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Abstract. We study the notion of strong equivalence between two An-
swer Set programs and we show how some particular cases of testing
strong equivalence between programs can be reduced to verify if a for-
mula is a theorem in intuitionistic or classical logic. We present some
program transformations for disjunctive programs, which can be used to
simplify the structure of programs and reduce their size. These transfor-
mations are shown to be of interest for both computational and theo-
retical reasons. Then we propose how to generalize such transformations
to deal with free programs (which allow the use of default negation in
the head of clauses). We also present a linear time transformation that
can reduce an augmented logic program (which allows nested expressions
in both the head and body of clauses) to a program consisting only of
standard disjunctive clauses and constraints.

1 Introduction

Answer Set Programming (ASP), also known as Stable Logic Programming
[12] or A-Prolog, is an important outcome of the theoretical work on Non-
monotonic Reasoning and AI applications of Logic Programming in the last
15 years. The main syntactic restriction needed is to eliminate function sym-
bols from the language, because using infinite domains the answer sets are
no longer necessarily recursively enumerable. There are two popular software
implementations for computing answer sets, DLV and SMODELS, that are
available online at the addresses http://www.dbai.tuwien.ac.at/proj/dlv/ and
http://saturn.hut.fi/pub/smodels/ respectively.

One important issue to determine is when two programs are ‘equivalent’.
Two notions of equivalence with respect to ASP are defined in [15]. We define
two programs to be equivalent if both have exactly the same answer sets. Two
programs P1 and P2 are said to be strongly equivalent if, for every program P ,
the programs P1∪P and P2∪P are equivalent. Notice, if we are able to determine
that two different codings for some part of a program are strongly equivalent,
then we can safely replace one by the other without changing the declarative
semantics of the program.

Often, in applications of Logic Programming, we are interested in computing
answer sets for several different programs P1, P2, . . . , Pn containing a large com-
mon part P . The same conclusions are redundantly calculated each time from



the same rules when computing these answer sets. Examples of such applications
are found in answer set planning [7] where the method of finding a plan reduces
to compute answer sets for several programs containing the knowledge of an
agent and its planning strategy at each instant in time.

Similar algorithms are suggested for diagnostic reasoning from authors in
[11, 3] where the knowledge of an agent at two consecutive moments of time is
represented by logic programs Pn and Pn+1 that differ from each other only
by some rules about the current observations and goals. To determine its next
action the agent needs to compute answer sets for Pn and Pn+1 which, again,
share a large common part. The transformations discussed in this paper can
be used to simplify and reduce this large common part and optimize then the
computation of answer sets for each individual program.

It has been shown that both Jankov and HT logics characterize the class
of strongly equivalent augmented logic programs [15, 13]. Augmented programs
allow nested expressions using conjunction, disjunction and default negation in
both the body and head of clauses. Here we present some results that relate
strong equivalence of augmented programs with intuitionistic and classical logic.
These relations to intuitionistic and classical logic turn out to be very useful
because in these last two logics many results are available.

In particular we prove that, given two augmented programs, it is possible to
construct in linear time a propositional formula F , of linear size with respect to
the programs, such that these two programs are strongly equivalent if and only if
F is a theorem in intuitionistic logic. We also show that if a program P can prove,
in the sense of classical logic, a negated atom ¬a then we can add this fact to
the program preserving strong equivalence. Similarly, for a disjunctive program
P , if using only its positive fragment it is possible to obtain an intuitionistic
proof for an atom a then we can safely add this fact to the program. In general
it is shown that the answer set semantics satisfies negative cumulativity, namely
a literal ¬a can be added to a program preserving equivalence if ¬a is true in
every answer set of the given program.

It is also interesting to study some program transformations that preserve
these equivalence notions. Some basic transformation rules for logic programs
were defined in [19] and shown to be of great interest for several theoretical and
practical reasons. Theoretical achievements are presented in [10] where a com-
bination of transformation methods with logic programming technology created
a powerful framework for investigating the semantics of logic programs. It was
proved that most of the popular semantics, including the well-founded semantics
WFS, can be defined as confluent transformation systems in a natural way. A
polynomial time computable approximation of the answer set semantics for nor-
mal programs using this approach is defined in [10]. It has also been proved how
program transformations can, in certain cases, transform programs into tight
ones [17]. Tight programs have the desirable property that a satisfiability solver
can be used to efficiently compute answer sets.

We propose and study some other transformations in the context of answer
sets. We point out some possible applications as described above and stress the



use of such transformations for theoretical purposes. Some popular transfor-
mations for normal programs (RED+, RED−, SUC, Failure, Contra) had
been generalized to disjunctive programs and proved to preserve equivalence.
We present here a generalization of the Loop transformation, defined in [9], and
prove that it also preserves equivalence. We also continue and generalize some
of these transformations to free programs (which allow default negation in the
head of clauses) and prove that they preserve strong equivalence.

We also show a theoretical application of such transformations. They are
used, in particular, to prove and construct a linear time computable transfor-
mation of free programs (with negation in the head) to disjunctive ones. This
simple transformation allows us to compute answer sets for programs up to the
augmented type (with nested expressions) using current software implementa-
tions, which can deal with disjunctive clauses and constraints only. Of course
they also propose a way to implement new software capable to compute answer
sets in more general circumstances. We think our results will contribute to a
better understanding of the notion of ASP in general propositional theories.

It is a standard procedure in answer set programming to work with finite
propositional theories. Variables are removed from programs with predicates
by grounding. As Lifschitz noted in [14] “We treat programs as propositional
objects; rules with variables are viewed as schemata that represent their ground
instances.” Function symbols are not allowed so that the ground instance of a
program is always finite. This is why our attention is mainly restricted to finite
propositional theories. However, it is also discussed how some of our results can
be applied to programs with predicates before making these programs ground.

