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Abstract

The capacity of milli and micro litre bioreactors to accelerate process development has been successfully demonstrated in
traditional biotechnology. However, for regenerative medicine present smaller scale culture methods cannot cope with the
wide range of processing variables that need to be evaluated. Existing microfabricated culture devices, which could test
different culture variables with a minimum amount of resources (e.g. expensive culture medium), are typically not designed
with process development in mind. We present a novel, autoclavable, and microfabricated scale-down device designed for
regenerative medicine process development. The microfabricated device contains a re-sealable culture chamber that
facilitates use of standard culture protocols, creating a link with traditional small-scale culture devices for validation and
scale-up studies. Further, the modular design can easily accommodate investigation of different culture substrate/extra-
cellular matrix combinations. Inactivated mouse embryonic fibroblasts (iMEF) and human embryonic stem cell (hESC)
colonies were successfully seeded on gelatine-coated tissue culture polystyrene (TC-PS) using standard static seeding
protocols. The microfluidic chip included in the device offers precise and accurate control over the culture medium flow rate
and resulting shear stresses in the device. Cells were cultured for two days with media perfused at 300 ml.h21 resulting in
a modelled shear stress of 1.161024 Pa. Following perfusion, hESC colonies stained positively for different pluripotency
markers and retained an undifferentiated morphology. An image processing algorithm was developed which permits
quantification of co-cultured colony-forming cells from phase contrast microscope images. hESC colony sizes were
quantified against the background of the feeder cells (iMEF) in less than 45 seconds for high-resolution images, which will
permit real-time monitoring of culture progress in future experiments. The presented device is a first step to harness the
advantages of microfluidics for regenerative medicine process development.
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Introduction

Over the last ten years, bioreactor miniaturisation for traditional

biotechnology has made significant progress. What began with

a proof-of-concept study [1] is now a field of its own, broadly

encompassing miniaturised stirred tank, microwell format-based

and microfabricated bioreactors [2,3,4,5]. Favourable compar-

isons with larger scale bioreactors have been successfully

demonstrated with bacterial, yeast and Chinese Hamster Ovary

cells, and these mini- and micro-bioreactors have been operated in

batch, fed-batch and chemostat mode. Automated, parallelised

and instrumented, miniaturised bioreactors deliver quantitative

data on the growth kinetics in real time, from culture volumes as

small as 5 microlitres [6]. Several systems are now commercially

available and could underpin the implementation of the Process

Analytical Technologies and Quality by Design initiatives [7]; in

short, bioreactor miniaturisation has changed the way early stage

process development can be approached in traditional bio-

technology.

In traditional mammalian cell culture applications, cells are

typically adapted to grow in suspension, either freely or attached to

microcarriers. However, regenerative medicine presents the

bioprocessing industry with a new production challenge, in which

the cells themselves are the product. While some progress has been

made towards the development of microcarrier-based expansion of

human embryonic stem cells (hESC) [8], early clinical trials of

stem cell medicines rely on more traditional adherent culture

[9,10,11]. To deliver a range of potential clinical applications

[10,12,13,14,15] it will be necessary to reliably, safely and

efficiently produce high quality cells in adherent cultures

[16,17,18]. To optimise the numerous biological, physical and

chemical factors that synergistically combine to control stem cell
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fate [19], a large amount of process development is necessary.

Consequently, due to the high cost of media components and the

slow growth rate of stem cells, it is obvious that regenerative

medicine process development will benefit from a similar tech-

nology drive towards miniaturisation.

Present smaller scale culture methods limit stem cell process

development. In culture flasks and dishes, the high cost of the

growth factor-containing media constrains the number of experi-

ments that can be performed. On the other hand, microwell

plates, which operate with smaller amounts of media, are

susceptible to well-to-well variability, medium evaporation and

edge effects [20]. Additionally, all these devices typically lack

instrumentation, giving a reduced understanding of the impacts of

process variables. There are also problems with variations during

manual processing, which can affect the phenotype of stem cells

[21,22]. Microfabricated devices show potential to overcome these

issues.

A number of publications have clearly demonstrated that stem

cell culture can be performed with fewer resources at a microfluidic

scale [23] and different platform technology and parallelisation

approaches have been reported [20,24,25]. Furthermore, in-

strumentation for on-line monitoring allows for automated and

data-rich experimentation. Crucially, microfabricated devices will

allow thorough investigation of the effect of perfusion culture

during process development with minimum use of expensive

media [26,27,28,29]. In larger reactors, perfusion cultures have

shown improved expansion yields over static culture conditions for

haematopoietic [30,31] and embryonic stem cells [32,33].

However, particular considerations must be made when de-

signing a microfabricated bioreactor for regenerative medicine

process development so that a link is maintained with conventional

culture methods and production systems for the purposes of

validation and scale up studies. Firstly, the hydrodynamic shear

inherent in perfused systems can cause cell wash out of weakly

adhering cells at flow rates as low as 0.05 ml/hr [34]. Further-

more, the effect of hydrodynamic shear may need to be decoupled

from the effects of media replenishment and the removal of

secreted factors. Secondly, dynamic seeding may result in non-

uniform and poorly defined seeding densities, the presence of cells

outside of the intended cell culture area, and damage to cells

seeded in colonies (such as hESCs). Finally, the properties of the

culture substrate and the extracellular matrix (ECM) affect cell

adhesion, which in turn affects cell proliferation and cell

differentiation. In current cell culture protocols, cell growth

surfaces typically consist of a tissue culture polystyrene (TC-PS)

culture substrate coated with an ECM. However, integration of

TC-PS with microfabricated devices is difficult, since TC-PS is not

compatible with conventional bonding and microfabrication

techniques.

In this contribution, we start to address the above issues by

presenting a novel, autoclavable, microfabricated culture device,

with a re-sealable culture chamber. This re-sealable culture

chamber allows traditional static seeding in an otherwise fully

assembled device. Additionally, the device reversibly seals with

a TC-PS microscope slide (or any other standard sized slide),

allowing the use of traditional growth surfaces. Using computa-

tional fluid dynamics software, we analyse how hydrodynamic

shear stress can be adjusted by recessing the cell culture area. We

demonstrate the benefits of the device, by seeding feeder cells and

hESC colonies in static conditions onto gelatine-coated TC-PS.

