
Generation of Hard Non-Clausal Random Satisfiability Problems

Juan A. Navarro and Andrei Voronkov
University of Manchester

School of Computer Science
{navarroj,voronkov}@cs.man.ac.uk

Abstract

We present the results from experiments with a new family of
random formulas for the satisfiability problem. Our proposal
is a generalization of the random

�
-SAT model that intro-

duces non-clausal formulas and exhibits interesting features
such as (experimentally observed) sharp phase transition and
the easy-hard-easy pattern. The experimental results provide
some insights on how the use of different clausal transla-
tions can affect the performance of satisfiability solving al-
gorithms. We also expect our model to provide diverse and
challenging benchmarks for developers of SAT procedures
for non-clausal formulas.

Introduction
The problem of propositional satisfiability (SAT), that is to
decide whether there is a satisfying truth assignment for a
given propositional formula, is very interesting both from
theoretical and practical viewpoints. As the prime NP-
complete problem it plays a fundamental role in the com-
plexity and computation theory. The feasibility of many ap-
plications, especially in artificial intelligence, relies on the
existence of efficient procedures for solving this problem.

Randomly generated formulas have often been used as
benchmarks to evaluate the performance of satisfiability
solving procedures. It is important, as already pointed out
(Mitchell, Selman, & Levesque 1992; Mitchell & Levesque
1996), to have a clear understanding of the distribution of
such formulas and avoid incorrect conclusions from de-
ceiving experimentation results. An algorithm may quickly
solve several thousands of problems not because it is too
clever or effective but, unfortunately, because of a bad sam-
pling mechanism with a tendency to produce easy problems.

A model that has been recognized for being able to pro-
duce challenging benchmarks for the satisfiability problem
is random � -SAT. Formulas are produced by randomly se-
lecting clauses of length � built from a set with a given
number of variables. For one parameter of the distribu-
tion, namely the ratio between the number of clauses and
the number of variables, an interesting pattern has been ob-
served: the sets of generated formulas exhibit, at some crit-
ical region, a sharp transition between almost all being sat-
isfiable to almost none. Moreover, problems generated near

Copyright c
�

2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

this critical region are hard to solve for all existing systems,
while problems far from this region are either easy or only
moderately hard. Researchers have shown a lot of interest
in the study of random � -SAT and related problems (such
as determining bounds for the critical region) and, at the
same time, hard random 3-SAT formulas became a standard
benchmark for testing satisfiability procedures.

The results of the SAT Competition1 (Berre & Simon
2004), where new and state-of-the-art solvers are tested
against several benchmarks, have shown that the best solvers
on random 3-SAT are not necessarily the most effective on
real life applications and vice versa. One of the possible ex-
planations is that such random formulas, which are just large
sets of short and independent clauses, are unable to simulate
problems with some information about structure.

In this paper, we present a generalization of the random
� -SAT model that can be used to produce test formulas
with non-trivial structure. Our proposed fixed shape model,
which is based on the idea of introducing non-clausal for-
mulas, has several interesting features. First it produces a
family of instances controlled by a number of parameters,
allowing to evaluate solvers under different settings includ-
ing critical conditions. Examples from real life applications
usually don’t allow this amount of control. At the same time,
our proposed model produces instances with some level of
structure. This makes our model interesting to evaluate solv-
ing techniques that try to exploit such structure information.
In particular we hope that our model will help to provide
evaluation, benchmark and test problems for emerging non-
clausal solvers that are currently under development.

The main purpose of this paper is to experimentally study
the probability distribution of the formulas generated ac-
cording to the proposed model. Characteristic features such
as sharp phase transition and the existence of hard problems
in a critical region are observed. We also perform some ex-
periments to compare the performance of different state-of-
the-art solvers in combination with two clausal form transla-
tions. We address the question of how the choice of a trans-
lation affects the properties of the generated problems and
the performance of the solvers when trying to solve them.
Our results point out that no translation can be found better
that the other, and more research in this direction is needed.