Our paper is structured as follows: in Section 2 we present the syntax of
disjunctive, general, free and augmented programs, we also include the official
definition of answer sets for augmented logic programs. In Section 3 we present
the definition of some si-logics and our results for relations between Jankov
and Intuitionistic logics. In Section 4 we present an application of our results
to ASP. We prove some results on strong equivalence. Some transformations
for disjunctive and free programs are discussed. Also reductions of programs to
simplify their structure are proposed. In Section 6 we present our conclusions.
Finally in Section 7 we give the proofs of our results.

2 Background

A signature L is a finite set of elements that we call atoms, or propositional
symbols. The language of propositional logic has an alphabet consisting of

proposition symbols: p0, p1, . . .
connectives: ∧, ∨, ←, ⊥ auxiliary symbols: (, ).

Where ∧, ∨, ← are 2-place connectives and ⊥ is a 0-place connective. Formulas
are built up as usual in logic. If F is a formula we will refer to its signature
LF as the set of atoms that occur in F . The formula ¬F is introduced as an
abbreviation for ⊥ ← F (default negation), and F ≡ G as an abbreviation for



(F ← G)∧(G← F ), also > abbreviates ¬⊥. Observe that > can be equivalently
defined as a ← a where a is any atom. A literal is either an atom a, or the
negation of an atom ¬a. The complement of a literal is defined as (a)c = ¬a and
(¬a)c = a, analogously givenM a set of literals Mc = {(a)c | a ∈M}.

Given a set of formulas F , we define the set ¬F = {¬F | F ∈ F}. Also, for
a finite set of formulas F = {F1, . . . , Fn}, we define

∧
F = F1 ∧ · · · ∧ Fn and∨

F = F1 ∨ · · · ∨ Fn. If F = ∅ then we define
∧
F = > and

∨
F = ⊥.

When a formula is constructed as a conjunction (or disjunction) of literals,
F =

∧
` (or F =

∨
`) with ` a set of literals, we denote by Lit(F ) such set of

literals `. Elementary formulas are atoms and the connectives ⊥ and > [22], and
an ∧∨¬ formula is a formula constructed by using (only) the logical connectives
{∧,∨,¬} arbitrarily nested. For instance ¬(a ∧ b) ∨ (¬c ∧ (p ∨ ¬q)) is an ∧∨¬
formula.

A clause is a formula of the form H ← B where H and B, arbitrary formulas
in principle, are known as the head and body of the clause respectively. If H = ⊥
the clause is called a constraint and may be written as ← B. When B = > the
clause is known as a fact and can be noted just by H.

An augmented clause is a clause where H and B are any ∧∨¬ formulas.
A basic formula is either > or an ∧∨¬ formula, which does not contain the
negation as failure operator (¬). Note that a broader form of this type of clauses
is considered in [22] where they also include two kinds of negation as well as
implications in the body. We only include one kind of negation that corresponds
to their default negation, however they use the symbol not for our negation ¬.

A free clause is a clause of the form
∨

(H+ ∪ ¬H−) ←
∧

(B+ ∪ ¬B−) where
H+, H−, B+, B− are, possibly empty, sets of atoms. Sometimes such clause
might be written as H+ ∨ ¬H− ← B+,¬B− following typical conventions for
logic programs. When H− = ∅, there is no negation in the head, the clause is
called a general clause. If, moreover,H+ 6= ∅ (i.e. it is not a constraint) the clause
is called a disjunctive clause. When the set H+ contains exactly one element the
clause is called normal.

Finally, a program is a finite set of clauses. If all the clauses in a program
are of a certain type we say the program is also of this type. For instance a
set of augmented clauses is an augmented program, a set of free clauses is a free
program and so on.

For general programs, and proper subclasses, we will use HEAD(P ) to denote
the set of all atoms occurring in the head of clauses in P .

2.1 Answer sets

We now define the background for answer sets, also known as stable models. This
material is taken from [22] with minor modifications since we do not consider
their classical negation.

Definition 2.1. [22] We define when a set X of atoms satisfies a basic formula
F , denoted by X |= F , recursively as follows:

for elementary F , X |= F if F ∈ X or F = >.



X |= F ∧G if X |= F and X |= G.
X |= F ∨G if X |= F or X |= G.

Definition 2.2. [22] Let P be a basic program. A set of atoms X is closed under
P if, for every clause H ← B in P , X |= H whenever X |= B.

Definition 2.3. [22] Let X be a set of atoms and P a basic program. X is called
an answer set for P if X is minimal among the sets of atoms closed under P .

Definition 2.4. [22] The reduct of an augmented formula or program, relative
to a set of atoms X, is defined recursively as follows:

for elementary F , FX = F .
(F ∧G)X = FX ∧GX .
(F ∨G)X = FX ∨GX .
(¬F )X = ⊥ if X |= FX and (¬F )X = > otherwise.
(H ← B)X = HX ← BX .
PX = {(H ← B)X | H ← B ∈ P}

Definition 2.5 (Answer set). [22] Let P be an augmented program and X a
set of atoms. X is called an answer set for P if it is an answer set for the reduct
PX .

As can be seen, answer sets are defined for propositional logic programs only.
However this definition can be extended to predicate programs, which allow the
use of predicate symbols in the language, but without function symbols to ensure
the ground instance of the program to be finite. So a term can only be either a
variable or a constant symbol.

A substitution is a mapping from a set of variables to a set of terms. The
symbol θ is used to denote a substitution. The application of a substitution θ
over an atom p will be denoted as pθ. For more formal definitions and discussions
related to substitutions we refer to [16]. Suppose for example we have a substi-
tution θ where θ := [X/a, Y/b, Z/a]. Then p(X, Y, Z, c)θ is the ground instance
p(a, b, a, c).

