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Abstract

Idiopathic normal pressure hydrocephalus (iNPH) is a condition affecting a small

percentage of the elderly population; however it is the only known treatable cause of

dementia. Surgical cerebrospinal fluid (CSF) diversion is the only known treatment for

the condition today. However, such a procedure is not to be offered lightly and any

expected benefit has to balance the associated surgical risks. The prognosis of a

favourable surgical outcome has been problematic since the conception of the

syndrome. None of current prognostic tests reaches 100% sensitivity or specificity and it

is felt that there might be a need for a combination of tests, rather than a single one to

maximize the chances of selecting the right patients to offer a surgical CSF diversion

procedure. Biomarkers are biological substances that may act as surrogate markers of

response to a treatment or to characterise a disease’s progression over time.

The aim of this study was to identify CSF markers of favourable surgical outcome in

patients with iNPH undergoing the insertion of a ventriculoperitoneal shunt (VPS). We

first describe the effects of external lumbar drainage (ELD) on the CSF biochemistry of

these patients. Correlations are made with imaging data obtained from volumetric

analysis and neuropsychological tests in order to obtain a complete profile of these

patients. The rostrocaudal gradients of the CSF markers examined are reported

showcasing the need to understand that commonly reported values from lumbar CSF

do not necessarily reflect pathological changes occurring at cerebral level. Finally, we

report on the individual as well as combined prognostic value of 7 CSF markers on
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surgical outcomes at 6 months. The pathophysiological significance of these markers is

discussed individually.

It is concluded that the combined power of total tau and Aβ 1-42 may be useful in

predicting favourable surgical outcomes at 6 months; further studies applying the

findings in a larger cohort and correlating findings with longer outcomes are warranted

to enhance the clinical application. The biochemical profile of patients with iNPH

appears unique and different than patients with Alzheimer’s dementia or control

subjects.
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1. Introduction

1.1. Definition and terminology

The term “normal pressure hydrocephalus” (NPH) was introduced by Adams and Hakim

in 1965 in a publication reporting three patients with a clinical triad of cognitive decline,

gait difficulties and sphincter disturbances associated with ventriculomegaly in air

studies and normal pressure of cerebrospinal fluid (CSF) during lumbar puncture

(Adams, Fisher et al. 1965). Since then the contradictory terms “normal pressure” and

“hydrocephalus” have puzzled the non experts in the field. Hydrocephalus by definition

implies high intracranial pressures due to the accumulation of CSF within the ventricular

system. The problem has arisen due to the popularity of the bulk-flow theory of CSF

flow (Dandy WE and Blackfan 1914) as the only explanatory theory causing

hydrocephalus. However, the bulk-flow of CSF cannot explain peculiarities of CSF

circulation, such as the idiopathic form of NPH (iNPH).

Due to this contradiction as well as to the fact that the intracranial pressures are not

always normal in patients with iNPH, the term has been strongly disputed. It was viewed

as an over simplification to classify hydrocephalus only according to the intracranial

pressure (ICP) dynamics, therefore as high-pressure or normal-pressure. The

classification of hydrocephalus becomes important due to the fact that it is closely linked

with the proposed treatment and outcome. Based on pathophysiological considerations,

hydrocephalus has been divided into communicating and non-communicating by Dandy,

depending on whether or not communication between the ventricular system and the

lumbar subarachnoid space is free (Dandy 1919). In this sense NPH represents a form
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of communicating hydrocephalus. If we take in mind the classification introduced by

Russell (Russell 1949) then NPH represents a form of non-obstructive hydrocephalus.

However, NPH (especially its secondary form) might be an obstructed form if we

consider that the block in the CSF flow exists extraventricularly and particularly in the

level of the Pachionian bodies. In this sense the Russell classification confuses rather

than helps in the classification of NPH. The previous two classifications take in account

the CSF flow in the major pathways as it is the traditional understanding. A recent

classification has been proposed classifying hydrocephalus to “minor pathway

hydrocephalus”, differentiating from the conventional classification by Dandy

(communicating and non-communicating) or Russell (non-obstructive and obstructive)

as “major pathway hydrocephalus (Oi and Di Rocco 2006). In the former term it is

understood that CSF absorption does not only happen in the arachnoid granulations,

but also with the drainage route via perineural space into the lymphatic system (Brierley

and Field 1948; Dohrmann 1972; Boulton, Flessner et al. 1998; Ludemann, Berens von

Rautenfeld et al. 2005), and via transependymal–interstitial to the perivascular/ subpial

space both in the brain and spinal cord (Becker, Wilson et al. 1972; Hochwald, Boal et

al. 1975).

Measurements of CSF dynamics have provided further classification of the syndrome

according to the ICP values and the percentage of B waves. Therefore normal pressure

hydrocephalus has been classified as i) active, ii) compensated unstable, and iii)

compensated stable (Sahuquillo, Rubio et al. 1991).
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The duration of hydrocephalus has been taken into account as reflected in the

nomenclature used. One of the terms used to describe the same condition is chronic

adult hydrocephalus (Bret, Chazal et al. 1990). This term proposed by Bret divides

hydrocephalus into acute and chronic forms, referring to the chronicity of the CSF

disorder implying this long-lasting CSF disorder as the cause of the symptoms of this

syndrome. Thus, idiopathic NPH represents a form of chronic communicating

hydrocephalus. Based on symptomatology, hydrocephalus has been classified as

symptomatic congenital, asymptomatic and arrested/compensated (Larsson,

Stephensen et al. 1999). “Arrested hydrocephalus” refers to the stabilization of the

patient’s symptoms during the previous years and “symptomatic congenital” means that

the condition has been present from birth but symptomatic only as the patient ages. It

has been recently suggested that NPH may represent a two-hit disease originating from

infancy (Bradley, Bahl et al. 2006), therefore the symptomatology of NPH patients may

vary between the arrested and symptomatic congenital forms.
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Figure removed for copyright reasons

Figure 1.1.1 Historical trend of research on CSF physiology and treatment for
hydrocephalus

Figure removed for copyright reasons

Figure 1.1.2. Proposal of evolution theory in CSF dynamics. Greitz performed an
experiment of radionuclide cisternography in ten patients suffering from venous
vasculitis. He observed that there was a pool of tracer dye at the convexity in normal
subjects that is concomitant with another maximum concentration in the lumbosacral
area and not consistent with a local dilution of the tracer at the level of the foramen
magnum. He therefore proposed that the CSF circulation is not so much to the bulk flow
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as traditionally thought nut mainly due to the pulsatility within the CNS. The diagram
above is showing the commonly accepted bulk flow model (Left diagram) and the two
types of cerebrospinal fluid circulation related to the proposed concept of the circulation
(Middle and right-hand diagram. The dominant pulsatile flow shown in the middle
diagram is responsible for the rapid spread of tracers within the extraventricular
cerebrospinal fluid spaces, and the comparatively small, almost minute, bulk flow on the
right-sided diagram explains the appearance of the cisternogram in normal cases
causing washout of tracer in the ventricular system and the basal cisterns (Greitz and
Hannerz 1996).
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1.2. Historical background

Hydrocephalus was considered a condition of high morbidity before the design and

manufacturing of the first successful diaphragm valves in the mid-fifties (Gjerris and

Snorrason 1992). Nevertheless this was referring to cases of obstructive hydrocephalus

and increased CSF pressure. However as early as 1935 it was noted by Penfield that “it

should be pointed out that an occasional exceptional case is encountered in which the

CSF spaces are closed and the ventricles progressively enlarge without the measured

intraventricular pressure rising above 150-200 mm of water” (Penfield. 1935). Prior to

1964 a few case reports have been published describing patients with the paradox of

normal CSF pressure on lumbar puncture and a combination of gait ataxia or apraxia,

dementia and urinary incontinence (Riddoch 1936; J Lhermitte and J 1942; Lhermitte J

and Mouzon 1942; Yakovlev 1947; Wertheimer and Dechaume 1950; Foltz and Ward

1956; Kibler, Couch et al. 1961; Shulman, Martin et al. 1963; McHugh 1964; Messert

and Baker 1966). However, it seemed that the publication of Adams and Hakim (Hakim

and Adams 1965) highlighted the syndrome and from then onwards the terminology

Hakim or Hakim-Adams syndrome was used by many authors, even though in one

paper this latter syndrome was distinguished as a different entity from the traditional

NPH syndrome (Huckman 1981). Symptomatic occult hydrocephalus with "normal

cerebrospinal fluid pressure” (Miller 1970) and hydrocephalic dementia (McHugh 1966;

Avant and Toole 1972; Vivenza, Bricolo et al. 1980) were two other descriptive terms

used for the syndrome .
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In their paper of 1965 Hakim and Adams describe the cases of 3 patients. The first

patient a young male aged 16 years had first sustained a head injury complicated by a

small right subdural haematoma that was surgically removed. A few weeks later since

his clinical condition was not progressing and his level of consciousness was described

as “semi-comatose” by the authors, it was decided that a lumbar puncture (LP) is

performed; this was done duly and revealed an opening pressure of 150 mm Hg. The

patient clinically improved following the LP and a lumbar pneumoencephalogram

revealed communicating hydrocephalus. He finally had a ventriculo-atrial shunt 6 weeks

following his original head injury. The second patient was a male aged 52 years-old who

presented with “gradual failure of memory, mental dullness and apathy, disinterest in

personal appearance, unsteadiness of balance and stiffness of legs”. His cognitive

symptoms were the first to appear. His wife also noted “an incontinence of urine, which

began to occur from time to time”. An LP revealed an opening pressure of 18 mm Hg.

He likewise improved following the removal of the spinal fluid but gradual deterioration

forced the authors to insert a ventriculoperitoneal shunt. The patient showed a definitive

clinical improvement following shunting. In the 3rd case the authors described a 43

years-old male who following a head injury which resulted in hemiparesis and evidence

of intracerebral contusion he had “wide fluctuations in alertness, motility, and sphincteric

control”. Following the demonstration of communicating hydrocephalus a ventriculo-

atrial shunt was performed which resulted in the patient being able to work and lead an

independent life.
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The authors have clearly described one case of idiopathic (second case), and two

cases of secondary NPH. The authors in their discussion state that a pressure of 180

mm water in enlarged ventricles is pathological and may be responsible for the

maintenance of hydrocephalic symptoms. They also use the law of Pascal to explain the

peculiar phenomenon of normal pressure and increased ventricular size which state that

the force exerted on the ventricular wall represents a product of pressure times the

surface area. Therefore a given pressure exerts a greater force in a large ventricular

area, as the one we have in a hydrocephalic state. In order to account for the symptoms

they suggested that the dilatation of the ventricles subjects the major long tracts in the

cerebral white matter and corpus callosum to compression and stretching. They also

think that the symptoms are reversible once the pressure is not exerted any more along

the anatomical structures.



33

1.3. Epidemiology

NPH is mostly encountered in the over-60’s (Trenkwalder, Schwarz et al. 1995; Krauss,

Droste et al. 1996). It represents a treatable form of dementia and if left untreated may

lead to lethargy, unconsciousness and death (Hakim, Hakim et al. 2001). Exact

epidemiological figures for normal pressure hydrocephalus have been scarce however.

That is the result of the recent description of the syndrome, the complicated

pathologoanatomical and pathophysiological background leading to confusion among

clinicians on which patient has NPH and which on doesn’t, as well as the commodity of

the symptoms of the clinical triad among the elderly population. The prevalence of NPH

in the general population has not been quantified. Two European studies in small

populations have roughly estimated that 1% to 6% of all dementias are due to NPH and

0.41% of persons in the general population 65 years or older have the disease

(Casmiro, Benassi et al. 1989; Trenkwalder, Schwarz et al. 1995). However, both

groups felt that NPH is significantly underestimated because many cases go unreported

and untreated.

NPH is generally estimated to account for 0.4% to 10% of cases of dementia (Vanneste

and van Acker 1990; Vanneste 1994; Larsson, Stephensen et al. 1999; Srikanth and

Nagaraja 2005). However, lower prevalence has been reported (Clarfield 2003; Jha and

Patel 2004). In a recent questionnaire based study among 53 German Neurosurgical

centres the annual incidence of NPH in Germany was estimated to be 1.8 per 100,000

inhabitants (Krauss and Halve 2004). In a national survey in Sweden the incidence of
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surgery for all types of hydrocephalus was estimated 3.36 per 1000000 of the

population with 47% of them being performed for the idiopathic form of NPH. Both these

figures point to an average figure of an incidence of 1.68 per 100000 of population.

In an economic United States (US) study comparing the Medicare expenditure of

shunted versus not shunted patients these were found to be $25,477 less in patients

receiving a shunt, a cost difference which was statistically significant (Williams, Sharkey

et al. 2007). They examined the national hospital discharge survey for the year 2000

showing that only 6000 out of 25000 (i.e. 24%) patients with the diagnosis of

hydrocephalus (ICD-9-CM Codes 331.3 and 331.4) had a first shunt (i.e. not a revision)

procedure. In that important study they also revealed that age >80 years, and an

African-American race are two factors associated with a reduced likehood of receiving a

shunt. They have suggested in their analysis that older age appears to be a

disproportionate reason not to proceed for surgery and they clearly advocate against

such a “habit” suggesting that one should take in account the health status and potential

benefit for treatment. One of the limitations of the above study is that the codes do not

provide the health status of individuals at their time of assessment. Early diagnosis,

referral to a Neurosurgeon and treatment becomes important since a long symptomatic

disease become more difficult to treat successfully. Meier has shown that advanced

stage NPH has only a 50% chance of improvement versus those who underwent earlier

surgery that had a 65% chance of improvement (Meier and Bartels 2002).
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1.4. Genetics

No genetic association has been discovered so far for the syndrome of NPH. In 1984

the first case of two siblings suffering from NPH has been reported (Portenoy, Berger et

al. 1984). Another case of a family containing two members (a 76 year old man and the

47-year old daughter of his twin sister) representing with adult-onset gait disturbances

and in the case of the man with additional cognitive decline and urinary incontinence. It

was proposed by the authors that the mode of inheritance in this case would be

autosomal dominant with variable penetration without though excluding an X-linked

mode of inheritance (Chalmers, Andreae et al. 1999). Another case of monozygotic

twins with NPH has been recently reported (Forman, Vesey et al. 2006). A fourth case

of a cluster of NPH in a family composed of 3 brothers and the grandson of one of the

brothers affected has also been reported. The mode of inheritance from the proband to

his daughter’s grandson reveals an X-linked mode of inheritance. It was also noted by

the authors that two of the affected subjects and the female carrier suffered from

ovarian and colon carcinoma. They suggested that the mutation that caused the

carcinoma might be related to the same mutation that caused the hydrocephalus

(Katsuragi, Teraoka et al. 2000). Nacmias and colleagues in a study of 13 patients

investigated the distribution of the apolipoprotein E (ApoE) epsilon4 allele, as well as

that of the alpha1-antichymotrypsin (ACT) gene and of allele 1 of the presenilin-1 (PS-1)

gene. They observed an increased ApoE epsilon4 allele frequency among NPH patients

when compared with controls, thus suggesting that epsilon4 allele may also be involved

in the pathogenesis of the disease (Nacmias, Tedde et al. 1997). It is known that the
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presence of ApoE epsilon4 allele is considered as a risk factor for the development of

Alzheimer’s type dementia (AD), and other dementias and therefore their presence

might be related to the comorbidity of AD-type dementia in patients suffering from NPH

(Corder, Saunders et al. 1993; Frisoni, Calabresi et al. 1994; Savolainen, Paljarvi et al.

1999; Bech-Azeddine, Hogh et al. 2007). In a prospective study of 112 patients with

NPH studying the polymorphism of the angiotensin-converting enzyme (ACE) and its

relations to the cognitive decline del Mar Matarin and colleagues found that there was

no difference in allele distribution between patients and healthy controls, however

patients with possession of at least one D allele received less benefit with regards to

their cognitive outcome (del Mar Matarin, Poca et al. 2005).



37

1.5 Theories for development

The pathophysiology of iNPH is still an enigma. Today two principally different

mechanisms are considered: A) altered hydrodynamics of the CSF system; and 2) a

parenchymal, possibly ischemic, process. The former is demonstrated by modestly

raised ICP, increased CSF Resistance to outflow (Rout) and the presence of abnormal

B-wave patterns; the latter is indicated by cortical and subcortical decreased blood flow

and metabolism as well as periventricular white matter lesions. Research so far has

noted impaired autoregulation (Chang, Kuwana et al. 2000; Czosnyka, Czosnyka et al.

2002), a relationship to vascular disease (Bradley, Whittemore et al. 1991; Krauss,

Droste et al. 1996; Boon, Tans et al. 1999), decreased cerebral blood flow (Vorstrup,

Christensen et al. 1987; Kristensen, Malm et al. 1996; Momjian, Owler et al. 2004), and

ischemia (Bradley, Whittemore et al. 1991; Krauss, Regel et al. 1997; Corkill, Garnett et

al. 2003). In addition, epidemiological studies have shown that hypertension might be a

risk factor (Krauss, Droste et al. 1996).
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Figure removed for copyright reasons

Figure 1.5.1.1. Historical account of chronic hydrocephalus. Ruffer in his 1890
“digest” of chronic hydrocephalus gives an insight into the pathogenesis of chronic
hydrocephalus. This was recently described as the “two-hit” theory for the development
of chronic hydrocephalus (Ruffer 1890).

Other proposed theories included direct vascular compression by the enlarged

ventricles (Akai, Uchigasaki et al. 1987; Graff-Radford and Godersky 1987; Vanneste

2000; Meier, Konig et al. 2004), increase in the interstitial fluid pressure (Tamaki,

Nagashima et al. 1990; Pena, Harris et al. 2002), and the so-called metabolic theory

claiming relative CSF stasis with decreased clearance of various macromolecules being

responsible for the pathogenenesis (Marmarou, Takagi et al. 1980; Tullberg, Hultin et al.

2002; Klinge, Samii et al. 2003; Silverberg, Mayo et al. 2003; Kondziella, Sonnewald et

al. 2008),
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Any theory that will try to explain the pathogenesis and pathophysiology of his

syndrome has to explain not only the factors implicated in the initiation of

ventriculomegaly, but more over those factors that are responsible for the maintenance

of the syndrome and its regression once shunting has occurred. It is only thus that the

puzzle might be completed and we might get a full understanding of the syndrome.

Normal pressure hydrocephalus is classically divided into two groups: a) the secondary

form where there is a background of subarachnoid haemorrhage (E.L. Foltz and Ward

1956), CNS infection, trauma (King 1938), tumour, or aqueduct stenosis (Vanneste and

Hyman 1986), and b) the idiopathic form, where the cause is unknown. In the case of

subarachnoid haemorrhage the blood degradation products produce inflammatory

fibrosis in the arachnoid granulations, therefore increasing the resistance to CSF

absorption. Initially there is an incidence of acute rise of the intracranial pressure which

leads to ventriculomegaly. Following that the CSF is slowly reabsorbed, however the

ventricles remain dilated. It is important to note that the pathophysiology of the

idiopathic and secondary forms differ and the idiopathic form of NPH tends to present

in the elderly (Krauss, Regel et al. 1997), whereas patients with chronic communicating

hydrocephalus from prior subarachnoid haemorrhage, meningitis, neurosurgical

intervention, or head trauma present in relation to the causing event and generally in a

younger age. We will therefore analyze and discuss the pathophysiology of only the

idiopathic form.
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1.5.1 Altered CSF dynamics in NPH

A disturbance in the CSF dynamics in chronic hydrocephalus has been one of the

first theoretical attempts to explain the pathogenesis of the syndrome (Stein and

Langfitt 1974; Borgesen and Gjerris 1982). As realized by Dandy, an obstructed

bulk flow of CSF at the pacchionian granulations cannot cause communicating

hydrocephalus (Dandy 1920). Recent work by Boulton (Boulton, Young et al. 1996;

Boulton, Flessner et al. 1998; Boulton, Flessner et al. 1999), Cserr (Knopf, Cserr et

al. 1995) and others has challenged the traditional understanding of CSF

absorption, and flow MRI studies of Greitz (Greitz and Hannerz 1996), Bateman

(Bateman 2004), and others suggest that pulsatility plays a central role in the

pathogenesis of hydrocephalus. According to them, the cumulative effect of many

pulse waves slowly remoulding the brain is the cause of the ventricular

enlargement in chronic hydrocephalus. Intracranial hydrodynamics is thus

dependent on the compliance of the thecal sac and the compressible outlets of the

bridging veins. Compliance is the capacity of a buffer system to accommodate a

volume change and is defined as volume change divided by pressure change (dV/

dP). The expression of decreased compliance in communicating hydrocephalus is

increased intracranial pulse pressure and/or decreased intracranial stroke volume.

It was suggested that the insertion of a shunt at least initially introduces a new

transmantle pressure gradient (Sorteberg, Eide et al. 2004).

Most biological tissues are characterized by plasticity and therefore respond to

local forces by local displacement, deformation and remoulding. Small pressure

gradients may deform the brain, since it has a high plasticity. The deformation of



41

the brain and the CSF spaces defines hydrocephalus. The definition of

hydrocephalus is enlarged ventricles at the expense of a narrowed subarachnoid

space. The brain is displaced towards the skull and the cortical gyri in

hydrocephalus are often compressed or flattened. The transmantle pressure

gradient i.e. an increased regional force directed from the ventricles towards the

subarachnoid space is the only possible force, which could be responsible for such

deformation (Hoff and Barber 1974). Hydrocephalus differs from processes lacking

a transmantle pressure gradient such as cerebral atrophy, where both the

ventricles and subarachnoid space enlarge. The normalization of the CSF spaces

following shunting indicates that the transmantle pressure gradient can be

narrowed or reversed, which further support that it really exists; recent work though

has not supported this argument (Eide and Saehle).

The cranium may be seen as a frequency-sensitive notch filter that suppresses the

arterial pulse in the brain. This redistributes the kinetic energy of pulsatility at the

heart rate (i.e. cardiac frequency) to smooth, pulseless arterial flow (i.e. zero

frequency), which is the cerebral blood flow. This represents the normal spectral

distribution of the transfer function between the arterial pulse and the ICP pulse,

and is a manifestation of the normal cerebral windkessel mechanism.

The loss of cerebral blood flow and augmentation of pulsatility is the main

manifestation of an impaired windkessel mechanism, and leads to venous stasis,

venous hypertension, and reduction in cerebral blood flow. It is suggested that the

consequences of impairment of the cerebral windkessel mechanism, the

mechanism by which the cerebral vasculature renders vascular perfusion of the
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microvasculature nearly smooth are ventriculomegaly and CSF malabsorption

(Egnor, Wagshul et al.).

Hakim’s proposal was that of altered equilibrium of the intraparenchymal and CSF

pressure. In brief Hakim suggested that in the normal state the difference between

the intraparenchymal pressure (Pp) and CSF pressure (Pcsf) is zero; that is the

two pressures are equal applying opposite forces to the ventricular wall. CSF

pressure is equal to the rate of CSF formation X CSF outflow resistance +

Intracranial venous pressure. In the case of increased resistance to CSF outflow

or increased CSF production, the CSF pressure increases and there is a net

positive pressure exerted on the ventricular wall (Pcsf>Pp). When again these

forces come into a new equilibrium (Pp=Pcsf) the net difference is again zero,

however the ventricles do not return to their previous state (Hakim 1985). When

there is a disequilibrium of these two forces (usually when Pcsf> Pp) the brain

suffers distortion because of the non hydrostatic loading of its parenchyma.