1http://www.satcompetition.org/

1

Preliminaries

As usual, formulas are built from variables and propositional
logic connectives. A literal is either a variable or its nega-
tion. Given a set of variables � we use ��� to denote the set
of literals that can be built using the variables in � . A clause
is a disjunction of literals. A conjunction of clauses, some-
times represented by a set of clauses, is a formula in con-
junctive normal form (CNF). We use the term non-clausal or
non-CNF to emphasize that we are using arbitrary proposi-
tional formulas, not necessarily in conjunctive normal form.

A truth assignment is a function that maps the set of vari-
ables into �����	��

����������
�� . An arbitrary formula can be eval-
uated under a truth assignment following the standard rules
of propositional calculus. A formula is said to be satisfiable
if there is at least one truth assignment that evaluates the
formula to ���	��
 , and unsatisfiable otherwise. A satisfying
truth assignment is sometimes called a solution.

A complete SAT procedure is one that takes as input a for-
mula and always terminates returning either ‘yes’ or ‘no’ an-
swering if the formula is satisfiable. One of the most widely
used complete SAT procedures is DLL due to Davis, Loge-
mann and Loveland (1962). The procedure performs a back-
tracking deep-first search in the space of truth assignments,
and is usually augmented with several heuristics (unit prop-
agation, learning). The number of branches or decisions that
the procedure needs to perform in order to solve a problem is
usually taken as an indicator of the difficulty of the problem.

The fixed clause-length model

In this section we present the fixed clause-length model, usu-
ally referred in literature as random � -SAT, that generates
random CNF formulas. This model has three parameters:
the number of variables � , the number of clauses � and the
length � of the clauses to produce. The parameter ������� � ,
the ratio of clauses to variables, is often used to replace � .

A formula is generated by selecting clauses uniformly
at random from the set of all possible clauses of length � .
Slight variations of the model can be found whether triv-
ial clauses (with complementary or repeated literals) are al-
lowed or not. This, however, does not seem to affect the
general behavior of the distribution. Extensive research has
been done on random � -SAT (Mitchell, Selman, & Levesque
1992; Mitchell & Levesque 1996; Cook & Mitchell 1997)
where two main features are frequently pointed out:

Sharp Phase Transition: For each � and � , the proba-
bility of a generated formula of being satisfiable changes,
as the value of � increases, from almost ! to almost " in a
very narrow region. Moreover, as the value of � increases,
the transition seems to take place in a much narrower area
around some crossover point �$# . Friedgut (1999) was able
to show that, indeed, the size of the critical region shrinks as
� increases. His theoretical result, however, does not give
any clues about the value of �%# , or even if such value should
actually exist. For random 3-SAT, experimental evidence
suggests a value near &('*),+ , and bounds for the crossover re-
gion are also known: -�'*+,)/.0�%#1.0&
' +,",2 (Kaporis, Kirousis,
& Lalas 2003; Dubois, Boufkhad, & Mandler 2000).

The Easy-Hard-Easy Pattern: The difficulty of the gener-
ated problems (usually measured as the number of branches
explored by a DLL-based algorithm) exhibits a pattern that
goes from very easy, for small values of � , to very hard,
when � enters the phase transition, to easy (or moderately
hard) when � becomes large. This phenomena is usually ex-
plained by the fact that, for low values of � , a formula with
few clauses is under-constrained and very easy to satisfy. On
the other hand, for large � , the formula is over-constrained
and a complete SAT procedure can quickly find contradic-
tions to finish the search. The hardest problems appear in
the transition region where there are just enough clauses to
make the problem potentially unsatisfiable, but not too many
to make it easy for a solver to determine. The difficulty of
a particular distribution of formulas clearly depends on the
procedure used to solve it, but several authors have conjec-
tured that this general pattern will hold for any reasonable
complete method (Cook & Mitchell 1997).