The ground instance of a predicate program, Ground(P ), is defined in [14] as
the program containing all ground instances of clauses in P . Then M is defined
as an answer set of a predicate program P if it is an answer set for Ground(P ).

We want to stress the fact that the general approach for calculating answer
sets of logical programs is to work with their ground instances. However we will
see that some of our proposed transformations can be applied to programs before
grounding, so that less computational effort might be required.

3 Results on logic

A si-logic is any logic stronger (or equal) than intuitionistic (I) and weaker
than classical logic (C). For an axiomatic theory, like I, we also use its name
to denote the set of axioms that define it. Jankov Logic (Jn) is the si-logic



Jn = I ∪ {¬p ∨ ¬¬p}, where the axiom schema ¬p ∨ ¬¬p characterizing it is
also called weak law of excluded middle. The HT logic (or G3) can be defined
as the multivalued logic of three values as defined by Gödel, or axiomatically as
I ∪ {(¬q → p)→ (((p→ q)→ p)→ p)}.

We write `X to denote the provability relation in a logic X. Two formulas F
and G are said to be equivalent under a given logic X if `X F ≡ G, also denoted
as F ≡X G.

We present now several results on intuitionistic and Jankov logics, which
will be used later to prove and construct other properties and transformations
related to Answer Set Programming. However notice that the following results
and definitions in this section are not restricted to the syntax of clauses or logical
programs. Formulas are as general as they can be built typically in logic.

Lemma 3.1. Let T be any theory, and let F,G be a pair of equivalent formulas
under any si-logic X. Any theory obtained from T by replacing some occurrences
of F by G is equivalent to T (under X).

Definition 3.1. The set P of positive formulas is the smallest set containing
all formulas that do not contain the ⊥ connective.

The set N of two-negated formulas is the smallest set X with the properties:

1. If a is an atom then (¬¬a) ∈ X.
2. If A ∈ X then (¬¬A) ∈ X.
3. If A,B ∈ X then (A ∧B) ∈ X.
4. If A ∈ X and B is any formula then (A ∨B), (B ∨A), (A← B) ∈ X.

For a given set of formulas Γ , the positive subset of Γ , denoted as Pos(Γ ),
is the set Γ ∩P.

Proposition 3.1. Let Γ be a subset of P ∪ N, and let A ∈ P be a positive
formula. If Γ `I A iff Pos(Γ ) `I A.

Proposition 3.2. Let a1, . . . , an be all the atoms occurring in a formula A.
Then `Jn A iff (¬a1 ∨ ¬¬a1), . . . , (¬an ∨ ¬¬an) `I A .

Lemma 3.2. Let A be a positive formula and Γ be a subset of P∪N. Γ `Jn A
iff Pos(Γ ) `I A.

4 Applications to ASP

In this section we return to the context of Answer Set Programming. So far we
can define several types of equivalence between programs. For example, two logic
programs P1 and P2 are said to be equivalent under stable, denoted P1 ≡stable P2,
if they have the same answer sets. Similarly P1 and P2 are equivalent under logic
X if the formula `X

∧
P1 ≡

∧
P2 is provable.

Another useful definition of equivalence, known as strong equivalence, can
be defined in terms of any equivalence relation for logic programs.



Definition 4.1 (Strong equivalence). Two programs P1 and P2 are said to
be strongly equivalent (under X) if for every program P , P1 ∪P and P2 ∪P are
equivalent (under X).

This definition is given in [15] in the context of stable semantics where it is
found to be particularly useful. The main purpose of our paper is now to stand
some relations between these different types of equivalence.

In general, it is clear that strong equivalence implies equivalence. But the
converse is not always true.

Example 4.1. Consider the programs P1 = {a ← ¬b} and P2 = {a}. They are
equivalent in stable because {a} is the unique stable model for both programs.
However P1 ∪ {b← a} has no stable models, while P2 ∪ {b← a} has {a, b} as a
stable model.

One first important connection of Answer Set Programming with Logic is
given in the following theorem.

Theorem 4.1 ([15]). Let P1 and P2 be two augmented programs. Then P1 and
P2 are strongly equivalent under stable iff P1 and P2 are equivalent under G3

logic.

In [13] a different version of this theorem is proved using Jankov Logic instead
of the G3 logic.

Theorem 4.2 ([13]). Let P1 and P2 be two augmented programs. Then P1 and
P2 are strongly equivalent under stable iff P1 and P2 are equivalent in Jankov
logic.

Using the machinery of logic and results from previous section we can propose
alternative ways of testing whether two programs are strong equivalent, and some
simple transformations that preserve strong equivalence.

Lemma 4.1. Let P1 and P2 be two augmented programs, and let {a1, . . . , an}
be the atoms in LP1∪P2 . Then the programs P1 and P2 are strongly equivalent iff
(¬a1 ∨ ¬¬a1), . . . , (¬an ∨ ¬¬an) `I

∧
P1 ≡

∧
P2.

Consider the following program P1 that shows that intuitionistic logic cannot
be used in theorem 4.2 (the program, as well as the observation, was given in
[15]).

P1: q ← ¬p.
p← ¬q.
r ← p ∧ q.
s← p.
s← q.

Let P2 be P1 ∪ {s← ¬r}. We can show, by Theorem 4.2, that they are strongly
equivalent by showing that they are equivalent in Jankov logic. Note that by
using our lemma 4.1 we can use intuitionistic logic to get the desired result.



Furthermore, it is possible to use an automatic theorem prover, like porgi imple-
mented in standard ML and available at http://cis.ksu.edu/∼allen/porgi.html,
to help us to solve our task.