As a result of the non-hydrostatic distribution of pressure changes the fluid within

the cerebral parenchyma is squeezed out into the extracranial venous system,

reducing the volume occupied by the parenchyma, thus enabling ventricular

enlargement and net CSF volume increase. The brain is a live structure composed

of glial cells thus behaving as a viscoelastic material, and cannot absorb for long

periods of time the expansive force created by the CSF pressure on the ventricular

walls (Hakim, Hakim et al. 2001). The above theories explain the initiation and

maintenance of ventriculomegaly but not the clinical picture of the syndrome itself.
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1.5.2. Ischaemic process in NPH

1.5.2.1. Autoregulation in NPH

It is well known that the cerebral blood flow (CBF) remains constant over a wide

range of intracranial pressure, usually ranging between 0 and 50 mm Hg because

of CBF-CSF autoregulation. It was found that there is an enhanced response to

acetazolamide administration in patients who do not improve with a shunt (Tanaka,

Kimura et al. 1997). The explanation for that maybe that in patients who do not

improve there might be an irreversible damage in the brain structure as a result of

the pathophysiologic processes which are responsible for the syndrome.

1.5.2.2. Cerebral blood flow

The arterial supply in the white matter mainly consists of long medullar branches

from the brain surface and, to a lesser extent, of perforating striate arteries from

middle cerebral artery. These consist mainly of end-arteries, which explain why

this tissue is sensitive to ischemia. Decreased cerebral blood flow in this area is

frequently reported in iNPH, and a connection to the enlarged ventricles and

increased Rout has been proposed (Vorstrup, Christensen et al. 1987; Kristensen,

Malm et al. 1996; Momjian, Owler et al. 2004; Owler, Pena et al. 2004; Tullberg,

Hellstrom et al. 2004). The main methods to assess cerebral blood flow in white

matter are based on labeled tracers as in single photon emission computed

tomography (SPECT), positron emission tomography (PET), and xenon contrast

computed tomography (Xe CT). In recent years, perfusion magnetic resonance
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imaging (MRI) has been developed for this purpose (Hertel, Walter et al. 2003).

The findings of these studies will be presented in chapter ∫ 1.15.

1.5.2.3. Altered venous hydrodynamics

The importance of the venous system compliance in iNPH is still under

investigation. Since the theory of increased resistance to CSF outflow is well

established it makes sense to examine the venous system as one of the main

pathways of CSF absorption. Occasionally it is easier to study the venous outflow

at the level of the internal jugular vein. A study identified that in patients with iNPH

there is a retrograde jugular venous flow probably due to valve defect at the level

of the internal jugular vein; the sensitivity & specificity of using ultrasonography to

detect patients with probable iNPH was 95% and 77% respectively (Kuriyama,

Tokuda et al. 2008). Such a defect in the venous outflow might be related with the

breakdown of the windkessel mechanism known to exist in communicating

hydrocephalus (Egnor, Zheng et al. 2002). During the normal windkessel

mechanism intracranial arterial pulsations are dampened by the shift of CSF and

venous blood outside the cranial cavity in order to preserve the continuous

nonpulsatile blood flow as required at the level of the capillaries (Greitz 1993).

Bateman suggested that the central role in pathogenesis in INPH is in fact the

elevation in superficial venous system pressure and a reduction in the blood flow

returning via the sagittal sinus suggesting also that the deep white-matter

hyperintensities (DWMI) is an epiphenomenon rather than the cause of iNPH

(Bateman 2008). This elevation in cortical vein pressure appears to be reversible

following shunting (Bateman 2003).
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1.5.2.4. The role of capillary hydrodynamics

Study of the contribution of the capillary hydrodynamics to the development of the

syndrome may only be studied realistically by using a mathematical model (Penar,

Lakin et al. 1995). Within the limited studies carried out it has been postulated that

increased flow resistance at the level of the capillaries may be a contributing factor

to the maintenance of ventriculomegaly. That resistance was suggested to be the

result of arterial hypertension known to be prevalent in patients with iNPH (Krauss,

Droste et al. 1996). An adaptive process of the brain to chronic hydrocephalus is

increase in capillary density and diameter (Luciano, Skarupa et al. 2001).
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Dilatation of VR** perivascular spaces
Demyelination
Periventricular gliosis

CVD* → closure of parenchymal veins

↓ Compliance

↑ Pulse Pressure X6 ↓ damp arterial waves
(Water Hammer pulse)

↓ compliance of cortical veins/
Perivascular spaces

↑ interstitial fluid pressure
↑ Volume Loss → Ventriculomegaly

Figure 1.5.2.4.1. Dynamic changes in physiology and pathology that take
place during development of the syndrome. Reduced compliance has a
central role in it. (* Cerebrovascular disease, ** Virchow-Robin spaces)
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1.6. CSF dynamics in chronic hydrocephalus

Idiopathic NPH may cause changes in fluid dynamics in very many ways: CSF

resorption routes, as well as CSF production may be altered, the diversion of CSF

between fluid compartments might shift, compliance and elastance of brain

parenchyma and the ventricular walls might change. Even the input signal to the

intracranial space, namely arterial inflow, as well as arteriolar resistance might be

changed. Likewise, the venous outflow from the brain might differ from a normal

pattern. The answer to such complex pathophysiological processes is more likely

embedded in, for example, the profile of ICP measurements, rather than in rough

mean ICP values. This necessitates the use of somewhat complex diagnostic tests

in order to calculate the intracranial dynamics. The measurement of intracranial

dynamics is based on the principle of Kellie-Monroe and the fact that the

CSF/blood/brain remains constant at all stages according to the following equation:

Vtissue+ Vblood+ Vcsf = Vtotal = Veq + Ve, where Veq is the equilibrium volume when

the ICP is normal and Ve is the elastic volume.

It is also important to appreciate that CSF pressure= rate of CSF formation X

CSF outflow resistance + Intracranial venous pressure

It therefore follows that for any change in volume the pressure within the cranial

cavity will be altered and vice versa (Marmarou, Shulman et al. 1978). This

relationship of the intracranial pressure versus intracranial volume may be

assessed by CSF volume-pressure studies and is described in terms of elastance
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(i.e. elasticity and stiffness) and compliance. The aim of any CSF volume-pressure

study is to measure the Rout along with other compensatory mechanism and

consider whether the CSF circulation is disturbed and therefore assess the

suitability of the patient for surgical cerebrospinal fluid diversion (shunting).

1.6.1. Parameters of CSF dynamics

1.6.1.1. Intracranial pressure

There have been glimpses of hope of a non-invasive way of calculating the ICP by

using a mathematical model which by calculation the arterial blood pressure (ABP)

waveform linearly transforms the relationship between ABP and cerebral blood

flow velocity (Schmidt, Czosnyka et al. 2000). However, the standard method of

calculating the ICP remains invasive by inserting a pressure monitor probe either in

the subdural space, intraparenchymally, or even intraventricularly. The probe is left

in situ for at least 24 hours and then the data is analysed either visually by the

clinician, or ideally via a computerised system. Data such as the mean ICP, the

waveform and its waves may be then extracted for the whole time. Intracranial

pressure oscillation consists of a cardiac-induced component, a respiration-

induced component and fluctuation of the base level of ICP. Its waveform is

composed of the so called alpha, beta and c waves (Lundberg 1960). Ventricular

CSF pressure measurement is considered the gold standard, however a recent

paper has suggested that lumbar CSF measurement agrees well with intracranial

ICP measurements (Lenfeldt, Koskinen et al. 2007). In normal volunteers, the CSF

opening pressure averages 8.8 +/- 0.9 mm Hg when measured by lumbar puncture
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in the left lateral recumbent position (Bono, Lupo et al. 2002). ICP as measure of

CSF dynamics does not depend on age (Konig, Heissler et al. 2005).

The B-waves are slow and rhythmic oscillations in ICP. They probably originate

from oscillations in cerebral blood volume (Magnaes 1976), and may be present in

healthy individuals as well (Mautner-Huppert, Haberl et al. 1989). Although they

seem to be vasogenic in nature the ICP peaks a few seconds before the blood

pressure (BP) peak (Droste and Krauss 1999). It has previously been shown in

NPH cases that despite the presence of a normal baseline ICP, an increased

frequency of short-lasting ICP elevations (B waves) may be present in NPH. These

waves were originally defined by Lundberg as pressure elevations up to 50 mmHg

with a frequency of 0.5 – 2/min with an increase in pressure amplitude up to 50

mm Hg (Lundberg 1960). They have been further subdivided into great

symmetrical and intermediate waves on the basis of their morphology

(Raftopoulos, Chaskis et al. 1992).

Sahuquillo and colleagues have characterized NPH as compensated unstable and

compensated stable according to the percentage of B waves recorded (if they were

present for less or more than 25% of the total recording time). In one of their

studies they found no statistically significant correlation between the percentage of

B waves and the pressure volume index (PVI), compliance or Rout (Sahuquillo,

Rubio et al. 1991).

However, a careful interpretation of the ICP pattern is needed due to physiological

variations. It has been suggested that ICP recordings in suspected NPH should be
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accompanied by polysomnography to avoid misleading results due to variability of

B wave appearance dependent on sleep pattern (Droste, Krauss et al. 1994). This

is because it was found that the frequency as well as the amplitude of B waves

correlate with the REM and other phases of the sleep (Krauss, Droste et al. 1995).

The percentage of B waves was used as a diagnostic tool to select patients for

shunting; in that sense if a patient exhibited B waves more than 80% of the

recording time he was considered a candidate for shunting (Borgesen and Gjerris

1982). The usefulness of ICP monitoring to predict outcomes, although still used

today by many clinicians, has been disputed (Williams, Razumovsky et al. 1998;

Stephensen, Andersson et al. 2005).

Figure removed for copyright reasons

Figure 1.6.1.1.1. Example of pressure monitoring in a patient with normal
pressure hydrocephalus (Czosnyka and Pickard 2004).
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Figure removed for copyright reasons

Figure 1.6.1.1.2. Example of B waves

1.6.1.2. Conductance

The main driving force for CSF absorption is the pressure difference between the

dural venous sinuses and the CSF, a gradient which is in the range of 20-40 mm of

water with the CSF pressure greater than the venous pressure in the superior

sagittal sinus in both adults and children (Shulman and Ransohoff 1965). In the

normal situation CSF absorption begins after the CSF pressure reaches 68mm

CSF pressure following which the rate of absorption and pressure are linearly

related (Lorenzo, Bresnan et al. 1974). CSF conductance is a measure of this CSF

flow and absorption (units in ml/min/units of CSF pressure). The normal

conductance reported in man is in the range of 0.1- 0.15 ml/min/mmHg.

1.6.1.3. Resistance to CSF outflow (Rout)

Resistance to CSF outflow (Rout) is a measure of the resistance to CSF

absorption and is the reciprocal of conductance. The Rout does not correlate with

ventriculomegaly (Kosteljanetz and Ingstrup 1985) which explains why

ventriculomegaly alone cannot be a reliable feature to distinguish between patients
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with iNPH and cerebral atrophy. Rout varies widely in patients examined for

suspected disturbances in CSF dynamics, ranging from 0-90 mm Hg/mL/minute

(Børgesen SE 1989), whereas in normal individuals it was found to be 9.1+/- 0.8

mm Hg/ml/minute (Albeck, Borgesen et al. 1991). Rout increases linearly with age

(Czosnyka, Czosnyka et al. 2001).

The Rout can be calculated from formula (3) derived from an infusion test:

ICPbaseline=Rout X Formation rate of CSF + Pss (1)

ICP end-equilibrium= Rout X (Formation rate + Infusion rate) + Pss (2)

ICP end-equilibrium-ICPbaseline= Rout X Infusion rate (3),

where Pss is the pressure at the sagittal sinus, ICPbaseline is the ICP recorded at the

beginning of the test and ICP end-equilibrium the ICP reached at the end equilibrium of

the test. However, some authors suggested that the plateau pressure, and not the

Rout calculation, is enough to facilitate patient selection for surgery (Kahlon,

Sundbarg et al. 2005).

Several CSF hydrodynamic tests are used to assess Rout. The basic concept is to

study the pressure-infusion curve through either bolus injection, constant rate

infusion or constant pressure infusion. When compared the first two methods

correlate well with the bolus infusion technique giving lower values (Kosteljanetz

1985). A Rout of 18 mm Hg/ml/minute is considered a strong predictor of good

outcome following shunting (Boon, Tans et al. 1997; Boon, Tans et al. 1998). Other

authors found the Rout not correlating with clinical outcome in early (<1 symptoms)

hydrocephalus, but is relevant to outcome in patients with long standing symptoms

and associated cerebral atrophy (Meier and Miethke 2003), whereas others
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disagreed about its predictive role altogether (Malm, Kristensen et al. 1995; Hebb

and Cusimano 2001; Savolainen, Hurskainen et al. 2002; Meier, Konig et al. 2004).

Although infusion testing may be done both via lumbar and ventricular access

there is no difference between the two methods favoring therefore for obvious

reasons the lumbar infusion test (LIT) (Kahlon, Sundbarg et al. 2005).

The Rout was found to be higher in a study of 35 patients with NPH when

compared with patients with cortical atrophy. The outflow resistance was

significantly correlated with mean blood flow velocity and cerebral perfusion

pressure (both were indirect measures of the capacity for autoregulation). The

significance of this finding is that patients with higher resistance to CSF outflow

retained their autoregulation, thus excluding largely the presence of concomitant

cerebrovascular disease (CVD) (Czosnyka, Czosnyka et al. 2002).

1.6.1.4. Compliance

Tissue compliance is the reciprocal of elastance. It may be calculated as DV/ DP

(units in mL/ mmHg). Cerebral compliance (C) is the ability of the brain to adapt to

changes in volume (DV) inside the cranium in order to reduce changes in pressure

(DP), i.e. C = DV/DP. A brain is described as compliant, (i.e. it has good

compliance) if a large change in ventricular volume results in a small change in

ICP. In hydrocephalus the compliance of the brain is modified due to the structural

changes taking place in the parenchyma as the condition evolves, and therefore

will not remain constant. When input volume is plotted in relation to intracranial
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pressure the result is not a straight line but rather an exponential curve that first

rises slightly, and when the reserves of the system have been exhausted it rises

sharply. With a concomitant increase in ICP, there is a decrease of the intracranial

compliance, regardless of the source of the pressure increase.

There have been many theories of the structural causes of cerebral compliance.

Brain parenchyma is deformable but not compressible and therefore unlikely to

contribute to changes in compliance. The same occurs with CSF which acts as a

non-compressible fluid medium and since it has a very slow rate of formation and

resorption it is unlikely to contribute to changes in compliance. That leaves the

intracranial blood volume as the most likely determining factor of cerebral

compliance (Chopp, Portnoy et al. 1983).

In fact, the clinical signs and symptoms in NPH as well as ventricular dilation,

periventricular oedema, reduced cerebral blood flow, malabsorption of CSF,

intracranial pressure waves, increase of mean CSF pressure, increased CSF pulse

pressure, increased vascular resistance, hyperdynamic intraventricular CSF flow,

increased Pulsatility Index (PI) and decreased intracranial stroke volumes may all

be explained by decreased intracranial compliance. There have been attempts of

non-invasive measurement of the intracranial compliance by calculating an index ,

defined as the ratio of the peak-to-peak intracranial volume change (ICVC(p-p)) to

the peak-to-peak cerebrospinal fluid (CSF) pressure gradient (PG(p-p)) during the

cardiac cycle, measured with phase-contrast (PC) cine MRI (Miyati, Mase et al.

2007).
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1.6.1.5. Elastance

In practice elastance indicates the stiffness in brain and is increased linearly with

age (Czosnyka, Czosnyka et al. 2001). It is the reverse of compliance. Elastance is

determined by using bolus injections to measure the PVI of the CSF pressure–

volume curve, where PVI is the volume needed to increase the pressure 10-fold

(Marmarou, Shulman et al. 1975).

E= DP/DV (mmHg/ mL)

Volume pressure response (VRP, units in mm Hg/mL) is a direct measure of the

elastance.

1.6.1.6. Pressure Volume Index (PVI)

The nonlinear relationship between the pressure and volume elements of the

intracranial cavity makes the measurement of compliance a cumbersome

procedure. This has been solved by Marmarou and colleagues who changed the

graph of the P/V relationship into a semi-logarithmic curve. As a result of this

logarithmic transformation the exponential function was found to be linear, and

they termed the increased angle a pressure-volume index (PVI). The PVI (units in

ml) is the amount of volume necessary to raise the resting pressure by a factor of

10. During an infusion test it can be calculated from the following equation:

PVI= DVi / 0.4343 ln Pp/Pb,

where DVi is the volume injected, Pp is the peak pressure achieved during the test

and Pb is the baseline pressure at the beginning of the test. The PVI in adults is

25.9 +/- 3.7 mL (K Shapiro, A Marmarou et al. 1980).
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1.6.1.7. Pulsatility Index (PI)

The elevation of the pulsatility index (PI) at transcranial ultrasound Doppler

indicates increased pulsatility in major intracranial arteries. The increased

pulsatility is a consequence of decreased intracranial compliance and breakdown

of the windkessel mechanism, decreasing the diastolic flow in the arteries.

Decreased intracranial compliance also increases the vascular impedance, i.e.

increased resistance to pulsating flow, causing a decreased mean blood flow

1.6.2. Methods to calculate the CSF pressure-volume curve

There are five methods of performing tests to assess the intracranial CSF

dynamics. These methods utilize a subarachnoid infusion system in which either

flow or pressure can be held constant. These tests are quantitative and can often

separate a loss of brain substance secondary to a degenerative process from

normotensive and hypertensive hydrocephalus. However, calculations of outflow

resistance or conductance do not take into account the possibility that the patient’s

own production of CSF may vary at different intracranial pressure levels, and that

the initial pressure level (before the start of the infusion) may vary for reasons

unrelated to CSF hydrodynamics.

1.6.2.1. Lumbar infusion test by Katzman

The aim of this test is to quantitatively evaluate the CSF absorptive ability of an

individual, which is the conductance to outflow (Cout). During the infusion test
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constant steady flow is maintained with an infusion pump. CSF pressures are

monitored through a three-way stopcock. In patients with normal CSF absorption

mechanisms, infusion at a rate approximately twice the usual rate of CSF

formation results in a modestly predictable CSF pressure elevation. In the case of

communicating hydrocephalus, the capacity to absorb this additional fluid is

reduced; on infusion, CSF pressure rises abruptly, and the procedure is quickly

terminated.

Figure removed for copyright reasons

Figure 1.6.2.1.1. An illustration of the infusion test (Katzman and Hussey 1970)

1.6.2.2. Lumbar constant rate infusion test

The lumbar constant rate infusion test was a variant of the infusion test originally

described by Katzman (Katzman and Hussey 1970). The test was performed with

or without local anaesthesia with the patient in the lateral and horizontal position, in

order to obtain an equal level of the ventricular system and the lumbar

subarachnoid space. A midline lumbar puncture was made with a 19-gauge needle

inserted between the L4 and L5 vertebrae. The needle was then connected to a

transducer, which was linked to a computer-based system that allowed pressure

sampling each 5th second. After 10 minutes of baseline measurement, the infusion
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of normal saline at a rate of 1.5 ml/min or 1 ml/min (if the baseline pressure was

higher than 15 mm Hg) is started and continued until a steady state ICP plateau is

achieved. If the ICP increases to 40 mm Hg, the infusion is interrupted. Following

cessation of the saline infusion, the ICP is recorded until it decreases to steady

baseline levels. All compensatory parameters are calculated using computer

software based on physiological models of the CSF circulation. Baseline ICP and

Rout characterize the static properties of the CSF circulation.

1.6.2.3. Constant pressure infusion test

The test was first described by Eksted (Ekstedt 1977). By infusing artificial CSF at

constant pressures and recording the resultant flow, it is possible to obtain

information about the hydrodynamic conductance of the CSF outflow pathways. In

its original description 2 lumbar needles were inserted via the opening in the back

support of a special chair with the patient in the sitting position. The chair was then

folded back and the rest of the investigation made with the patient supine. Two

pressure transducers were connected to carrier frequency amplifiers. The resting

pressure was recorded continuously. The infusion was then started. The first

infusion pressure was chosen to be about 0.5 kPa above the resting pressure. The

pressure was kept at this level until the rate of flow had levelled off after the initial

high rate and the CSF pressure was constant. Then the pressure level was

increased by a further 0.5 kPa and the same procedure was repeated. The

pressure was kept at a certain level for at least five minutes. In most cases a final

pressure of 6 kPa was aimed at, but sometimes, when there was a very good

drainage, the content (120 ml) of the bottle with artificial CSF was not sufficient to
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attain this level. The next step was the 'post-infusion'. The connection to the bottle

was shut off and the pressure was allowed to return spontaneously by elimination

of CSF through the physiological pathways. This was continued until a steady

plateau value was recorded, which, in most cases, closely corresponded to the

initial resting value. The next step in the investigation was then to

perform the drainage. The pressure in the infusion bottle circuit was lowered to

0.25 kPa. This caused an outflow of CSF from the subarachnoid space into

the bottle. Initially, the rate of outflow was high, but within 10 to 15 minutes the rate

levelled off when the intraspinal pressure approached the pressure in the infusion

circuit. This part of the investigation was done in order to determine the rate of

formation of the CSF. The investigation described a rectilinear relationship

between CSF pressure and the flow necessary to maintain each pressure level.

1.6.2.4. Lumbo-ventricular perfusion

The lumbo-ventricular perfusion as described by Borgesen is the most invasive but

also the most accurate (Borgesen, Gjerris et al. 1978). This test allows the

measurement of the relationship between CSF pressure and CSF absorption; the

resorptive capacity of CSF can be measured as Cout. The method is based on a

constant infusion rate at different, controlled, constant intracranial pressure levels.

Ringer lactate is infused via a lumbar cannula at 1.5 to 4.5 ml/min. The pressure

level is controlled by the height of the outflow tip of the catheter from the ventricles.

The unabsorbed fluid flows out through the catheter from the ventricles, and is

measured gravimetrically in two periods of 5 min at 3 to 5 different pressure levels.

Cout is then calculated from the resulting rectilinear regression line relating
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absorbed volume to pressure level (see equation (2). The compliance of the

craniospinal space has no influence on the measurement of Cout.

Vabs=Vinf + (VCSF-Vout) (1)

dVabs/dP (mL/ min/ mmHg) (2),

where Vabs is the volume of the fluid absorbed, Vinf the volume of the infused fluid

and Vout the volume of the unabsorbed fluid flowing out.

1.6.2.5. Bolus injection method

Bolus injection of fluid into the lumbar thecal sac as described by Marmarou is the

least invasive and quickest method (Marmarou 1973). Following placement of a

ventricular catheter, a fluid-coupled conventional strain-gauge transducer was

connected to the ventricular catheter with a syringe interposed between them for

manipulation of CSF. The electrical output of the

transducer was recorded continuously on conventional strip charts at 1

mm/second. All pressures were referenced to the right atrium. After a baseline

steady-state ICP was established, bolus withdrawal o f 2 to 4 ml o f CSF was

performed. The PVI was calculated using the formula:

PVI = AV/log (Po/Pm),

where Po is the initial CSF pressure prior to bolus withdrawal of CSF, Pm is the

trough CSF pressure immediately following withdrawal, and AV is

the volume of CSF withdrawn. Depending on the PVI and Po, a series of 2 to 10 ml

bolus injections were performed allowing 3 to 10 minutes to elapse between

manipulations. After each injection, the following parameters were extracted from
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the recordings of CSF pressure: the CSF pressure prior to injection (Po); the peak

CSF pressure produced by bolus injection (Pp);

and the CSF pressure 1 minute after the bolus injection (Pt). The PVI was

calculated for each injection using the formula

PVI = AV/log (Pp/Po). The CSF absorption resistance (Ro) was calculated when Pt

was at least 2 mm Hg less than Po, using the formula

Ro = Po/PVI • log [(Pt/Pp) x (Pp - Po/P, - Po)].

