlighted by 

a comparison with the counterfactual causal model with endogenous treatment choice (Imbens and 

Angrist (1994) and Angrist et al. (1996)). Given a pair of treated and control outcomes (Yi, Yb) 

with the nonseparable selection equation (1.2.3.7), the joint independence restriction between Z 

and (Yi, Yo, U) yields a narrower identification region than marginal independence of Z and (Yi, Yo) 

for the distribution of the potential outcomes.7 The main focus of this section is to investigate 

whether or not the single missing outcome model can enjoy a similar identification gain from the 

joint independence restriction. 

When we introduce latent utility with unobserved heterogeneities U into the model, we char­

acterize the population by a joint distribution of (Y, D, U, Z) rather than (Y, D, Z). In particular, 

if the instrument Z is binary, the population random variables (Y, D,U,Z) can be replaced with 

(Y, T, Z), where T is the individual type that indicates one's selection response to each value of the 

instrument as defined in Imbens and Angrist (1994) (see also Pearl (1994a)). Define the potential 

selection indicator D-, z = 1,0, representing one's selection response when the instrument was set 

to Z = z, i.e., Dz = I{v(z,U) > 0}. The category variable of individual type T is defined as8 

c : complier if £>i = 1, Do = 0, 

n : never-taker if D\ = Dn = 0, 

a : always-taker if D\ = Do — 1, 

d : defier if Dx = 0 , D0 = 1. 

and joint independence of Z and (Y, U) is equivalently stated as joint independence of Z and (Y, T). 

We call this joint independence restriction Random Assignment Restriction (RA). 

Restriction- RA 
7Balke and Pearl (1997) analyzed bounding the average treatment effect when Yi and Yo are binary under the 

restriction of joint independence (Yi, Yo, U) J_ Z. They show that the bounds for the average treatment effect can be 
further narrowed than the average treatment effect bounds of Manski (1994) under mean independence. Note that , 
when Yi and Yo are binary, the latter bounds for the average treatment effect are interpreted as the treatment effect 
bounds under Y\ X. Z and Yo J_ Z. 

8 Although the single missing outcome model is not the counterfactual causal model, we name each type as in 
Imbens and Angrist. 
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Random Assignment Restriction in the single missing outcome model (RA): Z is jointly inde­

pendent of (Y, T). 

The definition of the identification region under RA is provided as follows. 

Definition 1.2.2 (the identification region under RA) Given a data generating process P and 

Q, the identification region for / y under the random assignment restriction (RA) is the set of fy 

for each of which we can find a joint probability distribution of (Y, T, Z) that is compatible with the 

data generating process and the joint independence restriction of Z and (Y, T). 

Appendix 1.A.4 provides a formal analysis on the construction of the identification region under 

RA. The main result is stated in the next proposition. 

Proposition 1.2.2 (invariance of the identification region) The identification region under ER, 

IRfY(P, Q), is also the identification region of fy under RA. 

This proposition shows that a further identification gain from the joint independence restriction, 

which exists in the counterfactual causal model with an instrument as we mentioned above, does not 

exist in the selection model with a single missing outcome. This redundancy of the joint indepen­

dence restriction implies that ER is the only refutable restriction for the instrument exogeneity. 

An additional restriction we consider is a functional form specification for latent utility. In 

the standard structural selection model, we specify the selection equation in the form of threshold 

crossing selection with an additive error, 

v(Z, U) = v(Z) -U, (1.2.3.8) 

where U is a scalar and v(Z) depends only on the instrument. Heckman and Vytlacil (2001a, 2001b) 

show that the expression of the bounds of E(Y) under mean independence constructed in Manski 

(1994) provides the tight bounds even under the joint independence between Z and (Y, U) and the 

specification of the additively separable latent utility. This result is somewhat surprising since the 

tight E(Y) bounds under ER can be strictly narrower than the E{Y) bounds under MI, but the 

latter becomes the tightest once we impose the joint independence of Z and (Y, U) and threshold 

crossing with an additive error. We disentangle this puzzle using the expression of the identification 

region obtained through the envelope density. 

By noting the equivalence result of Vytlacil (2002), the selection process with additively separable 

latent utility can be equivalently analyzed by imposing the monotonicity of Imbens and Angrist 

(1994). Hence, the definition of the tight identification region in this case is defined as follows. 
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Definition 1.2.3 (the identification region under separable utility) Given a data generat­

ing process P and Q, the identification region for fy under RA and the specification of threshold 

crossing selection with an additive error is the set of fy for each of which we can find a joint prob­

ability distribution of (Y, T, Z) that is compatible with the data generating process and satisfies RA 

with either Pr(T = d)=0 or Pr(T = c) = 0. 

In Appendix 1.A.5, we derive the identification region for fy under these two restrictions. The 

resulting identification region for fy is given in the next proposition. 

Proposition 1.2.3 (the identification region under separable utility) The identification re­

gion under RA and the specification of threshold crossing selection with an additive error is 

( T1™{P, Q) ifp(y) > q(y) fi-a.e. or q{y) > p(y) fi-a.e. (12 3 9) 

1 0 otherwise. 

This result says that if the data generating process reveals either p(y) > q{y) /x-a.e. or q(y) > p(y) 

/x-a.e., the identification region under ER is also the identification region under the restrictions of 

joint independence and additively separable latent utility. In this sense, threshold crossing selection 

with an additive error does not contribute to identifying fy further than ER. This result supports 

the aforementioned Heckman and Vytlacil's result on the E(Y) bounds since, as already mentioned 

in Section 2.2, given we observe either p(y) > q(y) /x-a.e. or q(y) > p(y) /x-a.e., the E(Y) bounds 

constructed from Ff"v(P,Q) coincide with the Manski's E(Y) bounds under MI. 

The empty identification region in (1.2.3.9) implies that if joint independence and threshold 

crossing selection with an additive error hold in the population, we must observe either p(y) > q(y) 

/x-a.e. or q(y) > p(y) /x-a.e. In other words, the structural selection model with additively separable 

latent utility constrains the data generating process in such a way that either p(y) or q(y) covers the 

other on the entire y (see Figure 1.2 for a visual illustration of the observed densities for this case). 

Note that the condition of p{y) > q(y) /x-a.e. or q(y) > p(y) /x-a.e. provides a testable implication 

for the joint restriction of joint independence and additively separable latent utility. That is, we 

can refute it by checking whether or not one of the observable densities p(y) or q{y) nests the other.9 

The envelope density provides the maximal identifying information for fy based only on the 

empirical evidence, and optimality of this aggregating scheme is free from the assumptions that only 

constrain the data generating process. 

9 Chapter 3 proposes a test procedure for whether the density p(y) nests q(y) in the context of the counterfactual 
causal model with a binary instrument. This is interpreted as a test for point-identifiability of the local average 
treatment effect. 
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Figure 1.2: If the instrument is jointly independent of Y and the unobserved heterogeneities in the 
latent utility, and threshold crossing selection with an additive error holds in the population, then 
we must observe that either p(y) or q(y) covers the other on the entire y, as drawn above. Note 
that this figure also shows the case where the tight mean bounds under ER are identical to the tight 
mean bounds under MI (see Appendix 1.A.3). 

1.3 Counterfactual Causal Model: The Identification Region 

The previous section focused on the selection problem in the missing data context. This section 

considers extending the use of envelope density in constructing the identification region to the 

heterogeneous treatment effect model with a binary treatment. In the Rubin-causal model (Rubin 

(1974)), causal effects are defined in terms of a parameter of the potential outcome distributions. 

In this section, we construct the identification region for the distribution of potential outcomes 

when the researcher has an instrumental variable and he is willing to impose the restriction of its 

exogeneity to the potential outcomes. 

1.3.1 Setup and Notation 

Let Y\ e K be treatment outcome and Yo G M. be control outcome. In data, we observe Y\ if one 

receives a treatment while we observe Y$ if one does not receive the treatment. In this section, we 

read D as the treatment indicator: D — 1 if one receives the treatment and D — 0 otherwise. We 

denote the observed outcome by Y0is = DY\ + (1 — D)Y0 and we consider a nondegenerate binary 

instrumental variable Z e {1,0}. The data is given as a random sample of (Y0bs, D, Z).w 

Our object of interest is a distribution of the potential outcomes. Since it is common to evaluate 

causal effects by comparing the two marginal distributions of potential outcomes, our interest lies 

in JVi and fy0 the marginal distributions of Y\ and YQ. For example, the average treatment effect, 

1 0The results presented in this section are limited to the case with a binary instrument. With a binary instrument, 
we can obtain a closed representation of the identification region for potential outcome distributions. Although it is 
possible to extend the framework to the case with a milti-valued discrete instrument, a closed form representation of 
the identification region will be more complex. 
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which is one of a common measure of treatment effect, is defined as the difference between the mean 

of fYl and / y 0 . n Each fYl and fYo represents the probability density on 3̂  CM and / ^ and fYo are 

assumed to have a dominating measure \i. Given that our interest is to bound these causal effect 

parameters, we focus on constructing the identification region of a pair of fYl and fYo (the formal 

definition is given below). 

We denote a conditional distribution of (Yoba, D) given Z by 

PYAA) = Pr(Yobs€A,D = l\Z = l)=PT(Y1eA,D = l\Z = l), 

Py0(A) = PT(Yobs€A,D = 0\Z = l) = Pi(Y0eA,D = 0\Z = l), 

QYl(A) = PT(Yobs€A,D = l\Z = 0) = Pi(Y1e A,D = 1\Z = 0), 

QYo(A) = Pi(Yobs€A,D = 0\Z = 0)=Pr(Y0GA,D = 0\Z = 0). 

Note that the conditional distribution of (Yobs, D = d) given Z provides the probabilities of the event 

{Yd eA,D = d} given Z for d = 1,0. Since P = (PYl(•), PYo(•)) and Q = (QYl(•), QYo(•)) uniquely 

characterizes the distribution of data except for the marginal distribution of Z, we represent the 

data generating process in the counterfactual causal model by (P, Q). The density functions of 

PYd(-) and QYd(-) are denoted by pYd(-) and qYd(-), d = 1,0, 

PYAVI) = fvuD\z(yi,D = \\Z 

PY0(yo) = lY0,D\z(yo,D = 0\Z 

QYAVI) = fYuD\z(yi,D = \\Z 

QY0(yo) = fY0,D\z(yO, D = 0\Z 

Our analysis of this section is an extension of the one in Section 1.2.3, where we explicitly 

introduce the heterogeneities in the selection response. That is, the model has the structural 

selection equation with nonseparable latent utility, 

D = I{v(Z, U) > 0}. 

By the same argument as in Section 1.2.3, the population is characterized by a joint distribution of 

(Yi, YQ, T, Z) where T is the individual type denned above. 

We define exogeneity of the instrument in this context in terms the statistical independence of 

the instrument and the two potential outcomes. 

Restriction- RA-causal 

Random Assignment Restriction in the causal model (RA-causal): Z is jointly independent of 

(Yi,Yo,T). 
1 The quantile differences between the two potential outcome distributions can be also a parameter of interest. 

When we impose the assumption of perfect ranking, that is, the ranking of individuals based on Yi is the same as the 
ranking based on YQ, then the r - th quantile difference can be interpreted as the causal effect for the individual whose 
ranking in terms of potential outcomes is T. 

= 1). 

0), 
0). 

(1.3.1.10) 
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The restriction RA-causal can be seen as an analogue of the random assignment restriction in 

the single missing outcome model. RA-causal states that the instrument is randomized regardless 

of one's potential outcomes and one's selection response and this restriction is standard in the 

literature of heterogeneous treatment effect model with self-selection (Imbens and Angrist (1994), 

Angrist, Imbens, and Rubin (1997), Heckman and Vytlacil (2001, 2005, 2008)). 

1.3.2 Identification Region of the Potential Outcome Distributions under 
Instrument Independence 

Let fY1(yi) be the envelope density for the treated outcomes, fy1(yi) = iaax.{pY1(yi),qYl{y\)} and 

8yl be its integrated envelope 5yx — Jy^^3x{pY1(yi),qyl(yi)}diJ,. Similarly, for control outcomes 
l e t hoiyo) = max{py0(2/0),gy0(?/o)} and 5Yo = fymax{pY0(yo),qy0(yo)}dfj.. If we naively apply the 

formula of the sharp mean bounds (1.2.2.6) to each potential outcome, the bounds for E(Y\) and 

E(YQ) can be given by 

(1 - 8Yl)yi + f mfvMdn < E{YX) < [ y1fYl(y1)dfi +(1 ~ SYJVU, (1.3.2.11) 
Jy Jy 

(1 - 6Yo)yi + f ycfYo(yoW < E(Y0) < f y0/y0(j/oM/i + (1 -8Yo)yu. (1.3.2.12) 
Jy Jy 

Given bounds of each E(Yi) and E(Yo), Manski (2003) considers the outer bounds; bounding the 

average treatment effect E{Y\) — E(Yo) by taking the difference between the upper or lower bound 

of E(Yi) and the lower or upper bound of E(Yo). 

(l-6Yl)yi+ / s/i/Yi(3/i)d/j- / y0fYo(yo)dfj. - (1 - 5Yo)yu 
Jy Jy 

< EW-EiYo) 

< / yifY1(.yi)dfi+0--sYl)Vu-0--SYo)yi- / yofy0(yo)dn. (1.3.2.13) 
Jy Jy 

Oiir analysis given below shows that this way of constructing the bounds are not necessarily tight 

under the restriction of RA-causal. 

In order to derive the tight bounds for the average treatment effect, we first state the definition 

of the identification region of (fy1, fy0) under RA-causal. 

Definition 1.3.1 (the identification region of (/y^/vo) under RA-causal) Given a data gen­

erating process P and Q, the identification region of (fy1, /y0) under RA-causal is the set of (fy1, /y0) 

for each of which we can construct a joint distribution of (Yi,Ya,T,Z) that is compatible with the 

data generating process and satisfies the independence restriction of (Yj, YQ, T) and Z . 

The identification region defined here is a collection of a pair of two marginal distributions 

(fy1,fy0) rather than a collection of the joint distribution of (Yi, Y0). Focusing on the former is 
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sufficient to build the tight bounds for the aforementioned causal effects since they are written as a 

functional of solely fYl and fYo • 

For a joint distribution of (Yi,YQ,T,Z) to be compatible with the data generating process P 

and Q, it must satisfy the equalities (1.3.1.10). In terms of the distribution of (YI,YQ,T, Z), the 

equalities (1.3.1.10) are written as, 

PYM = fYltT\z(vi,T = c\Z = 1) + fYuT\z(vi,T = a\Z = 1), 

qyl(yi) = fY1,T\z(yi,T = d\Z = 0) + fYl,T\z(yi,T = a\Z = 0), (13 2 14) 

PYoG/o) = /y0,T|z(W),T = d\Z = 1) + /y0 ,T|z(tt),r = n\Z = 1), 

QYoiyo) = fY0,T\z(yo,T = c\Z = 0) + fYo,T\z(yo,T = n\Z = 0). 

We leave a formal development of the identification region of (fYl, fYo) under RA-causal to 

Appendix 1.A.7 and the main text primarily focuses on its heuristic construction. Suppose that 

the integrated envelopes 5Yl and SYo are both less than one.12 Consider an arbitrary pair of two 

marginal distributions (fYl,fYo) such that each covers the envelope density of Yi and Yo, that is, 

fYl{yi)> fvAyi) = max{pYl(^i),gYl(2/i)} /x-a.e. and fYo(y0) > /y0Q/o) = ^ax{pYo(yo),qYo(yo)} 

/u-a.e. 

In order to claim that the proposed (fYl, fYo) is contained in the identification region of (fYl, fYo) 

under RA-causal, we have to show that there exists a joint distribution of (Yi, YQ , T, Z) that can 

generate the data, satisfies RA-causal, and its marginal distributions of Y\ and Y0 coincide with 

the proposed (fYl,fYo). Since RA-causal implies fYl,T\z = / n .T and fYo,T\z — fy0,T, candidate 

distributions of (Yi,Yo,T, Z) must yield the equalities (1.3.2.14) without the conditioning variable 

Z, 

PYAVI) = fY1,T(yi,T = c) + fYuT(y1,T = a),' 

qYl(yi) = fYuT(yi,T = d) +fYuT(yi,T = a), 

PY0(yo) = fYo,T(yo,T = d) + fYo,T(yo,T = n), 

qYo(yo) = fYo,T(yo,T = c) + fYo,T(y0,T = n). 

Furthermore. fYl(yi) = Et6{c,n,o,d}/>'i.r(l/i,r = *) and fYo(vo) = J2t€{c,n,a,d} SY0,T(VO,T = t) 
imply 

SYM-PYM = fYuT(yx,T = d) + fYuT{yi,T = n), 

JYAVI) - qvAvi) = fYuT(yi,T = c) + fYuT(yi,T = n), 

fYo(yo) ~PY0(yo) = fvortvo,T = c) + fYo,T(yo,T = a), 

/y0(yo) - qY0(yo) = /y0,T(2/0, T = d) + /y0,T(j/o, T = a). 
1 2This is required in order to have a nonempty identification region since otherwise no density can cover the observed 

part of Y\ or YQ'S densitiies and this leads to a violation of independence between Y\, and Z or YQ and Z. 
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These equalities suggest that given (fYl,fYo) and (P, Q) if we can find four pairs of nonnega-

tive functions (hYut(yi),hYo,t(yo)), t = c,n,a,d, that satisfy the scale constraints J hYl}t(yi)dpi = 

fhYo,t(yo)dn and 

PYAVI) = hYl,c(yi) + hYua{yi), 

qvAyi) = hYud(yi) + hYua(yi), 

PY0(yo) = hYoid(yo) + hYo,n(y0), 

qy0(yo) = hYa,c(y0) + /iy0,„(j/o), ^ 3 2 15~, 

fv1(yi) -pvAyi) = hYl,d(yi) + hYun(y!), 

fY1(yi)-qY1(yi) = hYl,c(y1) + hYun(yi), 

/y0(j/o) - PYo(yo) = hYoiC(yo) + hYoia(yo), 

fY0(y.o) - <lY0(yo) = hYotd(yo) + hYo,a(y0), 

then by setting fYl,T\z(vi,T = t\Z = z) = hYut(yi) and fYo,T\z(yo,T = t\Z = z) = hYo,t(yi), 

t = c,n,a,d, z = 1,0, we can construct a population distribution of (Y\,Yo,T,Z) without con­

tradicting RA-causal and the data generating process (P,Q). Thus, given data (P,Q) the iden­

tification region of (fYl,fYo) under RA-causal consists of (fYl,fYo) for each of which we can find 

these nonnegative functions (hYl!t(yi),hy0it(yo)), t = c,n,a,d, that satisfy the scale constraints 

fhYltt(yi)d/j, = J hYo,ti.yo)d(J,. 

A closed form expression of the identification region of (fYl, fYo) under RA-causal is given in the 

next proposition. 

Proposition 1.3.1 (Identification region of (fYl,fYo) under RA-causal) Let fYl{yi) andSYl(P,Q) 

be the envelope density and the integrated envelope for the observed treated outcome distributions 

/vi(Vi) = max{pyi(yi),qYl{yi)}, SYl = / max{pyi(yi),qYl(j/i)}dyi. 
Jy 

and /y0(j/o) and SYo(P, Q) be the envelope density and the integrated envelope for the control outcome 

distribution, 

/y0(yo) =max{py0(2/oWoO/o)}, SYo = / max{pYo(yo),qY0{yo)}dyo-
Jy 

Let Jrflv{P,Q) and Tf^v(P,Q) be the set of probability densities that cover the envelope densities 

IYAVI)
 and hoiyo), 

Ff™(P, Q) = | / n : fv1 > fn V-a.e. and J fYl(yi)dyi = l | , 

?JZ(P, Q) = ifY0 :fy0>M P-a-e. and J fYo(yo)dy0 = l \ • 
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Further, define 

XYl = / TodT>-{PY1(yi),c[Y1(yi)}dyi) XYo = / m.in{pYo(y0),qYo(yo)}dy0. 
Jy Jy 

The identification region of (fYl,fYa) under RA-causal is nonempty if and only if 5Yl < 1 and 

$Y0 < 1, o-nd it is given by, 

(i) for 1 - 6Yo < XYl, 

{ ( / n JY0): M G F}YI (P, Q), fYo € F%»(P, Q)} , 

where 

F*fYi (P,Q) = ifYl: fYl € ^ " ( P , Q ) , y min {/y, - fc,min^(ffl),gYlfa)}} dm > XYl + SYo - l \ 

(ii) for l-6Yo > XYl, 

{ ( / * , fYo) •• fYl e F£»{P, Q), fYo e J%o(P,Q)}, 

w/iene 

• ^ o ( P ' 0 ) = {/y° : / y ° e ^ ( P ' < ? ) ' / m i n {/% - ho., min{py0 (y0) , <?Y0 (2/0)} } dy0>l- SYo - XYl 

(Hi) for 1 - 6Yo = XYl, • 

{ ( / n , /YO) : / n € J^™(P,Q) and /Yo G ^ ; ( P , Q ) } . 

This proposition states that the identification region of (fYl, /y0) under RA-causal is smaller 

than the product of TJ^(P, Q) and TjY
v(P, Q). Specifically, if the data generating process reveals 

1 — $Y0 ¥" ^Ylt then the identification region of (/y^/yo) under RA-causal is strictly smaller than 

the product of .Ffn"(P, Q) and J-f^v(P, Q). For example, in case of 1 — 5Y0 < XYl, then the collection 

of feasible fYl is given by 

^ 7 n (p> Q) = {fYi : J* e ffni13' Q)> J min {'/* - /*> m i n ^ i (»i)> to (»i)}} dW > Ayx + *y0 - 1 ^, 

which is strictly smaller than J^""(P, Q) due to the additional constraint 

/ min {fYl ~ hj_,min{pyi(yi),qYl(3/1)}} dt/i > A n + 5y0 - 1. 



18 

yx y« 

Figure 1.3: This figure depicts the data gerating process with 1 - 8y0 = Xyt (the area of a(0) is equal 
to the area of a(l)), which corresponds to the case (iii) in Proposition 1.3.1. For each t = c,n, a, d, 
t(l) and t(Q) have the same area. 

In order to illustrate where this constraint comes from, consider the data generating process 

that yields the identification region as the product Tf^v{P, Q) and JFf™(P, Q) (Figure 1.3). Here, 

(P,Q) satisfies 1 — 8y0 = Ay15 that is, the area between fy0 and fy0(yo) *s equal to the area below 

min{pi(yi),qi(yi)}. Consider partitioning the subgraph of fy1 into four denoted as c(l), a(l) , n( l ) , 

and d(l). Consider also partitioning the subgraph of /y0 into four denoted as c(0), a(0), n(0), and 

d(0). The condition 1 — Sy0 — Xy1 implies that the area of a(l) is equal to the area of a(0). In 

addition, we can show that not only a(l) and a(0) but also c(l) and c(0), n(l) and n(0), and d(l) 

and d(0) share the same area. This allows us to impute hy1,t(yi) and hy0tt(yo) as the height of the 

partitions t(l) and t(0) for each t = c,n, a, d. Then, the equalities of (1.3.2.15) are all satisfied. Note 

that this way of imputing hyltt(yi) and hy0j(yo) works for arbitrary (/Yi,/y0) as long as fy1 and 

fy0 each cover the envelope density. Hence the identification region of (fy1,fy0) under RA-causal 

is derived as the product of . ^ " " ( P , Q) and . ^ " " ( P , Q). 

On the other hand, consider the case of 1 — Sy0 ^ Xy1. The above way of pinning down 

^Vi,t(yi) a n d hy0tt{yo) cannot satisfy the scale restriction Jy hy1:t(yi)dfi = Jy hyljt(yi)dfj, and hence 

we need to develop a different way of constructing hylit(yi) and /iy0,t(yo)- Figure 1.4 draws a data 

generating process with 1 — 5y0 < Ayt, that is, the area of a(0) is smaller than the area of a( l) . 

Since 1 — Sy0 < AyL is equivalent to Ay0 < 1 — 8y1,
13 the third and fourth constraints of (1.3.2.15) 

imply that feasible hy0tTl must satisfy f hyon(yo)dfi < Ay0 < 1 — 8y1, and this in turn implies that 

the entire area of n(l) cannot be occupied by hyljn(yo) since otherwise the equal area restriction is 

violated. If the identification region for fy1 under RA-causal was J^ n "(P , Q), then, we would be 

able to allocate the partition n(l) freely so as to span J^""(P, Q). In order to do this, n(l) must be 

filled by hy1^n(yi) since /iylin(j/i) is the only density whose shape is completely unrestricted. But 

13Lemma 1.A.3 in Appendix shows Ay-j +Ay0 +Sy1 +<Sy0 = 2. Hence, 1 — <5y0 < Ay^ is equivalent to Ay0 < 1 — Sy1 • 
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Figure 1.4: The drawn data generating process satisfies 1 — 5y0 < Ayx (the area of a(0) is strictly 
smaller than the area of a(l)). Different from the case drawn in Figure 1.3, it is not feasible to pin 
down (hYltt,hY0,t) to (t(l),t(0)) for each t — c,n,a,d. 

as was already mentioned, this is not feasible for the given data generating process. Therefore, the 

identification region for /yx must be strictly smaller than !Fj^v(P, Q). 

Figure 1.5 illustrates the closed-form expression of the identification region obtained in Propo­

sition 1.3.1. Differences from Figure 1.4 are that a(l) is further partitioned into a and d&c, and 

n(l) is partitioned into n and dhc'. Consider, for each t € {c,n,a,d}, we pin down hyOyt(y0) to 

one of the partitions i(0) in the subgraph of /y0. This way of pinning down /iy0)t(yo) allows us to 

span .Ff™"(P, Q) since there is no restriction on the shape of a(0). Next, we take a subset a within 

a(l) so that it shares the same area as o(0), and pin down /iy1]0 to this partition a. Accordingly, 

the first two constraints of (1.3.2.15) imply hyic(yi) is imputed as the sum of c(l) and d&cc and 

hY1,d(yi) is imputed as the sum of d(l) and rf&c. As the types t — c and t = d occupy the area 

d&c, the area that can be potentially taken by hyx n decreases by the area of d&cc due to the fifth 

and sixth constraints of (1.3.2.15). This operation can be interpreted as piling up the partition 

d&cc onto the envelope density, and as a result, the area d&c' emerges as drawn in Figure 1.5. The 

subset d&cc' is a copy of dk.c (the height of dfod is equal to the height of d&cc at every y\) and the 

fifth and sixth constraints of (1.3.2.15) pins down hyltTl(yi) to n, which is the left-over part of n(l) 

after dhd. What we can learn from this exercise is that fy1 in the identification region must spare 

a enough room for dk,c' above the envelope density. By noting that the possible shape of dk.c! 

is constrained by a(l) , the subset dhc' can be found for a given fyx as long as the area outlined 

between ndn{fY1, /y t + min-fjjyj, qyx}} and /y t is greater than the area of a(l) minus the area of a. 

This condition is equivalent to Jy min < fyx — /yx,minlpyj {y\),qy1 (yi)} \ dy\ > Xyt + 5y0 — 1, which 

appears in the construction of T) (P, Q). 

The preceding argument shows that the key constraints that contribute to further narrow­

ing the identification region for fy1 than J^™"(P,Q) are the scale constraints, Jyhylit(yi)dfi = 
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Figure 1.5: The drawn data generating process is the same as Figure 1.4. 

JyhY1,t(yi)dfi. Recall that these scale restrictions stem from the independence restriction of T 

and Z. Thus we can interpret that, when T and Z are assumed to be independent, the observed 

distributions of YQ provide a partial information on the marginal distribution of T and through 

which we obtain identification gain for the distribution of Y\. If we only impose independence of 

(Yi, YQ) and Z, which is weaker than RA-causal, then, it can be shown that identification region of 

(iVi, /y0) is obtained as the product of Tf^iP, Q) and ^ " " ( P , Q) no matter what (P, Q) looks like. 

This also clarifies the identification power of joint independence between (Yi, Yo,T) and Z relative 

to independence between (Yi, YQ) and Z. Recall that in the single missing outcome case, we showed 

that the restriction of joint independence of (Y,T) and Z does not further narrow the identification 

region of / y than the marginal independence of Y and Z (Proposition 1.2.2). When we consider 

the causal model, an analogous conclusion is not true and the identification region in general differs 

between joint independence of (Yi,YQ,T) and Z and a weaker restriction of independence between 

(Y^YQ) and Z. 