The fixed shape model
Our proposed model is closely related to the fixed clause-
length model introduced in the previous section. We follow
the same idea to go from under- to over-constrained areas
but, instead of clauses of a fixed length, we use formulas
generated according to a particular fixed shape.

Definition 1. A shape is a propositional formula 3 such that
(i) 3 is built using the conjunction and disjunction connec-
tives only; and (ii) every variable appearing in 3 has exactly
one occurrence in it. An � -instance of a shape is any for-
mula obtained by replacing every variable in the shape by a
literal from the set �4� . A randomly generated � -instance
of a shape 5 , is a formula obtained by independently and
uniformly choosing literals from the set ��� to replace each
variable occurring in 5 .

In the sequel we assume that � is clear from the context
and simply speak about instances instead of � -instances.
The formula 687$9;:<7>=@?BA<7>C is an example of a shape. Two
��DE9>�FDG=>�FDGC,�HD(I,� -instances of this shape are 6KJ�DGCL:;D
=�?�A�J�DE9
and 6MJ�D I :ND C ?;AOD I . Let us introduce a special kind of
shape, called balanced conjunctive-disjunctive shapes; in-
formally these are balanced trees of alternating conjunctions
and disjunctions.

Definition 2. Given P integers ��9	� �,=,��'�'@'�� �%Q (with PSRT"
and �,UVRW)) we define two sets of formulas X �M9>� �%=>��'@'�'@� �$Q�Y
and Z � 9 � � = ��'�'@'�� � Q [recursively as follows.

1. If P\�W" , then the formulas in both X,Y and Z [are literals.
2. If P]R^! then every formula in X � 9 � � = ��'�'@'_� � Q Y is a con-

junction of � 9 formulas in Z � = ��'@'�'_� � Q [. Likewise, every
formula in Z �L9 � �,=%��'@'�'_� �%Q [is a disjunction of �L9 formulas
in X �,=%��'@'�'_� �%Q@Y .

Evidently, if we have large enough set of variables � ,
then every set Z �L9>��'@'�'_� �%Q [contains a shape 3 , moreover
Z �L9 ��'@'�'@� �$Q [is the set of all instances of this shape (and sim-
ilar for X � 9 �@'�'�'�� � Q Y). For this reason we will sometimes re-
fer to Z � 9 �@'�'@'�� � Q [as a balanced disjunctive shape and to
X �L9 �@'�'�'@� �$Q@Y as a balanced conjunctive shape. The value P
is called the depth of the shape.

2

7%9V7>=47>C47	I47��47�� 7��47��
�� �� �� ���� �� �� ��A A A A
� � � ��� ��: :
	 	 	

A

The shape ZK) �) ��) [Sample instances:����
�������
�����������
�������
���������������� !��
��#"����$�%���!�&�#'����
����
������&�#'�������
������&�#()���������
��� ���
��#'����$��
��+*+�&�������
���%� � ��
�� � �����%��,��&� � ���������� ' �&� � ���$�%� � �&� (���

Figure 1: Structure of the shape ZM)���) �) [together with three
sample instances.

Note that the balanced shapes and their instances are for-
mulas in negation normal form (NNF), one example is pre-
sented on Figure 1, moreover every formula in NNF is an
instance of some shape. We can define then the random
Z �L9>��'�'@'_� �$Q [-SAT model as follows. The parameters are the
number of variables � and a real number � , called density. A
test formula is produced as the conjunction of - ����. randomly
generated ��D 9 ��'�'@'_�FD+/E� -instances of Z � 9 ��'�'@'�� � Q [. Note that
the case Z � [gives us exactly the random � -SAT model. Also
there is no need to consider random X ��9	�@'�'�'�� �$Q�Y -SAT since
this would be equivalent to simply generate � 9 - � ��. random
instances of Z �%=%��'�'@'_� �$Q [.

Several properties of balanced shapes can be used to char-
acterize hardness of generated random formulas.