1.6.2.6. Computerised constant rate infusion test

This test was carried out as a standard constant rate infusion test. It provides Rout

(and other parameters) by an optional lumbar or ventricular constant

rate infusion. The ICP analysis eliminates the influence from unwanted pressure

fluctuations and artefacts, and permits calculation of Rout even when a steady

pressure level is impossible to obtain. The calculations of Rout, CSF formation

rate, and PVI are based upon known relations between the parameters as given by

the Davson equation (CSF formation rate=ICP/ (Rout + Pss), where Pss is the

pressure of the sagittal sinus), the mono-exponential shape of the pressure/

volume relationship, and the linear relation between the pulse wave amplitude and

ICP. Via a lumbar cannula Ringer lactate was infused at constant rate. Excess fluid

was collected via an intraventricular catheter, through which also the ICP was

measured. The height of the out-flow tube connected to the intraventricular

catheter regulates the ICP making it possible to obtain several steady pressure

levels at a steady infusion rate. Rout was calculated as the regression coefficient

of the ICP/absorbed volume correlation. After re-establishing a steady, normal
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pressure infusion with constant infusion rate and monitoring of the intraventricular

or lumbar CSF-pressures was performed. The analog pressure signal from the

pressure amplifier was converted by an analog-digital converter and stored by the

software, installed in a standard personal computer. The ICP-signal was processed

by a spectral analysis filtering out noise to make the pattern more salient. From the

baseline ICP, the infusion rate, and the end equilibrium-ICP, Rout may be

computed.

Technique Parameters

manipulated

Parameter

calculated

Units Reference

Lumbar infusion

test

Constant flow Conductance mL/ min/ mmHg (Katzman and

Hussey 1970)

Lumbar infusion

test

Constant

pressure

Conductance ml/ min/ mmHg (Ekstedt 1977)

Ventriculo-lumbar

Infusion

Constant flow CSF

formation/

absorption

mL/ min (Cutler, Page et

al. 1968)

Bolus

injection/method

Volume

withdrawal/

volume injection

Pressure

Volume

index

mL (Marmarou,

Shulman et al.

1978)

Computerised

infusion test

Resistance

to CSF

outflow

mmHg/ mL/ min (Borgesen,

Albeck et al.

1992)

Table 1.6.2.6.1. Summary of systems used to study CSF dynamics in man
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1.7. Pathology

1.7.1. Experimental studies in hydrocephalus

The contemporary animal model used to study chronic hydrocephalus is that of

injection kaolin in the cisterna magna of rats. It is though that the injection of kaolin

(aluminium silicate) caused an inflammatory reaction to the meninges obstructing

the CSF flow in the subarachnoid space, thus stimulating the conditions of NPH.

Experimental studies support the theory of engagement of white matter damage in

hydrocephalus. Progressive damage to axons in the periventricular white matter,

gradual death of oligodendroglial cells, astroglial hyperplasia, and microglial

activation has been seen (Del Bigio and Zhang 1998). It has been shown that

ependymal disruption begins as early as 12 hours following CSF flow obstruction.

In an experimental study on kaolin-induced hydrocephalus and shunting in kittens,

the white matter was found oedematous, with reactive astrocytes and markedly

reduced periventricular myelination. Histologically, decreased local cerebral

glucose utilization in central white matter was seen in non-shunted hydrocephalic

animals (Chumas, Drake et al. 1994).

1.7.2. Neuropathological studies in human subjects

Due to limitation of autopsy cases it is impossible to conclude whether

anatomicopathological alterations are present in all cases, or differ depending on

the severity or the chronicity of the condition. Neuropathological studies in humans

are mainly provided from cortical biopsies. There are only two published

pathological autopsy studies; the first of 7 subjects by Akai and colleagues, and a
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second on 4 subjects by Brusa and colleagues (Akai, Uchigasaki et al. 1987;

Brusa, Piccardo et al. 1991). Cortical biopsies have shown arachnoid fibrosis in

50% and frequent pathological parenchymal changes (Akai, Uchigasaki et al.

1987; Bech, Juhler et al. 1997). Ependymal changes range from normal, stretched,

torn or total destroyed epithelium (Akai, Uchigasaki et al. 1987). The ependymal

damage depends on the degree of the elevated intracranial pressure (Del Bigio

1993). The gliosis observed was of the astrocytic type ranging from the basement

of the ependyma up to a depth varying in the white matter (Brusa, Piccardo et al.

1991). Fibrosis of the choroid plexus has been reported (Jellinger 1976). There is

characteristic gliosis in the periventricular area following the onset of CSF

obstruction (Jellinger 1976; Weller and Mitchell 1980), accompanied by

oedematous subependymal region and demyelination of the periventricular white

matter (Akai, Uchigasaki et al. 1987). In brain biopsies of hydrocephalic children

large quantities of pinocytic vesicles and enlargement of extracellular spaces has

been noted. Histological examination consistently reveals enlarged extracellular

spaces in the white matter adjacent to the ventricles of hydrocephalic humans

(Foncin, Redondo et al. 1976). This has led many authors to suggest that the

enlarged extracellular spaces adjacent to the ventricle act as diffusional pathways

for "displaced CSF", as indicated by movement of tracer substances from the

ventricle into the parenchyma. Thinning of the corpus callosum and compression of

the periventricular white matter is a consistent finding in human hydrocephalus.

Axonal degeneration and loss of axons has been reported in long-standing

hydrocephalus (Brusa, Piccardo et al. 1991). White matter’s demyelination extends

to the areas supplied by the anterior and middle cerebral arteries (Akai, Uchigasaki

et al. 1987). The loss of myelin appears more prominent than the loss of axons
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(Akai, Uchigasaki et al. 1987). It is thought that the axonal and secondary myelin

damage occur through a combination of ischemic and mechanical effects. Gross

atrophy of the basal ganglia has also been reported in humans and animals (Di

Rocco, Di Trapani et al. 1977). Neuronal pyknosis and degeneration have been

observed in the cortex of young and adult hydrocephalic humans. Indirect

indications of neuronal loss has been reported (Schmidt, Hasselbalch et al. 1996).

Vacuolization and degeneration of neurons in the hippocampal formation have

been observed in hydrocephalic humans. Yakovlev observed a decreased quantity

and reduction in size of the large pyramidal neurons in the paracentral lobules of

two chronically hydrocephalic humans (Yakovlev 1947). The vascular changes

were those of with multiple microinfarcts, arteriosclerosis, demyelination and loss

of axons in white matter; altogether, changes compatible with arteriosclerotic

encephalopathy (Akai, Uchigasaki et al. 1987).

Changes typical for Alzheimer’s disease (AD) and arteriosclerotic changes have

been reported. In two recent retrospective studies, clinical improvement was

reported in three of five (Del Bigio, Cardoso et al. 1997) and two of eight

(Savolainen, Paljarvi et al. 1999) shunted patients with Alzheimer’s disease

pathology established by biopsy indicating that comorbidity with this disease does

not always mitigate against a beneficial neurosurgical result. There is one

comparative study showing significantly more changes of Alzheimer-type in

biopsies from hydrocephalus patients than in age-matched autopsy controls (Del

Bigio, Cardoso et al. 1997). In a prospective study of 56 patients who underwent

ventriculoperitoneal shunting for iNPH and cortical biopsy no specimen biopsy

showed inflammation, neoplasm, neurons with Lewy Bodies, Pick bodies, or glial



66

cells with silver positive inclusions. Amyloid angiopathy and neuropril threads were

detected in only a few specimens and sparse accumulations of neurofibrillary

tangles were seen in six. Neuritic plaques were found in 23 biopsies whereas 12

patients showed only diffuse plaques. A diagnosis of definite Alzheimer’s disease

could be made in seven cases (12.5%), probable disease in nine (16%), and

possible disease in seven (12.5%) (Golomb, Wisoff et al. 2000). Neurofibrillary

tangles (Ball 1976) and granulovacuolar degeneration in hippocampal neurons is

prevalent in shunted patients who do not improve (Ball and Vis 1978) and the

pathologic changes seen are very similar to those of AD. One of the most

important findings of that study is that the patients with positive biopsies for AD had

similar improvement in gait, psychometric testing and urinary control when

compared with the patients with negative biopsies.

Macroscopical changes observed in patients with hydrocephalus is corpus

callosum atrophy as demonstrated with imaging (Jinkins 1991; Thajeb 1993).

1.7.3. Cerebral metabolism

In 1969, one pathophysiological theory suggested that NPH is caused by cerebral

perfusion disorders (Greitz 1969). However, most studies show no correlation

between the magnitude of changes in the cerebral blood flow due to CSF removal

and clinical outcome after therapy (Owler and Pickard 2001).

Previous CBF investigations in which the H2-clearance method and the

[14C]iodoantipyrine ([14C]IAP) autoradiography technique were used showed that

cortical gray matter blood flow sustained rather mild decreases in adult and
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infantile experimental hydrocephalus (Higashi, Asahisa et al. 1986). Only blood

flow levels in the white matter were found to be below the ischemic threshold (da

Silva, Michowicz et al. 1995).

Additional evidence regarding the disturbance of cerebral metabolism in NPH has

been provided by a microdialysis study in ten patients. During the ICP increase

artificially induced during lumbar infusion testing reversible changes were observed

in energy metabolism in the periventricular white matter without any signs of

ischemia. The authors conclude that it is the chronicity of the ICP increases that

could cause irreversible axonal injury, later demyelination and therefore the clinical

symptomatology of NPH (Agren-Wilsson, Eklund et al. 2005).

CSF may leak into the brain extracellular space under conditions of a permanently

disrupted brain-CSF barrier. This kind of abnormal CSF circulation would not

cause intracranial hypertension, because the resistance to intraparenchymal CSF

flow is probably low. Hypothetically, increased CSF flux in white matter could

cause a decrease in CBF in the periventricular zones, provoking specific

symptoms (particularly gait disturbances and urinary incontinence).

Compression of the extracellular spaces as described previously in the section of

neuropathology may be of functional significance. The movement of

neurotransmitters and their metabolites as well as the waste products of energy

metabolism is dependent on the volume and tortuosity of extracellular spaces. Del

Bigio suggested that if ventriculomegaly causes compression of extracellular

spaces, then stagnation of these substances could disturb the homeostasis of the
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microenvironment and consequently upset neuronal function. Thus compression of

the extracellular space combined with astrogliosis of the white matter could

decrease the clearance of waste products from the hydrocephalic brain, a function

which is already impaired by reduced outflow of CSF (Del Bigio 1993). The

metabolic changes occurring in chronic adult hydrocephalus have been extensively

reviewed (Kondziella, Sonnewald et al. 2008). The authors main conclusion was

that in NPH from a certain 'point of no return' metabolic impairment becomes

decoupled from CSF dynamics and, at least partly, self-sustained. This is probably

the reason why despite restored CSF circulation by shunting many patients with

chronic hydrocephalus still suffer from severe neurological deficits.

In experimental studies with kaolin-induced hydrocephalus in rats no difference in

cerebral glucose utilization rate was found in the periventricular tissue (Richards,

Pickard et al. 1985). In human studies, patients with NPH exhibit lower uptakes of

glucose and oxygen and a significant release of lactate and pyruvate when

compared with normal subjects. Cerebral metabolic rates correlate with an

increase in ketone bodies pointing out to a catabolic state in the syndrome of NPH.

It has been shown, albeit in a limited number of patients, that these changes

reverse post shunting, with an increase in cerebral uptake of glucose and a

decrease of the metabolic rate of the ketone bodies suggesting a reversal of the

catabolic state in NPH (Lying-Tunell, Lindblad et al. 1981; Kaye, Grady et al.

1990). However, clinical improvement post-shunting does not always correlate

with an increase in cerebral uptake of glucose (Tedeschi, Hasselbalch et al. 1995).

Impaired oxygen metabolism has been detected by PET studies in the lower areas

of the frontal lobe (Ishikawa, Kikuchi et al. 1989). Oxygen extraction is increased in
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patients with both idiopathic and secondary forms of NPH when compared with

patients with cortical atrophy, or ischemic disease. Furthermore, clinical recovery is

correlated with higher preoperative oxygen extraction rates (Mima, Mori et al.

1999). Chemical shift imaging has also been able to point out difference in

metabolism in NPH by showcasing an increase in the concentrations in lactate in

the ventricular CSF when compared with other forms of dementia and control

subjects (Kizu, Yamada et al. 2001). Using proton MRS it was shown that the

ratios of non-acetyl aspartate (NAA)/ creatine and non-acetyl aspartate/ choline

mean values increased after surgery in a cohort of eleven patients. NAA is present

primarily in neurons, axons, and dendrites and is viewed as an indicator of

neuronal state and function. NAA is also important for reparative brain processes

by enhancing lipid synthesis and repairing injured myelin. These results, therefore,

may point out to a reparative process in progress following shunting in NPH

(Matarin, Pueyo et al. 2007).

1.7.4. Changes following shunting

Very few studies have studied the pathological changes occurring post-shunting for

obvious reasons, so most data we have to date is from experimental animal

studies. There is restoration of the brain’s dry weight comparable to that of normal

animals following shunting (Bannister, Cranley et al. 1994). In shunted kittens, no

periventricular oedema was present following shunting (da Silva, Drake et al.

1994). In shunted dogs incomplete restoration of cytoskeletal neuronal damage

has been noted (Aoyama, Kinoshita et al. 2006). In another experiment even

though there has been clinical improvement following shunting there was no
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correlation with white matter atrophy induced due to hydrocephalus. Lack of

histopathological changes in white matter points out to another factor implicated in

the pathogenesis of hydrocephalus, which as the authors suggested is ischemia

(Eskandari, McAllister et al. 2004). Partial restoration of afferent and efferent

pathways in the sensorimotor cortex of shunted animals has been reported

(Eskandari, McAllister et al. 2004). Re-expansion of the cortical white matter but

remnant gliosis suggestive of a protracted phagocytic response to axonal damage

that had occurred during the hydrocephalic period was noted in shunted kittens

(Hale, McAllister et al. 1992). During the restoration of the cerebral mantle

extensive myelin regeneration of residual axons and astroglial proliferation with

mesenchymal reaction particularly at capillaries is observed (Yamada, Yokota et

al. 1992). Number of capillaries increases post shunting but no effect is observed

in larger blood vessels due to hydrocephalus (Del Bigio and Bruni 1988). The

reversal of histopathological changes observed has been shown repeatedly to

correlate with the time of shunting with milder changes occurring and with more

likehood to reverse if shunting is performed earlier rather than later.

In man post shunting changes are more likely to be studied indirectly, that is by the

use of imaging features or analysis of CSF markers. A potentially reversible

neuronal dysfunction as shown by correlation of the reduction of periventricular

hyperintensities on MR imaging with a reduction in CSF markers was suggested

post shunting (Tullberg, Blennow et al. 2007). On imaging DWMH might relate to

demyelination and periventricular hyperintensities (PVH) to neuronal axonal

dysfunction (Tullberg, Hultin et al. 2002). Reversible functional dysfunction of the
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corpus callosum in human subjects has been demonstrated (Mataro, Poca et al.

2006).

Table 1.7.4.1. Pathologic changes seen in hydrocephalus. Modified from
DelBigio (Del Bigio 1993) and Brusa (Brusa, Piccardo et al. 1991).

Cell

type/structure

Late onset-acute Late onset-chronic Effects of shunting

Ependyma Ependymal damage,

exfoliation

Periventricular

gliosis

Remnant gliosis

White matter White matter oedema Axonal stretch +/-

loss

No oedema

Capillaries Capillary compression ? Capillary loss Capillary

restoration

White matter

blood supply

Hypoxic ischemic

damage

? chronic ischemic

damage

Restoration of

blood flow

Axons Gray matter loss,

subependymal

spongiosis

Remyelination of

axons

Neurons ? neuronal pyknosis ? neurofibrillary

tangles

Partial restoration

of size and

synapses

Meninges Meningoendothelium

hypertrophy, fibrosis

of Pacchionian bodies

Subarachnoid

space

Obliteration or

presence of cystic

dilatation
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1.8. Clinical symptoms

The occurrence of the triad of symptoms occurs in 50% of the patients suffering

with the syndrome (Pfisterer, Aboul-Enein et al. 2007).

1.8.1. Gait

Even though after the publication of Hakim & Adams dementia was thought to be

the prevalent and main symptom of the syndrome, today we know that gait

disturbance is usually the first sign and considered the most disabling symptom of

the disease This was the result of the work by Fisher who observed in 30 patients

who had gait symptoms preceding dementia definitive improvement following

spinal drainage or shunting (Fisher 1977; Fisher 1982; Graff-Radford and

Godersky 1986). It is assumed that the cause of the symptoms in the syndrome is

the result of a compromised axonal function with two main causes: a) a mechanical

cause, from compression and axotomy from the distended ventricular walls

(Yakovlev 1947), or transependymal CSF diffusion, and b) ischaemia from

decreased blood flow in the area (Kristensen, Malm et al. 1996). Thus, in NPH the

clinical symptoms result from lesions to sensory and motor tracts travelling through

the cerebral white matter. Since the fibers of the corticospinal tract that supply

motor function to the legs pass closest to the lateral ventricles in the corona radiata

and they are longer, it is not surprising that the gait disturbance is usually the first

symptom to appear and the first one to resolve following successful CSF shunting

(Graff-Radford and Godersky 1986), however, the fibers to the arms are also likely

to be affected. It is now thought that primary frontal damage, lesion of
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frontocerebellar pathways, or lesioned corticocortical fibres projecting to the frontal

cortex are more likely to cause the condition (Stolze, Kuhtz-Buschbeck et al.

2001). Recent investigations have suggested that the mesencephalic locomotor

centre in the dorsolateral midbrain (in the posterior tegmentum just ventral to the

inferior colliculus) might be responsible for the gait abnormalities observed in

Parkisonism or Parkisonism-like syndromes (Pahapill and Lozano 2000). Indeed

the midbrain diametre has been found significantly smaller in iNPH when

compared to control subjects (Lee, Yong et al. 2005), and the diametre increases

following shunting (Mocco, Tomey et al. 2006). However, the latter study has

weaknesses since the observation may well be interpreted as attributed simply due

to a shunting procedure and not necessarily correlated to symptom improvement. It

would be of interest to determine what changes in mid-brain size occurred in

patients who, despite meeting clinical criteria for INPH, did not respond to surgery.

This would greatly strengthen the view that increase in mid-brain size may be

responsible in part for the improvement seen in these patients.

The gait of NPH is characterised by a triad of: a) reduces stride length, b) reduced

step height and c) a disturbance of the dynamic equilibrium. The normal variability

of step width and foot angles was decreased, leading to an insufficient

compensation of body sway, as it is of particular importance during obstacle

avoidance. These results suggest that a disturbed “dynamic equilibrium” during

gait is the striking characteristic of the gait pattern in normal pressure

hydrocephalus (Stolze, Kuhtz-Buschbeck et al. 2001). The outwards rotated feet

and the increased step width observed may be a compensatory mechanism to

stabilise locomotion (Stolze, Kuhtz-Buschbeck et al. 2001).
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Compared with young adults, neurologically healthy elderly people exhibit 17% to

20% reductions in the velocity of gait and length of stride. The gait disorder in

NPH, usually referred to as hypokinetic gait (Sudarsky and Simon 1987), is

characterized by being broad-based, with small foot-floor clearance, and low

swing-to-stance ratio (Knutsson and Lying-Tunell 1985), reduced gait velocity and

a diminished and highly variable stride length. Reduced stride length was proposed

to be due to co-contraction of the proximal muscles as revealed by EMG studies

(Sudarsky and Simon 1987). In NPH patients lack dorsal extension of the foot and

toes, and tend to hit the floor with the whole foot , rather than with the heel first as

normal subjects do (Stolze, Kuhtz-Buschbeck et al. 2000). Arm swing does not

appear impaired (Sudarsky and Simon 1987). The gait disorder observed in NPH

shares these features in common with the gait disorder found in Parkinson's

disease (PD) (Stolze, Kuhtz-Buschbeck et al. 2001). Freezing has been observed

in between 30% to 56% in 2 studies (Giladi, Kao et al. 1997; Stolze, Kuhtz-

Buschbeck et al. 2001). The prevalence of hypo- and hyperkinetic motor deficits,

such as akinesia, tremor, dystonia and chorea, in NPH were highest (56 of 65

patients) among the idiopathic forms (Krauss, Regel et al. 1997). In a recent series

of 118 NPH cases due to various etiologies, additional hypokinetic motor deficits of

the upper extremities usually encountered in PD, such as akinesia, tremor and

rigidity, were encountered in 75 percent of affected cases (Krauss, Regel et al.

1997).

Quantitative investigations of motor performance of the hand and arm in NPH are

scarce (Soelberg Sorensen, Jansen et al. 1986). However, a clear hypokinetic
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deficit of motor performance was found in NPH which is similar in many aspects

with that found in PD. It has been proposed that it is not only the gait that is

affected in NPH but also posture and balance (Blomsterwall, Bilting et al. 1995).

A characteristic feature of the postural instability in patients with NPH is a tendency

to fall backwards, lean backwards and bump down on to the chair (Blomsterwall,

Svantesson et al. 2000). External visual or auditory cues improve the walking in

NPH very slightly and this comes in contrast with the hypokinetic gait of PD

(Stolze, Kuhtz-Buschbeck et al. 2001). Hypokinesia has been suggested to be

related to basal ganglia dysfunction (Bugalho and Guimaraes 2007). However, the

disequilibrium observed may be related to frontal dysfunction

Only the stride length has been shown to improve following removal of CSF via

lumbar tapping. This has a consequence of increase in overall gait velocity (Stolze,

Kuhtz-Buschbeck et al. 2000; Stolze, Kuhtz-Buschbeck et al. 2001; Bugalho and

Guimaraes 2007; Ravdin, Katzen et al. 2008). Gait velocity may increase in 20-

75% of the cases following shunting or tapping (Krauss, Droste et al. 1996; Stolze,

Kuhtz-Buschbeck et al. 2000). Following shunting postural functions improve more

than the motor ones (Blomsterwall, Svantesson et al. 2000). In a recent study of 33

patients Ravdin and colleagues concluded that the classic features of gait (wide

based stride, reduced foot-floor clearance and small steps) cannot predict the

responders after a tap test. However, the walking speed, required steps for turning

and tendency towards falling were most likely to improve (Ravdin, Katzen et al.

2008); admittedly one would not know the change of gait features following ELD.
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1.8.2. Cognitive decline

Patients with iNPH present with dementia which is characteristically of the

subcortical type. Subcortical dementia is a clinical syndrome characterized by

bradyphrenia, memory impairment, diminished executive function and mood and

personality changes. Patients with subcortical dementia are inert, indifferent, and

disinterested. The extreme result might be akinetic mutism (Barbizet, Duizabo et

al. 1975). It results from dysfunction of subcortical structures, white matter tracts

connecting frontal lobe and subcortical nuclei, or frontal lobe regions projecting to

specific subcortical targets. The striatum is most closely connected with the frontal

lobe, and it is this functional system that is disrupted in subcortical dementia.

Projection of the cholinergic fibres from the nucleus basalis to the cortical neurons

involved in memory might be stretched and could be involved in depressing CBF

metabolism (Iddon, Pickard et al. 1999).

The term “subcortical" refers mostly to physiological rather than anatomical circuits.

The finding that in the early stages of NPH the pattern of cognitive impairment is

predominantly frontosubcortical, only later becoming more global, contrasts

markedly with the pattern in patients with Alzheimer’s disease. The findings of

Waldemar (Waldemar, Schmidt et al. 1993) and also Graff-Radford (Graff-Radford,

Rezai et al. 1987) give support to this hypothesis as they reported subcortical

blood flow abnormalities.