We can also use lemma 3.2 to reduce a proof of strong equivalence to a proof
in intuitionistic logic without having to add the extra assumptions (¬ai∨¬¬ai).
Of course, we need the hypothesis of the lemma to hold. An interesting case is
the following.

Lemma 4.2. Let P be a disjunctive program and a an atom. P is strongly e-
quivalent to P ∪ {a} iff Pos(P ) `I a.

Lemma 4.3. Given an augmented program P and a negated atom ¬a, then P
is strongly equivalent to P ∪ {¬a} iff P `C ¬a

The above two lemmas allow us to add known or provable facts to programs
in order to simplify them and make easier the computation of answer sets.

Lemma 4.4 (Negative Cumulativity). Stable satisfies negative cumulativ-
ity, namely: for every atom a, if ¬a is true in every stable model of P , then P
and (P ∪ {¬a}) have identical stable models.

5 Program Transformations

In this section we will study some transformations that can be applied to logic
programs. We verify some properties and applications, and stress the use of such
transformations for theoretical reasons. We show how they can be used to define
semantics and impose desirable properties to them.

5.1 Disjunctive Programs

We will first discuss some transformations defined for disjunctive programs.
Given a clause C = A ← B+,¬B−, we write dis-nor(C) to denote the set of
normal clauses {a← B+,¬(B−∪ (A\{a})) | a ∈ A}. This definition is extended
to programs as usual, applying the transformation to each clause.

For a normal program P , we write Definite(P ) to denote the definite pro-
gram obtained from P removing every negative literal in P . For a disjunctive
program, Definite(P ) = Definite(dis-nor(P )). And given a definite program P ,
by MM (P ) we mean the unique minimal model of P (which always exists for
definite programs, see [16]).

The following transformations are defined in [4] for disjunctive programs.

Definition 5.1 (Basic Transformation Rules). A transformation rule is a
binary relation on the set of all programs defined within the signature L. The
following transformation rules are called basic. Let a disjunctive program P be
given.

RED+: Replace a rule A ← B+,¬B− by A ← B+,¬(B− ∩HEAD(P )).



RED−: Delete a clause A ← B+,¬B− if there is a clause A′ ← > in P such
that A′ ⊆ B−.

SUB: Delete a clause A ← B+,¬B− if there is another clause A′ ← B′+,¬B′−
such that A′ ⊆ A, B′+ ⊆ B+ and B′− ⊆ B−.

Example 5.1. Let P be the program:

P : a ∨ b← c ∧ ¬c ∧ ¬d.
a ∨ c← b.
c ∨ d← ¬e.
b← ¬c ∧ ¬d ∧ ¬e.

then HEAD(P ) = {a, b, c, d} and we can apply RED+ on the 4th clause to get
the program

P1: a ∨ b← c ∧ ¬c ∧ ¬d.
a ∨ c← b.
c ∨ d← >.
b← ¬c ∧ ¬d ∧ ¬e.

If we apply RED+ again we will obtain

P2: a ∨ b← c ∧ ¬c ∧ ¬d.
a ∨ c← b.
c ∨ d← >.
b← ¬c ∧ ¬d.

And now we can apply SUB to get the program

P3: a ∨ c← b.
c ∨ d← >.
b← ¬c ∧ ¬d.

Finally we can remove the third clause using RED−

P4: a ∨ c← b.
c ∨ d← >.

We observe that the transformations just mentioned above are among the
minimal requirements a well-behaved semantics should have (see [8]). The fol-
lowing are two other transformations as defined in [4].

GPPEa: (Generalized Principle of Partial Evaluation) If P contains a clause
A ← B+,¬B−, B+ 6= ∅, and B+ contain a distinguished atom a, where
a /∈ (A ∩ B+), replace such clause by the following n clauses (i = 1, . . . , n):

A ∪ (Ai \ {a})← (B+ \ {a}) ∪ Bi
+,¬(B− ∪ Bi

−) ,

where Ai ← Bi
+,¬Bi

− are all clauses with a ∈ Ai. If no such clauses exist,
we simply delete the former clause. If the transformation cannot be applied
then GPPEa behaves as the identity function over A ← B+,¬B−.



TAUTa: (Tautology) If there is a clause A ← B+,¬B− such that A ∩ B+ 6= ∅
and A ∩ B+ contain a distinguished atom a then remove such clause. If
the transformation cannot be applied then TAUTa behaves as the identity
function over A ← B+,¬B−.

The rewriting system that contains, besides the basic transformation rules,
the rules GPPE and TAUT is introduced in [4] and denoted as CS1. This
system is also used in [5] to define a semantic known as the disjunctive well-
founded semantics or D-WFS.

However, the computational properties of the CS1 system are not very good.
In fact, computing the normal form of a program is exponential, whereas it is
known that the WFS can be computed in quadratic time. Some other transfor-
mations need to be defined in order to solve this computational problem.

Definition 5.2 (Dsuc). If P contains the clause a ← > and there is also a
clause A ← B+,¬B− such that a ∈ B+, then replace it by A ← (B+ \{a}),¬B−.

It is not hard to verify that the transformations RED−,DSuc,TAUT and
SUB preserve strong equivalence, while RED+ and GPPE preserve equivalence
only.

The transformation Dloop is defined in [9] with the purpose of generalizing
the useful Loop transformation [6]. Recall that the well-founded model com-
putation of SMODELS can be considered as an efficient implementation of a
specific strategy where the use of Dloop is essential [6]. The authors in [17]
claimed that Dloop preserves equivalence under stable, but they only provided
a vague hint for the proof. We formally prove that indeed DLoop preserves
equivalence. Our proof follows the spirit of the proof of this proposition in the
case of normal programs [6], but more technical difficulties are now involved.