We also demonstrate the use of low hydrodynamic shear stress

perfusion in the culture of hESC colonies that maintain an

undifferentiated morphology, and retain the expression of

pluripotent markers under continuous perfusion culture. Finally,

using a novel image processing algorithm, we show that hESC

colonies can be detected against a background of feeder cells. In

the future, this will allow real-time quantification of hESC colony

sizes during cell culture.

Results

Microfabricated Modular Scale-down Device
The microfabricated culture device (Figures 1 and 2) consisted

of a lid made from polycarbonate (PC), two interconnects made

from aluminium (Al), a top and bottom frame (PC), a gasket and

a microfluidic chip made from poly(dimethylsiloxane) (PDMS),

and a TC-PS slide (16004, Nunc, Denmark).

The top frame included an opening to accommodate the lid as

well as two recesses. The first positioned the microfluidic PDMS

chip with respect to the top frame, and the second deeper recess

accommodated the gasket. A set of bores in the top frame enabled

the mounting of the two interconnects. The bottom frame had the

same outer dimensions as the top frame and a recess dimensioned

to hold the TC-PS slide. An opening in the centre was designed to

bring objectives from an inverted microscope into close proximity

with the TC-PS slide for cell culture imaging. The top and bottom

frame were clamped together with five M3 hex screws distributed

down each side of the frame. The central pair of screws also

attached the lid when in use. All the screws were tightened to

2 N.cm forming seals between the components by compression of

the PDMS.

To facilitate rapid set-up of cell culture experiments and achieve

leak-free long-term operation, an easy and robust interconnection

with the macro-world is required [35]. The cylindrically shaped

interconnects (Figure 1(b)) contained a 1 mm diameter bore in

their centre to link external tubing with the microfluidic chip. At

the bottom, the interconnects formed a boss that compressed the

microfluidic PDMS chip to form a seal. At the top, the bore was

threaded to accept M6 Upchurch fittings and therefore permit

simple connection with tubing for the provision and removal of

media. The mean burst pressure of the culture device was 59 kPa

with a standard deviation of 18 kPa (n= 36) and the lowest

recorded burst pressure was 35 kPa. The pressure drop across the

device at a flow rate of 500 ml.h21 (3 orders of magnitude higher

than the perfusion flow rate) was measured as 20 kPa.

The lid was T-shaped with the upper ‘horizontal’ bar acting

as a bed stop when the lower ‘vertical’ bar was pushed into the

opening of the top frame. This defined the height of the culture

chamber below (450 mm). The ‘vertical’ bar formed a press-fit

with the gasket to seal the chamber. The dimensions of the

‘vertical’ bar matched the footprint of the culture chamber of

the microfluidic PDMS chip. The re-sealable lid provides

a simple means to open and close the culture chamber. This

enables operation of the device in a so-called ‘open’ configu-

ration for cell seeding, and a ‘closed’ configuration for medium

perfusion. Analysis of variance shows there is no statistically

significant relationship between burst pressure and the number

of times the lid is removed and reinserted for up to 30

repetitions (a=0.05, p = 0.99, n = 3).

The PDMS microfluidic chip controls the flow of culture

medium in the device. The microfluidic chip was made out of

two PDMS layers with both containing a rectangular culture

chamber measuring 4 mm in the direction of flow by 13 mm

across the flow. The top layer (Figure 1(c)) contained the

200 mm deep flow channels connecting the inlet and outlet

ports to the culture chamber. The flow is expanded from

a narrow inlet prior to the culture chamber and condensed back

to a narrow outlet after the chamber by 3 merging channels on
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each side. The top layer also included flow equalisation (or

perfusion) barriers on each side of the culture chamber, each

200 mm wide and 1000 mm long. The apertures between the

barriers itself had a rectangular cross-section (400 mm 6
200 mm). The second layer (‘spacer’) elevated the first layer

above the cell culture area by 120 mm (Figure 1(d)).

Modelling Velocity Fields and Hydrodynamic Shear
To evaluate the design, we analysed the velocity fields and shear

stress produced at a flow rate of 300 ml.h21. This flow rate

corresponds to replacing 13.8 ml of media per day for each square

centimetre of culture area, a rate 50 times higher than typical in

hESC culture. It is therefore unlikely cells would ever be subjected

to a higher shear stress. The uniformity of the velocity field in the

culture device was investigated at various heights above the culture

plane (i.e. above the TC-PS slide). 15 mm above the cell culture

plane, the average fluid velocity is approximately a factor of 10

lower than at 200 mm above the cell culture plane, which is in line

with the inlet and outlet channels (Figure 3 (a, b)). The microfluidic

chip design produces a relatively even velocity field across the

majority of the culture chamber (Figure 3(b, c)). An increased

velocity at the boundaries of the culture chamber can be observed

due to the larger gap between flow restrictor and the boundary.

This effect was deliberate and intended to remove air bubbles,

entrapped during closing or filling. Hydrodynamic shear stress was

also calculated 15 mm above the cell culture plane for a flow rate

of 300 ml.h21. An average of 1.161024 Pa and a standard

deviation of 0.1461024 Pa were obtained from the model. The

calculated value of 1.361024 Pa, using an analytical solution for

shear stress at the culture surface, supports the result obtained

through finite element modelling.

Static Seeding and Perfusion Culture of hESC Colonies
To test the suitability of the device for hESC culture, we seeded

culture devices, assembled from autoclaved parts, according to the

protocol employed in our regenerative medicine laboratory (see

Materials and Methods). As a control, we seeded three single-well

dishes in parallel to the culture devices. In the culture devices and

the control dishes, the inactivated mouse embryonic fibroblasts

(iMEF) started to attach within 2 hours. After one day, the cells

had attached and spread in both systems. hESC colonies seeded

onto the iMEF layer attached within 1 day. Colonies maintained

an undifferentiated morphology comparable to the colonies in the

control dishes (Figure 4(a,d)).