Theorem 1. Let 0 be an arbitrary but fixed truth assignment.
The probability 1325476)8:9:9:9 8 4�;�< that 0 satisfies a random instance
of Z �L9>��'�'@'�� �%Q [can be calculated as follows.

1!2�< � !	�>)4�
1!2=476)8:9:9:9 8 4�;�< � !?> 6@1�254�AB8:9:9:9 8 4�;�< ? 476 '

Proof. Note that this probability is just the number of in-
stances of the shape that are satisfied by the fixed truth as-
signment divided by the total number of instances of the
shape (with respect to a set � with a fixed number of vari-
ables). It is possible to count both things using very simple
combinatorial arguments.

Intuitively shapes with a value of 1 very close to " are
very hard to satisfy, so a fewer number of them are suffi-
cient to make a randomly generated problem unsatisfiable.
Conversely a value of 1 very close to ! would make a ran-
dom instance quite easy to satisfy, so only very large for-
mulas could have a chance of being unsatisfiable. The later
effect has been experimentally observed on random � -SAT
for large values of � (Mitchell & Levesque 1996) and is con-
firmed by analytical lower bounds of the crossover region
(Achlioptas & Peres 2003).

Theorem 2. The probability that a random instance of
Z �L9>��'�'@'_� �$Q [-SAT, with � variables and density � , is satis-
fiable tends to " as �DCFE for all �HGJI5KML;)%�3I5KML(6F! ��1G? .
With the value of 1 calculated as in Theorem 1.

Proof. A fixed truth assignment 0 satisfies a conjunction of- ����. instances of Z �L9	�@'�'@'_� �$Q [with probability 1!N O /QP . The

expected number of satisfying assignments is) / 1!N O /QP . This
value (and the probability of the instance of being satisfi-
able) tends to " as �RCSE when ��GTI5KML;)%�3I5KML(6F! ��1G? .

This simple argument, useful to estimate the location of
the critical region, has also been used to give an easy up-
per bound of the random � -SAT crossover point (Cook &
Mitchell 1997).

CNF Translations
While the formulas generated by our proposed model are
non-CNF in essence, modern SAT solvers and procedures
are designed under the assumption that their input is a CNF
formula. There is a recent interest on the design of non-
clausal satisfiability testing algorithms (Thiffault, Bacchus,
& Walsh 2004; Giunchiglia & Sebastiani 2000; Stachniak
2002), but mature implementations are not readily available
(see Related Work). In order to measure the hardness of our
formulas we decided to translate them into CNF first and
then use a standard clausal solver. This raises the important
question on how the choice of a particular translation could
affect the performance of existing solving procedures.

To test our formulas we used two kinds of translations.
The standard translation (equivalence preserving) is simply
based on distributive properties of disjunction and conjunc-
tion. It is well known that such translation causes an expo-
nential increase in the size of the problem.

Theorem 3. The standard translation of the balanced shape
Z � 9 ��'@'�'@� � Q�[produces a CNF formula with clauses of the
same length. Moreover, the length is the product of all the

�,U with odd U .
Table 1 illustrates this theorem showing the clause lengths

of several shapes. The second we consider is an optimized
translation (structure preserving) that uses the so called
naming technique to avoid an exponential size increase by
introducing new variables (Plaisted & Greenbaum 1986).
Let VW- XY. be an NNF formula with a distinguished subfor-
mula X . We assume that X is not a literal, hence X occurs inV positively. We can transform VW- XY. by (a conjunction of)
two formulas VW- 1�. and J+1 AZX , where 1 is a fresh variable. It
is not hard to argue that this transformation preserves satis-
fiability. The optimized translation takes a formula in NNF
and repeatedly applies this transformation until a formula in
CNF is obtained. We did a careful implementation that does
not introduce new variables unnecessarily.