An important case where 1 — 5y0 — Aŷ  holds is that the data generating process exhibits the 

nesting structure among densities, i.e., when we observe PYxiyi) > Qyx {yi) a n d QY0(yo) > PY0(yo), it 

holds 1 - 5Yo = Pr(£> = 1\Z = 0) = \Yl • 

By applying the same argument as Proposition 1.2.3 to the counterfactual causal model, it can 

be shown that specifying the selection equation to be additively separable D = 1 {v(Z) — U > 0} 

restricts the data generating process in such a way that the densities of P and Q exhibit the 

nesting configuration. Consequently, the specification of additively separable latent utility does 

not contribute to further narrowing the identification region than the one obtained in Proposition 

1.3.1. In order to be precise about the identification region under RA-causal and additively separable 

latent utility, its formal definition is stated. 
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Definition 1.3.2 (Identification region of (fy1,fy0) under RA-causal and separable utility) 

Without loss of generality, assume Pi(D — \\Z = 1) > Pr(£) = 1\Z = 0). Given the data generating 

process (P,Q), the identification region of (fy1,fy0) under RA-causal and the additively separable 

latent utility is the collection of (/yx, /y0) for each of which we can construct a joint probability dis­

tribution of (Yi,Yo,T, Z) that satisfies joint independence of (Y\,Yo,T) and Z and Pr(T = d) ~ 0. 

The next proposition summarizes the identification region of (/yL, /y0) under RA-causal and 

separable utility. 

Proposition 1.3.2 The identification region of (fy1, /y0) under RA-causal and additively separable 

latent utility is 

' {(/n,/yo): /n e T^{P,Q), fYo e ?%°(P,Q)} 

if PYAVI) >9Yi(2/i) M"a-e- and QY0(yo) > PY0(yo) ft-a.e., 

0 otherwise 

1.3.3 Bounding Causal Effects 

The outer bounds of the average treatment effects (1.3.2.13) becomes the tight bounds under RA-

causal if the identification region of {fyx, /y0) is given as the product of J-j™(P, Q) and ^ " " ( P , Q). 

However, the preceding analysis showed that the identification region is not necessarily the product 

of T1™{P, Q) and TV^V{P, Q) depending on (P, Q). In this section, we derive the tight bounds of 

the average treatment effects based on the closed-form expression of the identification region derived 

in Proposition 1.3.1. 

If we can find within the identification region the distribution of Yi that is first-order stochas­

tically dominated by the other distributions in the identification region, i.e., the distribution of Yi 

whose cdf is larger than the other distributions in the identification region, then the tight lower 

bound for E{Y\) is obtained by calculating the mean with respect to that distribution. Symmetri­

cally, in order to find the upper bound of the mean of Y\, it suffices to find the distribution within the 

identification region that first-order stochastically dominates the other distributions in the region. 

For an illustration on how to find these distributions, see Figure 1.6 where Y\ and YQ are assumed to 

be continuous on the compact support y — [yi,yu] (with probability masses at y\ and yu allowed). 

The data generating process drawn in this figure is the same as in Figure 1.4, which corresponds to 

the case (i) of Proposition 1.3.1. 

Intuitively speaking, the upper bound for the cdf of Y\ is found by allocating unidentified or 

partially identified probabilities of Yi's distribution to lower values of 3̂ - As we have already 

discussed, the maximal amount of unidentified probabilities in the distribution of Y\ is the left-out 

probabilities 1 — 5yl = (the area of n(l)) . The area n(l) is partitioned into two, n and rf&c', and 
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fM 

y- y^ y, y* y0 

Figure 1.6: This figure shows a data generating process that corresponds to the case (i) in Proposition 
1.3.1. The left-hand side figure provides fYl in the identification region that achieves the upper 
bound for Yi's cdf. The mean of Y\ with respect to this fYl yields the tight lower bound for E(Yi). 
The right-hand side figure provides fYo that achieves the lower bound for Y0's cdf, which yields the 
tight upper bound for E(Yo). 

the shape of n is completely unrestricted so we can assign n to the lower end of the outcome support 

as drawn in Figure 1.6). On the other hand, the shape of d&c' is constrained since its copy d&c 

must be contained in a(l) (the area below min{py1, qYl}). Since our goal is to sort out unidentified 

probabilities to the left, it is graphically obvious that we would like to pinning down d&zc as the 

left-tail part of min-fp^, qYl} with keeping its area at A^ +5y1 — 1. Hence, with y\ l chosen so as to 

satisfy JVl'1 min {pYl, qYl} dy\ — \Yl + Sy0 — 1, the cdf of Y\ that achieves its upper bound is written 

as 

FYAV) = XYo + / hAvxldyi + / l{y € [yi,yli]}voin{pYl(y1),qYl(y1)}dy1. 
Jyi J 

Symmetrically, by assigning n to the upper end of the outcome support and by taking d&c as the 

right tail of min lp^ , qYl}, we obtain the cdf of Y\ that achieves its lower bound, 

Fy^y) = / hAyijdyi + / \{y € [yitU,yu}}mm{pYl(yi),qY1{.yi)}dyi + l{v = 2/«}Ay0. 
Jyi J 

Thus, the tight mean bounds for the distribution of Y\ are obtained by taking the mean and 

quantile with respect to these cdfs FY (y) and FY (y)-14 

Proposition 1.3.3 (The tight average treatment effect bounds under RA-causal ) Assume 

Y\ and YQ are continuous variables on the interior of the compact support y = [yi,yu]- Let 

8Yl, SYo,XYl, and XYo be the parameters defined in Proposition 1.3.1 and assume 6Yl < 1 and SYo < 1. 

1 4 The tight bounds for the quantile of fYl also follows the tight cdf bounds presented here. 
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(i) Consider the case where the data generating process exhibits 1 — 6Yo < Ay,. Let y\ t and yl u be 

the values in y that satisfy 

/ min{pYl(y1),qYl(yi)}dyi = XYl+SYo-l, 
Jyi 

/•Vu 

/ min{pY l (yi), qyx (yi)}dyi = Ay, + 6Yo - 1. 
Jy"!.. 

Then the tight bounds of the average treatment effects are 

/ yifYL(yi)dyi+ yiTooin{pYl(yi),qYl(y1)}dy1+XYoyi- yofYo(yo)dy0 - (1 - SYo)yu 

Jyi Jyi Jyi 
< E(Y1)-E(Y0) 

ryu PVu ryu 

< / yifvAvijdyi + / y i m i n { p y 1 ( j / i ) , q y 1 ( 3 / i ) } d j / i + A y 0 y u - / yofYo(yo)dy0 - (1 - 6Yo)yi. 
Jyi Jy*,u Jyi 

(ii) Consider the case where the data generating process exhibits 1 — 6Yo > XYl. Define y$ t and yfi u 

as 

ry5,i 

iyi 

fy<>,i 
/ min {pYo (j/o), qYo (yo)} dy0 = 1 - <Sy0 - Ay,, 

Jyi 
ryu 

\ min{pY o(j/0), qYo(yo)} dy0 = 1 - <Sy0 - XYl. 
JyZ .. 

Then the tight bounds of the average treatment effects are 

ryu r ryu 
/ yih\(yi)dy\ + (l-SYl)yi- / yofva(yo)dyo - yo min{pY o(y0) , qYo(y0)} dy0 - XYlyu 

Jyi J Jy5,u 

< E(Y1)-E(Y0) 
rVu r ryo.i 

< / VifvAvildyi + (1 - 8Yl)yu - / yofYo(yo)dy0 - / y0min{pY0(yo),qY0(yo)}dyo-XYlyi. 
Jy, J Jy, 

(Hi) If the data generating process exhibits 1 — SYo — XYl, then the tight bounds of the average 

treatment effects are 

(l-6Yl)yi+ / y1fYl(y1)dfi- / y0fYo(yo)dfi - (1 - SYo)yu 

Jy Jy 
< E(Y1)-E(Y0) 

< / y\fvAy\)d^ + (1 - SYl)yu - (1 - 5Yo)yi - / y0fYo(y0)dfj,. 
Jy Jy 

This proposition provides the closed form expression of the tight bounds for the average t reatment 

effects under RA-causal. Note tha t the outer bounds for the average t rea tment effects considered in 
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(1.3.2.13) become tight when the data generating process satisfies 1 — <5y0 = XYl. In particular, when 

the data generating process satisfies pYl{y\) > 9Yi(z/i) M"a-e- an<^ QY0{yo) > PY0(yo) A*-a.e. then, 

1 — 5y0 = Ayx holds and the tight bounds for the average treatment effects take an identical form to 

the outer bounds. Furthermore, since in the case ofpYl(yi) > qYl(yi) M-a.e., the tight E{Y\) bounds 

under independence restriction coincides with the tight E{Y\) bounds under the mean independence 

restriction E{Y\\Z) = E(Y\) (see Appendix 1.A.3), and so is for E(YQ). Therefore, we can see that 

in this case imposing RA-causal does not provide further identification gain relative to the mean 

independence restriction of Y\ and YQ with respect to Z. 

If 1 — <Sy0 ^ A^, then the outer bounds are no longer tight and the tight bounds are the ones 

given in this proposition. It can be seen that the width of these bounds is shorter than the width 

of the outer bounds. Specifically, the width of the tight bounds for the case of (i) 1 — 5Yo < XYl is 

/•»« rv'.i 
(Ay0 + 1 - SYo)(yu~yi)+ 2/1 min {pYl{y\), qYl (vi)} dj/i - / J/i min {pYl (yx), qYl (yx)} dyx, 

Jy",u •'3/1 

(1.3.3.16) 

and if min {pYl (yi), qYx (yi)} does not have probability masses on yi and yu, this is strictly smaller 

than 

(Ay0 + 1 - SYo)(yu - y{) + (XYl + 8y0 - \){yu - yt) 

= (Ay 0 +A y i ) (y u - j / j ) 

= (2 - 6Yl - 5Yo)(yu - yi) 

= the width of the outer bounds. 

To illustrate a situation where the tight bounds are substantially narrower than the outer bounds, 

consider the data generating process with 1 — <5y0 < XYl and 1 — 5Yo — 0, i.e., fYo is identified. Then, 

since y\u= yi and y\i= yu hold, the last two terms in (1.3.3.16) cancel out and the width of the 

tight bounds is Ay0(?/„ — y{) and it is shorter than the width of the outer bounds by XYl(yu — yi), 

which can be substantial if XYl is relatively large, i.e., pYl and qYl are similar. 

Except for the case (iii), the above formulae are valid only for continuous outcome variables. 

When the support of y is allowed to contain discrete points, the closed form expression for the tight 

bounds needs a slight modification. 

In case of (i) 1 — 5Yo < XYl, we define 

V*U = 'mi\v- min{pyi, qYl }dfi > XYl + SYo - 1 I , 
[ J[n,y] J 

2/i,« = sup\y- min{pyi, qYl }dfi > XYl + 5Yo - 1 I . 



25 

Then, it can be shown that the density of Y\ that yields the cdf upper bound is 

j.upper^ ^ xYol{yi = yij + MXyi) + 1(2/1 e [yi,yi,i]}^n{pYAyi),9Yi(yi)} 

- / min{pyi, qYl }dli - [XYl + SYo -l])l{y1 = y*j}, 
\J\vi.v?,] J 'lvi,yt,i 

and the one that yields the cdf lower bound is 

fYl
wer(vi) = *Y01{V1 = yuj + Mvi) + Hvi e [j/i%.y«]}min{pyi(i/iW l(l/i)} 

- / min{pyi, qYl }dfi - [XYl + 5Yo - 1] 1{J/I = y*lu}. 

Hence, the tight bounds for E(ya) is obtained as JyyifY
pper(yi)dfi < E(Yi) < JyyifY™er(yi)dfi. 

Note that the tight bounds for E(Yo) do not change even when we allow discrete points in the 

support. Hence, the closed form expression of the tight bounds for average treatment effect is 

/ yifY
per{yi)dii- \ yofYo(yo)d^- (l -sYo)yu 

Jy Jy 
< E(Yi)-E(Yo) 

. < f vi fYl
wer(2/1W - / vofvo (vo)dfi -{I-5Y0)yi 

Jy Jy 

A similar modification is needed for case (ii) 1 — 5Yo > XYl. Define 

2/o,J = inf < 2/ = / min{pYo,qYo}dfi > 1 - SYo - XYl \ , 
[ •/[»,»] J 

J/o,« = suply: mm{pYo,qYo}dfi> 1 - 5Yo - XYl \ . 
{ J[y,yu] J 

Then, it can be shown that the density of y0 that yields the cdf upper bound is 

fY
Pper(yo) = XYll{y0 = yi} + fYo(yo) + l{j/o G [jtt.j/iyllmin{pYo(y0),qYo(yo)} 

- I / min{py0,9Yb}d/i - [1 - SYo - XYl] l{y0 = y^i}, 

and the one that yields the cdf lower bound is 

fYo
wer(yo) = Ayil{y0 = 2/«} + MM) + l{2/o e [yo,u,yn]}min{pYo(y0),qYo(y0)} 

- I / min{py0, qYo}d/x - [1 - 6Yo - XYl] I l{y0 = y^J. 

file:///J/vi.v
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Hence, the tight bounds for E(Y0) become Jyy0f^
per(y0)dfi < E(Y0) < fyyoft0

wer(yoW. As a 

result, the tight bounds for average treatment effect is 

/ yifYl(yiW + (l - SYl)yi - f y0fYlwer(yoW 
Jy Jy 

< E(Y1)-E(Y0) 

< / yifY1(yi)dfi + (l-SYl)yu- / yofY^per(yo)dfj.. 
Jy Jy 

Note that when outcome variables are binary, these tight bounds coincide with the treatment effect 

bounds obtained in Balke and Pearl (1997). 

1.4 Concluding Remarks 

This paper derives the identification region of the outcome distributions in the single missing outcome 

model and the counterfactual causal model under the restriction of statistical independence of an 

instrument and outcomes. 

For the single missing outcome model, we extend the identification region obtained in Manski 

(2003) to a general setting where the outcome variable can be continuous. Using the envelope den­

sity, we provide an analytically tractable representation of the identification region for the outcome 

distribution under the restriction of instrument independence. We derive the integrated envelope, 

which is the key parameter for examining the emptiness of the identification region. Since the 

empty identification region implies misspecification of the exclusion restriction, this parameter is 

useful for testing instrument independence in the selection model. Chapter 2 discusses the use of 

the integrated envelope for the purpose of testing the instrument exclusion restriction. 

We analyze the single missing outcome model with heterogeneities in the selection response to an 

instrument. We show that a stronger exclusion restriction — that the instrument is jointly indepen­

dent of the outcome and the selection heterogeneities — does not further narrow the identification 

region. In addition, we show that threshold crossing selection with an additive error constrains the 

data generating process, but does not further narrow the identification region. These identification 

results imply that, regardless of we specify the selection equation or whether or not we are explicit 

about the selection heterogeneities, the envelope density always provides maximal identifying in­

formation for the outcome distribution once the instrument is assumed to be independent of the 

outcome. 

We extend this identification framework to the counterfactual causal model with a binary treat­

ment and derive a closed-form expression for the identification region of the potential outcome distri­

butions under the instrument independence restriction. We show that the independence restriction 

is in terms of independence between instrument and (Yi, Yo), the set of potential outcome distribu­

tions that cover the envelope densities of treatment and control outcomes provide the identification 

region for the potential outcome distributions. We show that, as the independence restriction is 
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strengthened to instrument's joint independence of (Yi, Yo) and the selection heterogeneities, we 

can obtain a narrower identification region than the case of the weaker independence restriction. 

This finding implies that the additional independence restriction of instrument and the selection 

heterogeneities provide further identifying information of the potential outcome distributions. We 

characterize the condition for the data generating process under which such identification gain arises. 

Based on the obtained identification region, we derive tight bounds for the average treatment effect 

under the instrument exclusion restriction. If we consider the case of binary outcomes, our tight 

bounds for the average treatment effect produce the same bounds as in Balke and Pearl (1997). In 

this sense, our results can be seen as one generalization of Balke and Pearl's result to continuous 

outcomes. 

The identification region in the single missing outcome model considered in this paper can be 

straightforwardly extended up to a multi-valued discrete instrument. On the other hand, the 

identification region of the counterfactual outcome distributions considered in this paper is limited to 

the case of a binary treatment and a binary instrument. Under a weaker restriction that instrument 

is solely independent of (Yi, Yo), an extension to a multi-valued instrument case is straightforward. 

However, under the stronger restriction of instrument independence, it is not clear yet how the 

identification region looks like when the model contains multiple treatments and a multi-valued 

instrument. 

l .A Appendices 

l . A . l Proof of Proposit ion 1.2.1 

(i) Let P and Q be given by data and assume S(P, Q) < 1. Let Ff™(P, Q) = {fy : fY(y) > /(*/) fJr 

a.e.}. For an arbitrary fy e J~f™(P, Q), we shall construct a joint probability law of (Y, D, Z) that 

is compatible with the data generating process P and Q, and ER. Since the marginal distribution 

of Z is irrelevant to the analysis, we focus on the conditional law of (Y, D) given Z. Let B be an 

arbitrary Borel set. In order for the conditional law of (Y, D) given Z to be compatible with the 

data generating process, we must have 

P r ( Y e £ , £ > = l |Z = l) = f p(y)dfi, 
JB 

Pr(Y e B, D = \\Z = 0) = / q(y)dti. 
JB 

Pin down the probability of {Y G B,D = 0} given Z to 

Pr(YGB,D = 0\Z = l) = l[fy{y)-p{y)W, 
JB 

PT(YGB,D = 0\Z = 0) = [ [fy(y) - q(y)W. 
JB 
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Note that the constructed probabilities are nonnegative by construction and they satisfy ER since 

Pr(Y e B\Z = 1) = Pr (y £ B\Z = 0) = fBfY(y)dfi. Hence, ^f™(P,Q) is contained in the 

identification region under ER. 

On the other hand, consider a marginal outcome distribution fY $ T*. Then, there exists a 

Borel set A with ^(^4) > 0 such that 

f[fY(y)-p(y)W<0 or f[fY(y)-q(y)]dfi<0. (1.1.1.17) 
J A J A 

Note that the probabilities of {Y e A,D = 0} given Z are written as 

Pr(Y eA,D = Q\Z = l) = Pr(Y e A\Z = 1) - Pr(Y £ A,D = 1|Z = 1) 

= J[fY\z{y\Z = l)-P{y)W 

Pi{Y £A,D = 0\Z = 0) = P r ( Y e A|Z = 0) - Pr(Y £ A,D = 1|Z = 0)' 

[/y|z(»|£ = 0)-«(y)]dM /J 
If ER is true, fY\z = fy must hold. Then, by (1.1.1.17) one of the above probabilities are negative, 

and therefore we cannot construct a conditional law of (Y, D) given Z that is compatible with the 

data generating process and ER. 

Thus, we conclude Te£"{P, Q) is the identification region under ER. (ii) is obvious. 

1.A.2 A Comparison with the cdf bounds in Blundell et al. (2007) 

In this appendix, we compare the tight cdf bounds based on the envelope density (1.2.2.5) with the 

cdf bounds used in Blundell et al. (2007). We shall show that the latter do not always yield the 

tightest bounds. 

Based on a moment restriction for the cdf of Y, FY\z{y\z) = E(I{Y € (—oo,y]}\Z — z) = 

E(I{Y £ (—oo,?/]}) = FY(y), Blundell et al. (2007) use the mean independence bounds of Manski 

(1994) to construct the bounds for FY(y), 

max{P((-oo,y]),Q((-oo,y])} < FY(y) (1.1.2.18) 

< min{P((-oo,2/]) + PmiS,Q((-°o,y}) + Qmis} • 

These bounds, which we call the naive cdf bounds hereafter, are not necessarily the tightest possible 

under ER. The reason is that the naive cdf bounds only utilize the restriction that the probability 

of the event {Y < y) does not depend on Z. This restriction is certainly weaker than the statistical 

independence restriction since the full statistical independence requires that Pr(Y e A\Z) for any 

subsets A cy does not depend on Z. 
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For stating the main result of this section, we define the dominance relationship between p(y) 

and q(y). 

Definition l . A . l (dominance in density) (i) The density p(y) dominates q(y) on A c J7 if 

p(y) > q(y) holds /i-a.e. on A. 

(ii) p(y) is the dominating density ifp(y) dominates q(y) on y. 

p(y) is the dominating density if p(y) covers q(y) on the entire outcome support. If this is the 

case, q(y) does not provide identifying information for / y further than p(y) because the maximal 

area under / y is occupied by p(y) alone. The existence of the dominance relationship guarantees 

the interchangeability between max operation and integration, that is, 

/ max{p(y),q(y)}dn = max\ / p{y)dy., I q(y)d^ 
JA UA JA 

if and only if p(y) dominates q(y) on A 

This fundamental identity provides the following tightness result of the naive cdf bounds. 

Proposition l . A . l (tightness of the naive cdf bounds) (i) The naive cdf bounds aty £ y are 

tight under ER if and only if either p(y) or q(y) dominates the other on (—oc,y] and either p(y) or 

q(y) dominates the other on (y,oo). 

(ii) The naive cdf bounds are tight under ER for all y £ y if and only if the data generating process 

reveals the dominating density. 

Proof, (i) Fix y € y. For the lower bound of the naive cdf bounds, 

max < / P{y)dfj., q{y)dfJ.\ < / max{p(y),q(y)}d^ 
[J(-oo,y] J(-oo,y] J J(-oo,y] 

= f KvW 
J(-oo,y] 

= the lower bound of the tight cdf bounds. 

Note that the inequality holds in equality if and only if either p(y) or q(y) dominates the other on 

(-00, y]. 
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Figure 1.7: In the left-hand side figure, the naive cdf bounds at y* are tight. On the other hand, 
when p(y) and q{y) are drawn as in the right-hand side figure, the naive cdf bounds are not tight at 
any y &y (Proposition B.l). 

For the upper bound of the naive cdf bounds, 

mm' 

nun 

m S / P(y)dn + Pmis, q(y)d(j, + Qmis> 

in 1 1 - / p(y)d/j,, 1 - / q(y)dn I 
[ J(y,°°) J(y,°°) ) 

= 1 - max i / p(y)d[i, / q(y)dfj. \ 
[J(y,oo) J(y,oc) J 

> 1 - f /(y)dM 

= f l(y)dfi + l-S 

— the upper bound of the tight cdf bounds, 

where the inequality holds in equality if and only if either p{y) or q{y) dominates the other on 

(y, oo). 

The statement (ii) clearly follows from (i). • 

When we employ the naive cdf bounds, we would refute ER if the lower and upper bound of 

the cdf cross at some y. This refuting rule is as powerful as the one based on the integrated 

envelope if the condition in Proposition B.l (i) holds at some y. However, this holds in a rather 

limited situation where some left unbounded intervals (—oo,y] or right unbounded intervals (y, oo) 

can correctly divide y into {y : p{y) > q(y)} and {y : p(y) < q(y)} (see Figure 1.7). 
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1.A.3 Identification gain of E R relative to M I 

Consider the bounded outcome support y — [yi,yu]. Manski (1994) derives the tight E(Y) bounds 

under MI, 

max^ / yp(y)dfj, + yiPmis, / yq(y)dfi + yiQmis > (C.l) 

< E(Y) < min i / yp(y)d[j, + yuPmis, j yq(y)d^i + yuQmis > • 

The next proposition shows the necessary and sufficient condition for the MI mean bounds (C.l) 

to coincide with the ER mean bounds (1.2.2.6). 

Proposition 1.A.2 (Identification power of ER relative to MI) The MI mean bounds (C.l) 

coincide with the ER mean bounds (1.2.2.6) if and only if the data generating process reveals a 

dominating density on (yi,yu]
 and [yi,yu)-

Proof. The lower bound of the MI mean bounds is written as 

maxi / yp(y)dfi + yi (1 - / p{y)dlA , / yq(y)d(i + yi 11 - / q(y)d^i) I 

= max \ (y~ Vl)v{y)dti, (y - yi)q(y)dfi i+yi 

< (y- yi)f(y)dfj. + yi 
Jy 

= f yl(y)dfi + (l-S)yl 
Jy 

— the lower bound of the ER mean bounds, 

where the inequality holds in equality if and only if either (y — yi)p(y) > (y — yi)q(y), /i-a.e. on 

[yi,yu] or (y - yi)p(y) < (y - yi)q(y), M"a-e- o n [yuVu] holds. This condition is equivalently stated 

as the existence of the dominating density on (yi,yu\ since the necessary and sufficient condition for 

(y - yi)p(y) >{y~ yM(y), M-a-e- on [yi,yu} is p(y) > q(y) /x-a.e. on (yi,yu]. 

Similarly, for the upper bound of the MI mean bounds, we have 

mm-ml yp(y)dn + yu / (1 -p(y))dp., / yq(y)dfj, + yu / (1 - q{y))dp. [ 

\ (yu - y)p(y)dii, / (yu - y)q(y)d(j, I 

yu - / {yu - y)l(y)dfj. 
Jy 

= / yl(y)dfj. + (i-S)yu 
Jy 

= yu- max 

> 

iy 
— the upper bound of the ER mean bounds, 
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where the inequality holds in equality if and only if either (yu — y)p(y) > (yu — y)q(y) /i-a.e. on 

[yi,Vu] or (yu - y)p(y) < {yu - y)q(y) A*-a-e. on [yi,yu] is true. Similarly to the lower bound case, 

this is equivalent to the existence of the dominating density on [yi, yu). 

By combining the results for the lower and upper bound, we conclude that the MI mean bounds 

coincide with the ER mean bounds if and only if the data generating process reveals a dominating 

density on (yi,yu] and [yi,yu)- • 

This proposition demonstrates that when we observe the dominating density, that is, either p(y) 

or q(y) covers the other on the entire y, ER does not provide narrower bounds for E(Y) than MI. 

The intuition of this proposition is given as follows. When we construct the ER mean bounds, we 

allocate the amount of unidentified probability, which is given by one minus the integrated envelope 

1 — 6, to the worst-case or best-case outcome. Consequently, the width of the mean bounds is 

determined by the amount of unidentified probability, (yu — yi)(l — 6). On the other hand, when 

we construct the MI mean bounds, we first construct the bounds for E{Y) from P and Q separately 

and then, we take the intersection of these. The width of these two bounds are therefore determined 

by Pmis and Qmis- If one of them is equal to 1 — 8, it implies that we cannot reduce the amount of 

unidentified probability by strengthening MI to ER. Therefore the ER mean bounds coincide with 

the MI mean bounds if min{Pmis, Qmis} = 1 — 5. A sufficient condition for this is the presence of 

the dominating density on y. Note that, when Y is binary, ER mean bounds and MI mean bounds 

always coincide since these restrictions are equivalent. 

1.A.4 Proof of Proposit ion 1.2.2. 

The next lemma, which will be used in the proof of Proposition 1.2.2, summarizes the implication 

of imposing RA. 

Lemma l . A . l (i) If a joint probability distribution on (Y,T,Z) satisfies RA, then, the folio-wing 

identities hold fi-a.e., 

P(y) = hc(y) + ha(y), 

q(y) = hd(y) + ha(y), 

fv(y) - p(y) = hd(y) + hn(y), 

fr(y) - q(y) = K{y) + K{y), 

where ht(y) = /y,r(y, T = t),t = c, n, a, d. 

(ii) Conversely, given a data generating process P and Q, and a marginal distribution of outcome 

fy, if there exist nonnegative functions ht(y), t — c,n,a,d, that satisfy (*) fi-a.e., then we can 

construct a joint probability law on (Y, T, Z) that is consistent with the data generating process and 

RA. 
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Proof. Assume that a population distribution of (Y,T,Z) satisfies RA. Then, for B G B(y), 

P(B) = Pi(Y £B,D = 1\Z = 1) 

= Pi(YeB,Te{c,a}\Z = l) 

= Pr(Y G B,T = c\Z = 1) + P r ( y e B,T = a\Z = 1) 

= P r ( r €B,T = c)+Pr(YeB,T = a). 

The second line follows since the event {Y € B, D = \\Z = 1} is equivalent to [Y G B, T G {c, a}\Z = 1} 

and the fourth line follows by RA. As the density expression of the above, we obtain 

P(y) = fY,T(v, T = c) + fY,T(y, T = a), 

which corresponds to the first identity of (*). We obtain the second constraint in a similar manner 

and we omit its derivation for brevity. As for the third constraint in (*), 

PT(YGB)-P(B) = P r (y e £ | Z = 1) - Pr(y eB,D = l\Z = l) 

= P r (y eB,D = 0\Z = l) 

= P r (y GB,Te{n,d}\Z = l) 

= P r (y e B , T = n ) + P r ( y eB,T = d) 

We obtain the fourth constraint in a similar manner. This completes the proof of the first part of 

the lemma. 