A day after hESC seeding, the culture devices were closed and

media was continuously perfused at 300 ml.h21, resulting in

a residence time of approximately 5 min. In the control dishes, the

media was replaced once a day in line with standard manual cell

culture practice. During perfusion, dissolved gases were supplied

via the media having been absorbed from the incubator through

the inlet tubing. After 1 day, the cells within the colonies were

small and tightly packed together; a characteristic morphology of

undifferentiated hESCs (Figure 4(b,e)). After 2 days of continuous

perfusion, hESC colonies maintained an undifferentiated mor-

phology in both the culture device and in the control dishes

Figure 1. Design of the microfabricated culture device. (a) Exploded view showing all parts of the modular microfabricated culture device. (b)
Schematic representation of a longitudinal section of the interconnect assembly, showing compression of the PDMS chip around the inlet/outlet
ports (dashed rectangle), by the interconnect. (c) Top view of the microfluidic chip with dashed lines showing the footprints of the lid and
interconnect bosses. (d) Cross-sectional view showing the two PDMS layers of the microfluidic chip. The lower ‘spacer’ layer elevates the flow
equalisation barriers of the top layer and thus reduces the hydrodynamic shear exposure for the cells.
doi:10.1371/journal.pone.0052246.g001

Figure 2. Photograph of the assembled modular culture device
with the re-sealable lid attached.
doi:10.1371/journal.pone.0052246.g002
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(Figure 4(c,f)). Representative higher magnification images are

available in Supporting Information S1.

Immunostaining was carried out to test for the expression of

several pluripotency markers. The hESC colonies from one culture

device were co-stained for Oct-4 and Tra-1-81, and the cells from

a second device were stained for SSEA-3 (both were co-stained

with DAPI). The immunostaining sequences of antibody in-

cubation and washing buffers were performed in the device using

the ‘open’ configuration, i.e. after removing the lid. As can be seen

in figure 5, the hESC colonies stained positively for Oct-4 (c), Tra-

1-81 (d) and SSEA-3 (g) with the correct localisation, nuclear,

surface and surface respectively. The percentage of cells staining

positive for Oct-4, in images of individual colonies, was 91% in the

culture device and 94% in the control well with standard

deviations of 2% and 5% respectively (n = 3 colonies, ,1,500

cells total). In a repeat experiment, a culture device and a control

dish were stained with Annexin V and propidium iodide (PI) to

detect apoptotic and necrotic cells. The numbers of cells staining

positive were very low (Supporting Information S2).

Rapid Quantification of hESC Colony Size
An image processing algorithm was developed which permitted

the detection of hESC colonies co-cultured with iMEF feeder cells.

In brief, the texture of the local neighbourhood of a pixel was

characterised at four scales (corresponding to various levels of

spatial coarseness) and a random forest statistical classifier [36]

used this information to label the pixel as being either part of

a hESC colony or of the background (which included the iMEF

cells). The resulting binary images can be used as a basis for the

computation of the confluency (ratio of hESC pixels to total

number of pixels) or the area occupied by the cells. This approach

was used to monitor the culture in the microfabricated culture

device. Figure 6 shows tracking of a single colony in the culture

device from 1 day after seeding to the end of the 2 day perfusion

period. The number of colonies, the total area occupied and the

mean colony area were computed based on phase contrast images

acquired at various stages of the expansion (Table 1). Differences

in colony size and area can be attributed to the difference in the

microenvironment of the cells. These include the medium

Figure 3. Modelling of flow conditions in the microfluidic chip. (a) represents the velocity field at half the height of the inlet channel. (b)
represents the velocity field 15 um above the culture plane (ACP). (c) shows velocity profiles at x0 along the z-axis.
doi:10.1371/journal.pone.0052246.g003

Figure 4. Co-cultured hESCs in microfabricated culture device and control dish. Representative phase contrast images of iMEF feeder cells
and individual hESC colonies cultured in the microfabricated culture device (a-c) and in the control dishes (d-f). The same two colonies are shown at
each of three time points; after 1 day of static culture (a, d), after 1 day of the perfused culture (b, e), and at the end of the 2 days of perfused culture
(c, f). All images were taken with a 46 objective, scale bar is 500 mm.
doi:10.1371/journal.pone.0052246.g004

Microfabricated Device for Regenerative Medicine
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exchange regime (perfusion vs static culture), the mass transfer,

and variations from the manual dissecting of the colonies.

Performance of the algorithm was evaluated against 20 unseen

phase contrast images from the microfabricated culture device

which showed a uniform range of confluencies from 3% to 82%

(Supporting Information S3). To characterise performance we

report F-scores, which are a standard metric to express the

correctness of the pixel classification (and indicate overlap). The

mean F-score was 90% with a standard deviation of 7% (n= 20),

the worst F-score obtained over the testing set was 71%. In

addition, the error in confluency estimation is assessed by

comparing the confluency computed from the expert annotation

and that derived from the algorithm output. The accuracy (bias)

for the confluency estimates was 20.6% with a 95% confidence

interval of [22.1%, 1.0%]. The precision of the estimates, as

determined from the root mean square error (RMSE) and the

estimate bias was 3.2%. The algorithm takes up to 45 seconds for

a high resolution image (12806960). Additional metrics typically

employed in image processing for pixel classification performance

are reported in Supporting Information S4.

Discussion

We present a microfabricated adherent culture device that starts

to address the requirements of regenerative medicine process

development and demonstrate the potential of the device by

culturing feeder-attached hESC colonies. The culture of feeder-

attached hESC colonies is an appropriate model system for

multiple reasons. hESCs are more difficult to culture than other

common model systems such as Chinese Hamster Ovary cells,

mouse embryonic stem cells, mouse embryonic fibroblasts and

human foreskin fibroblasts. Furthermore, hESCs are a clinically

relevant cell type and co-culture techniques, which are inherently

more complicated than monoculture, are common in regenerative

medicine. Thus feeder-attached hESC culture is a more rigorous

test than many other culture processes and it is assumed a device

suitable for feeder-attached hESC culture would be suitable for

most other adherent cell cultures.