There is another pattern of dementia, namely the cortical dementia of which the

main representative is the Alzheimer’s Disease. The spontaneous recall is

characteristically impaired in subcortical dementia, but encoding and storage are
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largely preserved. Remote memory is generally less impaired when compared with

AD but it exhibits no temporal gradient, a characteristic of AD. Subcortical

dementia is characterised by the absence of dysphasia, apraxia and agnosia. In

contrast in cortical dementia cognitive slowing may occur but is not a necessary

symptom and the disorders of higher cortical function, agnosia, apraxia and

aphasia, do occur.

With respect to language no aphasia is exhibited although patients in late stage of

the syndrome may exhibit difficulties with naming or following auditory commands.

It has been suggested that if aphasia is present in a patient then he is less likely to

improve following shunting, since this symptom is more suggestive of an

Alzheimer’s type of dementia (De Mol 1986).

Visuospatial skills are impaired equally in cortical and subcortical dementia.

Constructional apraxia has also been observed. Thinning of the corpus callosum

has been proposed as the cause of spatial neglect demonstrated in patients with

NPH (Jeong, Tsao et al. 2006).

It is now known that the executive functions are predominantly affected in the NPH

patients. That is because the prefrontal cortex which is affected in NPH is essential

for tasks requiring reasoning, anticipation, goal establishment, strategy formation,

shifting mental set, and error monitoring.
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Table 1.8.2.1. Diseases in which the syndrome
of subcortical dementia has been described

Degenerative disorders

Parkinson’s disease

Huntington’s disease

Progressive supranuclear palsy

Idiopathic basal ganglia calcification

Spinocerebellar degenerative syndromes

Thalamic degeneration

Vascular disorders

Lacunar state

Thalamic Infarction

Metabolic disorders

Binswanger’s disease

Wilson’s disease

Hypoparathyroidism

Demyelinating disease

Multiple sclerosis

AIDS encephalopathy

Miscellaneous

Subcortical sarcoidosis

Normal pressure hydrocephalus

Dementia pugistica

Neuro-Behcet’s disease

Benson characteristically describes the features of NPH. ‘Deranged mental

function is the most prominent symptom in NPH. This may range from a mild

apathy or mild disturbance of recent memory to severe psychomotor retardation,

including akinetic mutism. The dementia characteristically develops at a rapid pace
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but may fluctuate considerably from day to day. The degree of apathy and

inattentiveness is marked; in early stages apathy is more striking than depression

of cognitive ability’(Benson, LeMay et al. 1970).

The prevalence of dementia attributed to NPH in the general population is

essentially unknown. When the cohort of a memory clinic comprised of 196

patients was analysed only 2 were found to have NPH; they estimated NPH as

representing only 2% of treatable dementias (Freter, Bergman et al. 1998).

There are few psychometric studies of patients with NPH. A study by Gustafson

and Hagberg (Gustafson and Hagberg 1978) reports an overall reduction in

cognitive ability, including memory function, although verbal ability is retained.

They also comment on the marked difficulties such patients experience in

perceptive performance tasks and in inductive reasoning. Gustafson and Hagberg

found that their patients did not have aphasic, apraxic or agnostic deficits to the

same extent as their control group (patients with AD). Furthermore, such

symptoms occurred more frequently in those patients who had a poor result from

shunt operation. Those who improved following shunt operation were

characterized preoperatively by the symptoms of confabulation, emotional

unconcern, gait disturbance and incontinence. These authors point out the

similarity between the psychometric profiles of their patients and those described in

patients with frontal lobe lesions, in particular the reduced speed of motor and

intellectual performance and the deficits in perceptual performance and inductive

reasoning (Gustafson and Hagberg 1978).
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Traditionally the Mini-Mental State Examination (MMSE) tool has been used to

quantify the degree of dementia. However, MMSE may be only used as a

screening tool and should not be used as an inclusion or exclusion criterion of

considering patients for shunting (Tarnaris, Stephenson et al. 2007). Furthermore

MMSE cannot point out to the anatomical part contributing to the dementia. In a

multiple regression analyses, education and duration of illness were equally strong

predictors of the MMSE score (S. Folstein et al, unpublished data). While failure on

cognitive screening tests is associated with failure at work, successful MMSE

performance is not a sensitive indicator of the patient’s ability to work. Some

patients who score in the normal range in the MMSE are unable to function at a job

because of their difficulty in initiating and sustaining performance and difficulty with

more complex tasks than are covered by the MMSE.

If there are the facilities it is more appropriate that the severity of dementia is

assessed with the assistance of a neuropsychological battery of tests and by a

qualified neuropsychologist. Neuropsychological battery results may be combined

with imaging findings in order to strengthen the evidence and assess the severity

of the background pathology (Iddon, Pickard et al. 1999).

With regards to memory there is a loss of immediate and delayed recall (active

retrieval of memory), even though there is preservation of storage memory

(recognition). The decline in executive functions affects complex information

processing (increased reaction time, impaired ability to manipulate acquired

knowledge, and decreased cognitive flexibility).Visuospatial perception and

visuoconstructive skills may also be impaired (Duinkerke, Williams et al. 2004).
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The rate of cognitive improvement following shunting may vary from 26%-66%

(Caltagirone, Gainotti et al. 1982; Chang, Agarwal et al. 2006). 66.6%

improvement at one year follow-up has been demonstrated by using a

neuropsychological battery of tests in one study (Raftopoulos, Deleval et al. 1994).

Recovery up to 2 years of the cognitive functions has been described. When the

authors used the Wechsler memory Scale it was only after 2 years that all

subscales were within normal range; that patient suffered from almost 4 years of

progressive cognitive decline (Kaye, Grady et al. 1990). The authors also

demonstrated the coupling of anatomical/metabolic (right parietal glucose

metabolism) and neuropsychological (visuospatial) alterations that occurred post

shunting in that same patient.

A spinal tap when used as a selective diagnostic test cannot predict which patients

will have improvement on their cognition post shunting (Tromp, Staal et al. 1989). It

has been shown that it is mostly cognitive functions such as fluency, selective

attention, motor speed and executive functions that improve postoperatively

(Gleichgerrcht, Cervio et al. 2009), but not functions as intelligence (measured by

the use of the intelligent quotient in one study) (Tromp, Staal et al. 1989).

Preoperative cerebral status such as ventricular-to-brain ratio and cerebral atrophy

did not influence cognitive improvement in one study (Stambrook, Cardoso et al.

1988). Younger age and the female genre were found to be predictors of cognitive

improvement following shunting (Chang, Agarwal et al. 2006). Patients with iNPH

perform worse than healthy individuals on simple and target reaction times,

dexterity, memory and learning, working memory, and tests of executive

functioning. Patients with vascular risk factors performed worse than those without
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(Hellström, Edsbagge et al. 2007). Most of the wide range of neuropsychological

functions that are affected by iNPH are markedly improved by shunt treatment, but

not completely restored (Hellström, Edsbagge et al. 2008).

1.8.3. Urinary incontinence

Although Adams et al. in their original work did not emphasize the urinary

incontinence as a prominent feature in their discussion, 2 of their 3 patients were

described as having urinary incontinence (Adams, Fisher et al. 1965). The urinary

incontinence demonstrated has often been attributed to the patient not being able

to reach appropriate facilities in time due to his gait abnormalities. However, it has

been shown that the mechanism is also that of the “uninhibited neurogenic

bladder” (Jonas and Brown 1975). The mechanism is loss of the descending

signals which normally inhibits the primitive reflex contraction response of the

detrusor muscle of the bladder wall during filling. In this latter paper examining 5

patients with NPH, 3 of the cases were aware of the need to urinate and all were

distressed by the incontinence. Frequency, nocturnal frequency and enuresis are

other urinary disturbances described. In advanced cases, incontinence may be

associated with a lack of concern for micturition due to severe frontal lobe

dysfunction (Hakim, Hakim et al. 2001). Urinary incontinence usually follows the

gait abnormalities and almost always includes urinary urgency (Larsson, Wikkelso

et al. 1991; Vanneste, Augustijn et al. 1992; Vanneste 2000). Deformation of

periventricular corticospinal tract sacral nerve fibres seems to be the likely reason

for incontinence 4. Ineffective contraction of the detrusor muscle is identified on

urodynamic studies (Gleason, Black et al. 1993). Improvement in urodynamic
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function has been demonstrated within hours of lumbar tapping. No impairment of

sphincter control has been identified (Ahlberg, Norlen et al. 1988). Occasionally,

patients do not have frank incontinence but urgency; however the patient not being

quick enough to reach the lavoratory in time, he has incontinence. Fecal

incontinence may be the late result of this dysfunction, especially if left untreated

(Relkin, Marmarou et al. 2005).

The exact anatomical circuit participating in the incontinence mechanism has not

been proven. Until today we accept the explanation given by Adams of the

deformation of the parasagittal region-connecting long tracts due to the

ventriculomegaly (Adams, Fisher et al. 1965). Another suggestion made was that

the incontinence may be attributed to the mechanical distortion of the basal ganglia

from the ventriculomegaly. This data derives from the study of patients suffering

from Parkinsonism who have also neurogenic bladder on customary (Jonas and

Brown 1975).

1.8.4. Other symptoms

Motor symptoms in the upper limbs have been described in this group of patients.

Akinesia, tremor and rigidity of upper limbs characterised up to 75% of patients

with iNPH (Krauss, Regel et al. 1997). A study demonstrated a disturbance in

grasping to lift and holding movements which improved (but not normalised)

following test CSF drainage. It has been suggested by the same authors that the

corticospinal fibres to the upper limbs maybe equally affected as a result of

ventriculomegaly (Krauss, Regel et al. 1997). Micrographia is another symptom

observed in patients with NPH (Goodman and Meyer 2001).
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A psychiatric or behavioural manifestation of NPH has been noted in bibliography.

Initially, the symptoms often manifest themselves as depression with marked

psychomotor retardation, characterized by symptoms of apathy, inattentiveness,

agitation, and poverty of thought which mimic a depressive illness. The inability to

recognise the syndrome might result in unnecessary, often prolonged, treatment

(Lying-Tunell 1979; Fersten, Glowacki et al. 2005). Rice and colleagues have

described five patients in whom psychiatric disturbances, including depression,

confusion, delusion, and mental deterioration, were the major feature, while

neurological disturbances were relatively less obtrusive (Rice and Gendelman

1973); however, such patients do respond to ventriculoperitoneal shunting and the

psychiatric symptoms resolve (Pinner, Johnson et al. 1997). Obsessive compulsive

behavior in NPH has been noted (Abbruzzese, Scarone et al. 1994). In one study

of 23 NPH cases somnolence-stupor-coma disorder (in 43.5%), astheno-emotional

disorder (in all cases), and emotional-motivational blunting disorder (in 22% of the

cases) was diagnosed. A variable recovery of these conditions post shunting has

been documented (Lindqvist, Andersson et al. 1993).

1.9. Diagnosis

There is not one single diagnostic test that may diagnose the condition with high

accuracy. This might be due to the heterogeneous pathologies contributing to the

syndrome (Bech-Azeddine, Høgh et al. 2007). However, a consensus from an

international group has been reached and diagnostic criteria for the condition have

been presented (Relkin, Marmarou et al. 2005). According to these patients may

be categorised as “probable”, “possible” and “unlikely”. The assessment of these
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three different forms is based in combining relevant history, imaging, clinical and

physiological criteria.

A patient with “probable iNPH” would be expected to have onset of symptoms later

than age 40, with their symptoms having insidious onset and minimum duration of

3-6 months. The condition would be diagnosed following careful history and

exclusion of conditions that lead to the secondary form of iNPH (such as head

injury, intracerebral bleeding, central nervous system (CNS) infection, or other

known causes of secondary hydrocephalus). Imaging would reveal

ventriculomegaly of the communicating type with an Evans index>0.3 and either

enlargement of the temporal horns not attributed to hippocampus atrophy, a

callosal angle greater than 40 degrees, periventricular lucencies not attributable to

vascular causes or demyelination, or an aqueductal or fourth ventricular flow void

on MRI. Apart from exhibiting gait disturbance as an essential feature, and either

features of cognitive impairment, or urinary incontinence as described in the

previous section the patient must demonstrate a CSF opening pressure in the

range of 5–18 mm Hg (or 70–245 mm H2O) as determined by a lumbar puncture

or a similar procedure.

A large series of diagnostic tests have been suggested. The physicians at the front

line of seeing elderly patients such as general practitioners, or elderly care

physicians may wish to have a single test that can screen for the syndrome. On the

other hand, a neurologist or a neurosurgeon may wish to use a test to aid in

diagnosis and predict response to shunting and hence clinical outcome. Commonly

held belief of criteria of poor prognosis such as idiopathic type, cortical atrophy,
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longstanding symptoms, and presence of dementia in addition to old age should

not rule out surgery a priori (Poca, Mataro et al. 2005; Kiefer, Eymann et al. 2006)

necessitating therefore further investigations in this group of patients. Therefore

early referral to specialist centres result in shorter duration of symptoms and an

advantageous clinical outcome (Meier and Miethke 2003).

When evaluating the diagnosis with the use of ancillary tests (i.e. tap test, lumbar

infusion studies etc.) it is important to evaluate the patient on more than one

occasion an maybe on different days since there might be discrepancies in his

performance (Kahlon, Sundbarg et al. 2002).

Modern imaging methods have been employed in a research capacity to measure

non-invasively parameters such as ICP or compliance which would previously

require invasive methods (Mase, Miyati et al. 2005; Glick, Niebruegge et al. 2006).

However, these would require specialized software and processing and are not

available widely when compared to the traditionally used lumbar infusion test.

Measurement of intracranial hydrodynamic parameters with MR imaging cannot

discriminate between responders and non-responders (Bateman and Loiselle

2007). Furthermore, the calculation of stroke volume on cine phase-contrast

magnetic resonance imaging might not be useful for prediction of patient selection

for shunting (Kahlon, Annertz et al. 2007). Peak CSF flow velocity calculation at

the cerebral aqueduct by using the same method may prove more useful (Sharma,

Gaikwad et al. 2008). The issue is discussed extensively in a later chapter (∫ 1.15.).



87

The idiopathic normal pressure hydrocephalus guidelines advocate the use of

external lumbar drainage (ELD) as the test with the highest sensitivity (50-100%)

and positive predictive value (PPV) (80-100%) when compared with the simple

lumbar tap, or the calculation of the CSF outflow resistance following a lumbar

infusion test (Marmarou, Bergsneider et al. 2005). The rate of serious

complications from external lumbar drainage for iNPH has been reported to be low,

with infection being less than 2% (Governale, Fein et al. 2008; Greenberg and

Williams 2008). Apart from infections the patient might experience low-pressure

headaches due to excessive drainage of CSF; its incidence has been reported as

low as 1.7% in a large series (Governale, Fein et al. 2008). The drainage should

not be exceeding 20 mLs/ hour as that would increase the chances of low-pressure

headaches that might affect their performance following the testing. The testing is

usually carried out for 72 hours, although some groups have suggested that 36

hours would be adequate to detect responders from non-responders. Serious

complications such as subdural hematoma or subarachnoid haemorrhage have

been reported, but appear as low as 1.7% (Governale, Fein et al. 2008). To date

there is no data to show how soon the symptoms should be assessed following

ELD. Different groups have different approaches; others advocating daily

assessment until symptomatic improvement occurs, others assess patients after

72 hours soon after the catheter is removed, and others request the patient to keep

a diary documenting symptoms following discharge from the hospital.

The “tap test”, or large volume lumbar puncture is a more appealing method that

can be carried out as an outpatient procedure and does not require hospitalization.

The method involves the removal of large quantity of CSF, namely about 40-50
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mLs and assessment of clinical parametres before and after the testing. According

to the guidelines published it is recommended that due to the high PPV (73-100%),

but low negative predictive value (NPV) ( 23-42%) candidates for surgery should

not be excluded if the tap test is negative (Marmarou, Bergsneider et al. 2005).

Finally, the LIT has been widely used in the past as a method of prognosis and

assisting selection of patients for surgery. It offers an insight into the intracranial

hydrodynamics of individual patients by infusing CSF via a lumbar catheter in a set

pressure or flow rate and then calculating physiological parametres such as the

Rout, the Cout, or the PVI and hence the intracerebral compliance. The threshold

of Rout which may predict surgical outcomes has varied between 8-18 Hg/ml/min

in different studies (Borgesen, Gjerris et al. 1979; Boon, Tans et al. 1997; Kahlon,

Sundbarg et al. 2002; Meier and Bartels 2002) with a PPV between 56-96%

(Marmarou, Bergsneider et al. 2005). The predictive accuracy of the test increases

the more the selection value of Rout increases reaching 92% for an Rout of 18 mm

Hg/ml/minute (Boon, Tans et al. 1997). Calculation of the Rout might be useful in

cases where the results of the ELD appear equivocal enhancing therefore the

prognostic accuracy of the former test. The limitations of this method are that more

than one method are presently in use (Ekstedt 1977; Marmarou, Shulman et al.

1978; Borgesen and Gjerris 1982; Czosnyka, Batorski et al. 1990; Borgesen,

Albeck et al. 1992) and the estimated Rout vary by method (Eklund, Smielewski et

al. 2007). It should also be pointed out that although a patient with increased Rout

might be a good candidate for surgery, normal Rout estimations should not

exclude one from being offered surgery (Eklund, Smielewski et al. 2007). Instead,

supplementary tests should be used. The results of tap test and lumbar infusion
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studies has been found to agree only on 45% of cases in one study (Kahlon,

Sundbarg et al. 2002).

Οther methods used is ICP monitoring which requires a more invasive procedure.

In cases of negative CSF removal testing or negative infusion studies it has been

suggested that continuous ICP monitoring should be undertaken (Pfisterer, Aboul-

Enein et al. 2007). In this latter study 6 out of 11 patients with negative tap test

were positive for continuous ICP monitoring and 5 of them improved post shunting.

The mean ICP value obtained during monitoring might not be useful for patient

selection, so calculation of the frequency or A and B waves of the waveform

(Stephensen, Andersson et al. 2005; McGirt, Woodworth et al. 2008), and the

pulse pressure amplitude (Eide and Brean 2006) are considered more useful.

However, it has been shown that the pulse pressure amplitude obtained during a

LIT may be able to predict the intracranial pressure amplitude obtained during ICP

monitoring (Eide 2006), hence making the invasive ICP procedure less appealing.

However ICP monitoring should not be the only diagnostic tool used for

preoperative selection of patients as it has inadequate accuracy (Marmarou,

Bergsneider et al. 2005).

Previous studies have found that patients with B-waves in less than 5% of the

recording time did not improve (Borgesen 1984), and if there are frequent B-

waves, shunting is likely to be successful (Black, Ojemann et al. 1985).

Worth mentioning are also the Japanese guidelines for management and diagnosis

of iNPH (Ishikawa, Hashimoto et al. 2008). The authors categorise patients as
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“definite”, “probable” and “possible”. They also advocate the use of the tap test as

the first diagnostic test, and if positive, the patient should proceed directly to a

shunt procedure without requiring additional tests. However in case of a negative

tap test they advocate the use of the supplemental tests mentioned already

(continuous CSF drainage, continuous ICP monitoring or estimation of Rout) or

repeat of the tap test at follow-up.

Neuropsychological assessment before and after temporary drainage may be

useful in predicting which patients are less likely to improve cognitively following

shunting (Chaudhry, Kharkar et al. 2007). In particular, it was found that absence

of improvement on verbal memory after ELD had a high negative predictive value

for improvement on memory tests at 3-6 months after surgery (Thomas, McGirt et

al. 2005; Chaudhry, Kharkar et al. 2007). Other predictors of cognitive

improvement after shunt included young age and female sex (Chang, Agarwal et

al. 2006). Worse performance in verbal memory at baseline investigation was

associated with a 4 times less chance of improving cognitively post shunting

(Thomas, McGirt et al. 2005). The MMSE although it is simple to administer may

not be useful in diagnosis of iNPH, or prediction of surgical outcomes (Savolainen,

Hurskainen et al. 2002).

Disturbance of gait may closely resemble the features of Parkinson’s disease as

stated earlier (Krauss, Regel et al. 1997). Degenerative spinal causes of gait

disturbance ought to be assessed with imaging to exclude the concurrence of

cervical myelopathy, symptomatic lumbar stenosis or radiculopathy (Rasker,

Jansen et al. 1985; Komotar, Zacharia et al. 2008). Common causes of urinary
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incontinence such as benign prostatic enlargement in men, pelvic floor disorders in

women, or a simple urinary tract infection ought to be considered and investigated

accordingly. Also the combination of several different pathologies commonly

occurring in older patients should be considered (Vanneste 2000)

1.10. Differential diagnosis

1.10.1. Vascular dementia

The terminology concerning syndromes of diffuse white matter lesions from

vascular origin is confusing. The entity dates back to Binswanger’s original

description from 1894, which designated the neuropathological picture. However,

this condition was never expressed in more detail than white matter atrophy and

hydrocephalus. Clinical criteria for Binswanger’s disease (BD) were later

introduced (Caplan and Schoene 1978; Bennett, Wilson et al. 1990). These include

cognitive impairment and gait disturbance or incontinence in combination with

vascular risk factors and radiological signs of vascular white matter changes. The

term subcortical arteriosclerotic encephalopathy (SAE) was introduced by

Olszewski in 1962, as a neuropathological term, to describe “a form of cerebral

arteriosclerosis in which vessels of the white matter and subcortical gray matter

are affected predominantly” (Olszewski 1962).

With the introduction of computed tomography (CT) and MRI where white matter

lesions were found more frequently than previously expected, in both symptomatic

and asymptomatic subjects, a radiological description was needed. The terms

leukoaraiosis or subcortical leukoencephalopathy were introduced to designate
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white matter areas of hypodensity on CT or hyperintensity on T2-weighted MRI.

Leukoaraiosis is reported to occur in 41-100% in patients with dementia of

presumed vascular origin and in 21-100% in normal control subjects. The clinical

significance of leukoaraiosis remains incompletely understood (Pantoni and Garcia

1995).

In the clinical context, the term vascular dementia has become widely used. At

least five different systems of diagnostic clinical criteria are being used (Diagnostic

and Statistical Manual of Mental Disorders (DSM)-III, HInternational Statistical

Classification of Diseases and Related Health ProblemsH (ICD)-10, National

Institute of Neurological Disorders and Stroke and Association Internationale pour

la Recherché et l'Enseignement en Neurosciences (NINDS-AIREN), DSM IV and

Alzheimer’s Disease Diagnosis and Treatment Center (ADDTC)). These different

criteria include different patient cohorts, which render heterogeneity in patient

selection in studies (Pohjasvaara, Mantyla et al. 2000). All include focal

neurological signs on neurological examination. This may exclude patients with

small-vessel subcortical vascular dementia, who frequently do not show clear-cut

focal signs. From this reason, a modification of the NINDS-AIREN criteria for

subcortical vascular dementia has been proposed (Erkinjuntti 2002). The presence

of extensive white matter changes, implying a co-existence of vascular disease

and iNPH, has in several studies been reported in patients who benefit from shunt

surgery (Bradley, Whittemore et al. 1991; Krauss, Regel et al. 1997; Tullberg,

Jensen et al. 2001; Tullberg, Hultin et al. 2002).
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Reports of the neuropathological correlates of white matter changes from vascular

disease are more numerous than those of chronic adult hydrocephalus. The diffuse

ischemic white matter disease is described as reduced number of oligodendroglial

cells, reduced myelin content, fewer axons with fiber thinning and fragmentation,

and increased number of reactive astrocytes. Degenerative vascular changes and

hyaline fibrosis were frequent. No deposition of mature amyloid is noted within

white matter, even when the amyloid load is marked elsewhere in the brain

(Erkinjuntti, Benavente et al. 1996; Tanoi, Okeda et al. 2000; Englund 2002).