To prove the converse statement of the proposition, suppose that, for a given data generating process 

P and Q and a marginal distribution of /y , we have nonnegative functions ht(-) for t = c,n,a,d 

satisfying the constraints (*). Since the marginal distribution of Z is irrelevant to the analysis, we 

focus on constructing the conditional law of (Y, T) given Z. Let us specify both Pr (y € B,T = 

t\Z — 1) and Pr (y e B,T = t\Z = 0) to be equal to Jght(y)dfi > 0, t = c,n,a,d. These are 

valid probability measures since ^2tPr(Y G y,T = t\Z = z) = ^2tJyht(y)d^, = Jy fy(y)dfi = 1. 

This probability law satisfies RA by construction. Furthermore, the constructed joint distribution 
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is compatible with the data generating process and the proposed fy since 

Pi(YeB,D = l\Z = l) = Pi(Y e J3,T = c|Z = l ) + P r ( F eB,T = a\Z = l) 

= [ hc(y)dn + f ha{y)dfi = P(B), 
JB JB 

Pr (y &B,D = 1\Z = 0) = PT(Y £B,T = d\Z = 0) + Pi(Y e B,T = a\Z = 0) 

hd(y)dn+ / ha(y)dfj. = Q(B), 
B JB 

P r ( F e B ) = ^ P r ( y £B,T = t) 
t=c,n,a,d 

= Yl / ht(v)dV= / fr(y)dfj.. 
t=c,n,a,djB JB 

This completes the proof of the converse statement. • 

By the converse part of the above lemma, the identification region of fy under RA is formed 

as the collection of /y ' s for each of which we can find the feasible nonnegative functions ht(-), 

t = c,n,a,d satisfying (*). Recall that, when we construct IRfy(P,Q), we only concern whether 

fy(y) is greater than or equal to p(y) and q(y). Here, we need to concern the existence of the 

nonnegative densities ht(-), t — c,n,a,d, compatible with the constraints (*). 

Proof of Proposition 1.2.2. Given a data generating process, p(y) and q(y), pick an arbitrary 

fy € tFJ£"{P,Q). Figure 1.8 illustrates the proof of this redundancy result. We can find four 

partitions in the subgraph of fy(y), which are labeled as C, N, A, and D. Consider imputing the 

type-specific density ht(y) as the height of one of the proposed partitions, 

C 

N 

A 

D 

hc{y) = l(y) - q(y)i ' 

hn(y) = fy(y)-£(y), 

ha(y) =mm{p(y),q(y)}, 

hd(y) = f(y)-p(v)-

Note that the obtained ht(y), t — c,n,a,d, satisfy the constraints (*) and they are nonnegative by 

construction. This way of imputing the four densities is feasible for any fy G ^Ff^"{P,Q)- By 

Lemma l.A.l (ii), we conclude Ffnv(P, Q) is contained in the identification region of fy under RA. 

For fy £ ^fYV(P,Q), if there exists a population compatible with (P,Q) and RA, then the third 

and fourth constraints of Lemma l.A.l (i) imply fy(y) —p{y) > 0 and fy(y) — qy(y) > 0 /x-a.e. and 

this contradicts fy ^ ^ "" ( -P , Q). Hence, the identification region of fy under RA is contained in 

Te™{P-, Q)- This completes the proof of the invariance result. • 
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Figure 1.8: A graphical illustration of the invariance result of the identification region under RA 
(Proposition 2.2). 

1.A.5 Proof of Proposit ion 1.2.3. 

Provided that the population distribution satisfies RA, threshold crossing selection with an additive 

error is equivalent to the monotonicity of Imbens and Angrist (1994) (Vytlacil (2002)). Thus, the 

identification gain of imposing the additively separable threshold crossing formulation is examined 

by adding Imbens and Angrist's monotonicity to our analysis.15 In this appendix, we refer to the 

monotonicity of Imbens and Angrist, or equivalently, threshold crossing selection with an additive 

error, as the monotonic selection response to an instrument fMSR, hereafter,). Throughout the 

analysis, we assume Pr(£> = \\Z = 1) > Pr(£> = \\Z = 0). This is equivalent to assuming that the 

observed selection probability is nondecreasing with respect to Z. Since we can always redefine the 

value of Z compatible with this assumption, we do not lose any generality by restricting our analysis 

to this case. 

Restriction-MSR 

Monotonic Selection Response to an Instrument (MSR): Without loss of generality, assume 

Pi(D = 1\Z — 1) > PT(D — \\Z = 0). The selection process satisfies MSR if no defiers exist in the 

population Pr(T = d) = 0. 

From the partial identification point of view, the implication of MSR is summarized in the next 

proposition, which covers Proposition 1.2.3 in the main text in the statement (iii). 

Proposition 1.A.3 (Existence of the dominating density under RA and MSR) Suppose that 

a population distribution of (Y, T, Z) satisfies RA and MSR. 

(i) Then, p(y) is the dominating density. 

15Note that the monotonicity of Imbens and Angrist is discussed in the context of the counterfactual causal model. 
Although our analysis is on the missing data model with a single outcome, we can consider an analogous restriction to 
the monotonicity since the monotonicity only concerns the population distribution of the potential selection indicators. 
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(ii) The MI mean bounds (1.2.2.6) coincide with the ER mean bounds (C.l). 

Conversely, for a given data generating process, P and Q, 

(Hi) The identification region under RA and MSR is given by 

{ Jr^"v(P,Q) ifp(y) is the dominating density 

0 if p(y) is not the dominating density 

Proof of Prposition 1.A.3 . (i) Prom the first two constraints in (*), ht(y) = 0 implies 

p(y) — l{v) = hc(y) > 0. (ii) This follows from Proposition l.A.2. (iii) Suppose that p{y) is the 

dominating density. For an arbitrary fy £ Ff"v(P,Q), we want to show that there exists type 

specific nonnegative functions ht(y), t = c,n,a,d, that are compatible with the constraints (*) and 

MSR, i.e., the defier's density hd(y) is zero. Consider the following way of imputing the type specific 

densities, 

hc(y)=p(y)-q(y), 

K(y) = fy(y) - p(y), ^ 1 5 i g . 

K{y) = q(y), 

hd(y) = 0. 

These densities satisfy the constraints (*) and as in the proof of the converse statement of Lemma 

l.A.l, they yield a joint distribution of (Y,T,Z) that meets RA and MSR. Since this way of 

constructing ht(y) is feasible for any fy € Ff™(P,Q), we claim that Fj™(P,Q) is contained in 

the identification region under RA and MSR. For fy $. !Ff"v(P,Q), fy is not contained in the 

identification region because it is not compatible with RA as we showed in the proof of Proposition 

1.2.2. Hence, we conclude that Fef™{P,Q) is the identification region of fY under RA and MSR. 

The emptiness of the identification region when p(y) is not the dominating density is implied by (i) 

of this proposition. • 

This proposition shows that when RA and MSR hold in the population distribution of (Y, T, Z), 

then the data generating process must reveal the dominating density. The presence of the dominat­

ing density makes ER redundant relative to MI in terms of the width of E(Y) bounds (Proposition 

l.A.2). 

If the data generating process reveals the dominating density, then, imposing MSR does not 

further narrow IRfY(P,Q). This is because MSR does not constrain how to impute the missing 

outcomes. To see why, consider the configuration of p(y) and q(y) and an arbitrary fy(y) as shown 

in Figure 1.9. In (1.1.5.19), we pin down the type-specific densities, hc(y), ha(y), and hn{y) to the 

height of the area C, A, and N of Figure 1.9. This implies that each fy G T^V{P, Q) is obtained 

by the unique imputation of the never-taker's density without violating MSR. Hence, we obtain the 

identification region under RA and MSR as Fj™{P, Q). 
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friy),--. 

\ ,p(y) 

Figure 1.9: If RA and MSR are satisfied, we must observe the above configuration of the densities 
(Proposition 1.A.3). A indicates the subgraph of q{y). The subgraph of p(y) minus that of q{y) 
and the subgraph of fy(y) minus that of p(y) are labeled as C and N, respectively. 

1.A.6 Extension to a multi-valued discrete instrument 

This appendix provides a framework that covers the single missing outcome model with a multi­

valued instrument. 

Assume that the support of Z consists of K points denoted by Z = {z\,..., ZK}. Denote the 

probability distribution of Ydata conditional on Z = Zk by Pk = (Pfc(-), Pk,mis), 

Pk(A) = Pr(Y€A\D = l,Z = zk)Pi(D=l\Z = zk), 

Pk,mis = Pl(D = 0\Z=Zk). 

We represent the data generating process by V = (P i , . . . ,PK)- We use the lowercase letter pk to 

stand for the density of Pk on 3̂ - The envelope density is denned as 

f{y) = max{pk(y)}. 
— k 

Analogous to the binary instrument case, we say pk(y) is the dominating density on A if for all I ^ k, 

Pk{y) >Pi(y) holds /x-a.e. on A. 

Results similar to Proposition 2.1, B.l, and C.l are obtained even when Z is multi-valued. Proofs 

proceed in the same way as in the binary instrument case and are therefore omitted for brevity. We 

notate the identification region of /y , {/y : fy(y) > f{y) £t-a.e.}, by IRfY(P). 

In order to demonstrate a generalization of Proposition 2.2 (invariance of IRfY(V) under RA) 

and D.2 (existence of the dominating density under RA and MSR), we construct the type indicator 

T in the following manner. For the if-valued instrument, individual's selection response is uniquely 

characterized by an array of K potential selection indicators Dk, k = 1 , . . . , K. Dk indicates whether 

the individual is selected when Z is exogenously set at Zk- In total, there are 2K number of types 
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in the population and we interpret T as a random variable indicating one of the 2K types. Let T 

be the set of all types and define Tk C T be the set of types with Djt = 1, 5 = {t € T : D j = 1}. 

7jt is interpreted as the subpopulation of those who are selected when Z = zj.. 

Similarly to the binary Z case, RA is stated that Z is jointly independent of (Y, T). We keep 

the notation ivt — Pr(T = t) and gt(y) = fy\r(y\T = t). Analogous to the equations (*), if the 

population satisfies RA, then, for all k = 1 , . . . , K, we have 

Pk{y) = T,terk
irt9t(y), 

fv(y) - Pk(y) = E t e r \ r f e *t9t(y), 

The converse statement in Lemma D.l holds as well for the multi-valued instrument case. That is, 

for a given data generating process V and a marginal outcome distribution fy, if we can find the 

nonnegative functions {ht(y) : t £ T} that satisfy, for all k — 1 , . . . , K, 

Pk{y) = Y,teTk
 ht(y), ~~ 

fv(y)-Pk(y) = T,teT\Tk
 ht(y), 

then we can construct a joint distribution of (Y, T, Z) that is compatible with V and RA. A proof 

of this follows in a similar manner to the proof of Lemma D.l and we do not present it here. 

The redundancy of RA holds even when Z is multi-valued. 

Proposition 2.2'. For a multi-valued instrument, IR/Y (V) is the identification region under RA. 

Proof. When IRfY(V) is empty, it is obvious that the identification region under RA is empty. 

Hence, assume IRfY (V) is nonempty. 

Pick an arbitrary / y G IRfY {V). Our goal is to find the set of nonnegative functions {ht{y)}teT 

that are compatible with the constraints (**). 

Let 5^ be the subgraph of Pk(y) and <S£ the supgraph oipk{y), i.e., Sk = {(y,f) e j x K+ : 0 < 

/ < Pk(y)} and S£ = {(y,f) G y x R + : / > pk(y)}. We denote the subgraph of fY by 5 / y . 

Note that, by the construction of IRfY(V), Sk C SfY holds for all k. Using the K subgraphs 

{Sk, k = l,..., K}, SfY is partitioned into 2K disjoint subsets. Each of these is represented by the 

K intersection of the subgraphs or supgraphs of Pk{y) such as 5i fl 5 | n • • • fl SK f~l SfY. 

By noting that each t is one-to-one corresponding to a unique binary array of {Dk : k = 1,..., K}, 

we define a subset A(t) c <S/y by assigning one of the disjoint subsets formed within SfY, 

A(t)=( n 5 0 n ( n 5nn<%-
\l:D,=l J \l-:D,=0 J 

Let us fix k. Note that the set of types Tk = {t G T : Dk = 1} and T \Tk = {t G T : Dk = 0} both 
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contain 2K l distinct types. Consider taking the union of A{t) over t € 7]t and t GT\Tk, 

• ( j^w.= U \^n\ n snn[ n 5 n n ^ . (E-1) 

u AW = u f ^ n f n < s ' )n f n 5 / c ) n 5 / v l - (E-2) 
t€T\Tfc teT\Tk \ Wfc:D, = l / \Z#A::.D,=0 / / 

In the above expressions, the subset I f] Si fl I f] «Sf ] D <S/y can be seen as one of the 

disjoint subsets within SfY partitioned by the (K — 1) subgraphs S\,..., Sk-i, Sk+i,..., SK- Since 

each t G 7^ one-to-one corresponds to one of the partitioned subsets I p | Si I n I f] Sf 1 n 

SfY and each t € T\Tk also one-to-one corresponds to one of them, the union in the right hand 

side of (E.-l) is the union of mutually disjoint and exhaustive partitions of Sk n SfY. Therefore, the 

identities (E.l) and (E.2) are reduced to 

(J A(t) = sknSfY=Sk, 
t€Tk 

U A{t) = Sc
knSfY. 

ter\Tk 

For a set A € y x E + , define the coordinate projection on E + by Tly(A) = {/ e 1 + : (y, f) e A}. 

Since ^4(£)'s are mutually disjoint, applying the coordinate projection to the above identities yields 

\Jny(A(t)) = ny(sk), 
tETk 

| J uy(A(t)) = ny(S
c
knsfY). 

t€T\Tk 

We take the Lebesgue measure Leb(-) to the above identities. By noting Hy(A(t)) are disjoint over 

t, Leb[Uy(Sk)} =Pk(y), and Leb[Hy(S%.r\SfY)} = fY(y) -Pk(y), we have 

J2 Leb[Tly(A(t))} = Pk(y), 
terk 

J2 Leb{TLy(A(t))} = fY(y)-Pk(y). 
t€T\Tk 

These equations suggest us to pin down each ht(y) to Leb {Hy(A(t))}. Each ht(y) is by construction 

nonnegative and we can see they agree with the constraints (**). Since k is arbitrary, this completes 

the proof. • 

For a generalization of Proposition D.2, we without loss of generality assume that k < I implies 

Pr(£>fc = 1) < P r ( A = 1). 
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Restriction-MSR (Multivariate Z) 

Without loss of generality, assume Pr(JDfc = 1) < Pr(£)jt+i = 1) for all k = 1 , . . . , (K — 1). The 

selection process satisfies MSR if Dk < Dk+\ for all k = 1 , . . . , {K — 1) over the entire population. 

Proposition D . 2 \ Suppose that a population distribution of (Y, T, Z) satisfies RA and MSR. 

(i) Then, the data generating process V satisfies 

Pi(y)<P2(y) <,••• , <PK{V) V-a-e-

(ii) The MI mean bounds 

\ / yPk(y)dfi + yiPk({mis}) I < E(Y) < nun I / ypk(y)dfi + yuPk({mis}) \ max • 
k 

are identical to the ER mean bounds (1.2.2.6). 

Conversely, given the data generating process V = ( P i , . . . , PK), the identification region under 

RA and MSR is given by 

\ IRSY(P) if Pi(y) < P2(y) <,•••,< Px(y) l*-a.e. 

1 0 otherwise. 

Proof, (i) From (**), we have 

Pk(y) = 53 *t9t{y)+ 5Z *t9t(y), 
t€Tkr\Tk+1 teTkn(T\Tk+i) 

Pk+i{y) = 53 7rt5t(y)+ Yl *t9t(y)-
t€Tk+1DTk teTk+1n(T\Tk) 

Note that the types in % n (T \ Tk+i) have Dk = 1 and Dk+i = 0 and they do not exist in the 

population by MSR. Therefore, YlteT n(T\r ) nt9t(.y) — 0 holds and we conclude 

Pk+i{y) -Pk(y) = XI nt9t(y)>0-
teTk+1n(T\Tk) 

This proposition implies the existence of the dominating density. An application of Proposition C.l 

yields (ii). 

For the converse statement, we assume that the data generating process reveals p\{y) < P2(y) < 

, • • • ,< PK{V) /^-a.e. Let us pick an arbitrary / y £ IRfY(V). We construct a joint distribution 

of (Y, T, Z) that is compatible with RA and MSR. Note that under MSR the possible types in the 

population are characterized by a nondecreasing sequence of K binary variables {Dk}£=1. Hence, 

there are at most (K + 1) types allowed to exist in the population. We use tf, I = 1 , . . . , K, to 

indicate the type whose {Dk}^=1 is zero up to the 1-th element and one afterwards. We denote the 

type whose {Dk}^=1 is one for all k by ig- Note that Ti+i n (T \ 7j) the set of types with Di = 0 
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and -D/+i = 1 consists of only ijf under MSR. Let 

fhi(.y) = Pi(y), ? 

ht;(y) =Pi+i(y)~Pi(y), for l = l,...,(K-l), 
ht*K(y) = fy(y)-PK(y), 

ht(y) = 0, for the rest of t € T. 

This construction provides nonnegative /it(j/)'s. The constructed /it(t/)'s satisfy (**) since for each 

k = 1 , . . . , K, we have 

fc-i 

t€Tfc 1=0 

K 

ter\rfc z=fc 

Thus, we conclude that there exists a joint probability law of (Y, T, Z) that is compatible with the 

data generating process and satisfies RA and MSR. Since this way of constructing ht(yys is feasible 

for any fy € IRfY(V), we conclude that IRfY(V) is the identification under RA and MSR. The 

emptiness of the identification region follows immediately from (i). • 

1.A.7 Proof of Proposit ion 1.3.1 and 1.3.2 

The following lemma are used for the proof of 1.3.1 and 1.3.2. 

Lemma 1.A.2 Let the data generating process P and Q be given: Fix fy1 and fy0 the marginal 

distributions of Y\ and YQ. We can construct a joint distribution of (Y\,Yo,T,Z) that is com­

patible with the data generating process, satisfies RA-causal, and whose marginal distributions of 

Yi and YQ coincide with the provided fy1 and fy if and only if we can find nonnegative functions 
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,d} that satisfy the following constraints fi-a.e. 

PYAVI) 

9Yi(yi) 

PYoiVo) 

QY0(yo) 

IYAVI) - PYAVI) 

JYAVI) - QYAVI) 

fY0(yo) -PYAVO) 

fY0(yo) - qYo(yo) 

/ hYuAyi)dfi 
Jy 

\ hYun(yi)dfi 
Jy 

/ hYl,a{yi)dii 
Jy 

l hYud(yi)dn 
Jy 

= hYuAyi) + hYua(yi), 

= hY1,d(yi)+hYua(y1), 

— hYoid(y0) + hYotn(y0), 

= hYo,c(yo) + hYo%„(y0), 

= hYud(yi) + hYun(yi), 

= hyuC(yi) + hYun(yi), 

= hYo,Ayo) + hYo,a(yo), 

= hYo,d(yo) + hYoia(yo), 

= / hYo,c{yo)d(J., 
Jy 

= / hYotn(y0)dfi, 
Jy 

= / hYota(yo)dn, 
Jy 

= / hYo4(y0)dn. 
Jy 

(1.1.7.20) 

(1.1.7.21) 

(1.1.7.22) 

(1.1.7.23) 

(1.1.7.24) 

(1.1.7.25) 

(1.1.7.26) 

(1.1.7.27) 

(1.1.7.28) 

(1.1.7.29) 

(1.1.7.30) 

(1.1.7.31) 

Proof. First, we prove "if" part of the lemma. Given the nonnegative functions {(hYl>t, hYott), t = 

c,n,a,d} satisfying the above constraints, let irt = fyhYljdfi = JyhYlttdfi > 0 for t 6 {c,n,a,d}. 

We claim that the conditional densities of (Yi, Yo, T) given Z can be proposed as 

fYUY0,T\z(yi,yo,T = t\z = l) = fYl,Yo,T\z(yi,yo,T = t\z = 0) 

{ ^7lflYut(yi)hYo,t(yo) if 7rt > 0, 
0 if 7Tt=0. 

By construction ER-causal is satisfied. The scale constraints (1.1.7.28) through (1.1.7.31) imply 

fYuT\z(yi,T = t\Z = 1) = fYuT\z(yi,T = t\Z = 0) = hYl,t(vi) and fYo,T\z(yo,T = t\Z = 1) = 

fY0,T\z(yo, T = t\Z — 0) = hy0tt(yo)- The constructed probability distributions are compatible with 

the data generating process. For example, the constraint (1.1.7.20) implies 

PYxiVi) = hYuAvi) + hYua(yi) 

= fYur\z(yi,T = c\Z = 1) + fYl,T\z(m,T = a\Z = 1). 

and a similar result holds for pYo, qYl, and qYo. Lastly, this way of constructing the population 

distribution gives the marginal distribution of Yi as J2t=c,n,a,dfyi,Tiyi^) = Y,t=c,n,a,dhYut(yi), 

which by the constraint (1.1.7.20) and (1.1.7.24) coincides with the proposed fYl. A similar reasoning 

also holds for fYo 
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Now, we prove "only if" part. Assume that there exists a population distribution of (Yi,Y0,T, Z) 

that is compatible with the data generating process and RA-causal. Then the constraints (1.1.7.20) 

through (1.1.7.31) must hold with hYl,t(yi) = fy1,T(yi,T = t) and hYo,t(yo) = fy0,T(yo,T = t) for 

each t as we discussed in the main text. Since fYl,r{yi,T = t) and fy0tr{yo,T = t) are nonnegative 

functions with satisfying the scale constraints, the conclusion holds. • 

Lemma 1.A.3 Let 8Yl, SYo) \yi; and XYo be the parameters defined in the statement of Proposition 

1.3.1. 

SYl + SYo + XYl + AYo = 2. 

Proof. 

PT(D = \\Z = 1) + Pr(D = 1\Z = 0) 

On the other hand, 

Pr(Z> = 1\Z = 1) + Pr(U = 1\Z = 0) 

Hence, SYl + XYl —2 — SYo — Ay0 holds. • 

Proof of Proposition 1.3.1. By Lemma 1.A.3, the identification region of (fYl,fy0) under ER-

causal is obtained by identifying the set of a pair of probability densities (fYl, fYo) for each of which 

we can find the nonnegative functions {(hYlj,hYo>t),t = c,n,a,d} satisfying all the constraints. 

Consider the case where (P, Q) reveals 5Yl > 1. Then, for an arbitrary probability density fYl, 

there must exist A c y with fJ.(A) > 0 on which fYl — pYl < Oor fYl — qYl < 0. This precludes 

the possibility that we can find nonnegative h functions satisfying the constraints (1.1.7.20) and 

(1.1.7.21). Hence, 5Yl < 1 is necessary for the identification region to be nonempty. By the same 

reasoning, 8Yo < 1 is also necessary for the identification region to be nonempty. 

Prom now on, we assume that (P,Q) reveals SYl < 1 and SYo < 1. Consider the case of (i) 

1 — <5y0 < XYl. Choose an arbitrary fYl from 

^ (p>Q) = {/vi : /n e ?)7SpiQ)> / m i n {^ ~ &>,>min^'?n}} ^ > XYl +6Yo-l\, 

Jy 

I [max{py i ,qY l}+ min{pYl,qYl}]d/j. 
Jy 
SYI + XYl. 

2 - Pr(£> = 0|Z = 1) + Pr(£> = 0\Z = 0) 

2 - \PY0+ qY0W 
Jy 

2 - / [max{py0, qYo} + min{py0, qYo }]d/x 
Jy iy 

2 - SYo - XYo 
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and choose an arbitrary fYo from F^V{P,Q). Note that T** (P,Q) is nonempty since it always 
l-Sy 

contains fYl = fYl H——^ minjpyj, gy t}. Define a nonnegative function 

9YX (VI) = ? =j min { fYl (ya) - fyjjn), min{pn (j/i), qYl (ui)} } , 
/ y min | / n - .fa, mia{pYl, qYl} j d/x 

and consider the following choices of {(hYlyt, hYott),t = c, n, a, d}, 

hYl,c = PY1 ~ min{pyi, qYl} + gYl, 

hYl,n = fYl - fa_ - gYl, 

hYua = m i n { p y i , q Y l } - 9Y1 , 

hYl ,d = qYi ~ rmn{pYl, qYl} + gYl, 

hYo,c = qv0 ~ min{py0, qYo}, 

hYo,n = min{pYo,qYo}, 

hy0,a = fa0 - fa, 

hy0,d = PYo - min{py0, qYo}. 

Since gYl < min{pyx,qYl} and gYl < fYl — fYl by construction, {hYljt{yi),t = c,n,a,d} are all 

nonnegative functions. It can be easily seen that the constraints (1.1.7.20) through (1.1.7.27) are 

satisfied. Also, by utilizing Lemma 1.A.3, we can check the scale constraints (1.1.7.28) through 

(1.1.7.31) are valid. Hence, we conclude that J=Jy (P, Q) x T^V{P, Q) is contained in the identifi­

cation region under RA-causal. 

Next, consider fYl that does not satisfy Jy min I fYl — fYl, iain{pYl, qYl} \ dfi > XYl + 6Yo — 

1. Suppose that the nonnegative functions {(hYlj,hYoj),t = c,n,a,d} satisfying the constraints 

(1.1.7.20) through (1.1.7.27) exist. Then, the constraints (1.1.7.26) and (1.1.7.27) imply that 

Jy hYo^adfi < 1 — 5Yo. On the other hand, since 

/vi = ~^2hYut 
t 

> PYi +QYi - hYx,a 

= fYl + min{pYl ,qy1}-hYua, 
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it follows that 

XYl+6Y<J-l > / min j / y i - .fa,min{pyi ,qYl}jdfi 

> / min{mm{pY l ,qY l}-hY u a ,min{py i ,qY l}}dfx 
Jy 

= / [min{pyi, qYl} - hYl ,a] dp, 
Jy 

— XYx - / hYl,adp.. 

Hence, J" hYltadfj, > 1 — <Jyo. Thus, the scale constraint for t = a does not hold and we conclude that 

there are no feasible {(hYlit, hy0tt),t — c, n, a, d} that meets the constraints of Lemma l.A.2. 

By combining these results, we conclude that J^ (P, Q) x TJ^"{P, Q) is the identification region 

of (fYl, fYo) under RA-causal. 

For the case of (ii) 1 — 5Yo > XYl, the identification region is derived by a symmetric argument 

to the case of (i) and for the sake of brevity we omit a proof. 

Lastly, consider the case of (iii). 1 — 5Yo •— XYl. As we argued in the main text, for every 

fvi € Ff™(p,Q) a n d IY0 e Ff™(P,Q), we can find {(hYut,hYojt),t = c,n,a,d} that meets all 

the constraints. Hence, ^ " " ( P , Q ) x J7f"'°(P,Q) is the identification region of ( / y i , / y o ) under 

RA-causal. • 

Proof of Proposition 1.3.2. If the data generating process reveals pYl > qYl /x-a.e. and qYo > pYo 

/x-a.e., then 1 — SYo — XYl holds, and Proposition 1.3.1 (iii) implies that for every (fYl,fYo) € 

Ff™{P,Q) x .?7™(P, Q), we can find the distribution of (Yi,Y0,T, Z) that satisfies RA-causal. In 

the proof of Proposition 1.3.1 (iii), we propose one way to find compatible h functions. If we apply 

it to the current case, we obtain hYlid = hy0td = 0. This implies that the imputed population meets 

Pr(T — d) — 0 and therefore the identification region of ( /y i , / y o ) under RA-causal and separable 

utility is contained in Ff™(P,Q) x Fe
f™(P,Q). For ( /* , /%) i ?%°(P,Q) x Ff™(P,Q), RA-

causal is violated. Hence, we conclude that T^V{P, Q) x ^ " " ( P , Q) is the identification region of 

(fYl,fYo) under RA-causal and separable utility. 

