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“As far as the laws of mathematics refer to reality, they are not certain; as far

as they are certain, they do not refer to reality.”

Albert Einstein

“In mathematics you don’t understand things. You just get used to them.”

Johann von Neumann



Abstract

The thesis is concerned with the study of the massless Dirac equation.

In the first part we study the massless Dirac equation in dimension 1+3 in the
stationary setting, i.e. when the spinor field oscillates harmonically in time. We
suggest a new geometric interpretation for this equation. We think of our 3-
dimensional space as an elastic continuum and assume that material points can
experience no displacements, only rotations. This framework is a special case
of the Cosserat theory of elasticity. Rotations of material points are described
mathematically by attaching to each geometric point an orthonormal basis which
gives a field of orthonormal bases called the coframe. As the dynamical variables
we choose the coframe and a density. We choose a particular potential energy
which is conformally invariant and then incorporate time into our action by sub-
tracting kinetic energy. We prove that in the stationary setting our model is
equivalent to a pair of massless Dirac equations.

In the second part we consider an elliptic self-adjoint first order pseudodifferential
operator acting on columns of m complex-valued half-densities over a compact
n-dimensional manifold. The eigenvalues of the principal symbol are assumed
to be simple but no assumptions are made on their sign, so the operator is not
necessarily semi-bounded. We study the spectral function and derive a two-
term asymptotic formula. We then restrict our study to the case when m = 2,
n = 3, the operator is differential and has trace-free principal symbol, and address
the question: is our operator a massless Dirac operator? We prove that it is a
massless Dirac operator if and only if, at every point, a) the subprincipal symbol
is proportional to the identity matrix and b) the second asymptotic coefficient of
the spectral function is zero.



Acknowledgements

I would like to express my sincere thanks to my amazing supervisor Professor

Dima Vassiliev for the guidance and help he generously provided me with all the

time.

I am truly grateful to my colleagues and friends James Burnett and Robert J.

Downes for all the time we spent together during my UCL years.

I would also like to thank my beloved family for their support and encouragement.

4



Contents

Declaration 1

Abstract 3

Acknowledgements 4

1 Introduction 7

1.1 The massless Dirac equation . . . . . . . . . . . . . . . . . . . . . 7

1.2 Continuum mechanics interpretation of the massless Dirac equation 8

1.3 Microlocal interpretation of the massless Dirac equation . . . . . . 12

2 The stationary massless Dirac equation and Cosserat elasticity 15

2.1 Our model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Switching to the language of spinors . . . . . . . . . . . . . . . . . 19

2.3 Separating out time . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Factorisation of our Lagrangian . . . . . . . . . . . . . . . . . . . 22

2.5 Proof of Theorem 1.2.1 . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Nonlinear second order PDEs which reduce to pairs of linear first
order PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Plane wave solutions . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Relativistic representation of our Lagrangian . . . . . . . . . . . . 32

2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.A General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.B Coframe notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.C Spinor notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.D Correspondence between coframes and spinors . . . . . . . . . . . 42

2.E Spinor representation of axial torsion and angular velocity . . . . 43

3 Microlocal analysis of the massless Dirac operator 46

3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5



Contents 6

3.2 Algorithm for the construction
of the propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Leading transport equations . . . . . . . . . . . . . . . . . . . . . 69

3.4 Proof of formula (3.1.18) . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.1 Part 1 of the proof of formula (3.1.18) . . . . . . . . . . . 79

3.4.2 Part 2 of the proof of formula (3.1.18) . . . . . . . . . . . 80

3.4.3 Part 3 of the proof of formula (3.1.18) . . . . . . . . . . . 80

3.4.4 Part 4 of the proof of formula (3.1.18) . . . . . . . . . . . 82

3.5 U(1) connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Singularity of the propagator at t = 0 . . . . . . . . . . . . . . . . 88

3.7 Mollified spectral asymptotics . . . . . . . . . . . . . . . . . . . . 92

3.8 Unmollified spectral asymptotics . . . . . . . . . . . . . . . . . . . 94

3.8.1 One-term spectral asymptotics . . . . . . . . . . . . . . . . 94

3.8.2 Two-term spectral asymptotics . . . . . . . . . . . . . . . 95

3.9 U(m) invariance of the second asymptotic coefficient . . . . . . . 99

3.10 Teleparallel connection . . . . . . . . . . . . . . . . . . . . . . . . 101

3.11 Proof of Theorem 1.3.1 . . . . . . . . . . . . . . . . . . . . . . . . 109

3.11.1 Part 1 of the proof of Theorem 1.3.1 . . . . . . . . . . . . 109

3.11.2 Part 2 of the proof of Theorem 1.3.1 . . . . . . . . . . . . 111

3.12 Spectral asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.13 Bibliographic review . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.A The massless Dirac operator . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 127



Chapter 1

Introduction

1.1 The massless Dirac equation

The thesis is concerned with the study of the massless Dirac equation. It is the

accepted mathematical model for a massless neutrino field.

The massless Dirac equation is a system of two complex first order partial differ-

ential equations for two complex-valued unknowns on a Lorentzian 4-manifold.

Throughout this thesis we assume, for simplicity, that the Lorentzian manifold

in question has the structure R×M where M is a Riemannian 3-manifold.

The dynamical variable (unknown quantity) in the massless Dirac equation is a

two-component complex-valued spinor field ξ which is a function of time x0 ∈ R

and local coordinates xα on M . The explicit form of the massless Dirac equation

is

i(±σ0
ȧb∂0 + σαȧb∇α)ξb = 0. (1.1.1)

Here the σ are Pauli matrices, ∂0 is the time derivative and ∇α is the covariant

spatial derivative, see Appendix 2.C for details. Summation in (1.1.1) is carried

out over the tensor index α = 1, 2, 3 as well as over the spinor index b = 1, 2.

The use of the partial derivative ∂0 = ∂/∂x0 in equation (1.1.1) is justified by the
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Introduction 8

fact that the time coordinate x0 is fixed and we allow only changes of coordinates

(x1, x2, x3) which do not depend on x0.

We see that the massless Dirac equation (1.1.1) is, indeed, a system of two (ȧ =

1̇, 2̇) complex linear partial differential equations on the 4-manifold R ×M for

two complex unknowns ξb, b = 1, 2. The two choices of sign in (1.1.1) give two

versions of the massless Dirac equation which differ by time reversal. Thus, we

have a pair of massless Dirac equations.

The aim of the thesis is to have a fresh look at the massless Dirac equation

(1.1.1) and to identify mathematical problems in other subject areas (i.e. other

than theoretical physics and differential geometry) which generate the massless

Dirac equation.

We found two new perspectives on the massless Dirac equation: a continuum

mechanics interpretation and a microlocal analysis interpretation. Hence, the

thesis consists of two parts. We describe below the main results from these two

parts.

Note that the notation in the two parts of the thesis is somewhat different: in

Chapter 2 it is in line with theoretical physics notation whereas in Chapter 3

it is in line with the notation of spectral theory. This makes a certain degree

of repetition inevitable: say, in Appendix 3.A within Chapter 3 we redefine the

massless Dirac equation (1.1.1) using spectral theoretic notation, without the

explicit use of spinors.

1.2 Continuum mechanics interpretation of the

massless Dirac equation

We will be interested in spinor fields of the form

ξ(x0, x1, x2, x3) = e−ip0x0

η(x1, x2, x3) (1.2.1)
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where

p0 6= 0 (1.2.2)

is a real number. Substituting (1.2.1) into (1.1.1) we get the equation

± p0σ
0
ȧbη

b + iσαȧb∇αη
b = 0 (1.2.3)

which we shall call the stationary massless Dirac equation. Note that in equation

(1.1.1) the spinor field ξ “lives” on the Lorentzian 4-manifold R ×M whereas

in equation (1.2.3) the spinor field η “lives” on the Riemannian 3-manifold M .

Thus, the stationary massless Dirac equation is the massless Dirac equation with

time separated out.

We separated out time to simplify the problem while retaining most of its essential

features. Note also that this separation of variables has a clear physical meaning:

the real number p0 appearing in (1.2.1) and (1.2.3) is quantum mechanical energy.

Our aim is to show that the stationary massless Dirac equation (1.2.3) can be

reformulated in an alternative (but mathematically equivalent) way using instead

of a spinor field a different set of dynamical variables.

We view our 3-manifold M as an elastic continuum. But it is not an ordinary

elastic continuum, its material points possess a very special property. They can-

not experience any displacements, they can only experience rotations. Moreover,

different material points rotate independently.

To describe these rotations mathematically we attach an orthonormal basis to

each geometric point of our manifold. It gives us a field of orthonormal bases or

coframe. We denote the coframe as ϑj, j = 1, 2, 3, see Appendix 2.B for details.

As dynamical variables in our model we choose the coframe ϑ and a positive

density ρ. They are functions of time x0 and local coordinates (x1, x2, x3) on M .
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At a physical level, making the density ρ a dynamical variable means that we

view our continuum more like a fluid rather than a solid. In other words, we allow

the material to redistribute itself so that it finds its equilibrium distribution.

Note that the total number of real dynamical degrees of freedom contained in the

coframe ϑ and positive density ρ is four, exactly as in a two-component complex-

valued spinor field ξ. Moreover, it is known (see Appendix 2.D) that a coframe ϑ

and a (positive) density ρ are geometrically equivalent to a nonvanishing spinor

field ξ modulo the sign of ξ.

As a measure of rotational deformations we choose torsion, which is an approach

going back to Einstein and Cartan. The torsion tensor is expressed via the

coframe and its first partial derivatives, see [6] for details.

The crucial element in our construction is the choice of potential energy. It is

known [6] that in the purely rotational setting the potential energy of a physically

linear elastic continuum contains three quadratic terms, with three real param-

eters (elastic moduli) as factors. The three quadratic terms in potential energy

correspond to the three irreducible pieces of torsion. It is not a priori clear what

the elastic moduli of “world aether” are.

We choose a potential energy which feels only one piece of torsion, axial. This

leaves us with a unique, up to rescaling by a positive constant, formula (2.1.6)

for potential energy. This particular potential energy also has the remarkable

property of conformal invariance, i.e. it is invariant under the rescaling of the

3-dimensional metric g by an arbitrary positive scalar function.

After the potential energy is chosen the remainder of our construction is straight-

forward. We incorporate time into our action in the standard Newtonian way,

by subtracting kinetic energy. This gives us the Lagrangian density (2.1.13). As

we are interested in comparing our mathematical model with the massless Dirac

equation, we perform a change of dynamical variables and switch from coframe

ϑ and density ρ to a spinor field ξ. Our Lagrangian density now takes the form

(2.2.1). We write down the field equation (Euler–Lagrange equation) for our
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Lagrangian density and observe that time separates out if we seek stationary so-

lutions (1.2.1); this separation of variables is highly nontrivial because our field

equation is nonlinear. After separation of variables our Lagrangian density takes

the stationary form (2.3.7).

The main result presented in Chapter 2 is the following

Theorem 1.2.1. A nonvanishing time-independent spinor field η is a solution

of the field equation for our stationary Lagrangian density (2.3.7) if and only if

it is a solution of one of the two stationary massless Dirac equations (1.2.3).

Theorem 1.2.1 provides an elementary, in terms of Newtonian mechanics and

elasticity theory, interpretation of the stationary massless Dirac equation. This

interpretation is geometrically much simpler than the traditional one as the math-

ematical description of our model does not require the use of spinors, Pauli ma-

trices or covariant differentiation.

The only technical assumption contained in the statement of Theorem 1.2.1 and

its proof is that the density does not vanish which is equivalent to the spinor

field not vanishing. At the moment we do not know how to drop this technical

assumption. We can only remark that generically one would not expect a spinor

field η “living” on a 3-manifold to vanish as this would mean satisfying four real

equations Re η1 = Im η1 = Re η2 = Im η2 = 0 having at our disposal only three

real variables xα, α = 1, 2, 3.

The crucial element of the proof of Theorem 1.2.1 is the observation that our La-

grangian density admits factorisation, see formula (2.4.3). Thus, our argument

is similar to the original argument of Dirac, the difference being that we fac-

torise the Lagrangian whereas Dirac factorised the field equation (Klein–Gordon

equation). In our model factorising the field equation is impossible because the

equation is nonlinear.

The results outlined above were published in [14], [13], [15]. The paper [8] contains

results closely related to those outlined above.
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1.3 Microlocal interpretation of the massless Dirac

equation

In this part of the thesis we adopt an abstract spectral theoretic approach and

view the stationary massless Dirac equation (1.2.3) as a special case of a spectral

problem for a first order elliptic system.

We start with a general spectral problem:

Av = λv. (1.3.1)

Here A is a first order m×m elliptic formally self-adjoint classical pseudodifferen-

tial operator acting on a column of complex-valued half-densities v = (v1 . . . vm)T

over a compact n-dimensional manifold M , λ is a spectral parameter.

We assume the coefficients of the operator A to be smooth. We also assume that

the operator A is formally self-adjoint (symmetric):
∫
M
w∗Av dx =

∫
M

(Aw)∗v dx,

for all smooth v, w ∈ M → Cm. Here and further on the star indicates Hermi-

tian conjugation in Cm and dx := dx1 . . . dxn, where x = (x1, . . . , xn) are local

coordinates on M .

Let A1(x, ξ) be the principal symbol of the operator A. Here ξ = (ξ1, . . . , ξn)

is the dual variable to the position variable x; in physics literature the ξ would

be referred to as momentum. Our principal symbol A1 is an m ×m Hermitian

matrix-function on T ′M := T ∗M \ {ξ = 0} (i.e. on the cotangent bundle with

the zero section removed).

Let h(j)(x, ξ), j = 1, . . . ,m, be the eigenvalues of the principal symbol enumerated

in increasing order. We assume these eigenvalues to be nonzero and simple. The

use of the letter “h” for an eigenvalue of the principal symbol is motivated by the

fact that later on it will take on the role of a Hamiltonian.

Let λk and vk = (vk1(x) . . . vkm(x))T be the eigenvalues and eigenfunctions of

the operator A.
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We study the spectral function, which is the real density defined as

e(λ, x, x) :=
∑

0<λk<λ

‖vk(x)‖2 (1.3.2)

where ‖vk(x)‖2 := [vk(x)]∗vk(x) is the square of the Euclidean norm of the eigen-

function vk evaluated at the point x ∈M and λ is a positive parameter (spectral

parameter).

Our first result in this part of the thesis is the two-term asymptotic formula

e(λ, x, x) = a(x)λn + b(x)λn−1 + o(λn−1), (1.3.3)

where a(x) and b(x) are real densities which we write down explicitly, see formulae

(3.1.21) and (3.1.22). We prove the asymptotic formula (1.3.3) under appropri-

ate assumptions on Hamiltonian trajectories generated by the eigenvalues of the

principal symbol h(j)(x, ξ), see Theorem 3.8.3.

The massless Dirac operator is the operator appearing in the LHS of formula

(1.1.1) but without the dynamic term ±iσ0
ȧb∂0. The operator A we have been

studying is far more general than the massless Dirac operator. In order to provide

a spectral-theoretic characterisation of the massless Dirac operator we need to

make several additional assumptions. We assume that

m = 2 and trA1 = 0, (1.3.4)

the operator A is differential, (1.3.5)

n = 3. (1.3.6)

We are finally in a position to examine the massless Dirac operator. Now,

there is still the technical issue that the massless Dirac operator does not fit

into our scheme because this is an operator acting on a 2-component complex-

valued spinor (Weyl spinor) rather than a pair of complex-valued half-densities.

However, under assumptions (1.3.4)–(1.3.6) our manifold is parallelizable and the
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components of a spinor can be identified with half-densities. We call the resulting

operator the massless Dirac operator on half-densities, see formula (3.A.30).

The massless Dirac operator on half-densities is an operator of the type described

in this section (elliptic self-adjoint first order operator acting on a column of

complex-valued half-densities) which, moreover, satisfies the additional assump-

tions (1.3.4), (1.3.5) and (1.3.6). We address the question: is a given operator A

a massless Dirac operator?

The main result presented in Chapter 3 is the following

Theorem 1.3.1. Let A be an elliptic self-adjoint first order pseudodifferential

operator acting on columns of m complex-valued half-densities over a compact

n-dimensional manifold. Suppose also that this operator satisfies the additional

assumptions (1.3.4), (1.3.5) and (1.3.6). Then A is a massless Dirac operator

on half-densities if and only if the following two conditions are satisfied at every

point of the manifold M : a) the subprincipal symbol of the operator, Asub(x), is

proportional to the identity matrix and b) the second asymptotic coefficient of the

spectral function, b(x), is zero.

This part of the thesis has been published as a preprint [12].



Chapter 2

The stationary massless Dirac

equation and Cosserat elasticity

2.1 Our model

In this section we describe in detail our mathematical model. At a basic level it

was already sketched out in Section 1.2.

We need to write down the potential energy of a deformed Cosserat continuum.

The natural measure of deformations caused by rotations of material points is

the torsion tensor defined by the explicit formula

T := δjkϑ
j ⊗ dϑk, (2.1.1)

where d denotes the exterior derivative. Here “torsion” means “torsion of the

teleparallel connection” with “teleparallel connection” defined by the condition

that the covariant derivative of each coframe element ϑj is zero; see Appendix A

of [9] for a concise exposition.

Our construction of potential energy follows the logic of classical linear elasticity

[32], the only difference being that instead of a rank 2 tensor (strain) we deal

15



The stationary massless Dirac equation and Cosserat elasticity 16

with a rank 3 tensor (torsion). The logic of classical linear elasticity dictates that

we must first decompose our measure of deformation (torsion) into irreducible

pieces, with irreducibility understood in terms of invariance under changes of local

coordinates preserving the metric gαβ at a given point P ∈ M . It is known [25]

that torsion has three irreducible pieces labeled by the adjectives axial, vector and

tensor. (Vector torsion is sometimes called trace torsion.) The general formula for

the potential energy of a homogeneous isotropic linear elastic material contains

squares of all irreducible pieces with some constant coefficients in front. Thus, the

general formula for potential energy should contain three free parameters (elastic

moduli).

We, however, choose to construct our potential energy using only one piece of

torsion, namely, the axial piece given by the explicit formula

T ax :=
1

3
δjkϑ

j ∧ dϑk. (2.1.2)

Comparing (2.1.2) with (3.1.35) we see that axial torsion has a very simple mean-

ing: it is the totally antisymmetric part of the torsion tensor (T is antisymmetric

only in the last pair of indices whereas T ax is antisymmetric in all three). In

other words, T ax is a 3-form.

We chose the axial piece of torsion because it has two remarkable properties.

• The definition of axial torsion (2.1.2) is very simple in that it does not

involve the metric. In a sense, axial torsion (3-form) is an analogue of the

electromagnetic field tensor (2-form) from Maxwell’s theory.

• Axial torsion possesses the property of conformal covariance, i.e. scales

nicely under conformal rescalings of the metric. Indeed, it is easy to see

that if we rescale our coframe as

ϑj 7→ ehϑj, (2.1.3)
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where h : M → R is an arbitrary scalar function, then our metric scales as

gαβ 7→ e2hgαβ (2.1.4)

and axial torsion scales as

T ax 7→ e2hT ax (2.1.5)

without the derivatives of h appearing. The fact that axial torsion is con-

formally covariant was previously observed by Yu. N. Obukhov [36] and

J. M. Nester [34].

We take the potential energy of our continuum to be

P (x0) :=

∫
M

‖T ax‖2ρ dx1dx2dx3. (2.1.6)

It is easy to see that the potential energy (2.1.6) is conformally invariant: it does

not change if we rescale our coframe as (2.1.3) and our density as

ρ 7→ e2hρ. (2.1.7)

This follows from formulae (2.1.5), (2.1.4) and

‖T ax‖2 =
1

3!
T ax
αβγT

ax
κλµg

ακgβλgγµ.

We take the kinetic energy of our continuum to be

K(x0) :=

∫
M

‖ϑ̇‖2ρ dx1dx2dx3, (2.1.8)

where ϑ̇ is the 2-form

ϑ̇ :=
1

3
δjkϑ

j ∧ ∂0ϑ
k (2.1.9)
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(compare with (2.1.2)). The 2-form (2.1.9) can, of course, be written as

ϑ̇ =
2

3
∗ ω, (2.1.10)

where

ω :=
1

2
∗ (δjkϑ

j ∧ ∂0ϑ
k) (2.1.11)

is the (pseudo)vector of angular velocity. Hence, (2.1.8) is the standard expression

for the kinetic energy of a homogeneous isotropic Cosserat continuum. In writing

formula (2.1.8) we assumed homogeneity (properties of the material are the same

at all points of the manifold M) and isotropy (properties of the material are

invariant under rotations of the local coordinate system). We think of each

material point as a uniform ball possessing a moment of inertia and without a

preferred axis of rotation.

We now combine the potential energy (2.1.6) and kinetic energy (2.1.8) to form

the action (variational functional) of our dynamic problem:

S(ϑ, ρ) :=

∫
R
(P (x0)−K(x0)) dx0 =

∫
R×M

L(ϑ, ρ) dx0dx1dx2dx3, (2.1.12)

where

L(ϑ, ρ) := (‖T ax‖2 − ‖ϑ̇‖2)ρ (2.1.13)

is our Lagrangian density. Note that our construction of the action (2.1.12) out

of potential and kinetic energies is Newtonian (compare with classical elasticity

or even the harmonic oscillator in classical mechanics).

Our field equations (Euler–Lagrange equations) are obtained by varying the ac-

tion (2.1.12) with respect to the coframe ϑ and density ρ. Varying with respect

to the density ρ is easy: this gives the field equation ‖T ax‖2 = ‖ϑ̇‖2 which is

equivalent to L(ϑ, ρ) = 0. Varying with respect to the coframe ϑ is more difficult

because we have to maintain the kinematic constraint (2.B.1); recall that the

metric is assumed to be prescribed (fixed).
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A technique for varying the coframe with kinematic constraint (2.B.1) was de-

scribed in Appendix B of [9]. We, however, do not write down the field equations

for the Lagrangian density (2.1.13) explicitly. We note only that they are highly

nonlinear and do not appear to bear any resemblance to the linear massless Dirac

equation (1.1.1).

Remark 2.1.1. The 3-form T ax and 2-form ϑ̇ are invariant under rigid rotations

of the coframe, i.e. under special orthogonal transformations (2.B.3) with constant

Oj
k. Hence, our Lagrangian density (2.1.13) is invariant under rigid rotations

of the coframe and, accordingly, solutions of our field equations whose coframes

differ by a rigid rotation can be collected into equivalence classes. Further on we

view coframes differing by a rigid rotation as equivalent.

2.2 Switching to the language of spinors

As pointed out in the previous section, varying the coframe subject to the kine-

matic constraint (2.B.1) is not an easy task. This technical difficulty can be

overcome by switching to a different dynamical variable. Namely, it is known,

see Appendix 2.D, that in dimension 3 a coframe ϑ and a (positive) density ρ are

equivalent to a nonvanishing spinor field ξ modulo the sign of ξ. The great advan-

tage of switching to a spinor field ξ is that there are no kinematic constraints on

its components, so the derivation of field equations becomes absolutely straight-

forward.

We now need to substitute formulae (2.D.1), (2.D.3) and (2.D.4) into (2.1.2) and

(2.1.9) to get explicit expressions for T ax and ϑ̇ in terms of the spinor field ξ.

The results are presented in Appendix 2.E. Namely, formula (2.E.1) gives the

spinor representation of the 3-form T ax whereas formulae (2.E.2) and (2.1.10)

give the spinor representation of the 2-form ϑ̇. We also know the spinor rep-

resentation for our density ρ, see formulae (2.D.1) and (2.D.2). Substituting all

these into formula (2.1.13) we arrive at the following self-contained explicit spinor



The stationary massless Dirac equation and Cosserat elasticity 20

representation of our Lagrangian density

L(ξ) =
4

9ξ̄ ċσ0ċdξd

(
[i(ξ̄ȧσαȧb∇αξ

b − ξbσαȧb∇αξ̄
ȧ)]2

− ‖i(ξ̄ȧσαȧb∂0ξ
b − ξbσαȧb∂0ξ̄

ȧ)‖2
)√

det g . (2.2.1)

Here and further on we write our Lagrangian density and our action as L(ξ) and

S(ξ) rather than L(ϑ, ρ) and S(ϑ, ρ), thus indicating that we have switched to

spinors. The nonvanishing spinor field ξ is the new dynamical variable and it will

be varied without any constraints.

Straightforward calculations show that the field equation for our Lagrangian den-

sity (2.2.1) is

− 4i

3

(
(∗T ax)σαȧb∇αξ

b + σαȧb∇α((∗T ax)ξb)
)

− 8i

9

(
ωασ

α
ȧb∂0ξ

b + σαȧb∂0(ωαξ
b)
)
− ρ−1Lσ0ȧbξ

b = 0, (2.2.2)

where the geometric quantities ∗T ax, ω, ρ and L are expressed via the spinor field

ξ in accordance with formulae (2.E.1), (2.E.2), (2.D.1), (2.D.2) and (2.2.1). The

LHS of equation (2.2.2) is the spinor field Fȧ appearing in the formula for the

variation of the action (2.1.12):

δS =

∫
R×M

(Fȧδξ̄
ȧ + F̄aδξ

a)
√

det g dx0dx1dx2dx3.

We shall refer to equation (2.2.2) as the dynamic field equation, with “dynamic”

indicating that it contains the time derivative ∂0.

2.3 Separating out time

Our dynamic field equation (2.2.2) is highly nonlinear and one does expect it to

admit separation of variables. Nevertheless, we seek solutions of the form (1.2.1).

Substituting formula (1.2.1) into formulae (2.E.1), (2.E.2), (2.D.1), (2.D.2) and
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(2.2.1) and using the identity (2.C.5) we get

∗ T ax = −2i(η̄ȧσαȧb∇αη
b − ηbσαȧb∇αη̄

ȧ)

3η̄ċσ0ċdηd
, (2.3.1)

ωα =
2p0η̄

ȧσαȧbη
b

η̄ċσ0ċdηd
, (2.3.2)

ρ = η̄ȧσ0ȧbη
b
√

det g , (2.3.3)

L(η) =
16

9η̄ċσ0ċdηd

([ i
2

(η̄ȧσαȧb∇αη
b − ηbσαȧb∇αη̄

ȧ)
]2

− (p0η̄
ȧσ0ȧbη

b)2
)√

det g .