The optimized translation has the main advantage of keep-
ing the size of the translated formula small (linear with re-
spect to the original), at the cost of introducing new vari-
ables. It was interesting to see how modern solvers cope
with this increase in the number of variables and determine
whether the introduced optimizations are useful or not.

Results
In order to experimentally observe the distribution of our
randomly generated formulas we started by running small
simulations with different shapes and parameter values on
a variety of solvers. Table 1 shows properties of formulas
tested at this stage. In this table, ‘vars’ is the number of

3

shape vars � ��� weight length fresh�����
	��
6 0.578 1.26 7.59 3 2.14 3���
�
3 0.875 5.19 15.57 3 3.00 0��	�������	��

16 0.533 1.10 17.61 4 2.89 2�������
�
18 0.551 1.16 20.95 6 2.21 6��	��
	������
	��
24 0.557 1.18 28.41 6 2.27 14�����
4 0.938 10.83 43.32 4 4.00 0����������	��

18 0.807 3.23 58.11 6 3.00 3��	��
	������
	��
32 0.716 2.08 66.46 8 2.32 18��	��
�����
�
30 0.763 2.56 76.78 6 3.82 2�����
5 0.969 21.83 109.16 5 5.00 0��	��
	���	��
	��
	��

32 0.880 5.42 173.51 8 2.95 10

Table 1: Properties of some balanced shapes

satisfiable formulas

Ratio of formulas-to-variables

Pr
ob

ab
ili

ty

54.543.532.52

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2: Probability of satisfiability of 70-variable random
Z�-(�H-(��) [-SAT formulas.

variables in the shape and 1 is the probability that a random
formula is satisfied by a truth assignment, see Theorem 1.
Then ��� is an upper bound of the crossover region, see The-
orem 2. The ‘weight’ of each shape is the product of the
number of variables and � � , it serves to compare the size of
the generated formulas (measured as an the number of liter-
als in them) in the hard region. Consider the ZM) �H&(�) [shape
for example, although it is bigger and more complex than a
simple length 4 clause, we only need a few instances of them
(- !%' !@��. instead of - !�"�' �>��.) to produce hard formulas. Low
weight shapes are interesting because they seem appropriate
to generate hard and short problems. The ‘length’ column
shows the length of the resulting clauses for the standard
translation, as in Theorem 3, and the average clause length
for the optimized one. Finally ‘fresh’ is the number of fresh
variables introduced by the optimized translation for each
generated instance of the shape.

Using this information we designed several experiments
whose results we detail now. At this stage we considered
three solvers: zChaff (2004.5.13), a carefully engineered
implementation of the DLL procedure (Moskewicz et al.
2001); march eq (2004.3.20, 100% lookahead), which inte-
grates equivalence reasoning techniques (Heule et al. 2004);
and kcnfs (2003.2.12), a solver with efficient heuristics to
solve random � -SAT formulas (Dubois & Dequen 2001).
The selection of the solvers was made using the results of
the SAT Competition 2004 as a reference. Moreover, we
wanted to use very diverse solvers in order to observe how

��� ��!���#"�$���#"�!

Ratio of formulas-to-variables

%&'
(B

ra
nc

he
s

54.543.532.52

1400

1200

1000

800

600

400

200

0

Figure 3: Number of branches required by zChaff on 60, 65,
and 70-variable formulas of random ZM-��H-(��) [-SAT.

all
unsatisfiable

satisfiable

Ratio of formulas-to-variables

%&'
(B

ra
nc

he
s

54.543.532.52

400

350

300

250

200

150

100

50

0

Figure 4: Number of branches of 60-variable formulas of
random Z�-(�H-(��) [-SAT, factored according to satisfiability.

different strategies and clausal translations perform in this
setting with mixed randomness and structure. The experi-
ments were run in parallel on 45 computers, each having an
Intel III 1GHz CPU and 512Mb RAM.