Definition 5.3 (Dloop). Let unf (P ) = LP \MM (Definite(P )). Then we define
Dloop(P ) = {A ← B+,¬B− ∈ P | B+ ∩ unf (P ) = ∅}.

Proposition 5.1. Let P be a disjunctive program. If a ∈ unf (P ) is an atom and
P1 is obtained from P by an application of TAUTa, then unf (P ) = unf (P1)
and Dloop(P ) = Dloop(P1).

Let TAUT+
a denote the transitive closure of TAUTa. Thus, TAUT+

a (P ) is
the program obtained by the application ‘as long as possible’ of the transforma-
tion TAUTa to P . The next corollary follows immediately.

Corollary 5.1. Let P be a program. If a ∈ unf (P ) and P1 = TAUT+
a (P ) then

unf (P ) = unf (P1) and Dloop(P ) = Dloop(P1).

Similarly we will now prove that, if the program does not contain any more
tautologies with respect to a, then unf and Dloop does not change after a single
application of GPPEa. This result will also extend immediately for GPPE+

a ,
the transitive closure of GPPEa.



Proposition 5.2. Let P be a disjunctive program such that P = TAUT+
a (P ).

If a ∈ unf (P ) and P1 is obtained from P by an application of GPPEa, then
unf (P ) = unf (P1) and Dloop(P ) = Dloop(P1).

Corollary 5.2. Let P be a disjunctive program such that P = TAUT+
a (P ). If

a ∈ unf (P ) let P1 = GPPE+
a (P ), then unf (P ) = unf (P1) and Dloop(P ) =

Dloop(P1).

Theorem 5.1 (Dloop preserve stable). Let P1 be a disjunctive program. If
P2 = Dloop(P1) then P1 and P2 are equivalent under the stable semantics.

If we consider CS2 as the rewriting system based on the transformations
SUB,RED+,RED−,Dloop,Dsuc as defined in [1], it is possible to define a
semantic called D1-WFS [18].

Consider again example 5.1. As we noticed before program P reduces to P4.
Observe unf (P4) = {a, b}, and by an application of Dloop we can obtain P5,
which contains the single clause: c ∨ d← >.

For normal programs both systems D-WFS and D1-WFS are equivalent since
they define WFS. However the residual programs w.r.t CS1 and CS2 are not nec-
essarily the same, and for disjunctive programs they may give different answers.
An advantage of CS2 over CS1 is that residual programs are polynomial-time
computable, as it can be easy seen by the definition of the tranformations.

We will show also how to generalize the Dloop transformation to work with
predicate programs. The definitions of MM (P ) and Definite(P ) are generalized
for predicate programs applying corresponding definitions to the ground instance
of P . Recall that θ denotes a substitution of variables over terms.

Definition 5.4 (Predicate Dloop). Let P be a disjunctive predicate program,
and let L be the language of Ground(P ). We define:

unf (P ) = L \MM (Definite(P )).
P1 = {A ← B+,¬B− ∈ P | ∀θ,∀p ∈ unf (P ),∀b ∈ B+we have bθ 6= p}.
P2 = {A ← B+,¬B− ∈ Ground(P ) \Ground(P1) | B+ ∩ unf (P ) = ∅}.

The transformation Dloop reduces a program P to Dloop(P ) := P1 ∪ P2.

Theorem 5.2 (Dloop preserves stable). Let P and P ′ be two disjunctive
predicate programs. If P ′ is obtained of P by an application of Dloop then P
and P ′ are equivalent under stable.

Example 5.2. We illustrate a Dloop reduction for a disjunctive predicate pro-
gram P :

m(b).
h(a).
p(X) ∨ q(X)← f(X).
f(X)← q(X).
r(X)← k(X) ∧ ¬p(X).
k(X)← m(X).
k(X)← h(X).
w(X)← m(X).

=⇒

m(b).
h(a).
r(X)← k(X) ∧ ¬p(X).
k(b)← m(b).
k(a)← h(a).
w(b)← m(b).



Also observe that unf (P ) = {m(a), h(b), p(a), p(b), q(a), q(b), f(a), f(b), w(a)}.

5.2 Free Programs

Now we propose a set of Basic Transformation Rules for free programs, which
defines a rewriting system that we will call CS++. These transformations are
generalizations of notions already given for disjunctive programs.

Definition 5.5. A transformation rule is a binary relation on free programs
over L. The following transformation rules are called basic. Let P be a program.

(a) Delete a clause H ← B if there is another clause H ′ ← > in P such that
(Lit(H ′))c ⊂ Lit(B).

(b) Delete a clause H ← B if there is another clause H ′ ← B′ in P such that
Lit(H ′) ⊆ Lit(H) and Lit(B′) ⊆ Lit(B).

(c) If there is a clause of the form l← > where l is a literal, then in all clauses
of the form H ← B such that l ∈ Lit(B) delete l from B.

(d) If there is a clause of the form l← > where l is a literal, then in all clauses
of the form H ← B such that lc ∈ Lit(H) delete lc from H.

(e) Delete a clause H ← B if it is a simple theorem in Jn. By definition, H ← B
is a simple Jn theorem only if: Lit(H)∩Lit(B) 6= ∅ or Lit(B) is inconsistent
(it contains both b and ¬b for some atom b).

Lemma 5.1 (CS++ is closed under Jn Logic). Let P1 and P2 be two pro-
grams related by any transformation in CS++. Then P1 ≡Jn P2.