(2.3.4)

Note that the geometric quantities (2.3.1)–(2.3.4) do not depend on time x0,

which simplifies the next step: substituting (1.2.1) into our dynamic field equation

(2.2.2), using the identity (2.C.5) and dividing through by the common factor

e−ip0x0
we get

− 4i

3

(
(∗T ax)σαȧb∇αη

b + σαȧb∇α((∗T ax)ηb)
)
− 32p2

0

9
σ0ȧbη

b − ρ−1Lσ0ȧbη
b = 0 .

(2.3.5)

The remarkable feature of formulae (2.3.1)–(2.3.5) is that they do not contain de-

pendence on time x0. Thus, we have shown that our dynamic field equation (2.2.2)

admits separation of variables, i.e. one can seek solutions in the form (1.2.1).

We shall refer to equation (2.3.5) as the stationary field equation, with “station-

ary” indicating that time x0 has been separated out.

Consider now the action

S(η) :=

∫
M

L(η) dx1dx2dx3, (2.3.6)

where L(η) is our “stationary” Lagrangian density (2.3.4). It is easy to see

that our stationary field equation (2.3.5) is the Euler–Lagrange equation for our

“stationary” action (2.3.6).

In the remainder of the Chapter 2 we do not use the explicit form of the stationary

field equation (2.3.5), dealing only with the stationary Lagrangian density (2.3.4)
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and the stationary action (2.3.6). We needed the explicit form of field equations,

dynamic and stationary, only to justify separation of variables.

It appears that the underlying group-theoretic reason for our nonlinear dynamic

field equation (2.2.2) admitting separation of variables is the fact that our model

is U(1)-invariant, i.e. it is invariant under the multiplication of the spinor field

ξ by a complex constant of modulus 1. Hence, it is feasible that one could have

performed the separation of variables argument without even writing down the

explicit form of field equations.

We give for reference a more compact representation of our stationary Lagrangian

density (2.3.4) in terms of axial torsion T ax (see formula (2.3.1)) and density ρ

(see formula (2.3.3)):

L(η) =
(
‖T ax‖2 − 16

9
p2

0

)
ρ . (2.3.7)

Of course, formula (2.3.7) is our original formula (2.1.13) with time separated out.

The choice of dynamical variables in the stationary Lagrangian density (2.3.7) is

up to the user: one can either use the time-independent spinor field η or, equiva-

lently, the corresponding time-independent coframe and time-independent density

(the latter are related to η by formulae (2.D.1)–(2.D.4) with ξ replaced by η).

The important thing is that now our dynamical variables are time-independent

because we have separated out time.

The fact that we use the same notation L both for the dynamic and stationary

Lagrangian densities should not cause problems as in all subsequent sections,

apart form Section 2.8, we deal with the stationary case only.

2.4 Factorisation of our Lagrangian

Put

L±(η) :=
[ i

2
(η̄ȧσαȧb∇αη

b − ηbσαȧb∇αη̄
ȧ)± p0η̄

ȧσ0
ȧbη

b
]√

det g . (2.4.1)
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This is the Lagrangian density for the stationary massless Dirac equation (1.2.3).

Formula (2.4.1) can be written in more compact form as

L±(η) =
(
−3

4
∗T ax ∓ p0

)
ρ, (2.4.2)

where ∗T ax is the Hodge dual of axial torsion, see formula (2.3.1), and ρ is the

density, see formula (2.3.3). Comparing formulae (2.3.7) and (2.4.2) we get

L(η) = −32p0

9

L+(η)L−(η)

L+(η)− L−(η)
. (2.4.3)

Let us emphasise once again that throughout this chapter we assume that the

density ρ does not vanish, which is, of course, equivalent to the spinor field not

vanishing. In view of formulae (2.4.2) and (1.2.2) in the stationary case the

assumption ρ 6= 0 can be equivalently rewritten as

L+(η) 6= L−(η) (2.4.4)

so the denominator in (2.4.3) is nonzero.

Formula (2.4.3) is the centerpiece of this Chapter: it establishes the connection

between Cosserat elasticity and the massless Dirac equation. Moreover, the fact

that the RHS of formula (2.4.3) contains a product of two massless Dirac La-

grangian densities shows that we are essentially following Dirac’s factorisation

construction, the difference being that in the nonlinear setting we cannot fac-

torise equations and have to settle for the next best thing — factorising the

Lagrangian.
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2.5 Proof of Theorem 1.2.1

Observe that the Lagrangian densities L± defined by formula (2.4.1) possess the

property of scaling covariance:

L±(ehη) = e2hL±(η), (2.5.1)

where h : M → R is an arbitrary scalar function. In fact, the Lagrangian den-

sity of any formally selfadjoint (symmetric) linear first order partial differential

operator has the scaling covariance property (2.5.1).

We claim that the statement of Theorem 1.2.1 follows from formulae (2.4.3) and

(2.5.1). The proof presented below is an abstract one and does not depend on

the physical nature of the dynamical variable η, the only requirement being that

it is an element of a vector space so that scaling makes sense.

Note that formulae (2.4.3) and (2.5.1) imply that the Lagrangian density L pos-

sesses the property of scaling covariance, so all three of our Lagrangian densities,

L, L+ and L−, have this property. Note also that if η is a solution of the field

equation for some Lagrangian density L possessing the property of scaling covari-

ance then L(η) = 0. Indeed, let us perform a scaling variation of our dynamical

variable

η 7→ η + hη, (2.5.2)

where h : M → R is an arbitrary “small” scalar function with compact support.

Then 0 = δ
∫
L(η) = 2

∫
hL(η) which holds for arbitrary h only if L(η) = 0.

In the remainder of the proof the variations of η are arbitrary and not necessarily

of the scaling type (2.5.2).

Suppose that η is a solution of the field equation for the Lagrangian density L+.

[The case when η is a solution of the field equation for the Lagrangian density L−

is handled similarly.] Then L+(η) = 0 and, in view of formula (2.4.4), L−(η) 6= 0.
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Varying η we get

δ

∫
L(η) = −32p0

9

(∫
L−(η)

L+(η)− L−(η)
δL+(η) +

∫
L+(η) δ

L−(η)

L+(η)− L−(η)

)
=

32p0

9

∫
δL+(η) =

32p0

9
δ

∫
L+(η),

so,

δ

∫
L(η) =

32p0

9
δ

∫
L+(η) . (2.5.3)

We assumed that η is a solution of the field equation for the Lagrangian density

L+ so δ
∫
L+(η) = 0 and formula (2.5.3) implies that δ

∫
L(η) = 0. As the latter

is true for an arbitrary variation of η this means that η is a solution of the field

equation for the Lagrangian density L.

Suppose that η is a solution of the field equation for the Lagrangian density L.

Then L(η) = 0 and formula (2.4.3) implies that either L+(η) = 0 or L−(η) =

0; note that in view of (2.4.4) we cannot have simultaneously L+(η) = 0 and

L−(η) = 0. Assume for definiteness that L+(η) = 0. [The case when L−(η) = 0

is handled similarly.] Varying η and repeating the argument from the previous

paragraph we arrive at (2.5.3). We assumed that η is a solution of the field

equation for the Lagrangian density L so δ
∫
L(η) = 0 and formula (2.5.3) implies

that δ
∫
L+(η) = 0. As the latter is true for an arbitrary variation of η this means

that η is a solution of the field equation for the Lagrangian density L+. �

2.6 Nonlinear second order PDEs which reduce

to pairs of linear first order PDEs

In this section we give an abstract version of the construction presented in Sec-

tion 2.5. This abstract version does not involve Cosserat elasticity or spinors

and may be of interest to researchers in integrable systems. The material of this

section is taken from [10].
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Let A± be a pair of formally self-adjoint first order linear partial differential

operator with smooth coefficients acting on smooth vector functions u : Ω→ Cm,

Ω ⊂ Rn is an open subset.

Put

L±(u) = Re(u∗A±u). (2.6.1)

It is easy to see that L±(u) is the Lagrangian density for the partial differen-

tial equation A±u = 0. Indeed, this equation is the corresponding field equa-

tion (Euler-Lagrange equation) to the action (variational functional) S±(u) =∫
Ω

L±(u)dx1...dxn.

Consider a new Lagrangian density

L(u) =
L+(u)L−(u)

L+(u)− L−(u)
. (2.6.2)

The corresponding action for (2.6.2) is S(u) =

∫
Ω

L(u)dx1...dxn. Clearly, the field

equation for the Lagrangian density (2.6.2) is second order and nonlinear.

Lemma 2.6.1. Let u : Ω→ Cm be a vector function satisfying the condition

L+(u) 6= L−(u). (2.6.3)

Then u is a solution of the field equation for the Lagrangian density L if and only

if it is a solution of the equation A+(u) = 0 or the equation A−(u) = 0.

The proof of this lemma can be found in [10].

Let us deal with a simple example.

Consider the pair of first order linear ordinary differential equations

i∇u± u = 0. (2.6.4)
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Here we work on the real line R parametrised by the coordinate x. The dynamical

variable (unknown quantity) is the scalar function u : R→ C\{0}. Differentiation

in x is denoted by ∇.

The corresponding Lagrangians are

L±(u) :=
i

2
(ū∇u− u∇ū)± |u|2. (2.6.5)

Equations (2.6.4) are simplified versions of the stationary massless Dirac equa-

tions (1.2.3) and Lagrangians (2.6.5) are simplified versions of the stationary

massless Dirac Lagrangians (2.4.1). Note that the Lagrangians (2.6.5) possess

the property of scaling covariance (2.5.1) where h : R→ R is an arbitrary scalar

function.

Put

L(u) :=
2L+(u)L−(u)

L+(u)− L−(u)
=

[
i(ū∇u− u∇ū)

2|u|

]2

− |u|2. (2.6.6)

The corresponding field equation (Euler–Lagrange equation) is

i

{
(∇u)

|u|
− u(ū∇u− u∇ū)

2|u|3
+∇ u

|u|

}[
i(ū∇u− u∇ū)

2|u|

]
− u = 0, (2.6.7)

where the last ∇ in the curly brackets acts on all the terms to the right, including

those in the square brackets. Equation (2.6.7) is a second order nonlinear ordinary

differential equation which does not appear to bear any resemblance to the first

order linear ordinary differential equations (2.6.4).

Let us switch to the polar representation of the complex function u :

u = re−iϕ, (2.6.8)

where r : R→ (0,+∞) and ϕ : R→ R are the new dynamical variables (unknown

quantities). Substituting formula (2.6.8) into equation (2.6.7) and multiplying by

eiϕ we arrive at the polar representation of our field equation:

2i(∇r)(∇ϕ) + r(∇ϕ)2 + ir∇∇ϕ− r = 0.
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Separating the real and imaginary parts we rewrite the latter as a system or real

equations

r(∇ϕ)2 − r = 0, 2(∇r)(∇ϕ) + r∇∇ϕ = 0,

which, in turn, is equivalent to

∇ϕ = ∓1, ∇r = 0. (2.6.9)

This shows that a complex function u is a solution of equation (2.6.7) if and only

if it is a solution of one of the two equations (2.6.4).

Of course, the explicit calculations carried out above were unnecessary because

the toy model considered in this section is covered by Lemma 2.6.1. The point of

these explicit calculations was to illustrate the degeneracy of field equations for

Lagrangians of the form (2.6.2): looking at (2.6.9) one sees the absence of second

derivatives.

2.7 Plane wave solutions

Suppose that M = R3 is Euclidean 3-space equipped with Cartesian coordinates

x = (x1, x2, x3) and standard Euclidean metric (2.C.9). In this section we con-

struct a special class of explicit solutions of the field equations for our Lagrangian

density (2.1.13). This construction is presented in the language of spinors.

Let us choose Pauli matrices (2.C.10) and seek solutions of the form

ξ(x0, x1, x2, x3) = e−i(p0x0+p·x)ζ, (2.7.1)

where p0 is a real number as in formulae (1.2.1) and (1.2.2), p = (p1, p2, p3) is a

real constant covector and ζ 6= 0 is a constant spinor. We shall call solutions of

the type (2.7.1) plane wave. In seeking plane wave solutions what we are doing

is separating out all the variables, namely, the time variable x0 and the spatial

variables x = (x1, x2, x3).
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Our dynamic field equation (2.2.2) is highly nonlinear so it is not a priori clear

that one can seek solutions in the form of plane waves. However, plane wave

solutions (2.7.1) are a special case of stationary solutions (1.2.1) and these have

already been analyzed in preceding sections. Namely, Theorem 1.2.1 gives us an

algorithm for the calculation of all plane wave solutions (2.7.1) by reducing the

problem to a pair of stationary massless Dirac equations (1.2.3) for the time-

independent spinor field

η(x1, x2, x3) = e−ip·xζ. (2.7.2)

Substituting formulae (2.C.2), (2.C.10) and (2.7.2) into equation (1.2.3) we get

∓p0 + p3 p1 − ip2

p1 + ip2 ∓p0 − p3

ζ1

ζ2

 = 0. (2.7.3)

The determinant of the matrix in the LHS of equation (2.7.3) is p2
0− p2

1− p2
2− p2

3

so this system has a nontrivial solution ζ if and only if p2
0− p2

1− p2
2− p2

3 = 0. Our

model is invariant under rotations of the Cartesian coordinate system (orthogonal

transformations of the coordinate system preserving orientation) so without loss

of generality we can assume that

p1 = p2 = 0, p3 = ±p0, (2.7.4)

where the ± sign is chosen to agree with that in equation (2.7.3), i.e. upper sign in

(2.7.4) corresponds to upper sign in (2.7.3) and same for lower signs. Substituting

formula (2.7.4) into equation (2.7.3) and recalling our assumption (1.2.2) we

conclude that, up to scaling by a nonzero complex factor, we have

ζd =

1

0

 . (2.7.5)

Combining formulae (2.7.1), (2.7.4) and (2.7.5) we conclude that for each real

p0 6= 0 our model admits, up to a rotation of the coordinate system and complex

scaling, two plane wave solutions and that these plane wave solutions are given
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by the explicit formula

ξd =

1

0

 e−ip0(x0±x3). (2.7.6)

Let us now rewrite the plane wave solutions (2.7.6) in terms of our original dynam-

ical variables, coframe ϑ and density ρ. Substituting formulae (2.C.2), (2.C.10)

and (2.7.6) into formulae (2.D.1)–(2.D.4) we get ρ = 1 and

ϑ1
α=


cos 2p0(x0 ± x3)

sin 2p0(x0 ± x3)

0

, ϑ2
α=


− sin 2p0(x0 ± x3)

cos 2p0(x0 ± x3)

0

, ϑ3
α=


0

0

1

 . (2.7.7)

Note that scaling the spinor ζ by a nonzero complex factor is equivalent to scaling

the density ρ by a positive real factor and time shift x0 7→ x0 + const.

We will now establish how many different (ones that cannot be continuously

transformed into one another) plane wave solutions we have. To this end, we

rewrite formula (2.7.7) in the form

ϑ1
α=


cos 2|p0|(x0 + bx3)

a sin 2|p0|(x0 + bx3)

0

 , ϑ2
α=


−a sin 2|p0|(x0 + bx3)

cos 2|p0|(x0 + bx3)

0

, ϑ3
α=


0

0

1

 ,

(2.7.8)

where a and b can, independently, take values ±1. It may seem that we have a

total of 4 different plane wave solutions. Recall, however, that we can perform

rigid rotations of the coframe and that we have agreed (see Remark 2.1.1 at the

end of Section 2.1) to view coframes that differ by a rigid rotation as equivalent.

Let us perform a rotation of the coordinate system
x1

x2

x3

 7→

x2

x1

−x3


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simultaneously with a rigid rotation of the coframe
ϑ1

ϑ2

ϑ3

 7→

ϑ2

ϑ1

−ϑ3

 .

It is easy to see that the above transformations turn a solution of the form (2.7.8)

into a solution of this form again only with

a 7→ −a, b 7→ −b.

Thus, the numbers a and b on their own do not characterize different plane wave

solutions. Different plane wave solutions are characterized by the number c := ab

which can take two values, +1 and −1.

We have established that for a given positive frequency |p0| we have two essentially

different types of plane wave solutions. These can be written, for example, as

ϑ1
α=


cos 2|p0|(x0 + x3)

± sin 2|p0|(x0 + x3)

0

 , ϑ2
α=


∓ sin 2|p0|(x0 + x3)

cos 2|p0|(x0 + x3)

0

 , ϑ3
α=


0

0

1

 . (2.7.9)

The plane wave solutions (2.7.9) describe traveling waves of rotations. Both waves

travel with the same velocity (speed of light) in the negative x3-direction. The

difference between the two solutions is in the direction of rotation of the coframe:

if we fix the spatial coordinate x3 and look at the evolution of (2.7.9) as a function

of time x0 or if we fix time x0 and look at the evolution of (2.7.9) as a function of

the spatial coordinate x3 then one solution describes a clockwise rotation whereas

the other solution describes an anticlockwise rotation. We identify one of the

solutions (2.7.9) with a left-handed massless neutrino and the other with a right-

handed massless antineutrino.

The bottom line is that our model gives the correct number, two, of distinct plane

wave solutions.
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2.8 Relativistic representation of our Lagrangian

In this section we work on the 4-manifold R×M equipped with Lorentzian metric

(2.A.1). This manifold is an extension of the original 3-manifold M . We use bold

type for extended quantities.

We extend our coframe as

ϑ0
α =

 1

0α

 , (2.8.1)

ϑjα =

 0

ϑjα

 , j = 1, 2, 3, (2.8.2)

where the bold tensor index α runs through the values 0, 1, 2, 3, whereas its

non-bold counterpart α runs through the values 1, 2, 3. In particular, the 0α in

formula (2.8.1) stands for a column of three zeros.

Throughout this section our original 3-dimensional coframe ϑ is allowed to depend

on time x0 in an arbitrary (not necessarily harmonic) manner, as long as the

kinematic constraint (2.B.1) is maintained. Thus, our only restriction on the

choice of extended 4-dimensional coframe ϑ is formula (2.8.1) which says that

the zeroth element of the coframe is prescribed as the conormal to the original

Riemannian 3-manifold M .

The extended metric (2.A.1) is expressed via the extended coframe (2.8.1) and

(2.8.2) as

g = ojkϑ
j ⊗ ϑk, (2.8.3)

where ojk = ojk := diag(−1,+1,+1,+1) (compare with formula (2.B.1)). The

extended axial torsion is

Tax :=
1

3
ojkϑ

j ∧ dϑk =
1

3
(−ϑ0 ∧ dϑ0︸ ︷︷ ︸

=0

+ϑ1 ∧ dϑ1+ϑ2 ∧ dϑ2+ϑ3 ∧ dϑ3), (2.8.4)
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where d denotes the exterior derivative on R×M (compare with formula (2.1.2)).

Formula (2.8.4) can be rewritten as

Tax = T ax − ϑ0 ∧ ϑ̇ (2.8.5)

with T ax and ϑ̇ defined by formulae (2.1.2) and (2.1.9) respectively. Squaring

(2.8.5) we get ‖Tax‖2 = ‖T ax‖2−‖ϑ̇‖2 which implies that our Lagrangian density

(2.1.13) can be rewritten as

L(ϑ, ρ) = ‖Tax‖2ρ . (2.8.6)

The point of the arguments presented in this section was to show that if one

adopts the relativistic point of view then our Lagrangian density (2.1.13) takes

the especially simple form (2.8.6). Formula (2.8.6) is also useful in that it allows

us to see that our Lagrangian density is invariant under conformal rescalings of

the 4-dimensional Lorentzian metric g: the arguments from Section 2.1 (see for-

mulae (2.1.3)–(2.1.5) and (2.1.7)) carry over to the 4-dimensional setting without

change.

A consistent pursuit of the relativistic approach would require the variation of

all four elements of the extended coframe, giving three extra dynamical degrees

of freedom (Lorentz boosts in three directions). We do not do this in the thesis,

assuming instead that the zeroth element of the extended coframe is specified by

formula (2.8.1).

2.9 Discussion

The mathematical model presented in Section 2.1 is, effectively, a special case of

the theory of teleparallelism [11, 51, 46]. Modern reviews of teleparallelism can

be found in [25, 24, 23, 33, 5, 37]. The differences between our mathematical

model and those commonly used in teleparallelism are as follows.
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• We assume the metric to be prescribed (fixed) whereas in teleparallelism it

is traditional to view the metric as a dynamical variable. In other words, in

teleparallelism it is customary to view (2.B.1) not as a kinematic constraint

but as a definition of the metric and, consequently, to vary the coframe

without any constraints. This is not surprising as most, if not all, authors

who contributed to teleparallelism came to the subject from General Rela-

tivity.

• We take the density of our continuum ρ to be a dynamical variable whereas

in teleparallelism the tradition is to prescribe it as ρ =
√

det g . Taking ρ

to be a dynamical variable is, of course, equivalent to introducing an extra

real positive scalar field ρ/
√

det g into our model

• We choose a very particular Lagrangian density (2.8.6) containing only one

irreducible piece of torsion (axial) whereas in teleparallelism it is tradi-

tional to choose a more general Lagrangian containing all three pieces (ax-

ial, vector and tensor): see formula (26) in [25]. In choosing our particular

Lagrangian density (2.8.6) we were guided by the principles of conformal

invariance, simplicity and analogy with Maxwell’s theory.

The main result of the Chapter 2 is Theorem 1.2.1 which establishes that in the

stationary setting (prescribed harmonic oscillation in time) our mathematical

model is equivalent to a pair of massless massless Dirac equations (1.1.1). The

advantage of our approach is that it makes the massless Dirac equation look

natural to someone with a continuum mechanics background. The downside

is that our mathematical model is nonlinear which makes it look unnatural to

someone with a quantum mechanical background.

The situation here has a certain similarity with integrable systems. Say, the

Korteweg-de Vries equation (mathematical model of waves on shallow water sur-

faces) is nonlinear but the inverse scattering transform reduces it to the analysis

of a spectral problem for a linear Sturm–Liouville operator. In the thesis we go



The stationary massless Dirac equation and Cosserat elasticity 35

the other way round, reformulating the spectral problem for the linear massless

Dirac operator as a nonlinear equation from continuum mechanics.

From a purely mathematical viewpoint Theorem 1.2.1 is unusual in that it states

that a (particular) second order partial differential equation is equivalent to a

pair of first order partial differential equations, which is actually hard to believe.

Indeed, let us choose a 2-dimensional hypersurface S on the 3-manifold M and

set a Cauchy problem on this surface. When dealing with a second order partial

differential equation one expects to be able to prescribe the value of the spinor

field η on the surface S as well as its normal derivative, whereas when dealing

with a first order partial differential equation one expects to be able to prescribe

the value of the spinor field η only (the value of the normal derivative of η on the

surface S will be determined by the equation). This argument appears to show

that there is no way a second order partial differential equation can be reduced

to a pair of first order equations. However, our second order partial differential

equation happens to be degenerate and does not admit the setting of a standard

Cauchy problem. This degeneracy manifests itself in the property of scaling

covariance of our stationary Lagrangian density (2.3.7), see Section 2.5 for details.

Scaling covariance implies that our stationary Lagrangian density (2.3.7) vanishes

on solutions of the (second order) field equation which means that the value of

the spinor field η on the surface S and its normal derivative cannot be chosen

independently. In order to allay fears that there is something inherently wrong

with our construction we provide in Section 2.6 an elementary example showing

by means of an explicit calculation that a second order differential equation with

Lagrangian of the form (2.4.3) and (2.5.1) does indeed reduce to a pair of first

order equations.

Our construction exhibits a certain similarity with the Riccati equation. Recall

that the Riccati equation is a nonlinear first order differential equation which

reduces to a linear second order differential equation. We go the other way

round, reducing a nonlinear second order equation to a pair of linear first order
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equations. However, unlike the Riccati equation, our construction works not only

for ordinary differential equations but also for partial differential equations.

Theorem 1.2.1 leaves us with two issues unresolved.

A What can be said about the general case, when the spinor field ξ is an

arbitrary function of all spacetime coordinates (x0, x1, x2, x3) and is not

necessarily of the form (1.2.1)?

B What can be said about the relativistic version of our model described in

Section 2.8?

The two issues are, of course, related: both arise because in formulating our basic

model in Section 2.1 we adopted the Newtonian approach which specifies the time

coordinate x0 (“absolute time”).

We plan to tackle issue A by means of perturbation theory. Namely, assuming

the metric to be flat (as in Section 2.7), we start with a plane wave (2.7.1) and

then seek the unknown spinor field ξ in the form

ξ(x0, x1, x2, x3) = e−i(p0x0+p·x)ζ(x0, x1, x2, x3), (2.9.1)

where ζ is a slowly varying spinor field. Here “slowly varying” means that second

derivatives of ζ can be neglected compared to the first. Our conjecture is that

the application of a formal perturbation argument will yield the massless Dirac

equation (1.1.1) for the spinor field ξ.

We plan to tackle issue B by means of perturbation theory as well. The relativistic

version of our model has three extra field equations corresponding to the three

extra dynamical degrees of freedom (Lorentz boosts in three directions). Our

conjecture is that if we take a solution of the nonrelativistic problem which is a

perturbation of a plane wave (as in the previous paragraph) then, at a perturba-

tive level, this solution will automatically satisfy the three extra field equations.
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In other words, we conjecture that our nonrelativistic model possesses relativistic

invariance at the perturbative level.

The detailed analysis of the two issues flagged up above could be the subject of

additional research.

Appendices

2.A General notation

Our general notation mostly follows [9, 53], the only major difference being that

we changed the signature of Lorentzian metric gαβ from +−−− to −+ ++ .

The latter is more natural when promoting the Newtonian continuum mechanics

approach.

Throughout the Appendix for Chapter 2 we work on a 3-manifold M equipped

with local coordinates xα, α = 1, 2, 3, and prescribed positive metric gαβ which

does not depend on time. We extend the Riemannian 3-manifoldM to a Lorentzian

4-manifold R×M by adding the time coordinate x0 ∈ R. The metric on R×M

is defined as

gαβ =

−1 0

0 gαβ

 . (2.A.1)

Here and further on we use bold type for extended quantities. Say, the use of bold

type in tensor indices α,β appearing in the LHS of formula (2.A.1) indicates that

these run through the values 0, 1, 2, 3, whereas the use of normal type in tensor

indices α, β appearing in the RHS of formula (2.A.1) indicates that these run

through the values 1, 2, 3.