In a first experiment we performed an analysis of random
Z�-���-��) [-SAT formulas generating 500 samples for each pa-
rameter value. The purpose of this experiment was to obtain
an accurate description of the probability distribution of this
shape. Figure 2 shows an already familiar picture: the prob-
ability that a generated formula is satisfiable changes from
almost 1 to almost 0 in a narrow region around the 0.5 prob-
ability point, in this case close to ��� -�' "*) .

Figure 3 shows the median of the number of branches re-
quired by zChaff to solve these formulas. The easy-hard-
easy pattern is reproduced with the hardest problems near
the crossover point. The same basic pattern was found in all
our experiments with different solvers and shapes. Com-
pared to analogous results on random 3-SAT we can see
that the transition from easy to hard is much more sudden
(increasing from a few hundred to more than 1.3 million
branches in a region of length 0.3), while the decay after
leaving the critical region is gradual and slow. Figure 4,
which presents these results factored into satisfiable and un-
satisfiable groups, suggests that most of the satisfiable for-

4

Ratio of formulas-to-variables

N
um

be
r

of
va

ri
ab

le
s

4.543.532.52

55

50

45

40

35

30

25

20

15

Figure 5: Scaling "�' ! and "�' "�! -windows for � �)>"(��'�'@'_��+,"
on random Z�-(�H-(��) [-SAT formulas.

Translation clauses length variables
standard 2240 4 140
optimized 1260 2.89 420

Table 2: Statistics of clausal transformations for random
ZM)��F&
��) [-SAT with !@&%" variables at � � !,' " .

mulas are rather easy to solve; while the unsatisfiable ones,
several order of magnitudes harder, dominate the behavior
of the curve as soon as they appear. This figure also shows,
however, that the few satisfiable formulas to the right of the
crossover point can also have a significant difficulty.

Using a more intense sampling near the critical region
(1000 test cases per data point) we could observe the so
called scaling window effect. Let � be a real number (" .
� . "(' +) the � -window is the interval of values of � where
the probability of satisfiability lies within � and !Y>�� . Fig-
ure 5 shows how the length of the "�' ! and "(' "(! -windows
(the former denoted with a thicker plot line) decreases as the
value of � increases, the crossover point is also marked with
a small circle. This serves to provide observable evidence
that sharp phase transition can take place.

We also wanted to compare the performance of each
solver with respect to the clausal form translation applied.
For this final test we generated a smaller set of problems
(50 samples per point) with instances of random ZK) �F&
��) [-
SAT. In this case the crossover point was found near the
��� !%' " sample. Table 2 shows some statistics that compare
the clausal representations provided by the two translations.
In Table 3 the total CPU time usage of the solvers on each
translation is shown.

Figure 6 shows the relation between the two translations
for several values for � . The symbol

�������
	�� 6�D �
��? denotes

Translation zChaff march eq kcnfs
standard 431.5 min 58.3 min 14.8 min
optimized 722.8 min 31.9 min 19.1 min

Table 3: CPU time for each solver and translation to solve
ZM)��F&
��) [-SAT with !@&%" variables.

kcnfs
march eq

zChaff

Ratio of formulas-to-variables

� ���
��� � �
�����
� ���
��� � �
����

1.41.31.21.110.90.80.7

3

2.5

2

1.5

1

0.5

0

Figure 6: Effectiveness of the optimized translation for solv-
ing ZM) �H&(�) [-SAT with zChaff, march eq and kcnfs.

the total number of branches used to solve 50 problems, with
a fixed value of � , for each combination of a solver D and a
translation � . The proportion

��������	�� 68D � �"!$#H?H� ���%����	�� 68D��
&'#
(?
helps to provide a fair comparison indicating how the use of
the optimized instead of the standard translation improved
(. !) or deteriorated (G !) the performance of the solver.
It is quite surprising that no translation can be found better
than the other. The solvers zChaff and kcnfs showed a bet-
ter performace with the standard translation and, conversely,
march eq found more useful the optimized one. We could
suspect that, since march eq incorporates equivalence rea-
soning, the use of the optimized translation helps the solver
to figure out the structure of the problem. While, for the
other two solvers, the introduction of new variables by the
optimized translation has the undesirable effect of increas-
ing the total space searched. We performed similar experi-
ments with other shapes and parameter values. Due to lack
of space it is not possible to include more details, but the
general observations already discussed were also found in
the other experiments.