If the data generating process does not reveal pYl > qYl /i-a.e. and qYo > pYo /i-a.e., this implies 

that under RA there exist a subset A with positive measure on which at least one of the following 

inequalities hold, 

/ qYldn - I pYld/j, = Pr(Yi G A,T = d) - Pr(Yi £ A,T = c) > 0, 
J A J A 

f pYodp - [ qYodfi = Pr(Y0 &A,T = d)- Pr(Y0 G A,T = c) > 0. 
J A J A 

These inequalities imply the population must allow T = d with positive probability and no population 

can satisfies RA-causal and separable utility. Hence the identification region is empty. • 
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1. A.8 Proof of Proposition 1.3.3 

Proof. We first consider bounding the mean of Y\ when the data generating process reveals (i) 

1 — 5Yo < Ay. Since J^'yidF < JVu y\dF' whenever F is first-order stochastically dominated 

by F', the lower bound of E{Y{) is obtained if we can find the density fY
ppeT whose cdf satisfies 

SV
yi fy*perdyi > SI fYldyi at every y G y for all fYl G ̂  (P, Q). Let us guess such f%per to be 

fY
pper(yi) = i{yi = yi}*Y0 + Mvi) + Hvi e [yi,ylii}}mm{pY1(yi)>qY1(yi)} 

and verify / » fY
pperdyi > / * fYldVl at every y e y for aU / y G F}Yi(P,Q). By Lemma 1.A.2 

and Proposition 1.3.1, there exist nonnegative functions {hYl,t,t — c,n,a,d} by which / y can be 

represented as 

/vi = ^2hYut 
t 

= PYi + QY1 - hYl ta + hYl ,„ 

= f^ + mm{pY1,qYl}-hYua + hYun, . (1.1.8.32) 

where in the second fine we use the constraints (1.1.7.20) and (1.1.7.21). The difference between 

Syt /yfper<fyi and Syt fadyi is written as 

f fy^dm- fVfYldyi 
Jyi Jyi 

= Ay0 + / hy^ady-i- hYl,ndyi - l{yiG(yitl,yu]}win{pYl,qY1}dyi.(l.l.8.3S) 
Jyi Jyi Jyi 

Note that J"" hYx^ndyi is bounded by 

/ ^n.nrfyi < / hYl^ndyi 
Jyi Jy 

= l-6Yl-\Yl+ f hYl,adyi (1.1.8.34) 

where the last line follows from the integral of (1.1.8.32). The last term in (1.1.8.33) is rewritten as 

/ l{yi G (Vi,i,Vu}}rmn{pYl, qYl}dyl 
Jyi 

= / l{?/i 6 (yii,yu}}rain{pYl,qYl}dy1- / l{yi G (y? i . ^ f tmin f ry^gy jdy i 

= l-5Yo- l{yi G ( y i , , y j j m i n j p y ^ y j d ? / ! (1.1.8.35) 
«'y 
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where the last line follows by the definition of y\,. By plugging (1.1.8.34) and (1.1.8.35) into 

(1.1.8.33), 

> 

rVv, 

{•v ry _ 
/ fy^dyi ~ / /*< 

Jyi Jyi 

SYl + SYo + XYl + Ay0 - 2 + / J l{2/i G (y^ , j/u]}min{pyi, c?n} - hYl,a 
Jy L J 

/ l{«/i € (j/i,;,?/„]}min{py i ,gy i}-/iy l j a dj/i (1.1.8.36) 
Jy L 

where we use Lemma 1.A.3 to obtain the equality. For y > y^v this integral is nonnegative since 

the constraints (1.1.7.20) and (1.1.7.21) imply hYl,a < min{pYl,qYl}. For y<y\x, 

dy\ 
fVu r 
/ % £ (y*,i,Vu]}min{pyi,qYl}- hYl>a 

Jy 

— l-6Yo- hYuadyi 
Jy 

> l-6Yo— I hYuady! 
Jy 

= l-SYo- hYo,adyi 
Jy 

> 0 (1.1.8.37) 

where the fourth fine follows from the scale constraint Jy hYl<adyi — Jy hYotadyi and the last in­

equality follows since Jy hYo,ady\ < 1 — SYo by the constraints (1.1.7.26) and (1.1.7.27). Thus, the 

cdf upper bound of Y\ under RA-causal is given by the cdf of f™pper. 

Next, we derive the cdf lower bound of Yi under RA-causal. Consider 

fYl
werM = frM + Hvi G [yi,»i,i]}min{py1(yi),gKl(y1)} + l{yi = yu}\Yo 

and Jy" fY
pperdy\ — fVu fYxdy\. By repeating a similar procedure used to derive (1.1.8.36), we 

obtain 

ry-u ryu 
/ ftr'dyi - \ fYldyi 

Jy Jy 

> / l{yi e [z/z, Vt,u)} min{pyi, qYl} - hYl,a dyx. 
Jyi L J 

By the construction of y\ and the same reasoning made in deriving (1.1.8.37), JVu fY
pperdyi — 

JVu fYldyi > 0. Therefore, the cdf of f!°™er first-order stochastically dominates the cdf of fYl € 

By taking the mean of Yi with respect to fy
pper and /j?™67", we obtain the tight bounds of E(Y\) 
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under RA-causal. 

I yifYi{yi)dyi + yi min {pYl (2/1), qYl (2/1)} dyi + XYoyi 
Jyi Jyi 

< E(Y!) 

< / yifY1(yi)dyi+ / yi min {pyx (3/1 J^y^yiJIdj/i '+Ayoyu. 

Since the identification region of /y0 in this case is J-f^v(P, Q), the tight bounds for E{Yo) are 

rVu ry-u. 
I yofY0(yo)dyo + (1 - 6Yo)yi < E(Y0) < / yofYo(yo)dy0 + (1 - 6y0)y„. 

•/j/i Jyi 

Given that the identification region of under RA-causal is the Cartesian product of T% (P, Q) and 

Ff™(P, Q), the tight bounds for E(Yi) - E(Y0) under ER-causal become 

/ yiMiv^dyi + y\ min{pn(2/1),qYl(y{)}dyx + XYoyi - / yo/yo (yo)dy0 - (1 - ^y0)y« 
Jyi Jyi Jyi 

< E(Y1)-E(Y0) 
ryu rVu pVu 

< / yifYt(yi)dyi + / y in ih^py^y i^gy^y i^dy iH- Ay0yu - / yofYo(yo)dy0 - (1 - 6y0)yj. 

For the case of (ii) 1 — 8Yo > XYl, the tight average treatment effect bounds are derived by a 

symmetric argument to the case of (i) and we omit a proof for brevity. 

For the case (iii) 1 — <5y0 = XYl, since the identification region is given by the Cartesian product 

of ff™{P, Q) and T)™{P, Q), the tight bounds coincide with the outer bounds. • 
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Chapter 2 

Testing for Instrument 

Independence in the Selection 

Model 

2.1 Introduction 

This paper develops a nonparametric specification test for the instrument exclusion restriction in 

the sample selection model. In order to obtain a testable implication for the instrument exclusion 

restriction in a nonparametric way, this paper focuses on the identification region for fy considered 

in Chapter 2. Since the identification region under exclusion restriction is the set of outcome distri­

butions that are compatible with the empirical evidence and the exclusion restriction restrictions, 

an empty identification region implies a misspecification of the exclusion restriction. Hence, our 

specification test infers from data the emptiness of the identification region. 

Specification tests based on the emptiness of the identification region for the partially identified 

parameters have been studied in the literature of the moment inequality model.1 Our analysis, 

however, differs from the moment inequality model since the independence restriction we consider is 

a distributional restriction rather than a moment restriction, and, especially for continuous Y, the 

identification region for the outcome distribution cannot be expressed by a finite number of moment 

inequalities. In Chapter 1, we showed that the size of the identification region for the outcome dis­

tribution is characterized by a scalar parameter, the integrated envelope: the integral of the envelope 

over the conditional densities of the observed Y given Z. In particular, the identification region 

1 In the partially identified model with moment inequalities, a specification test for moment restrictions is obtained 
as a by-product of the confidence sets for the partially identified parameters, that is, we reject the null restriction 
if the confidence set is empty. A list of the literature that analyses the confidence sets in the moment inequality 
model contains Andrews, Berry and Jia (2004), Andrews and Guggenberger (2008), Andrews and Soares (2007), Bugni 
(2008), Canay (2007), Chernozhukov, Hong, and Tamer (2007), Guggenberger, Hahn, and Kim (2008), Imbens and 
Manski (2004), Pakes, Porter, Ho, and Ishii (2006), Romano and Shaikh (2008a, 2008b), and Rosen (2008). 
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is empty if and only if the integrated envelope exceeds one. We therefore obtain a nonparametric 

specification test for the instrument exclusion restriction by developing an inferential procedure for 

whether the integrated envelope exceeds one. We propose an estimator for the integrated envelope 

and derive its asymptotic distribution. An asymptotically size correct specification test for instru­

ment independence is obtained by inverting the one-sided confidence intervals for the integrated 

envelope. A parameter similar to the integrated envelope is considered in Manski (2003) and Pearl 

(1994b), but its estimation and inference have not been analyzed. Hence, this paper is the first that 

provides a formal asymptotic analysis for the integrated envelope. 

Another contribution of the paper is the implementation of the test procedure. The asymptotic 

distribution of the integrated envelope estimator is given by a supremum functional of Gaussian 

processes and it is difficult to obtain the critical values analytically. Furthermore, due to a non-

pivotal feature of the asymptotic distribution, the standard nonparametric bootstrap fails to yield 

asymptotically valid critical values (Andrews (2000)). We therefore develop a bootstrap procedure 

for the integrated envelope estimator and verify its asymptotic validity. Similarly to the bootstrap 

procedure for the moment inequality model (Bugni (2008) and Canay (2007)), we first select the 

asymptotic distribution for which the bootstrap approximation is targeted. Given the targeted 

asymptotic distribution, we bootstrap the empirical processes so as to approximate the Gaussian 

processes (van der Vaart and Wellner (1996)). 

Blundell, Gosling, Ichimura, arid Meghir (2007) consider testing the instrument independence 

by inferring whether the bounds for the cumulative distribution function (cdf) of / y intersects or 

not. Our specification test, however, differs from their method in the following ways. First, 

their procedure tests the emptiness of potentially non-tight cdf bounds for / y while our procedure 

always tests the emptiness of the tightest cdf bounds. Therefore, our procedure have more refuting 

power for the instrument exclusion than theirs. Second, the asymptotic validity of their bootstrap 

procedure is not formally investigated and its asymptotic property is not known. Our bootstrap 

algorithm in contrast has an asymptotic justification in terms of correct size. 

Monte Carlo simulations illustrate the finite sample performance of our bootstrap test procedure. 

While the standard subsampling procedure by Politis and Romano (1994) is shown to be valid, we 

present simulation evidence that our bootstrap has better finite sample performance. We apply 

the proposed test procedure to the classical model of self-selection into the labor market using data 

from Blundell et al. (2007). We test whether the measure of out-of-work income constructed in 

Blundell et al. (2003) is independent of the potential wage. Our test results provide an evidence 

that the exclusion restriction for the out-of-work income is misspecified. Since our procedure tests 

the emptiness of the identification region, this conclusion is based on the empirical evidence alone 

and free from any assumptions about the potential wage distribution and the selection mechanism. 

The remainder of the paper is organized as follows. Section 2.2 develops an estimator of the 

integrated envelope and derive its asymptotic distribution. Based on this asymptotic distribution, 

Section 2.3 formalizes the test procedure by developing an asymptotically valid bootstrap algorithm. 

We also demonstrate the validity of subsampling. Section 2.4 provides simulation results and 
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compares the finite sample performance of the bootstrap with subsampling. For simplicity, our 

analysis is limited to the case of a binary instrument up to Section 2.4. In Section 2.5, we cover the 

model with a multi-valued discrete instrument. In order to illustrate the use of testing procedure, 

Section 2.6 tests whether the out-of-work income constructed in Blundell et al. (2003) is independent 

of the potential wage. Section 2.7 concludes. Proofs are provided in Appendices. 

2.2 Estimation of the integrated envelope and a specification 

test of the exclusion restriction 

The identification analysis in Chapter 1 clarified that the emptiness of the identification region 

under ER IRfY(P, Q) is summarized by the integrated envelope S(P,Q). We also showed that in 

the single missing outcome model the stronger restriction RA does not narrow IRjY (P, Q). These 

results imply that 5(P, Q) is the only relevant parameter for the purpose of refuting the instrument 

exogeneity. This paper focuses on estimation and inference for S(P, Q) so as to develop a specification 

test for the instrument independence assumption. 

Without losing any distributional information of data (Y • D,D,Z), we define an outcome ob­

servation recorded in data by Ydata = DY + (1 — D) {mis} and express data as i.i.d observations of 

(Ydata,ii Zi), i = 1,- • • ,N, where {mis} indicates that the observation of Y is missing. Clearly, the 

data generating process P = (P(-),Pmis) and Q = (Q(-),Qmis) are interpreted as the conditional 

distributions of the random variable Ydata given Z, which have the support y U {mis}. We divide 

the full sample into two subsamples based on the assigned value of Z e {1,0}. We denote the 

size of these subsamples by m = $Zi=i ^ an<^ n = 2 i = i ( l ~~ ^i)- We assume Z{ is Bernoulli with 

mean A = Pr(Z = 1) S [e, 1 — e] for some e > 0 and define AJV = m/N. We adopt the two-sample 

problem with nonrandom sample size, i.e., our asymptotic analysis is conditional on the sequence 

{Zi : i = 1,2,...}. Since AJV —* A, m —» oo, and n —> oo as N —> oo, we interpret the stochastic limit 

with respect to AT —> oo equivalent to the limit with respect to TO —> oo, n —> oo, and Ajv —> A. 

The test strategy considered in this paper is as follows. The null hypothesis is that IRfY (P, Q) 

is nonempty, that is, 6(P, Q) < 1. Let 6 be the point estimator of 5(P, Q) such that y/N(5 — S(P, Q)) 

has an asymptotic distribution, 

y/N(5-8(P,Q))~*J(-,P,Q,\), 

where "~-+" denotes weak convergence and J(-; P, Q, A) represents the cdf of the asymptotic distrib­

ution which can depend on P, Q, and A. We infer whether or not S(P, Q) < 1 with a prespecified 

maximal false rejection rate a by inverting the one-sided confidence intervals with coverage 1 — a. 

That is, our goal is to obtain c\-a, a consistent estimator of the (1 — a)-th quantile of J(-; P, Q, A), 

and to check whether the one-sided confidence intervals [8 — ^ ^ , oo) contain 1 or not. We reject 

the null hypothesis if we observe 5 — ^-Sr > 1. This procedure provides a pointwise asymptotically 
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size correct test2 since for every (P, Q) satisfying the null S(P, Q) < 1, we have 

Prob P,Q,*N 
Cl-

> 1 < Prob P,Q,*N 6- Cl-o >6(P,Q) 

= ProbPtQ,XN (VN(5 - S(P, Q)) > c i_ a ) 

JV—>oo 
1 - J ( c i _ a ; P , Q , A) = a. 

We decompose our theoretical development into two parts. First, we develop an estimator of 

5(P,Q) and derive the asymptotic distribution of \/N(5 — 5(P,Q)). Second, we focus on how to 

consistently estimate quantiles of the asymptotic distribution «/(•; P, Q, A). 

2.2.1 An illuminating example: binary Y 

To motivate our estimation and inference procedure for S(P, Q), we consider a simple example in 

which Y is binary. The main focus of this section is to illuminate the non-pivotal asymptotic 

distribution for the estimation of 8(P,Q). We also illustrate how our bootstrap strategy resolves 

the problem. 

Estimation of 5 

When Y is binary, P and Q are represented by the three probabilities, (pi, po > Pmis) and (<?i, qo, qmis), 

where py and qy, y = 1, 0, {mis}, are the probabilities of Ydata — V given Z = 1 and Z = 0 

respectively. Here, the integrated envelope S = S(P, Q) is denned as 

S = max{pi,qi} + max.{p0,q0}. (2.2.1.1) 

A sample analogue estimator for S is constructed as 

6 - max{pi, q-y} + max{p0, 9o }, 

where (pi,po) a n d (qi,qo) are the maximum likelihood estimators of (pi,po) and (qi,qo)- Here, 

the maximum likelihood estimators are the sample fractions of the observations classified in the 

corresponding category conditional on Z. The standard central limit theorem yields 

V^V 

/ Pi - Pi \ 

P o - P o 

<7i - 9 i 

V qo-qo ) 

f x1 \ 

X0 

V Wo J 

' A f O , 

2 Andrews and Guggenberger (2008), Canay (2007), Imbens and Manski (2004), and Romano and Shaikh (2008) 
analyze the uniform asymptotic validity of the confidence regions for partially identified parameters in the moment 
inequality model. In this paper, we establish the pointwise asymptotic valdity of our inferential procedure for the 
integrated envelope. It is not yet known whether our inferential procedure for the integrated envelope is uniformly 
asymptotically valid. 
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where 

^P,A 

JQ,A 

= A-M P l ( 1 ~ P l ) ~P1P0 ) and 
V -PiPo Po(l - Po) J 

= ( 1 - A ) 
_i / g i ( i - g i ) - g igo 

-9190 go(i - go) 

Although the maximum likelihood estimators for p and g are asymptotically normal, 8 is not 

necessarily normal due to the max operator. Specifically, asymptotic normality fails when the data 

generating process has ties in the max operator in (2.2.1.1), meaning p\ = q\ and/or po = go. For 

example, consider the case of p\ = q\ and po > 9o- Then, it follows that 

/TJ(% x\ J V3v(Pi -Pi ) K / y/Nipo-po) \ 
VN(S -8) = max < > + max < , > 

1 VN(Ql - qi) J [ y/N(q0 - go) + v^V(go - Po) J 

m a x ^ „ , }+X0, 

where the second max operation in the first line converges in distribution to XQ since v/JV(go —Po)—> 

—oo. In contrast, when there are no ties (pi ^ q\ and po ^ go)) y/N(8 — 5) is asymptotically normal 

since it converges to the sum of the two normal random variables. 

In order to summarize all the possible asymptotic distributions, we introduce 

8i=Pi+ Po, G\ = X\ + XQ, 

< 5 2 = P I + <7O, G2=X1+W0, 

h = qi+ Po, G3 = Wi+ X0, 

5i = qi + qo, G4 = Wi + W0, 

where Sj, j = 1 , . . . , 4, are the candidates of 5 and at least one of them achieves the true integrated 

envelope. Gj each represents the Gaussian random variable that is obtained from the asymptotic 

distribution of y/N(Sj — Sj), where Sj is the sample analogue estimator of Sj. Using this notation, 

the asymptotic distribution of \/N(S — S) is expressed as 

y/N(6-S)~* max {Gj}. (2.2.1.2) 
{j:5j=S} 

The index set of the max operator {j : Sj = 8} indicates whether there are ties between P and Q. 

For instance, in case of p\ = q\ and po > go, we have {j : Sj = 8} = {1,3}. If {j : Sj = S} is a 

singleton, we obtain asymptotic normality, while if it contains more than one element, asymptotic 

normality fails and the asymptotic distribution is given by the extremum value among the normal 

random variables {Gj : Sj — 8}. Thus, y/N(S — S) is not uniformly asymptotically normal over the 
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data generating process. 

The failure of uniform asymptotic normality of a statistic is known as discontinuity of the asymp­

totic distribution and it arises in many contexts in econometrics (e.g., weak instruments, unit root, 

etc.). The integrated envelope also has this issue. This raises difficulties in conducting inference on 

8 since we do not know which asymptotic distribution gives a better approximation for the sampling 

distribution of y/N(8 — 8). 

Inconsistency of the nonparametric bootstrap 

The issue of discontinuity of the asymptotic distribution of y/N(8 — 6) cannot be bypassed by 

standard implementation of the nonparametric bootstrap. By following an argument similar to 

Andrews (2000), it can be shown that the nonparametric bootstrap fails to consistently estimate the 

asymptotic distribution of y/N(8 — 8). The case of binary Y provides a canonical example for this. 

In the standard nonparametric bootstrap, we form a bootstrap sample using m i.i.d. draws 

from the subsample {Ydata,i '• Z% = 1} and n i.i.d. draws from the subsample {Ydata,i '• Z>i = 0}. 

Let 8 = max{pi,q1} + max {$$,$)} be t n e bootstrap estimator of 8 where (j>i,Po) and (<7i,<?o) 

are the maximum likelihood estimators computed from the bootstrap sample. If the standard 

nonparametric bootstrap were consistent, then, for almost every sequence of the original sample, we 

could replicate the asymptotic distribution of \^N(8 — 8) by that of VN(8 — 8). This is, however, 

not the case when there are ties between P and Q. 

Consider again the case of p\ = qi and po > q0 where the asymptotic distribution of y/N(8 — 8) 

is given by max-fXi, W\\ + Xo- The bootstrap statistic y/N(8 — 8) is written as 

VN(8* - 5) = ^ ( m a x f p * , # } + max{p^, %}) - VN( max{pi,qi} + max{p0, q0}) 

= maxly/N(p*-q*),o\ - m a x | v ^ V ( p i - qi),o\ 
y i v ' 

(0 

+ m a x { ^ ( 4 5 - $ ) ) o } - m a x { > / j V ( & - p o ) ) o } 
v ' 

(«) 
+y/N(q;-qi) + VN(p*0-po). (2.2.1.3) 

v v ' 
(Hi) 

We denote the probability distribution for the bootstrap sample with size N by {P^ : N > 1}. Let w 

be an element of the sample space fl. Since y/N(pi — q\) weakly converges to the Gaussian random 

variable G = X\ — W\, we can find an $7 on which p\, q\, and G are defined and \fN{p\{uj) — 

qi(uj)) —>jv-»oo G(CJ) for almost all w £ fi (the Almost Sure Representation Theorem, see, e.g., 

Pollard (1984)). The central limit theorem of triangular arrays and the strong law of large numbers 
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v ^ 

/ P i - P i ( w ) ^ 

P o - P o M 

q0 (w) - p o H 

V w 0 y 
q0-po < 0. 

(2.2.1.4) 

Let us consider the event Bc = {OJ £ Q : G(CJ) < — c} for a constant c > 0. Clearly, Pr(5 c) > 0 

holds. For w e Bc, the stochastic hmit of each term in (2.2.1.3) is obtained as 

(i) = m a x { v ^ ( ^ - p i H ) ^ V i V ( g * - 9 1 H ) + v /iV :(p1(w)-91(a;)),0} 

- max {y/Nfa (u) - & («)), o} 

< max j vN(p* — pi(w)) — vN(iji — qi(u))) — c,0> for sufficiently large TV, 

-» max {Xi - Wi - c, 0} , 

(«) = max { ^ ( g o - g o H ) - VN(po - po(u)) + VN(q0(u}) - FD(W))»°} 

-max|>/JV(go(w) -p 0 (w) ) ,0J 

—> 0 in probability with respect to {Pjv : N > 1}, 

and the term (Hi) weakly converges to W\ + XQ by (2.2.1.4). To sum up, we have for large N 

VN(8* - S(u)) < max{Xi - c, Wi} + X0 < msx{XltWi} + X0, (2.2.1.5) 

where the second inequality is strict with positive probability in terms of the randomness in drawing a 

bootstrap sample. Note that the last terms in (2.2.1.5) have the same probability law as the limiting 

distribution of y/N(S — S). Therefore, along the sampling sequence of w e Bc, the asymptotic 

distribution of the bootstrap statistic y/N(6 — 8(LJ)) fails to coincide with that of y/N(5 — 6). 

Provided that Pr(Bc) > 0, this refutes the consistency of the nonparametric bootstrap. 

Asymptotically valid inference 

We provide two procedures for asymptotically valid inference on 6. The first approach estimates 

the asymptotic distribution m.ax[j:g =gy{Gj} in two steps. In the first step, we estimate the index 

set Ymax={j : 6j = 5}. In the second step, we estimate the joint distribution of G/s . The latter 

part is straightforward in this example since the Gj's are Gaussian and their covariance matrix can 

be consistently estimated. For the former part, we estimate Vm a x using the sequence of slackness 

variables {rjN : TV > 1}, 

V ™ " ^ ) = {J € {1,2,3,4} : VN(S - Sj) < V N } . 
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In this construction of *Vmax(r]N), we determine which 8j achieves the population 8 in terms of 

whether the estimator of 8j is close to 8 = maxj{<$,} or not. The value of T}N/VN gives the cut-off 

value for how small (8 — 8j) should be in order for such j to be included in the estimator of Vm a x . 

This estimator for Vm a x is asymptotically valid3 if the slackness sequence {rjN : N > 1} meets the 

following conditions, 

—p= —> 0 and h = —> oo. 

That is, r]N diverges to positive infinity faster than y^oglog-ZV, but not as fast as y/N. This speed 

of divergence is imphed by the law of iterated logarithm (see, e.g., Shiryaev (1996)). 

By combining these two estimations, we are able to consistently estimate the asymptotic distri­

bution maxj€v"»"'{Grj} by 

max {Gj} 
i e v » « ( i ) W ) 

where the Gj's are Gaussian and their covariance matrix is estimated from the sample. 

Instead of plugging in G/s, we can incorporate the nonparametric bootstrap for estimating the 

asymptotic distribution; given the estimator 'Vmax(T)N), we resample, 

max {y/N^-Sj)} 

where <L is the bootstrapped Sj. Since the standard argument of the bootstrap consistency shows 

y/N(5j — 5j) ~» Gj, we can build in the nonparametric bootstrap inside the max operator so as 

to obtain the consistent estimator for the asymptotic distribution. In Section 4, we extend this 

approach to a general setting. 

As Andrews (2000) points out, another asymptotically valid method is subsampling (Politis and 

Romano (1994)). In subsampling, we resample fewer observations than the original sample randomly 

without replacement, i.e., we resample bm(< m) observations from \Ydata,i '• Zi = 1} and bn(< n) 

observations from {Ydata,i '• Zi = 0}. By tuning the blocksizes to (bm, bn) —> oo, (bm/m, bn/n) —> 0, 

and bm/(bm + bn) —> A, the asymptotic distribution of \/N(6 — 6) is consistently estimated by the 

repeated sampling of 

where B = bm + bn and Sbmbn — max{p^bm, gj & } + max{pg b , eft bn } is the estimator of 8 obtained 

from the subsamples of size bm and bn. To see why subsampling works, consider the same setup 

3For the formal statement of the consistency of V m a x (^ J V ) , see Lemma A.2 and the proof of Proposition 4.1 in 
Appendix A. 
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Pi =qi,Po >9o, and 

^B(Km,bn -S) = max{VB(fi i bm - q*hbJ,O} - max {VB(p*hbm - q*i,bJ,o} 

W 

+max{y/B(<fctbm - Po<bJ,o} - max [y/B(q0 - p o ) , o } 

(»)' 

+v^(<?i*,6„ - 9i) + ^B(Po,bm -A))-
' : ; — ' 

(in)1 

Given the above choice of blocksizes, we can see that the asymptotic distributions of (ii)' and (Hi)' 

are the same as (ii) and (Hi). While, for (i)', we obtain 

(t)' = max {VB(fitbm - P l) - VB($>bn - qi) + VB(p, - &),()} 

-max J-/B(p! -gi),0J 

~» m a x { X i - W i , 0 } 

since VB(p\ — qi) = y/B/Ny/N(pi — q\) —> 0 in probability (with respect to the randomness in 

the original sampling sequence). Thus, the resampling distribution of the statistic \fB(5bmbn — 8) 

correctly replicates the asymptotic distribution of y/N(8 — 5). 

2.2.2 Generalization to an arbitrary Y 

The framework of this section allows Y to be an arbitrary scalar random variable. We keep the 

instrument binary for simplicity. With additional notation, we can extend our analysis to the case 

with a multi-valued discrete instrument with finite points of support (see Section 2.5 and Appendix 

2.A.2). 

An es t imator of S 

In the binary Y example, we write the true integrated envelope by 

S(P, Q) = iaax{Sj } = max < 
j 

max < 

Pi +Po 

Pi +9o 

Po + qi 

{ 9i+9o 

f P({1,O}) + Q(0) ) 

P({l}) + Q({0}) 

P({0}) + Q{{1}) 

{ P(0) + Q({1,O}) 
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Note that the last expression is further rewritten as 

6{P,Q)= max {P(V) + Q(VC)}, (2.2.2.6) 

where £({1,0}) is the power set of {1,0}, £({1,0}) ={{1,0}, {1}, {O},0}, and Vc = {1,0} \ V, the 

complement of V. Here, P{V) + Q(VC) is seen as a function from the power set of y ={1,0} to R+ 

and the integrated envelope is denned as its maximum over the possible subsets of y ={1,0}. A 

generalization to an arbitrary Y utilizes this representation of 6(P, Q). 

Let B{y) be the Borel u-algebra on y. We define a set function 6(-) : B(y) —>R+, 

5(V) = P(V) + Q(VC), (2.2.2.7) 

where Vc is the complement of V, y\V. The function S(V) returns the sum of the probability on V 

with respect to P and the probability on V° with respect to Q. Note that the integrated envelope 

5(P, Q) is given by the value of <$(•) evaluated at E = {y € y : p(y) > q(y)} since 

S(P,Q) = / max{p(y),q(y)}dn 

Jy 

= / p(y)d(j.+ / q(y)dfi 
J{v-p(.y)>i(y)} J {v-p(v)<i(y)} 

= P(E) + Q(EC). 