All constructions presented in the Appendix for Chapter 2 are local so we do not

make a priori assumptions on the geometric structure of {M, g}.
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We use Greek letters for tensor (holonomic) indices and Latin letters for frame

(anholonomic) indices.

We identify differential forms with covariant antisymmetric tensors. Given a pair

of real covariant antisymmetric tensors P and Q of rank r we define their dot

product as P ·Q := 1
r!
Pα1...αrQβ1...βrg

α1β1 . . . gαrβr . We also define ‖P‖2 := P · P .

All our constructions are local and occur in a neighborhood of a given point P

of the 3-manifold M . We allow only changes of local coordinates xα, α = 1, 2, 3,

which preserve orientation.

Working in local coordinates with specified orientation allows us to define the

Hodge star: we define the action of ∗ on a rank r antisymmetric tensor R as

(∗R)αr+1...α3 := (r!)−1
√

det g Rα1...αrεα1...α3 , (2.A.2)

where ε is the totally antisymmetric quantity, ε123 := +1.

2.B Coframe notation

We view our 3-manifold M as an elastic continuum whose material points can

experience no displacements, only rotations, with rotations of different material

points being totally independent. The idea of rotating material points may seem

exotic, however it has long been accepted in continuum mechanics within the

Cosserat theory of elasticity [16]. This idea also lies at the heart of the theory of

teleparallelism (= absolute parallelism = fernparallelismus), a subject promoted

by A. Einstein and É. Cartan [11, 51, 46]. See Section 2.9 for more details.

Rotations of material points of the 3-dimensional elastic continuum are described

mathematically by attaching to each geometric point of the manifold M an or-

thonormal basis, which gives a field of orthonormal bases called the frame or

coframe, depending on whether one prefers dealing with vectors or covectors.
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Our mathematical model will be built on the basis of exterior calculus (no need

for covariant derivatives) so for us it will be more natural to use the coframe.

The coframe ϑ is a triple of orthonormal covector fields ϑj, j = 1, 2, 3, on the

3-manifold M . Each covector field ϑj can be written more explicitly as ϑjα where

the tensor index α = 1, 2, 3 enumerates the components. The orthonormality

condition for the coframe can be represented as a single tensor identity

g = δjkϑ
j ⊗ ϑk, (2.B.1)

where δjk is the Kronecker delta. For the sake of clarity we repeat formula (2.B.1)

giving tensor indices explicitly and performing summation over frame indices

explicitly:

gαβ = δjkϑ
j
αϑ

k
β = ϑ1

αϑ
1
β + ϑ2

αϑ
2
β + ϑ3

αϑ
3
β,

where α and β run through the values 1, 2, 3. We view the identity (2.B.1) as a

kinematic constraint: the metric g is given (prescribed) and the coframe elements

ϑj are chosen so that they satisfy (2.B.1), which leaves us with three real degrees

of freedom at every point of M .

Coframes ϑ fall into two separate categories, depending on the sign of detϑjα.

We choose to work with coframes satisfying the condition

detϑjα > 0. (2.B.2)

Condition (2.B.2) means that orientation encoded in our coframe agrees with

that encoded in our coordinate system.

An orthogonal transformation of a coframe is a linear map

ϑj 7→ ϑ̃j = Oj
kϑ

k, (2.B.3)

where the Oj
k are real scalar functions satisfying the condition δjiO

j
k O

i
r =

δkr. Of course, orthogonal transformations map coframes into coframes, i.e. they
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preserve the kinematic constraint (2.B.1). We call an orthogonal transformation

special (or a rotation) if the Oj
k satisfy the additional condition detOj

k = +1.

Any two coframes satisfying condition (2.B.2) are related by a special orthogonal

transformation (rotation).

2.C Spinor notation

Our spinor notation mostly follows [38], the difference being that we changed the

signature of Lorentzian metric.

We use two-component complex-valued spinors (Weyl spinors) whose indices run

through the values 1, 2 or 1̇, 2̇. Complex conjugation makes the undotted indices

dotted and vice versa.

Define the “metric spinor”

εab = εȧḃ = εab = εȧḃ =

 0 −1

1 0

 (2.C.1)

with the first index enumerating rows and the second enumerating columns. We

will be using the spinor (3.A.6) for lowering and raising spinor indices.

We define

σ0ȧb = σ0
ȧb =

 1 0

0 1

 , σ0
ȧb = σ0ȧb = −

 1 0

0 1

 . (2.C.2)

The spinor (2.C.2) can also be used for raising and lowering spinor indices. This is

a feature of the nonrelativistic setting, when we have a specified time coordinate

t = x0 and transformations of spatial local coordinates xα, α = 1, 2, 3, do not

involve time.
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Let v be the real vector space of trace-free Hermitian 2 × 2 matrices σȧb . Pauli

matrices σαȧb , α = 1, 2, 3, are a basis in v satisfying

σαȧbσβ
ȧc + σβȧbσα

ȧc = −2gαβδb
c, (2.C.3)

where σβ
ȧc := εȧėσβėdε

cd . Note that formula (2.C.3) automatically implies an

analogous formula for the extended metric (2.A.1):

σαȧbσβ
ȧc + σβȧbσα

ȧc = −2gαβδb
c, (2.C.4)

where the bold tensor indices α,β run through the values 0, 1, 2, 3.

Of course, our Pauli matrices σα, α = 1, 2, 3, are not uniquely defined: if σα =

σαȧb are Pauli matrices then so are the matrices U∗σαU where U is an arbitrary

special (detU = 1) unitary matrix-function. Note also that under coordinate

transformations our Pauli matrices σαaḃ transform as components of a covector:

this is indicated by the Greek subscript α.

Let us mention a useful identity for Pauli matrices, very similar to (2.C.4) but

with contraction over tensor indices instead of spinor ones:

σαȧbσ
α
ċd = −2εȧċεbd . (2.C.5)

We define the covariant derivatives of spinor fields as

∇µξ
a = ∂µξ

a + Γaµbξ
b, ∇µξa = ∂µξa − Γbµaξb,

∇µη
ȧ = ∂µη

ȧ + Γ̄ȧµḃη
ḃ, ∇µηȧ = ∂µηȧ − Γ̄ḃµȧηḃ,

where Γ̄ȧµḃ = Γaµb and µ runs through the values 1, 2, 3. The explicit formula

for the spinor connection coefficients Γaµb can be derived from the following two

conditions:

∇µεab = 0, (2.C.6)

∇µσ
α
ȧb = 0, (2.C.7)
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where

∇µσ
α
ȧb = ∂µσ

α
ȧb + Γαµβσ

β
ȧb − Γ̄ċµȧσ

α
ċb − Γdµbσ

α
ȧd

and Γβαγ =
{

β
αγ

}
:= 1

2
gβδ(∂αgγδ + ∂γgαδ − ∂δgαγ) are the Christoffel symbols.

Conditions (2.C.6), (2.C.7) give an overdetermined system of linear algebraic

equations for Re Γaµb, Im Γaµb the unique solution of which is

Γaµb = −1

4
σα

ċa
(
∂µσ

α
ċb + Γαµβσ

β
ċb

)
. (2.C.8)

Observe that the sign in the RHS of formula (2.C.8) is different from that of

formula (A.9) in [38]. This is because we changed the signature of Lorentzian

metric.

Note that for the standard Euclidean metric

gαβ = diag(1, 1, 1) (2.C.9)

the traditional choice of Pauli matrices is

σ1ȧb =

0 1

1 0

 , σ2ȧb =

0 −i

i 0

 , σ3ȧb =

1 0

0 −1

 . (2.C.10)

2.D Correspondence between coframes and spinors

In dimension 3 a coframe ϑ and a (positive) density ρ are equivalent to a nonva-

nishing spinor field ξ modulo the sign of ξ in accordance with the formulae

s = ξ̄ȧσ0ȧbξ
b, (2.D.1)

ρ = s
√

det g , (2.D.2)

(ϑ1 + iϑ2)α = s−1εċḃσ0ḃaξ
aσαċdξ

d, (2.D.3)

ϑ3
α = s−1ξ̄ȧσαȧbξ

b. (2.D.4)
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The above formulae are a special case of those from [22].

We assume that our Pauli matrices are chosen in such a way that the coframe ϑ

defined by formulae (2.D.1), (2.D.3) and (2.D.4) satisfies condition (2.B.2) for all

ξ 6= 0. Of course, the sign of detϑjα can always be changed by switching from

original Pauli matrices to their complex conjugates.

Note that if we have the standard Euclidean metric (2.C.9), use traditional Pauli

matrices (2.C.10) and take

ξa =

1

0

 (2.D.5)

then formulae (2.D.1), (2.D.3) and (2.D.4) give us

ϑjα = δjα . (2.D.6)

2.E Spinor representation of axial torsion and

angular velocity

We show in this section that the Hodge dual of axial torsion (2.1.2) is expressed

via the spinor field ξ as

∗ T ax = −2i(ξ̄ȧσαȧb∇αξ
b − ξbσαȧb∇αξ̄

ȧ)

3ξ̄ ċσ0ċdξd
(2.E.1)

and that the vector of angular velocity ω defined by formula (2.1.11) is expressed

via the spinor field ξ as

ωα =
i(ξ̄ȧσαȧb∂0ξ

b − ξbσαȧb∂0ξ̄
ȧ)

ξ̄ ċσ0ċdξd
. (2.E.2)

Note that formulae (2.E.1) and (2.E.2) are invariant under the rescaling of our

spinor field by an arbitrary nonvanishing real scalar function.
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Formulae (2.E.1) and (2.E.2) are proved by direct substitution of formulae (2.D.1),

(2.D.3) and (2.D.4) into (2.1.2) and (2.1.11) respectively. In order to simplify cal-

culations we observe that the expressions in the left- and right-hand sides of for-

mulae (2.E.1) and (2.E.2) have an invariant nature, hence it is sufficient to prove

these formulae for standard Euclidean metric (2.C.9), traditional Pauli matrices

(2.C.10) and at a point at which the spinor field takes the value (2.D.5).

We have

ξa =

1 + δξ1

δξ2

 , (ϑ1 + iϑ2)α =


1 + δξ1 − δξ̄1̇

i+ iδξ1 − iδξ̄1̇

−2δξ2

 , ϑ3
α =


δξ2 + δξ̄2̇

−iδξ2 + iδξ̄2̇

1

 ,

[curl(ϑ1 + iϑ2)]α =


−2∇2ξ

2 −∇3(iξ1 − iξ̄1̇)

2∇1ξ
2 +∇3(ξ1 − ξ̄1̇)

∇1(iξ1 − iξ̄1̇)−∇2(ξ1 − ξ̄1̇)

 , (2.E.3)

[curlϑ3]α =


−∇3(−iξ2 + iξ̄2̇)

∇3(ξ2 + ξ̄2̇)

∇1(−iξ2 + iξ̄2̇)−∇2(ξ2 + ξ̄2̇)

 , (2.E.4)

[∂0(ϑ1 + iϑ2)]α =


∂0ξ

1 − ∂0ξ̄
1̇

i∂0ξ
1 − i∂0ξ̄

1̇

−2∂0ξ
2

 , (2.E.5)

[∂0ϑ
3]α =


∂0ξ

2 + ∂0ξ̄
2̇

−i∂0ξ
2 + i∂0ξ̄

2̇

0

 , (2.E.6)

where curlu := ∗du.

We rewrite the formulae for ∗T ax and ω in the form

∗T ax =
1

6
(ϑ1−iϑ2)·curl(ϑ1+iϑ2)+

1

6
(ϑ1+iϑ2)·curl(ϑ1−iϑ2)+

1

3
ϑ3·curlϑ3, (2.E.7)
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ω =
1

4
(ϑ1− iϑ2)×∂0(ϑ1 + iϑ2)+

1

4
(ϑ1 + iϑ2)×∂0(ϑ1− iϑ2)+

1

2
ϑ3×∂0ϑ

3, (2.E.8)

where u·v := uαv
α (note the absence of complex conjugation) and u×v := ∗(u∧v).

Substituting formulae (2.D.6), (2.E.3) and (2.E.4) into formula (2.E.7) we get

∗T ax = −2i

3

[
∇3ξ

1 + (∇1 − i∇2)ξ2 −∇3ξ̄
1̇ − (∇1 + i∇2)ξ̄2̇

]
which coincides with the RHS of formula (2.E.1). Substituting formulae (2.D.6),

(2.E.5) and (2.E.6) into formula (2.E.8) we get

ωα = i


∂0ξ

2 − ∂0ξ̄
2̇

−i∂0ξ
2 − i∂0ξ̄

2̇

∂0ξ
1 − ∂0ξ̄

1̇


which coincides with the RHS of formula (2.E.2).

An alternative way of proving formulae of the type (2.E.1) and (2.E.2) is to

choose Pauli matrices σα, α = 0, 1, 2, 3, in such a way that a given nonvanishing

spinor field ξ takes the value (2.D.5) in some neighborhood of a given point (as

opposed to only the point itself). This approach was adopted, for example, in

[9, 17, 18, 19].



Chapter 3

Microlocal analysis of the

massless Dirac operator

3.1 Main results

The aim of this chapter is to extend the classical results of [20] to systems. We

are motivated by the following two observations.

• To our knowledge, all previous publications on systems give formulae for

the second asymptotic coefficient that are either incorrect or incomplete

(i.e. an algorithm for the calculation of the second asymptotic coefficient

rather than an actual formula). The appropriate bibliographic review is

presented in Section 3.13.

• Systems are fundamentally different from scalar operators in that spectral

analysis of systems reveals a very rich geometric structure. An important

example of an elliptic system is the massless Dirac operator which is exam-

ined in detail in this chapter.

Consider a first order classical pseudodifferential operator A acting on columns

v =
(
v1 . . . vm

)T
of complex-valued half-densities over a connected compact

46
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n-dimensional manifold M . Throughout this chapter we assume that m ≥ 2 and

n ≥ 2.

We assume the symbol of the operator A to be infinitely smooth. We also as-

sume that the operator A is formally self-adjoint (symmetric):
∫
M
w∗Av dx =∫

M
(Aw)∗v dx for all infinitely smooth v, w : M → Cm. Here and further on the

superscript ∗ in matrices, rows and columns indicates Hermitian conjugation in

Cm and dx := dx1 . . . dxn, where x = (x1, . . . , xn) are local coordinates on M .

Let A1(x, ξ) be the principal symbol of the operator A. Here ξ = (ξ1, . . . , ξn)

is the variable dual to the position variable x; in physics literature the ξ would

be referred to as momentum. Our principal symbol A1 is an m ×m Hermitian

matrix-function on T ′M := T ∗M \{ξ = 0}, i.e. on the cotangent bundle with the

zero section removed.

Let h(j)(x, ξ) be the eigenvalues of the principal symbol. We assume these eigen-

values to be nonzero (this is a version of the ellipticity condition) but do not make

any assumptions on their sign. We also assume that the eigenvalues h(j)(x, ξ) are

simple for all (x, ξ) ∈ T ′M . The techniques developed in this part of the thesis

do not work in the case when eigenvalues of the principal symbol have variable

multiplicity, though they could probably be adapted to the case of constant mul-

tiplicity different from multiplicity 1. The use of the letter “h” for an eigenvalue

of the principal symbol is motivated by the fact that later it will take on the role

of a Hamiltonian, see formula (3.1.11).

We enumerate the eigenvalues of the principal symbol h(j)(x, ξ) in increasing

order, using a positive index j = 1, . . . ,m+ for positive h(j)(x, ξ) and a negative

index j = −1, . . . ,−m− for negative h(j)(x, ξ). Here m+ is the number of positive

eigenvalues of the principal symbol and m− is the number of negative ones. Of

course, m+ +m− = m.

Under the above assumptions A is a self-adjoint operator, in the full functional

analytic sense, in the Hilbert space L2(M ; Cm) (Hilbert space of square integrable

complex-valued column “functions”) with domain H1(M ; Cm) (Sobolev space of
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complex-valued column “functions” which are square integrable together with

their first partial derivatives) and the spectrum of A is discrete. These facts are

easily established by constructing the parametrix (approximate inverse) of the

operator A + iI. Note that for the special case of the massless Dirac operator a

detailed examination of relevant functional analytic properties was performed in

Chapter 4 of [21].

Let λk and vk = (vk1(x) . . . vkm(x))T be the eigenvalues and eigenfunctions of

the operator A. The eigenvalues λk are enumerated in increasing order with

account of multiplicity, using a positive index k = 1, 2, . . . for positive λk and

a nonpositive index k = 0,−1,−2, . . . for nonpositive λk. If the operator A is

bounded from below (i.e. if m− = 0) then the index k runs from some integer

value to +∞; if the operator A is bounded from above (i.e. if m+ = 0) then the

index k runs from −∞ to some integer value; and if the operator A is unbounded

from above and from below (i.e. if m+ 6= 0 and m− 6= 0) then the index k runs

from −∞ to +∞.

We will be studying the following three objects.

Object 1. Our first object of study is the propagator, which is the one-parameter

family of operators defined as

U(t) := e−itA =
∑
k

e−itλkvk(x)

∫
M

[vk(y)]∗( · ) dy , (3.1.1)

t ∈ R. The propagator provides a solution to the Cauchy problem

w|t=0 = v (3.1.2)

for the dynamic equation

Dtw + Aw = 0 , (3.1.3)

where Dt := −i∂/∂t. Namely, it is easy to see that if the column of half-densities

v = v(x) is infinitely smooth, then, setting w := U(t) v, we get a time-dependent

column of half-densities w(t, x) which is also infinitely smooth and which satisfies
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the equation (3.1.3) and the initial condition (3.1.2). The use of the letter “U”

for the propagator is motivated by the fact that for each t the operator U(t) is

unitary.

Object 2. Our second object of study is the spectral function (1.3.2) defined in

Section 1.3.

Object 3. Our third and final object of study is the counting function

N(λ) :=
∑

0<λk<λ

1 =

∫
M

e(λ, x, x) dx . (3.1.4)

In other words, N(λ) is the number of eigenvalues λk between zero and λ.

It is natural to ask the question: why, in defining the spectral function (1.3.2)

and the counting function (3.1.4), did we choose to perform summation over

all positive eigenvalues up to a given positive λ rather than over all negative

eigenvalues up to a given negative λ? There is no particular reason. One case

reduces to the other by the change of operator A 7→ −A. This issue will be

revisited in Section 3.12.

Further on we assume that m+ > 0, i.e. that the operator A is unbounded from

above.

Our objectives are as follows.

Objective 1. We aim to construct the propagator (3.1.1) explicitly in terms of

oscillatory integrals, modulo an integral operator with an infinitely smooth, in

the variables t, x and y, integral kernel.

Objectives 2 and 3. We aim to derive, under appropriate assumptions on

Hamiltonian trajectories, two-term asymptotics for the spectral function (1.3.2)

and the counting function (3.1.4), i.e. formulae of the type (1.3.3) and

N(λ) = aλn + bλn−1 + o(λn−1), (3.1.5)
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as λ→ +∞. Obviously, here we expect the real constants a, b and real densities

a(x), b(x) to be related in accordance with

a =

∫
M

a(x) dx, (3.1.6)

b =

∫
M

b(x) dx. (3.1.7)

It is well known that the above three objectives are closely related: if one achieves

Objective 1, then Objectives 2 and 3 follow via Fourier Tauberian theorems [20,

45, 29, 44].

We are now in a position to state our main results.

Result 1. We construct the propagator as a sum of m oscillatory integrals

U(t)
modC∞

=
∑
j

U (j)(t) , (3.1.8)

where the phase function of each oscillatory integral U (j)(t) is associated with

the corresponding Hamiltonian h(j)(x, ξ). The symbol of the oscillatory inte-

gral U (j)(t) is a complex-valued m × m matrix-function u(j)(t; y, η), where y =

(y1, . . . , yn) is the position of the source of the wave (i.e. this is the same y that

appears in formula (3.1.1)) and η = (η1, . . . , ηn) is the corresponding dual variable

(covector at the point y). When |η| → +∞, the symbol admits an asymptotic

expansion

u(j)(t; y, η) = u
(j)
0 (t; y, η) + u

(j)
−1(t; y, η) + . . . (3.1.9)

into components positively homogeneous in η, with the subscript indicating de-

gree of homogeneity.
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The formula for the principal symbol of the oscillatory integral U (j)(t) is known

[43, 35] and reads as follows:

u
(j)
0 (t; y, η) = [v(j)(x(j)(t; y, η), ξ(j)(t; y, η))] [v(j)(y, η)]∗

× exp

(
−i
∫ t

0

q(j)(x(j)(τ ; y, η), ξ(j)(τ ; y, η)) dτ

)
, (3.1.10)

where v(j)(z, ζ) is the normalised eigenvector of the principal symbol A1(z, ζ)

corresponding to the eigenvalue (Hamiltonian) h(j)(z, ζ), (x(j)(t; y, η), ξ(j)(t; y, η))

is the Hamiltonian trajectory originating from the point (y, η), i.e. solution of the

system of ordinary differential equations (the dot denotes differentiation in t)

ẋ(j) = h
(j)
ξ (x(j), ξ(j)), ξ̇(j) = −h(j)

x (x(j), ξ(j)) (3.1.11)

subject to the initial condition (x(j), ξ(j))
∣∣
t=0

= (y, η), q(j) : T ′M → R is the

function

q(j) := [v(j)]∗Asubv
(j) − i

2
{[v(j)]∗, A1 − h(j), v(j)} − i[v(j)]∗{v(j), h(j)} (3.1.12)

and

Asub(z, ζ) := A0(z, ζ) +
i

2
(A1)zαζα(z, ζ) (3.1.13)

is the subprincipal symbol of the operator A, with the subscripts zα and ζα

indicating partial derivatives and the repeated index α indicating summation

over α = 1, . . . , n. Curly brackets in formula (3.1.12) denote the Poisson bracket

on matrix-functions

{P,R} := PzαRζα − PζαRzα (3.1.14)

and its further generalisation

{P,Q,R} := PzαQRζα − PζαQRzα . (3.1.15)

As the derivation of formula (3.1.10) was previously performed only in theses

[43, 35], we repeat it in Sections 3.2 and 3.3 of the thesis. Our derivation differs
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slightly from that in [43] and [35].

Formula (3.1.10) is invariant under changes of local coordinates on the manifold

M , i.e. elements of the m × m matrix-function u
(j)
0 (t; y, η) are scalars on R ×

T ′M . Moreover, formula (3.1.10) is invariant under the transformation of the

eigenvector of the principal symbol

v(j) 7→ eiφ
(j)

v(j), (3.1.16)

where

φ(j) : T ′M → R (3.1.17)

is an arbitrary smooth function. When some quantity is defined up to the action

of a certain transformation, theoretical physicists refer to such a transformation

as a gauge transformation. We follow this tradition. Note that our particular

gauge transformation (3.1.16), (3.1.17) is quite common in quantum mechanics:

when φ(j) is a function of the position variable x only (i.e. when φ(j) : M → R)

this gauge transformation is associated with electromagnetism.

Both Y. Safarov [43] and W.J. Nicoll [35] assumed that the operator A is semi-

bounded from below but this assumption is not essential and their formula

(3.1.10) remains true in the more general case that we are dealing with.

However, knowing the principal symbol (3.1.10) of the oscillatory integral U (j)(t)

is not enough if one wants to derive two-term asymptotics (1.3.3) and (3.1.5).

One needs information about u
(j)
−1(t; y, η), the component of the symbol of the

oscillatory integral U (j)(t) which is positively homogeneous in η of degree -1, see

formula (3.1.9), but here the problem is that u
(j)
−1(t; y, η) is not a true invariant in

the sense that it depends on the choice of phase function in the oscillatory inte-

gral. We overcome this difficulty by observing that U (j)(0) is a pseudodifferential

operator, hence, it has a well-defined subprincipal symbol [U (j)(0)]sub. We prove

that

tr[U (j)(0)]sub = −i{[v(j)]∗, v(j)} (3.1.18)
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and subsequently show that information contained in formulae (3.1.10) and (3.1.18)

is sufficient for the derivation of two-term asymptotics (1.3.3) and (3.1.5).

Note that the RHS of formula (3.1.18) is invariant under the gauge transformation

(3.1.16), (3.1.17).

Formula (3.1.18) plays a central role in Chapter 3. Sections 3.2 and 3.3 provide

auxiliary material needed for the proof of formula (3.1.18), whereas the actual

proof of formula (3.1.18) is given in Section 3.4.

Let us elaborate briefly on the geometric meaning of the RHS of (3.1.18) (a more

detailed exposition is presented in Section 3.5). The eigenvector of the principal

symbol is defined up to a gauge transformation (3.1.16), (3.1.17) so it is natural

to introduce a U(1) connection on T ′M as follows: when parallel transporting

an eigenvector of the principal symbol along a curve in T ′M we require that

the derivative of the eigenvector along the curve be orthogonal to the eigenvector

itself. This is equivalent to the introduction of an (intrinsic) electromagnetic field

on T ′M , with the 2n-component real quantity

i ( [v(j)]∗v
(j)
xα , [v(j)]∗v

(j)
ξγ

) (3.1.19)

playing the role of the electromagnetic covector potential. Our quantity (3.1.19)

is a 1-form on T ′M , rather than on M itself as is the case in “traditional” elec-

tromagnetism. The above U(1) connection generates curvature which is a 2-form

on T ′M , an analogue of the electromagnetic tensor. Out of this curvature 2-form

one can construct, by contraction of indices, a real scalar. This scalar curvature

is the expression appearing in the RHS of formula (3.1.18).

Observe now that
∑

j U
(j)(0) is the identity operator on half-densities. The sub-

principal symbol of the identity operator is zero, so formula (3.1.18) implies

∑
j

{[v(j)]∗, v(j)} = 0. (3.1.20)
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One can check the identity (3.1.20) directly, without constructing the oscillatory

integrals U (j)(t): it follows from the fact that the v(j)(x, ξ) form an orthonormal

basis, see end of Section 3.5 for details. We mentioned the identity (3.1.20) in

order to highlight, once again, the fact that the curvature effects we have identified

are specific to systems and do not have an analogue in the scalar case.