It has been found that CS++ is very useful in ASP. The transformations
proposed for this rewriting system can be applied without much computational
effort. They are also generalizations of transformations given for normal pro-
grams. In the case of normal programs CS++, without reducing inconsistency in
the body as a theorem and plus two more transformations (Loop and Failure),
is strong enough to compute the WFS semantics efficiently, see [6]. In many use-
ful cases the stable semantics has only one model that corresponds to the WFS
semantics. Moreover, sometimes these transformations can transform a program
to a tight one [17]. For tight programs the stable semantics corresponds to the
supported semantics. Recent research [2] has shown that, in this case, a satisfia-
bility solver (e.g. SATO [24]) can be used to obtain stable models. Interestingly,
some examples are presented in [2] where the running time of SATO is approxi-
mately ten times faster than SMODELS, one of the leading stable model finding
systems [21].

Example 5.3. Consider the following example that illustrates some reductions
obtained applying CS++ transformations to a program:

¬a ∨ b← c ∧ d
¬a← c ∧ t
¬k ∨ p← p ∧ q
t← >

=⇒ ¬a← c
t← >



5.3 Transformations

Finally we would like to present some other transformations that can be used to
simplify the structure of programs. The concept of an answer set for a program
has been generalized to work with augmented programs, however current popular
software implementations do not support more than disjunctive programs. These
transformations will allow us to compute answer sets for programs with more
complicated logical constructions.

Lifschitz, Tang and Turner offered [22] a generalization of stable semantics
for augmented programs. They also showed that it is possible to transform an
augmented program into a free one without altering the resulting stable models.

Theorem 5.3 ([22]). Any augmented program is strongly equivalent under sta-
ble to a free program.

Inoue and Sakama showed [20] that every free program P can be transformed
into disjunctive one P ′ such that P ′ is a conservative extension of P . We say
that P ′ is a conservative extension of P to denote the fact that M is a stable
model of P iff M ′ is a stable model of P ′ such that M = M ′ ∩ LP . However
their transformation is very expensive and involves a cubic increase in the size
of programs.

We show this same goal can be achieved with a linear time computable
transformation whose increase of program’s size is also linear.

Lemma 5.2. Let P be a free program. For a given set S ⊆ LP let ϕ : S → Σ
be a bijective function, where Σ is a set of atoms such that Σ ∩ LP = ∅. Let
∆S =

⋃
a∈S{ϕ(a) ← ¬a.,⊥ ← a ∧ ϕ(a).}. Then P ∪ ∆S is a conservative

extension of P .

If we take S as the set of atoms appearing negated in the head of clauses
in P , lemma 5.2 can allow us to eliminate such negations building a general
program. Formally:

Theorem 5.4. Let P be a free program and let S be the set containing all atoms
a such that ¬a appears in the head of some clause in P . Let ϕ and ∆S be defined
as in lemma 5.2. Let P ′ be the general program obtained from P by replacing
each occurrence of ¬a with ϕ(a) for all a ∈ S. Then P ′∪∆S is a general program
that is a conservative transformation of P . In particular M is stable model of P
iff MS is a stable model of P ′ ∪∆S, where MS = M ∪ ϕ(S \M).

It is well known that a general program P is equivalent to a disjunctive
program under a simple translation. Namely, replace every constraint clause
⊥ ← A by p← A ∧ ¬p, where p is an atom not in LP .

Notice that Theorem 5.3 together with Theorem 5.4 stand an equivalence
between programs that shows augmented programs are not more expressive than
disjunctive ones with respect to the stable semantics.

This transformation can be applied also to logical programs with predicates
before grounding.



Theorem 5.5. Let P be a free predicate program. Obtain P ′ by replacing ev-
ery literal ¬p(X1, . . . , Xn) appearing in the head of some clause in the program
with the atom notp(X1, . . . , Xn), where notp is a new predicate symbol. Also
add the clauses notp(X1, . . . , Xn) ← ¬p(X1, . . . , Xn), ⊥ ← p(X1, . . . , Xn) ∧
notp(X1, . . . , Xn). The program P ′ is a conservative extension of P .

6 Conclusions

No much research has been done on answer set programming for free or aug-
mented programs. Interesting new connections between logic and logic program-
ming are beginning to arise. It is important to obtain and generalize results
that can be used for designing software to help the programmer write correct
programs and compute answer sets for free or augmented programs. Our paper
provides initial results on this direction.

We presented several results that relate provability in Jankov logic to prov-
ability in Intuitionistic logic. Based on our results we proposed several ideas that
can help to decide if two theories are strongly equivalent. Some transformations
for disjunctive and free programs are studied and we have shown that they pre-
serve equivalence. We also presented a simple transformation from free programs
to disjunctive ones that preserves the stable semantics. Our results are given for
propositional theories, but it is shown how some of them can be generalized to be
applied to programs with predicates. Another problem, left for future research,
will be to generalize other transformations, such as Loop, to free programs.
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7 Appendix: Proofs.

Proof of Proposition 3.1.
The proof is by induction on the length of the deduction for Γ `I A using

the sequent calculus defined in [23].
If Γ `I A is an axiom, the base of induction, then Γ = {A} and the proposi-

tion is trivial.
If the last rule in the deduction of Γ `I A is a left structural rule LX,

LW, LC or one of the logical rules Li∧, R∧, L∨, Ri∨, L→, R→, the inductive
hypothesis can be applied to the previous sequent(s) in the deduction. And since
taking positive subsets in the premises of this rules preserves “provability” it is
possible to prove Pos(Γ ) `I A.

Consider the case when the last rule is L∨

Γ1, B `I A Γ2, C `I A

Γ1, Γ2, B ∨ C `I A
L∨

where Γ = Γ1, Γ2, B ∨ C.
If B ∨C ∈ P then also B and A are in P, so by the inductive hypothesis we

have proofs for Pos(Γ1, B) `I A and Pos(Γ2, C) `I A. Using again rule L∨ now
we prove

Pos(Γ1), B `I A Pos(Γ2), C `I A

Pos(Γ1, Γ2), B ∨ C `I A

which finally leads to Pos(Γ ) `I A.
If B ∨ C ∈ N then either B or C are in N. Suppose that B ∈ N, the other

case is analogous. Applying the inductive hypothesis on Γ1, B `I A we have a
proof for Pos(Γ1) `I A. Now, using the weakening rule LW, it is possible to
prove Pos(Γ1),Pos(Γ2) `I A or, equivalently, Pos(Γ ) `I A.