Related Work
The study and development of non-clausal procedures for
the satisfiability problem is quite recent. Some authors have
initiated a search of tractable classes of non-clausal prob-
lems (Altamirano & Escalada-Imaz 2000), while others look
for possible ways to generalize the DLL method (Thiffault,
Bacchus, & Walsh 2004; Giunchiglia & Sebastiani 2000;
Stachniak 2002). It would be very interesting to test our
formulas with the system NoClause described in (Thiffault,
Bacchus, & Walsh 2004), however we encountered some
portability issues with the current version that prevented us
from doing some experimentation. In the work of Stachniak
(2002) a first attempt to build hard non-clausal formulas is
made, they are instances of X�) �) � - � ��.K��->Y , however no evi-
dence of sharp phase or difficulty patterns were reported.

Although most of the research on randomly generated
SAT problems is focused on the random � -SAT model,
other variants can also be found in literature. Monas-
son and Zecchina (1997) proposed a random 6M)*) 1G? -SAT
model that, based on insights from statistical mechanics,

5

mixes 2- and 3-SAT clauses. Other variable length models
have also been considered (constant probability, or expected
length) but they were found unsuitable for the production
of hard problems (Mitchell, Selman, & Levesque 1992;
Mitchell & Levesque 1996).

Generation of structured hard instances for the SAT prob-
lem has been usually done by translating problems from
other domains (graphs, combinatorics, optimization, . . .)
into propositional boolean formulas. Other generators, such
as XOR-SAT (Barthel et al. 2002), are particularly designed
to produce only satisfiable instances. There has also been
a lot of interest in the more general setting of random con-
straint satisfaction problems (Gent et al. 2001), and gener-
alized satisfiability problems (Creignou & Daude 2002).

Conclusions
Extensive research on the satisfiability problem has derived
in a deeper understanding on this and many other important
problems in AI and related fields. Very efficient implemen-
tations of solving procedures are now easily available, and
the performance of state-of-the-art solvers keeps improving
each year. We believe that, in the near future, the research in
this area will focus on the development of new theories and
procedures that, extending current known approaches, will
be able to handle general classes of formulas that encode
information in a more succinct and efficient way.

In this paper we have presented a model that allows to
randomly generate hard non-clausal formulas. We expect
this procedure to provide diverse and challenging material
to evaluate the performance of current and next generation
solvers that have started to introduce non-clausal features.
We have carried out a careful experimental observation of
the properties exhibited by these formula distributions where
the familiar sharp phase phenomenon and easy-hard-easy
patterns were found.

A second contribution of this paper, not done before to
the best of our knowledge, is a first study on how the use
of a particular clausal translation affects the performance of
existing CNF solving procedures. We believe that the results
obtained will motivate researchers to experiment with this
translations and discover new approaches to efficiently deal
with problems containing non-clausal information.

References
Achlioptas, D., and Peres, Y. 2003. The threshold for random

�
-

SAT is � � ����� ���	� � � ���
. In STOC ’03: Proceedings of the thirty-

fifth annual ACM symposium on Theory of computing, 223–231.
San Diego, CA, USA: ACM Press.

Altamirano, E., and Escalada-Imaz, G. 2000. An efficient proof
method for non-clausal reasoning. In ISMIS ’00: Proceedings of
the 12th International Symposium on Foundations of Intelligent
Systems, 534–542. Springer-Verlag.

Barthel, W.; Hartmann, A.; Leone, M.; Ricci-Tersenghi, F.;
Weigt, M.; and Zecchina, R. 2002. Hiding solutions in random
satisfiability problems: a statistical mechanics approach. Phys.
Rev. Lett. 88.