Results 2 and 3. We prove, under appropriate assumptions on Hamiltonian

trajectories (see Theorems 3.8.3 and 3.8.4 for details), asymptotic formulae (1.3.3)

and (3.1.5) with

a(x) =
m+∑
j=1

∫
h(j)(x,ξ)<1

d̄ξ , (3.1.21)

b(x) = −n
m+∑
j=1

∫
h(j)(x,ξ)<1

(
[v(j)]∗Asubv

(j)

− i

2
{[v(j)]∗, A1 − h(j), v(j)}+

i

n− 1
h(j){[v(j)]∗, v(j)}

)
(x, ξ) d̄ξ , (3.1.22)

and a and b expressed via the above densities (3.1.21) and (3.1.22) as (3.1.6)

and (3.1.7). In (3.1.21) and (3.1.22) d̄ξ is shorthand for d̄ξ := (2π)−n dξ =

(2π)−n dξ1 . . . dξn, and the Poisson bracket on matrix-functions { · , · } and its

further generalisation { · , · , · } are defined by formulae (3.1.14) and (3.1.15) re-

spectively.

To our knowledge, formula (3.1.22) is a new result. Note that in [43] this formula

(more precisely, its integrated over M version (3.1.7)) was written incorrectly,

without the curvature terms − ni
n−1

∫
h(j){[v(j)]∗, v(j)}. See also Section 3.13 where

we give a more detailed bibliographic review.

It is easy to see that the right-hand sides of (3.1.21) and (3.1.22) behave as

densities under changes of local coordinates on the manifold M and that these

expressions are invariant under gauge transformation (3.1.16), (3.1.17) of the

eigenvectors of the principal symbol. Moreover, the right-hand sides of (3.1.21)

and (3.1.22) are unitarily invariant, i.e. invariant under transformation of the
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operator

A 7→ RAR∗, (3.1.23)

where

R : M → U(m) (3.1.24)

is an arbitrary smooth unitary matrix-function. The fact that the RHS of

(3.1.22) is unitarily invariant is non-trivial: the appropriate calculations are

presented in Section 3.9. The observation that without the curvature terms

− ni
n−1

∫
h(j){[v(j)]∗, v(j)} (as in [43]) the RHS of (3.1.22) is not unitarily invariant

was a major motivating factor in the writing of this chapter.

We will now start making additional assumptions which will, in the end, allow

us to provide a simple spectral theoretic characterisation of the massless Dirac

operator.

Additional assumption 1: We assume that statement (1.3.4) is true.

In this case we can simplify notation by denoting the positive eigenvalue of the

principal symbol by h+, the corresponding eigenvector by v+ =

v+
1

v+
2

 and Hamil-

tonian trajectories by (x+(t; y, η), ξ+(t; y, η)). Obviously, the other eigenvalue of

the principal symbol is−h+, the corresponding eigenvector is

−v̄+
2

v̄+
1

 and Hamil-

tonian trajectories are (x+(−t; y, η), ξ+(−t; y, η)) (time reversal). Note that in

theoretical physics the antilinear transformationv+
1

v+
2

 C7→

−v̄+
2

v̄+
1

 (3.1.25)

is referred to as charge conjugation [7].

Moreover, in this case the two scalar invariants, {[v+]∗, A1−h+, v+} and h+{[v+]∗, v+},

appearing in formula (3.1.22) cease being independent and become related as

{[v+]∗, A1 − h+, v+} = −2h+{[v+]∗, v+}. Hence, formulae (3.1.21) and (3.1.22)
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simplify and now read

a(x) =

∫
h+(x,ξ)<1

d̄ξ , (3.1.26)

b(x) = −n
∫

h+(x,ξ)<1

(
[v+]∗Asubv

+ +
n

n− 1
ih+{[v+]∗, v+}

)
(x, ξ) d̄ξ . (3.1.27)

Additional assumption 2: We assume that statement (1.3.5) is true.

In this case there are three further simplifications.

Firstly, the dimension of the manifold can only be n = 2 or n = 3. This follows

from the ellipticity condition and the fact that the dimension of the real vector

space of trace-free Hermitian 2× 2 matrices is 3.

Secondly, the subprincipal symbol Asub does not depend on the dual variable ξ

(momentum) and is a function of x (position) only.

Thirdly, we acquire a geometric object, the metric. Indeed, the determinant of

the principal symbol is a negative definite quadratic form

detA1(x, ξ) = −gαβξαξβ (3.1.28)

and the coefficients gαβ(x), α, β = 1, . . . , n, appearing in (3.1.28) can be inter-

preted as the components of a (contravariant) Riemannian metric. This implies,

in particular, that our Hamiltonian (positive eigenvalue of the principal symbol)

takes the form

h+(x, ξ) =
√
gαβ(x) ξαξβ (3.1.29)

and the x-components of our Hamiltonian trajectories become geodesics. More-

over, formulae (3.1.26) and (3.1.6) simplify and now read

a(x) = (2π)−n ωn

√
det gαβ(x) , (3.1.30)

a = (2π)−n ωn VolM , (3.1.31)
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where ωn is the volume of the unit ball in Rn and VolM is the n-dimensional

volume of the Riemannian manifold M .

Additional assumption 3: We assume that statement (1.3.6) is true.

In this case there are three more simplifications.

Firstly, the manifold M is bound to be parallelizable (and, hence, orientable).

The relevant argument is presented in the beginning of Section 3.10. From this

point we work only in local coordinates with prescribed orientation.

Secondly, we acquire the identity

det gαβ = −1

4

[
tr
(
(A1)ξ1(A1)ξ2(A1)ξ3

)]2
(3.1.32)

which allows us to define the topological invariant

c := − i
2

√
det gαβ tr

(
(A1)ξ1(A1)ξ2(A1)ξ3

)
. (3.1.33)

The number c defined by formula (3.1.33) can take only two values, +1 or −1, and

describes the orientation of the principal symbol A1(x, ξ) relative to the chosen

orientation of local coordinates, see formula (3.10.4) for a more natural geometric

definition. In calling the number c a topological invariant we are referring to the

topology of deformations of the elliptic trace-free principal symbol A1(x, ξ) rather

than the deformations of the manifold M itself.

Thirdly, we acquire a new differential geometric object, namely, a teleparallel

connection. This is an affine connection defined as follows. Suppose we have a

covector η based at the point y ∈M and we want to construct a parallel covector

ξ based at the point x ∈M . This is done by solving the linear system of equations

A1(x, ξ) = A1(y, η). (3.1.34)

Equation (3.1.34) is equivalent to a system of three real linear algebraic equa-

tions for the three real unknowns, components of the covector ξ, and it is easy to
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see that this system has a unique solution. It is also easy to see that the affine

connection defined by formula (3.1.34) preserves the Riemannian norm of covec-

tors, i.e. gαβ(x) ξαξβ = gαβ(y) ηαηβ, hence, it is metric compatible. The parallel

transport defined by formula (3.1.34) does not depend on the curve along which

we transport the (co)vector, so our connection has zero curvature. The word

“teleparallel” (parallel at a distance) is used in theoretical physics to describe

metric compatible affine connections with zero curvature. This terminology goes

back to the works of A. Einstein and É. Cartan [51, 46, 11], though Cartan

preferred to use the term “absolute parallelism” rather than “teleparallelism”.

The teleparallel connection coefficients Γαβγ(x) can be written down explicitly in

terms of the principal symbol, see formula (3.10.7), and this allows us to define

yet another geometric object — the torsion tensor

Tαβγ := Γαβγ − Γαγβ . (3.1.35)

Further on we raise and lower indices of the torsion tensor using the metric.

Torsion is a rank three tensor antisymmetric in the last two indices. Because we

are working in dimension three, it is convenient, as in [6], to apply the Hodge

star in the last two indices and deal with the rank two tensor

∗
Tαβ :=

1

2
Tαγδ εγδβ

√
det gµν (3.1.36)

rather than with the rank three tensor T . Here ε is the totally antisymmetric

quantity, ε123 := +1.

The teleparallel connection is a simpler geometric object than the U(1) connection

because the coefficients of the teleparallel connection do not depend on the dual

variable (momentum), i.e. they are “functions” on the base manifold M . The

relationship between the two connections is established in Section 3.10 where we

show that the scalar curvature of the U(1) connection is expressed via the torsion
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of the teleparallel connection and the metric as

− i{[v+]∗, v+}(x, ξ) =
c

2

∗
Tαβ(x) ξαξβ

(gµν(x) ξµξν)3/2
. (3.1.37)

Integration of both terms appearing in formula (3.1.27) can now be carried out

explicitly, giving

∫
h+(x,ξ)<1

([v+]∗Asubv
+)(x, ξ) d̄ξ =

1

12π2

(
trAsub

√
det gαβ

)
(x) , (3.1.38)

− i
∫

h+(x,ξ)<1

h+{[v+]∗, v+}(x, ξ) d̄ξ =
c

36π2

(
tr
∗
T
√

det gαβ
)
(x) , (3.1.39)

where tr
∗
T :=

∗
Tαα. Note that tr

∗
T corresponds to one of the three irreducible

pieces of torsion, namely, the piece which is labelled by theoretical physicists by

the adjective “axial”, see [6, 25] for details; it is interesting that this is exactly the

irreducible piece of torsion which is used when one models the neutrino [14] or the

electron [10] by means of Cosserat elasticity. Formula (3.1.39) follows immediately

from (3.1.37), whereas formula (3.1.38) is somewhat less obvious. In order to see

where formula (3.1.38) comes from one has to write the orthogonal projection

v+(x, ξ) [v+(x, ξ)]∗ as v+(x, ξ) [v+(x, ξ)]∗ = 1
2h+(x,ξ)

(A1(x, ξ) + h+(x, ξ) I) and use

the fact that the principal symbol A1(x, ξ) is an odd function of ξ.

Substituting (1.3.6), (3.1.38) and (3.1.39) into (3.1.27) we get

b(x) =
1

8π2

((
c tr

∗
T − 2 trAsub

)√
det gαβ

)
(x) . (3.1.40)

An explicit self-contained expression for tr
∗
T is given in formula (3.10.28).

Note that the two traces appearing in formula (3.1.40) have a different meaning:

tr
∗
T is the trace of a 3× 3 tensor, whereas trAsub is the trace of a 2× 2 matrix.

We now turn our attention to the massless Dirac operator. This operator is de-

fined in Appendix 3.A, see formula (3.A.3), and it does not fit into our scheme
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because this is an operator acting on a 2-component complex-valued spinor (Weyl

spinor) rather than a pair of complex-valued half-densities. However, on a par-

allelizable manifold components of a spinor can be identified with half-densities.

We call the resulting operator the massless Dirac operator on half-densities. The

explicit formula for the massless Dirac operator on half-densities is (3.A.30).

The massless Dirac operator on half-densities is an operator of the type described

in this section (elliptic self-adjoint first order operator acting on a column of

complex-valued half-densities) which, moreover, satisfies the additional assump-

tions (1.3.4), (1.3.5) and (1.3.6). We address the question: is a given operator A

a massless Dirac operator? The answer is given by the Theorem 1.3.1 which we

prove in Section 3.11.

Theorem 1.3.1 warrants the following remarks.

• In stating Theorem 1.3.1 we did not make any assumptions on Hamiltonian

trajectories (loops). The second asymptotic coefficient (3.1.40) is, in itself,

well-defined irrespective of how many loops we have. If one wishes to refor-

mulate the asymptotic formula (1.3.3) in such a way that it remains valid

without assumptions on the number of loops, this can easily be achieved,

say, by taking a convolution with a function from Schwartz space S(R). See

Theorem 3.7.1 for details.

• Conditions a) and b) in Theorem 1.3.1 are invariant under special unitary

transformation, i.e. transformation of the operator (3.1.23) where R = R(x)

is an arbitrary smooth special unitary matrix-function. This is not surpris-

ing as the massless Dirac operator is designed around the concept of SU(2)

invariance, see Property 4 in Appendix 3.A.

• Condition b) in Theorem 1.3.1 is actually invariant under the action of a

broader group: the unitary matrix-function appearing in formula (3.1.23)

does not have to be special.
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3.2 Algorithm for the construction

of the propagator

We construct the propagator as a sum of m oscillatory integrals (3.1.8) where

each integral is of the form

U (j)(t) =

∫
eiϕ

(j)(t,x;y,η) u(j)(t; y, η) ς(j)(t, x; y, η) dϕ(j)(t, x; y, η) ( · ) dy d̄η . (3.2.1)

Here we use notation from the book [45], only adapted to systems. Namely, the

expressions appearing in formula (3.2.1) have the following meaning.

• The function ϕ(j) is a phase function, i.e. a function R ×M × T ′M → C

positively homogeneous in η of degree 1 and satisfying the conditions

ϕ(j)(t, x; y, η) = (x−x(j)(t; y, η))α ξ(j)
α (t; y, η)+O(|x−x(j)(t; y, η)|2), (3.2.2)

Imϕ(j)(t, x; y, η) ≥ 0, (3.2.3)

detϕ
(j)
xαηβ

(t, x(j)(t; y, η); y, η) 6= 0. (3.2.4)

Recall that according to Corollary 2.4.5 from [45] we are guaranteed to have

(3.2.4) if we choose a phase function

ϕ(j)(t, x; y, η) = (x− x(j)(t; y, η))α ξ(j)
α (t; y, η)

+
1

2
C

(j)
αβ (t; y, η) (x− x(j)(t; y, η))α (x− x(j)(t; y, η))β

+O(|x− x(j)(t; y, η)|3) (3.2.5)

with complex-valued symmetric matrix-function C
(j)
αβ satisfying the strict

inequality ImC(j) > 0 (our original requirement (3.2.3) implies only the

non-strict inequality ImC(j) ≥ 0). Note that even though the matrix-

function C
(j)
αβ is not a tensor, the inequalities ImC(j) ≥ 0 and ImC(j) > 0

are invariant under transformations of local coordinates x; see Remark 2.4.9

in [45] for details.
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• The quantity u(j) is the symbol of our oscillatory integral, i.e. a complex-

valued m×m matrix-function R×T ′M → Cm2
which admits the asymptotic

expansion (3.1.9). The symbol is the unknown quantity in our construction.

• The quantity dϕ(j) is defined in accordance with formula (2.2.4) from [45]

as

dϕ(j)(t, x; y, η) := (det2ϕ
(j)
xαηβ

)1/4 = | detϕ
(j)
xαηβ
|1/2 e i arg(det2ϕ

(j)
xαηβ

)/4
. (3.2.6)

Note that in view of (3.2.4) our dϕ(j) is well-defined and smooth for x close

to x(j)(t; y, η). It is known [45] that under coordinate transformations dϕ(j)

behaves as a half-density in x and as a half-density to the power −1 in y.

In formula (3.2.6) we wrote (det2ϕ
(j)
xαηβ

)1/4 rather than (detϕ
(j)
xαηβ

)1/2 in order

to make this expression truly invariant under coordinate transformations.

Recall that local coordinates x and y are chosen independently and that

η is a covector based at the point y. Consequently, detϕ
(j)
xαηβ

changes sign

under inversions of local coordinates x or y, whereas det2ϕ
(j)
xαηβ

retains sign

under inversions.

The choice of (smooth) branch of arg(det2ϕ
(j)
xαηβ

) is assumed to be fixed.

Thus, for a given phase function ϕ(j) formula (3.2.6) defines the quantity

dϕ(j) uniquely up to a factor eikπ/2, k = 0, 1, 2, 3. Observe now that if

we set t = 0 and choose the same local coordinates for x and y, we get

ϕ
(j)
xαηβ

(0, y; y, η) = I. This implies that we can fully specify the choice of

branch of arg(det2ϕ
(j)
xαηβ

) by requiring that dϕ(j)(0, y; y, η) = 1.

The purpose of the introduction of the factor dϕ(j) in (3.2.1) is twofold.

(a) It ensures that the symbol u(j) is a function on R × T ′M in the full

differential geometric sense of the word, i.e. that it is invariant under

transformations of local coordinates x and y.

(b) It ensures that the principal symbol u
(j)
0 does not depend on the choice

of phase function ϕ(j). See Remark 2.2.8 in [45] for more details.
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• The quantity ς(j) is a smooth cut-off function R×M ×T ′M → R satisfying

the following conditions.

(a) ς(j)(t, x; y, η) = 0 on the set {(t, x; y, η) : |h(j)(y, η)| ≤ 1/2}.

(b) ς(j)(t, x; y, η) = 1 on the intersection of a small conic neighbourhood

of the set

{(t, x; y, η) : x = x(j)(t; y, η)} (3.2.7)

with the set {(t, x; y, η) : |h(j)(y, η)| ≥ 1}.

(c) ς(j)(t, x; y, λη) = ς(j)(t, x; y, η) for |h(j)(y, η)| ≥ 1, λ ≥ 1.

• It is known (see Section 2.3 in [45] for details) that Hamiltonian trajecto-

ries generated by a Hamiltonian h(j)(x, ξ) positively homogeneous in ξ of

degree 1 satisfy the identity

(x(j)
η )αβξ(j)

α = 0, (3.2.8)

where (x
(j)
η )αβ := ∂(x(j))α/∂ηβ. Formulae (3.2.2) and (3.2.8) imply

ϕ(j)
η (t, x(j)(t; y, η); y, η) = 0. (3.2.9)

This allows us to apply the stationary phase method in the neighbourhood

of the set (3.2.7) and disregard what happens away from it.

Our task now is to construct the symbols u
(j)
0 (t; y, η), j = 1, . . . ,m, so that our

oscillatory integrals U (j)(t), j = 1, . . . ,m, satisfy the dynamic equations

(Dt + A(x,Dx))U
(j)(t)

modC∞
= 0 (3.2.10)

and initial condition ∑
j

U (j)(0)
modC∞

= I , (3.2.11)

where I is the identity operator on half-densities; compare with formulae (3.1.3),

(3.1.2) and (3.1.8). Note that the pseudodifferential operator A in formula
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(3.2.10) acts on the oscillatory integral U(t) in the variable x; say, if A is a

differential operator this means that in order to evaluate AU (j)(t) one has to

perform the appropriate differentiations of the oscillatory integral (3.2.1) in the

variable x. Following the conventions of Section 3.3 of [45], we emphasise the

fact that the pseudodifferential operator A in formula (3.2.10) acts on the oscil-

latory integral U(t) in the variable x by writing this pseudodifferential operator

as A(x,Dx), where Dxα := −i∂/∂xα.

We examine first the dynamic equation (3.2.10). We have

(Dt + A(x,Dx))U
(j)(t) = F (j)(t) ,

where F (j)(t) is the oscillatory integral

F (j)(t) =

∫
eiϕ

(j)(t,x;y,η) f (j)(t, x; y, η) ς(j)(t, x; y, η) dϕ(j)(t, x; y, η) ( · ) dy d̄η

whose matrix-valued amplitude f (j) is given by the formula

f (j) = Dtu
(j) +

(
ϕ

(j)
t + (dϕ(j))−1(Dtdϕ(j)) + s(j)

)
u(j), (3.2.12)

where the matrix-function s(j)(t, x; y, η) is defined as

s(j) = e−iϕ
(j)

(dϕ(j))−1A(x,Dx) (eiϕ
(j)

dϕ(j)) . (3.2.13)

Theorem 18.1 from [48] gives us the following explicit asymptotic (in inverse

powers of η) formula for the matrix-function (3.2.13):

s(j) = (dϕ(j))−1
∑

α

1

α!
A(α)(x, ϕ(j)

x ) (Dα
z χ

(j))
∣∣
z=x

, (3.2.14)

where

χ(j)(t, z, x; y, η) = eiψ
(j)(t,z,x;y,η)dϕ(j)(t, z; y, η), (3.2.15)

ψ(j)(t, z, x; y, η) = ϕ(j)(t, z; y, η)−ϕ(j)(t, x; y, η)−ϕ(j)

xβ
(t, x; y, η) (z−x)β. (3.2.16)
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In formula (3.2.14)

• α := (α1, . . . , αn) is a multi-index (note the bold font which we use to

distinguish multi-indices and individual indices), α! := α1! · · ·αn! , Dα
z :=

Dα1

z1 · · ·Dαn
zn , Dzβ := −i∂/∂zβ,

• A(x, ξ) is the full symbol of the pseudodifferential operator A written in

local coordinates x,

• A(α)(x, ξ) := ∂α
ξ A(x, ξ), ∂α

ξ := ∂α1
ξ1
· · · ∂αnξn and ∂ξβ := ∂/∂ξβ .

When |η| → +∞ the matrix-valued amplitude f (j)(t, x; y, η) defined by formula

(3.2.12) admits an asymptotic expansion

f (j)(t, x; y, η) = f
(j)
1 (t, x; y, η) + f

(j)
0 (t, x; y, η) + f

(j)
−1 (t, x; y, η) + . . . (3.2.17)

into components positively homogeneous in η, with the subscript indicating de-

gree of homogeneity. Note the following differences between formulae (3.1.9) and

(3.2.17).

• The leading term in (3.2.17) has degree of homogeneity 1, rather than 0 as

in (3.1.9). In fact, the leading term in (3.2.17) can be easily written out

explicitly

f
(j)
1 (t, x; y, η) = (ϕ

(j)
t (t, x; y, η)+A1(x, ϕ(j)

x (t, x; y, η)))u
(j)
0 (t; y, η) , (3.2.18)

where A1(x, ξ) is the (matrix-valued) principal symbol of the pseudodiffer-

ential operator A.

• Unlike the symbol u(j)(t; y, η), the amplitude f (j)(t, x; y, η) depends on x.

We now need to exclude the dependence on x from the amplitude f (j)(t, x; y, η).

This can be done by means of the algorithm described in subsection 2.7.3 of [45].

We outline this algorithm below.



Microlocal analysis of the massless Dirac operator 66

Working in local coordinates, define the matrix-function ϕ
(j)
xη in accordance with

(ϕ
(j)
xη )α

β := ϕ
(j)
xαηβ

and then define its inverse (ϕ
(j)
xη )−1 from the identity

(ϕ(j))α
β[(ϕ

(j)
xη )−1]β

γ := δα
γ. Define the “scalar” first order linear differential oper-

ators

L(j)
α := [(ϕ(j)

xη )−1]α
β (∂/∂xβ), α = 1, . . . , n. (3.2.19)

Note that the coefficients of these differential operators are functions of the posi-

tion variable x and the dual variable ξ. It is known, see part 2 of Appendix E in

[45], that the operators (3.2.19) commute: L
(j)
α L

(j)
β = L

(j)
β L

(j)
α , α, β = 1, . . . , n.

Denote L
(j)
α := (L

(j)
1 )α1 · · · (L(j)

n )αn , (−ϕ(j)
η )α := (−ϕ(j)

η1 )α1 · · · (−ϕ(j)
ηn )αn , and,

given an r ∈ N, define the “scalar” linear differential operator

P
(j)
−1,r := i(dϕ(j))−1 ∂

∂ηβ
dϕ(j)

1 +
∑

1≤|α|≤2r−1

(−ϕ(j)
η )α

α! (|α|+ 1)
L(j)

α

L
(j)
β , (3.2.20)

where |α| := α1 + . . . + αn and the repeated index β indicates summation over

β = 1, . . . , n.

Recall Definition 2.7.8 from [45]: the linear operator L is said to be positively

homogeneous in η of degree p ∈ R if for any q ∈ R and any function f positively

homogeneous in η of degree q the function Lf is positively homogeneous in η of

degree p+q. It is easy to see that the operator (3.2.20) is positively homogeneous

in η of degree −1 and the first subscript in P
(j)
−1,r emphasises this fact.

Let S
(j)
0 be the (linear) operator of restriction to x = x(j)(t; y, η),

S
(j)
0 := ( · )|x=x(j)(t;y,η) , (3.2.21)

and let

S
(j)
−r := S

(j)
0 (P

(j)
−1,r)

r (3.2.22)

for r = 1, 2, . . .. Observe that our linear operators S
(j)
−r, r = 0, 1, 2, . . ., are

positively homogeneous in η of degree −r. This observation allows us to define
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the linear operator

S(j) :=
+∞∑
r=0

S
(j)
−r , (3.2.23)

where the series is understood as an asymptotic series in inverse powers of η.

According to subsection 2.7.3 of [45], the dynamic equation (3.2.10) can now be

rewritten in the equivalent form

S(j)f (j) = 0 , (3.2.24)

where the equality is understood in the asymptotic sense, as an asymptotic expan-

sion in inverse powers of η. Recall that the matrix-valued amplitude f (j)(t, x; y, η)

appearing in (3.2.24) is defined by formulae (3.2.12)–(3.2.16).

Substituting (3.2.23) and (3.2.17) into (3.2.24) we obtain a hierarchy of equations

S
(j)
0 f

(j)
1 = 0, (3.2.25)

S
(j)
−1f

(j)
1 + S

(j)
0 f

(j)
0 = 0, (3.2.26)

S
(j)
−2f

(j)
1 + S

(j)
−1f

(j)
0 + S

(j)
0 f

(j)
−1 = 0,

. . .

positively homogeneous in η of degree 1, 0, −1, . . .. These are the transport equa-

tions for the determination of the unknown homogeneous components u
(j)
0 (t; y, η),

u
(j)
−1(t; y, η), u

(j)
−2(t; y, η), . . ., of the symbol of the oscillatory integral (3.2.1).

Let us now examine the initial condition (3.2.11). Each operator U (j)(0) is a

pseudodifferential operator, only written in a slightly nonstandard form. The

issues here are as follows.

• We use the invariantly defined phase function ϕ(j)(0, x; y, η) = (x−y)α ηα+

O(|x−y|2) rather than the linear phase function (x−y)α ηα written in local

coordinates.
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• When defining the (full) symbol of the operator U (j)(t) we excluded the

variable x from the amplitude rather than the variable y. Note that when

dealing with pseudodifferential operators it is customary to exclude the vari-

able y from the amplitude; exclusion of the variable x gives the dual symbol

of a pseudodifferential operator, see subsection 2.1.3 in [45]. Thus, at t = 0,

our symbol u(j)(0; y, η) resembles the dual symbol of a pseudodifferential

operator rather than the “normal” symbol.

• We have the extra factor dϕ(j)(0, x; y, η) in our representation of the operator

U (j)(0) as an oscillatory integral.

The (full) dual symbol of the pseudodifferential operator U (j)(0) can be calculated

in local coordinates in accordance with the following formula which addresses the

issues highlighted above:

∑
α

(−1)|α|

α!