It can be shown that for an arbitrary V € B(y), 6(E) — 5(V) > 0, and therefore E is a maximizer 

of 8(-) over B(y).i Hence, an alternative expression for the integrated envelope S(P,Q) is the 

supremum of 5(-) over -6(3^), 

S(P,Q)= sup {6(V)}. (2.2.2.8) 
veB{y) 

We can see this expression of 8(P, Q) as a direct analogue of (2.2.2.6) for a more complex y, and 

the only complication appears in the class of subsets in y on which the supremum operates. 

Let Pm and Qn be the empirical probability measures for {Ydata,i '• Zi = 1} and {Ydata,i '• Zi = 0}, 

i.e., for V e B{y), 

PmW = ~t E I{Ydata,i£V}, Qn(V) = ^ ^ I{Ydata,i G V}. 
i:Zi = l i:Zi=0 

We define a sample analogue of <$(•) by replacing the population distribution of P(-) and Q(-) in 
4Let ( P - Q)(B) = P(B) - Q(B) and (Q - P)(B) = Q(B) - P(B). For an arbitray B £ B(y), we have 

5{E) - 6(B) = (P - Q)(E n Bc) + (Q - P){EC n B). 

Since ( P — Q)(-) and (Q — P)(-) are nonnegative on any subsets contained in E and Ec, 5(E) — &(B) > 0 holds. 
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(2.2.2.7) with the empirical distributions Pm(-) and Qn(-), 

6(V) = Pm(V) + Qn(V
c)- (2.2.2.9) 

Analogous to the construction of the integrated envelope in (2.2.2.8), we propose an estimator of 

S(P, Q) by maximizing S(-) over a class of subsets V cB(y),5 

6 = snp{S{V)}. (2.2.2.10) 
V6V 

This estimator for 5(P, Q) has the class of subsets V in its construction and the estimation procedure 

requires specifying V beforehand. In the next subsection, we discuss how to specify V in order to 

guarantee the asymptotic validity of the estimator. 

VC-class 

When Y is discrete, V is specified as the power set of y as in the binary Y case (2.2.2.6). On 

the other hand, when Y is continuous, we cannot take V as large as B(y). The reason is that if 

we specify V = B(y), V can contain the subset, Vmax = < I I {Ydata i) \ for any 

sampling sequence of {(Ydata,i, Zi)}^, N = 1,2, This subset almost surely gives the trivial 

maximum of 5(-), 

S(Vmax)=m-1 ] T Di+n'1 £ Du 

i:Zi=l i:Zi=0 

and therefore provides little information on the integrated envelope no matter how large the sample 

size is because it converges to Pr(D = 1\Z = 1) + Pr(D = 1\Z = 0). This forces us to restrict the 

size of V smaller than B{y) in order to guarantee the consistency of 8. 

An appropriate restriction for this purpose is that V is the Vapnik-Cervonenkis class (VC-class) 

(see, e.g., Dudley (1999) for the definition of VC-class). The class of the right unbounded intervals 

V = {[y, oo) : y € R} is an example of the VC-class. In Figure 2.1, the function S(-) is plotted 

with respect to this choice of V and provides a visual illustration for how S(-) attains the integrated 

envelope at its maximum. 

By specifying V as the collection of right and left unbounded intervals, we obtain the half un­

bounded interval class ~Vhaif, 

Vhalf= {0,»} U {(-oo, y] : y e K} U {[y, oo) : y G K} . (2.2.2.11) 

In order for the estimator 5 to be consistent to the true integrated envelope 8(P, Q), we need to 

assume that the specified V contains some V which attain S(V) = 5(P,Q). This assumption, or, 

for short, the choice of V, may be interpreted as restrictions on the global properties of the densities 
5 Forming an estimator by maximizing a set function with respect to a class of subsets is found in the literature of 

estimation for the density contours (Hartigan (1988) and Polonik (1995)). 



62 

V={|y,oo):y€R} 

<5 = supy6V£(V) 

y r 
Figure 2.1: Le£ Y be a continuous outcome on K. In order to draw S(-) in two dimensions, we plot 
S(-) with respect to the collection of right unbounded intervals V = {[y, oo) : y € R}. As the left-hand 
side figure shows, P(V) corresponds to the right tail area of p(-) while Q(VC) corresponds to the left 
tail area of q(-). S(V) returns the sum of these areas. The right-hand side figure plots S([y, oo)) 
with respect to y. When p{y) and q(y) cross only at y* as in the left-hand side figure, S([y, oo)) 
achieves its unique maximum at y* and the maximum corresponds to the integrated envelope 6(P, Q). 
Note that the sample analogue S([y, oo)) is drawn as a random step function centered around the 
true 5([y, oo)). 

rather than the local properties such as smoothness. For example, when we specify V = Yhaif, we 

are imposing the restriction on the configuration of p(y) and q{y) such that p(y) and q(y) can cross 

at most once as in the left-hand side panel of Figure 2.1. 

An alternative to Vhaif considered in this paper is the histogram class Vhist, which is defined as 

the power set of histogram bins whose breakpoints can float over E. For an illustration for Whist, 

consider fixed L histogram bins with a prespecified binwidth. Let (pi,- • • ,PL) and {q\,..., <}L) be the 

histogram estimators for the discretized P and Q on y. Then, analogously to the binary Y case, we 

can form the estimator of the integrated envelope in terms of the specified bins as £ 3 J = 1 max{pz, qi}. 

When we employ the histogram class, we maximize ^ ; = 1 max{p; ,g ;} over the possible choices of 

histogram bins (with a fixed binwidth). 

The algebraic definition of the histogram class is given as follows. Let h > 0 be the bin width 

and L the number of bins. Pick an initial breakpoint yo € IR and consider equally distanced L 

points —oo < 2/0 < 2/i < • • • < 2/L-I < °° where yi = yo + lh, I = 1 , . . . , (L — 1). Denote the 

(L + 1) disjoint intervals formed by these L points by Ho(yo,h) = (—o°>2/o], Hi(yo,h) — (yi-i,yi\, 

I = 1 , . . . , (L — 1), and .HL(2/O, h) = ( J /L- I , OO). Let Ij(L), j — 1 , . . . , 2 L + 1 indicate all the possible 

subsets of the indices { 0 , 1 , . . . , L}. Given y0 a set of the smallest breakpoint yo, the histogram 
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V = {[y,°o);y eE}. ¥ ^ = {[^00),: y '< : r<,s/ '} 

Figure 2.2: p(y) and q(y) are tied over [y',y"]. Given V as the collection of right unbounded 
intervals, 6([y, oo)) is constant over [y',y"] and there is a continuum of maximizers of 5(-). Here, 
the maximizer subclass is given by Vm a x = {[y, oo) : y e \y',y"]}-

class with bin width h and the number of bins L is expressed as 

Vhist(h,L,y0)=l ( J Hl(y0,h):y0&y0, j = l,...,2L+1\. (2.2.2.12) 
[leij(L) J 

Although the binwidth is a tuning parameter, we obtain a finer VC-class than Vhaif-

As we saw in the binary Y case, ties between P and Q cause the non-pivotal asymptotic dis­

tribution for the estimator of 5(P, Q). In order to consider how the ties between P and Q can be 

represented in terms of the class of subsets V, let us specify V as the right unbounded interval class 

{[y, oo) : y € K}. If P and Q have ties as in Figure 2.2, the maximizer of S(-) over V is no longer 

unique and any elements in Vm a x = {[y, oo) : y' < y < y"} can yield the integrated envelope. This 

example illustrates that we can identify the existence of ties between P and Q with respect to V by 

the size of the subclass 
ymax = {y £ y . ^ = ^ Q^ 

If Vmax consists of a single element Vmax, this means that y m a x is the only subset in V that divides 

the outcome support into {y : p(y) > q(y)} and {y : p(y) < q(y)}- Hence, there are no ties 

between P and Q (with respect to the specification of V). On the other hand, if Vm a x contains two 

distinct elements, V^ and V2
max with ^(Vf1^ A Vg13*) > 0, it can be shown that p(y) = q(y) on 

Vimax A V2
max, and therefore P and Q are tied on the set with positive measure V,

1
max: A V2

max-

Throughout our asymptotic analysis, we do not explicitly specify V. Provided that the as­

sumptions given below are satisfied, the main asymptotic results of the present paper are valid 

independent of the choice of V. In practice, however, there is a trade-off between the flexibility of 

V (richness of V) and the precision of the estimator 5. That is, as we choose a larger V for a given 

sample size (e.g., the histogram class with finer bins), we have more upward-biased 5 due to data 
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overfitting. On the other hand, as we choose a smaller V, the assumption that V contains some V 

satisfying S(V) = S(P, Q) becomes less credible. Regardless of its practical importance, we do not 

discuss how to choose V in this paper and leave it for future research. 

Asymptotic distribution of 5 

The main assumptions that are needed for our asymptotic results are given as follows. 

Assumptions 

(Al) Nondegeneracy: The data generating process P and Q are nondegenerate probability distrib­

utions on y U {mis} and the integrated envelope is positive S(P, Q) > 0. 

(A2) VC-class: V is a VC-class of measurable subsets in y. 

(A3) Optimal partition: There exists a nonempty maximizer subclass Vm a x c V defined by 

V1"** = {V € V : 5{V) = 5(P, Q)} 

(A4) Existence of maximizer: With probability one, there exists a sequence of random sets VJV € V 

and Vff™ € Vm a x such that for every N > 1, 

S(VN) = sup{S(V)}, 6(V^)= sup {6(V)}. 

Assumption (A3) implies that V contains at least one optimal subset at which the set function 8(-) 

achieves the true integrated envelope. Since these subsets maximize S(-), we refer to the collection 

of these subsets as the maximizer subclass Vm a x . We allow Vm a x to contain more than one element 

to handle the aforementioned issue of ties between P and Q. Assumption (A4) is imposed since 

this simplifies our proof of the asymptotic results. 

The consistency of 5 follows from the uniform convergence of the empirical probability measure 

(Glivenko-Cantelli theorem). 

For the asymptotic distribution of ^/N(^ — S(P, Q)), consider 

VN(S - S(P, Q)) = sup lVN(5(V). - 5(V)) + VN(S(V) - 8(P, Q))\ . (2.2.2.13) 

The first term in the supremum of (2.2.2.13) can be written as the sum of two independent empirical 

processes on V, 

VN(S(V) - 5(v)) = (^ yM(Pm(v) - P(v)) + (^j MQn(v
c) - Q{vc)). 
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By applying the uniform central limit theorem of empirical processes (the Donsker theorem), y/rn(Pm(V) — 

P(V)) and y/n(Qn(V
c) — Q(VC)) each converges weakly to mean zero tight Gaussian processes on V 

(see, e.g., van der Vaart and Wellner (1996)). Since the sum of independent Gaussian processes also 

yields Gaussian processes, y/N(8(V) — 8(V)) weakly converges to mean zero tight Gaussian processes 

on V. On the other hand, the second term in the supremum of (2.2.2.13) vanishes for V £ v m a x 

and it diverges to negative infinity for V ^ v m a x . Therefore, for large JV, the supremum is attained 

at some V € Vm a x . This argument implies that the asymptotic distribution of y/N(S — 8(P, Q)) is 

given by the supremum of the set indexed Gaussian processes over the maximizer subclass Vm a x . 

Proposition 2.2.1 (consistency and weak convergence of 8) Assume (Al), (A2), and (A3). 

(i) 5 —> 8(P, Q) as N —> oo with probability one. 

(ii) Assume further (A4). Let Vm a x be the maximizer subclass {V € V : 8(V) = 8(P, Q)}. Then, 

JN(8-8(P,Q))~> sup {G(V)}, (2.2.2.14) 

where G(V) is the set indexed mean zero tight Gaussian process in Z°°(V) with the covariance func­

tion, forVi, V2 G V, 

Cow(G(Vi),<?(V2)) = ^1{P(VinV2)-P(V1)P(V2)} 

+(l - \)-l[Q{V{ n y2
c) - Q(VT)Q(K0]. 

The asymptotic distribution of \fN(8 — 8(P, Q)) depends not only on the data generating process 

P, Q, and A, but also on the maximizer subclass Vm a x or, equivalently, on the choice of V. If P 

and Q do not have ties and Assumption (A3) holds, Vm a x has the unique element y m a x , then, 

the distribution of (2.2.2.14) is given by the projection of the Gaussian processes onto y m a x so 

^/N(8 — 5(P, Q)) is asymptotically normal. We present this special case in the next corollary. 

Corollary 2.2.1 (asymptotic normality of 8) Assume (Al) through (A4). / / V m a x is a single­

ton with the unique element Vmax, then, 

VN(S-8(P,Q))^Af(0,a2(P,Q,\)), 

where 

CJ2(P, Q, A) = A- 1P(Vm a x ) ( l - P(Vmax)) + (1 - A)-1Q((ym a x) c)( l - Q((Fm a x) c)) . 

The asymptotic variance is consistently estimated by 

&1 = (N/m)Pm(VN)(l - Pm(VN)) + (N/n)Qn(V£)(l - Q„(V£)). 
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where VN is a random sequence of sets that satisfy 8(VN) = supVeY{S(V)} for N > 1. 

Asymptotic normality with the consistently estimable variance makes inference straightforward. 

In some situations, however, the singleton assumption seems to be too restrictive. For instance, 

consider the case where the instrument is weak in the sense that p(y) does not differ much from 

q(y). Then, assuming p(y) ^ q(y) almost everywhere is too restrictive. 

2.3 Implementation of resampling methods: bootstrap and 

subsampling validity 

Given the expression of the asymptotic distribution (Proposition 2.2.1), we want to consistently 

estimate the (1 — a)-th quantile of the asymptotic distribution. We propose two asymptotically 

valid resampling methods in this section. The resampling methods are particularly useful since the 

asymptotic distribution of y/N(S — S(P, Q)) given in Proposition 2.2.1 has the form of a supremum 

functional of the Gaussian processes, and, especially when Ymax is not a singleton, it is difficult to 

obtain the critical values analytically (Romano (1988)). 

2.3.1 Resampling method I: a modified bootstrap 

The asymptotic distribution given in Proposition 2.2.1 can be replicated by the asymptotic distribu­

tion of sup^6y„,ax \ VN(8(V) — S(V)) >. Hence, one method to estimate it is plugging a consistent es­

timator for Vm a x and the bootstrap analogue of s/N(5(V)-5(V)) into sup V e Y ™ lVN(8(V) - 5(V))\. 

In this section, we validate this approach for approximating the asymptotic distribution of yN(S — 

S(P,Q)). 

Let Y^ a t a represent the original sample of Ydata with Z = \ and size m. Similarly, let Y°datan 

be the original sample of Ydata with Z = 0 and size n. Our bootstrap algorithm is summarized as 

follows. 

Algorithm: bootstrap for the integrated envelope 

1. Pick a slackness sequence {nN : N > 1} that satisfies 

VN S Q VN , _ 
y/N ' VloglogiV 

2. Estimate the maximizer subclass by 

Ymax(vN) = {v€W:VN(S-6(V))<r]N]. 
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3. Sample m observations from Y^ a t a m and sample n observations from Y ° o t a n randomly with 

replacement and construct 

z\v) = P*m{V) + Ql{Vc), V e V , 

where P^ and Q* are the empirical distributions constructed by the bootstrap sample. 

4. Compute 

sup \VN(5*(V)-6(V))\. 

5. Iterate Step 3 and 4 many times and obtain c\°-a as the sample (1 — a)-th quantile of the 

iterated statistics. 

'boot 

6. Reject the null hypothesis S(P, Q) < 1 if 8 y=r > 1. 

In Step 1, we specify a value of the tuning parameter rjN. Given the choice of vN, we estimate 

ymax j n g t e p 2 a n d the above rate of divergence for nN guarantees the estimator Vmax(77N) to be 

consistent to Vm a x (see Lemma 2.A.2 in Appendices). Since the asymptotic argument only governs 

the speed of divergence of nN, it provides little guidance on how to set its value in practice. We 

further address this issue in the Monte Carlo study of Section 2.4. 

Given ymax(nN), in Step 3 and 4, we bootstrap the function <$(•) and plug in y/N(8 (•) — <5(-)), a 

bootstrap analogue of y/N(S(-) — S(-)), to the supremum operator supVeymMI/ •, {•}. The bootstrap 

validity for empirical processes guarantees that VN(S (•) — S(-)) approximates the Gaussian process 

G(-) obtained in Proposition 2.2.1 (see van der Vaart and Wellner (1996) for bootstrap validity for 

empirical processes). By combining consistency of Vmax(»7jv) a n d bootstrap validity of \ZN(8 (•) — 

<5(-)), the statistic s u p ^ g ^ ^ ^ ^ ^ I VN(8 (V) - 5(V)) \ approximates supV6Vmax{G(F)}. 

The next proposition validates our specification test based on the above bootstrap algorithm. 

Proposition 2.3.1 (bootstrap validity) Assume (Al) through (A4). Then, the above bootstrap 

test procedure yields a pointwise asymptotically size correct test for the null 8(P, Q) < 1, that is, for 

every P and Q satisfying 5(P, Q) < 1, 

(
£boot \ 

2.3.2 Resampling method II: subsampling 

Subsampling is valid for any statistics that possess the asymptotic distribution (Politis and Romano 

(1994)). Therefore, subsampling is a valid alternative to the above bootstrap. Our subsampling 

proceeds in the standard manner as in Politis and Romano (1994) except for the two-sample nature 
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of our problem. To illustrate our subsampling algorithm, we use the following notation. We divide 

the full sample into Y^atam and Y ° a t o n as described in Section 2.2.1. Let (bm,bn) be a pair of 

subsample sizes and B = bm + bn. There exist Nm = (fc
m) distinct subsamples from Y j a t o m , and 

Nn = (fc
n) distinct subsamples from Y%ata n. The subscripts k = 1 , . . . , Nm and I = l,...,Nn 

indicate each distinct subsample. We denote the estimator 5 evaluated at the fc-th subsample of 

Yjata m and at the Z-th subsample of Y ° a t a n by 5k t. The subsample estimator of ci_Q is defined 

as 
( 1 Nm Nn 1 

c^ a=inf ^ ^ ^ / { ^ - ^ . J M - a . (2.3.2.15) 

Using the obtained cf"6
Q, we reject the null hypothesis if 5 —^Sr > 1. 

The construction of cf "fc
Q is similar to the one in Politis and Romano except it sums over every 

combination of the two subsamples. This scheme is required since we cannot define the estimator 

8 if there are no observations from one of the samples. 

The next proposition demonstrates the pointwise validity of subsampling. 

Proposition 2.3.2 (subsampling validity) Assume (Al) through (A4)- Let(bm,bn) —> (oo, oo), 

(bm/m,bn/n) —> (0,0), and bm/(bm + bn) —» A as N —» oo. Then, the test procedure using the 

subsampling critical value cf"6
a is pointwise asymptotically size correct, that is, for every P and Q 

satisfying 6(P,Q) < 1, 
C l - Q 

VmtPnbP,Q,XN\6--^>l)<a. 

When m and n are large, computing the critical values through (2.3.2.15) is difficult because 

of the large values of Nm and Nn. In this case, cf"fc
a can be approximated by randomly chosen 

subsamples (Politis et al. (1999)). Specifically, we construct the subsamples by repeatedly sampling 

bm and bn observations from Y\ata m and Y ° a t a n without replacement. Note that, analogous to 

the slackness sequence r)N in the modified bootstrap, subsampling also has a practical difficulty in 

choosing the blocksizes (bm, bn). 

2.3.3 Power of the test against fixed alternatives 

Due to the restriction of V to a VC-class, the test procedure is not able to screen out all the data 

generating processes that have 5(P, Q) > 1. In order for asymptotic power of the test to be one 

against a fixed alternative, the alternative must meet the following condition. 
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Definition 2.3.1 (consistent alternatives) The data generating process P and Q is a consistent 

alternative with respect to a VC- class V if 

sup{<5(V)} > 1. 

In the discrete Y case, any data generating processes that have S(P, Q) > 1 are the consistent 

alternatives. On the other hand, for a continuous Y, 8(P, Q) > 1 does not imply that the data 

generating process is a consistent alternative since V is strictly smaller than B{y). This implies 

that a specification of V affects the refutability of the test procedure in the sense that as we specify 

a smaller V, less alternatives can be screened out by the test. This can be seen as another aspect 

of the trade-off between precision of the estimator 6 and the fineness of V. 

The next proposition shows that the proposed test procedures are consistent in power against 

the consistent alternatives. 

Proposition 2.3.3 (power against fixed alternatives) The test procedures based on the pro­

posed bootstrap and subsampling are consistent in power against the consistent alternatives, i.e., for 

each consistent alternative P and Q, 

(
£boot \ 

itLProbP,Q,XN(6-^>l) = 1. 

2.4 Monte Carlo simulations 

In order to evaluate the finite sample performance of the proposed test procedures, we conduct 

Monte Carlo studies for various specifications of P and Q. Since the asymptotically valid test 

procedures attain the nominal size when 8{P, Q) = 1, we set the integrated envelope equal to one for 

every specification. Throughout our simulation experiments, we consider two samples with equal 

size, m — n. 

We specify Y to be continuous on the unit interval y = [0,1]. As for a specification of V, 

we employ the half unbounded interval class Yhaif as defined in (2.2.2.11). Our Monte Carlo 

specifications all satisfy the optimal partition condition of Assumption (A3). 

Let <f)(fj,, a) be the normal density with mean fj, and standard deviation a whose support is re­

stricted on [0,1] (the truncated normal). The following four specifications of P and Q are simulated 

(see Figure 2.3). 
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Design 1: No ties, p{y) = 0,54 x 0(0.65,0.10), 

q(y) =0.54x0(0.35,0.10), 

Design 2: No ties, p(y) = 0.84 x 0(0.60,0.20), 

q(y) = 0.75x0(0.46,0.23), 

Design 3: Partially tied 
0.70x0(0.50,0.20) for y< 0.66 

0.58x0(0.70,0.25) for y > 0.66 ' 

0.70 x 0(0.50,0.20) for y > 0.34 

0.58 x 0(0.30,0.25) for y < 0.34 

Design 4: Completely tied, p(y) = q(y) — 0(0.50,0.23). 

In Design 1 and Design 2, there are no ties between p(y) and q(y), while p(y) and q(y) differ more 

significantly in Design 1 than in Design 2. Design 3 represents the case where p(y) and q(y) are tied 

on a subset of the outcome support. As an extreme case, Design 4 features a p(y) that is identical 

to q(y). 

We estimate the critical values using four different methods. The first method uses the critical 

values implied from asymptotic normality (Corollary 2.2.1). The second method uses the naive 

implementation of the nonparametric bootstrap, that is, given 5, we resample ^/N(S — 8) where 6 

is the bootstrap analogue of 5. The third method is subsampling. We consider three different choices 

of the blocksizes, (bm,bn) = (m/3, n/3) , (m/6,n/6) , and (m/10,n/10). As the fourth method, we 

apply our bootstrap procedure with three choices of the slackness variable, r]N = 5.0, 2.0, and 0.5. 

The Monte Carlo simulations are replicated 3000 times. Subsampling and bootstrap are iterated 

300 times for each Monte Carlo replication. 

Table 1 shows the simulated rejection probabilities for nominal test size, a = 0.25, 0.10, 0.05, and 

0.01. The result shows that, except for Design 1, the normal approximation and the naive bootstrap 

over-reject the null. In particular, their test size is seriously biased when the two densities have 

ties, as our asymptotic analysis predicts. It is worth noting that, against the asymptotic normality 

in Corollary 2.2.1, the normal approximation does not perform well in Design 2. This is because 

the finite sample distribution of the statistic is approximated better by the distribution with ties 

than the normal distribution. Although the naive bootstrap is less size-distorted than the normal 

approximation, we can confirm that it also suffers from ties (Design 3 and 4). Thus, our simulation 

results indicate that, except for the case where p(y) and q(y) are significantly different as in Design 

1, the normal approximation and the naive bootstrap are not useful for inferring 5. 

Subsampling shows a good finite sample performance for Design 1 and Design 2 when the block-

sizes are specified as (ra/10, n/10). However, if the blocksize is large such as (m/3, n/3), the test 

performance is as bad as the normal approximation. Although Proposition 2.3.2 validates sub-

sampling for any data generating processes, the simulation results suggest that the subsampling is 

contaminated by the ties. 
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Monte Carlo Specifications 

0.2 0.4 0.6 0.8 

f& 

Figure 2.3: There are no ties in Design 1 and Design 2. In Design 3, the two densities are partially 
tied. In Design 4, the two densities are identical. 
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Among the four methods simulated, the modified bootstrap has the best size performance given 

an appropriate tuning of rjN, i.e., rjN — 0.5 for Design 2, r]N = 2 for Design 3, and r]N = 5 for Design 

4. However, test size is rather sensitive to the choice of rjN. As we set rjN larger than optimal, we 

obtain a smaller rejection rate and the test becomes conservative. On the other hand, by setting 

r]N smaller than optimal, the rejection rate tends to be upwardly biased and approaches that of the 

naive bootstrap. 

Table 1-1 (Design 1): Simulated Rejection Rates 

3000 MC replications. 300 subsampling/bootstrap replications. 

Sample size 

Nominal rejection prob. 

Normal Approx. 

Naive bootstrap 

Subsampling ( " 1 / 3 , n / 3 ) 

(m/6, n/6) 

(m/10,n/10) 

Our bootstrap ?7JV— 5 

rjN= 0.5 

Blundell et al.'s bootstrap 

s.e. 

m = n = 300 

25% 10% 5% 1% 

28.6% 13.2% 6.5% 1.6% 

26.0%* 10.8%* 5.8%* 1.7% 

31.6% 16.1% 10.7% 4.4% 

27.5% 13.5% 7.6% 2.4% 

25.9%* 12.2% 6.9% 1.9% 

12.9% 4.6% 2.3% 0.6%* 

17.1% 6.1% 3.2% 0.9%* 

21.1% 8.5% 4.4%* 1.1%* 

0% 0% 0% 0% 

0.8% 0.5% 0.4% 0.2% 

m = n = 1000 

25% 10% 5% 1% 

26.9% 12.1% 6.9% 1.3%* 

25.9%* 10.7%* 6.1% 1.6% 

29.4% 15.4% 10.6% 4.1% 

26.6%* 12.8% 7.6% 2.4% 

24.7%* 11.2% 6.4% 1.8% 

14.7% 5.6% 2.4% 0.6%* 

18.1% 7.1% 3.3% 0.7%* 

21.8% 9.3%* 4.8%* 1.0%* 

0% 0% 0% 0% 

0.8% 0.5% 0.4% 0.2% 

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level. 
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Table l-II (Design 2) 

3000 MC replications. 300 subsampling/bootstrap replications. 

Sample size 

Nominal rejection prob. 

Normal Approx. 

Naive bootstrap 

Subsampling (m/3, n / 3 ) 

(m/6, n/6) 

(m/10,n/10) 

Our bootstrap n j y = ** 

VN=
 2 

77JV= 0.5 

Blundell et al.'s bootstrap 

s.e. 

m — n = 300 

25% 10% 5% 1% 

41.8% 20.1% 10.4% 2.7% 

32.4% 14.1% 8.2% 2.4% 

38.8% 20.0% 13.6% 5.7% 

30.3% 14.8% 9.0% 3.1% 

26.3%* 12.1% 7.3% 2.4% 

11.8% 5.1% 2.5% 0.5% 

15.8% 6.2% 3.3% 0.8%* 

25.6%* 10.7%* 6.0%* 1.5% 

2.7% 0.3% 0.1% 0% 

0.8% 0.5% 0.4% 0.2% 

m = n = 1000 

25% 10% 5% 1% 

37.2% - 16.9% 9.3% 2.0% 

29.4% 13.3% 7.0% 1.8% 

33.9% 18.5% 12.5% 4.9% 

28.2% 13.4% 7.6% 2.4% 

24.6%* 11.3% 6.1% 2.0% 

12.3% 4.6% 2.3% 0.6%* 

15.6% 6.0% 3.0% 0.8%* 

23.6%* 9.9%* 5.1%* 1.3%* 

2.0% 0.1% 0% 0% 

0.8% 0.5% 0.4% 0.2% 

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level. 

Table l-III (Design 3) 

3000 MC replications. 300 subsampling/bootstrap replications. 

Sample size 

Nominal rejection prob. 

Normal Approx. 