Design
Integration of TC-PS with microfluidic devices would normally

be difficult, as TC-PS is not compatible with conventional air

plasma or thermal bonding. Consequently, microfabricated

devices for adherent cell culture make ubiquitous use of glass or

poly(dimethylsiloxane) (PDMS) growth surfaces [37]; neither of

which are commonly employed in regenerative medicine [38].

Indeed, to introduce novel growth surfaces and ECMs to processes

for medical application, or even to compare them accurately to

existing materials, would require extensive testing and validation.

In our device, we successfully demonstrated the integration of

gelatine-coated TC-PS through compression of the PDMS

components against smooth surfaces resulting in an average burst

pressure of 59 kPa. TC-PS is the most widely employed cell

Figure 5. Staining of hESC colonies following perfusion culture. Representative images of the feeder cells and hESC colonies in the culture
device after 2 days of continuous perfusion culture. Each row shows the phase contrast images (a, e) of the feeder-attached hESC colonies and the
corresponding results from DAPI (b, f,) and pluripotency marker staining for Oct-4 (c), Tra-1-81 (d) and SSEA-3 (g). All images were taken with a 206
objective, scale bar is 200 mm.
doi:10.1371/journal.pone.0052246.g005

Figure 6. Monitoring a hESC colony in the microfabricated
culture device during the course of an experiment. The same
colony is shown after (a) 1 day static culture, (b) 1 day perfused culture
and (c) 2 days perfused culture. The columns show, from left to right,
the raw phase contrast image taken with a 46objective, an overlay of
the automated detection using the image processing algorithm, and
the detected area. The scale bars are 500 mm.
doi:10.1371/journal.pone.0052246.g006
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growth surface in stem cell biology, including T-flasks and Cell

Factories, making later translation to larger production scales

straightforward.

With our modular design, materials other than TC-PS can

easily be integrated as long as they have a smooth, flat surface and

the dimensions of a standard microscope slide [39]. This makes

a number of materials immediately available for investigation. As

a result, this device could be employed to test growth surface

candidates from microarray screening [40], under the defined

culture conditions obtainable in the microfluidic chip. This is

analogous to the scale-up train in traditional biotechnology, where

‘hits’ from high-throughput screening plates are first investigated

in shaker cultures or small-scale bioreactors.

The minimum size of the culture chamber is limited, not by the

methods of microfabrication, but the number of cells required for

analysis. We have designed our culture chamber to be as large as

possible within the constraints of a microscope slide. The chamber

was 13 mm wide and 4 mm in the direction of flow giving a culture

area of 0.52 cm2 (between 96-well and 48-well plates). This is

sufficient for immunostaining or quantitative PCR. Further, the

form factor of the culture chamber must also be considered. When

investigating the effects of specific process variables it is important

that these variables are uniform across the entire cell culture area.

However, in long, narrow perfusion chambers, the consumption

and secretion of soluble factors by cells near the inlet alter the

conditions for the cells downstream. This effect is exacerbated at

lower flow rates. Consequently, when defining the culture area,

the width dimension of the culture chamber was maximised,

within the limits of the slide’s width, to minimise the length of the

chamber. These dimensions are distinctly different from all other

microfabricated devices for hESC culture [26,27,28,41].

To promote uniformity across the culture chamber further, the

top layer of the microfluidic chip (Figure 1(c, d)) included flow

dividers and rows of flow equalisation barriers on either side of the

culture chamber. The efficacy of flow equalisation barriers at

creating uniform flow velocity fields was previously demonstrated

with slightly larger apertures [42], and with smaller rectangular

apertures [43]. We demonstrate the effectiveness in our design

through the generation of a relatively uniform velocity field

(Figure 3(c)). The barriers thus minimise non-uniform cell growth

patterns which can arise from variations in velocity fields and

which are difficult to interpret [44]. Such growth patterns could be

caused by spatial differences in shear stress or spatial differences in

the exchange of soluble factors.

Seeding
Seeding density is a critical variable to both the expansion and

differentiation of stem cell populations. Additionally, weakly

adhering cells like hESC colonies typically require long incubation

times (up to 2 days) to achieve secure attachment [45]. During this

period, a culture medium overlay (typically a few millimetres)

balances the oxygen and nutrient demands of the cells. Further,

due to the low number and high value of some starting stem cell

populations, a cell-efficient seeding method is required. Compared

with dynamic seeding [46], static seeding gives more accurate

control over starting cell density and distribution as it avoids cells

settling and adhering in inlet and outlet channels. Additionally, the

exposure to hydrodynamic shear stress occurring with flow-based,

dynamic seeding methods is avoided. Minimising exposure to

hydrodynamic shear is particularly crucial for the handling of

embryonic stem cells, since shear stress during seeding can affect

the phenotype [22] and could potentially dissociate multi-cellular

hESC colonies. Finally, a device where standard seeding protocols

can be adhered to reduces differences between scales and paves

the way for robust and reproducible culture processes. We

therefore sought to integrate a standard seeding method with

our device to facilitate operation with a wide range of cells and

seeding parameters.

To address this goal our device includes a re-sealable lid. The lid

provides a simple means of opening and closing the culture

chamber. Thus, the device can be operated on both open and

closed configuration during culture protocols (Figure 7). In the

closed configuration, the height of the culture chamber is

repeatably defined by the re-sealable lid. Additionally, the hard

material of the lid does not deform during medium perfusion

ensuring reproducible fluid flow patterns. In the open configura-

tion, the culture chamber is directly accessible with laboratory

pipettes facilitating pipette-based methods typically employed in

laboratory scale stem cell maintenance including static seeding,

static cell recovery and immunostaining. A further advantage of

our device is that, in open configuration, the depth of media in the

culture chamber is similar to the depths used in T25-flasks or

culture dishes. Thus, during cell settling and attachment, the cells

experience a similar microenvironment to traditional culture

systems, addressing our objective of maintaining a link to

conventional culture methods for validation. Previously presented

re-sealable systems required seeding before assembly [47], which is

cumbersome and results in poorly defined culture areas, or limited

the height of the culture chamber to the total thickness of the

device [48], potentially leading to excessive media hold-up times

during perfusion.