(
Dα
x ∂

α
η u

(j)(0; y, η) eiω
(j)(x;y,η) dϕ(j)(0, x; y, η)

)∣∣
x=y

, (3.2.27)

where ω(j)(x; y, η) = ϕ(j)(0, x; y, η)− (x− y)β ηβ . Formula (3.2.27) is a version of

the formula from subsection 2.1.3 of [45], only with the extra factor (−1)|α|. The

latter is needed because we are writing down the dual symbol of the pseudodif-

ferential operator U (j)(0) (no dependence on x) rather than its “normal” symbol

(no dependence on y).

The initial condition (3.2.11) can now be rewritten in explicit form as

∑
j

∑
α

(−1)|α|

α!

(
Dα
x ∂

α
η u

(j)(0; y, η) eiω
(j)(x;y,η) dϕ(j)(0, x; y, η)

)∣∣
x=y

= I , (3.2.28)

where I is the m × m identity matrix. Condition (3.2.28) can be decomposed

into components positively homogeneous in η of degree 0,−1,−2, . . ., giving us

a hierarchy of initial conditions. The leading (of degree of homogeneity 0) initial

condition reads ∑
j

u
(j)
0 (0; y, η) = I , (3.2.29)
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whereas lower order initial conditions are more complicated and depend on the

choice of our phase functions ϕ(j).

3.3 Leading transport equations

Formulae (3.2.21), (3.2.18), (3.2.2), (3.1.11) and the identity ξαh
(j)
ξα

(x, ξ) = h(j)(x, ξ)

(consequence of the fact that h(j)(x, ξ) is positively homogeneous in ξ of degree 1)

give us the following explicit representation for the leading transport equation

(3.2.25):

[
A1

(
x(j)(t; y, η), ξ(j)(t; y, η)

)
− h(j)

(
x(j)(t; y, η), ξ(j)(t; y, η)

)]
u

(j)
0 (t; y, η) = 0.

(3.3.1)

Here, of course, h(j)
(
x(j)(t; y, η), ξ(j)(t; y, η)

)
= h(j)(y, η).

Equation (3.3.1) implies that

u
(j)
0 (t; y, η) = v(j)(x(j)(t; y, η), ξ(j)(t; y, η)) [w(j)(t; y, η)]T , (3.3.2)

where v(j)(z, ζ) is the normalised eigenvector of the principal symbol A1(z, ζ)

corresponding to the eigenvalue h(j)(z, ζ) and w(j) : R×T ′M → Cm is a column-

function, positively homogeneous in η of degree 0, that remains to be found.

Formulae (3.2.29) and (3.3.2) imply the following initial condition for the un-

known column-function w(j):

w(j)(0; y, η) = v(j)(y, η). (3.3.3)

We now consider the next transport equation in our hierarchy, equation (3.2.26).

We will write down the two terms appearing in (3.2.26) separately.
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In view of formulae (3.2.18) and (3.2.20)–(3.2.22), the first term in (3.2.26) reads

S
(j)
−1f

(j)
1 =

i

[
(dϕ(j))−1 ∂

∂ηβ
dϕ(j)

(
1− 1

2
ϕ(j)
ηαL

(j)
α

)(
L

(j)
β

(
ϕ

(j)
t + A1(x, ϕ(j)

x )
))
u

(j)
0

]∣∣∣∣
x=x(j)

,

(3.3.4)

where we dropped, for the sake of brevity, the arguments (t; y, η) in u
(j)
0 and

x(j), and the arguments (t, x; y, η) in ϕ
(j)
t , ϕ

(j)
x , ϕ

(j)
η and dϕ(j) . Recall that the

differential operators L
(j)
α are defined in accordance with formula (3.2.19) and the

coefficients of these operators depend on (t, x; y, η).

In view of formulae (3.2.12)–(3.2.17) and (3.2.21), the second term in (3.2.26)

reads

S
(j)
0 f

(j)
0 = Dtu

(j)
0

+

[
(dϕ(j))−1 (Dt + (A1)ξαDxα) dϕ(j) + A0 −

i

2
(A1)ξαξβC

(j)
αβ

]∣∣∣∣
x=x(j)

u
(j)
0

+
[
A1 − h(j)

]
u

(j)
−1 , (3.3.5)

where

C
(j)
αβ := ϕ

(j)

xαxβ

∣∣∣
x=x(j)

(3.3.6)

is the matrix-function from (3.2.5). In formulae (3.3.5) and (3.3.6) we dropped,

for the sake of brevity, the arguments (t; y, η) in u
(j)
0 , u

(j)
−1, C

(j)
αβ and x(j), the

arguments (x(j)(t; y, η), ξ(j)(t; y, η)) in A0, A1, (A1)ξα , (A1)ξαξβ and h(j), and the

arguments (t, x; y, η) in dϕ(j) and ϕ
(j)

xαxβ
.

Looking at (3.3.4) and (3.3.5) we see that the transport equation (3.2.26) has

a complicated structure. Hence, in this section we choose not to perform the

analysis of the full equation (3.2.26) and analyse only one particular subequa-

tion of this equation. Namely, observe that equation (3.2.26) is equivalent to m

subequations [
v(j)
]∗ [

S
(j)
−1f

(j)
1 + S

(j)
0 f

(j)
0

]
= 0, (3.3.7)
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[
v(l)
]∗ [

S
(j)
−1f

(j)
1 + S

(j)
0 f

(j)
0

]
= 0, l 6= j, (3.3.8)

where we dropped, for the sake of brevity, the arguments (x(j)(t; y, η), ξ(j)(t; y, η))

in
[
v(j)
]∗

and
[
v(l)
]∗

. In the remainder of this section we analyse (sub)equation

(3.3.7) only.

Equation (3.3.7) is simpler than each of the m − 1 equations (3.3.8) for the

following two reasons.

• Firstly, the term
[
A1 − h(j)

]
u

(j)
−1 from (3.3.5) vanishes after multiplication

by
[
v(j)
]∗

from the left. Hence, equation (3.3.7) does not contain u
(j)
−1.

• Secondly, if we substitute (3.3.2) into (3.3.7), then the term with

∂[dϕ(j)w(j)(t; y, η)]T/∂ηβ

vanishes. This follows from the fact that the scalar function

[
v(j)
]∗(
ϕ

(j)
t + A1(x, ϕ(j)

x )
)
v(j)

has a second order zero, in the variable x, at x = x(j)(t; y, η). Indeed, we

have

[
∂

∂xα
[
v(j)
]∗(
ϕ

(j)
t + A1(x, ϕ(j)

x )
)
v(j)

]∣∣∣∣
x=x(j)

=
[
v(j)
]∗ [(

ϕ
(j)
t + A1(x, ϕ(j)

x )
)
xα

]∣∣∣
x=x(j)

v(j)

=
[
v(j)
]∗(−h(j)

xα − C
(j)
αβh

(j)
ξβ

+ (A1)xα + C
(j)
αβ (A1)ξβ

)
v(j)

=
[
v(j)
]∗

(A1)xαv
(j) − h(j)

xα + C
(j)
αβ

([
v(j)
]∗

(A1)ξβv
(j) − h(j)

ξβ

)
= 0 ,

where in the last two lines we dropped, for the sake of brevity, the ar-

guments (x(j)(t; y, η), ξ(j)(t; y, η)) in (A1)xα , (A1)ξβ , h
(j)
xα , h

(j)
ξβ

, and the argu-

ment (t; y, η) in C
(j)
αβ (the latter is the matrix-function from formulae (3.2.5)

and (3.3.6)). Throughout the above argument we used the fact that our[
v(j)
]∗

and v(j) do not depend on x: their argument is (x(j)(t; y, η), ξ(j)(t; y, η)).
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Substituting (3.3.4), (3.3.5) and (3.3.2) into (3.3.7) we get

(Dt + p(j)(t; y, η)) [w(j)(t; y, η)]T = 0 , (3.3.9)

where

p(j) = i [v(j)]∗
[
∂

∂ηβ

(
1− 1

2
ϕ(j)
ηαL

(j)
α

)(
L

(j)
β

(
ϕ

(j)
t + A1(x, ϕ(j)

x )
))
v(j)

]∣∣∣∣
x=x(j)

− i[v(j)]∗{v(j), h(j)}+
[
(dϕ(j))−1

(
Dt + h

(j)
ξα
Dxα

)
dϕ(j)

]∣∣∣
x=x(j)

+ [v(j)]∗
(
A0 −

i

2
(A1)ξαξβC

(j)
αβ

)
v(j). (3.3.10)

Note that the ordinary differential operator in the LHS of formula (3.3.9) is a

scalar one, i.e. it does not mix up the different components of the column-function

w(j)(t; y, η). The solution of the ordinary differential equation (3.3.9) subject to

the initial condition (3.3.3) is

w(j)(t; y, η) = v(j)(y, η) exp

(
−i
∫ t

0

p(j)(τ ; y, η) dτ

)
. (3.3.11)

Comparing formulae (3.3.2), (3.3.11) with formula (3.1.10) we see that in order

to prove the latter we need only to establish the scalar identity

p(j)(t; y, η) = q(j)(x(j)(t; y, η), ξ(j)(t; y, η)) , (3.3.12)

where q(j) is the function (3.1.12). In view of the definitions of the quantities p(j)

and q(j), see formulae (3.3.10) and (3.1.12), and the definition of the subprincipal

symbol (3.1.13), proving the identity (3.3.12) reduces to proving the identity

{[v(j)]∗, A1 − h(j), v(j)}(x(j), ξ(j)) =

−2 [v(j)(x(j), ξ(j))]∗
[
∂

∂ηβ

(
1− 1

2
ϕ(j)
ηαL

(j)
α

)(
L

(j)
β

(
ϕ

(j)
t + A1(x, ϕ(j)

x )
))
v(j)(x(j), ξ(j))

]∣∣∣∣
x=x(j)

+ 2
[
(dϕ(j))−1

(
∂t + h

(j)
ξα
∂xα
)
dϕ(j)

]∣∣∣
x=x(j)

+ [v(j)(x(j), ξ(j))]∗
(

(A1)xαξα + (A1)ξαξβC
(j)
αβ

)
v(j)(x(j), ξ(j)). (3.3.13)
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Note that the expressions in the LHS and RHS of (3.3.13) have different structure.

The LHS of (3.3.13) is the generalised Poisson bracket {[v(j)]∗, A1 − h(j), v(j)},

see (3.1.15), evaluated at z = x(j)(t; y, η), ζ = ξ(j)(t; y, η), whereas the RHS of

(3.3.13) involves partial derivatives (in η) of v(j)(x(j)(t; y, η), ξ(j)(t; y, η)) (Chain

Rule). In writing (3.3.13) we also dropped, for the sake of brevity, the arguments

(t, x; y, η) in ϕ
(j)
t , ϕ

(j)
x , ϕ

(j)
η , dϕ(j) and the coefficients of the differential operators

L
(j)
α and L

(j)
β , the arguments (x(j), ξ(j)) in h

(j)
ξα

, (A1)xαξα and (A1)ξαξβ , and the

arguments (t; y, η) in x(j), ξ(j) and C
(j)
αβ .

Before performing the calculations that will establish the identity (3.3.13) we

make several observations that will allow us to simplify these calculations con-

siderably.

Firstly, our function p(j)(t; y, η) does not depend on the choice of the phase func-

tion ϕ(j)(t, x; y, η). Indeed, if p(j)(t; y, η) did depend on the choice of phase func-

tion, then, in view of formulae (3.3.2) and (3.3.11) the principal symbol of our

oscillatory integral U (j)(t) would depend on the choice of phase function, which

would contradict Theorem 2.7.11 from [45]. Here we use the fact that operators

U (j)(t) with different j cannot compensate each other to give an integral operator

whose integral kernel is infinitely smooth in t, x and y because all our U (j)(t) oscil-

late in t in a different way: ϕ
(j)
t (t, x(j)(t; y, η); y, η) = −h(j)(y, η) and we assumed

the eigenvalues h(j)(y, η) of our principal symbol A1(y, η) to be simple.

Secondly, the arguments (free variables) in (3.3.13) are (t; y, η). We fix an ar-

bitrary point (t̃; ỹ, η̃) ∈ R × T ′M and prove formula (3.3.13) at this point. Put

(ξ
(j)
η )α

β := ∂(ξ(j))α/∂ηβ. According to Lemma 2.3.2 from [45] there exists a local

coordinate system x such that det(ξ
(j)
η )α

β 6= 0. This opens the way to the use of

the linear phase function

ϕ(j)(t, x; y, η) = (x− x(j)(t; y, η))α ξ(j)
α (t; y, η) (3.3.14)
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which will simplify calculations to a great extent. Moreover, we can choose a

local coordinate system y such that

(ξ(j)
η )α

β(t̃; ỹ, η̃) = δα
β (3.3.15)

which will simplify calculations even further.

The calculations we are about to perform will make use of the symmetry

(x(j)
η )γα(ξ(j)

η )γ
β = (x(j)

η )γβ(ξ(j)
η )γ

α (3.3.16)

which is an immediate consequence of formula (3.2.8). Formula (3.3.16) appears

as formula (2.3.3) in [45] and the accompanying text explains its geometric mean-

ing. Note that at the point (t̃; ỹ, η̃) formula (3.3.16) takes the especially simple

form

(x(j)
η )αβ(t̃; ỹ, η̃) = (x(j)

η )βα(t̃; ỹ, η̃). (3.3.17)

Our calculations will also involve the quantity ϕ
(j)
ηαηβ(t̃, x̃; ỹ, η̃) where x̃ := x(j)(t̃; ỹ, η̃).

Formulae (3.3.14), (3.2.8), (3.3.15) and (3.3.17) imply

ϕ(j)
ηαηβ

(t̃, x̃; ỹ, η̃) = −(x(j)
η )αβ(t̃; ỹ, η̃). (3.3.18)

Further on we denote ξ̃ := ξ(j)(t̃; ỹ, η̃).
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With account of all the simplifications listed above, we can rewrite formula

(3.3.13), which is the identity that we are proving, as

{[v(j)]∗, A1 − h(j), v(j)}(x̃, ξ̃) =

− 2[ṽ(j)]∗
[ ∂2

∂xα∂ηα

(
A1(x, ξ(j))− h(j)(ỹ, η)

− (x− x(j))γh
(j)
xγ (x(j), ξ(j))

)
v(j)(x(j), ξ(j))

]∣∣∣
(x,η)=(x̃,η̃)

− (x̃(j)
η )αβ [ṽ(j)]∗

[ ∂2

∂xα∂xβ
(
A1(x, ξ(j))− h(j)(ỹ, η)

− (x− x(j))γh
(j)
xγ (x(j), ξ(j))

)
v(j)(x(j), ξ(j))

]∣∣∣
(x,η)=(x̃,η̃)

+ [ṽ(j)]∗(Ã1)xαξα ṽ
(j) − h̃(j)

xαξα
− h̃(j)

xαxβ
(x̃(j)

η )αβ , (3.3.19)

where ṽ(j) = v(j)(x̃, ξ̃), x̃
(j)
η = x

(j)
η (t̃; ỹ, η̃), (Ã1)xαξα = (A1)xαξα(x̃, ξ̃), h̃

(j)
xαξα

=

h
(j)
xαξα

(x̃, ξ̃), h̃
(j)

xαxβ
= h

(j)

xαxβ
(x̃, ξ̃), x(j) = x(j)(t̃; ỹ, η) and ξ(j) = ξ(j)(t̃; ỹ, η).

Note that the last two terms in the RHS of (3.3.19) originate from the term with

dϕ(j) in (3.3.13): we used the fact that dϕ(j) does not depend on x and that

[
(dϕ(j))−1∂tdϕ(j)

]∣∣
(t,x;y,η)=(t̃,x̃;ỹ,η̃)

= −1

2

(
h̃

(j)
xαξα

+ h̃
(j)

xαxβ
(x̃(j)

η )αβ
)
. (3.3.20)

Formula (3.3.20) is a special case of formula (3.3.21) from [45].

Note also that the term −h(j)(ỹ, η) appearing (twice) in the RHS of (3.3.19) will

vanish after being acted upon with the differential operators ∂2

∂xα∂ηα
and ∂2

∂xα∂xβ

because it does not depend on x.

We have

[ṽ(j)]∗
[

∂2

∂xα∂ηα

(
A1(x, ξ(j))− (x− x(j))γh

(j)
xγ (x(j), ξ(j))

)
v(j)(x(j), ξ(j))

]∣∣∣∣
(x,η)=(x̃,η̃)

= [ṽ(j)]∗(Ã1)xαξα ṽ
(j) − h̃(j)

xαξα
− h̃(j)

xαxβ
(x̃(j)

η )αβ

+ [ṽ(j)]∗
(
(Ã1)xα − h̃(j)

xα

)(
ṽ

(j)
ξα

+ ṽ
(j)

xβ
(x̃(j)

η )αβ
)
, (3.3.21)
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[ṽ(j)]∗
[

∂2

∂xα∂xβ
(
A1(x, ξ(j))− (x− x(j))γh

(j)
xγ (x(j), ξ(j))

)
v(j)(x(j), ξ(j))

]∣∣∣∣
(x,η)=(x̃,η̃)

= [ṽ(j)]∗(Ã1)xαxβ ṽ
(j) , (3.3.22)

where (Ã1)xα = (A1)xα(x̃, ξ̃), h̃
(j)
xα = h

(j)
xα (x̃, ξ̃), ṽ

(j)
ξα

= v
(j)
ξα

(x̃, ξ̃) and ṽ
(j)

xβ
= v

(j)

xβ
(x̃, ξ̃).

We also have

[ṽ(j)]∗
(
(Ã1)xα − h̃(j)

xα

)
ṽ

(j)

xβ
+ [ṽ(j)]∗

(
(Ã1)xβ − h̃

(j)

xβ

)
ṽ

(j)
xα

= h̃
(j)

xαxβ
− [ṽ(j)]∗(Ã1)xαxβ ṽ

(j). (3.3.23)

Using formulae (3.3.23) and (3.3.17) we can rewrite formula (3.3.21) as

[ṽ(j)]∗
[

∂2

∂xα∂ηα

(
A1(x, ξ(j))− (x− x(j))γh

(j)
xγ (x(j), ξ(j))

)
v(j)(x(j), ξ(j))

]∣∣∣∣
(x,η)=(x̃,η̃)

= [ṽ(j)]∗(Ã1)xαξα ṽ
(j) − h̃(j)

xαξα
+ [ṽ(j)]∗

(
(Ã1)xα − h̃(j)

xα

)
ṽ

(j)
ξα

− 1

2

(
[ṽ(j)]∗(Ã1)xαxβ ṽ

(j) + h̃
(j)

xαxβ

)
(x̃(j)

η )αβ. (3.3.24)

Substituting (3.3.24) and (3.3.22) into (3.3.19) we see that all the terms with

(x̃
(j)
η )αβ cancel out and we get

{[v(j)]∗, A1 − h(j), v(j)}(x̃, ξ̃) =

− [ṽ(j)]∗
(
(Ã1)xαξα − h̃

(j)
xαξα

)
ṽ(j) − 2[ṽ(j)]∗

(
(Ã1)xα − h̃(j)

xα

)
ṽ

(j)
ξα
. (3.3.25)

Thus, the proof of the identity (3.3.13) has been reduced to the proof of the

identity (3.3.25).

Observe now that formula (3.3.25) no longer has Hamiltonian trajectories present

in it. This means that we can drop all the tildes and rewrite (3.3.25) as

{[v(j)]∗, A1 − h(j), v(j)} =

− [v(j)]∗
(
A1 − h(j)

)
xαξα

v(j) − 2[v(j)]∗
(
A1 − h(j)

)
xα
v

(j)
ξα
, (3.3.26)

where the arguments are (x, ξ). We no longer need to restrict our consideration
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to the particular point (x, ξ) = (x̃, ξ̃): if we prove (3.3.26) for an arbitrary (x, ξ) ∈

T ′M we will prove it for a particular (x̃, ξ̃) ∈ T ′M .

The proof of the identity (3.3.26) is straightforward. We note that

[v(j)]∗(A1 − h(j))xαξαv
(j) =

− [v(j)]∗(A1 − h(j))xαv
(j)
ξα
− [v(j)]∗(A1 − h(j))ξαv

(j)
xα (3.3.27)

and substituting (3.3.27) into (3.3.26) reduce the latter to the form

{[v(j)]∗, A1 − h(j), v(j)} =

[v(j)]∗
(
A1 − h(j)

)
ξα
v

(j)
xα − [v(j)]∗

(
A1 − h(j)

)
xα
v

(j)
ξα
. (3.3.28)

But

[v(j)]∗
(
A1 − h(j)

)
xα

= −[v
(j)
xα ]∗

(
A1 − h(j)

)
, (3.3.29)

[v(j)]∗
(
A1 − h(j)

)
ξα

= −[v
(j)
ξα

]∗
(
A1 − h(j)

)
. (3.3.30)

Substituting (3.3.29) and (3.3.30) into (3.3.28) we get

{[v(j)]∗, A1 − h(j), v(j)} = [v
(j)
xα ]∗

(
A1 − h(j)

)
v

(j)
ξα
− [v

(j)
ξα

]∗
(
A1 − h(j)

)
v

(j)
xα

which agrees with the definition of the generalised Poisson bracket (3.1.15).

3.4 Proof of formula (3.1.18)

In this section we prove formula (3.1.18). Our approach is as follows.

We write down explicitly the transport equations (3.3.8) at t = 0, i.e.

[
v(l)
]∗ [

S
(j)
−1f

(j)
1 + S

(j)
0 f

(j)
0

]∣∣∣
t=0

= 0, l 6= j. (3.4.1)
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We use the same local coordinates for x and y and we assume all our phase

functions to be linear, i.e. we assume that for each j we have (3.3.14). Using linear

phase functions is justified for small t because we have (ξ
(j)
η )α

β(0; y, η) = δα
β and,

hence, detϕ
(j)
xαηβ

(t, x; y, η) 6= 0 for small t. Writing down equations (3.4.1) for

linear phase functions is much easier than for general phase functions (3.2.2).

Using linear phase functions has the additional advantage that the initial condi-

tion (3.2.28) simplifies and reads now
∑

j u
(j)(0; y, η) = I. In view of (3.1.9), this

implies, in particular, that ∑
j

u
(j)
−1(0) = 0. (3.4.2)

Here and further on in this section we drop, for the sake of brevity, the arguments

(y, η) in u
(j)
−1.

Of course, the formula we are proving, formula (3.1.18), does not depend on our

choice of phase functions. It is just easier to carry out calculations for linear

phase functions.

We will show that (3.4.1) is a system of complex linear algebraic equations for the

unknowns u
(j)
−1(0). The total number of equations (3.4.1) is m2−m. However, for

each j and l the LHS of (3.4.1) is a row of m elements, so (3.4.1) is, effectively,

a system of m(m2 −m) scalar equations.

Equation (3.4.2) is a single matrix equation, so it is, effectively, a system of m2

scalar equations.

Consequently, the system (3.4.1), (3.4.2) is, effectively, a system of m3 scalar

equations. This is exactly the number of unknown scalar elements in the m

matrices u
(j)
−1(0).

In the remainder of this section we write down explicitly the LHS of (3.4.1) and

solve the linear algebraic system (3.4.1), (3.4.2) for the unknowns u
(j)
−1(0). This

will allow us to prove formula (3.1.18).
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Before starting explicit calculations we observe that equations (3.4.1) can be

equivalently rewritten as

P (l)
[
S

(j)
−1f

(j)
1 + S

(j)
0 f

(j)
0

]∣∣∣
t=0

= 0, l 6= j, (3.4.3)

where P (l) := [v(l)(y, η)] [v(l)(y, η)]∗ is the orthogonal projection onto the eigenspace

corresponding to the (normalised) eigenvector v(l)(y, η) of the principal symbol.

We will deal with (3.4.3) rather than with (3.4.1). This is simply a matter of

convenience.

3.4.1 Part 1 of the proof of formula (3.1.18)

Our task in this subsection is to calculate the LHS of (3.4.3). In our calculations

we use the explicit formula (3.1.10) for the principal symbol u
(j)
0 (t; y, η) which

was proved in Section 3.3.

At t = 0 formula (3.3.4) reads

[
S

(j)
−1f

(j)
1

]∣∣∣
t=0

= i

[
∂2

∂xαηα

(
A1(x, η)− h(j)(y, η)− (x− y)γh

(j)
yγ (y, η)

)
P (j)(y, η)

]∣∣∣∣
x=y

which gives us

[
S

(j)
−1f

(j)
1

]∣∣∣
t=0

= i
[
(A1 − h(j))yαηαP

(j) + (A1 − h(j))yαP
(j)
ηα

]
. (3.4.4)

In the latter formula we dropped, for the sake of brevity, the arguments (y, η).

At t = 0 formula (3.3.5) reads

[
S

(j)
0 f

(j)
0

]∣∣∣
t=0

= −i{v(j), h(j)}[v(j)]∗ +

(
A0 − q(j) +

i

2
h

(j)
yαηα

)
P (j)

+ [A1 − h(j)]u
(j)
−1(0) , (3.4.5)
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where q(j) is the function (3.1.12) and we dropped, for the sake of brevity, the

arguments (y, η). Note that in writing down (3.4.5) we used the fact that

[
(dϕ(j))−1∂tdϕ(j)

]∣∣
(t,x;y,η)=(0,y;y,η)

= −1

2
h

(j)
yαηα(y, η) ,

compare with formula (3.3.20).

Substituting formulae (3.4.4) and (3.4.5) into (3.4.3) we get

(h(l) − h(j))P (l)u
(j)
−1(0) + P (l)B

(j)
0 = 0, l 6= j, (3.4.6)

where

B
(j)
0 =

(
A0 − q(j) − i

2
h

(j)
yαηα + i(A1)yαηα

)
P (j) − ih(j)

ηαP
(j)
yα + i(A1)yαP

(j)
ηα . (3.4.7)

The subscript in B
(j)
0 indicates the degree of homogeneity in η.

3.4.2 Part 2 of the proof of formula (3.1.18)

Our task in this subsection is to solve the linear algebraic system (3.4.6), (3.4.2)

for the unknowns u
(j)
−1(0).

It is easy to see that the unique solution to the system (3.4.6), (3.4.2) is

u
(j)
−1(0) =

∑
l 6=j

P (l)B
(j)
0 + P (j)B

(l)
0

h(j) − h(l)
. (3.4.8)

Summation in (3.4.8) is carried out over all l different from j.