Naive bootstrap 

Subsampling ( m / 3 , n / 3 ) 

(m/6, n/6) 

(m/10,n/10) 

Our bootstrap n j y = 5 

r,N=2 

T)N= 0.5 

Blundell et al.'s bootstrap 

s.e. 

m — n = 300 

25% 10% 5% 1% 

61.5% 35.0% 21.5% 5.9% 

45.5% 24.2% 14.1% 4.6% 

53.0% 32.6% 23.6% 10.5% 

42.7% 23.7% 15.2% 5.7% 

37.3% 20.3% 11.6% 4.3% 

21.5% 8.9% 4.5%* 0.8%* 

23.6%* 9.8%* 5.2%* 1.1%* 

37.3% 17.9% 10.2% 3.0% 

10.5% 2.7% 0.9% 0.1% 

0.8% 0.5% 0.4% 0.2% 

m = n = 1000 

25% 10% 5% 1% 

62.2% 35.9% 23.0% 5.9% 

46.2% 25.8% 15.4% 4.6% 

52.0% 33.7% 24.5% 10.8% 

43.3% 24.8% 15.5% 5.9% 

38.5% 20.3% 12.2% 4.0% 

23.2%* 9.0%* 4.9%* 1.1%* 

25.8%* 10.3%* 5.3%* 1.5% 

39.5% 20.2% 10.7%. 3.1% 

10.9% 1.9% 0.7% 0% 

0.8% 0.5% 0.4% 0.2% 

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level. 
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Table 1-IV (Design 4) 

3000 MC replications. 300 subsampling/bootstrap replications. 

Sample size 

Nominal rejection prob. 

Normal Approx. 

Naive bootstrap 

Subsampling ( « l / 3 , n / 3 ) 

(m/6, n/6) 

(m/10,n/10) 

Our bootstrap f]N== ^ 

7)N= 0 .5 

Blundell et al.'s bootstrap 

s.e. 

m = n = 300 

25% 10% 5% 1% 

99.8% 82.8% 56.8% 18.8% 

77.9% 50.7% 32.2% 10.9% 

82.7% 63.6% 49.3% 23.4% 

69.6% 43.3% 31.4% 13.2% 

63.7% 36.4% 23.0% 9.3% 

24.6%* 10.0%* 5.3%* 1.3%* 

34.7% 19.1% 10.8% 2.5% 

68.3% 39.8% 24.7% 7.3% 

49.6% 22.2% 11.5% 2.9% 

0.8% 0.5% 0.4% 0.2% 

m = n = 1000 

25% 10% 5% 1% 

99.9% 82.5% 55.8% 17.9% 

77.9% 48.9% 31.6% 10.4% 

83.4% 63.6% 45.8% 22.9% 

67.7% 41.5% 27.4% 10.9% 

56.8% 32.2% 20.3% 7.4% 

23.3%* 9.4%* 5.2%* 1.4%* 

33.2% 16.6% 9.9% 2.7% 

69.2% 40.0% 23.9% 7.2% 

50.4% 23.2% 12.1% 2.8% 

0.8% 0.5% 0.4% 0.2% 

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level. 

A practical difficulty in implementing our bootstrap is that the optimal value of r)N depends 

on the underlying data generating process. The simulation results indicate that the optimal T]N 

tends to be larger as the two densities are more similar. To explain this finding, recall the criterion 

function y/N(S — S(V)), which is used to construct the estimator Vmax(r?^). For a fixed rjN and 

V € Vmax , as the distribution of y/N{8 - 8{V)) shifts toward the positive direction, Vmax(r]N) 

becomes less precise in the sense that we are more likely to exclude such V £ Vm a x from ~Vmax(r]N). 

In fact, the distribution of VN(8 — 8(V)) depends on the underlying Vm a x . This can be seen from 

E(VN(S-S{V))) = E(VN(8-8(P,Q)))-E(VN(8(V)-8(V))) 

« E( sup {G(V)}). 

Since the supremum of the Gaussian process tends to be higher as the index set Vm a x becomes 

larger, this approximation implies that the mean of y/N(8 — 8(V)) at V & Vm a x tends to be higher 

as the index set Vm a x expands. Hence, when the data generating process has more ties, we need to 

choose a larger value of r]N in order to make the estimator for Vm a x more accurate. 

The tables also provide simulation results for the bootstrap procedure used in Blundell et al. 

(2007).6 Note that the bounds for the cdf of Y constructed in Blundell et al. is not always 

tight depending on the data generating process. But, for our specifications of the data generating 

process, the width of their cdf bounds achieves the value of integrated envelope at least one point in 

the outcome support (see Proposition l.A.l in Appendix 1.A.2). Hence, the refuting rule of Blundell 

et al. such that the upper and lower cdf bounds cross at some y in the outcome support yields an 

identical conclusion to the one based on the integrated envelope. Nevertheless, our simulation 
6 Blundell et al. (2007) do not provide asymptotic validity of their bootstrap procedure. 
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results exhibit unstable performance of their bootstrap. For instance, it is very conservative for 

Design 1 and Design 2, while it over-rejects the null for Design 4. 

2.5 Extension to a multi-valued discrete instrument 

In this section, we show how the framework of the binary Z can be extended to the case with a 

multi-valued discrete Z. The analytical framework presented in this section is used in the empirical 

application of the next section. 

Suppose that Z has the support with K < oo discrete points, Z € {ZI,...,ZK}- Denote the 

probability distribution of Ydata conditional on Z = Zk by Pk = (•?&(•)> Pk,mis), 

Pk{A) = Pi(Y £A\D = l,Z = zk)PT(D = l\Z = zk), 

Pk,mis = PT(D = 0\Z = Zk). 

We use the lowercase letter pk to denote the density of Pk(-) on y. The envelope density is denned 

as 

f{y)=max{pk(y)}, 

— k 

and the integrated envelope S is the integral of f{y) over 3̂ -

Now, consider the function 5(-) as a map from a /&T-partition of y to K+. That is, given a 
K 

if-partition of y, V = (Vi,..., VK) such that |J Vk = y and fi(Vk (1 Vt) = 0 for k ^ I, we define 
fc=i 

<$(•) a s 
K 

8(V) = ^2Pk(Vk). (2.5.0.16) 
fc=i 

This can be seen as a generalization of (2.2.2.7) to the case with a multi-valued instrument. Similarly 

to the binary Z case, S(-) is maximized when each subset Vk is given by {y : Pk(y) > Pi{y) VZ ^ k}, 

k = 1,...,K, and the maximum is equal to the integrated envelope. Here, the class of JT-partitions 

as the domain of S(-) is written as 

V = j v = ( V 1 , . . . , V i f ) : V i € V i , ...,VKSYK, \J Vk = y, fi(Vk n Vk') = 0 V k ^ k' 
I fc=l 

(2.5.0.17) 

where each Vfc, k = 1,...,K, is a class of subsets in y. Then, the integrated envelope has an 

expression similar to (2.2.2.8), 

S = sup {S(V)} , Va = • • • = Vjf = B(y). 

Let nk = Y^i=i I{%i = zk} and Pnk the empirical probabihty distribution of Pk. The estimator 

6 is obtained by replacing each Pk in (2.5.0.16) with the empirical distribution Pnk and restrict each 
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Vfe in (2.5.0.17) to a VC-class, 

K 

S = s u p { $ ( V ) } , where 6(V) = YjPnk(Vk). (2.5.0.18) 

Under the assumptions analogous to (Al) through (A4) of Section 2.2, 5 has the asymptotic distri­

bution given by 

VN(5-6)~* sup {G(V)} 
V£V m a x 

where Vmax = {V £ V : < (̂V) = 5} and G(V) are tight mean zero Gaussian processes on V. 

It is straightforward to accommodate the multi-valued discrete instrument to the bootstrap 

algorithm given in Section 2.3. The modifications are that the notation for a subset V is replaced 

with a X-partition V, the class of subsets V is replaced with the class of partitions (2.5.0.17), and 

(2.5.0.16) is used for the function S(-). Note that the rate of divergence of the slackness sequence rjN 

remained the same. The bootstrap sample is formed by resampling nk observations with replacement 

from the subsample {Ydata,i '• %i = %k} for each k = l,...,K. 

2.6 An empirical application 

We apply our bootstrap procedure to test the exogeneity of an instrument used in the classical 

problem of self-selection into the labor market. The data set that we use is a subset of the one used 

in Blundell et al. (2007). The original data source is the U.K. Family Expenditure Survey and our 

sample consists of the pooled repeated cross sections of individuals of age 23 to 54 for the periods 

from 1995 to the first quarter of 2000. The main concern of our empirical analysis is whether the 

out-of-work welfare income is statistically independent of the potential wage or not. 

We introduce the conditioning covariates X which include gender, education, and age. As in 

Blundell et al. (2007), three education groups are defined, "statutory schooling", those who left 

school by age 16, "high-school graduates", those who left school at age 17 or 18, and "at least some 

college", those who completed schooling after 18. We form four age groups, 23 -30, 31 - 38, 39 - 46, 

and 47 - 54. As an instrument, we use the out-of-work income constructed in Blundell et al. (2003), 

which measures the welfare benefit for which the worker would be eligible when he is out of work 

(see Blundell et al. (2003) for details). The participation indicator D is one if the worker reported 

himself being employed or self-employed and earning positive labor income. Wage is measured as 

the logarithm of the usual weekly earnings divided by the usual weekly working hours and deflated 

by the quarterly U.K. retail price index. 

For each covariate group X — x, we discretize the instrument by clustering the percentile ranks 

of the out-of-work income with every ten percentiles. We denote the instrument category within 

the group X = x by zk,x, k = 1 , . . . , 10. The envelope density and the integrated envelope of the 
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group X = x are written as, 

f(y\x) = max {pk,x(y\x)}, 
— fc=i,...,io 

Sx= f_{y\x)dy 
Jm. 

where Pk,x(v) = f(v\D = 1, -Z = zk,x, X = x) Pr(£> = 1|Z = zk,x, X = x). 

Our specification of the partition class (2.5.0.17) is the histogram class, Vi = • • • = Vio = 

^hist(h,L,yo), with binwidth h = 0.4, the number of bins L — 10, and the possible initial break­

points yo as the grid points within [1,1.4] with grid size 0.02. For the multi-valued instrument, 

the partition class is so large that it is computationally burdensome to construct the estimator of 

the maximizer subclass Vmax(r]N) since we need to evaluate 6 — S(V) for all the possible partitions. 

In order to reduce the computational burden, we develop an algorithm to construct ymax(r]N) in 

Appendix 2.A.3 and use it to obtain the empirical result. 

We choose an optimal value of r)N in the following manner. First, we run a Monte Carlo 

simulation in which the simulated sample size is set to the actual size and the data generating 

process is specified as the parametric estimate of the observed wage distributions. Specifically, 

for each x and k — 1 , . . . , 10, we specify Pk,x{y) as the normal density (multiplied by the sample 

selection rate) with the mean and variance equal to the sample mean and variance of the observed 

wage. Accordingly, the population integrated envelope 8X is obtained by numerically integrating 

the envelope over the parametric estimates. Second, for each candidate of r]N, we simulate the one­

sided confidence intervals Ci_Q(rjjV) = Sx -
e j - (VN) 

S/N 
, oo 1500 times with the nominal coverage 

(1 — a) — 0.75, 0.90, 0.95, and 0.99 with 300 bootstrap iterations. As for possible values of rjN, 

we consider the grid points between 0.5 and 12 with grid size 0.5. After simulating the empirical 

coverage for each T]N, we search the value of r]N that yields the best empirical coverage in terms of 

minimizing the squared discrepancy from the nominal coverage, 

VN arg mm 
^=0.5 ,1 .0 , . . . ,12-0 Q = 0 . 0 1 , 0.05, 0.1, 0.25 

(1 - a) - Pr(6x € C^a(r]N)) 

a(l — a) >, 

where Pr(5x £ Ci-a(r)N)) is the simulated coverage of the one-sided confidence intervals. As implied 

by the Monte Carlo study in the previous section, this manner of choosing the slackness variable 

is reasonable if the estimated normal densities well represent the similarity among the underlying 

densities Pk,x(y)- As an illustration for this, Figure ?? draws the kernel density estimates and the 

estimated normal densities for the group of female workers ages 23 - 31 with some college education. 

Although some of the kernel density estimates seem multimodal, we can observe that the normal 

estimates well capture the configuration of the observed wage densities. 

Figure ?? shows that the observed wage tends to be higher for the worker with the higher out-

of-work income. This is commonly observed in other groups. Two contrasting hypotheses are 

possible to explain this observation. The first hypothesis is from the perspective of the violation of 

the exclusion restriction. If the out-of-work income is associated with one's potential wage positively 
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Observed wage densities, age 23-31 female with college education 
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Table 2: The bootstrap specification test of the exogeneity of the out-of-work income 
400 Bootstrap iterations 

Some college education 

age 23-30 
31-38 
39-46 
47-54 

TV 
1047 
1158 
900 
675 

Pr(D = 
0.84 
0.81 
0.77 
0.70 

Male 
= l\x) p-value 

0.000*** 
0.184 
0.196 
0.886 

VN 
4.0 
7.5 
7.5 
10.5 

TV 

1196 
1131 
840 
594 

P r ( D 
0.80 
0.69 
0.74 
0.75 

Female 

= 11*) p-value 
0.014** 
0.998 
1.000 
0.886 

V*N 
2.0 
6.0 
9.0 
8.0 

High-school graduates 

age 23-30 
31-38 
39-46 
47-54 

TV 

799 
1014 
804 
561 

PT(D = 

0.81 
0.80 
0.78 
0.69 

Male 
l\x) p-value 

0.016** 
0.008*** 
0.968 
0.050** 

V*N 
5.0 
6.5 
7.0 
4.0 

TV 
1354 
1592 
990 
698 

Pi(D 
0.72 
0.68 
0.75 
0.70 

Female 
= l |x) p-value 

0.946 
0.998 
0.680 
0.966 

V*N 
3.0 
5.0 
3.5 
6.5 

Note ***: rejection at 1% significance, **: rejection at 5% significance. 

and the selection process is nearly random, we can observe that the actual wage is higher as the 

out-of-work income is higher. Another hypothesis is that a very heterogenous selection process can 

generate the configuration of the observed densities. That is, the instrument satisfies the exclusion 

restriction, but the less productive workers tend to exit the labor market as their out-of-work income 

gets higher. Rejecting the null by our specification test can empirically refute the latter hypothesis. 

Table 2 shows the result of the bootstrap specification test.7 77^ indicates the value of the 

slackness variable obtained from the Monte Carlo procedure described above. We reject the null 

at a 5% significance level for 5 covariate groups, especially for the workers of younger age. Thus, 

our test results provide evidence of misspecification of the exclusion restriction for the out-of-work 

income conditional on the categorized covariates. By the virtue of partial identification analysis, 

this conclusion is based on the empirical evidence alone and free from any assumptions about the 

potential wage distribution and the selection mechanism. 

2.7 Concluding remarks 

This paper develops the specification test for instrument independence in the sample selection model. 

Our specification test operates by inferring the scalar parameter, integrated envelope, which governs 

the emptiness of the identification region for the outcome distribution under the instrument exclu­

sion restriction. We propose the estimator for the integrated envelope and derive its asymptotic 

7 For the groups with statutory schooling, the integrated envelope estimates 8 do not exceed one due to the low 
participation rate. Accordingly, we do not reject the null for these groups and the test results for these groups are 
not presented in Table 2. 
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distribution. Based on this asymptotic distribution, we develop the asymptotically valid inference 

for the integrated envelope by inverting the asymptotically valid confidence intervals. Due to ties 

among the underlying probability densities, the estimator has a non-pivotal asymptotic distribu­

tion and therefore, the standard nonparametric bootstrap cannot be used to obtain asymptotically 

valid critical values. To overcome this, we develop the asymptotically valid bootstrap algorithm 

for the integrated envelope estimator. Our procedure first selects the target distribution for the 

bootstrap approximation by estimating whether or not the observable outcome densities have ties. 

The estimation of the ties uses the slackness variable r]N. 

The Monte-Carlo simulations show that given the appropriate choice of r]N, the proposed boot­

strap approximates the finite sample distribution of the statistic accurately. Although the optimal 

r)N depends on the true data generating process and the test performance is rather sensitive to a 

choice of r]N, our simulation results indicate that the bootstrap outperforms subsampling over a 

reasonable range of values of rjN. This paper does not provide a formal analysis on how to choose 

r]N. In the empirical application, we search the optimal value of 77 ̂  through the Monte Carlo 

simulations where the population data generating process is substituted by its parametric estimate. 

This way of tuning r]N can be seen as a practical solution for finding its reasonable value. 

We apply the proposed test procedure to test whether the measure of out-of-work income 

constructed in Blundell et al. (2003) is independent of the potential wage. Our test results provide 

an evidence that the exclusion restriction for the out-of-work income is misspecified. Since our 

procedure tests the emptiness of the identification region, this conclusion is based on the empirical 

evidence alone and free from any assumptions on the potential wage distribution and the selection 

mechanism. 

2. A Appendices 

2.A.1 Proofs and Lemma 

Proof of Proposition 2.2.1 (i). 

Since S(P, Q) = supV € V {<5(V)} and 5 = supV € V < S(V) \,S- S(P, Q) is written as 

5 - S(P, Q) = sup {Pm(V) + Qn(V
c)}- sup {P(V) + Q(VC)}. 

vev vev 

Note that 5 - S(P, Q) is bounded above by supV € V {(Pm - P)(V) + (Q„ - Q)(VC)} and bounded 

below by infV€V {(Pm - P)(V) + (Q„ - Q)(VC)} . Therefore, 

S-S(P,Q) < snp\(Pm-P)(V) + (Qn-Q)(Vc)\ 
vev 

< sup \(Pm - P)(V)\ + sup \(Qn - Q)(VC)\. 
vev vev 

Since V is the VC-class by Assumption (A2), the Glivenko-Cantelli theorem implies s u p y e V | (Pm — P) (V) \ 
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0 a.s. The class of subsets {Vc : V e V} is also a VC-class and, therefore, supV 6 V | (Qn — Q) (Vc) | —> 

0 a.s. as well. Thus, 5 is consistent in the strong sense. • 

We use the next lemma in the proof of Proposition 2.2.1 (ii) below. 

Lemma 2.A.1 Assume (Al) through (A4). Let V be a maximizer of S(-) over V and y m a x 

be a maximizer of S(-) over the maximizer subclass Vm a x = {V € V : S(V) = S(P,Q)}. Then, 

dp+Q(V, t>max) -> 0 as N -> oo a.s. 

Proof of Lemma 2.A.I. We first show 6(V) - S(P,Q) -> 0 a.s. By Assumption (A3), Vm a x 

is nonempty and let us pick an arbitrary element Vmax e V " ^ . By noting 6(V) = 8(V) — (Pm — 

P)(V) - (Qn - Q)(VC), we have 

0 < 5(P, Q) - 6(V) = 5(Vmax) - S(V) 

= S(Vmax) - 6(V) 

+(Pm - P)(V) + (Qn - Q)(VC) - (Pm - P)(Vmax) - (Qn - Q)((Vmax)c) 

< (Pm ~ P)(V) + (Qn ~ Q)(VC) - (Pm ~ P)(VmaX) - (Qn ~ Q)((V^)C) 

—• 0 a.s. 

by the Glivenko-Cantelli theorem. Thus, 6(V) converges to S(P, Q) a.s. 

Note that the function 5(-) is continuous on V with respect to the semimetric dp+Q since, for V\, 

V2 £ V, 

|<TO-TO| < |P(VO-P(V2)|+ ^ ( ^ -0 (^ )1 
= \P(yi)-P(V2)\ + \Q(Vi)-Q(V2)\ 

< p(Y! A v2) + Q(yi A v2) 

= dP+Q(VuV2). 

Given these results, let us suppose that the conclusion is false, that is, assume that there exist positive 

e and C such that P({dP+Q(V, Vmax) > e, i.o.}) > C- Since the event {dP+Q(V, t>max) > e} imphes 

[V ^ v m a x } , the continuity of 5(-) with respect to the semimetric dP+Q and the definition of Vm a x 

imply that we can find £ > 0 such that P({<5(P, Q) - 6(V) > £, i.o.}) > £ holds. This contradicts 

the almost sure convergence of 8(V) to 8(P, Q) shown above. Hence, dP+Q(V, Vmax) —> 0 a.s. • 

Proof of Proposition 2.2.1 (ii). Given the VC-class V, the Donsker theorem (theorem 2.5.2 and 

theorem 2.6.4 in van der Vaart and Wellner (1996)) asserts that the empirical processes Gp,m(V) = 

\fm-(Pm — P)(y), a n d GQ,n(V) = \fn(Qn — Q)(V) weakly converge to the tight Brownian bridge 

processes GP(V) and GQ(V) in Z°°(V). These weakly converging sequences of the empirical processes 
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Gp,m{y) and GQ,U(V) are asymptotically stochastically equicontinuous with respect to the seminorm 

dp and d,Q respectively (theorem 1.5.7 of van der Vaart and Wellner ). That is, for any j] > 0, 

lim lim supP* ( sup \GP,m(V) - GP,m(V')\ > rj) = 0. 
/3^0m^oo \dP(V,V')<f) J 

lim lim supP* [ sup \GQ,n(V) - GQ,n(V')\ > rj) = 0. 
/3^0»-.oc \dQiV,V')<f3 J 

We apply these facts to show that the difference between y/N(6—5(P, Q)) and supy€Vmax {VN(6(V) — 

S(V))} are asymptotically negligible. 

Since 6(V) = 6(P, Q) on Vmajc C V, 

sup {VN(5(V)-S(V))} = sup {y/N(S(V) - S(P,Q))} 

< 8ap{y/N(5(V) - S(P,Q))} = VN(6 - S(P,Q)) 
vev 

holds. Let V be and ymaJC be the maximizer of 5(-) on V and Vm a x respectively, which are assumed 

to exist by Assumption (A4). Then, 

0 < VN(S-S(P,Q))- sup {VN(5(V)-S(P,Q))\ 

= y/N(S(y) - 5{Vmax)) 

= (N/m)^2V^(Pm(V) - Pm(Vmax)) + (N/n)^2V^(Qn(Vc) - Q » ( ( V T ) ) 

= (N/m)^2(GPtm(V) - GP ,m(t /m a x)) + (N/n)^2(GQ,n(V
c) - GQ,n((V

max)c)). 

By Lemma 2.A.1, we have dP+Q(V,Vmax) -> 0 a.s. and this implies dP(V,Vmax) -> 0 and 

dQ(Vc, (y m a x ) c ) —> 0 a.s. The asymptotic stochastic equicontinuity implies that GP,m(V) — 

GP,m(Vmax) -> 0 and (GQ<n(V
c) - GQ,n((V

max)c)) -> 0 in outer probability. Thus, we con­

clude \/N(S — 6(P, Q)) — supygv™8* \ VN(8(V) — S(V)) > = op.(l) and the asymptotic distribution 

of <*/N(5 — 6(P, Q)) is identical to that of supVgVmax < y/N(8(V) — 6(V)) >. Hence, in the rest of the 

proof, we focus on deriving the asymptotic distribution of supV6Vmax < y/N(8(V) — 5(V)) >. 

The weak convergence of y/N(S(V) — S(V)) follows from the Donsker theorem, 

VN(5(V) - S(V)) = (N/m)-V*Gp,m(V) + {N/n)-ll2GQ,n{Vc) 

~> \-1/2GP{V) + (1 - A ) " 1 / 2 G Q ( V ) = G(V), 

where GP are the tight P-brownian bridge processes in Z°°(V) and GQ are the tight Gaussian 

processes in Z°°(V) with the covariance kernel 

CoviGQ^^Q^)) = Q{Vf n V2
C) - Q{Vf)Q{V2

c), Vu V2 e V. 
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Since GP and GQ are independent Gaussian processes, the covariance kernel of G{V) = \-1/2GP{V)+ 

( l - A ) - 1 / 2 G Q ( y ) i s g i v e n b y 

Co«(G(Vi),G(^)) = ^1[P(VinV2)-P(V1)P(V2)} 

+(l-X)-1[Q(VfnV2
c)-Q(V1

c)Q(V2
c)]. 

Lastly, we note that the supremum functional supygymaxj-} o n ^°°(V) is continuous with respect to 

the sup metric since for x\, x2 € l°°-(V), 

| sup {Xl(y)}- sup {x2(V)}\ < sup {\Xl(V) - x2(V)\} 

< sup {\Xl(V)-x2(V)\} 

= Iki-zalL-

Thus, by applying the continuous mapping theorem of stochastic processes, we obtain the desired 

result, 

sup ~> sup {G(V)}. 

Proof of Corollary 2.2.1. Given Vm a x = {Vmax}, Proposition 2.2.1 (ii) immediately yields the 

asymptotic normality. Consistency of the plug-in variance estimator follows since 

\pm(v) - P(vmax)| < |(pm-p)(i>)| + |P(vo-p(vmax)| 
< \(Pm-P)(V)\ + dP+Q(V,Vmax) 

—> 0 a.s. 

by the Glivenko CanteUi theorem and Lemma 2.A.I. A similar result holds for Qm{Vc). Hence, 

a2 - > C T 2 ( P , Q , A ) a.s. • 

The next lemma shows that Vmax(??jv) introduced in the first step of the bootstrap algorithm is 

consistent to Vm a x . This lemma is used for the proof of Proposition 2.3.1 below. 

Lemma 2.A.2 Assume (Al) through (A4). Let {nN ; N > 1} be a positive sequence satisfying 

fy -> 0 and ^ ^ N -» oo. For the semimetric dP+Q(Vx, V2) = P(Vi A V2) + Q(Vi A V2), define 

e-cover of the maximizer subclass Ymax by 

V — = {V e V : yM_ {dP+Q(V, V')} < , } . 
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For the estimator V " " " ^ ^ ) = <V €V : \/N(5 — 5(V)) < nN > define a sequence of events 

A% = | v m a x C V ™ " * ^ ) C Yf^X . 

Then, for each e > 0, Pfe in f^)=1' 
that is, with probability one, Ae

N occurs for all N with the finite number of exceptions. 

Proof of Lemma 2.A.2. We first state the law of the iterated logarithm for empirical processes 

on VC-classes (LIL, see Alexander and Talagrand (1989)). 

For a VOclass V and set indexed empirical processes, Gp,m(V) = y/m(Pm — P)(V), 

(LIL) lim sup sup 
m—»oo Vey 

GP,m(V) 
Vlog log m 

< 1 a.s. 

Tp<- _ A r _ /AT/rr, V l o S l o S m -y/log log N j _ / A r / „ -y/joglogw y iog log iV p n n < J : , | ™ . 

sup ^ ( 5 ( F ) - « 5 ( y ) ) 

Viog log N nN 

< TNiTn SUp 

vev 

Gp,m(V) 
v l̂og log m 

+ 7"JV,TI sup 
G Q , „ ( V C ) 

VlogTogn 

Since TN,™ —• 0 and Tjv,n —> 0 as N —> oo, the right hand side of the above inequality converges to 

zero a.s. by the LIL. Hence, 

lim sup 
iV—>oo y g v 

^-(S(V)-S(V)) — 0 a.s. (A.2) 

Based on this almost sure result, we next show P (liminf | v m a x C V " 1 3 * ^ ) } ) = 1. Note that, by 

the construction oifmax(nN), Vm a x C Vmax(7?JV) occurs if and only if supVeVraax | ^ (<5 - 5(vj)\ < 

1. Therefore, it suffices to show 

hm sup sup 
y g V m a 

{f(S-^)}£1 a.s. 

Consider 

VN 
(S - 6(V)) = ^ ( 6 - S(P, Q)) - ^ (o(V) - 6(VJ) + —(6(P, Q) - 5(V)) (A3) 

Since J(P, Q) - 5(F) = 0 on Vm a x , we have 

sup ^ ( * - * ( V ) ) < 
VN 

(6-S(P,Q)) - sup 

VN 

VN f~ 

VN 
(Kv)-s(vj) 

(i) (ii) 



85 

By the almost sure convergence (A.2), (ii) —> 0 a.s. So it suffices to show (i) —> 0 a.s. By noting 

6 = 6(V), 6(V) = 6{V) + (Pm - P)(V) + {Qn - Q){VC), and denoting an arbitrary element in Vm a x 

by y m a x
) (j) _> 0 a.s. is shown from 

(0 < 

< 

< 

•JN - -
y—(5(V)-6(V)) 
VN 

y/N 

VN 

+TJV,. 

(S(V)-S(V)) 

GP,m(V) 

+ —(<5(Vmax)-<5(t>)) 
VN 

+ —(6(Vmax)-6(V)) 
VN 

+T~N,n 

v/loglogm 

GQ,n(V
c) 

x/loglogn 

?—(6(V)-6(V)) 
VN 

+TN,I 

0 

GQ,n(V
c) 

Vlog log n 

a.s. by LIL. 

+ 7"jV,i 

+ T~N,n 

+ T~N,n 

GP,m(VmaX) 
\/loglogm 

GQ ,„((^m a") c) 
Vloglogn 

Gp,m(V-) 
•v/log log m 

GQ,n((VmaX)C) 

+ TNA 
Gp,m(Vm°x) 

Vlog log m 

Vloglogn 

Thus, P Aim inf | v m a x C V " 1 " ^ ) } ) = x i s proved. 