The proof of all the other cases mentioned above follow similarly.

Note that the last rule cannot be a negation rule since L¬ will need A to be
empty, and R¬ implies A /∈ P contradicting the hypothesis of the proposition.
The last rule is also not RW since it will assert Γ `I or, equivalently, `I ¬(

∧
Γ ).

But `C ¬(
∧

Γ ) is not even provable since there is an interpretation, which
assigns true to each atom, that evaluates the formula to false.

Proof of Proposition 3.2.
It suffices to show that any instance of the axiom scheme ¬A ∨ ¬¬A can

be proved from the set of hypothesis {¬a1 ∨ ¬¬a1, . . . ,¬am ∨ ¬¬am}, where
a1, . . . , am are all the atoms occurring in A.

The proof is by induction on the size of A. For the base case we assume that
A ∈ {a1, . . . , am,⊥}. If A ∈ {a1, . . . , am} the statement is true by hypothesis. If
A = ⊥ then the result is true since ¬⊥∨¬¬⊥ is a theorem. For the induction step
we assume that (¬a1 ∨ ¬¬a1), . . . , (¬am ∨ ¬¬am) `I ¬F1 ∨ ¬¬F1 and similarly
for F2 ∨ ¬¬F2.

Now it is not hard to prove that (¬F1∨¬¬F1), (¬F2∨¬¬F2) `I ¬(F1�F2)∨
¬¬(F1 � F2), where � represents any binary connective, and then the result



follows immediately. Recall that ¬A abbreviates the formula ⊥ ← A and so we
do no have to consider this case in the proof.

Proof of Lemma 3.2.
Proposition 3.2 states Γ `Jn F is equivalent to Γ, (¬a1 ∨ ¬¬a1), . . . , (¬am ∨

¬¬am) `I F . Now Proposition 3.1 will allow us to remove the instances of axioms
¬ai∨¬¬ai together with all other formulas containing negation connectives. That
is Pos(Γ ) `I F .

7.1 Proofs about equivalence

Proof of Lemma 4.1.
Direct by theorem 4.2 and proposition 3.2.

Proof of Lemma 4.2.
For a disjunctive clause C of the form

∨
Hp ←

∧
(Bp ∪ ¬Bn), we will write

tr(C) to denote the augmented clause
∨

(Hp∪¬¬Bn)←
∧

Bp. For a disjunctive
program P the program tr(P ) is obtained just applying the transformation on
each clause. Some simple, easy to verify, properties of this transformation are:
P ≡Jn tr(P ), tr(P ) ⊂ P ∪N and Pos(tr(P )) = Pos(P ).

Now P is strongly equivalent to P ∪ {a} iff, by theorem 4.2, P ≡Jn P ∪ {a}
iff P `Jn a iff, since P ≡Jn tr(P ), tr(P ) `Jn a iff, by lemma 3.2, Pos(tr(P )) `I a
iff Pos(P ) `I a.

Proof of Lemma 4.3.
It is an easy, and well known, result that P `C ¬a if and only if P `Jn ¬a.

But P `Jn ¬a iff P ∪ {¬a} ≡Jn P and, by theorem 4.2, iff these two programs
are strongly equivalent.

Proof of Lemma 4.4.
The proof is by contradiction. Suppose there is a model M that is a stable

model of P , but M is not a stable model of P ∪ {¬a} (or vice versa). In either
case we have a /∈ M , since by hypothesis a does not appear in stable models
of P and, on the other hand, models for P ∪ {¬a} cannot contain a. It follows
(P ∪ {¬a})M = PM and therefore stable models of the two programs are the
same.

Proof of Proposition 5.1.
Suppose b ∈ unf (P ) then b /∈ MM (Definite(P )) ⊇ MM (Definite(P1)) thus

b ∈ unf (P1).
To prove the other contention take b ∈ unf (P1) and suppose P contains a

rule A ← B+,¬B− such that a ∈ A∩B+. Since unf (P ) ⊆ unf (P1) then {a, b} ⊆
unf (P1), so {a, b} is not contained in M := MM (Definite(P1)). Furthermore M
is a model of each clause b ← a ∧ α in Definite(P ) \ Definite(P1), so M is a
model of Definite(P ). Thus b /∈ MM (Definite(P )) and b ∈ unf (P ).

Now we know that unf (P ) = unf (P1) and so Dloop(P ) = {A ← B+,¬B− ∈
P | B+ ∩ unf (P ) = ∅} = Dloop(P1).



Proof of Corollary 5.1.
Follows immediately applying proposition 5.1 to each a ∈ L.

Proof of Proposition 5.2.
By hypothesis of a GPPEa application, there exist clauses in P , namely

A ← B+,¬B− and A1 ← B1
+,¬B1

−, such that a ∈ B+ ∩ A1.
Let b ∈ unf (P ), by hypothesis we have that {a, b} ⊆ unf (P ), so {a, b} is not

contained in M := MM (Definite(P )). Furthermore M is a model of each clause
x ← B+ \ {a} in Definite(P1) \ Definite(P ), because we have x 6= a and there
exists d ∈ (B+ \ {a}) ∩ unf (P ), thus M is a model for Definite(P1), but M is
not a model for {a, b}, so b ∈ unf (P1).