3.4.3 Part 3 of the proof of formula (3.1.18)

Our task in this subsection is to calculate [U (j)(0)]sub.
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We have

[U (j)(0)]sub = u
(j)
−1(0)− i

2
P

(j)
yαηα . (3.4.9)

Here the sign in front of i
2

is opposite to that in (3.1.13) because the way we

write U (j)(0) is using the dual symbol.

Substituting (3.4.8) and (3.4.7) into (3.4.9) we get

[U (j)(0)]sub = − i
2
P

(j)
yαηα +

∑
l 6=j

1

h(j) − h(l)

×
(
P (l)[(A0 + i(A1)yαηα)P (j) − ih(j)

ηαP
(j)
yα + i(A1)yαP

(j)
ηα ]

+ P (j)[(A0 + i(A1)yαηα)P (l) − ih(l)
ηαP

(l)
yα + i(A1)yαP

(l)
ηα ]
)

=
∑
l 6=j

P (l)AsubP
(j) + P (j)AsubP

(l)

h(j) − h(l)
+
i

2

(
−P (j)

yαηα +
∑
l 6=j

Gjl

h(j) − h(l)

)
, (3.4.10)

where

Gjl := P (l)[(A1)yαηαP
(j) − 2h(j)

ηαP
(j)
yα + 2(A1)yαP

(j)
ηα ]

+ P (j)[(A1)yαηαP
(l) − 2h(l)

ηαP
(l)
yα + 2(A1)yαP

(l)
ηα ] .

We have

Gjl = 2P (l){A1, P
(j)}+ 2P (j){A1, P

(l)}

+ P (l)[(A1 − h(j))yαηαP
(j) + 2(A1 − h(j))ηαP

(j)
yα ]

+ P (j)[(A1 − h(l))yαηαP
(l) + 2(A1 − h(l))ηαP

(l)
yα ]

= 2P (l){A1, P
(j)}+ 2P (j){A1, P

(l)} − P (l){A1 − h(j), P (j)} − P (j){A1 − h(l), P (l)}

+ P (l)[(A1 − h(j))yαηαP
(j) + (A1 − h(j))ηαP

(j)
yα + (A1 − h(j))yαP

(j)
ηα ]

+ P (j)[(A1 − h(l))yαηαP
(l) + (A1 − h(l))ηαP

(l)
yα + (A1 − h(l))yαP

(l)
ηα ]

= P (l){A1 + h(j), P (j)}+ P (j){A1 + h(l), P (l)}

− P (l)(A1 − h(j))P
(j)
yαηα − P

(j)(A1 − h(l))P
(l)
yαηα

= P (l){A1 + h(j), P (j)}+ P (j){A1 + h(l), P (l)}

− P (l)(h(l) − h(j))P
(j)
yαηα − P

(j)(h(j) − h(l))P
(l)
yαηα
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= P (l){A1+h(j), P (j)}+P (j){A1+h(l), P (l)}+(h(j)−h(l))(P (l)P
(j)
yαηα−P

(j)P
(l)
yαηα) ,

so formula (3.4.10) can be rewritten as

[U (j)(0)]sub =
i

2

(
−P (j)

yαηα +
∑
l 6=j

(P (l)P
(j)
yαηα − P

(j)P
(l)
yαηα)

)
+

1

2

∑
l 6=j

P (l)(2AsubP
(j) + i{A1 + h(j), P (j)}) + P (j)(2AsubP

(l) + i{A1 + h(l), P (l)})
h(j) − h(l)

.

(3.4.11)

But

∑
l 6=j

(P (l)P
(j)
yαηα − P

(j)P
(l)
yαηα) =

(∑
l 6=j

P (l)
)
P

(j)
yαηα − P

(j)
(∑

l 6=j

P (l)
)
yαηα

= (I − P (j))P
(j)
yαηα − P

(j)(I − P (j))yαηα = P
(j)
yαηα ,

so formula (3.4.11) can be simplified to read

[U (j)(0)]sub

=
1

2

∑
l 6=j

P (l)(2AsubP
(j) + i{A1 + h(j), P (j)}) + P (j)(2AsubP

(l) + i{A1 + h(l), P (l)})
h(j) − h(l)

.

(3.4.12)

3.4.4 Part 4 of the proof of formula (3.1.18)

Our task in this subsection is to calculate tr[U (j)(0)]sub.

Formula (3.4.12) implies

tr[U (j)(0)]sub =
i

2
tr
∑
l 6=j

P (l){A1, P
(j)}+ P (j){A1, P

(l)}
h(j) − h(l)

. (3.4.13)

Put A1 =
∑

k h
(k)P (k) and observe that

• terms with the derivatives of h vanish and
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• the only k which may give nonzero contributions are k = j and k = l.

Thus, formula (3.4.13) becomes

tr[U (j)(0)]sub =
i

2
tr
∑
l 6=j

1

h(j) − h(l)

×
(
h(j)[P (l){P (j), P (j)}+P (j){P (j), P (l)}]+h(l)[P (l){P (l), P (j)}+P (j){P (l), P (l)}]

)
.

(3.4.14)

We claim that

tr(P (l){P (j), P (j)}) = tr(P (j){P (j), P (l)})

= − tr(P (l){P (l), P (j)}) = − tr(P (j){P (l), P (l)})

= [v(l)]∗{v(j), [v(j)]∗}v(l)

= ([v(l)]∗v
(j)
yα )([v(j)

ηα ]∗v(l))− ([v(l)]∗v(j)
ηα )([v

(j)
yα ]∗v(l)). (3.4.15)

These facts are established by writing the orthogonal projections in terms of the

eigenvectors and using, if required, the identities

[v
(l)
yα ]∗v(j) + [v(l)]∗v

(j)
yα = 0, [v(l)

ηα ]∗v(j) + [v(l)]∗v(j)
ηα = 0,

[v
(j)
yα ]∗v(l) + [v(j)]∗v

(l)
yα = 0, [v(j)

ηα ]∗v(l) + [v(j)]∗v(l)
ηα = 0.

In view of the identities (3.4.15) formula (3.4.14) can be rewritten as

tr[U (j)(0)]sub = i tr
∑
l 6=j

P (l){P (j), P (j)}

= i tr({P (j), P (j)} − P (j){P (j), P (j)}) = −i tr(P (j){P (j), P (j)}). (3.4.16)
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It remains only to simplify the expression in the RHS of (3.4.16). We have

tr(P (j){P (j), P (j)}) = {[v(j)]∗, v(j)}

+ [([v(j)]∗v
(j)
yα )([v(j)]∗v(j)

ηα )− ([v(j)]∗v(j)
ηα )([v(j)]∗v

(j)
yα )]

+ [([v
(j)
yα ]∗v(j))([v(j)

ηα ]∗v(j))− ([v(j)
ηα ]∗v(j))([v

(j)
yα ]∗v(j))]

+ [([v(j)]∗v
(j)
yα )([v(j)

ηα ]∗v(j))− ([v(j)]∗v(j)
ηα )([v

(j)
yα ]∗v(j))]

= {[v(j)]∗, v(j)}+ [([v(j)]∗v
(j)
yα )([v(j)

ηα ]∗v(j))− ([v(j)]∗v(j)
ηα )([v

(j)
yα ]∗v(j))]

= {[v(j)]∗, v(j)} − [([v(j)]∗v
(j)
yα )([v(j)]∗v(j)

ηα )− ([v(j)]∗v(j)
ηα )([v(j)]∗v

(j)
yα )]

= {[v(j)]∗, v(j)}. (3.4.17)

Formulae (3.4.16) and (3.4.17) imply formula (3.1.18).

3.5 U(1) connection

In the preceding Sections 3.2–3.4 we presented technical details of the construc-

tion of the propagator. We saw that the eigenvectors of the principal symbol,

v(j)(x, ξ), play a major role in this construction. As pointed out in Section 3.1,

each of these eigenvectors is defined up to a U(1) gauge transformation (3.1.16),

(3.1.17). In the end, the full symbols (3.1.9) of our oscillatory integrals U (j)(t)

do not depend on the choice of gauge for the eigenvectors v(j)(x, ξ). However,

the effect of the gauge transformation (3.1.16), (3.1.17) is not as trivial as it may

appear at first sight. We will show in this section that the gauge transformation

(3.1.16), (3.1.17) show up, in the form of invariantly defined curvature, in the

lower order terms u
(j)
−1(t; y, η) of the symbols of our oscillatory integrals U (j)(t).

More precisely, we will show that the RHS of formula (3.1.18) is the scalar curva-

ture of a connection associated with the gauge transformation (3.1.16), (3.1.17).

Further on in this section, until the very last paragraph, the index j enumerating

eigenvalues and eigenvectors of the principal symbol is assumed to be fixed.
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Consider a smooth curve Γ ⊂ T ′M connecting points (y, η) and (x, ξ). We write

this curve in parametric form as (z(t), ζ(t)), t ∈ [0, 1], so that (z(0), ζ(0)) = (y, η)

and (z(1), ζ(1)) = (x, ξ). Put

w(t) := eiφ(t)v(j)(z(t), ζ(t)) , (3.5.1)

where φ : [0, 1]→ R is an unknown function which is to be determined from the

condition

iw∗ẇ = 0 (3.5.2)

with the dot indicating the derivative with respect to the parameter t. Substi-

tuting (3.5.1) into (3.5.2) we get an ordinary differential equation for φ which is

easily solved, giving

φ(1) = φ(0) +

∫ 1

0

(żα(t)Pα(z(t), ζ(t)) + ζ̇γ(t)Q
γ(z(t), ζ(t))) dt

= φ(0) +

∫
Γ

(Pαdz
α +Qγdζγ) , (3.5.3)

where

Pα := i[v(j)]∗v
(j)
zα , Qγ := i[v(j)]∗v

(j)
ζγ
. (3.5.4)

Note that the 2n-component real quantity (Pα, Q
γ) is a covector field (1-form)

on T ′M . This quantity already appeared in Section 3.1 as formula (3.1.19).

Put f(y, η) := eiφ(0), f(x, ξ) := eiφ(1) and rewrite formula (3.5.3) as

f(x, ξ) = f(y, η) ei
∫
Γ(Pαdzα+Qγdζγ). (3.5.5)

Let us identify the group U(1) with the unit circle in the complex plane, i.e.

with f ∈ C, |f | = 1. We see that formulae (3.5.5) and (3.5.4) give us a rule for

the parallel transport of elements of the group U(1) along curves in T ′M . This

is the natural U(1) connection generated by the normalised field of columns of
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complex-valued scalars

v(j)(z, ζ) =
(
v

(j)
1 (z, ζ) . . . v

(j)
m (z, ζ)

)T
. (3.5.6)

Recall that the Γ appearing in formula (3.5.5) is a curve connecting points (y, η)

and (x, ξ), whereas the v(j)(z, ζ) appearing in formulae (3.5.4) and (3.5.6) enters

our construction as an eigenvector of the principal symbol of our m×m matrix

pseudodifferential operator A.

In practice, dealing with a connection is not as convenient as dealing with the

covariant derivative ∇. The covariant derivative corresponding to the connection

(3.5.5) is determined as follows. Let us view the (x, ξ) appearing in formula

(3.5.5) as a variable which takes values close to (y, η), and suppose that the curve

Γ is a short straight (in local coordinates) line segment connecting the point (y, η)

with the point (x, ξ). We want the covariant derivative of our function f(x, ξ),

evaluated at (y, η), to be zero. Examination of formula (3.5.5) shows that the

unique covariant derivative satisfying this condition is

∇α := ∂/∂xα − iPα(x, ξ), ∇γ := ∂/∂ξγ − iQγ(x, ξ). (3.5.7)

We define the curvature of our U(1) connection as

R := −i

∇α∇β −∇β∇α ∇α∇δ −∇δ∇α

∇γ∇β −∇β∇γ ∇γ∇δ −∇δ∇γ

 . (3.5.8)

It may seem that the entries of the (2n) × (2n) matrix (3.5.8) are differential

operators. They are, in fact, operators of multiplication by “scalar functions”.

Namely, the more explicit form of (3.5.8) is

R =

 ∂Pα
∂xβ
− ∂Pβ

∂xα
∂Pα
∂ξδ
− ∂Qδ

∂xα

∂Qγ

∂xβ
− ∂Pβ

∂ξγ

∂Qγ

∂ξδ
− ∂Qδ

∂ξγ

 . (3.5.9)

The (2n)× (2n) - component real quantity (3.5.9) is a rank 2 covariant antisym-

metric tensor (2-form) on T ′M . It is an analogue of the electromagnetic tensor.
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Substituting (3.5.4) into (3.5.9) we get an expression for curvature in terms of

the eigenvector of the principal symbol

R = i

[v
(j)

xβ
]∗v

(j)
xα − [v

(j)
xα ]∗v

(j)

xβ
[v

(j)
ξδ

]∗v
(j)
xα − [v

(j)
xα ]∗v

(j)
ξδ

[v
(j)

xβ
]∗v

(j)
ξγ
− [v

(j)
ξγ

]∗v
(j)

xβ
[v

(j)
ξδ

]∗v
(j)
ξγ
− [v

(j)
ξγ

]∗v
(j)
ξδ

 . (3.5.10)

Examination of formula (3.5.10) shows that, as expected, curvature is invariant

under the gauge transformation (3.1.16), (3.1.17).

It is natural to take the trace of the upper right block in (3.5.8) which, in the

notation (3.1.14), gives us

− i(∇α∇α −∇α∇α) = −i{[v(j)]∗, v(j)}. (3.5.11)

Thus, we have shown that the RHS of formula (3.1.18) is the scalar curvature of

our U(1) connection.

We end this section by proving, as promised in Section 3.1, formula (3.1.20)

without referring to microlocal analysis. In the following arguments we use our

standard notation for the orthogonal projections onto the eigenspaces of the prin-

cipal symbol, i.e. we write P (k) := v(k)[v(k)]∗. We have tr{P (j), P (j)} = 0 and∑
l P

(l) = I which implies

0 =
∑
l,j

tr(P (l){P (j), P (j)})

=
∑
j

tr(P (j){P (j), P (j)}) +
∑
l,j: l 6=j

tr(P (l){P (j), P (j)}). (3.5.12)

But, according to formula (3.4.15), for l 6= j we have

tr(P (l){P (j), P (j)}) = − tr(P (j){P (l), P (l)}),

so formula (3.5.12) can be rewritten as
∑

j tr(P (j){P (j), P (j)}) = 0. It remains

only to note that, according to formula (3.4.17), tr(P (j){P (j), P (j)}) = {[v(j)]∗, v(j)}.
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3.6 Singularity of the propagator at t = 0

Following the notation of [45], we denote by

Fλ→t[f(λ)] = f̂(t) =

∫
e−itλf(λ) dλ

the one-dimensional Fourier transform and by

F−1
t→λ[f̂(t)] = f(λ) = (2π)−1

∫
eitλf̂(t) dt

its inverse.

Suppose that we have a Hamiltonian trajectory (x(j)(t; y, η), ξ(j)(t; y, η)) and a

real number T > 0 such that x(j)(T ; y, η) = y. We will say in this case that we

have a loop of length T originating from the point y ∈M .

Remark 3.6.1. There is no need to consider loops of negative length T because,

given a T > 0, we have x(j)(T ; y, η+) = y for some η+ ∈ T ′yM if and only if we

have x(j)(−T ; y, η−) = y for some η− ∈ T ′yM . Indeed, it suffices to relate the η±

in accordance with η∓ = ξ(j)(±T ; y, η±).

Denote by T (j) ⊂ R the set of lengths T > 0 of all possible loops generated by

the Hamiltonian h(j). Here “all possible” refers to all possible starting points

(y, η) ∈ T ′M of Hamiltonian trajectories. It is easy to see that 0 6∈ T (j). We put

T(j) :=

inf T (j) if T (j) 6= ∅,

+∞ if T (j) = ∅.

In the Riemannian case (i.e. the case when the Hamiltonian is a square root of

a quadratic polynomial in ξ) it is known [41, 39] that there is a loop originating

from every point of the manifold M and, moreover, there is an explicit estimate

from above for the number T(j). We are not aware of similar results for general

Hamiltonians.
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We also define T := min
j=1,...,m+

T(j).

Remark 3.6.2. Note that negative eigenvalues of the principal symbol, i.e. Hamil-

tonians h(j)(x, ξ) with negative index j = −1, . . . ,−m−, do not affect the asymp-

totic formulae we are about to derive. This is because we are dealing with the

case λ→ +∞ rather than λ→ −∞.

Denote by

u(t, x, y) :=
∑
k

e−itλkvk(x)[vk(y)]∗ (3.6.1)

the integral kernel of the propagator (3.1.1). The quantity (3.6.1) can be un-

derstood as a distribution in the variable t ∈ R depending on the parameters

x, y ∈M .

The main result of this section is the following

Lemma 3.6.1. Let ρ̂ : R→ C be an infinitely smooth function such that

supp ρ̂ ⊂ (−T,T), (3.6.2)

ρ̂(0) = 1, (3.6.3)

ρ̂′(0) = 0. (3.6.4)

Then, uniformly over y ∈M , we have

F−1
t→λ[ρ̂(t) tru(t, y, y)] = n a(y)λn−1 + (n− 1) b(y)λn−2 +O(λn−3) (3.6.5)

as λ→ +∞. The densities a(y) and b(y) appearing in the RHS of formula (3.6.5)

are defined in accordance with formulae (3.1.21) and (3.1.22).

Proof Denote by (S∗yM)(j) the (n−1)-dimensional unit cosphere in the cotangent

fibre defined by the equation h(j)(y, η) = 1 and denote by d(S∗yM)(j) the surface

area element on (S∗yM)(j) defined by the condition dη = d(S∗yM)(j) dh(j). The

latter means that we use spherical coordinates in the cotangent fibre with the

Hamiltonian h(j) playing the role of the radial coordinate, see subsection 1.1.10 of
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[45] for details. In particular, as explained in subsection 1.1.10 of [45], our surface

area element d(S∗yM)(j) is expressed via the Euclidean surface area element as

d(S∗yM)(j) =

( n∑
α=1

(
h(j)
ηα (y, η)

)2
)−1/2

× Euclidean surface area element .

Denote also d̄(S∗yM)(j) := (2π)−n d(S∗yM)(j) .

According to Corollary 4.1.5 from [45] we have uniformly over y ∈M

F−1
t→λ[ρ̂(t) tru(t, y, y)] =

m+∑
j=1

(
c(j)(y)λn−1 + d(j)(y)λn−2 + e(j)(y)λn−2

)
+O(λn−3) , (3.6.6)

where

c(j)(y) =

∫
(S∗yM)(j)

tru
(j)
0 (0; y, η) d̄(S∗yM)(j) , (3.6.7)

d(j)(y) =

(n− 1)

∫
(S∗yM)(j)

tr

(
− i u̇(j)

0 (0; y, η) +
i

2

{
u

(j)
0

∣∣
t=0

, h(j)
}

(y, η)

)
d̄(S∗yM)(j) , (3.6.8)

e(j)(y) =

∫
(S∗yM)(j)

tr[U (j)(0)]sub(y, η) d̄(S∗yM)(j) . (3.6.9)

Here u
(j)
0 (t; y, η) is the principal symbol of the oscillatory integral (3.2.1) and

u̇
(j)
0 (t; y, η) is its time derivative. Note that in writing the term with the Poisson

bracket in (3.6.8) we took account of the fact that Poisson brackets in [45] and

in the thesis have opposite signs.

Observe that the integrands in formulae (3.6.7) and (3.6.8) are positively homo-

geneous in η of degree 0, whereas the integrand in formula (3.6.9) is positively

homogeneous in η of degree −1. In order to have the same degree of homogeneity,
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we rewrite formula (3.6.9) in equivalent form

e(j)(y) =

∫
(S∗yM)(j)

(
h(j) tr[U (j)(0)]sub

)
(y, η) d̄(S∗yM)(j) . (3.6.10)

Switching from surface integrals to volume integrals with the help of formula

(1.1.15) from [45], we rewrite formulae (3.6.7), (3.6.8) and (3.6.10) as

c(j)(y) = n

∫
h(j)(y,η)<1

tru
(j)
0 (0; y, η) d̄η , (3.6.11)

d(j)(y) = n(n− 1)×∫
h(j)(y,η)<1

tr

(
− i u̇(j)

0 (0; y, η) +
i

2

{
u

(j)
0

∣∣
t=0

, h(j)
}

(y, η)

)
d̄η , (3.6.12)

e(j)(y) = n

∫
h(j)(y,η)<1

(
h(j) tr[U (j)(0)]sub

)
(y, η) d̄η . (3.6.13)

Substituting formulae (3.1.10) and (3.1.12) into formulae (3.6.11) and (3.6.12) we

get

c(j)(y) = n

∫
h(j)(y,η)<1

d̄η , (3.6.14)

d(j)(y) = −n(n− 1)×∫
h(j)(y,η)<1

(
[v(j)]∗Asubv

(j) − i

2
{[v(j)]∗, A1 − h(j), v(j)}

)
(y, η) d̄η . (3.6.15)

Substituting formula (3.1.18) into formula (3.6.13) we get

e(j)(y) = −n i
∫

h(j)(y,η)<1

(
h(j){[v(j)]∗, v(j)}

)
(y, η) d̄η . (3.6.16)

Substituting formulae (3.6.14)–(3.6.16) into formula (3.6.6) we arrive at (3.6.5). �

Remark 3.6.3. The proof of Lemma 3.6.1 given above was based on the use



Microlocal analysis of the massless Dirac operator 92

of Corollary 4.1.5 from [45]. In the actual statement of Corollary 4.1.5 in [45]

uniformity in y ∈ M was not mentioned because the authors were dealing with

a manifold with a boundary. Uniformity reappeared in the subsequent Theorem

4.2.1 which involved pseudodifferential cut-offs separating the point y from the

boundary.

3.7 Mollified spectral asymptotics

Our spectral function e(λ, x, x) was initially defined only for λ > 0, see formula

(1.3.2). We extend the definition to the whole real line by setting

e(λ, x, x) := 0 for λ ≤ 0.

Theorem 3.7.1. Let ρ : R → C be a function from Schwartz space S(R) whose

Fourier transform ρ̂ satisfies conditions (3.6.2)–(3.6.4). Then, uniformly over

x ∈M , we have

∫
e(λ−µ, x, x) ρ(µ) dµ = a(x)λn+b(x)λn−1+

O(λn−2) if n ≥ 3,

O(lnλ) if n = 2,

(3.7.1)

as λ→ +∞. The densities a(x) and b(x) appearing in the RHS of formula (3.7.1)

are defined in accordance with formulae (3.1.21) and (3.1.22).

Proof Denote by e′(λ, x, x) the derivative, with respect to the spectral param-

eter, of the spectral function. Here “derivative” is understood in the sense of

distributions. The explicit formula for e′(λ, x, x) is

e′(λ, x, x) :=
+∞∑
k=1

‖vk(x)‖2 δ(λ− λk). (3.7.2)
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Formula (3.7.2) gives us

∫
e′(λ− µ, x, x) ρ(µ) dµ =

+∞∑
k=1

‖vk(x)‖2 ρ(λ− λk). (3.7.3)

Formula (3.7.3) implies, in particular, that, uniformly over x ∈M , we have

∫
e′(λ− µ, x, x) ρ(µ) dµ = O(|λ|−∞) as λ→ −∞ , (3.7.4)

where O(|λ|−∞) is shorthand for “tends to zero faster than any given inverse

power of |λ|”.

Formula (3.7.3) can also be rewritten as

∫
e′(λ− µ, x, x) ρ(µ) dµ = F−1

t→λ[ρ̂(t) tru(t, x, x)]−
∑
k≤0

‖vk(x)‖2 ρ(λ− λk) ,

(3.7.5)

where the distribution u(t, x, y) is defined in accordance with formula (3.6.1).

Clearly, we have

∑
k≤0

‖vk(x)‖2 ρ(λ− λk) = O(λ−∞) as λ→ +∞ . (3.7.6)

Formulae (3.7.5), (3.7.6) and Lemma 3.6.1 imply that, uniformly over x ∈M , we

have

∫
e′(λ− µ, x, x) ρ(µ) dµ =

n a(x)λn−1 + (n− 1) b(x)λn−2 +O(λn−3) as λ→ +∞ . (3.7.7)

It remains to note that

d

dλ

∫
e(λ− µ, x, x) ρ(µ) dµ =

∫
e′(λ− µ, x, x) ρ(µ) dµ . (3.7.8)

Formulae (3.7.8), (3.7.4) and (3.7.7) imply (3.7.1). �
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Theorem 3.7.2. Let ρ : R → C be a function from Schwartz space S(R) whose

Fourier transform ρ̂ satisfies conditions (3.6.2)–(3.6.4). Then we have

∫
N(λ− µ) ρ(µ) dµ = a λn + b λn−1 +

O(λn−2) if n ≥ 3,

O(lnλ) if n = 2,

(3.7.9)

as λ→ +∞. The constants a and b appearing in the RHS of formula (3.7.9) are

defined in accordance with formulae (3.1.6), (3.1.21), (3.1.7) and (3.1.22).

Proof Formula (3.7.9) follows from formula (3.7.1) by integration over M , see

also formula (3.1.4). �

In stating Theorems 3.7.1 and 3.7.2 we assumed the mollifier ρ to be complex-

valued. This was done for the sake of generality but may seem unnatural when

mollifying real-valued functions e(λ, x, x) and N(λ). One can make our con-

struction look more natural by dealing only with real-valued mollifiers ρ. Note

that if the function ρ is real-valued and even then its Fourier transform ρ̂ is also

real-valued and even and, moreover, condition (3.6.4) is automatically satisfied.

3.8 Unmollified spectral asymptotics

In this section we derive asymptotic formulae for the spectral function e(λ, x, x)

and the counting function N(λ) without mollification. The section is split into

two subsections: in the first we derive one-term asymptotic formulae and in the

second — two-term asymptotic formulae.

3.8.1 One-term spectral asymptotics

Theorem 3.8.1. We have, uniformly over x ∈M ,

e(λ, x, x) = a(x)λn +O(λn−1) (3.8.1)
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as λ→ +∞.