Apart from the above-mentioned neuropathological changes, marked accumulation

of axonal transport proteins in the axonal bundles, indicating compromised axonal

transport, has been demonstrated (Akiguchi, Tomimoto et al. 1997). In an animal

model of global incomplete ischemia, demyelination was found to precede axonal

damage. This suggests that the primary event in cerebral hypoperfusion is

changes in oligodendrocytes and that changes in neurofilament follow

(Kurumatani, Kudo et al. 1998). The neuropathological description of SAE is to

great extent similar to that of chronic adult hydrocephalus, which, in combination

with similar symptomatology, indicates a final common path of white matter

damage in these syndromes.

1.10.2. Alzheimer’s disease

The conditions which appear on the top of the list of the differential diagnosis about

the cognitive impairment of the patient are dementia of the vascular type (VD, also

known as Binswanger’s disease) and AD. Patients with iNPH present with
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dementia, which is characteristically of the subcortical type. Subcortical dementia

is a clinical syndrome characterized by bradyphrenia, memory impairment,

diminished executive function and mood and personality changes (Cummings and

Benson 1984). Patients with subcortical dementia are inert, indifferent, and

disinterested. Subcortical dementia is characterised by the absence of dysphasia,

apraxia and agnosia. In contrast in cortical dementia characteristic of Alzheimer’s

dementia cognitive slowing may occur, however the disorders of higher cortical

function, agnosia, apraxia and aphasia, are the predominant symptoms. Although

AD and iNPH have different clinical phenotypes, a clinician may end up

underdiagnosing iNPH. This might be further complicated by the ex-vacuo

ventriculomegaly present in AD patients, but not iNPH (Holodny, Waxman et al.

1998). INPH patients have more severe impairment of attention and psychomotor

speed. when compared to AD patients (Ogino, Kazui et al. 2006).

The diagnosis of AD is only definite on autopsy, showing neurofibrillary tangles,

neuropril threads, and amyloid-containing senile plaques (Goedert 1993; Clark, Xie

et al. 2003). In contrast to SAE, AD is considered a homogenous entity and

diagnostic criteria are more widely accepted. It is considered a neurodegenerative

disorder, clinically characterised by a decline in several areas of cognition. Gait

disturbance and extrapyramidal symptoms are common in advanced disease.

Pre-morbid diagnosis can be supported from CSF analysis, where low values of

beta-amyloid1-42 (Aβ1-42) and high values of hyperphosphorylated tau (P-tau) is

considered typical (Blennow, Wallin et al. 1995; Andreasen, Hesse et al. 1999;

Blennow 2004).
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In biopsy studies in patients with chronic adult hydrocephalus, changes typical for

AD are frequently noted (Bech, Juhler et al. 1997; Del Bigio, Cardoso et al. 1997;

Savolainen, Paljarvi et al. 1999; Golomb, Wisoff et al. 2000). The coexistence of

AD and chronic adult hydrocephalus is shown not to affect the results from CSF

diversion negatively (Golomb, Wisoff et al. 2000) and a study including clinically

pure AD patients showed a trend in favor of shunt treatment (Silverberg, Levinthal

et al. 2002).

1.10.3. Other conditions

Caplan has described a syndrome of encephalopathy associated with congestive

heart failure with neuropsychological symptoms similar to NPH. Patients have

apathy and abulia with retained alertness, lacking however the gait disturbance or

urinary incontinence characteristic of NPH. Imaging reveals mostly cerebral

atrophy with no signs of ventriculomegaly, however the symptoms improve

following lumbar puncture resulting also in normalization of the “brain atrophy” (i.e.

sulci become smaller and gyri widen (Caplan 2006).

1.10.4. The significance of ventriculomegaly

It can be difficult to differentiate brain atrophy, Parkinson’s disease, vascular

encephalopathy, Alzheimer’s disease, Binswanger’s disease, and NPH using

morphological criteria alone, such as enlarged ventricles (Savoiardo and Grisoli

2001). The indices used for the measurement of the ventriculomegaly are those of
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Evans (Evans 1942), Schiersmann (Schiersmann 1952), and Schaltenbrand and

Nfirnberger (Schaltenbrand 1959).

A typical CT scan should demonstrate an Evan’s ratio of minimum 0.30 (i.e., the

maximal width of the frontal horns divided with the maximal transverse inner

diameter of the skull), rounded frontal horns, flattening of the sulci on the

convexity, and a low degree of periventricular and white matter lucencies

(Wikkelsø et al 1986, Vanneste et al 1993 and 2000, Boon et al 2000). Utilising

MRI, an increased velocity of pulsatile CSF in the aqueduct, “the flow voiding sign”,

has been advocated as a supplementary test (Bradley et al 1986 and 1991b).

Other ways to measure ventriculomegaly is by calculating the ratios used by Poca

et al.: Evans index (A/E), third ventricle index (C/E), Cella media index (D/F) and

ventricular score (A + B + C + D)/E X100; with A representing the maximum

bifrontal ventricular size, B being the distance between the caudate nuclei at the

level of the foramen Monroe, C measuring the maximum width of the third

ventricle, D representing the minimum width of both cella media, E denotes the

maximum inner skull diameter at the level where A and B were taken, and F stands

for the maximal outer diameter of the skull at the level where D was measured

(Poca, Mataro et al. 2004).

The size of ventriculomegaly does not necessarily correlate with the ICP; indeed

small ventricles cannot exclude increase resistance to CSF outflow (Borgesen and

Gjerris 1987). High cerebral elasticity and low compliance is a predictor of rapid

and marked reduction of the ventricles postoperatively (Tans and Poortvliet 1988;

Tans and Poortvliet 1989). Increased ventricular size was not associated with
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increased ICP or resistance to CSF outflow, rather the opposite was the case

(Sorteberg, Eide et al. 2004).

Most probably, there exists a significant transmantle pressure gradient in the acute

phase of hydrocephalus that has dissipated in the chronic phase of the disorder

(Stephensen, Tisell et al. 2002). The initial transmantle pressure gradient might

thus be responsible for the ventricular dilatation, which once it has occurred, can

be maintained even if the pressure gradient is eliminated. Furthermore, as

ventricular size increases, ventricular pressure decreases due to physical

phenomena explained by Laplace’s Law (Portnoy 1971). The present study

confirms this relationship by the finding of a negative correlation of ventricle sizes

to hydrodynamic parameters, i.e. the larger ventricles our patients had, the lower

ICP and Rout were found (Sorteberg, Eide et al. 2004).

1.11. Surgical treatment of idiopathic normal pressure hydrocephalus

A Cochrane review suggests there is no evidence for shunting as treatment for

normal pressure hydrocephalus (Esmonde and Cooke), however empirically

surgical CSF diversion is known as the only treatment available. Such a question

could only be solved by a randomised blinded, placebo-controlled trial of shunting

or not all patients with “probable iNPH” eligible to receive treatment; the ethical

dilemmas of such a study denying the possibility of treatment in patients who

otherwise might be suitable for shunting are obvious. Experimental studies have

shown that shunting produces physiological changes in regional blood flow, CSF

dynamics and cerebral metabolism (Miyamoto, Tatsuzawa et al. 2007; Klinge,
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Brooks et al. 2008; Petrella, Czosnyka et al. 2008), making shunting the only

treatment necessarily in existence at present (Boon, Tans et al. 1997). There is an

argument that improvement following shunting maybe a placebo effect explaining

the deterioration noted after a shunt; such a placebo effect would be very difficult if

not impossible to quantify.

A shunt has two modes of action: (1) it diverts CSF from the ventricles, and

thereby transports components of the CSF that may play an until now unknown

role in the production of symptoms; (2) it modifies intracranial pressure by the

present opening pressure and conductance to flow.

The clinical improvement following CSF diversion, using the lumbar CSF tap test or

shunt placement, is due to a forced compensatory dilation of the compressed

intracranial veins. The forced dilation of the veins is a consequence of the Monroe–

Kellie doctrine, since successful shunting is based on a slight over-drainage of

CSF, which must be compensated by a matching increase in venous and capillary

blood volume. The dilated vessels increase intracranial venous compliance and

cerebral blood flow.

The general impression among general practitioners and non-specialists is that the

beneficial effect of shunting are short-lasting before the patient deteriorates again

(Malm, Kristensen et al. 2000). Hence, physicians might be reluctant to refer

patients with significant comorbidities as well as those receiving anticoagulation

medication for relevant pathologies. However a recent study has shown that the

risk of subdural hematoma or other complications in patients receiving
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anticoagulation is not higher than series reporting complications following shunting

(Goodwin, Kharkar et al. 2007).

Ventriculoatrial shunting is an alternative method which is nowadays less popular

due to its more complex technical nature and its potential for serious complications

(Lam and Villemure 1997).

Even though surgical CSF diversion is the established surgical treatment employed

other methods have been proposed, such as endoscopic third ventriculostomy. A

study carried out in 17 patients with iNPH receiving endoscopic third

ventriculostomy instead of ventriculoperitoneal (VP) shunting reported excellent

results in 4, good in 7, satisfactory in 3 and poor in 3 patients; the authors used

difference in the Kiefer scale to report outcomes (Hailong, Guangfu et al. 2008).

Equally good results were presented in another study in a select subgroup of iNPH

(Gangemi, Maiuri et al. 2004). However, the results of this method still remain

controversial (Longatti, Fiorindi et al. 2004).

Lumboperitoneal (LP) shunting has been tried in the past but has now fallen off

favour with surgeons (Selman, Spetzler et al. 1980). The reason is a general

concept of LP shunts blocking more often than VP shunts although no evidence of

the above exists. It would not be unreasonable to offer LP diversion to a patient

who wishes to avoid the possibility of intracranial complications; however, the easy

access to CSF sampling and the possibility of programming a valve makes the

choice of a VP shunt a more appealing choice among neurosurgeons. A novel

method of drainage and testing the suitability for permanent CSF diversion is a
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lumbar-subcutaneous shunt which has been recently described by a single group

claiming no infection in 46 patients (Ushewokunze, Haja Mydin et al. 2008).

There are numerous valve makes, models, and designs in the market all

attempting to restore a “physiological” CSF flow across the valve. In the single

randomised trial carried out in patients with INPH its authors found better

outcomes when they used a low-pressure than a medium-pressure valve (Boon,

Tans et al. 1998); however the rate of overdrainage was higher with low-pressure

valves. A retrospective study revealed no difference in outcomes between using

flow-regulated valves and differential-pressure valves (Weiner, Constantini et al.

1995).

Even though programmable valves may appear to be the obvious solution to find

an optimised pressure setting for any individual it is not easy as one would think.

Only one study has presented a formula of calculating setting based on

physiological parameters (intracranial, patient’s height and intraabdominal

pressure) (Miyake, Kajimoto et al. 2008). Nevertheless, a physician may reprogram

the valve setting in the outpatient clinic based on the patient’s symptoms and

imaging. There has been growing evidence that a gravitational unit when combined

with a programmable valve may have better outcomes since it is able to counteract

the siphon effect seen with differential pressure valves (Meier and Lemcke 2006;

Meier and Lemcke 2006). Ultimately, the choice depends on the physician’s

familiarity with a particular system. The current understanding favours the use of

VP shunting with the use of a programmable valve combined with a gravitational

unit
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The rate of response to shunt surgery reveals a diagnostic problem, in two ways.

Several of the above described clinical and radiological properties of iNPH are also

seen in cerebral white matter disorders of considered vascular origin, such as

subcortical arteriosclerotic encephalopathy (SAE). In patients not responding to

shunt surgery (under the condition of a functioning shunt), the problem can be a

misdiagnosis, with SAE probably being the most frequent differential diagnosis.

Other explanations are development of a concurrent disease, or that the patient at

the time of surgery has reached an irreversible state (Malm et al 2004). On one

hand, we wish, from thorough selection, to spare the nonresponders from the risks

associated with shunt surgery. On the other hand, with too strict selection criteria,

we run the risk of denying possible responders their chance of improvement.

Many shunt types have been manufactured in the last fifty years since the first

implantable shunt valve by Nulsen and Spitz over 50 years ago (Nulsen FE and

Spitz 1952). Drake in a review of shunt technology of the last 50 years concluded

that in paediatric hydrocephalus it is not the shunt technology but rather factors like

the type of hydrocephalus, placement of the ventricular catheter and the ventricular

catheter environment that predispose to ventricular failure or not in the paediatric

population (Drake, Kestle et al. 2000).

1.12. Complications

Complications in shunting may be thought to be inherent to the procedure

(shunting) or attributed to the condition itself (NPH). For example analysis of data

from the UK shunt registry that analyses shunting of all types of hydrocephalus
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shows that underdrainage can vary between 46-48% of all shunted cases

(Richards HK, Seely HM et al. 2000). The 5-year complication rate has been

reported to be 50% for shunt procedures (Borgbjerg, Gjerris et al. 1995)

The area was first reviewed systematically by Hebb and Cusimano (Hebb and

Cusimano 2001). The authors concluded that the rate of complications is 38%, with

22% of patients requiring additional surgery, whereas there was a 6% combined

rate of permanent neurological deficit or death. The authors mentioned that

mortality of patients receiving a shunt may be between 2.5-3.3 times when

compared to patients with vascular comorbidity; however this analysis did not take

into account that mortality is mostly unrelated to the shunt procedure and is due to

the co-morbid factors (Malm, Kristensen et al. 2000; Tisell, Hellström et al. 2006)..

However, in a later retrospective analysis of the Medicare expenses of elderly

patients with hydrocephalus it was shown that propensity to die is significantly

greater if a patient does not receive a shunt (Williams, Sharkey et al. 2007).

The incidence of subdural hematomas in a large study reached 19.8% (Zemack

and Romner 2002); this might be attributed to overdrainage and may be amenable

to surgical evacuation or gradual absorption by adjustment of a programmable

valve setting. Again sometimes, it is difficult to distinguish between a hematoma

and a hygroma; hence, the actual hematoma rates might be lower. Particularly in

NPH, no chronic subdural effusions occurred in one series (Sorteberg, Eide et al.

2004), whereas this complication was reported at frequencies as high as 20% in

other series (Bakker, Boon et al. 2002). Williams and colleagues in their economic

analysis of Medicare costs in patients with a diagnosis of hydrocephalus (not
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exclusively NPH though) receiving a shunt was 12.2% (Williams, Sharkey et al.

2007).

The published guidelines have updated the complication rates. The incidence of

subdural haematoma ranges from 2-17%, incidence of infection between 3-6%,

postoperative seizures between 3-11% and 21% shunt revision rate (Bergsneider,

Black et al.). Mortality due to shunt has been as low as 2% (Bergsneider, Black et

al.) In two large prospective studies with well selected patients the rate of revision

was 33% (McGirt, Woodworth et al. 2005), subdural hematoma was 3%

(Marmarou, Young et al. 2005), subdural hygroma 3% (Marmarou, Young et al.

2005) and shunt infection rate was 3-6.7% (Marmarou, Young et al. 2005; McGirt,

Woodworth et al. 2005). Infection of the shunt system will need explantation.

Underdrainage might manifest as return of the symptoms or gradual deterioration

and requires further investigations.

The complications of underdrainage might be divided into three different types:

enlargement of ventricle width after shunt placement together with a persistent or

worsening clinical pathology, no change of ventricular width and a clear worsening

of clinical pathology, or late worsening of clinical pathology after a clear and early

postoperative recovery.

1.13. Outcomes

Improvement after shunt placement in communicating hydrocephalus is dependent

on the preshunting CSF circulatory profile, the shunt function after implantation,
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and the potential coexistence of hydrocephalus with other disease states,

particularly of a cerebrovascular nature.

Early observational work has pointed out that reduction in ventricular size

correlated with improved outcomes (Gunasekera and Richardson 1977), however

this initial findings have been challenged (Meier and Mutze 2004). Neither

periventricular lesions, nor an increased Evans ratio preoperatively was

significantly associated with clinical outcome (Pfisterer, Aboul-Enein et al. 2007). If

that is the case, then the commonly held view of the stretching of the

periventricular fiber cannot fully explain neither the symptomatology nor the

improvement post-shunting.

Earlier the diagnosis of NPH was considered when the patient improved following

surgery (i.e. it was given post-priori). However, one must confirm that the shunt is

functioning before the diagnosis of NPH is rejected. Williams and colleagues found

that among the 2/3 of patients with poor outcome following a shunt implantation,

80% had a treatable cause and subsequently clinical recovery occurred in further

70% of this last cohort (Williams, Razumovsky et al. 1998). These results were

verified in another study where 61% of the poor outcome patients improved

following shunt revision (Kilic, Czorny et al. 2007).

The general impression among general practitioners and non-specialists is that the

beneficial effect of shunting are short-lasting before the patient deteriorates again.

However, sustained beneficial outcomes have been shown in a mean follow-up

duration of almost 6 years. The benefit was shown to 87% of the patients with
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regards to the GD, to 86% with regards to cognition and to 80% of patients with

regards to incontinence (Pujari, Kharkar et al. 2008). However, in that same study

they reported that 25% of patients who reported initial improvement for gait will

deteriorate. Worse outcomes than those reported may be related to inappropriate

selection of patients, or shunt malfunctions which are not diagnosed appropriately.

Unless a normal flow of CSF is demonstrated in a patient with iNPH who

deteriorates one should assume that there is a high possibility of a shunt

malfunction to account for any clinical deterioration.

One of the most significant hurdles in understanding the clinical course of the

intervention is that there is no universally accepted scale in assessing outcomes;

this makes the data reported in several outcome studies difficult to extrapolate and

synthesize data. Two of the oldest outcome scales are those of Black (Black

grading scale) (Black 1980), and the earlier Stein-Langfitt scale (Stein and Langfitt

1974). Whereas the former requires comparison with the preoperative status (i.e. it

examines if the patient improved and whether this resulted into a return to previous

activities), the latter focuses on functional outcome at the time point of assessment

with an emphasis to supervision required for daily activities. A disadvantage of

those is that because of the categorical nature a ceiling effect may be observed or

the quantification of improvement not appear accurate. There are also other

outcome scales such as the Kiefer grading scale (Kiefer, Eymann et al. 2003), the

Krauss outcome scale (Krauss, Droste et al. 1996) which are composite scales

based on grading the severity of the triad of symptoms. Other authors have used

the modified Rankin scale to report outcomes, which is commonly used in

vascular/ stroke research and the Barthel index, which is a commonly used daily
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activities index. It is hoped that clinicians will proceed to be using one of the afore-

mentioned outcome scales rather than the older system of reporting outcomes

based on the clinician’s impression on clinical improvement (excellent, fair, good

etc.). However, more coordinated effort is anticipated and in the recent

Hydrocephalus 2008 conference it was stated a task force is required to report a

“Consensus on Outcome Scales and Quality of Life measures” (Hazel and Klinge

2008)

1.14. Biomarkers in chronic adult hydrocephalus

Biological markers have traditionally been used in clinical practice in order to

support a diagnosis, or monitor the progression of a disease by measuring levels

longitudinally. The definition as given by the Biomarkers Definition Working Group

was “A characteristic that is objectively measured and evaluated as an indicator of

normal biological processes, pathogenic processes or pharmacological responses

to a therapeutic intervention.” (Matias, Ferreira et al. 2001). Biomarkers can assist

us in this task as they provide an insight to the changes of the cerebral milieu

associated with the condition. In order for their use to be established in routine

clinical practice, they should demonstrate high sensitivity and specificity.

Biomarkers have long been used in the neurosciences for these exact reasons

(Feigin 2004; Miller, Glass-Marmor et al. 2004; Rachakonda, Pan et al. 2004;

Andreasen and Blennow 2005; Teunissen, Dijkstra et al. 2005; Blasko, Lederer et

al. 2006). Some well established biomarkers in the field of neurodegenerative

disorders and dementias are the neurofilament light chain polypeptide for multiple

sclerosis (MS) (Avasarala 2004), and tau protein in AD (Blennow, Wallin et al.
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1995). Extensive research has already been carried out to document the

hydrocephalus-induced changes in the composition of CSF (Del Bigio 1989).

Serum biomarkers have played an important role in other neurological conditions,

due to the relative accessibility of samples (Raabe, Grolms et al. 1999; Sen, Belli

et al. 2005). However, CSF remains the primary fluid of choice to monitor these

changes. The concept of the “sink action” of the CSF was first introduced by

Davson in 1962 to highlight this potential (Davson 1967). The aim of this paper is

to review the role that biomarkers play in the diagnosis and monitoring of the

clinical progression of chronic adult hydrocephalus (CAH), and to discuss current

research and future perspectives.

0B1.14.1. Serum Biomarkers

Despite serum being an easily accessible biological fluid, only four studies on

biomarkers in adult hydrocephalus have been identified, thus demonstrating that

there is an open field for the discovery of serum biomarkers in CAH. Vasopressin

plasma levels were studied in 11 patients and compared to controls. No significant

difference was found between the two groups (Hammer, Sorensen et al. 1982) and

similar results were found in another study with 18 patients (Sorensen, Gjerris et

al. 1983). Glycoprotein D2 serum levels were measured in 13 patients with NPH

and there was no difference compared to control subjects. However, the mean

values were significantly lower when compared to those of patients suffering from

primary degenerative dementia of Alzheimer’s type. Unfortunately, the authors do

not comment on the significance of this finding and neither were the findings

correlated with imaging or with CSF dynamics studies (Sorensen, Gjerris et al.
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1983). Preoperative melatonin levels were studied in six patients with NPH and

were found to be lower than controls. Postoperative values did not differ

significantly, but shunting restored the preoperative deranged diurnal rhythm of

melatonin (Yamada, Iwasa et al. 1991).

1B1.14.2. Cerebrospinal fluid Biomarkers

Biomarkers in the CSF are potentially more useful because they provide an insight

into changes in the brain milieu associated with the condition, and consequently

more research has been undertaken on the composition of the CSF. It is assumed

that ventricular CSF will reflect the changes happening in the brain parenchyma,

and more specifically in the periventricular white matter. Ideally, levels of

biomarkers should be measured before and after surgical diversion of the CSF, in

order to obtain clinically useful indices for the diagnosis and progression of the

disease. Initial attempts took place in the early 80’s (Wikkelso and Blomstrand

1982). There are some reasons why good experimental criteria have not always

been met: 1) universally accepted outcome scales have not been produced until

recently, making comparison between different studies and different groups difficult

(Klinge, Marmarou et al. 2005), 2) NPH is a relatively rare disorder and it is only

recently that there is increased awareness about its importance, 3) CSF is not

always available for repeated sampling, especially in pre-shunt patients with no

accessible route into the ventricles (reservoir). However, this latter cohort of

patients may provide a better insight into the pathophysiology, because after shunt

insertion the CSF dynamics are altered.
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1.14.2.1. Neuropeptides

 Somatostatin

Somatostatin (SOM) in the CSF has been measured by two groups, in 1991

(Wikkelso, Ekman et al. 1991) and in 2001 (Poca, Mataro et al. 2001). In the study

by Wikkelso, CSF SOM levels were significantly lower (p<0.05) in NPH patients

when compared to the control group and Poca et al also observed the same. They

suggested that the decrease could be the result of damage to the cortical neurons

and the nerve terminals of the hypothalamus that normally have high

concentrations of SOM. The normal concentrations of SOM in these structures are

selectively impaired in experimental hydrocephalus (Ehara, Matsumoto et al. 1982;

Rubinow, Davis et al. 1988). Following shunting, SOM concentration significantly

increased compared to preoperative values. The authors also detected a

significant correlation with visual memory performance (r=0.57; p= 0.032) and with

visuomotor speed (r=−0.55; p=0.05), demonstrating that higher concentrations of

SOM were associated with better visual memory and increased speed of mental

processing, features that are known to be deranged in NPH. These associations

did not persist after surgery. After shunting, changes in SOM concentrations

correlated significantly (r=0.66; p=0.01) with improved daily life activities

(measured with the Rapid Disability Rating Scale-2 (RDRS-2). In another smaller

study, levels of SOM were lower in the iNPH group when compared to controls, but

were not correlated with either MMSE scores or the Blessed dementia scale

(Molins, Catalan et al. 1991).The modulatory role of somatostatin in cognition has

already been proposed (Schettini 1991).
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 Vasoactive Intestinal Peptide

Wikkelsö in 1985 examined the role of the vasoactive intestinal peptide (VIP) in the

pathogenesis of NPH and in multi-infarct dementias (Wikkelso, Fahrenkrug et al.