We successfully seeded both inactivated mouse embryonic

fibroblasts (iMEF) and colonies of human embryonic stem cells

(hESC) utilising standard static seeding protocols. The iMEF cells

started to attach within 2 hours and had attached and uniformly

spread after one day. hESC colonies attached to the uniform

Table 1. Quantification of hESC colony size.

Detected Colonies Total Area (mm2) Average Area (mm2)

Culture Device Day 2 27 2.91 0.108

Day 3 25 4.15 0.166

Day 4 23 6.78 0.295

Control Dish Day 2 17 2.28 0.134

Day 3 16 5.04 0.315

Day 4 10 8.20 0.820

Due to the time required to image larger culture areas, only the central area of the control dish, which contained the majority of colonies, was imaged. The numbers of
distinct colonies shrinks as nearby colonies grow into each other.
doi:10.1371/journal.pone.0052246.t001
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iMEF layer attached within 1 day and maintained an un-

differentiated morphology comparable to control dishes

(Figure 4(a, d)). Furthermore, there was no statistically significant

relationship between repeated removal and reinsertion of the lid

and the burst pressure of the device up to 30 iterations. These

results confirm the suitability of the re-sealable lid in facilitating

static cell seeding.

Perfusion Culture
Previous reports indicated that shear stress is a critical

parameter that can lead to cell dislodgement during medium

perfusion [34,49], which we confirmed in our own experiments

(data not shown). The hydrodynamic shear stress of 1.161024 Pa

achieved in our design at 300 ml.h21 is an order of magnitude

below 561023 Pa and three orders of magnitude below

161021 Pa, the critical values previously reported by Korin et al

[34] for hESCs and Toh et al. [29] for mESCs, respectively.

Therefore, cell washout or significant shear impact are unlikely in

our device. The low shear stress is primarily achieved through the

large cross section of the culture chamber. However, shear stress

on the culture plane is reduced further by recessing it below the

inlet and outlet channels. The effectiveness of this technique has

been previously demonstrated in straight channels with grooves

[49], round wells [48] and rectangular chambers [42]. In our

design, the PDMS ‘spacer’ layer (Figure 1(d)) elevates the main

plane of medium flow above the cell growth surface. Since the

thickness of the layer is determined by spin-coating parameters,

the elevation can easily be changed. An example application is the

optimisation of shear stress levels at a fixed flow rate or vice versa.

Supporting our predictions from fluid dynamic modelling, we

did not observe washout of hESC colonies at the relatively high

flow rate of 300 ml.h21. We successfully demonstrated a 2-day,

continuous perfusion culture of feeder-attached hESC colonies in

a microfluidic device without washout of the colonies. Both the low

shear chip design and the use of traditional substrate may have

contributed to the continued adherence and growth of the cells in

these conditions. While these results must be further verified with

feeder cell densities that match more closely the densities from the

control dishes, the results demonstrate the suitability of the

microfabricated device as a culture system for hESCs. Further, the

lack of infection after 3 days of culture, along with additional E.

Coli clearance studies (Supporting Information S5, S6), demon-

strates the effectiveness of sterilisation by autoclave. Finally, the

positive staining results, in combination with the morphology

observations, are evidence supporting a maintained, undifferenti-

ated hESC state during seeding and continuous perfusion.

Monitoring
Adherent cell cultures are by nature difficult to monitor:

whereas suspension cultures can be characterised by sampling

small culture volumes for offline analysis or by using indirect cell

density measurements such as optical density, no standard

approach is readily available for adherent systems. However, to

accelerate regenerative medicine bioprocessing, there is clearly

a need for a quantitative method for online characterisation of

adherent cell cultures in general and that of co-cultures in

particular. Such an online characterisation method will allow

accurate and reproducible measurement of the effect of changes in

experimental conditions (e.g. culture substrate and ECM used,

medium formulation). To this effect, an image processing

approach was developed to automate the detection and char-

acterisation of hESC colonies co-cultured with iMEF feeder cells

(Figure 6) without the addition of dyes or markers to the culture

medium.

Conventional microscopy image processing methods, which are

based on the detection of local changes in intensity are unable to

distinguish between two cell populations as they present similar

intensity profiles. Instead, our approach relies on the detection of

differences in texture between hESC colonies and fibroblast cells.

The random forest classifier is essentially a set of complex rules

that in this case are used to label each of the pixels according to

their texture features. Using information from the neighbourhood

of a pixel at multiple scales is necessary for a robust characterisa-

tion of texture. The process mimicked how a human expert would

distinguish the two cell types by evaluating multiple features in

local regions of the image. The algorithm achieved a high pixel

classification performance, which resulted in a low confluency

estimation error. Our confluency estimates were shown to have no

significant bias (mean=20.6%, 95% CI= [22.1%, +1.0%]), and

a precision of 3.2%; together these show that it produces estimates

in good agreement with that of a human expert.

Some of the discrepancies in detection results can be attributed

to limitations of the current algorithm or to inadequate human

annotations. Indeed, it is often challenging to classify pixels in

Figure 7. Schematic representation of a longitudinal section across the culture device. (a) Without a lid for coating with extra-cellular
matrix compounds, and seeding feeder cells and hESC colonies with a pipette according to standard laboratory procedures. (b) With a lid and tubing
for media perfusion.
doi:10.1371/journal.pone.0052246.g007
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ambiguous regions of the image such as colony borders or dense

iMEF clusters. However, the random forest classifier was chosen to

alleviate issues with ambiguous choices and the results reported

here-in demonstrated the versatility and the accuracy of the

approach. Furthermore, we show the algorithm can be used to

generate metrics of colony number and size. Combined with the

low computational complexity of the algorithm, this makes the

method suitable for on-line monitoring of hESC culture con-

fluency. To process the 18 46images required to cover our culture

chamber takes less than 15 min.