Proof The result in question is an immediate consequence of formulae (3.7.8),

(3.7.7) and Theorem 3.7.1 from the thesis and Corollary B.2.2 from [45]. �

Theorem 3.8.2. We have

N(λ) = aλn +O(λn−1) (3.8.2)

as λ→ +∞.

Proof Formula (3.8.2) follows from formula (3.8.1) by integration over M , see

also formula (3.1.4). �

3.8.2 Two-term spectral asymptotics

Up till now, in Section 3.7 and subsection 3.8.1, our logic was to derive asymptotic

formulae for the spectral function e(λ, x, x) first and then obtain corresponding

asymptotic formulae for the counting function N(λ) by integration over M . Such

an approach will not work for two-term asymptotics because the geometric con-

ditions required for the existence of two-term asymptotics of e(λ, x, x) and N(λ)

will be different: for e(λ, x, x) the appropriate geometric conditions will be for-

mulated in terms of loops, whereas for N(λ) the appropriate geometric conditions

will be formulated in terms of periodic trajectories.

Hence, in this subsection we deal with the spectral function e(λ, x, x) and the

counting function N(λ) separately.

In what follows the point y ∈M is assumed to be fixed.

Denote by Π
(j)
y the set of normalised (h(j)(y, η) = 1) covectors η which serve as

starting points for loops generated by the Hamiltonian h(j). Here “starting point”

refers to the starting point of a Hamiltonian trajectory (x(j)(t; y, η), ξ(j)(t; y, η))

moving forward in time (t > 0), see also Remark 3.6.1.
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The reason we are not interested in large negative t is that the refined Fourier

Tauberian theorem we will be applying, Theorem B.5.1 from [45], does not require

information regarding large negative t. And the underlying reason for the latter

is the fact that the function we are studying, e(λ, x, x) (and, later, N(λ)), is

real-valued. The real-valuedness of the function e(λ, x, x) implies that its Fourier

transform, ê(t, x, x), possesses the symmetry ê(−t, x, x) = ê(t, x, x).

The set Π
(j)
y is a subset of the (n−1)-dimensional unit cosphere (S∗yM)(j) and the

latter is equipped with a natural Lebesgue measure, see proof of Lemma 3.6.1.

It is known, see Lemma 1.8.2 in [45], that the set Π
(j)
y is measurable.

Definition 3.8.1. A point y ∈M is said to be nonfocal if for each j = 1, . . . ,m+

the set Π
(j)
y has measure zero.

With regards to the range of the index j in Definition 3.8.1, as well as in sub-

sequent Definitions 3.8.2–3.8.4, see Remark 3.6.2.

We call a loop of length T > 0 absolutely focused if the function

|x(j)(T ; y, η)− y|2

has an infinite order zero in the variable η, and we denote by (Πa
y)

(j) the set of

normalised (h(j)(y, η) = 1) covectors η which serve as starting points for abso-

lutely focused loops generated by the Hamiltonian h(j). It is known, see Lemma

1.8.3 in [45], that the set (Πa
y)

(j) is measurable and, moreover, the set Π
(j)
y \(Πa

y)
(j)

has measure zero. This allows us to reformulate Definition 3.8.1 as follows.

Definition 3.8.2. A point y ∈M is said to be nonfocal if for each j = 1, . . . ,m+

the set (Πa
y)

(j) has measure zero.

In practical applications it is easier to work with Definition 3.8.2 because the set

(Πa
y)

(j) is usually much thinner than the set Π
(j)
y .

In order to derive a two-term asymptotic formula for the spectral function e(λ, x, x)

we need the following lemma (compare with Lemma 3.6.1).
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Lemma 3.8.1. Suppose that the point y ∈M is nonfocal. Then for any complex-

valued function γ̂ ∈ C∞0 (R) with supp γ̂ ⊂ (0,+∞) we have

F−1
t→λ[γ̂(t) tru(t, y, y)] = o(λn−1) (3.8.3)

as λ→ +∞.

Proof The result in question is a special case of Theorem 4.4.9 from [45]. �

The following theorem is our main result regarding the spectral function e(λ, x, x).

Theorem 3.8.3. If the point x ∈ M is nonfocal then the spectral function

e(λ, x, x) admits the two-term asymptotic expansion (1.3.3) as λ→ +∞.

Proof The result in question is an immediate consequence of formulae (3.7.7),

Theorem 3.7.1 and Lemma 3.8.1 from this part of the thesis and Theorem B.5.1

from [45]. �

We now deal with the counting function N(λ).

Suppose that we have a Hamiltonian trajectory (x(j)(t; y, η), ξ(j)(t; y, η)) and a real

number T > 0 such that (x(j)(T ; y, η), ξ(j)(T ; y, η)) = (y, η). We will say in this

case that we have a T -periodic trajectory originating from the point (y, η) ∈ T ′M .

Denote by (S∗M)(j) the unit cosphere bundle, i.e. the (2n−1)-dimensional surface

in the cotangent bundle defined by the equation h(j)(y, η) = 1. The unit cosphere

bundle is equipped with a natural Lebesgue measure: the (2n − 1)-dimensional

surface area element on (S∗M)(j) is dy d(S∗yM)(j) where d(S∗yM)(j) is the (n− 1)-

dimensional surface area element on the unit cosphere (S∗yM)(j), see proof of

Lemma 3.6.1.

Denote by Π(j) the set of points in (S∗M)(j) which serve as starting points for

periodic trajectories generated by the Hamiltonian h(j). It is known, see Lemma

1.3.4 in [45], that the set Π(j) is measurable.
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Definition 3.8.3. We say that the nonperiodicity condition is fulfilled if for each

j = 1, . . . ,m+ the set Π(j) has measure zero.

We call a T -periodic trajectory absolutely periodic if the function

|x(j)(T ; y, η)− y|2 + |ξ(j)(T ; y, η)− η|2

has an infinite order zero in the variables (y, η), and we denote by (Πa)(j) the

set of points in (S∗M)(j) which serve as starting points for absolutely periodic

trajectories generated by the Hamiltonian h(j). It is known, see Corollary 1.3.6

in [45], that the set (Πa)(j) is measurable and, moreover, the set Π(j) \ (Πa)(j) has

measure zero. This allows us to reformulate Definition 3.8.3 as follows.

Definition 3.8.4. We say that the nonperiodicity condition is fulfilled if for each

j = 1, . . . ,m+ the set (Πa)(j) has measure zero.

In practical applications it is easier to work with Definition 3.8.4 because the set

(Πa)(j) is usually much thinner than the set Π(j).

In order to derive a two-term asymptotic formula for the counting function N(λ)

we need the following lemma.

Lemma 3.8.2. Suppose that the nonperiodicity condition is fulfilled. Then for

any complex-valued function γ̂ ∈ C∞0 (R) with supp γ̂ ⊂ (0,+∞) we have

∫
M

F−1
t→λ[γ̂(t) tru(t, y, y)] dy = o(λn−1) (3.8.4)

as λ→ +∞.

Proof The result in question is a special case of Theorem 4.4.1 from [45]. �

The following theorem is our main result regarding the counting function N(λ).

Theorem 3.8.4. If the nonperiodicity condition is fulfilled then the counting

function N(λ) admits the two-term asymptotic expansion (3.1.5) as λ→ +∞.
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Proof The result in question is an immediate consequence of formulae (3.1.4),

(3.7.7), Theorem 3.7.1 and Lemma 3.8.2 from this chapter and Theorem B.5.1

from [45]. �

3.9 U(m) invariance of the second asymptotic

coefficient

We prove in this section that the RHS of formula (3.1.22) is invariant under

unitary transformation (3.1.23), (3.1.24) of our operator A. The arguments pre-

sented in this section bear some similarity to those from Section 3.5, the main

difference being that the unitary matrix-function in question is now a function

on the base manifold M rather than on T ′M .

Fix a point x ∈ M and an index j (index enumerating the eigenvalues and

eigenvectors of the principal symbol) and consider the expression

∫
h(j)(x,ξ)<1

(
[v(j)]∗Asubv

(j)

− i

2

{
[v(j)]∗, A1 − h(j), v(j)

}
+

i

n− 1
h(j)
{

[v(j)]∗, v(j)
})

(x, ξ) dξ , (3.9.1)

compare with (3.1.22). We will show that this expression is invariant under the

transformation (3.1.23), (3.1.24).

The transformation (3.1.23), (3.1.24) induces the following transformation of the

principal and subprincipal symbols of the operator A:

A1 7→ RA1R
∗, (3.9.2)

Asub 7→ RAsubR
∗ +

i

2
(Rxα(A1)ξαR

∗ −R(A1)ξαR
∗
xα) . (3.9.3)
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The eigenvalues of the principal symbol remain unchanged, whereas the eigen-

vectors transform as

v(j) 7→ Rv(j). (3.9.4)

Substituting formulae (3.9.2)–(3.9.4) into the RHS of (3.9.1) we conclude that

the increment of the expression (3.9.1) is

∫
h(j)(x,ξ)<1

(
i

2
[v(j)]∗ (R∗Rxα(A1)ξα − (A1)ξαR

∗
xαR) v(j)

− i

2

(
[v(j)]∗R∗xαR(A1 − h(j))v

(j)
ξα
− [v

(j)
ξα

]∗(A1 − h(j))R∗Rxαv
(j)
)

+
i

n− 1
h(j)

(
[v(j)]∗R∗xαRv

(j)
ξα
− [v

(j)
ξα

]∗R∗Rxαv
(j)
))

(x, ξ) dξ ,

which can be rewritten as

− i

2

∫
h(j)(x,ξ)<1

(
h

(j)
ξα

(
[v(j)]∗R∗xαRv

(j) − [v(j)]∗R∗Rxαv
(j)
)

− 2

n− 1
h(j)

(
[v(j)]∗R∗xαRv

(j)
ξα
− [v

(j)
ξα

]∗R∗Rxαv
(j)
))

(x, ξ) dξ .

In view of the identity R∗R = I the above expression can be further simplified,

so that it reads now

i

∫
h(j)(x,ξ)<1

(
h

(j)
ξα

[v(j)]∗R∗Rxαv
(j)

− 1

n− 1
h(j)

(
[v(j)]∗R∗Rxαv

(j)
ξα

+ [v
(j)
ξα

]∗R∗Rxαv
(j)
))

(x, ξ) dξ . (3.9.5)

Denote

Bα(x) := −iR∗Rxα (3.9.6)

and observe that this set of matrices, enumerated by the tensor index α running

through the values 1, . . . , n, is Hermitian. Denote also bα(x, ξ) := [v(j)]∗Bαv
(j)

and observe that these bα are positively homogeneous in ξ of degree 0. Then the
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expression (3.9.5) can be rewritten as

−
∫

h(j)(x,ξ)<1

(
h

(j)
ξα
bα −

1

n− 1
h(j) ∂bα

∂ξα

)
(x, ξ) dξ . (3.9.7)

Lemma 4.1.4 and formula (1.1.15) from [45] tell us that the expression (3.9.7) is

zero.

3.10 Teleparallel connection

In this section we work under the additional assumptions (1.3.4), (1.3.5) and

(1.3.6), i.e. we study a 2 × 2 matrix differential operator in dimension 3 with

trace-free principal symbol. Our aim is to show that in this case the principal

symbol generates additional geometric structures which allow us to reformulate

the results of our spectral analysis in a much clearer geometric language.

Let us show first that the manifold M in this case is parallelizable. The principal

symbol A1(x, ξ) is linear in ξ so it can be written as

A1(x, ξ) = σα(x) ξα , (3.10.1)

where σα(x), α = 1, 2, 3, are some trace-free Hermitian 2 × 2 matrix-functions.

Let us denote the elements of the matrices σα as σαȧb where the dotted index,

running through the values 1̇, 2̇, enumerates the rows and the undotted index,

running through the values 1, 2, enumerates the columns; this notation is taken

from [14]. Put

V1
α(x) := Reσα1̇2(x), V2

α(x) := − Imσα1̇2(x), V3
α(x) := σα1̇1(x). (3.10.2)

Formula (3.10.2) defines a triple of smooth real vector fields Vj(x), j = 1, 2, 3, on

the manifold M . These vector fields are linearly independent at every point x

of the manifold: this follows from the fact that detA1(x, ξ) 6= 0, ∀(x, ξ) ∈ T ′M
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(ellipticity). Thus, the triple of vector fields Vj is a frame. The existence of a

frame means that the manifold M is parallelizable.

Conversely, given a frame Vj we uniquely recover the elliptic principal symbol

A1(x, ξ) via formulae (3.10.1), (3.A.1) and (3.A.2). Thus, a principal symbol is

equivalent to a frame.

It is easy to see that the frame elements Vj are orthonormal with respect to the

metric (3.1.28). Moreover, the metric can be defined directly from the frame as

gαβ = Vj
α Vj

β , (3.10.3)

where the repeated frame index j indicates summation over j = 1, 2, 3. The two

definitions of the metric, (3.1.28) and (3.10.3), are equivalent.

Parallelizability implies orientability. Having chosen a particular orientation we

define the Hodge star in the standard way. We will use the Hodge star later on

in this section in order to simplify calculations involving the torsion tensor.

Note that the topological invariant c introduced in Section 3.1 in accordance with

formula (3.1.33) can be equivalently (and more naturally) defined in terms of the

frame as

c := sgn detVj
α. (3.10.4)

The crucial new geometric structure is the teleparallel connection. We already

defined it in Section 3.1 in accordance with formula (3.1.34), i.e. via the principal

symbol. This connection can be equivalently defined via the frame as follows.

Suppose we have a vector v based at the point y ∈M and we want to construct

a parallel vector u based at the point x ∈ M . We decompose the vector v with

respect to the frame at the point y, v = cjVj(y), and reassemble it with the same

coefficients cj at the point x, defining u := cjVj(x).

We now define the covariant derivative corresponding to the teleparallel connec-

tion. Our teleparallel connection is a special case of an affine connection, so

we are looking at a covariant derivative acting on vectors/covectors in the usual
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manner

∇µv
α = ∂vα/∂xµ + Γαµβ v

β , ∇µwβ = ∂wβ/∂x
µ − Γαµβ wα . (3.10.5)

Of course, the above ∇ should not be confused with the ∇ from Section 3.5. The

teleparallel connection coefficients are defined from the conditions

∇µVj
α = 0 , (3.10.6)

where the Vj are elements of our frame. Formula (3.10.6) gives a system of

27 linear algebraic equations for the determination of 27 unknown connection

coefficients. It is known (see, for example, formula (A2) in [9]), that the unique

solution of this system is

Γαµβ = Vk
α(∂Vkβ/∂x

µ) , (3.10.7)

where

Vkβ := gβγVk
γ . (3.10.8)

The triple of covector fields Vk, k = 1, 2, 3, is called the coframe. The frame and

coframe uniquely determine each other via the relation

Vj
αVkα = δjk. (3.10.9)

One can check by performing explicit calculations that the teleparallel connection

has the following two important properties:

• ∇αgβγ = 0, which means that the connection is metric compatible and

• ∇α∇β − ∇β∇α = 0, which means that the Riemann curvature tensor is

zero.
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The tensor characterising the “strength” of the teleparallel connection is not the

Riemann curvature tensor but the torsion tensor (3.1.35). The teleparallel con-

nection is, in a sense, the opposite of the more common Levi-Civita connection:

the Levi-Civita connection has zero torsion but nonzero curvature, whereas the

teleparallel connection has nonzero torsion but zero curvature. In Chapter 3 we

distinguish these two affine connections by using different notation for connec-

tion coefficients: we write the teleparallel connection coefficients as Γαβγ and the

Levi-Civita connection coefficients (Christoffel symbols) as
{

α
βγ

}
, see formula

(3.A.4).

Substituting (3.10.7) into (3.1.35) we arrive at the following explicit formula for

the torsion tensor of the teleparallel connection

T = Vj ⊗ dVj , (3.10.10)

where the d stands for the exterior derivative. For the sake of clarity we rewrite

formula (3.10.10) in more detailed form, retaining all tensor indices,

Tαβγ = Vj
α(∂Vjγ/∂x

β − ∂Vjβ/∂x
γ) . (3.10.11)

As always, the repeated index j appearing in formulae (3.10.10) and (3.10.11)

indicates summation over j = 1, 2, 3.

As pointed out in Section 3.1, it is more convenient to work with the rank two

tensor
∗
T defined by formula (3.1.36) rather than with the rank three tensor T .

Substituting (3.10.10) into (3.1.36) we get

∗
T = Vj ⊗ curl Vj , (3.10.12)

where

(curl Vj)β := (∗dVj)β =
1

2
(dVj)

γδ εγδβ
√

det gµν . (3.10.13)

The remainder of this section is devoted to the proof of formula (3.1.37) expressing

the scalar curvature of the U(1) connection via the torsion of the teleparallel
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connection and the metric.

We fix an arbitrary point Q ∈ T ′M and prove formula (3.1.37) at this point. As

the LHS and RHS of (3.1.37) are invariant under changes of local coordinates x,

it is sufficient to prove formula (3.1.37) in Riemann normal coordinates, i.e. local

coordinates such that x = 0 corresponds to the projection of the point Q onto

the base manifold, gµν(0) = δµν and ∂gµν
∂xλ

(0) = 0. Moreover, as the formula we

are proving involves only first partial derivatives, we may assume, without loss of

generality, that gµν(x) = δµν for all x in some neighbourhood of the origin. Thus,

it is sufficient to prove formula (3.1.37) for the case of Euclidean metric.

As both the LHS and RHS of (3.1.37) have the same degree of homogeneity in ξ,

namely, −1, it is sufficient to prove formula (3.1.37) for ξ of norm 1. Moreover,

by rotating our Cartesian coordinate system we can reduce the case of general ξ

of norm 1 to the case

ξ =
(

0 0 1
)
. (3.10.14)

There is one further simplification that can be made: we claim that it is sufficient

to prove formula (3.1.37) for the case when

Vj
α(0) = cδj

α, (3.10.15)

i.e. for the case when at the point x = 0 the elements of the frame are aligned with

the coordinate axes; here c = ±1 is the topological invariant defined in accordance

with formula (3.1.33) or, equivalently, in accordance with formula (3.10.4). This

claim follows from the observation that the LHS of formula (3.1.37) is invariant

under rigid special unitary transformation of the column-function v+(x, ξ),

v+ 7→ Rv+,

where “rigid” refers to the fact that the matrix R ∈ SU(2) is constant. Of course,

the column-function Rv+ is no longer an eigenvector of the original principal

symbol, but a new principal symbol obtained from the old one by the rigid special
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orthogonal transformation of the frame (3.A.27) with the 3×3 special orthogonal

matrix O expressed in terms of the 2× 2 special unitary matrix R in accordance

with (3.A.28). One can always choose the special unitary matrix R so that at

the point x = 0 the elements of the new frame are aligned with the coordinate

axes (in fact, there are two possible choices of R which differ by sign). It remains

only to note the well known fact that the tensor
∗
T appearing in the RHS of

formula (3.1.37) is also invariant under rigid special orthogonal transformation

of the frame.

Having made all the simplifying assumptions listed above, we are now in a position

to prove formula (3.1.37). We give the proof for the case

c = +1 . (3.10.16)

There is no need to give a separate proof for the case c = −1 as the two cases

reduce to one another by means of the identity (3.1.20) and the observation that

torsion (3.10.10) is invariant under inversion of the frame.

Let us calculate the RHS of (3.1.37) first. In view of (3.10.15) we have, in the

linear approximation in x,
V1

1(x) V1
2(x) V1

3(x)

V2
1(x) V2

2(x) V2
3(x)

V3
1(x) V3

2(x) V3
3(x)

 =


1 w3(x) −w2(x)

−w3(x) 1 w1(x)

w2(x) −w1(x) 1

 , (3.10.17)

where w is some smooth vector-function which vanishes at x = 0. Formula

(3.10.17) is the standard formula for the linearisation of an orthogonal matrix

about the identity; see also formula (10.1) in [6]. Note that in Cosserat elasticity

literature the vector-function w is called the vector of microrotations. Substitut-

ing (3.10.17) into (3.10.12) we get, at x = 0,

∗
Tαβ = ∂wβ/∂x

α − δαβ divw, (3.10.18)
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which is formula (10.5) from [6]. Here we freely lower and raise tensor indices

using the fact that the metric is Euclidean (in the Euclidean case it does not

matter whether a tensor index comes as a subscript or a superscript). Substituting

(3.10.18) and (3.10.14) into the RHS of (3.1.37) we get, at our point Q ∈ T ′M ,

1

2

∗
Tαβξαξβ

(gµνξµξν)3/2
= −1

2
(∂w1/∂x1 + ∂w2/∂x2) . (3.10.19)

Let us now calculate the LHS of (3.1.37). The equation for the eigenvector

v+(x, ξ) of the principal symbol is

 V3
αξα − ‖ξ‖ (V1 − iV2)αξα

(V1 + iV2)αξα −V3
αξα − ‖ξ‖

v+
1

v+
2

 = 0 . (3.10.20)

In view of (3.10.14), (3.10.15) and (3.10.16) the (normalised) solution of (3.10.20)

at our point Q ∈ T ′M is

v+ =

1

0

 .

Of course, our v+(x, ξ) is defined up to the gauge transformation (3.1.16), (3.1.17),

however the LHS of (3.1.37) is invariant under this gauge transformation. We

now perturb equation (3.10.20) about the point Q ∈ T ′M , that is, about

x = 0, ξ =
(

0 0 1
)
,

making use of formula (3.10.17), which gives us the following equation for the

increment δv+ of the eigenvector v+(x, ξ) of the principal symbol:

0 0

0 −2

δv+
1

δv+
2

+

 0 −w2(x)− iw1(x)

−w2(x) + iw1(x) 0

1

0


+

 0 δξ1 − iδξ2

δξ1 + iδξ2 −2δξ3

1

0

 = 0,
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or, equivalently,

δv+
2 =

1

2
(−w2(x) + iw1(x) + δξ1 + iδξ2). (3.10.21)

Formula (3.10.21) has to be supplemented by the normalisation condition

‖v+(x, ξ)‖ = 1, which in its linearised form reads

Re δv+
1 = 0. (3.10.22)

Formulae (3.10.22) and (3.10.21) define δv+ modulo an arbitrary Im δv+
1 , with

this degree of freedom being associated with the gauge transformation (3.1.16),

(3.1.17). Without loss of generality we may assume that the gauge is chosen so

that

Im δv+
1 = 0. (3.10.23)

Combining formulae (3.10.22), (3.10.23) and (3.10.21) we get

δv+ =
1

2

 0

−w2(x) + iw1(x) + δξ1 + iδξ2

 . (3.10.24)

Recall that the w appearing in this formula is some smooth vector-function which

vanishes at x = 0.

Differentiation of (3.10.24) gives us

∂v+

∂xα
=

1

2

 0

−∂w2/∂xα + i∂w1/∂xα

 , (3.10.25)

∂v+

∂ξ1

=
1

2

0

1

 ,
∂v+

∂ξ2

=
1

2

0

i

 ,
∂v+

∂ξ3

= 0. (3.10.26)

Formulae (3.10.25) and (3.10.26) imply that at our point Q ∈ T ′M

− i{[v+]∗, v+} = −1

2
(∂w1/∂x1 + ∂w2/∂x2). (3.10.27)
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Comparing formulae (3.10.19) and (3.10.27) and recalling (3.10.16), we arrive at

the required result (3.1.37).

We end this section by writing down an explicit self-contained formula for the

trace of the tensor
∗
T . Note that according to formula (3.1.40), it is only the trace

of
∗
T that we need for our spectral asymptotics. Formulae (3.10.12) and (3.10.13)

imply

tr
∗
T =

√
det gαβ

[
Vj1 ∂Vj3/∂x

2 + Vj2 ∂Vj1/∂x
3 + Vj3 ∂Vj2/∂x

1

−Vj1 ∂Vj2/∂x
3 −Vj2 ∂Vj3/∂x

1 −Vj3 ∂Vj1/∂x
2
]
. (3.10.28)

Here the coframe Vj is determined from the principal symbol A1(x, ξ) in accor-

dance with formulae (3.10.1), (3.10.2) and (3.10.8) or (3.10.9), whereas the metric

g is determined from the principal symbol A1(x, ξ) in accordance with formula

(3.1.28) or (3.10.3).

3.11 Proof of Theorem 1.3.1

As Theorem 1.3.1 is an if and only if theorem, our proof comes in two parts.

3.11.1 Part 1 of the proof of Theorem 1.3.1

Let A be a massless Dirac operator on half-densities. We need to prove that

a) the subprincipal symbol of this operator, Asub(x), is proportional to the identity

matrix and b) the second asymptotic coefficient of the spectral function, b(x), is

zero.

As we have already established the formula for b(x), see (3.1.40), this part of

the proof of Theorem 1.3.1 reduces to proving that the explicit formula for the

subprincipal symbol of the massless Dirac operator on half-densities is

Asub(x) =
c

4

(
tr
∗
T (x)

)
I , (3.11.1)
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where I is the 2× 2 identity matrix.

We give the proof of (3.11.1) for the case (3.10.16). There is no need to give a

separate proof for the case c = −1 as the two cases reduce to one another by

inversion of the frame: the full symbol of the massless Dirac operator on half-

densities changes sign under inversion of the frame and hence its subprincipal

symbol changes sign under inversion of the frame, whereas torsion (3.10.10) is

invariant under inversion of the frame.

We fix an arbitrary point P ∈M and prove the identity (3.11.1) at this point. As

the LHS and RHS of (3.11.1) are invariant under changes of local coordinates x,

it is sufficient to check the identity (3.11.1) in Riemann normal coordinates,

i.e. local coordinates such that x = 0 corresponds to the point P , gµν(0) = δµν

and ∂gµν
∂xλ

(0) = 0. Moreover, as the identity we are proving involves only first

partial derivatives, we may assume, without loss of generality, that gµν(x) = δµν

for all x in some neighbourhood of the origin. Furthermore, by rotating our

Cartesian coordinate system we can achieve (3.10.15), which opens the way to

the use, in the linear approximation in x, of formula (3.10.17).

Substituting (3.10.17) into (3.A.1), we get, in the linear approximation in x,

σ1 =

 w2 1 + iw3

1− iw3 −w2

 = σ1 ,

σ2 =

 −w1 −i+ w3

i+ w3 w1

 = σ2 ,

σ3 =

 1 −iw1 − w2

iw1 − w2 −1

 = σ3 . (3.11.2)

Recall that the w appearing in this formula is some smooth vector-function which

vanishes at x = 0.