1985). The preoperative concentration of VIP in CSF was significantly lower in

NPH when compared to controls, but increased postoperatively. The rationale

behind the study was that VIP is a potent vasodilator and therefore may play a role

due to the presence of chronic ischemia (Henning and Sawmiller 2001). These

results were verified again in a later study (Wikkelso, Ekman et al. 1991) by the

same group. Tullberg et al. compared the levels of VIP in 43 patients with NPH and

19 with SAE and found the CSF levels of VIP higher in patients with SAE than with

NPH (Tullberg, Mansson et al. 2000). They also noticed that the group of NPH

patients suffering from cerebrovascular disease demonstrated higher VIP

concentrations than those with other aetiologies. They suggest that higher VIP

concentration in patients with SAE could be due to activation of VIP-ergic neurons

to accomplish a compensatory vasodilatation. This would not, however, explain

why the VIP levels increased following a shunt operation as in the previous study,

since cerebral blood flow has been shown to be restored postoperatively (Sutton,

Wood et al. 1983). Tisell et al compared the levels of VIP in 18 patients with

aqueductal stenosis and 19 patients with iNPH (Tisell, Tullberg et al. 2004). The

authors correlated the results with outcomes, concluding that levels of VIP

correlated weakly with postoperative deterioration in alertness.
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 Delta-sleep-inducing peptide

Wikkelsö et al. investigated the role of delta-sleep-inducing peptide (DSIP) in the

CSF of ten patients with NPH and compared the results with that of healthy

volunteers and other dementias (Wikkelso, Ekman et al. 1991).The levels of the

peptides were again decreased in NPH compared to control levels, but increased

significantly in parallel to the clinical improvement following shunting. Since, DSIP

is a 9-amino acid peptide with a role in the normal sleep-wakefulness regulation,

the results are not surprising, especially since the reduction was more pronounced

in subjects with worse psychomotor performance.

 Neuropeptide Y

Reduced levels of neuropeptide Y (NPY) in patients with NPH has been found in

several studies (Wikkelso, Ekman et al. 1991; Catalan, Sahuquillo et al. 1994;

Poca, Mataro et al. 2001). Furthermore, it appears that the levels increase

following shunting (Poca, Mataro et al. 2001). Wikkelsö et al. investigated the role

of this neuropeptide in ten patients with NPH compared to levels in other patients

with dementia; he also examined and compared the levels longitudinally three

months post shunting. The percent increase in concentration following shunting

was strongly correlated with percent change in a functional/activity scale (RDRS-2)

(Wikkelso, Ekman et al. 1991). Tisell et al in a later study, compared the levels in

18 patients with aqueductal stenosis and 19 patients with iNPH (Tisell, Tullberg et

al. 2004). The authors correlated the results with outcomes, concluding that levels

of NPY correlated negatively (r<0.40) with postoperative improvement in alertness.

However, lower CSF levels when compared with controls have been found also in
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patients with AD (Alom, Galard et al. 1990), therefore reducing the specificity of

this peptide and negating its potential role as a biomarker.

1.14.2.2. Neurotransmitters

Tullberg et al. extended the range of biomarkers in a later study by examining the

role of 4-gamma aminobutyric acid (GABA) in addition to the two previously

mentioned biomarkers (Tullberg, Mansson et al. 2000). Similarly to the previous

study, they correlated the biomarkers with surgical results. No correlation was

found with the results of shunt surgery and the CSF concentration of GABA. Malm

et al. considering that a similar biochemical disturbance to that of patients with

different forms of dementia, namely disturbance in the cholinergic, serotonergic

and noradrenergic system would occur in patients with NPH, measured the levels

of 3-methoxy-4-hydroxy-phenylglycol (MHPG), homovanillic acid (HVA), and 5-

hydroxyindoleacetic acid (5-HIAA), acetylcholinesterase (AChE) and butyryl

cholinesterase (BuChE) (Malm, Kristensen et al. 1991). They did not observe any

significant differences between patients with NPH, AD, multi-infarct dementia

(MID), and controls regarding the concentrations of HVA, 5-HIAA and MHPG,

BuChE. They noticed reduce AChE activity both in the NPH and AD group when

compared to controls. The levels of these transmitters did not correlate with the

degree of ventriculomegaly, dismissing the possibility of a dilutional effect. They

observed a positive correlation between outflow conductance in the hydrocephalic

group and the concentrations of HVA, and 5-HIAA. Acetylcholinesterase activity

was positively correlated with MMSE scores. The study highlighted the possibility

of a common cholinergic disturbance in NPH and AD.
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Homovanillic acid was further studied by Hildebrand et al as a reflection of

dopamine metabolism, attempting to correlate the concentration with the clinical

triad of gait disturbance, dementia and urinary incontinence (Hildebrand, Moussa

et al. 1992). No correlation was found in their study and the authors rejected the

potential of HVA as a biomarker for this condition. Similarly, levels of HVA did not

differ significantly between patients with NPH and controls in another study

(Tullberg, Mansson et al. 2000). Another study did not find any difference in the

levels of MHPG, HVA and 5-HIAA between cases of obstructive hydrocephalus

and iNPH (Spanu, Santagostino et al. 1989).

1.14.2.3. Cerebral metabolites

 Lactate

Lactate, an end product of anaerobic glycolysis, possibly represents the element of

chronic ischemia implicated in the pathophysiology of normal pressure

hydrocephalus Lactate was studied by Malm et al. in 15 patients with iNPH and

was significantly reduced when compared to controls (n=21) (Malm, Kristensen et

al. 1991). Furthermore, they noticed a positive correlation between outflow

conductance in the hydrocephalic group and the concentrations of lactic acid. One

would expect the levels of lactate to be increased on a background of chronic

ischemia. Malm explained this paradox by hypothesising that a) there is an

autoregulatory CSF clearance of lactate with a facilitated out transport mechanism

in the choroid plexus and cerebral subarachnoid space, b) due to inverse,

caudorostral, flow in CSF there is an accumulation of the metabolite in the

ventricles and subsequently a transepensymal absorption of it , and c) as a result
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of atherosclerosis and the pathological changes induced there is an obstacle to

transpendymal diffusion of lactate from extracellular fluid (ECF) to CSF. Nooijen et

al. however reported higher lactate levels in the NPH group when compared to

controls, and significantly higher values when compared with AD (p=0.0005, n=36)

and VD (p<=0.01, n=49) concluding that lactate levels might differentiate between

adult hydrocephalus and patients with Alzheimer’s and vascular dementia

(Nooijen, Schoonderwaldt et al. 1997). Although the latter is a large cohort

observational study with 57 hydrocephalic patients, the authors did not report

correlation with CSF outflow conductance, ventriculomegaly or with surgical

outcomes.

 Free radicals

Fersten et al. studied the role of free-radical peroxidation products in the CSF of 24

patients with NPH, and in particular that of thiobarbituric acid-reactive material

(TBAR), and protein sulfydryl (SH) groups (Fersten, Gordon-Krajcer et al. 2004).

The rationale behind the study was that free-radical peroxidation alters the

structure of biological membranes and may therefore be implicated in the

pathogenesis of chronic adult hydrocephalus. The results showed a significant

increase in the levels of TBAR, total and soluble SH groups, as well as a decrease

in the number of protein thiol groups between the NPH and the control group. The

authors imply that peroxidation which damages the cytoplasmic membranes might

be one of the factors that affect cognitive functioning.
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1.14.2.4. Enzymes

 Neuron Specific Enolase

Nooijen et al. studied the CSF levels of neuron specific enolase (NSE), a glycolytic

enzyme localized in neurons, in 57 patients with NPH. The levels were lower than

both the control and the Alzheimer’s group. However, this difference was not

statistically significant and certainly was not correlated with surgical outcomes

(Nooijen, Schoonderwaldt et al. 1997). NSE, was significantly higher in the

Alzheimer’s and vascular dementia group as compared to the control group, while

it did not differ significantly between the two dementia groups (Blennow, Wallin et

al. 1994). However, these results were contradicted in another study (Parnetti,

Palumbo et al. 1995). These findings are only suggestive that CSF-NSE has

potential as a non-disease specific marker for the neuronal degeneration in

dementia. NSE as a biomarker in hydrocephalus remains even less well

established.

 Plasminogen Activator Inhibitor-1

Sutton et al. measured the levels of the plasminogen activator inhibitor-1 (PAI-1) in

the CSF of patients suffering from various neurological disorders (Sutton, Keohane

et al. 1994). In the hydrocephalic patients the levels were not increased compared

to the levels of control subjects. Interestingly enough, the levels were increased in

the case of AD, cerebral infarction and CNS infection. This finding contradicts

results from newborns where high levels have been found in cases of post

haemorrhagic hydrocephalus (Hansen, Whitelaw et al. 1997; Hansen, Lapp et al.
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2000). PAI-1 is a 52-kDa glycoprotein, which under normal conditions is relatively

restricted from entry into the CSF. The study found increased levels particularly in

patients with brain tumours, pointing to possible alterations in the blood-brain

barrier. The small number of patients in the above study, the negative findings, and

the fact that the PAI- is found in a variety of neurological diseases excludes the

use of this protein as a potential biomarker for hydrocephalus. However, PAI-1

may play a role in fibrinolysis occurring after a haemorrhage within the CNS. In the

absence of adequate fibrinolysis, micro thrombi will obstruct the arachnoid villi and

subsequently cause fibrosing arachnoiditis affecting the CSF dynamics.

 Prostaglandin D synthase

Mase et al. measured the levels of prostaglandin D synthase (PGDS) in 14

patients with normal pressure hydrocephalus and found them significantly lower

when compared with a control patient and other patients with dementia patients

(Lewy body dementia, vascular dementia, Alzheimer’s type) (Mase, Yamada et al.

2003). This enzyme is produced in the leptomeninges, and the trabecular cells of

the arachnoid membrane and then secreted in the CSF as beta-trace. The authors

conclude that the observed decrease is probably due to a degenerative change in

the arachnoid membrane and cannot be considered the cause of neurological

symptoms in the case of NPH. It is unclear whether these decreased levels were

due to decreased CSF production that reflect arachnoid damage, mere dilution, or

to the disturbance in fluid dynamics.
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1.14.2.5. Neural cell-derived proteins

 Myelin Basic Protein

Myelin Basic Protein (MBP) is a known indicator of brain damage and in particular

of demyelination (Levin, Hoyle et al. 1985; Miller, Glass-Marmor et al. 2004). It is

known that in hydrocephalus there is demyelination of the periventricular white

matter and so MBP appears as an attractive marker to study the degree of this

pathological process. Sutton et al. measured the levels of this protein in the CSF of

hydrocephalic patients with different aetiologies and proposed that active

hydrocephalus produces significant periventricular demyelination, probably as the

result of mechanical stretching (Sutton, Wood et al. 1983). Interestingly, the degree

of ventriculomegaly was positively correlated with the levels of MBP. The findings

become more interesting since we know from the studies of Whitaker et al., that

cerebral atrophy is not associated with elevated MBP values (Whitaker, Lisak et al.

1980). Later, Longatti et al. in 1993 examined the levels of MBP pre- and

postoperatively. In their study of 17 patients with hydrocephalus who underwent

surgical CSF diversion they observed that the levels of MBP decreased following

the shunt operation, suggesting that MBP is an index of brain damage and its

levels could be used as an indication for shunting (Longatti, Canova et al. 1993).

They have not however correlated the levels with shunting outcomes. However,

high levels of MBP before shunting may be explained by the pooling of molecules

in stagnant CSF, which then decrease after flow is restored by shunting. In another

study of 57 patients with NPH, the levels of MBP did not differ significantly between

patients with NPH, vascular dementia, AD, and controls (Nooijen, Schoonderwaldt

et al. 1997). However, the levels of MBP were higher than controls. Although
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studies have shown that the MBP levels decrease in humans postoperatively,

different results were obtained in rats. In order to examine the possibility that

neurons and oligodendrocytes, both of which represent deteriorating cell

populations in hydrocephalus, can be regenerated by the proliferating brain cells,

rats with kaolin-induced experimental hydrocephalus were later injected with

bromodeoxyuridine (BrdU). The BrdU positive cells for MBP were increased from

17% in the hydrocephalic group to 33% at an early stage after the shunt

procedure, but were restored to 6% at a later stage after shunting. The

differentiation to mature oligodendrocytes appears to be inhibited in hydrocephalus

even after the shunt procedure (Fukushima, Yokouchi et al. 2003). Del Bigio et al.,

who measured the degree of myelination indirectly by measuring the MBP in

cerebrum of rats with experimentally induced hydrocephalus, observed that with

persistent hydrocephalus, the corpus callosum became thinned, axons were lost,

and myelin-related enzyme activities and proteins were decreased. The timing of

intervention became important as he showed treatment of hydrocephalus at 1

week largely prevented the damage while shunting at 4 weeks failed to restore the

injured white matter concluding that hydrocephalus in the immature rat brain

delays myelination, but compensatory myelination is possible if treatment is

instituted prior to the development of axonal injury (Del Bigio, Cardoso et al. 1997).

This finding correlates with our clinical experience on NPH and the importance of

shunting patients as soon as possible in order to achieve the best clinical outcome.
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 S-100b

The presence of this protein in blood points to the functional and/or morphological

disruption of the blood-brain barrier (Sendrowski, Sobaniec et al. 2004). It is a

major protein of the cytosol predominantly found in glial cells. Increased levels

have already been found in cases of astrogliosis (Migheli, Cordera et al. 1999) and

hydrocephalic children (Sendrowski, Sobaniec et al. 2004). S-100b levels in the

CSF, were studied by Nooijen et al. who showed that S-100b levels did not differ

between patients with NPH (n=44), and controls (Nooijen, Schoonderwaldt et al.

1997), and therefore its role as a marker in chronic adult hydrocephalus is doubtful.

 Nerve Growth Factor

Nerve Growth Factor (NGF) is known to promote neuronal recovery from injury and

age-related atrophy, being also important in the regeneration in the brain. NGF is

not normally detectable in innervated tissues, but ablation of the innervating

neurons leads to the production of measurable NGF in the target tissues

(Mashayekhi and Salehi 2005). Increased NGF mRNA levels have been detected

in the medial septal nucleus, striatum and corpus callosum in experimentally-

induced hydrocephalus in rats (Shinoda, Hidaka et al. 2001). Yang et al.

investigated the role of NGF in the pathogenesis of hydrocephalus. They

measured the levels of NGF in nine adult patients with high pressure

hydrocephalus (the authors define high pressure as CSF pressure>10 cm H20) and

seven patients with ex-vacuo hydrocephalus (Yang, Chang et al. 1999). The levels

were significantly higher postoperatively in the second group, despite the fact that
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no significant difference existed perioperatively. The results suggested that the

neuronal injury was more severe in the ex-vacuo category, however one may

argue that the last measurement was made only four days postoperatively. No

correlation was made with surgical results. In a similar study Hochhaus et al.

measured the levels of NGF and neurotrophin-3 (NT-3) in 42 hydrocephalic

children. The levels of both were again elevated in comparison to controls,

however the results were only correlated with presenting symptoms and not with

outcomes (Hochhaus, Koehne et al. 2001). Increased levels of NGF when

compared to controls have been verified in another study of 16 children with

communicating hydrocephalus (Mashayekhi and Salehi 2005). These findings

suggest the possibility that the elevation of NGF concentration in CSF was caused

by increased generation of glial cells that resulted from brain damage.

 Tau Protein

Kudo et al. studied the role of tau protein by measuring the levels in 20 patients

with NPH. Tau concentrations were elevated compared to those of orthopaedic

controls (Kudo, Mima et al. 2000). The results of his study were not correlated with

surgical outcomes. The levels of the protein were positively correlated, however,

with the severity of dementia and with urinary incontinence but not with gait. Tisell

et al also compared the levels of tau protein in 18 patients with aqueductal stenosis

and 19 patients with iNPH, concluding that the levels of tau have no correlation

with clinical improvement (Tisell, Tullberg et al. 2004). Tau protein, a microtubule-

associated protein has been found to be elevated in the CSF of patients suffering

from Alzheimer’s disease (Blennow, Wallin et al. 1995), as well as in patients with
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Lewy body dementia, corticobasal degeneration (Newman, Rissman et al. 2005),

and Creutzfeldt-Jakob disease (Van Everbroeck, Boons et al. 2005) indicating that

it is a marker of neuronal degeneration.

Lins et al. measured the immunoreactivity of amyloid beta peptide (1–42, Ab42-IR)

and tau protein (total tau immunoreactivity (TTIR) in 12 patients with NPH, and

compared them with the levels of an equal number of patients suffering from VD,

AD, Parkinson’s disease (PD) without dementia and 24 controls (Lins, Wichart et

al. 2004). TTIR levels in NPH were not significantly changed when compared with

the other causes of dementia and controls, whereas Ab42-IR was significantly

decreased when compared with Parkinsonian patients and control subjects. The

authors combined the results of both markers in a single plot as a method to

discriminate between different groups of dementia; all the NPH patients were

within the predicted area. Increased levels of TTIR are believed to reflect ongoing

neuronal and axonal degeneration or damage, whereas decreased Ab 1-42 may

be the result of increased recruitment of Ab1-42 from the CSF and the brain

interstitial fluid to deposits in the form of plaques or decreased secretion into the

CSF (Samuels, Silverman et al. 1999). A recent experimental study in rats with

kaolin-induced hydrocephalus verified the above results showcasing increased

accumulation of Ab1- 42 in the periventricular area, around the cortical vessels and

the cortical parenchyma; the size of the deposits correlated well with the duration

of the condition (Klinge, Samii et al. 2006).
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 Glial Fibrillary Acidic Protein

Glial Fibrillary acidic protein (GFAP) is a non specific marker indicating gliosis

(Bartosik-Psujek and Stelmasiak 2001; Malmestrom, Haghighi et al. 2003).

Tullberg et al. were the first to find a useful biomarker associated with the

progression of normal pressure hydrocephalus. They measured the CSF levels of

GFAP in 65 patients with normal pressure hydrocephalus (twenty one of the

idiopathic type) and correlated them with preoperative clinical presentation and

signs. They observed a two-fold increase in GFAP levels when compared to

controls (Tullberg, Rosengren et al. 1998). Similar results regarding GFAP were

verified in an earlier study by Albrechtsen et al. (Albrechtsen, Sorensen et al.

1985). GFAP did not seem to correlate with severity of symptoms or presentation

and had no correlation with the outcome of shunt surgery. In particular, GFAP in

CSF suggests an irreversible damage to astrocytes, since GFAP is not secreted by

astrocytes.

 Neurofilament triplet proteins

Neurofilament proteins are Type III intermediate filament proteins that assemble

into neurofilaments, the major cytoskeletal element in nerve axons and dendrites.

They consist of three distinct polypeptides, the neurofilament triplet protein (NFL).

It has been shown that the metabolism of neurofilaments is disturbed in

Alzheimer's disease (Lacoste-Royal, Mathieu et al. 1990). Therefore, NFL may be

used as a biochemical marker of neuronal degeneration and particularly of axonal

damage (Malmestrom, Haghighi et al. 2003). Tullberg et al. measured the levels of
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NFL in 65 patients with normal pressure hydrocephalus (21 of the idiopathic type)

and correlated them with preoperative clinical presentation and signs. They

observed a six-fold increase in NFL levels when compared to controls. NFL as the

authors point out is not specific for NPH and therefore cannot differentiate between

various types of dementia. This increase in NFL indicates a degeneration of

neurons primarily affecting the axonal region with a loss of intermediate filament

protein across deranged cell membranes into the interstitial fluid. Although, they

report outcome results without using any of the commonly used scales, in the case

of NPH they conclude that high preoperative NFL levels are associated with

favourable surgical outcomes (r=0.3, p<=0.05), and suggest that NFL can be used

as a marker for ongoing axonal damage (Tullberg, Rosengren et al. 1998).

However, in another study from the same group, even though the increased levels

of NFL in the ventricular CSF of patients with iNPH were verified, the results did

not correlate with improvement (Tisell, Tullberg et al. 2004).

 Sulfatide

Sulfatide is a glycosphingolipid component of myelin and it has been recently

understood by experiments in sulfatide-null mice, to be essential for the

maintenance of CNS myelin and axon structure (Marcus, Honigbaum et al. 2006).

In an early study, the role of sulfatide was studied in patients with communicating

hydrocephalus (Tullberg, Mansson et al. 2000). The preoperative CSF sulfatide

levels were found to be higher in the NPH group with cerebrovascular aetiology,

when compared with the rest of the NPH patients. The authors postulated the

presence of irreversible ischemic white matter lesions in the hydrocephalic group
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with cerebrovascular disease. Since the sulfatide levels were normal in most of

the NPH patients, they considered that demyelination plays a minor role in the

pathogenesis of NPH. In addition, there was no correlation with surgical outcome.

The authors state that the results cannot be explained by a difference in CSF

dynamics and therefore the concentration of sulfatide can differentiate between

NPH and subcortical arteriosclerotic encephalopathy (SAE). The latter condition

also known as Binswanger’s disease has a similar clinical presentation to NPH

(Kovacs, Szirmai et al. 2005), and therefore this contribution is significant in

establishing the diagnostic role of sulfatide as a biomarker. Tisell et al compared

the levels of sulfatide in 37 patients with aqueductal stenosis and iNPH (Tisell,

Tullberg et al. 2004). The levels of sulfatide correlated inversely with improvement

in psychometric performance; this correlation however was weak.

 Glycoprotein D2

Glycoprotein D2 is a glycoprotein enriched in neuronal membranes and probably

involved in intercellular adhesion. The levels of this protein were examined in the

CSF of 13 hydrocephalic patients and compared with controls and patients

suffering from primary degenerative dementia of Alzheimer’s type. The levels were

significantly lower in the case of NPH. No correlation was made with symptoms,

surgical outcomes or outflow conductance. The significance of this study remains

unknown in the setting of NPH (Sorensen, Gjerris et al. 1983)
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1.14.2.6. Cytokines

Tarkowski et al. investigated the role of the tumour-necrosis factor (TNF-α), an

inflammatory mediator, and whether NPH triggers its production (Tarkowski,

Tullberg et al. 2003). They examined the levels of TNF-α in the CSF of 35 patients

with NPH and compared them with controls. In the NPH group the levels were 45-

fold higher. The most interesting finding was that TNF- α returned to control levels

following shunting in the group that improved following surgery. This factor has a

short half-life in CSF, hence accumulation due to CSF stagnation is unlikely, and

the increase may be due to increased production preoperatively. The authors also

suggest that TNF-α might be a marker for demyelination and suggest TNF-α

toxicity is directed to the white matter in patients with NPH.