Berre, L., and Simon. 2004. Fifty-five solvers in Vancouver: the
SAT 2004 competition. In Theory and Applications of Satisfia-

bility Testing: 7th International Conference, SAT 2004, Lecture
Notes in Computer Sciences.
Cook, S. A., and Mitchell, D. G. 1997. Finding hard instances of
the satisfiability problem: A survey. In Discrete Mathematics and
Theoretical Computer Science, volume 5 of DIMACS. American
Mathematical Society.
Creignou, N., and Daude, H. 2002. Random generalized satisfia-
bility problems. In SAT 2002: Fifth International Symposium on
the Theory and Applications of Satisfiability Testing.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A ma-
chine program for theorem-proving. Communications of the ACM
5:394–397.
Dubois, O., and Dequen, G. 2001. A backbone-search heuristic
for efficient solving of hard 3-SAT formulae. In Proc. of the 17th
International Joint Conference on Artificial Intelligence (IJCAI’
01).
Dubois, O.; Boufkhad, Y.; and Mandler, J. 2000. Typical random
3-SAT formulae and the satisfiability threshold. In SODA’00:
Proc. of the eleventh annual ACM-SIAM symposium on Discrete
algorithms, 126–127. San Francisco, CA: Society for Industrial
and Applied Mathematics.
Friedgut, E. 1999. Sharp thresholds of graph properties and the�

-SAT problem. Journal of the American Mathematical Society
12(4):1017–1054.
Gent, I. P.; Macintyre, E.; Prosser, P.; Smith, B. M.; and Walsh,
T. 2001. Random constraint satisfaction: Flaws and structure.
Constraints 6(4):345–372.
Giunchiglia, E., and Sebastiani, R. 2000. Applying the Davis-
Putnam procedure to non-clausal formulas. In AI*IA ’99: Pro-
ceedings of the 6th Congress of the Italian Association for Arti-
ficial Intelligence on Advances in Artificial Intelligence, 84–94.
Springer-Verlag.
Heule, M.; van Zwieten, J.; Dufour, M.; and van Maaren, H.
2004. March eq: Implementing additional reasoning into an effi-
cient lookahead SAT solver. In Theory and Applications of Satis-
fiability Testing: 7th International Conference, SAT 2004, Lecture
Notes in Computer Sciences.
Kaporis, A. C.; Kirousis, L. M.; and Lalas, E. 2003. Selecting
complementary pairs of literals. In Proc. LICS‘03 Workshop on
Typical Case Complexity and Phase Transitions.
Mitchell, D. G., and Levesque, H. J. 1996. Some pitfalls for
experiments with random SAT. Artificial Intelligence 81:111–
125.
Mitchell, D. G.; Selman, B.; and Levesque, H. 1992. Hard and
easy distributions of SAT problems. In Proceedings of the Tenth
National Conference on Artificial Intelligence (AAAI-92), 459–
465.
Monasson, R., and Zecchina, R. 1997. Satistical mechanics of
the random

�
-SAT model. Phys. Rev. E 56:1357–1370.

Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and Malik, S.
2001. Chaff: Engineering an efficient SAT solver. In 39th Design
Automation Conference (DAC 2001).
Plaisted, D. A., and Greenbaum, S. 1986. A structure-preserving
clause form translation. J. Symb. Comput. 2(3):293–304.
Stachniak, Z. 2002. Going non-clausal. In SAT 2002: Fifth
International Symposium on the Theory and Applications of Sat-
isfiability Testing.
Thiffault, C.; Bacchus, F.; and Walsh, T. 2004. Solving non-
clausal formulas with DPLL search. In Theory and Applications
of Satisfiability Testing: 7th International Conference, SAT 2004,
number 3258 in Lecture Notes in Computer Sciences, 663–678.

6