Substitution of (3.11.2) into (3.A.3) (which coincides with (3.A.30) because we

assumed the metric to be Euclidean, gµν(x) = δµν) allows us to evaluate the full
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symbol A(x, ξ) = A1(x, ξ)+A0(x) of the massless Dirac operator on half-densities:

A1(x, ξ) =

 ξ3 ξ1 − iξ2

ξ1 + iξ2 −ξ3


+

 w2ξ1 − w1ξ2 iw3ξ1 + w3ξ2 + (−iw1 − w2)ξ3

−iw3ξ1 + w3ξ2 + (iw1 − w2)ξ3 −w2ξ1 + w1ξ2

 , (3.11.3)

A0(0) = − i
4

0 1

1 0

0 1

1 0

 ∂w2/∂x1 i∂w3/∂x1

−i∂w3/∂x1 −∂w2/∂x1

+ . . . . (3.11.4)

Here formula (3.11.3) is written in the linear approximation in x, whereas formula

(3.11.4) displays, for the sake of brevity, only one term out of nine (the one

corresponding to α = β = 1 in (3.A.3)) with the remaining eight terms concealed

within the dots . . ..

Substituting (3.11.4) and (3.11.3) into (3.1.13), we get

Asub(0) = −1

2
(divw) I. (3.11.5)

But, according to (3.10.18),

tr
∗
T (0) = −2 divw. (3.11.6)

Formulae (3.11.5), (3.11.6) and (3.10.16) imply formula (3.11.1) at x = 0.

3.11.2 Part 2 of the proof of Theorem 1.3.1

Let A be an operator satisfying assumptions (1.3.4), (1.3.5) and (1.3.6) and such

that a) the subprincipal symbol of this operator, Asub(x), is proportional to the

identity matrix and b) the second asymptotic coefficient of the spectral function,

b(x), is zero. We need to prove that A is a massless Dirac operator on half-

densities.
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As we have already established the formula for b(x), see (3.1.40), we have, for

our operator A, the identity (3.11.1). Let Vj be the frame corresponding to the

principal symbol of the operator A, see formulae (3.10.1) and (3.10.2). Now, let

B be the massless Dirac operator on half-densities corresponding to the same

frame. Then the principal symbols of the operators A and B coincide. But

the subprincipal symbols of the operators A and B coincide as well, as in both

cases these are determined via the frame according to the same formula (3.11.1)

(for the massless Dirac operator B this is the result from subsection 3.11.1). A

first order differential operator is determined by its principal and subprincipal

symbols, hence, A = B. �

3.12 Spectral asymmetry

In this section we deal with the special case when the operator A is differential

(as opposed to pseudodifferential). No assumptions are made regarding n, m or

trA1.

Our aim is to examine what happens when we change the sign of the operator.

In other words, we compare the original operator A with the operator Ã := −A.

In theoretical physics the transformation A 7→ −A would be interpreted as time

reversal, see equation (3.1.3).

It is easy to see that for a differential operator the number m (number of equations

in our system) has to be even and that the principal symbol has to have the same

number of positive and negative eigenvalues. In the notation of Section 3.1 this

fact can be expressed as m = 2m+ = 2m−.

It is also easy to see that the principal symbols of the two operators, A and Ã,

and the eigenvalues and eigenvectors of the principal symbols are related as

A1(x, ξ) = Ã1(x,−ξ), (3.12.1)
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h(j)(x, ξ) = h̃(j)(x,−ξ), (3.12.2)

v(j)(x, ξ) = ṽ(j)(x,−ξ), (3.12.3)

whereas the subprincipal symbols are related as

Asub(x) = −Ãsub(x). (3.12.4)

Formulae (3.1.21), (3.1.22), (3.1.15), (3.1.14) and (3.12.1)–(3.12.4) imply

a(x) = ã(x), b(x) = −b̃(x). (3.12.5)

Substituting (3.12.5) into (3.1.6) and (3.1.7) we get

a = ã, b = −b̃. (3.12.6)

Formulae (3.1.5) and (3.12.6) imply that the spectrum of a generic first order

differential operator is asymmetric about λ = 0. This phenomenon is known in

differential geometry as spectral asymmetry [1, 2, 3, 4].

If we square our operator A and consider the spectral problem A2v = λ2v, then

the terms ±bλn−1 cancel out and the second asymptotic coefficient of the count-

ing function (as well as the spectral function) of the operator A2 turns to zero.

This is in agreement with the known fact that for an even order semi-bounded

matrix differential operator acting on a manifold without boundary the second

asymptotic coefficient of the counting function is zero, see Section 6 of [52] and

[42].

The case of the massless Dirac operator is special because, according to The-

orem 1.3.1, the spectrum (as well as the spectral function) of this operator is

asymptotically symmetric about λ = 0 in the two leading terms. However, despite

this asymptotic symmetry, we believe that for a generic Riemannian 3-manifold

the spectrum of the massless Dirac operator is asymmetric. In stating this belief

we are in agreement with the discussion presented on page 1298 of [50]; note
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that in the case of an odd-dimensional manifold the author of [50] refers to the

massless Dirac operator as the Pauli operator. And, of course, our belief that

for a generic Riemannian 3-manifold the spectrum of the massless Dirac opera-

tor is asymmetric is closely related to the fact that in dimension 3 the massless

Dirac operator commutes with the operator of charge conjugation, see formulae

(3.A.18) and (3.A.19).

3.13 Bibliographic review

To our knowledge, the first publication on the subject of two-term spectral asymp-

totics for systems was Ivrii’s 1980 paper [26] in Section 2 of which the author

stated, without proof, a formula for the second asymptotic coefficient of the

counting function. In a subsequent 1982 paper [27] Ivrii acknowledged that the

formula from [26] was incorrect and gave a new formula, labelled (0.6), followed

by a “proof”. In his 1984 Springer Lecture Notes [28] Ivrii acknowledged on page

226 that both his previous formulae for the second asymptotic coefficient were

incorrect and stated, without proof, yet another formula.

Roughly at the same time Rozenblyum [40] also stated a formula for the second

asymptotic coefficient of the counting function of a first order system.

The formulae from [26], [27] and [40] are fundamentally flawed because they are

proportional to the subprincipal symbol. As our formulae (3.1.7) and (3.1.22)

show, the second asymptotic coefficient of the counting function may be nonzero

even when the subprincipal symbol is zero. This illustrates, yet again, the differ-

ence between scalar operators and systems.

The formula on page 226 of [28] gives an algorithm for the calculation of the

correction term designed to take account of the effect described in the previous

paragraph. This algorithm requires the evaluation of a limit of a complicated

expression involving the integral, over the cotangent bundle, of the trace of the
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symbol of the resolvent of the operator A constructed by means of pseudodiffer-

ential calculus. This algorithm was revisited in Ivrii’s 1998 book, see formulae

(4.3.39) and (4.2.25) in [29].

The next contributor to the subject was Safarov who, in his 1989 DSc The-

sis [43], wrote down a formula for the second asymptotic coefficient of the count-

ing function which was “almost” correct. This formula appears in [43] as for-

mula (2.4). As explained in Section 3.1, Safarov lost only the curvature terms

− ni
n−1

∫
h(j){[v(j)]∗, v(j)}. Safarov’s DSc Thesis [43] provides arguments which are

sufficiently detailed and we were able to identify the precise point (page 163) at

which the mistake occurred.

In 1998 Nicoll rederived [35] Safarov’s formula (3.1.10) for the principal symbols

of the propagator, using a method slightly different from [43], but stopped short

of calculating the second asymptotic coefficient of the counting function.

In 2007 Kamotski and Ruzhansky [30] performed an analysis of the propagator

of a first order elliptic system based on the approach of Rozenblyum [40], but

stopped short of calculating the second asymptotic coefficient of the counting

function.

In 1984 Vassiliev considered systems in Section 6 of his paper [52]. However,

that paper dealt with systems of a very special type: differential (as opposed to

pseudodifferential) and of even (as opposed to odd) order. In this case the second

asymptotic coefficients of the counting function and the spectral function vanish,

provided the manifold does not have a boundary.



Microlocal analysis of the massless Dirac operator 116

Appendix

3.A The massless Dirac operator

Let M be a 3-dimensional connected compact oriented manifold equipped with

a Riemannian metric gαβ, α, β = 1, 2, 3 being the tensor indices. Note that we

are more prescriptive in this appendix than in the main text of the Chapter 3:

in the main text orientability and existence of a metric emerged as consequences

of the way we stated the problem, whereas in this appendix they are a priori

assumptions.

We work only in local coordinates with prescribed orientation.

It is known [49, 31] that a 3-dimensional oriented manifold is parallelizable,

i.e. there exist smooth real vector fields Vj, j = 1, 2, 3, that are linearly indepen-

dent at every point x of the manifold. (This fact is often referred to as Steenrod’s

theorem.) Each vector Vj(x) has coordinate components Vj
α(x), α = 1, 2, 3. Note

that we use the Latin letter j for enumerating the vector fields (this is an anholo-

nomic or frame index) and the Greek letter α for enumerating their components

(this is a holonomic or tensor index). The triple of linearly independent vector

fields Vj, j = 1, 2, 3, is called a frame. Without loss of generality we assume

further on that the vector fields Vj are orthonormal with respect to our metric:

this can always be achieved by means of the Gram–Schmidt process.

Define Pauli matrices

σα(x) := sj Vj
α(x) , (3.A.1)

where

s1 :=

0 1

1 0

 = s1 , s2 :=

0 −i

i 0

 = s2 , s3 :=

1 0

0 −1

 = s3 .

(3.A.2)

In formula (3.A.1) summation is carried out over the repeated frame index j =

1, 2, 3, and α = 1, 2, 3 is the free tensor index.
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The massless Dirac operator is the matrix operator

W := −iσα
(

∂

∂xα
+

1

4
σβ

(
∂σβ

∂xα
+

{
β

αγ

}
σγ
))

, (3.A.3)

where summation is carried out over α, β, γ = 1, 2, 3, and

{
β

αγ

}
:=

1

2
gβδ
(
∂gγδ
∂xα

+
∂gαδ
∂xγ

− ∂gαγ
∂xδ

)
(3.A.4)

are the Christoffel symbols. Here and throughout this appendix we raise and

lower tensor indices using the metric. Note that we chose the letter “W” for

denoting the massless Dirac operator because in theoretical physics literature it

is often referred to as the Weyl operator.

Formula (3.A.3) is the formula from [14], only written in matrix notation (i.e. with-

out spinor indices). Note that in the process of transcribing formulae from [14]

into matrix notation we used the identity

εσαε = (σα)T , (3.A.5)

α = 1, 2, 3, where

ε :=

0 −1

1 0

 (3.A.6)

is the ‘metric spinor’. The identity (3.A.5) gives a simple way of raising/lowering

spinor indices in Pauli matrices in the non-relativistic (α 6= 0) setting.

Physically, our massless Dirac operator (3.A.3) describes a single neutrino living

in a 3-dimensional compact universe M . The eigenvalues of the massless Dirac

operator are the energy levels.

Observe that the sign of detVj
α is preserved throughout the connected oriented

manifold M . Having detVj
α > 0 means that our frame has positive orientation

(relative to the prescribed orientation of local coordinates) and detVj
α < 0 means

that our frame has negative orientation. Accordingly, we say that our massless

Dirac operator (3.A.3) has positive/negative orientation depending on the sign
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of detVj
α. Of course, the transformation W 7→ −W changes the orientation of

the massless Dirac operator.

The massless Dirac operator (3.A.3) acts on columns v =
(
v1 v2

)T
of complex-

valued scalar functions. In differential geometry this object is referred to as a

(Weyl) spinor so as to emphasise the fact that v transforms in a particular way

under transformation of the orthonormal frame V . However, as in our exposition

the frame V is assumed to be chosen a priori, we can treat the components of

the spinor as scalars. This issue will be revisited below when we state Property

4 of the massless Dirac operator.

We now list the main properties of the massless Dirac operator.

Property 1. The massless Dirac operator is invariant under changes of local

coordinates x, i.e. it maps 2-columns of smooth scalar functions M → C2 to

2-columns of smooth scalar functions M → C2 regardless of the choice of local

coordinates.

In order to establish this property we examine separately the two operators

σα
∂

∂xα
(3.A.7)

and

σασβ

(
∂σβ

∂xα
+

{
β

αγ

}
σγ
)

(3.A.8)

appearing in formula (3.A.3).

Let us act with the differential operator (3.A.7) on a 2-column u : M → C2

of smooth scalar functions. Then ∂u
∂xα

is a column-valued covector (i.e. pair of

gradients), σα is a matrix-valued vector, so matrix multiplication combined with

contraction in α gives a column-valued scalar. Thus, the operator (3.A.7) is

invariant under changes of local coordinates.

As to the multiplication operator (3.A.8), its invariance follows from the obser-

vation that
(
∂σβ

∂xα
+
{

β
αγ

}
σγ
)

is a matrix-valued tensor.
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Property 2. The massless Dirac operator is formally self-adjoint (symmetric)

with respect to the inner product

∫
M

v∗w
√

det gαβ dx (3.A.9)

on 2-columns of smooth scalar functions v, w : M → C2.

Indeed, the adjoint operator is

W ∗ = −i 1√
det gκλ

∂

∂xα

√
det gµν σ

α +
i

4

(
∂σβ

∂xα
+

{
β

αγ

}
σγ
)
σβσ

α. (3.A.10)

Comparing formulae (3.A.3) and (3.A.10) we see that in order to prove formal

self-adjointness we need to show that

(
∂σβ

∂xα
+

{
β

αγ

}
σγ
)
σβσ

α + σασβ

(
∂σβ

∂xα
+

{
β

αγ

}
σγ
)

=
4√

det gκλ

(
∂

∂xα

√
det gµν σ

α

)
. (3.A.11)

We fix an arbitrary point P ∈ M and prove the identity (3.A.11) at this point.

In view of Property 1, it is sufficient to check the identity (3.A.11) in Riemann

normal coordinates, i.e. local coordinates such that x = 0 corresponds to the

point P , gµν(0) = δµν and ∂gµν
∂xλ

(0) = 0. Moreover, as the identity we are proving

involves only first partial derivatives, we may assume, without loss of generality,

that gµν(x) = δµν for all x in some neighbourhood of the origin. Thus, the

problem has been reduced to proving that variable (i.e. dependent on x) Pauli

matrices in Euclidean space satisfy the identity

(
∂σβ

∂xα

)
σβσα + σασβ

(
∂σβ

∂xα

)
= 4

(
∂σα

∂xα

)
. (3.A.12)

Note that in (3.A.12) we made all the tensor indices upper, using the fact that

the metric is Euclidean (in the Euclidean case it does not matter whether a

tensor index comes as a subscript or a superscript). Of course, we still retain the

convention of summation over repeated indices.
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In order to prove (3.A.12) we recall the basic identity for Pauli matrices which in

the Euclidean case reads

σµσν + σνσµ = 2Iδµν , (3.A.13)

where I is the 2×2 identity matrix. (For a general metric one would have written

the above formula with gµν instead of δµν .) Formula (3.A.13) implies

σµσµ = 3I, (3.A.14)

σµσκσµ = −σκ, (3.A.15)

∂(σµσν + σνσµ)/∂xλ = 0. (3.A.16)

Using formulae (3.A.13)–(3.A.16) we get

(
∂σβ

∂xα

)
σβσα + σασβ

(
∂σβ

∂xα

)
= −σβ

(
∂σβ

∂xα

)
σα − σα

(
∂σβ

∂xα

)
σβ

= σβσβ
(
∂σα

∂xα

)
+

(
∂σα

∂xα

)
σβσβ + σβ

(
∂σα

∂xα

)
σβ + σβ

(
∂σα

∂xα

)
σβ

+ σβσα
(
∂σβ

∂xα

)
+

(
∂σβ

∂xα

)
σασβ

= 3

(
∂σα

∂xα

)
+ 3

(
∂σα

∂xα

)
−
(
∂σα

∂xα

)
−
(
∂σα

∂xα

)
− σασβ

(
∂σβ

∂xα

)
−
(
∂σβ

∂xα

)
σβσα + 2δαβ

(
∂σβ

∂xα

)
+ 2δαβ

(
∂σβ

∂xα

)
= −

(
∂σβ

∂xα

)
σβσα − σασβ

(
∂σβ

∂xα

)
+ 8

(
∂σα

∂xα

)
. (3.A.17)

Comparing the left- and right-hand sides of (3.A.17) we arrive at (3.A.12).

Property 3. The massless Dirac operator W commutes

C(Wv) = WC(v) (3.A.18)

with the antilinear map

v 7→ C(v) := εv. (3.A.19)

Here the map (3.A.19) acts on columns v =
(
v1 v2

)T
of complex-valued scalar
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functions, with ε being the ‘metric spinor’ defined in accordance with (3.A.6).

The commutativity property (3.A.18) follows from the explicit formula for the

massless Dirac operator (3.A.3) and the identity εσα = −σαε, α = 1, 2, 3, the

latter being a consequence of formula (3.A.5).

Formula (3.A.18) implies that v is an eigenfunction of the massless Dirac oper-

ator corresponding to an eigenvalue λ if and only if C(v) is an eigenfunction of

the massless Dirac operator corresponding to the same eigenvalue λ. Hence, all

eigenvalues of the massless Dirac operator have even multiplicity. Moreover, any

eigenfunction v and its ‘partner’ C(v) make the same contribution to the spectral

function (1.3.2) at every point x of the manifold M .

We do not use the commutativity property (3.A.18) of the massless Dirac operator

in this chapter.

The antilinear operator (3.A.19) is, of course, the charge conjugation operator

which we already encountered in Section 3.1, see formula (3.1.25). The difference

between the arguments presented in this appendix and those in Section 3.1 is

that in this appendix we deal with the differential operator, whereas in Section

3.1 we dealt with the principal symbol. This leads to opposite commutation

properties: the charge conjugation operator commutes with the Weyl operator

but it anticommutes with its principal symbol. The source of this difference is

the i appearing in the RHS of formula (3.A.3).

Property 4. This property has to do with a particular behaviour under SU(2)

transformation. Let R : M → SU(2) be an arbitrary smooth special unitary

matrix-function. Let us introduce new Pauli matrices

σ̃α := RσαR∗ (3.A.20)

and a new operator W̃ obtained by replacing the σ in (3.A.3) by σ̃. It turns out

(and this is Property 4) that the two operators, W̃ and W , are related in exactly
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the same way as the Pauli matrices, σ̃ and σ, that is,

W̃ = RWR∗. (3.A.21)

In order to prove formula (3.A.21) we write down the operator W̃ explicitly and

rearrange terms:

W̃ := −iRσαR∗
(

∂

∂xα
+

1

4
RσβR

∗
(
∂(RσβR∗)

∂xα
+

{
β

αγ

}
RσγR∗

))
= −iRσα ∂

∂xα
R∗ + iRσα

∂R∗

∂xα

− i

4
Rσασβ

(
∂σβ

∂xα
+

{
β

αγ

}
σγ
)
R∗ − i

4
RσασβR

∗
(
∂R

∂xα
σβR∗ +Rσβ

∂R∗

∂xα

)

= RWR∗ + iRσα
∂R∗

∂xα
− i

4
RσασβR

∗
(
∂R

∂xα
σβR∗ +Rσβ

∂R∗

∂xα

)
. Hence, proving (3.A.21) reduces to proving that

σασβR
∗
(
∂R

∂xα
σβR∗ +Rσβ

∂R∗

∂xα

)
= 4σα

∂R∗

∂xα
. (3.A.22)

In order to prove formula (3.A.22) it is sufficient to show that

σβR
∗ ∂R

∂xα
σβR∗ + σβσ

β ∂R
∗

∂xα
= 4

∂R∗

∂xα

which, in turn, in view of the identity σβσ
β = 3I (we already used it in the special

case of Euclidean metric, see formula (3.A.14)), is equivalent to proving that

σβR
∗ ∂R

∂xα
σβ =

∂R∗

∂xα
R . (3.A.23)

The fact that the matrix function R is special unitary implies that at every point

x of the manifold M and for every index α = 1, 2, 3 the matrix R∗ ∂R
∂xα

is trace-free

anti-Hermitian, which, in view of the identity σβσ
γσβ = −σγ (we already used

it in the special case of Euclidean metric, see formula (3.A.15)), implies that
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formula (3.A.23) can be equivalently rewritten as

−R∗ ∂R
∂xα

=
∂R∗

∂xα
R . (3.A.24)

But formula (3.A.24) is an immediate consequence of the identity R∗R = I.

Having proved Property 4, let us examine the geometric meaning of the trans-

formation (3.A.20). Let us expand the new Pauli matrices σ̃ with respect to the

basis (3.A.2):

σ̃α(x) = sj Ṽj
α(x). (3.A.25)

Formulae (3.A.1), (3.A.25) and (3.A.20) give us the following identity relating

the new vector fields Ṽ j and the old vector fields V j:

RskR∗Vk = sj Ṽj . (3.A.26)

Resolving (3.A.26) for Ṽj we get

Ṽj = Oj
kVk , (3.A.27)

where the real scalars Oj
k are given by the formula

Oj
k =

1

2
tr(sjRs

kR∗) . (3.A.28)

Note that in writing formulae (3.A.26) and (3.A.27) we chose to hide the tensor

index, i.e. we chose to hide the coordinate components of our vector fields. Say,

formula (3.A.27) written in more detailed form reads Ṽj
α = Oj

kVk
α.

The scalars (3.A.27) can be viewed as elements of a real 3 × 3 matrix-function

O with the first index, j, enumerating rows and the second, k, enumerating

columns. It is easy to check that this matrix-function O is special orthogonal.

Hence, the new vector fields Ṽj are orthonormal and have the same orientation as

the old vector fields Vj. We have shown that the transformation (3.A.20) has the
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geometric meaning of switching from our original oriented orthonormal frame Vj

to a new oriented orthonormal frame Ṽj.

Formula (3.A.28) means that the special unitary matrix R is, effectively, a square

root of the special orthogonal matrix O. It is easy to see that for a given matrix

O ∈ SO(3) formula (3.A.28) defines the matrix R ∈ SU(2) uniquely up to sign.

This observation allows us to view the issue of the geometric meaning of the

transformation (3.A.20) the other way round: given a pair of orthonormal frames,

Vj and Ṽj, with the same orientation, we can recover the special orthogonal

matrix-function O(x) from formula (3.A.27) and then attempt finding a smooth

special unitary matrix-function R(x) satisfying (3.A.28). Unfortunately, this may

not always be possible due to topological obstructions. We can only guarantee

the absence of topological obstructions when the two frames, Vj and Ṽj, are

sufficiently close to each other, which is equivalent to saying that we can only

guarantee the absence of topological obstructions when the special orthogonal

matrix-function O(x) is sufficiently close to the identity matrix for all x ∈M .

We illustrate the possibility of a topological obstruction by means of an explicit

example.

Example 3.A.1. Consider the unit torus T3 parameterized by cyclic coordinates

xα, α = 1, 2, 3, of period 2π. The metric is assumed to be Euclidean. Define the

orthonormal frame as

V1
α =


cos k3x

3

sin k3x
3

0

 , V2
α =


− sin k3x

3

cos k3x
3

0

 , V3
α =


0

0

1

 , (3.A.29)

where k3 ∈ Z is a parameter. Let W be the massless Dirac operator corresponding

to the frame (3.A.29) with some even k3 and let W̃ be the massless Dirac operator

corresponding to the frame (3.A.29) with some odd k3. We claim that there does

not exist a smooth matrix-function R : T3 → SU(2) which would give (3.A.28),

where O(x) is the special orthogonal matrix-function defined by formula (3.A.27).

To prove this, it is sufficient to show that the two operators, W and W̃ , have
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different spectra. Straightforward separation of variables shows that any half-even

integer (positive or negative) is an eigenvalue of W̃ but is not an eigenvalue of

W . What happens in this example is that a special unitary matrix-function R(x)

satisfying (3.A.28) can be defined locally but not globally: if we try to construct

R(x3) moving along the circumference of the torus x3 ∈ (−π, π) we end up with

a discontinuity, lim
x3→−π+

R(x3) = − lim
x3→π−

R(x3).

In fact, one can generalise Example 3.A.1 by introducing rotations in three dif-

ferent directions, which leads to eight genuinely distinct parallelizations. See also

[47] page 524.

Let us emphasise that the topological obstructions we were discussing have noth-

ing to do with Stiefel–Whitney classes. We are working on a parallelizable man-

ifold and the Stiefel–Whitney class of such a manifold is trivial. The topological

issue at hand is that our parallelizable manifold may be equipped with different

spin structures.

We say that two massless Dirac operators, W and W̃ , are equivalent if there exists

a smooth matrix-function R : M → SU(2) such that the corresponding Pauli

matrices, σα and σ̃α, are related in accordance with (3.A.20). In view of Property

4 (see formula (3.A.21)) all massless Dirac operators from the same equivalence

class generate the same spectral function (1.3.2) and the same counting function

(3.1.4), so for the purposes of this chapter viewing such operators as equivalent

is most natural.

As explained above, there may be many distinct equivalence classes of massless

Dirac operators, the difference between which is topological. Studying the spec-

tral theoretic implications of these topological differences is beyond the scope of

this thesis. The two-term asymptotics (1.3.3) and (3.1.5) derived in the main

text of the Chapter 3 do not feel this topology.

In theoretical physics the SU(2) freedom involved in defining the massless Dirac

operator is interpreted as a gauge degree of freedom. We do not adopt this point
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of view (at least explicitly) in order to fit the massless Dirac operator into the

standard spectral theoretic framework.

We defined the massless Dirac operator (3.A.3) as an operator acting on 2-

columns of scalar functions, i.e. on 2-columns of quantities which do not change

under changes of local coordinates. This necessitated the introduction of the

density
√

det gαβ in the formula (3.A.9) for the inner product. In spectral theory

it is more common to work with half-densities. Hence, we introduce the operator

W1/2 := (det gκλ)
1/4W (det gµν)

−1/4 (3.A.30)

which maps half-densities to half-densities. We call the operator (3.A.30) the

massless Dirac operator on half-densities.
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gauge field theory with quadratic Lagrangian. In General relativity and

gravitation, Vol. 1, pages 329–355. Plenum, New York, 1980.
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