Recently, the CSF levels of two interleukins, IL-4 and IL-10, have been compared

in different neurodegenerative diseases (Stoeck, Bodemer et al. 2005). Levels of

both interleukins were significantly higher when compared to controls, but not

different when compared to patients with dementia and CJD. The authors suggest

that elevated levels of those cytokines might reflect a response to

neurodegeneration, and also might trigger neuroregeneration. In another study IL-1

levels in the CSF of patients with AD were

significantly higher when compared with NPH (Cacabelos, Barquero et al. 1991).

The results of both studies were not correlated with surgical outcomes. This,

together with the small number of patients, means that it is not possible to obtain

any solid conclusions.
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1.14.2.7. Other biomarkers

We will briefly summarise below studies of biomarkers that have been investigated

less, or only in single studies. CSF levels of vasopressin did not differ between

NPH patients and controls in two studies of 11 and 18 patients, respectively.

Hammer et al. suggested that there might be a role of vasopressin affecting the

memory, however the results of the study did not substantiate this claim (Hammer,

Sorensen et al. 1982). The concentrations of corticotropin releasing factor (CRF)

were examined in 14 patients with NPH pre- and postoperatively (Poca, Mataro et

al. 2001). The levels of CRF increased significantly post-shunting, nevertheless

they remained below normal levels. The authors explain this difference by a

possible improvement in cerebral blood flow that is known to occur post shunting.

They also noted that the change in CRF correlated negatively with percentage

change in postoperative verbal fluency and in the trail-making test B, a test

measuring psychomotor speed. No other study has been identified in the literature

and unfortunately we cannot gain a better insight into the role of CRF with

hydrocephalus. Levels of cholecystokinin, a 33-amino acid polypeptide acting as a

neurotransmitter or neuromodulator (Mollereau, Roumy et al. 2005), were found to

be significantly lower in 16 patients with NPH when compared with controls and

also lower levels were correlated with abnormal ICP values (Galard, Poca et al.

1997). Brettschneider et al. studied the CSF levels of leptomeningeal derived β

trace protein, beta2 microglobulin and Cystatin C in groups of patients suffering

from NPH (n=19), AD (n=30), vascular (n=13) and frontotemporal dementia (n=6).

The levels of β-trace protein were lower in the NPH group than the controls and

patients with AD suggesting a meningeal dysfunction in the pathogenesis of NPH.
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The authors suggest this protein a potential biomarker discriminating between NPH

and AD, although no correlation was carried out with surgical outcomes

(Brettschneider, Riepe et al. 2004).

1.14.2.8. 2BThe use of CSF biomarkers for outcome prognosis

During the recent years, various groups have made efforts to identify CSF markers

for neurodegenerative disorders. These efforts have so far been concentrated on

other neurodegenerative disorders such as AD (Andreasen, Minthon et al. 2001),

PD (Michell, Lewis et al. 2004), Pick’s disease, and Lewy Body dementia

(Mollenhauer, Cepek et al. 2005). Although improvements of clinical NPH

symptomatology have been described after shunting in patients with

neuropathologically confirmed concomitant AD (Bech, Waldemar et al. 1999), it

has been shown that NPH patients with additional pathology attributed either to

vascular dementia or AD generally show worse outcomes after shunting than those

with NPH without concomitant pathology (Savolainen, Hurskainen et al. 2002). The

pathology of these conditions is so closely interlinked (Del Bigio, Cardoso et al.

1997; Holm, Savolainen et al. 2003; Silverberg, Mayo et al. 2003) that Silverberg et

al. even suggested a low-flow (up to 140 mL/d) CSF drainage pilot study for

patients with Alzheimer’s dementia (Silverberg, Levinthal et al. 2002). Therefore,

neurochemical parameters that could help to separate NPH from other

neurological disorders, which mimic NPH symptomatology, would be of clinical

value. Pathological studies have given us an insight into the changes occurring in

chronic hydrocephalus. Disruption of the ependymal ventricular lining, interstitial

oedema, neuronal degeneration, white matter lesions, gliosis, capillary micro-

infarctions and demyelination (Weller, Wisniewski et al. 1971; James, Flor et al.
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1980; Miyagami, Murakami et al. 1981; Akai, Uchigasaki et al. 1987; Sutton,

Keohane et al. 1994) are consistent findings. Studies from experimentally-induced

hydrocephalus in rats have supported these findings and provided us with

additional evidence (Klinge, Muhlendyck et al. 2002; Klinge, Samii et al. 2003).

Furthermore, we now know that a regenerative process takes place following

gradual necrosis in the white matter and axonal injury, and as a response there is

the production of new glial cells in the subependymal zone to compensate for the

cell loss (Del Bigio and Zhang 1998).

The case for identifying biomarkers in chronic hydrocephalus of adult onset has

arisen due to similar developments in other common causes of dementia and the

increasing awareness of both the epidemiology of NPH (Trenkwalder, Schwarz et

al. 1995; Tisell, Hoglund et al. 2005) and its impact on the quality of life of elderly

patients (Gelling, Iddon et al. 2004). Ideally, useful biomarkers should be confirmed

with data from multiple disciplines, including neuropsychological testing, blood

tests, genetic markers, CSF composition, and brain imaging. Alterations in the

neurochemical composition of CSF in hydrocephalus have been widely

documented and reviewed (Del Bigio 1989). Newer techniques, which will be

discussed in the next section, will provide us with a broad spectrum of biological

markers ranging from serum proteins to intracellular mediators that are involved in

signal transduction and transcription (Kondziella, Qu et al. 2003).

Definition of a biomarker and applications in patients with chronic adult

hydrocephalus: “The ideal biomarker for Alzheimer’s disease (AD) should detect

a fundamental feature of neuropathology and be validated in neuropathologically-

confirmed cases; it should have a sensitivity of 80% for detecting AD and a
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specificity of 80% for distinguishing other dementias; it should be reliable,

reproducible, non-invasive, simple to perform, and inexpensive. Recommended

steps to establish a biomarker include confirmation by at least two independent

studies conducted by qualified investigators with the results published in peer-

reviewed journals.” This definition given by the Consensus Report of the Working

Group on Molecular and Biochemical Markers of Alzheimer’s disease (Ronald and

Nancy Reagan Research Institute and the NIA Working Group-1998) adequately

highlights the problems that may be faced in attempts to establish biomarkers for

adult-onset communicating hydrocephalus. The role of a biomarker is to confirm a

diagnosis, serve for epidemiological studies, assess for prediction, monitoring the

progression and response to treatment and studying brain-behavior relationships.

Any marker will need to be validated against a definite diagnosis. Traditionally the

diagnosis of NPH was given only postoperatively on the basis of improvement of

the patient. Recently a collaborative attempt was made to categorize patients with

NPH as ‘possible’, ‘probable’ or ‘definite’ (Ishikawa 2004). If this categorization

were to be used, then biomarkers should only be tested in probable cases to

achieve high diagnostic accuracy. The establishment of control groups is another

problem that needs a solution. Ideally, the spouses of hydrocephalic patients could

be used as controls, as they would be well matched for age and environmental and

lifestyle factors. However, medical ethics prohibit us from using invasive

procedures (such as serum or CSF sampling) for research purposes in healthy

individuals. Since one single biomarker might be inadequate to provide the needed

diagnostic accuracy, a combination of more than one biomarker might give a

solution. An example of this was the study by Lins et al. as analyzed in an earlier
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section of this report (Lins, Wichart et al. 2004), and as has already been

demonstrated in other neurodegenerative processes (Reiber 1998).

As we have seen, serum biomarkers appear to be no use at the present time

because relevant studies have been so few. Serum Glycoprotein D2 was

inadequately studied and therefore may not be used in the differential diagnosis

with patients suffering from primary progressive dementia. Clearly, serum protein

concentrations can be influenced by many factors other than brain and CSF

composition, therefore a direct reflection of brain metabolism is likely to prove more

useful. Studies of biomarkers in the CSF have been much more numerous

although, as our review has shown, no biomarker has received enough attention

from researchers to emerge with the needed specificity and sensitivity.

In most of the studies so far there is an observed difference in the levels of the

biomarker preoperatively and postoperatively, but there are weak correlations with

surgical outcomes. In other studies there are observed differences between

patients and a control group, but rarely are results correlated with surgical

outcomes. TNF-α emerges as a potential biomarker. Although the results were not

correlated with surgical outcome, the 45-fold preoperative increase and return to

normal post- shunting, shows the potential of this marker. However, only one study

of 35 patients, reported results for TNf-α, and therefore the data has yet to be

replicated by other research groups. Somatostatin appears to relate to changes

and general impairment of cognitive functions, but bigger studies are warranted to

highlight better this relationship. A significant correlation was also found between

levels of tau protein in patients with NPH and the severity of dementia; again these
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results need to be replicated. Sulfatide emerged as a promising biomarker

showcasing a sensitivity of 74% and specificity of 94% in distinguishing between

NPH and subcortical arteriosclerotic encephalopathy. Also, levels of neurofilament

triplet protein >640 mg/L have been identified by Tullberg et al. as having a

predictive value of 100% for a positive outcome after shunt surgery; the latter

remain non-sensitive (17%) but highly specific (100%). Lactate appears a

promising distinguishing factor between different forms of dementia and further

studies correlating lactate levels with surgical outcomes could reveal its potential

as a biomarker.

1.14.2.9. Technical considerations and existing limitations

There are a few problems of technical nature with using establishing and validating

the use of biomarkers in this condition. These have been reviewed and

acknowledged by Wood (Wood 1980). Firstly, caution should be exercised when

interpreting biochemical results as for many potential markers there might be no

reference values in the CSF of healthy subjects. There is also a need for age-

matched reference values in the evaluation of CNS pathologies (van Engelen,

Lamers et al. 1992). Wikkelsö et al have noted that in hydrocephalic patients, low

neuropeptide values in the CSF can be caused not only by reduced release or

increased degradation, but also by an altered distribution volume of the CSF

(Wikkelso, Ekman et al. 1991). Indeed this effect was noted with the MBP studies,

levels of which decreased after flow was restored by shunting. Furthermore

increased CSF levels of certain markers might be explained when one takes in

consideration the low CSF conductance (i.e. increased CSF outflow resistance) in
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NPH which compromises the clearance of these metabolites resulting in

accumulated levels in the CSF. Another controversial aspect of studies on

concentrations of neuropeptides using lumbar instead of ventricular samples is

whether the effect of the gravity may influence the concentration of the peptides in

the samples (Gjerris, Werdelin et al. 1987; Gjerris, Gjerris et al. 1988).

The dynamics of markers in the CSF differ depending on whether the proteins

derive directly from the nerve cells, the leptomeninges, or whether they derive from

blood and therefore their concentration and dynamics depend on the integrity of

the blood-brain barrier (Reiber 2001).

Ideally only ventricular samples would be used in the case of hydrocephalus, even

though the spinal absorption pathways have been shown to be involved in the case

of communicating hydrocephalus (Luedemann, Kondziella et al. 2002). That is

because the ventricular fluid would reflect more accurately the changes occurring

in the periventricular white matter. Ideally the technique of microdialysis, which has

been developed to quantify regional spatial and temporal changes in brain

biochemistry, would be the best tool to monitor such changes. Indeed, there are

publicized attempts in applying this in patients with NPH (Agren-Wilsson, Roslin et

al. 2003; Agren-Wilsson, Eklund et al. 2005). However, ethical issues and technical

limitations for detecting putative markers might be the key issue in pursuing this

further. It has also been demonstrated that concentrations of certain markers in the

CSF might fluctuate over time, so a sample at one time point might be of limited

use (Geracioti, Orth et al. 1992). The sampling during ventricular catheterization

seems to influence the concentrations of certain markers as verified by two studies
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(Kruse, Cesarini et al. 1991; Woertgen, Albert et al. 2004). This potential pitfall

should be kept in mind in the design of relevant future studies. The differences in

the pathogenesis of the idiopathic and the secondary form of chronic adult-onset

hydrocephalus add more limitations for data collection from appropriate

populations.

14.2.10. Future directions and possibilities of the field of CSF

biomarkers

Proteomics, since its inception in 1995 (Wilkins, Sanchez et al. 1996) has showed

great promise in providing a more detailed insight into the mechanisms of disease

in the post-genomic era. The proteome and peptidome maps can provide us with

what is called “a bird’s eye view” of the physiological and pathological products and

of processes occurring at any one time. The field of clinical proteomics is

especially well suited for discovery of biological markers in complex biological

fluids, such as plasma, urine, serum and CSF; these in turn reflect the ongoing

biological processes in healthy subjects, as well as in several neurodegenerative

disorders. The related field of peptidomics is a method for analysing the vast range

of the peptides that have been expressed in any cell, tissue or fluid at any given

time. These two technologies have already been used successfully to provide us

with an insight into the CSF proteome map (Finehout, Franck et al. 2004;

Maccarrone, Milfay et al. 2004; Wenner, Lovell et al. 2004; Yuan and Desiderio

2005; Yuan and Desiderio 2005).
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Changes in the protein composition of CSF may be indicative of altered CNS

protein expression pattern, providing us with a link to the cause or diagnosis of a

condition. Other areas of neurology have already benefited from this new area.

Mass spectrometry has been used in immunodeficiency virus dementia (Berger,

Avison et al. 2005), in CSF from patients with multiple sclerosis (Hammack, Fung

et al. 2004), and AD (Puchades, Hansson et al. 2003), or for the identification of

protein tumour markers in primary brain tumours (Zheng, Luider et al. 2003).

As with every new diagnostic technology, limitations do exist. At present there is a

lack of standardization for the procedures as the techniques are quite new. A low

total-protein concentration, a high concentration of albumin and immunoglobins,

and a wide range of protein concentrations cause several difficulties in the

identification of low-abundance CSF proteins (Yuan and Desiderio 2005). An

attempt to apply proteomics has already been carried out in the Hydrocephalus

Texas (H-Tx) rat inherited model of hydrocephalus (Li, Miyajima et al. 2005). A

recent attempt in one single patient identified 82 proteins of which 25 have not

appeared in any previously published two-dimensional electrophoresis (2DE) map

of CSF, whereas eleven of them have not been previously reported to exist in CSF

(Finehout, Franck et al. 2004). Two new peptides related to neuropeptide FF, a

modulator of the opioid system, were detected in the CSF of one patient with NPH

(Burlet-Schiltz, Mazarguil et al. 2002). The significance remains unknown at

present, but these two studies demonstrate the potential to gain a novel insight into

areas that hitherto have not been available.
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1.14.2.11. The need for future collaboration in the field of biomarkers

There is a need for continued and collaborative collection of research populations

of subjects with chronic communicating hydrocephalus who can contribute to a

longitudinal bank of biologic specimens (i.e., imaging data, biological fluid and

genetic samples) for identification and verification of novel biomarkers. Similar

projects in neurosurgery regarding brain injury (BrainIT) have been recently

attempted and are ongoing. However, since NPH is mostly a clinical diagnosis with

a radiological verification, such a biomarker might not be forthcoming even by the

combined efforts of a controlled multicenter trial. Moreover, collaboration is

needed between groups, which deal with paediatric and adult-type of

hydrocephalus. Although, limitations exist due to the need for data protection, the

long-term gain into the insight in the continuum spectrum of this condition will be

immense.

Since follow-up and knowledge of the long-term prognosis for the management of

this condition is vital, it is necessary to establish common outcome scales which

will allow for multiple study comparisons. As we have seen outcomes and end

points vary widely between groups dealing with this condition. This effort might

also include establishing a national brain bank project for future collaborative

research.

Attention should be also given in understanding the epidemiology of this condition.

So far, epidemiological data arises mainly from Sweden due its health system
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infrastructure. This approach could also include multiple non-medical disciplines

that ultimately influence the outcome of geriatric conditions.

1.15. Non-invasive biomarkers: the role of neuroimaging

In patients with normal pressure hydrocephalus (NPH) CT demonstrates

ventriculomegaly with ventriculosulcal disproportion and hydrocephalus is of the

communicating type. In the periventricular areas of the frontal and occipital lobes

hypodense areas represent transependymal passage of CSF. The accuracy of CT

in idiopathic and secondary NPH is not known due to the problematic nature of

establishing a firm diagnosis in this condition. Ventriculomegaly alone is not a

specific feature of NPH as it may be met in ex-vacuo dilatation secondary to

cerebral atrophy, PD, MID, AD, and Binswanger’s disease (Savoiardo and Grisoli

2001). MRI imaging provides additional physiologic information for NPH when

compared with CT scanning by demonstrating a pulsatile flow void across the

aqueduct and a hyperdynamic CSF flow on T2-weighted imaging. However, the

accuracy of MRI is again not known in diagnosing NPH. Traditionally, isotope

cisternography has been used to demonstrate the persistent reflux of the isotope in

the ventricular system and the absence from the convexities within 48 hours.

However, its use is doubted today (Benzel, Pelletier et al. 1990; Vanneste,

Augustijn et al. 1992; Hebb and Cusimano 2001).

Recently, criteria for the diagnosis of NPH have been published (Marmarou,

Bergsneider et al. 2005). However, the investigations outlined have an invasive

nature (Marmarou, Bergsneider et al. 2005). Neuroimaging due to its non-invasive
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nature has the ability and advantage of imaging both structural and functional

changes of the brain allowing access to, and a better understanding of the brain

disease and the metabolic consequences of hydrocephalus. In that sense it might

be able to also provide useful biomarkers that might guide us in the preoperative

diagnosis, act as prognostic indicators, or assist us in judging the evolution of the

condition. The purpose of this review is to investigate and outline the use of

neuroimaging modalities in predicting outcomes for favourable shunting, as well as

identifying potential biomarkers.

1.15.1. Structural imaging features

Ventriculomegaly is an essential criterion for the diagnosis and is confirmed in

most studies as an Evans index greater than 0.3. This index equates to the ratio of

the maximum width of the frontal horns to the maximum width of the inner table of

the skull. Other indexes have been used invariably but the Evans index is the one

most commonly used having high sensitivity but low specificity for NPH

(Waldemar, Schmidt et al. 1993). In an earlier study an Evans ratio less than 0.35

was found of no use in predicting outcomes (Borgesen and Gjerris 1982). Other

features of NPH have been identified on imaging. Hippocampal volumes (Golomb,

de Leon et al. 1994), small perihipoccampal fissures (Holodny, George et al.

1998), focal impingement of corpus callosum (Qureshi, Williams et al. 1998), distal

dilation of the aqueduct (Kurihara, Simonson et al. 1995) and smaller midbrain

diameter (Lee, Yong et al. 2005) have been suggested as selecting tools for this

group of patients. Although hippocampal atrophy when compared to control

subjects has been reported in NPH (Golomb, de Leon et al. 1994; Savolainen,
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Laakso et al. 2000), this feature is met also in other conditions (Laakso, Partanen

et al. 1996) and therefore its specificity for NPH is limited. The positive predictive

value of the size of perihippocampal fissures to distinguish NPH from AD is 86%;

however the size of the perihippocampal fissures was assessed subjectively in that

study (Holodny, Waxman et al. 1998). Convexity gyral atrophy has a low sensitivity

and specificity for predicting surgical outcomes (Benzel, Pelletier et al. 1990).

Relating to the previous finding with small cortical sulci having high specificity in

predicting surgical outcomes (Borgesen and Gjerris 1982). The absence of sylvian

fissure enlargement was another studied feature that has a very low specificity

(Benzel, Pelletier et al. 1990). Although the midbrain diameter correlates with gait

impairment this features did not correlate with clinical outcomes (Mocco, Tomey et

al. 2006).
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Figure removed for copyright reasons

Figure 1.15.1.1. Measurement of Evans index (a/b) as a marker of
ventriculomegaly from an axial CT brain

1.15.1.1. Volumetric studies

Volumetric studies assessing the distribution of CSF among different intraaxial

compartments and the volume of different cerebral components in this cohort of

patients might act as a predictor for outcome. A reduction of ventricular volumes

may not be apparent to routine interpretation of scans so detailed volumetric

studies might be needed for accurate measurements (Anderson, Grant et al.

2002). Ventricular enlargement could predict outcomes with a sensitivity of 82%,
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but a smaller specificity (50%) in an early study (Benzel, Pelletier et al. 1990). The

ventricular volume was greater than controls, whereas the volumes of brain, grey

and white matter components and subarachnoid space were similar to controls

(Matsumae, Kikinis et al. 1996). In addition to ventricular volumes, enlarged

intracranial CSF volumes when compared to control subjects have been reported

(Tsunoda, Mitsuoka et al. 2001; Bradley, Safar et al. 2004). That was confirmed in

another study which also used the ventricular/intracranial CSF ratio as a strong

suggestion for the diagnosis of NPH (Yoshihara, Tsunoda et al. 1998). The sylvian

fissure and basal cisterns’ CSF volume were also found larger than patients with

AD (Kitagaki, Mori et al. 1998). However, volumetric studies do not seem useful as

a means of predicting outcome. Responders and non-responders to shunt surgery

(n=26) in a 1-year follow-up did not have any difference in the mean ventricular

volume ratio, mean brain volume ratio, mean pericerebral CSF volume ratio, and

the mean ratio between ventricular and pericerebral CSF volume (Palm,

Walchenbach et al. 2006). Favourable outcomes following shunting in patients with

NPH (n=80) did not correlate with decreased ventricular volume 1 year after

surgery. In fact, better clinical outcomes were observed in patients with little or no

alteration in ventricular size (Meier and Mutze 2004). Holodny and colleagues

observed a paradoxical decrease in the size of the dilated fissures and sulci of 5

patients that paralleled the decrease in the size of the lateral ventricles following

successful shunting suggesting that the focal fissural and sulcal dilation may

represent reservoirs of cerebrospinal fluid analogous to the ventricular system.

They concluded that patients should not be denied a shunting procedure solely on

the basis of focally dilated fissures of sulci (Holodny, George et al. 1998).
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1.15.1.2. Periventricular lucencies

Caution must be exercised to separate periventricular, diffuse, smooth

hyperintensities with extension limited to the corona radiata and centrum

semiovale attributable to microvascular disease from irregular intensities around

the frontal and occipital horns often associated with NPH (Yamada, Fukuda et al.

1978). The pathophysiology and the significance of periventricular lucencies in

hydrocephalus are not at all understood and they might represent either oedema or

gliosis (James, Flor et al. 1980). The periventricular lucencies seen on MRI prior to

shunting represent increased water content in the extracellular space (Aygok,

Marmarou et al. 2006), and may be assessed by the use of the T1 and T2

relaxation times. In NPH relaxation times of white matter are longer both in T1 and

T2 when compared with controls, and when compared with relaxation times of grey

matter (Tamaki, Nagashima et al. 1990). Patients with these lucencies exhibited

greater improvement post shunting (Borgesen and Gjerris 1982; Thomsen,

Borgesen et al. 1986; Poca, Mataro et al. 2004). This might be explained by the

fact that the presence of the lucencies on a patient might indicate that the

hydrocephalus is still not fully “compensated” (Bradley 2001) and therefore the

pathologic changes are reversible if CSF dynamics are restored. However, their

sensitivity and specificity in predicting surgical outcomes remains low (Benzel,

Pelletier et al. 1990).
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1.15.1.3. Deep white matter lesions

Since an element of chronic hypoperfusion contributes to the development of NPH

this is reflected in imaging (Bradley, Whittemore et al. 1991). It is widely accepted

that deep white-matter lesions (DWMLs) most frequently are secondary to chronic

ischemia caused by hypertensive arteriolosclerosis (Fernando, Simpson et al.