Next, we show P (liminf { V " 1 3 * ^ ) £ V™3*}) = 1. Since the event tvmax(r)N) £ V ^ a x | is equiv­

alent to infvev\Vfx \ ^-{8 ~ 8(V)) \ > 1» ^ suffices to show 

hm inf inf ^ -^—(J - r5(V)) } > 1 
N-»oo VgV\V™a* T)N 

a.s. 

We obtain from (A.3) 

inf ^ 
V6V\V?» 7?N 

(S-6(V))\ > ^E(6-8(P,Q))- sup J ^ ( 5 ( y ) _ t f ( V ) ) 

+ inf 
vev\v™ VN 

(5(P,Q)-S(V)) 

Note that the first two terms have been already proved to converge to zero a.s. For the third 

term, the continuity of <5(-) with respect to the semimetric dp+Q (see the proof of Proposition 2.2.1 

(ii)) implies that there exists £(e) > 0 such that S(P,Q) - S(V) > £(e) for any V £ 

Since D, we obtain in f V ev \v»- ( — W - P , < 3 ) - ^ ) ) ) > ^ C ( e ) -* °o. Therefore, 

limjv^oc inf i n f v e v x v ? « { ^ ( * ~ < W ) } = °° a-s- a n d t h i s implies P Aim inf ( v " 1 3 * ^ ) C V™3*}) 

VN 
VN 

1. 
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Combining these two results completes the proof. • 

Proof of Proposition 2.3.1. We indicate an infinite sequence of {(Ydata,»> ^») '• i — 1,2,. . .} 

by a; € ft. Denote a random sequence of the probability laws governing the randomness in the 

bootstrap sample by {PJV : N > 1}. Once we fix LJ, {Pj\r : N > 1} can be seen as a nonrandom 

sequence of the probability laws. The bootstrap is consistent if, for almost every w e d , 

sup \VN(6*{V)-5(V)(OJ)))~> sup {G(V)} 

where G(V) is the Gaussian processes obtained in Proposition 2.2.1 (ii). Here, the random objects 

subject to the probability law of the original sampling sequence are indexed by w. 

By Lemma 2.A.2, for sufficiently large N, 

sup \VN(5*(V)-5(V)(u>))\ < sup \VN(S*(yy-S(Y)(u))} 

< 
vev. 

sup {VN(S\V)-6(V)(CJ))\ (A.4) 

holds for almost all UJ e ft. Let G^m(-) = V™(Pm - pm)(-) and G*Q<n = \/n{Q*n - Q„)(-) be boot­

strapped empirical processes where P^ and Q* are the empirical probability measures constructed 

from the bootstrap sample. By the almost sure convergence of the bootstrap empirical processes 

(Theorem 3.6.3 in van der Vaart and Wellner (1996)), 

' VN(S\V) - 6{V)(u)) = )J^G*P<m(y) + ^G*Q,n{Vc) - G(V), 

uniformly over V for almost all w. Therefore, for the lower bound term and the upper bound term 

in (A.4), we have 

sup {VN(8*(V)-5(V)(u))\ ~» sup {G(V)}, 

sup \y/N(5*(V)-S(V)(uj))} ~* sup {G(V)}. 

Since the tight Gaussian processes G(V) are almost surely continuous with respect to dp+Q, the 

asymptotic stochastic equicontinuity of the Gaussian processes imply 

sup \VN(5*(V)-5(V)(UJ))}- sup \VN(S*(V)-8(V)(w))}-^0 

in probability with respect to {PJV : N > 1} as e —» 0. Hence, from (A.4), we conclude that 

sup \y/N(8*(y)-5(y)(u))}~* sup {G(V)}. 
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Assumption (Al) and (A2) implies that G(V) are non-degenerate Gaussian processes on V € Vm a x 

and, therefore, the distribution of supyeVmax {G(V)} is absolutely continuous on M. (see Proposi­

tion 11.4 in Davydov, Lifshits, and Smorodina (1998)). Therefore, the cl°_f^ converges to c i_ a in 

probability with respect to {PJV : N > 1} for almost every u e fi. Hence, for every P and Q with 

S(P,Q)<1, 

(
dioot \ / zboot \ 

6 - - ^ > l ) < PlobP^N[S-^>6(P,Q)j 

= ProbF>Q,Ajv (VN(5 - 5(P, Q)) > c ^ ) 

—> 1 - J ( c i_ a ;P , Q, A) = a. 

Proof of Proposition 2.3.2. In order to be explicit about the sample size used to construct 

the estimator, we notate the estimator by 5JV when the sample with size N is used. Denote the 

cumulative distribution function of \/]V(5JV — S(P, Q)) by 

JN(x, P, Q, AJV) = ProbPiQtXN {VN(6N - 5(P, Q)) < *} . 

where ProbptQ^N{-) represents the probability law with respect to the data generating process P 

and Q with Ajv = m/N. 

Let us define the subsampling estimator for JN(X, P, Q, XN) by 

LN(X) = FV E El {^(5li - *") ^x} • 
m n k=l1=1 

Let 

in which 5^ in L^{x) is replaced with S(P,Q). Note that UN(X) has the representation of the 

two-sample U-statistic with degree bm and bn, 

UN(X) — -J^—T^- 2_^2_^h(Ydatabm>k,Ydatabnl), 

where Yjo t 0 ] 6 m i f c represents the fc-th subsample drawn from Ydatam, Y°dataKl the Z-th subsample 

drawn from Y°a 4 a , , and h(Ydata^k, Y°dataM) = 1 { V 5 & , , - *(P, Q)) < *} • Since for each k 

and Z, Ydata b k and Y° o t a b ; are i.i.d. samples with size bm and 6„ from P and Q, the mean of 

the kernel of the U-statistic satisfies 

^(ft(Y5Bta,6mifc, YL a , b n , ; ) ) = J B ( Z , P , Q , AB), 



where JB(x,P,Q,XB) is the cdf of VB(SB - S(P,Q)) and AB = bm/B. Then, by the Hoeffding 

inequality for the two sample U-statistic (p25-p26 of Hoeffding (1963)), 

ProbP,Q,xBQUN(x) - JB(x,P,Q,\B)\ > e) < 2exp{-2Xe 2 } 

where 

K = mml— —\ 
\bm' bn J 

By the specification of the blocksizes, K —> oo holds, so it follows that 

UN(x)-JB(x,P,Q,XB)^0 

in probability. Since JB(-,P,Q,XB) converges weakly to J(-;P, Q, A) the cdf of supV€V{G(V)} 

and J(-; P, Q, A) is continuous as we addressed in the proof of Proposition 2.3.1, JB(x', P> Q, As) —» 

J(x;P,Q,X) holds for every x. Therefore, UN{X) converges to J(x;P,Q,X) in probability. By 

replicating the argument in Politis and Romano (1994), it follows that LN,B(X) — UN(X) —> 0 in 

probability. Thus, LN,B(X) —> J(x;P,Q,X) in probability. 

Given this result, cfH6
a converges to the (1 — a)-th quantile of «/(•; P, Q, A) in probability (see, e.g., 

lemma 11.2.1 in Lehmann and Romano (2005)). Therefore, for every P and Q with S(P, Q) < 1, 

ProbP,Q,xN l6N--^jr>l) < PtvbPiQ,x„ UJV - - ^ > <5(P, Q)) 

= ProbP,Q,XN(yN(8N-5{P,Q))>c?_b
a) 

—> 1 - J(ci_Q ;P,Q,A) = a. 

Proof of Proposition 2.3.3. Fix a consistent alternative P and Q. Let <J(P, <2) = supygV{(5( V)}. 

With a slight abuse of notation, denote by Vm a x the class of subsets that attain the suprernum of 

<$(V). By repeating the same argument as in the proof of Proposition 2.2.1, it is shown that 

</N(6 — S(P, Q)) has the asymptotic distribution, 

VN(8-5(P,Q))~> sup {G(V)}~J(-,P,Q,\), 

where G(V) is the set indexed Gaussian processes obtained in the Proposition 2.2.1 and J(-; P, Q, A) 

represents its cdf. Let Jjv(-; P, Q, Ajv) be the cdf of y/N(6 — S(P, Q)). 

Note that the bootstrap critical value c\°^ and the subsampling critical value cf "^ are both consis­

tent (in probability) to ci_Q, the (1 — a)-th quantile of J(-; P, Q, A). Denote these consistent critical 
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values by c\-a- Then, for e — 8(P, Q) — 1 > 0, 

Probp,Q,XN(l-C-^>\Sj = ProbPtQiXri(d-^+e>~6(P,Q)^ 

= ProbPtQiXN(s-^+€>S{P,Q)\ 

= ProbPtQ>XN (VN(8 - ~6(P, Q)) > C!_a - VNe) 

= l-JN(ci-a-VN6-,P,Q,XN) 

1 as N —> oo. 

2.A.2 A generalization of Proposit ion 2.2.1 

We use the same notation as in Section 2.5. Here, we provide a generalization of Proposition 2.2.1 

to the multi-valued instrument case. The following assumptions that are analogous to (Al) through 

(A4) of Section 2.2 are imposed. 

Assumptions 

(Al') Nondegeneracy: P\,...,Pk are nondegenerate distributions on 3^U {mis} and the integrated 

envelope is positive S > 0. 

(A2') VC-class: V i , . . . ,VK are VC-classes of measurable subsets in 3̂ -

(A3') Optimal Partition: There exists a nonempty maximizer subclass of partitions Vm a x c V, 

ymax = {V € V : 8(V) = 5} 

(A4') Existence of a maximizer: with probability one, there exists a sequence of random partitions 

VAT G V and V ^ € Vm a x such that 

5(VN) = sup{S(V)}, * ( V 5 T ) = sup {5(V)} 
vev vevma* 

holds for every AT > 1. 

A generalization of Proposition 2.2.1 is given as follows. A proof can be given in the same 

manner as the proof of Proposition 2.2.1, and is therefore omitted for brevity. 

Proposition 2.2.1'. Assume (Al'), (A2'), and (A3') 

(i) 8 —> 5 as N —> oo with probability one. 



90 

(ii) Assume further (A4')- Let Ymax be the maximizer subclass of partitions {V e V : S(V) = 5}. 

Then, 

VN(5-$)~* sup {G(V)}. (E.3) 

Here, G(V) zs the mean zero tight Gaussian processes in l°° (V) with the covariance kernel given by, 

for V 1 = (V?, . . . , VK) 6 V and V 2 = (V,2,..., VK) € V, 

CoviGiV1), G(V2)) = £ A^1 [Pfc(V,3 n V?) - I\{V2)P(V2)] , 
fc=i 

where A^ = Pr(Z = Zk). 

2.A.3 An algorithm to est imate Vmax in the histogram class 

This appendix presents an algorithm used in the empirical application (Section 2.6). There, we 

specify V as the histogram class, i.e., Vi = - • • = VK = ^hist(h,L,yo). The main purpose of 

the following algorithm is to reduce the computational burden in constructing the estimator of the 

maximizer subclass of partitions Vmax(r]N). 

Let us fix the number of bins, binwidth, and the initial breakpoint y^. For each Pnk, let 

Pnk(H0(yo)),---, Pnk(HL(yo)) be the histogram estimates with respect to the (L+l) bins, H0 (y0), • • -,HL(y0), 

as denned in Section 2.2. On each bin Hi(yo), we infer which Pk achieves max^{P^(Hi(y0))} based 

on the following criterion: fc — argmaxfc'{Pfe/(^(j/0))} if 

VN (max{P„fc,(^(</o))} - Pnk(Hi(yo))) < ^P^~VN, (F.l) 

where wi(y0) = y/\];}Pnk. {Hi{yQ)){\ - Pnk.(Hi{y0))) with k* = argmaxfc, {P„fc/(#,(2/o))}- The 

weighting term is introduced in order to control the variance of the histogram estimates. That 

is, for the bin on which maxfc'{P„fc, (Hi(yo))} is larger, we take a relatively larger margin below 

maxfc'{P„fc,(H((y0))} to admit other Pk to be tied with Pk* on Hi(yo). By implementing this 

procedure for every bin, we obtain a set of indices J j^^yo) C { 0 , 1 , . . . , L} for k = 1,...,K that 

indicates the bins for which Pnk passes the criterion (F.l). By repeating this procedure for each yo, 

we form the estimator of the maximizer subclass by 

Vm"(»?Jv)= I (Vi, • • •, VK) : \J Vk = y, fi(Vk n Vy) = 0 for Vfc # fc', Vi € %,..., VK e YK 1 

(F.2) 

whereVfc = J (J Hi(yo) : y0 € 3>o > for k = 1 , . . . ,K. 

For a fixed y0, V contains KL+1 partitions and a crude way of constructing Vmax(»7jV) would have 

the computational complexity 0(KL). The above algorithm reduces the computational complexity 



from 0(K*-) to O(KL). 
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Chapter 3 

Testing for Instrument Validity in 

the Heterogeneous Treatment 

Effect Model 

3.1 Introduction 

In this paper, we develop a test procedure for the instrumental validity in the heterogeneous treat­

ment effect model. When we suspect that one's participation to a treatment depends on his potential 

outcomes, a common strategy to extract identifying information for counterfactual causal effects is 

to employ an instrumental variable Z. As is demonstrated in Imbens and Angrist (1994), Angrist, 

Imbens and Rubin (1996), and Heckman and Vytlacil (1999, 2001), when the instrument satisfies 

the two key conditions, we can point-identify the average causal effects for those whose participa­

tion decision is strictly randomized by the instrument, (the local average treatment effect) These 

key conditions consist of i) random treatment assignment (RTA): an instrument is assigned inde­

pendently from individual heterogeneities which affect one's outcome and participation response, 

and ii) monotonic participation response to instrument (MPR): one's participation response to the 

instrument is uniform in a certain sense over the entire population.1 

When we analyze (quasi-)experimental data with possible incompliance, we often use the initial 

treatment assignment as an instrument. In this case, the instrumental validity is reasonably satisfied 

as far as the initial treatment assignment is completely randomized and incompliance is allowed only 

for those who are initially assigned to the treatment group (see, for example, Abadie, Angrist, and 

Imbens (2002) and Kling, Liebman, and Katz (2007)). But, if the incompliance is also allowed for 

those initially assigned to the control group, we face a risk of violating MPR. Examples of this 

: M P R considered in this paper stands for the restriction termed as "monotonicity" in Imbens and Angrist (1994). 
The reason that we call it MPR is to distinguish the monotonicity between one's participation response and instrument 
from the monotonicity between one's outcome response and instrument considered in Manski and Pepper (2000). 
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contain the well-known draft lottery of Angrist (1991) and the applications of the fuzzy regression 

discontinuity design (Campbell (1969), Hahn, Todd, and Van der Klaauw (2001)) where eligibility 

for a treatment based on one's attribute is used as an instrument. When we conduct an analysis 

using observational data, the exogeneity of instrument becomes less credible and therefore, not only 

MPR, but also RTA becomes a threat for the instrument validity. Although validating an instrument 

is the core of identifying the causal effects, there have been no procedures proposed to empirically 

test the aforementioned instrumental validity. Because of this, the instrumental validity is simply 

assumed or justified by indirect evidence outside of data. 

The first contribution of this paper is to clarify the testability of the instrument validity in 

the heterogenous treatment effect model with a binary treatment and a binary instrument. The 

refutability result of this paper is closely related to the point-identification result of the compiler's 

outcome distributions by Imbens and Rubin (1997). They show that under RTA and MPR, the 

distribution of compiler's treated outcome and that of compiler's control outcome are point-identified. 

But, from the data, the point estimator of the compiler's outcome densities can take negative values 

on some subsets in the outcome support. We focus on this phenomenon as a clue to refute the 

instrumental validity. That is, if we obtain negative estimates for compiler's treated outcome or 

control outcome density on some regions in the outcome support, we interpret it as a counter-

evidence for the joint restriction of RTA and MPR since the probability density function cannot be 

negative. We derive the condition for the data generating process to yield nonnegative compiler's 

potential outcome densities. We demonstrate that the refuting rule based on that condition is most 

powerful for screening out the violation of the instrumental validity in the heterogenous treatment 

effect model. 

The second contribution of this paper is to develop a specification test for the instrumental 

validity based on the aforementioned refutability result. We propose a Kolmogorov-Sminov type 

test statistic to measure how serious the nonnegativity of the compilers outcome density is violated 

in data. The asymptotic distribution of the proposed test statistic is not analytically tractable, 

and therefore the critical values are difficult to obtain. In order to overcome this problem, we 

develop a bootstrap algorithm to obtain asymptotically valid critical values. As Romano (1988) 

demonstrated, the bootstrap is widely applicable and easy to implement to obtain the critical values 

of the general Kolmogorov-Sminov type goodness-of-fit statistic. This is also the case for our test 

procedure. 

The rest of the paper is organized as follows. In Section 3.2, we demonstrate the refutability of 

the instrumental validity in the heterogeneous treatment effect model. In Section 3.3, we construct 

a statistic to test the testable implication obtained in Section 3.2 and provide an algorithm of the 

bootstrap procedure. Monte Carlo simulations and two empirical applications are provided in 

Section 3.4. Proofs are provided in Appendices. 
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3.2 Model 

Let Y\ represent the potential outcome with a treatment, and YQ represent the potential outcome 

without the treatment. They are scalar variables and their support is denoted by y. The observed 

outcome is denoted by Y0t,s. Let D indicate the observed participation response such that D — 1 

when one participates to the treatment while D = 0 if one does not. Thus, the observed outcome 

is written as Y0bs = Y\D + Yo(l — D). We denote a binary instrument by Z. As in Angrist and 

Imbens (1994), we introduce D\ as the potential participation decision that one would take if Z = 1. 

Similarly, we define -Do for Z = 0. Associated with the potential selection indicators, we define the 

individual type T that indicates individual participation response to the instrument Z. 

T = c: compiler if D\ = 1, DQ = 0 

T = n: never-taker if D\ = 0, A) = 0 

T = a: always-taker if D\ = 1, Do = 1 

T = d: defier if D1 = 0, D0 = 1. 

The following three assumptions guarantee point-identification of the local average treatment 

effects for compliers as well as the marginal distributions of the counterfactual outcomes for compilers 

(see Imbens and Angrist (1994) and Imbens and Rubin (1997)). 

Assumption 

1. Random Treatment Assignment (RTA): Z is jointly independent of {Y\,YQ,D\, Do). 

2. Monotonic Participation Response to Instrument (MPR): Without loss of generality, assume 

Pi(D = \\Z — 1) > Pr(D = \\Z = 0). The potential participation indicators satisfy Di > DQ 

with probability one. 

Note that the above assumptions are defined in terms of the potential variables. RTA is stronger 

than the conventional instrumental exclusion restriction since it only restricts Z to being independent 

of the potential outcomes. MPR states that the ordering of the potential participation indicators 

are identical over the entire population and there are no defiers in the population Pr(T = d) — 

0. Since we never observe all the potential variables of the same individual, we cannot directly 

examine these assumptions from data, and therefore necessary and sufficient testable implications 

for these assumptions are not available. Hence, we examine the refutability by looking for a testable 

implication as a necessary condition for the instrumental validity. 

To illustrate our analytical framework, we introduce the following notations. Let P and Q be the 

conditional probability distributions of (Y0bs,D) € 3̂  x {1,0} given Z = 1 and Z = 0 respectively. 

We interpret the data generating process to have the two-sample structure in terms of the assigned 

value of Z. For a subset A c J and d = 1,0, P(Y0bs € A,D = d) and Q{Yobs € A,D = d) represent 
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Pr(Yo6s eA,D = d\Z = l) and Pr(Yo6s G A,D = d\Z = 0) respectively. Note that P and Q are the 

joint distributions of the observable variables (Yobs, D), and therefore we can consistently estimate 

P and Q by data. 

We now state the refutability result of the instrumental validity. Provided that the population 

has a strictly positive fraction of compilers, the conclusion of the next proposition is equivalent to 

the nonnegativity of the compiler's outcome densities pinned down under the instrumental validity 

(Imbens and Rubin (1997)). A proof is given in Appendix 3.A.I. 

Proposition 3.2.1 If a population distribution of (YI,YQ, Di, Do, Z) satisfies RTA and MPR, then, 

the data generating process P and Q satisfies the following inequalities for arbitrary Borel sets B in 

y, 
P(Yobs G B,D = 1) > Q(Yobs e B , D = 1), 

P(Yobs €B,D = 0)< Q(Yobs £B,D = 0). 

Conversely, if the data generating process P and Q satisfies these inequalities for all Borel sets 

B, then there exists a joint probability law of {Y\,YQ,D\,DQ,Z) that is compatible with the data 

generating process P and Q, RTA, and MPR. 

Let p(y, D — d) and q(y, D = d) be the probability density function of P and Q on y x {d} with 

respect to a dominating measure /x. . In terms of the density functions, the above two inequalities 

are equivalent to 

P(y, D = \)> q(y, D = l) /i-a.e., 

p{y,D = 0)<q{y,D = 0) /*-a.e. 

These inequalities imply that when the instrument is valid, we must observe the configuration of 

the densities as in Figure 1. The left-hand side figure corresponds to Yi's distribution and the right 

figure corresponds to Yo's distribution. The dotted line in each figure represents the probability 

density of the potential outcomes, i.e., fyAv) *s * n e marginal density of the treated outcome and 

fYo(y) is the marginal density of the control outcome. The solid lines represent p(y,D = d) 

and q(y,D = d), which are point-identifiable by data. Note that their integrals are equal to the 

probability of D = d conditional on Z. Therefore, the scale of p(y, D = d) and q(y, D = d) is 

smaller than /y^-) and /y0(-)- Furthermore, p(y,D = d) and q(y,D = d) both lie below the 

potential outcome density /yd(-). This is because RTA implies 

fvM = fyAz{y\Z = l) 

= fYd,D\z(y,D = d\Z = l) + fYd}Dlz(y,D = l-d\Z = l) 

= p(y,D = d) + fYd,Dlz(y,D = (l-d)\Z = l) 
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IYM fyQ(y) 

Treated Outcome ^ Control Outcome ' 0 

Figure 3.1: When we observe that the observable densities p(y,D — 1) and q(y,D = d) are nested 
as in this figure, the instrumental validity is not refuted. 

and 

fvAv) = q(y,D = d) + fYd,D\z(y, D = {\- d)\z = o). 

The second term in the right hand side of the above equations correspond to the density function 

for the missing treated or control outcomes, so they must be nonnegative. 

When RTA and MPR hold in the population, Proposition 3.2.1 implies that the two identifiable 

density functions p(y,D — d) and q(y,D = d) must be nested as shown in Figure 3.1. For the 

treated outcome densities, p(y,D = 1) must lie above q(y,D = 1) and for the control outcome 

densities, q(y, D = 0) must he above p(y, D = 0). Under RTA and MSR, we can point-identify the 

compiler's outcome densities by the areas between these two densities rescaled by their area (see the 

proof of Proposition 3.2.1 in Appendix 3.A.1). Thus, the inequalities of Proposition 3.2.1 constitute 

necessary conditions for the instrument validity. 

The converse statement of Proposition 3.2.1 clarifies that if the data generating process admits 

the inequalities (3.2.0.1), then we can construct a population distribution of (Y\, YQ, D\ > A)> Z) which 

does not contradict the data generating process and the instrument validity. This implies that no 

other refuting rules can screen out violations of the instrument validity more than the refuting rule 

based on the inequalities (3.2.0.1) does. In this sense, the refuting rule of Proposition 3.2.1 has the 

most screening power in detecting violation of instrument validity. 

Note that Proposition 3.2.1 does not give an if and only if statement for the instrumental validity. 

That is, an invalid instrument does not necessarily imply a violation of the inequalities. In this 

sense, testing the inequalities does not guarantee to screen out all the possible violations of the 

instrumental validity. 
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f*M fYo(y) 

v, ^=[vpoo) Y\ F2=(-oo,v2] v2 Y0 

Treated Outcome Control Outcome 

Figure 3.2: When we observe the above configuration of the densities, we can refute the instru­
mental validity since at the subset V\ = [vi,oo), the first inequality in Proposition 3.2.1 is vio­
lated. The right-hand side picture shows that the second inequality in Proposition 1 is violated at 
Vl = (-00,172]. 

If we observe the configuration of the densities like Figure 3.2, we can refute at least one of the 

instrumental validity conditions since some of the inequalities (3.2.0.1) are violated on some subsets 

of the outcome support. These subsets are labeled as V\ and V2 in Figure 3.2. Although observing 

the configuration of the densities like Figure 3.2 does not tell us which conditions are violated in 

the population, it allows us to conclude that the chosen instrument is not valid to point-identify the 

local average treatment effects and, hence, the classical IV-estimator breaks down. 



101 

3.3 Test Procedure 

P and Q are point-identified by the sampling process, and therefore we can examine the validity of 

the inequalities (3.2.0.1) by inferring whether estimators for P and Q satisfy them or not. 

Let sample consist of N i.i.d observations of {Yobs, D, Z). We divide the sample into two sub-

samples in terms of the value of Z. Let m be the sample size with Zi = 1 and n the sample size with 

Zi = 0. Let {Y^ba^,D\), i = 1 , . . . , m be the observations with Z = 1 and (Y^3pDj), j = 1 , . . . , n 

be those with Z = 0. We assume m/N —> A as N —> oo almost surely where AG (e, 1 — e) for some 

e > 0. We estimate P and Q by the empirical distributions, 

Pm(V,d) 

Qn(V,d) 

We measure the degree of violation of the inequalities (3.2.0.1) by the next statistic. 

supV6V{Q„(y, 1) - Pm(V, 1)}, 1 

sup V 6 V {P m (V,0) -Q n (V,0)} J ' 

where V is a collection of subsets in y. 

This test statistic is designed to measure the degree of the violations of the inequalities (3.2.0.1) 

using the empirical distributions. If the sample counterpart of the inequality (3.2.0.1) is violated for 

a subset V, then, the first supremum in the max operator of the test statistic is positive. Similarly, 

when the sample counterpart of the inequality (3.2.0.1) is violated for some subset V, then the 

second term becomes positive. The proposed test statistic returns the maximal deviations of the 

above inequalities where the maximum is searched over a class of subsets V. 

The test statistic can be seen as a variant of the Kolmogorov-Sminov type nonparametric distance 

test statistic (Romano (1988)). This test statistic is not pivotal due to the discreteness of D and 

the asymptotic distribution can depend on P and Q. Choice of V will not affect the size of test 

while it can affect power of the test. 

Although Proposition 1 suggests us to take V as the Borel er-algebra of y, we cannot take it to 

be as rich as the Borel er-algebra unless Y is discrete. In order for the above test statistic to have 

an asymptotic distribution, a specified V has to guarantee the uniform convergence property of the 

empirical processes of Pm and Qn. A class of subsets which meets this requirement is the Vapnik-

Cervonenkis class (VC-class). For example, a collection of left unbounded intervals {(—oo, y\; y G E} 

and a collection of the finite number of disjoint intervals are the examples of the VC-classes. (See e.g., 

Dudley (1999) and van der Vaart and Wellner (1996) for the general construction of the VC-classes). 

We will employ two specific VC-classes in our Monte Carlo studies and empirical applications 

given in the next section. They are the half unbounded interval class Yhaif and the histogram class 

= - E n ^ e V a n d A 1 ^ } , 

_ rmn^l2 I 
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~Vhist- The half unbounded interval class is simply a collection of right unbounded intervals and left 

unbounded intervals, 

Vk i /={ ( -oo , i / ] ; t , e E} U {[y,cx>);y € R} . (3.3.0.3) 

The histogram class is the power set of the histogram bins whose breakpoints can float over R. 

Algebraically, this can be expressed as follows. Let h > 0 be a fixed positive number representing 

the binwidth and L be the number of bins. Pick an initial breakpoint t/o € M and consider equally 

distanced L points —oo <yo <Vi < ••• < VL-I < °o where yi = yo + lh, I = 1 , . . . , (L — 1). Denote 

the (L+l) disjoint intervals formed by these I, points by Ho(yo,h) = (—oo,yo], Hi{yo,h) = [yi-\,yi], 

I = 1 , . . . , (L - 1), and HL(yo, h) — [J/L-I, °°). Let Ij(L), j = 1 , . . . , 2 i + 1 represent all the possible 

subsets of the indices { 0 , 1 , . . . ,L}. Given 3̂ o a set of the smallest breakpoint yo, the histogram 

class with binwidth h and the number of bins L is defined as 

Vhist(h,L,y0)=l | J Hl(y0,h):y0eyQ, j = l,...,2L+1\. (3.3.0.4) 
\ieij(L) J 

In contrast to a rather complicated expression, the histogram class is flexible and simple to imple­

ment. 