As a subject for future studies, culture results with adult stem

cells need to be developed to address the full scope of regenerative

medicine. Furthermore, the current study could be strengthened

by the addition of further online and end-point measurements,

including in vivo functional evaluation of the cells expanded in this

device. This would enhance comparison with other more

conventional methods of stem cell expansion. We are currently

integrating further monitoring capabilities, such as the detection of

bulk and peri-cellular dissolved oxygen concentrations, and

building a fully automated parallelised platform that fits on

a microscope stage. This will permit real-time data-rich experi-

mentation for regenerative medicine process development.

Materials and Methods

Fabrication of the Culture Device
All parts and moulds were designed with a 3D CAD system

(SolidWorks 2007, Dassault Systemes SolidWorks, USA). Alumin-

ium parts were machined by conventional CNC machining.

Polycarbonate (PC) parts were fabricated from PC sheets (3 mm,

681-637, RS, UK, and 5 mm, 681-659, RS, UK) with a CNC

micro-milling machine (M3400E, Folken Industries, USA) using 2-

flute standard length end mills (Kyocera Micro Tools, USA). The

G-code for the micro-milling machine was directly generated from

the CAD files (MasterCam X2, CNC Software, USA). Structured

PDMS (Sylgard 184, Dow Corning, USA) parts were cast in

moulds milled out of 5 mm thick poly(methylmethacrylate)

(PMMA) (20070, Nordisk Plast, Denmark), and 3 mm thick

aluminium. The moulds were inspected with an SEM (XB1540

‘‘Cross-Beam’’, Carl Zeiss AG, Germany). A schematic of the

fabrication steps and SEM images of the mould can be found in

Supporting Information S7, S8. Unstructured layers of PDMS

were fabricated by spin-coating (P6708D, Specialty Coating

Systems, USA) PDMS on a silanised (85041C, Sigma-Aldrich,

UK) 40 silicon wafer (Prolog Semicor, Ukraine) and cured at 80uC
for 1 hour. To bond PDMS parts they were rinsed with ethanol,

dried, and bonded using an air plasma (90 s, 30 W, 500 mTorr,

PDC-002, Harrick Plasma, USA), and cured in an oven at 80uC
for 2 hours.

Burst Pressure Measurements
To measure burst pressure a 10 ml plastic syringe was

connected to one interconnect via tubing and a 3-way valve (98-

2750, Harvard Apparatus, UK). Tubing connected to the other

interconnect was blocked with a Luer lock plug. The third port of

the 3-way valve was connected to a pressure sensor (40PC100G,

Honeywell, USA) glued into a fitting (P-207, Upchurch Scientific,

USA) with epoxy glue. A syringe drive was used to pump air into

the device at 5 ml.min21 and the pressure was logged via

a LabViewTM routine (LabView 2011, National Instruments,

USA) and data acquisition card (USB-6229BNC, National

Instruments, USA). The burst pressure was taken as the highest

recorded applied pressure for a given experiment. The burst

pressure was recorded 3 times per assembly for 12 different

assemblies. Additionally, for the last 3 assemblies, single burst

pressure measurements were made following iterations of lid

removal and reinsertion. Measurements were made following 1–

10, 20 and 30 iterations. Lid replacement burst pressures were

normalised against the initial burst pressure before applying

analysis of variance to investigate a relationship between burst

pressure and lid replacement. All device components used for

burst pressure experiments had previously been autoclaved.

Fluid Dynamic Modelling
The Navier-Stokes equations were solved by using the finite

element method (FEM) software package Comsol Multiphysics

3.5a (COMSOL, Cambridge, UK). A fully developed steady-state

flow with no slip condition at the boundaries was assumed. Water

at 37uC was used as working fluid with interpolated values for

density and dynamic viscosity of 993.2 kg.m23 and

6.9661024 Pa.s, respectively [50]. The boundary conditions were

set at the inlet to an average velocity calculated from the flow rate

(300 ml.h21), and at the outlet to zero pressure. Due to the

longitudinal symmetry of the microfluidic chip, only half of the

chip was incorporated in the model to minimise computational

time. Tetrahedral elements were employed to mesh the 3-D

domains of the culture device (mesh sizes between 2.5 to 7.5 mm,

527539 elements). The model was solved with a built-in linear

system solver UMFPACK.

Hydrodynamic shear stress was calculated from the simulated

velocity profile using the equation.

th~mc

where th is the shear stress at a height h from the surface, m the

dynamic viscosity and c the shear rate.

To verify and compare the calculated shear stress from the

model, the analytical solution of the equation for the wall shear

stress between infinite parallel plates was used:

tW~6m
Q

h2w

tw is the shear stress at the wall, h the height of the culture

chamber, w the width of the culture chamber, m the dynamic

viscosity and Q the volumetric flow rate.

Ethics Statement
Mouse embryonic fibroblasts (MEFs) were derived from mouse

embryos, which were harvested at day 12.5–13.5 of pregnancy

(E12.5-13.5) from a naturally mated CD-1 female mouse. The

pregnant female and the embryos were humanely sacrificed

following Schedule 1 of the Animals (Scientific Procedures) Act

1986, for which specific ethical approval and licence are not

required according to UK regulations.

Cell Maintenance
Shef-3 hESC line (,passage 70) obtained from the UK Stem

Cell Bank were cultured on a layer of feeder cells. Primary mouse

embryonic fibroblasts (MEFs) (,passage 5) were used as a feeder

layer. They were maintained in Dulbecco’s Modified Eagle

Medium (DMEM) (41965, Invitrogen, USA) supplemented with

10% (v/v) heat inactivated foetal bovine serum (FBS) (10270,

Invitrogen, USA) and 1% (v/v) Modified Eagle Medium Non-

Essential Amino Acids (MEM NEAA) (11140, Invitrogen, USA),

passaged every 3 days into T25-flasks (159910, Nunc, Denmark)

and cultivated in a humidified incubator at 37uC and 5% CO2. To
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inactivate the MEFs the growth medium was replaced with 5–7 ml

of normal MEF growth medium supplemented with 1 mg.ml21 of

mitomycin C (M4287, Sigma-Aldrich, UK) and incubated for 2

hours at 37uC. After inactivation cells were washed three times

with Dulbecco’s phosphate buffer solution (DPBS) (D1408, Sigma-

Aldrich, UK), detached by incubating with a trypsin:EDTA

solution (T4049, Sigma-Aldrich, UK) for 3 minutes, quenched

with normal MEF medium, centrifuged and re-suspended in MEF

media. Cells were seeded at a density of 9,200 cells cm22 into

T25-flasks that had been pre-coated with a 0.1% (w/v) in DPBS

gelatine solution (G1890, Sigma-Aldrich, UK) for 10 minutes at

room temperature.