For the other contention, we suppose that b ∈ unf (P ) and, since a ∈ unf (P ),
then {a, b} is not subset of I, where I := MM (Definite(P1)). Also I is a model
of every clause x← B+ in Definite(P ) \Definite(P1), because a ∈ B+. Thus I is
a model for Definite(P1); nevertheless I is not model for {a, b}, so b ∈ unf (P ).

We have that unf (P ) = unf (P1) so Dloop(P ) = {A ← B+,¬B− ∈ P | B+ ∩
unf (P ) = ∅} = Dloop(P1).

Proof of Corollary 5.2.
Follows immediately applying proposition 5.2 to each a ∈ L.

Proof of Theorem 5.1.
Let BP1 ⊂ unf (P1) be the set of elements in unf (P1) such that they ap-

pear in the body of some clause in P . The proof is by induction over n, the
number of elements in BP1 . If n = 0 the result follows immediately, since it
implies P1 = Dloop(P1). Now suppose the result holds for all programs P
where |BP | < n. Let b ∈ BP1 , if we take P ′ = TAUT+

b (P1) then, by corol-
lary 5.1, Dloop(P ′) = Dloop(P1) and now P ′ has no tautologies with respect
to b. Let P ′′ = GPPE+

b (P ′) so, by corollary 5.2, Dloop(P ′′) = Dloop(P ′).
Observe that b does not appear in any body of clauses in P ′′, furthermore
there are not new atoms, so |BP ′′ | < |BP1 |. By inductive hypothesis we have
P ′′ ≡stable Dloop(P ′′), but Dloop(P ′′) = Dloop(P1) = P2 and since TAUT
and GPPE preserve stable, proved in [4], P1 ≡stable P ′ ≡stable P ′′. Thus
P1 ≡stable P2.

Proof of Theorem 5.2.
We already know that P ≡stable Ground(P ) by the definition of stable. Also

Ground(P ) ≡stable Dloop(Ground(P )) by theorem 5.1. It is easy to verify that
Dloop(Ground(P )) = Ground(Dloop(P )). So we can finally obtain as desired
that P ≡stable Ground(Dloop(P )).

Proof of Lemma 5.1.
Let P1 and P2 be two programs related by any transformation in CS++ but

(e). Then it is easy to check that P1 ≡I P2 (note that we used intuitionistic
logic). The case (e) is direct.

Proof of Lemma 5.2.
First we will prove that if M is an answer set of P then M∗ = M ∪ϕ(S \M)

is an answer set of P ∪∆S . According to the definition of answer sets given in



section 2 we must show M∗ is closed under the reduct (P ∪∆S)M∗
and minimal

among the sets with this property.
By construction M∗ is closed under (∆S)M∗

and also M is closed under PM ,
since it is an answer set of P , therefore we have M∗ is closed under (P ∪∆S)M∗

.
Just note both the reduct operator and the closure condition can be distributed
among clauses. Also extra atoms in M∗ not in LP (not in M) are not significant
while calculating the reduct of the program P .

Now we will check M∗ is minimal. Suppose there is another set of atoms
N∗ closed under (P ∪ ∆S)M∗

and N∗ ⊂ M∗. Write N∗ as the disjoint union
N∗ = N ∪N ′ where N = N∗∩LP and N ′ = N∗ \LP . Note M∗ = M ∪ϕ(S \M)
is also written in such form. Observe N∗ is closed under PM∗

and thus N is
closed under PM . Since N∗ ⊂ M∗ we have N ⊆ M and, on the other hand,
since M is minimal among the sets of atoms closed under PM we have M ⊆ N .
So N = M .

Then if N∗ 6= M∗ there must be an atom x ∈ ϕ(S \M) such that x is not in
N ′, also not in N∗. Let a ∈ S be the atom such that ϕ(a) = x. We also have, since
x ∈ ϕ(S \M), a is not in M , and also not in N∗ or M∗. But now neither a nor x
are in N∗ so this set does not satisfy the clause (x← ¬a)M∗

= x← > contained
in (∆S)M∗

. So N∗ is not closed under (P ∪∆S)M∗
arising contradiction.

For the converse we have to prove that if M∗ is an answer set of P ∪∆S then
M = M∗∩LP is an answer set of P . Decompose, as done before, M∗ = M ∪M ′.
It is immediate M∗ is closed under PM∗

and therefore M is closed under PM .
Before we can finish observe that given an atom a ∈ S and x = ϕ(a), we

have a ∈M if and only if x /∈M ′. This is easy to verify since having both atoms
(or none) in M∗ will make it impossible for M∗ to be closed under (∆S)M∗

.
Finally we can check M is minimal. Suppose there is N closed under PM and

N ⊂M . Construct N∗ = N ∪M ′, so N∗ ⊂M∗. Previous notes makes it easy to
verify that N∗ is closed under (∆S)M∗

, therefore N∗ is closed under (P ∪∆S)M∗

contradicting the fact that M∗ is the minimal set with such property.

Proof of Theorem 5.4.
First, by lemma 5.2, we know P ∪∆S is a conservative extension of P . Note

that ∆S `G3 ϕ(a) ≡ ¬a for each a ∈ S, then by lemma 3.1, P ∪∆S ≡G3 P ′∪∆S

where P ′ is obtained from P replacing each occurrence of ¬a with ϕ(a) for
all a ∈ S. This equivalence in G3 logic is, from theorem 4.1, the same as strong
equivalence with respect to stable semantics. Thus, P ′∪∆S is a general program
that is a conservative transformation of P .

Proof of Theorem 5.5.
Let T be such transformation. Now it is easy to verify that T(Ground(P )) =

Ground(T(P )), and by theorem 5.4 it follows T(Ground(P )) is a conservative
extension of Ground(P ). Thus, by definition of answer sets, T(P ) is a conserva-
tive extension of P .