For the test statistic (3.3.0.2), P = Q is the least favorable null hypothesis among the composite 

null hypotheses defined by the inequalities (3.2.0.1). Therefore, we will find the critical value with 

a nominal level a by estimating the (1 — a)-th quantile of the asymptotic distribution of TN under 

the least favorable null P = Q. If the estimated critical values are consistent to the (1 — a)-th 

quantile of the asymptotic distribution of TV under the least favorable null, the resulting testing 

procedure has correct size. 

As discussed in Romano (1988), the resampling method is an attractive approach to estimate as­

ymptotically valid critical values for the Kolmogorov-Sminov type test statistic since its asymptotic 

distribution generally does not have an analytically tractable distribution function. Bootstrap re­

solves this issue by estimating the null distribution of the statistic by the empirical distribution of the 

resampled test statistics. Given that the composite null has the least favorable null, bootstrap sam­

ples are drawn from P and Q, which is consistent to the least favorable null hypothesis, i.e., P = Q. 

In the two sample hypothesis testing problem with the null hypothesis given by the equality of the two 

distributions, one choice of the resampling distribution is the pooled empirical distribution HN, the 

empirical distribution of the pooled data (Y0\sV D\),..., (Y^>m, Dl
m), {Y«hs^D<{),..., (Y^bsn, D°n). 

Abadie (2002) proposes the bootstrap procedure to test hypotheses on distributional features be­

tween the compiler's treated and control outcomes. Although the null hypothesis and test statistic 

are different, our bootstrap procedure shown below is analogous to Abadie (2002). 

Bootstrap procedure: 

1. Sample (Y*bs itD*), i = 1 , . . . , m randomly with replacement from the pooled empirical distribu­

tion i?jv and construct the bootstrap empirical distribution P*%. Similarly, sample (Y*bs •, D*-), 



103 

j = 1 , . . . , n randomly with replacement from the pooled empirical distribution H^ and con­

struct the bootstrap empirical distribution Q*n. 

2. Compute the test statistic T^ defined in (3.3.0.2) by plugging in the bootstrapped empirical 

distributions P^ and Q*. 

3. Iterate Step 1 and Step 2 and get the empirical distribution of T^. For a chosen nominal level 

a £ (0,1/2), we obtain the bootstrapped critical value Cb00t(l — a) from its empirical (1 — a)-th 

quantile . 

4. Reject the null hypothesis if T/v > Q,oot(l — a). 

Note that the bootstrap sample is drawn from the pooled empirical distribution because our 

interest is in estimating the null distribution of T/v under the least favorable null hypothesis, P = Q. 

This enables us to control the supremum of the asymptotic false rejection probabilities at the chosen 

nominal level a, 

sup lim Pr(TN > c6oot(l - a)) = a. (3.3.0.5) 
(P,Q)€H0

 N^°° 

This is the conventional definition of the pointwise consistency of test. 

The asymptotic validity of the proposed bootstrap is stated in the next proposition. A proof is 

given in Appendix 3.A.2. 

Proposition 3.3.1 Let V be a VC-class and a € (0,1/2). (i) For the null hypothesis of P and Q 

given by the inequalities (3.2.0.1), the proposed bootstrap test procedure provides pointwise correct 

asymptotic size (3.3.0.5). (ii) If, for a fixed alternative, there exist some V € V which violates 

(3.2.0.1), then the proposed bootstrap testing procedure is consistent, i.e., the rejection probability 

converges to one as N —> oo. 

3.4 Monte Carlo Studies and Empirical Applications 

3.4.1 Small sample performance 

To examine the finite sample performance of our bootstrap test, we perform a Monte Carlo simu­

lation. We specify the sampling process as the least favorable null P = Q, and therefore the test 

asymptotically achieves nominal size. 

p(y, D = \)= q{y, D = 1) = 0.5 x Af(l, 1), 

p(y, D = 0) = q(y, D = 0) = 0.5 x 7V(0,1). 



Table 1: Test Size in Small Samples 
Monte Carlo iterations 2000, Bootstrap iterations 500. 
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sample size (m,n) 
(50,50) 

(50,250) 
(100,100) 
(500,500) 

s.e. 

^half 
.10 
.085 
.124 
.108 
.092 
.007 

.05 

.042 

.073 

.054 

.046 

.005 

.01 

.008 

.022 

.015 

.011 

.002 

Specification of V 
Nominal test size 

Yhist binwidth 0.8 
.10 .05 .01 
.098 .049 .009 
.098 .046 .008 
.113 .052 .015 
.104 .057 .017 
.007 .005 .002 

Whist 
.10 
.106 
.118 
.104 
.112 
.007 

binwidth 0.4 
.05 .01 
.053 .010 
.058 .014 
.054 .001 
.062 .014 
.005 .002 

We consider two specifications of V. One is the half unbounded interval class Vhaif and the 

other is the histogram class VfiiSt defined in Section 3.3. The histogram class provides a finer 

collection of subsets than the half unbounded interval class. This implies that the histogram class 

has more refutability power in the sense that it can asymptotically reject more alternatives than 

the half unbounded interval class. In the finite sample situation, however, there will be a trade-off 

between asymptotic refutability power and finite sample test power. In order to see the effect of a 

choice of the binwidth of Whist to test size and power, we consider two different choices of binwidth, 

0.8 and 0.4. The number of bins are 12 and 24 respectively. The set of initial breakpoints are 

y0 = [—4.4, —3.6) for the former histogram class and ^o — [—4.4, —4.0) for the latter. 

For each specification of the sample size (m, n), we simulate the test procedure 2000 times with 

500 bootstrap iterations. Table 1 shows that for every specification of V, the test has good size 

performance even for relatively small sample size, (m,n) = (50,50). The unbalanced sample case, 

(m,n) = (50,250), shows a slight size distortion, while size of the test is overall satisfactory. In 

addition, we can see that size of the test is not affected by the choice of V. 

In order to see finite sample power of our test procedure, we simulate the empirical rejection rate 

of the bootstrap test against a fixed alternative. The data generating process is specified as 

p(y,D = 1) = 0.55 x JV(1,1.44), q{y, D = l)= 0.45 x N(0.2,1) 

p(y,D = 0)= 0.45 x N(0,1), q(y,D = 0) = 0.55 x JV(0,1). 

Figure 3.3 presents the densities of the specified data generating process. From this figure, we 

can observe that the instrumental validity is refuted by the configuration of the treated outcome 

densities since p(y,D = 1) intersects with q(y,D = 1). Table 2 presents the simulated rejection 

probabilities. We specify V as the histogram classes with the binwidth 0.8 or 0.4, the number of 

bins 12 or 24, and the set of initial breakpoints y0 = [-6.2, —5.4) or y0 = [—6.2, —5.8). For the 

specified alternative, we find that the simulated power is very poor in the small sample case. It is 

even lower than nominal size when (m, n) — (50,50). The test procedure gains power for relatively 
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Figure 3.3: Simulation of Test Power: Specification of Densities. The instrumental validity 
is refuted since for the treated outcomes the two observable densities intersect. Note that in each 
panel the density drawn to cover the other two represents the probability density of the potential 
outcomes. 
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Table 2: Power against the Fixed Alternative 
Monte Carlo iterations 2000, Bootstrap Iterations 500 

sample size 
(50,50) 

(100,100) 
(250,250) 
(500,500) 

specification of V 
significance level 
^hist with binwidth 0.8 
.10 .05 .01 

rejection probability 
.067 .033 .007 
.118 .068 .017 
.343 .227 .090 
.710 .595 .356 

^hist with binwidth 0.4 
.10 .05 .01 
rejection probability 
.062 .028 .006 
.071 .037 .009 
.234 .141 .045 
.521 .396 .189 

large sample size (m,n) = (500,500). We can also observe that Vhist with the shorter binwidth is 

less powerful than that with the wider binwidth. This can be explained that as the binwidth gets 

finer, the distribution of the test statistic under the least favorable null P = Q has more variance and 

it raises the bootstrap critical values. This makes our test procedure less powerful. This suggests 

that given the finite sample there is a trade-off between the richness of V, or equivalently, asymptotic 

refuting power and the finite sample power. Regardless of its practical importance in choosing V, 

we make the choice of V out of scope of this paper and leave that as a part of future research. 

3.4.2 Empirical Applications 

We illustrate a use of the test procedure with using the following two data sets. The first one is the 

draft lottery data during Vietnam era used in Angrist (1991). The second one is from Card (1993) 

on returns to schooling using geographical proximity to college as an instrument. 

Draft Lottery Data 

The draft lottery data consist of a sample of 10,101 white men, born in 1950-1953. The data source 

is March Current Population Surveys of 1979 and 1981-1985. The outcome variable is measured in 

terms of the logarithm of weekly earnings imputed by the annual labor earnings divided by weeks 

worked. The treatment is whether one has a Vietnam veteran status or not. Since the enrollment for 

the military service possibly involves self-selection based on one's future earning, the veteran status 

is not considered to be randomly assigned. In order to solve this endogeneity issue, Angrist (1991) 

constructs the binary indicator of the draft eligibility, which is randomly assigned based on one's 

birthdate through the draft lotteries. A justification of the instrumental validity here is that the 

instrument is generated being independent of any individual characteristics. Hence, it is reasonable 

to argue that the instrument satisfies RTA. On the other hand, the validity of MPR is less credible 

since the existence of defiers are not eliminated by the sampling design, i.e., in the sample there are 

observations who participate to the military service even though they are not initially drafted. 
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Figure 3.4: 

The proposed testing procedure gives a solution to validate these assumptions from data. Figure 

4 plots the kernel density estimates for the observed outcome distribution multiplied by the selection 

probability. We observe that the configuration of the densities in Figure 3.4 is similar to Figure 3.1. 

Therefore, we do not expect that the instrumental validity is refuted by the testing procedure. As 

Table 3 shows, p-value of the bootstrap test is almost one, and we do not refute the instrumental 

validity from the data. 

Returns to Education: Proximity to College Data 

The Card data is based on National Longitudinal Survey of Young Men (NLSYM) began in 1966 

with age 14-24 men and continued with follow-up surveys through 1981. Based on the respondents' 

county of residence at 1966, the Card data provides the presence of a 4-year college in the local labor 

market. Observations of years of education and wage level are based on the follow-ups' educational 

attainment and wage level responded in the interview in 1976. 
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Table 3: Test Results of the Empirical Applications 
Bootstrap iterations 500 

sample size (m,n) 
Pr(£> = \\Z = 1), Pr(£> = \\Z = 0) 
Vftist binwidth 
Bootstrap test, p-value 

Draft lottery data 
Pull sample 
(2780,7321) 
0.31, 0.19 

0.8 0.4 
0.988 1.00 

Proximity to college data 
Pull sample 
(2053,957) 
0.29, 0.22 
1.0 0.5 

0.00 0.00 

Restricted sample 
(1047,144) 
0.35,0.24 

1.0 0.5 
0.997 0.997 

The idea of using the proximity to college as an instrument is stated as follows. Presence of a 

nearby college reduces a cost of college education by allowing students to live at home, while one's 

inherited ability is presumably independent of his birthplace. Compilers in this context can be 

considered to be those who grew up in relatively low-income families and who were not able to go 

to college without living with their parents. We make the educational level as a binary treatment 

which indicates one's education years to be greater or equal to 16 years. Roughly speaking, the 

treatment is considered as a four year college degree. 

We specify the measure of outcome to be the logarithm of weekly earnings. In the first specifi­

cation, we do not control any demographic covariates. This simplification raises a concern for the 

violation of RTA. For instance, one's region of residence, or whether they were born in the standard 

metropolitan area or rural area may affect one's wage levels and the proximity to colleges if the ur­

ban areas are more likely to have colleges and has higher wage level compared with the rural areas. 

This kind of confounder may contaminate the validity of RTA. In fact, Card (1993) emphasizes an 

importance of controlling for regions, residence in the urban area, race, job experience, and parent's 

education in order to make use of the college proximity as an instrument. 

Figure 3.5 presents the kernel density estimates for observed outcome densities. In contrast to 

Figure 3.4, the kernel density estimates in Figure 3.5 intersect especially for those of the control 

outcomes. That is, the configuration of the densities are similar to Figure 3.1, and this indicates 

the violation of the instrument validity. Our test procedure yields zero p-value and this provides 

an empirical evidence that, without any covariates, college proximity is not a valid instrument. 

We next look at how the test result changes once we control for some covariates. Controlling 

discrete covariates can be done by simply making the whole analysis conditional on the specified 

value of the covariates. We consider restricting the sample to be white workers (black dummy is 

zero), not living in south states in 1966 (south66 dummy is zero ), and living in a metropolitan area 

in 1966 (SMSA66 dummy is one). That is, we are controlling for race, whether or not one grew up 

in southern states, and whether or not one grew up in urban area. The size of the restricted sample 

is 1191 (m = 1047, n = 144). Figure 3.6 indicates that the kernel density estimates do not reveal a 

clear evidence for a violation of the instrumental validity. This observation is also supported by the 
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high p-value of the proposed test. Thus, we conclude that the instrumental validity is not refuted 

once we control for these covariates. 

3.5 Concluding Remarks 

In this paper, we develop the bootstrap test procedure to empirically check the conditions of the 

instrumental validity of Imbens and Angrist (1994). Our testing strategy focuses on the nonneg-

ativity of the compiler's outcome densities that are point-identified when the instrument is valid. 

The nonnegativity of the complier's outcome density is equivalently expressed as the inequalities 

between the joint probability distributions of Y0t,s and D conditional on Z. We demonstrate that 

the inequalities provide the testable implication that has most refuting power. Our test statistic is 

designed to measure the discrepancy of these inequalities, and it has a form of the supremum statistic 

on the difference between the two empirical distributions over a specified VC-class of subsets. We 

develop the bootstrap algorithm to derive the critical values since the asymptotic distribution of the 

proposed statistic is not analytically tractable. 

There are some issues left for future work. First of all, we do not formally investigate how to 

choose a VC-class V and how it affects the test performance in the finite sample case. We propose 

the two different choices of V in our simulation studies, the half unbounded interval class and the 

histogram class. We observe that test size is not affected by a choice of V while power of the test 

is sensitive to a specification of V. 

Second, this paper exclusively considers the binary instrument case. When an instrument is 

multi-valued, but as long as its support is discrete, it is possible to test the instrument validity for 

every pair of two instrumental values. However, it is not clear what is a suitable test statistic when 

we want to test the instrument validity jointly over multiple instrument values. We leave a further 

discussion of the multi-valued instrument case for future work. 
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Figure 3.5: Kernel Density Estimates for the Proximity to College Data (white workers, 
not living in south states, and living in a metropolitan area). The Gaussian kernel with 
bandwidth 0.1 is used. In each panel, we draw a normal density to illustrate the scale of the estimated 
densities. 



I l l 

0.8 -

g 0.6 H 

I 0.4 

0.2 

1 . 1 1 1 
Y(1):*Treated Outcome 

s' "x 

/ \ 
/ \ 

/ \ 
/ \ 

/ \ 
/ \ 

/ \ 
/ \ 

' /—S* x " \ v 

/ /•* / \V \ 
/ jT ^ * v \ N 

I • * T ' - I . , = 1 

5.5 
i 

6.0 6.5 
i 

7.0 
i 

Y(0):Contror©ufc;ome 

/ 
/ 

/ 
/ / * 

/ ' ) 
• ' ' / 

' ' / 
• 1/ 

1 • / 
' J i J 

A/ 
t . 

•*/ 
/-S 

/ 
i l 

^ • x 

A i 
/ ' \ / / 

1 

11 v 

V \ V \ 
V v 

V v 

V v 

\ \ \ 

\ \ \ 
\ \ \ 

^V>" 
1 • ^ * 

5.5 6.0 6.5 7.0 

Y: Logarithm of earnings 
Z=1: Near College 
Z=0: No college nearby 
Normal 
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3. A Appendices 

3.A.1 Proof of Proposition 3.2.1 

Denote the population distribution of the types by irt = Pr(T = t), t £ {c,n,a,d}. Under RTA, 

P(B, 1), for any Borel set B C y, is expressed as the following. 

P(B, 1) = Pr(yofcs eB\D = l,Z = 1) Pi(D = 1\Z = 1) 

J ] Pr(Yi € V|I>i = 1, Z = 1, T = t) Pr(T = t\Di = 1, Z = 1) 
t€{c,n,a,<i} 

x Pr(£>i = 1|Z = 1) 

= [ ] T P r ( y i e B | D i = l , T = t )Pr(T = t | T e { c , o } ) P r ( T e { c , a } ) 
t€{c,n,a,d} 

7T„ 
i G 5 | T = a) a + Pr(Yi G V|T = c) c = [Pr(y 

x (na + 7rc) 

= Pr(Yi € F |T = a)7ra + Pr(ya € V\T = C)TTC. (3.1.1.6) 

The second line follows by the law of total probability and the fact that the conditioning event 

{D = 1,Z = 1} is identical to {Di = 1,Z = 1}. To obtain the third line, we apply RTA to 

Pr(T = t\Di = 1,Z = 1), Pr(£>i = 1\Z = 1), and Pr(Yi e B\Di =l,Z=l,T = t). Note that the 

type indicator T gives a finer partition of the sample space than D\, so we obtain Pr(Yj £ B\D\ = 

l,T = t)= Pr(Yi € S |T = t) and Pr(T = t\Di = 1,Z = 1) = Pr(T = t |T € {c,a}). 

The similar operation to Q(B, 1) yields 

Q(B, 1) = Pr(yi G B\T = a)7ra + P r ( n G 5 | T = d)nd. (3.1.1.7) 

Under MPR, there do not exist defiers in the population, i.e., nd = 0. If we take the difference 

between (3.1.1.6) and (3.1.1.7), we obtain 

P(B, 1) - Q(B, 1) = Pr(yj G B\T = C)TTC > 0. 

This proves the first inequality of the proposition. The second inequality of the proposition is 

obtained in an analogous way and we omit its derivation for brevity. 

For a proof of converse statement, let a data generating process P and Q satisfying the inequalities 

(3.2.0.1) be given. Let p(y, d) and q(y, d) be the densities (with respect to a dominating measure //) 

of P and Q on y x {d}. It suffices to show that we can construct a joint distribution of (Yi ,Y0,T, Z) 

that is compatible with P and Q and satisfies RTA and MPR. Since the marginal distribution of Z 

is not important for the analysis, we focus on constructing the conditional distribution of (Yi, YQ, T) 
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given Z. Let us consider the nonnegative functions h,Ydlt(y), d = 1,0, t £ {c,n,a,d}, 

hYuc(y) = p(y,l)-q(y,l), 

hYun{y) = 1Yl(y), 

hYUa(y) = q(y,l), 

hYud(y) = 0, 

hy0,c{y) = ? ( y > 0 ) - p ( y , 0 ) , 

hy0,n{y) = p(y,Q), 

hYo,a(y) = iY0{y), 

hY0,d(y) = 0-

where 7^(2/) and 7y0(y) are arbitrary nonnegative functions satisfying JylY1(y)dfJ' = P(y,0) and 

Jy 7y0(y)dfi = Q(y,l). We construct a conditional probability law of (Yi,y0 ,T) given Z as, for an 

arbitrary Borel sets B\ and BQ in y, 

Pr(yi € B i ,y 0 G B 0 ,T = c|Z = 1) = P r ( y € J3i,y0 G B0,T = c\Z = 0) 

\ 0 i f [ P ( y , i ) - Q ( y , i ) ] = o 

Pr(yi G Bi ,y 0 G B0lT = n\Z = 1) = P r^x € BltY0 & B0,T = n\Z = 0) 

\ 0 HP(y,0) = 0 

Pr(Yi G BUY0 eB0,T = a\Z = 1) = Pr ( l l G 5 1 ; y 0 G B0,T = a\Z = 0) 

\ 0 ifQ(3;,i) = o 

P r ( y G B i , y 0 G S o , T = d|^ = l ) = P r ( y i G B i , y 0 G B o , r = d|^ = 0) 

= 0 

Note that this is a valid probability measure since it is nonnegative and satisfies 

Y^ Px(Y1ey,Y0ey,T = t\z = z) = i, z = i,o. 
t£{c,n,a,d} 

Furthermore, the proposed probability distribution satisfies RTA and MPR by construction and it 
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is consistent with the given data generating process, i.e., 

Pr(Yobs €B,D = 1\Z = 1) = P r ( Y i . e B , r = c|Z = l ) + P r ( Y i e B , T = a|Z = l) 

= [[hYlAy) + hY1Ay)W = P(B,i), 
JB 

Pr(YobseB,D = 0\Z = l) = Pi(Y0eB,T = n\Z = l)+Pi(Y0eB,T=.d\Z=l) 

= P(B,0) 

Pr{YobseB,D = l\Z = 0) = PT(Y1€B,T = a\Z = 0) + Pr(Y1£B,T = d\Z = 0) 

= Q<B,1) 

PT(YobseB,D = 0\Z = 0) = Pr(Y0£B,T = n\Z = 0) + PT(Y0eB,T = c\Z = 0) 

= Q(B,0) 

This completes the proof. • 

3.A.2 Proof of Proposit ion 3.3.1 

Throughout the proof, it is assumed that the probability law of a binary instrument Z is i.i.d 

Bernoulli with parameter A € (e, 1 — e) for some e > 0. 

i) 
Step 1: Derive the asymptotic distribution of the test statistic TJV under the null P = Q. 

Define Pm and Qn as the empirical probability measure of (Y, D) conditional on Z = 1 and Z — 0 

respectively, 
1 m 1 n 

Pm — — / . f y y i .,D*)> <2ra = - / £(Y°. .,£><?), 
i= l j = l 

where (S^d) represents a unit mass measure on (V0bs, D) = {y,d)-

Given V a VC-class of subsets in K, we define the class of indicator functions on R x {1,0}, T\ 

and Fo, 

Fi = {l{(V,i)};VeV}, ^ 0 = {l{(V,0)};VeV} 

where the first coordinate of the indicator function corresponds to a subset F c l and the second 

coordinate corresponds to the participation indicator D. Following to the notation in van der Vaart 

and Wellner (1996), for a function / : R x { l , 0 } - » l , Pf stands for the expectation of / with 

respect to P, Pf — J fdP. Note that T\ and T§ are VC-class of functions on R x {1,0} since the 

collection of subsets V are assumed to be a VC-class. 



115 

Consider stochastic processes GI,JV : T —> R where .F is a class of functions on R x {1,0}, 

+ {7)1/2(Q-n -(3.1.2.8) 

Given the above Donsker class of functions T\, we apply the Donsker theorem (theorem 3.5.1 in van 

der Vaart and Wellner (1996)) to get the weak convergence of \/n{Qn — Q){-) and y/m(Pm — P)(-) 

to the brownian bridges on T\, 

V^(Qn-Q)^GQ in J°°(^i) 

y/m{Pm -P)~*GP in l°°(?i) 

where "~»" notates weak convergence, Gp represents the P-brownian bridge, GQ represents the 

Q-brownian bridge, and Z°°(.F) denotes the space of l°° functions which map from T into R. Under 

the null P = Q, since m/N —> A almost surely, GI,JV converges weakly to a sum of two independent 

P-brownian bridges Gp and G'P. 

GI,JV - A1 / 2GP - (1 - Xf^G'p. 

Note that the probability law of the process X1'2Gp — (1 — A)1/,2GP is identical to the P-brownian 

bridge Gp. Hence, we have GI.JV -** Gp in ^(JFj) . Analogously, for stochastic processes Go,AT : 

GO.AT = (—J (pm-g„) 

+ ( ^ ) 1 7 V - Q ) . (3-1.2.9) 

we obtain GO,JV ~» Gp in i°°(jF0). 

Notice that the test statistic is written as 

TN = max \ sup G l i JV/, sup Go, AT/ > . 
[fen /e^o J 

Let f * = f i U f 0 - Note that .F* is also a Donsker class. For X £ 1°°^*) with Z°°(.F*) equipped 

with the sup metric, the functional s u p ^ ^ Xf is continuous with respect to X, since for Xi,X2 £ 

Z°°(:F*), I s u p / 6 ^ (Xi - X2)f\ < sup / e : F , |(Xi - X2)f\< \\Xi - X2 | | holds. Since the max operator 

is clearly continuous, the continuous mapping theorem for stochastic processes (see, e.g., Pollard 
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(1984)) implies 

TN -*T = max I sup GPf, sup GPf } = sup GPf. (3.1.2.10) 

This is the limiting probability law of T/v under the null P = Q. 

Step 2: Prove the asymptotic consistency of the distribution of the bootstrap statistic. 

Let us define the bootstrap empirical measure 

where (Y*ba<i,D*), i = 1,. . . ,m, and (yo*t •,£)?), j = l , . . . , n , are drawn randomly from the 

pooled empirical measure 
TO n 

The bootstrap test statistic is expressed as 

T„ = max \ sup G*Nf, sup G*0Nf } 
[feFi f€T0 J 

where G*hN = ( ^ p ) 1 / 2 (Q* - P^) and G5]JV = ( ^ p ) 1 / 2 ( J* - Q;) . The bootstrap consistency is 

proved if the distribution of Tjy converges weakly to the one obtained in (3.1.2.10) under the null 

P = Q for almost every sampling sequences of {(Y^bs ;,£>*)} and {(Y®bs ^D^)}. 

Let H = XP+(1 - X)Q. By theorem 3.7.7 in van der Vaart and Wellner (1996), Vm(P™ -HN) ~> 

GH and y/n(Q^ — iJjv) ~~* G// hold with probability one in terms of the randomness of the sequences, 

{ ( y l , , D i ) } a i i d { ( y 0 V , , ^ 0 ) } . 

Thus, by the similar argument to Step 1, G\ N and GQ N weakly converge to the H-brownian 

bridge, i.e., 

( TTl'fl \ ^ / ^ 
-Jj-j (Qn ~ Pm) 

= (£)1/2 MQ: - HN) - (£)1/2 v^(p^ - ^ ) 
- A 1 / 2 ^ - (1 - A ) 1 / ^ = GH 

and GQ)Ar ~» G H for almost every sequence of {(Y^bsi,D})} and {(Y°bs j , D®)}. Therefore, by the 

continuous mapping theorem, 

T*N ~> sup GHf- (3.1.2.11) 

Note that, under the null, H — P holds, and therefore the obtained H-brownian bridge is in fact 

P-brownian bridge. Hence, Tjy ~~> T holds. This implies that the asymptotic distribution of T^ co­

incides with that of T^ under the null for almost every sequence of {(Y^bs it D})} and {(Y®bs • ,£>!•)}. 
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Step 3: Prove the asymptotic consistency of the rejection probability based on the bootstrap 

critical value Cboot{l — a). 

Let Jjv(-,Jfjv) be the cdf of the bootstrap statistic T^ (conditional on ifjv)- The bootstrap 

estimates of the critical value is the (1 — a)-th quantile of JN(-, HN), that is, 

< w ( l - a) = inf {c : ProbWjv (T^ > c) < a} . 

Let J{-,H) be the cdf of T under the null P — Q(= H) and denote its (1 — a)-th quantile by 

c(l — a). Since J^{-,HN) converges weakly to J(-,H), 6&00t(l — a) converges to the c(l — a) if 

J(-,H) is continuous and strictly increasing at its (1 — a)-th quantile (see, e.g., Lemma 1.2.1. in 

Politis, Romano, and Wolf (1999)). 

The absolute continuity of J(-,H) follows by the absolute continuity theorem for the convex 

functional of the Gaussian processes (Theorem 11.1 of Davydov, Lifshits, and Smorodina (1998)). 

Note that the test statistic is a convex functional of Z°°(^r*), and for some / e F with nondegenerate 

GPf, it holds Pr(T < 0) < Pr (G/ < 0) = 1/2. Therefore, J(t, H) is absolutely continuous for every 

t > 0. Then, the absolute continuity theorem guarantees that, for a € (0,1/2), J(t, H) is absolutely 

continuous at c(l — a). Thus, ctoot(l — a) —• c(l — a) almost surely in terms of the randomness of 

HN-

Finally, by the Slutsky's Theorem, it follows 

ProbP=Q=H(TN > cboot(l - a)) -> 1 - J(c( l - a), H) = a. 

ii) 

To examine power of the test against a fixed alternative, consider P and Q such that (Q — P)f > 0 

for some / £ T\. Then, the last term in (3.1.2.8) diverges to positive infinity at these / . Since the 

Brownian bridge processes as the limiting process of \fm{Pm — P) and y/n(Qn — Q) are bounded with 

probability one, supy€:Fi G\^f —• oo with probability one. This implies 7jv —> oo with probability 

one. 

On the other hand, the bootstrap critical value are bounded almost surely (with respect to the 

original sampling sequence) because T^ weakly converges to sup^6;F» GH f with H = \P+ (1 — X)Q. 

Therefore, 

ProbP=Q=H(TN > cboot(l - a)) -> 1 

as N —* oo. 
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