The hESCs were cultivated in KnockOut DMEM (10829,

Invitrogen, USA) supplemented with 20% KnockOut Serum

Replacement (10828, Invitrogen, USA), supplemented with 1%

MEM NEAA (11140, Invitrogen, USA), 2 mM L-Glutamine

(21051, Invitrogen, USA), 0.1 mM b-mercaptoethanol (M3148,

Sigma-Aldrich, UK) and 4 ng.ml21 FGF2 (4114-TC, R&D

Systems, USA). For passaging, flasks were incubated with 1.5 ml

of 0.025 mg.ml21 collagenase solution (17104, Invitrogen, USA)

for 5 minutes, before being replaced with fresh hESC medium.

hESC colonies were then dissected into medium-sized colonies

using pasteur pipettes and transferred into a new flask containing

feeder cells prepared as outlined above.

Cell Culture
Prior to each cell culture experiment, all parts of the culture

device and all tubing and tools required for assembly were

autoclaved. The culture device was then assembled with a sterile

TC-PS slide in a laminar flow hood. For substrate coating and cell

seeding, the lid was removed (‘open’ configuration, Figure 7(a)).

Laboratory pipettes with 200 ml pipette tips were employed for all

steps. The TC-PS surface of the culture chamber and three single-

well dishes (353653, BD Biosciences, USA; culture area 2.89 cm2)

were coated with 0.1% (w/v) gelatine in DPBS solution, and left to

incubate at room temperature for 15 min. Then, each dish was

seeded with ,45,000 inactivated MEFs (seeding density of

,15,600 cells cm22) in 1000 ml of MEF medium. The culture

device was seeded with ,15,000 inactivated MEFs (,
28,800 cells cm22) in 200 ml of MEF medium. (A higher cell

density was chosen for the culture device to ensure confluency.)

The dish and culture device were transferred to incubator (37uC,
5% CO2). For transfer between laminar flow hood and incubator,

the culture device was placed in a large sterile glass Petri Dish

(2175553, Schott, USA). 1 day later the MEF media was replaced

with hESC media, dissected hESC colonies were seeded in the

culture device and the control dishes, and both were incubated

(37uC, 5% CO2) for a further day.

After 1 day of static culture, the medium in the culture chamber

was aspirated and the culture device closed with the re-sealable lid

(‘closed’ configuration, Figure 7(b)). An autoclavable tubing

(R1230, Upchurch Scientific, USA) with Upchurch fittings

(P207, Upchurch Scientific, USA) and a gas-permeable silastic

tubing (R3607, Tygon, USA), connected the syringe with the

culture device (Figure 8). The two types of tubing were attached to

each other via Luer adapters (F331 and P659, Upchurch

Scientific, USA). The gas permeable tubing was included to

adjust gaseous tension levels in the media before entering the

culture chamber. The culture device was manually primed with

culture medium using a syringe after which, the syringe was placed

on a syringe drive (Model100, KD Scientific, USA) and culture

medium perfused for 2 days at 300 ml.h21. The entire setup was

placed in an incubator to maintain the culture temperature and

atmospheric composition. Medium in the control dishes was

exchanged every day.

Cell Staining and Imaging
Daily cell culture inspections and end-point assay imaging were

performed with an inverted microscope (Eclipse TE2000-U,

microscope camera DS-Fi1, Nikon, Japan). Cell staining in the

culture device was performed in the open configuration. For

apoptosis/necrosis staining, cells were washed once with DPBS

then incubated for 5 min with Annexin V-FITC and propidium

iodide (PI) each diluted 1:100 in binding buffer (K101-25,

BioVision, USA). For immunostaining, hESC colonies were fixed

with 4% (v/v) paraformaldehyde (PFA) in phosphate buffered

saline (PBS) for 20 minutes then washed three times. All washing

was with PBS supplemented with 10% (v/v) FBS to block non-

specific binding. Cells to be stained for nuclear marker Oct-4 were

permeabilised by incubating with 0.2% Triton X-100 for 15 min

at room temperature before washing a further 3 times. We

incubated cells with primary monoclonal antibodies Oct-4 (SC-

5279, Santa Cruz, USA) or SSEA-3 (ab109868, Abcam, UK), at

a dilution of 1:200 in blocking solution, for one hour at room

temperature. The cells were then washed three times and

incubated with secondary antibodies that had an excitation

wavelength of 488 nm (A11017, Invitrogen, USA and A21212,

Invitrogen, USA respectively) for one hour at room temperature.

Cells stained for Oct-4 were then washed three times and co-

stained for Tra-1-81 by repeating the primary/secondary staining

procedure above with a Tra-1-81 primary (ab16289, Abcam, UK)

and a secondary with an excitation wavelength of 555 nm

(A21426, Invitrogen, USA). Finally, the cells were washed with

Figure 8. Schematic representation of the continuous media perfusion setup. A syringe pump is used to pump media through gas-
permeable tubing to adjust gaseous tension levels before entering the culture device.
doi:10.1371/journal.pone.0052246.g008
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DPBS and stained with 4’,6-diamidino-2-phenylindole (DAPI)

(D1306, Invitrogen, Carlsbad, CA, USA). DAPI at a dilution of

1:200 was incubated with cells at room temperature for 10

minutes. Three experts counted cells staining positive for DAPI

and Oct-4 in images of individual and partial colonies. Cells in

images of three different colonies were counted in both the culture

device and the control dish. The average counts across the three

users were used to calculate the percentage of positive cells in each

colony image.

Automated hESC Colonies Characterisation
All image processing was done using MATLAB (version

R2011a, MathWorks Inc., USA) and 12806960 images taken

using a 46 objective. Images were first converted to a double-

precision floating point greyscale representation by computing

a weighted average of the three image channels (weighted 0.290,

0.570 and 0.140 for red, green and blue components respectively).

The basic image features (BIFs) of the image were computed from

the responses of derivative-of-Gaussian filters according to the

scheme of Crosier and Griffin [51]. Briefly, the BIF approach

classifies each pixel of the image into one of seven classes based on

approximate symmetry in its neighbourhood. The parameter s
defines the scale of the derivative-of-Gaussian filters employed.

The readiness of the algorithm to ignore local structure and

classify a pixel as ‘flat’ is controlled by the parameter e. BIFs were
computed at scales sbase, 2sbase, 4sbase and 8sbase (sbase=0.7), with e
kept constant at 0.11. For each scale, a local histogram of the

counts of different BIFs appearing in a 25625 pixels uniformly

weighted window was built for each pixel of the image. The

resulting features vector for each pixel contained 28 elements (4

concatenated local BIF histograms of 7 bins each). A MATLAB

implementation of the random forest classifier [52] was trained

using 1.526107 pixels annotated by a human expert. Each pixel

was labelled as either hESC or background (which also included

fibroblast cells). The random forest consisted of 20 trees with 5

variables randomly sampled at each split.

When processing an image, the features associated with each

pixel were computed as outlined above and the random forest

classifier was used to predict the class labels. The result was

a binary image with hESC pixels equal to 1 and the rest to 0.

Finally, small objects were discarded as detection noise (size

,4000 pixels) and holes were filled (size ,6000 pixels) using

binary morphological operations.

Detection performance was evaluated by comparing the output

of the image processing algorithm to results of a human expert.

The testing set included 20 representative images (cropped to

5006500 pixels each) of typical hESC cultures in the micro-

fabricated culture device at different time points. These images

were independent from those used for training. The F-score was

computed as following:

F-score~2:TP= TPzFPð Þz TPzFNð Þð Þ

where TP was the number of true positives, FP the number of false

positives, and FN the number of false negatives. The confluency

was computed as the ratio of the number of pixels set to 1 (hESC

pixels) to the total number of pixels. The area of detected colonies

was computed by multiplying the number of pixels set to 1 by

a calibration factor relating pixels to distance (for a 46 lens, at

a resolution of 12806960 pixels, 1 pixel was equal to 2.86 mm2).

See Supporting Information S4 for the full set of pixel classification

metrics.

Supporting Information

Supporting Information S1 Representative higher mag-
nification phase contrast images of hESC colonies in the
culture device. Phase contrast images of hESC colonies after (a)

1 day of static culture and (b) 1 and (c) 2 days of perfused culture in

the microfabricated culture device. All images were taken with

a 106 objective, scale bar is 200 mm.

(TIF)

Supporting Information S2 Images from viability stain-
ing of hESC colonies following perfusion culture. Images

of a hESC colony after 2 days perfused culture in the

microfabricated culture device. From left to right (a) a phase

contrast image taken after staining, (b) annexin V staining and (c)

PI staining. All images were taken with a 206objective, scale bar

is 200 mm.

(TIF)

Supporting Information S3 Testing set of 20 images. For
each image, the panel on the left shows the border detected by the

image processing algorithm in blue overlaid on the grayscale phase

contrast image. The panel on the right shows the details of the

detection with the true positives in yellow, the true negatives in

black, the false positives in green, and the false negatives in red.

The scale bar is 500 mm.

(TIF)

Supporting Information S4 Evaluation of pixel classifi-
cation performance. Algorithm outputs for 20 representative

hESC images were compared to human expert annotations

resulting in the performance metrics listed.

(DOCX)

Supporting Information S5 Samples of broth from E.
Coli clearance test. Two PDMS chips and two PC lids were

incubated for 17 hours at 37uC in Terrific Broth containing E. Coli

XL10-Gold Kanr (Stratagene, UK). One of each type of part was

then autoclaved before each of the four parts were placed in

separate shake flasks of sterile Terrific Broth and incubated on

a shaker for 6 hours along with a flask containing only media

(negative control). This figure shows samples of broth from each

flask below their respective OD600 measurements. From left to

right; autoclaved PDMS chip, autoclaved PC lid, positive control

PC lid, positive control PDMS chip, negative control.

(TIF)

Supporting Information S6 Agar plates from E. Coli
clearance test. Agar plates showing zero colony forming units

following seeding of 100 ml of broth incubated with the (a) PDMS

and (b) PC parts respectively (see Supporting Information S5) and

a 1 day incubation at 37uC. Significant growth occurred in positive

controls (data not shown).

(TIF)

Supporting Information S7 Fabrication process of
a mould and a microfluidic chip. (1) A sheet of DuralH
was machined with a micromilling machine to create a mould (2).

(3) PDMS was cast into the mould and then degassed. A PC sheet

was placed on top of the mould to clamp the mould. Concurrently,

a silanised silicon wafer was spin coated with PDMS to form

a membrane. The PDMS-coated wafer and the clamped mould

were then cured for 1 hour at 80uC in an oven. (4) The

microfluidic manifold layer was released from the mould and the

culture chamber body was cut out. (5) The microfluidic manifold

layer and the PDMS membrane were exposed to an air plasma

and immediately brought into contact for bonding. (6) The

membrane at the bottom of the culture chamber body was cut out
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and the microfluidic chip was cut in shape and released from the

wafer. Schematic representation is not to scale.

(TIF)

Supporting Information S8 Scanning Electron Microsco-
py images of the mould for the microfluidic chip. The

negative flow equalisation barriers were milled with a 200 mm end

mill (a). Burrs were not observed at the edges of the mould, for

example at the edges of the flow equalisation barriers (b).
(TIF)
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