2006). NPH is known to be associated with diffuse white matter damage, even in

normal-appearing cerebral white matter (Hahnel, Freund et al. 2000). Elderly

patients with idiopathic NPH have more frequent and more severe periventricular

and deep white matter lucencies than people in age-matched control groups

(Bradley, Whittemore et al. 1991; Krauss, Regel et al. 1997). The lack of white

matter signal and more severe periventricular signal on T2W imaging were shown

to act as predictors of good response to shunt surgery (Jack, Mokri et al. 1987).

The extension of periventricular and deep white matter lesions was found to be

inversely correlated with the degree of clinical improvement in 41 patients (Krauss,

Droste et al. 1996). However, conventional MRI might not be the best imaging

modality to highlight these white matter changes (Hahnel, Freund et al. 2000), and

distinguish reliably between patients with NPH and subcortical vascular

encephalopathy (Tullberg, Hultin et al. 2002). Since the presence of deep white

matter hyperintensities or subcortical lacunar infarctions could not predict poor

postoperative outcomes and should not exclude patients from having a surgery the

role of MR as a selection tool to exclude patients from having surgery is limited

(Tullberg, Jensen et al. 2001).
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1.15.1.4. Phase contrast MR studies

MRI studies may provide us with information about the CSF flow void phenomenon

across the aqueduct. The degree of the flow void reflects the increased velocity of

the pulsatile CSF motion in patients with NPH, which in turn depends on the

relative ventricular compliance and surface area (Bradley, Kortman et al. 1986). In

addition phase-contrast MR studies can be used to study quantitavely the

hyperdynamic flow along the aqueduct of Sylvius, thus calculating the stroke

volume or the CSF flow velocity.

In patients with NPH the flow void is usually increased (Bradley, Whittemore et al.

1991). Significantly higher and lower values of the (mean) maximum aqueductal

signal intensity were found in the NPH and the ex-vacuo groups respectively, when

compared with a control group (Mascalchi, Ciraolo et al. 1990). A significant

correlation (p<0.003) was initially found between good or excellent response to

shunting and an increased CSF flow void in a 5-year follow up (Bradley,

Whittemore et al. 1991). However, the same group later disputed its use as a

marker of good outcome (Bradley, Scalzo et al. 1996).

The first studies using CSF flow/motion patterns and MRI for the syndrome of NPH

took place in 1987 (Jolesz, Patz et al. 1987). Patients with NPH (n=7) showed

increased systolic flow rates when compared with patients with ex-vacuo

hydrocephalus. In another smaller study (n=18) a stroke volume greater than 42

microL was associated with favorable outcome following shunting (Bradley, Scalzo

et al. 1996). It is important to note here that such stroke volume values vary
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according to the technique and the scanner used; therefore they cannot be of

absolute value unless compared to age-matched controls.

Abnormal CSF flux (as defined by being outside the 2 standard deviations from the

mean difference between the maximal rostral and caudal flux) in phase-contrast

cine MR in 8 patients was proven to have an accuracy of 88% in predicting

outcomes (Egeler-Peerdeman, Barkhof et al. 1998). Luetme et al. concluded that

CSF flow greater than 18 ml/min suggests idiopathic NPH and may distinguish

from other dementias (Luetmer, Huston et al. 2002). High CSF velocity through the

aqueduct was identified as a good predictor of improvement after surgery with a

sensitivity of 90% and specificity of 50% (Poca, Sahuquillo et al. 2002). The

maximum CSF flow velocity using phase-contrast cine MR in the aqueduct was

found to be significantly larger in a group suffering from secondary NPH (9.21 +/-

4.12 cm/sec) when compared to controls (5.27 +/- 1.77, p < 0.001) and a group of

patients with cortical atrophy (4.06 +/- 1.81, p < 0.005) (Mase, Yamada et al.

1998).

However, later studies have not verified the above promising results. No difference

was found between the occurrence of aqueductal CSF flow void in 37 patients

with idiopathic NPH and an equal number of controls (Krauss, Regel et al. 1997).

These negative results were verified by other studies (Parkkola, Komu et al. 2000;

Dixon, Friedman et al. 2002). Aqueduct stroke volumes did not differ between

patients with NPH (n=16), Alzheimer’s dementia and vascular dementia (Bateman,

Levi et al. 2005). Dixon and colleagues suggest that MR measurements of

aqueductal CSF flow might be useful only if the diagnosis of NPH is ambiguous or
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for patients in whom the diagnosis of NPH is suspected but surgery is high risk

because of medical co-morbidities (Parkkola, Komu et al. 2000; Dixon, Friedman et

al. 2002). However, Bradley suggested that negative results may be explained by

the choice of imaging techniques that decrease the sensitivity of the aqueductal

flow void sign (Bradley 2001).

1.15.2. Functional imaging features

The role of cerebral blood flow measurements has been systematically reviewed

by Owler and Pickard (Owler and Pickard 2001), however it has been noted that

none of the measures have succeeded in a better diagnosis and prognosis of

NPH, impact due to centre-specific differences in methodology and technique

application. It has been shown that areas of frontal lobe, parietal (Larsson, Bergh

et al. 1994), thalamic and hippocampus (Tullberg, Hellstrom et al. 2004) are

particularly affected. Similar changes in cerebral blood flow and cerebral oxygen

utilization have been shown previously both in patients with dementia and chronic

hydrocephalus (Grubb, Raichle et al. 1977; Tanaka, Kimura et al. 1997). The role

of CBF as a selection tool for shunting has been suggested by Mathew et al.

(Mathew, Meyer et al. 1975) and Moretti using tomoscintigraphy (Moretti, Sergent

et al. 1988). Ultrasonographic studies using transcranial Doppler (Fritz, Kalbarczyk

et al. 1989; Krauss and Droste 1994; Bakker, Boon et al. 2002) have also been

used in the past to highlight the role of chronic ischemia in the pathophysiology of

chronic adult hydrocephalus. Below, we will investigate in more detail different

imaging methods and their role in predicting surgical outcomes.
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1.15.2.1. Xenon-enhanced Computed Tomography

Early studies measuring the regional CBF using the method of 133Xe clearance

method identified diffusely decreased cerebral blood flow in the frontal area (Baba,

Takeyama et al. 1978), whereas increase CBF in the frontal, temporal and basal

ganglia areas post shunting correlated with good post surgical outcome (Tamaki,

Kusunoki et al. 1984; Meyer, Kitagawa et al. 1985). The method has been also

used to measure the difference in CBF following a diagnostic lumbar tap in patients

with NPH (Mamo, Meric et al. 1987). Tanaka and colleagues studying 21 patients

with idiopathic and secondary NPH concluded that a criterion for postoperative

improvement is preoperative hemispheric cerebral blood flow greater than 20

ml/100 g per minute and an impaired vascular response to acetazolamide only in

the periventricular white matter (Tanaka, Kimura et al. 1997). When glycerol was

administered in 22 patients with secondary NPH, preoperative and postoperative

regional cerebral blood flow (rCBF) increased by more than 20% in responders to

surgery (Shimoda, Oda et al. 1994). Glycerol acts by increasing cerebral perfusion

pressure and improving microcirculation. In this last study no cut-off value for

predicting improvement was mentioned. Negative results regarding the use of Xe-

CT for predicting outcomes when CBF is measured before and after a diagnostic

lumbar puncture have been reported (Kushner, Younkin et al. 1984). Vorstrup and

colleagues have found that improvement in CBF correlate strongly with a reduction

of ventricular size as measured by Evans ratio (Vorstrup, Christensen et al. 1987).
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1.15.2.2. Positron Emission Tomography

The first PET studies were carried out in 1985 and used as a differentiation method

between AD and NPH groups. Both groups showed lower cortical rates of [18F]

fluorodeoxyglucose (FDG) utilisation than controls. However, AD subjects

demonstrated bilateral temporoparietal hypometabolism while the NPH group

showed globally diminished glucose use (Jagust, Friedland et al. 1985). Studies by

Owler and colleagues have identified the basal ganglia and thalamus as additional

areas of hypoperfusion (Owler, Pena et al. 2004). In another study the same group

revealed that the cerebral flow is reduced more in the paraventricular region

getting progressively normalised towards the subcortical white matter area

(Momjian, Owler et al. 2004). Klinge and colleagues using PET estimated the

cerebrovascular reserve and global CBF while correlating the results with surgical

outcomes. They found that the responder to shunting group (n=31) had lower

blood flow values when compared to the non-responder group (n=29) (Klinge,

Berding et al. 2002). Following shunting no significant changes in global CBF were

observed in both outcome groups. The same group when evaluated 11 patients

with 15-O-water PET one-year after surgery found that the responder group had

reduced CBF in the frontobasal cortex (Klinge, Berding et al. 2002).

1.15.2.3. Single-photon-emission-computed tomography

The measurement of the regional cerebral blood flow by means of the dynamic

single-photon-emission-computed tomography (SPECT) is a method of

examination that provides quantitative information regarding the distribution of the
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effective cerebral perfusion. SPECT (either alone or in combination with perfusion-

weighted MRI) has been used preoperatively as a research tool to assess cortical

perfusion before and after a lumbar tap test (Kristensen, Malm et al. 1996; Hertel,

Walter et al. 2003). Increase in cerebral perfusion (as assessed by perfusion

weighted MRI) when combined with clinical examination helped to predict good

outcomes in six out of seven shunted patients (Walter, Hertel et al. 2005). Another

study assessing pre and postoperative blood flow changes using SPECT verified

CBF improvement in the less disabled NPH group of patients (Piechnik and Hultin

2005). A study of 14 patients identified enlarged subcortical low-flow region,

asymmetry of regional CBF (rCBF) in the central white matter, the inferior and mid-

temporal cortex when compared to age-matched controls, whilst global CBF was

normal (Waldemar, Schmidt et al. 1993). In another study with 23 patients

decreased rCBF was identified in the hippocampal regions and in the frontal and

parietal white matter as compared to controls, which increased post shunting

(Larsson, Bergh et al. 1994). Mataro and colleagues expanded on the specific

areas of the frontal and parietal lobes of blood flow improvement post-shunting by

using SPECT in 15 patients (Mataro, Poca et al. 2003). Secondary NPH has been

also shown to have reduced frontal lobe blood flow when compared with idiopathic

cases (Kamiya, Yamashita et al. 1991).

A Dementia Alzheimer’s type (DAT) pattern characterised by decreased flow in

posterior temporal and parietal areas predicted outcomes with high accuracy in 14

patients with idiopathic NPH (Granado, Diaz et al. 1991). A ratio of 1.05 in the

anterior/posterior brain regions acted as a marker for 14 out of 16 clinically

improved patients, with the improved group having values below that ratio (Graff-
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Radford, Rezai et al. 1987). These results were confirmed in a follow-up study by

the same group providing similar accuracy figures (Graff-Radford, Godersky et al.

1989). Enlarged subcortical low flow areas predicted outcome in 10 out of 11

patients (Waldemar, Schmidt et al. 1993). Another study of 22 patients with NPH

showed that an increase of more than 80% in CBF after CSF removal was

predictive of response to shunt surgery with 77% accuracy (Mori, Maeda et al.

2002). Finally, Chang and colleagues quoted a cut off value for CBF of 35 ml/100

g/ min predicting a favourable outcome (Chang, Kuwana et al. 1999).

Figure removed for copyright reasons

Figure 1.15.2.4.1. An example of perfusion-MRI in patients with NPH. (Walter,
Hertel et al. 2005)

1.15.2.4. Diffusion-weighted imaging

Diffusion-weighted imaging (DWI) has been used to demonstrate a lengthened

apparent diffusion coefficient (ADC), a measure of the restriction to diffusion of
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water in tissues, in periventricular white matter in NPH when compared with age-

matched controls (Gideon et al., 1994). This was thought to reflect an increase in

intracellular water, demyelination, or myelin-associated water. In a study of 11

patients the poor outcome group had a significantly higher ADC (0.99 versus 1.67

respectively, p<0.05) in the periventricular region, whereas the ADC in the good

outcome group was similar to that of the controls (Corkill, Garnett et al. 2003). The

authors suggested that DWI may act as a selection tool for patients most likely to

benefit from surgery.

1.15.2.5. MR spectroscopy

Proton MR Spectroscopy (MRS) may be used to evaluate cerebral metabolism in

the clinical setting of hydrocephalus in a longitudinal non-invasive way. Proton

Nuclear magnetic resonance (NMR) spectroscopic studies have contributed

evidence for the importance of early surgery to relieve the damaging effects of

hydrocephalus (Harris, Plant et al. 1996; Harris, Plant et al. 1997). Increased

intraventricular lactate concentrations (lactate/ creatinine ratio 0.23) have been

found to differentiate successfully between patients with NPH and other types of

dementia (Pick’s and Alzheimer’s disease) (Kizu, Yamada et al. 2001). Significant

higher lactate values in the CSF of patients with NPH when compared with a

vascular dementia group (p<0.01) and patients with Alzheimer’s dementia

(p=0.0005) has also been found by another group supporting the above

spectroscopic results (Nooijen, Schoonderwaldt et al. 1997). Another study did not

show any metabolic abnormalities, except a definite lactate peak in intraventricular

CSF (Braun, Gooskens et al. 2003). This was not attributed to anaerobic
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metabolism. The drawback of this last study was that the population was consisted

of a mixed population (24 children and adults with a mean age of 28.5 years and

various hydrocephalic aetiologies). Shiino and colleagues examined the N-acetyl

aspartate (NAA)/ creatinine (Cr) and NAA/ choline (Cho) ratios in the

periventricular tissue using MR spectroscopy and correlated those with

postoperative outcomes. They found that NAA/Cho ratio had a predictive value of

89.5% for one year outcome as measured by the modified Rankin scale. Patients

with an excellent outcome showed a tendency towards higher preoperative NAA/Cr

and NAA/Cho ratios in white matter (Shiino, Nishida et al. 2004). NAA

concentrations in white matter reflect axonal loss and low values reflect irreversible

axonal injury. When Phosphorus31 (31P) MR Spectroscopy was used regions of

decreased total P31 metabolite signals were observed in two patients with NPH,

accompanied by alkalosis in the periventricular area when compared to controls.

However, this remains a preliminary study and the role of 31P MRS in adult

hydrocephalus is awaited to be further evaluated (Braun, Vandertop et al. 2000).

1.15.2.6. The role of imaging markers in predicting surgical outcomes

Neuroimaging is more attractive as a selection tool for predicting outcomes in this

group of patients due to its non-invasive nature. Although for the preoperative

diagnosis of NPH imaging is as important as the clinical triad (Hakim and Black

1998), it is currently only an ancillary tool for selection of patients for shunting. As

we saw both structural and functional imaging has done little to provide biomarkers

fulfilling the definition given above. This is not a reflection of the poor quality of

studies, but rather of the problematic nature of establishing a diagnosis for this
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condition. In fact, in the past a diagnosis was confirmed only if the patient

responded clinically to ventriculoperitoneal shunting, raising the question about the

diagnosis of the patients who did not respond. Also many studies are designed as

observational studies rather than providing a prediction of favourable surgical

outcomes.

The initial search performed revealed 226 articles. However, only 69 studies were

relevant to adult hydrocephalus and reviewed further for the purpose of this review.

A total of 1581 patients were imaged with 437 patients belonging to the idiopathic

form (28% of the total number of patients). 53 studies were excluded. Even though

in some of these studies outcomes are provided the authors do not provide

analytical data, or do not provide a cut-off value of the marker in order for

sensitivity and specificity figures with regards to prognostic value to be calculated.

In the excluded group the mean number of patients studied is 22 (total of 1179).

Fifteen studies (28%) have imaged the idiopathic form exclusively and 27 studies

(51%) use a control group, whereas nineteen studies (36%) use a group with

comparative pathology as a control sample.

Sixteen of the studies fulfill the inclusion criteria mentioned in the search strategy

section. The mean number of patients of the above sixteen studies is 25 (total of

402 patients). Only three of them (19%) study the idiopathic form of NPH, whereas

in 6 of them it is not clear whether the idiopathic or secondary form is studied. Only

four studies (25%) use a control group (patients with no pathology), and only one

of them uses a control group with a similar pathology (Alzheimer’s dementia).
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Dynamic and functional rather than structural studies prove more useful. Although

structural imaging and volumetric studies have proposed biomarkers of NPH

against related neurodegenerative conditions as we saw earlier, their role is rather

limited in predicting surgical outcomes. That is a reflection of the nature of the

condition and the way the CSF dynamics and regional cerebral blood flow get

altered by the intervention procedure (insertion of a ventriculoperitoneal shunt). It is

therefore more likely that studies reflecting the metabolic state or quantifying the

cerebral blood flow might prove more fruitful in selecting appropriate patients for

shunting. The study by Granado and colleagues using a preoperative SPECT scan

concluded that a DAT pattern of reduced flow offered high accuracy in predicting

six-month outcomes in 14 patients. These last results can be easily explained as a

common pathophysiological background has been suggested for both AD and

NPH (Silverberg, Mayo et al. 2003; Silverberg 2004). The outcomes were provided

using a GOOD or BAD classification and therefore suffer from lack of

standardization with regards to outcome scores. Also their outcomes assessed

only the neuropsychological aspect of the clinical triad. Both these studies ought to

be replicated by other groups in order to establish useful biomarkers. However,

they offer a solid basis and hypothesis from where current studies may be

designed trying to validate these results. Bradley’s work using the presence of a

flow-void as a predictive marker does indeed fulfil the statistical criteria set above.

Again no validated outcome scale was used, but the surgical outcomes were

stratified as excellent, fair, good or poor. This work’s results although very

promising due to reflecting the CSF dynamics of the syndrome were negated by a

later paper from the same group (Bradley, Scalzo et al. 1996). Since then no other

group has produced similar results. The study by Shiino et al. using MR
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spectroscopy satisfies the statistical criteria set up previously. However, the results

referred to patients with the secondary form of normal pressure hydrocephalus,

and therefore might not apply to the idiopathic form. The results point out that

reversible axonal loss correlates with good surgical outcome.

There is only Level B evidence in using SPECT in patients with iNPH to assist in

the selection for shunting; this method provides high sensitivity, specificity and has

an accuracy of 92.8%. The DAT pattern on SPECT in patients with NPH can be

predictive of an unfavourable outcome in a 6-months follow-up. There is Level A

evidence of MR Spectroscopy to predict surgical outcomes; however the latter

study was used in patients with the secondary form of NPH. There is also Level B

evidence of using MRI to quantify the CSF flow void in patients with NPH. This

latter study suffers from the non-description of patient characteristics, however it

provides a long-follow up (mean of 60 months). The results of all these 3 studies

have not been replicated by another group.

A problem with choosing a single diagnostic modality to predict outcomes is the

heterogeneity in the background pathology of each patient with NPH (Tedeschi,

Hasselbalch et al. 1995). Indeed, the pathology of patients with NPH might overlap

with other neurodegenerative diseases (Bradley, Whittemore et al. 1991; Krauss,

Regel et al. 1997; Savolainen, Paljarvi et al. 1999). Some plausible solutions to

override this problem would be to combine neuroimaging biomarkers with

biomarkers obtained from CSF analysis or neuropsychological evaluation of these

patients. Another solution would be to combine markers of reduced regional CBF

with markers of CSF flow. The combination of two markers reflecting the
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pathophysiology of this condition will increase the predictive value for selecting

patients who are to be benefited by ventriculoperitoneal shunting. The latter

practice of course tends to increase the likelihood of a type I error and therefore

such studies should be designed with caution.

Imaging may of course provide only surrogate end points, and not true clinical end

points as in NPH this means a definitive clinical improvement in long-term follow-

up. In NPH this is not always possible and has not been always achieved mainly

due to the influence of comorbidity in this cohort of patients. A search in the

neurological section of the website of the Massachusetts General Hospital Center

for Biomarkers in Imaging (HUwww.biomarkers.orgUH) did not reveal any current

attempt in establishing a biomarker for NPH, even though disease such as

Alzheimer’s dementia has 9 ongoing studies. It is hoped that the current review will

act as a platform helping clinicians and researchers alike to identify the problems

associated with imaging patients with this syndrome and helping in designing

prospective trials.

In clinical practice it seems that at present no single imaging modality may assist

clinicians to select patients for shunting. Therefore invasive studies will remain the

mainstay of selecting appropriate patients for the CSF diversion procedures for the

near future. At present imaging may be only used to verify the extent of

ventriculomegaly and exclude cases of gross cerebral atrophy and other

pathologies that might explain the symptomatology of the syndrome. However

neurosurgeons, neurologists and neuroradiologists ought to collaborate closely in

the near future in order to design studies that will aim to discover biomarkers for
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favourable surgical outcomes. This also means multicentre prospective studies

that should image all patients that are referred to neurosurgeons for the invasive

diagnostic tests irrelevant of the result of these tests. Brain SPECT, MR

spectroscopy and study of the flow void in patients with NPH have provided Level

A and B evidence of being able to predict surgical outcomes and ought to be

replicated by other groups. It is of outmost importance that a validated outcome

scale is used in all studies with NPH for comparability purposed. The current work

should act as a platform to design further studies with larger sample sizes. It is

hoped that patients in the future might be able to avoid invasive diagnostic tests if

neuroimaging proves its diagnostic accuracy against the current “gold” prognostic

standards.
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1.16. Overall thesis aims:

The aims of this thesis were:

1) To examine the feasibility of identifying potential biomarkers in lumbar and

ventricular CSF of patients with idiopathic normal pressure hydrocephalus by using

the ELISA method,

2) To correlate the levels of those biomarkers with imaging and neuropsychological

data and postulate of pathophysiological mechanisms and,

3) To correlate the levels of those markers with clinical outcomes in order to

identify potential prognostic biomarkers in patients with idiopathic normal pressure

hydrocephalus.
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Chapter 2 Methods

Patient recruitment and study protocol

The period of the study was February 2005- February 2007. The study was carried

out within the National Hospital for Neurology and Neurosurgery (part of the UCLH

NHS Foundation Trust).

Consultant Neurologists of the Greater London area referred the patients to our

department for clinical evaluation and consideration of surgical CSF diversion.

Most patients had already an appropriate physical examination and relevant

imaging (i.e. CT/MRI) by the referring team, which would be consistent with the

diagnosis of NPH or communicating hydrocephalus.

The inclusion criteria for the subjects were:

a) Gait unsteadiness as well as one of the two symptoms that constitute the classic

triad of NPH (i.e. psychomotor retardation, and incontinence of urine), associated

with appropriate imaging features of NPH or communicating hydrocephalus on

CT/MRI and demonstration of normal CSF pressure (5-18 mm Hg). The eligible

patients had the option of proceeding directly to surgery if they so wished, or

undergo further testing for suitability of shunt (insertion of ELD). The patients would

finally be offered a shunt if they improved in either the walking test or the

neuropsychological assessment following ELD. If the patient did not improve in any

of the tests they would still have the option to proceed to surgery following a

consultation with the patient and family in the OPD.
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Exclusion criteria for the subjects were:

A) Medical conditions that would deem the patient unfit for a general anaesthetic.

B) Failure to improve following ELD in either the walking test or neuropsychological

assessment.

Recruitment or choosing participants

Informed consent was be taken by the Consultant Neurosurgeon after any further

questions that the patient might has have been answered and clarified. Due to

some patients with NPH suffering from dementia, the spouse, or a relative of the

patient was expected to be present during the informed consent.

Data

The data for the study was collected prospectively by the Research Fellow and

entered into a database in a computer. This computer was placed in the Research

Office of the NHNN, and is a property of the UCLH Foundation NHS Trust.

The data was collected from carefully reviewing patient’s notes and by reviewing

imaging films acquired for the purpose of the study.

The time points for collection of the data was before treatment (VP shunt or ELD

insertion) and after treatment (if ELD was inserted), and just after the two follow-up

appointments (first at 6 weeks, and second at 6 months postoperatively).
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For the purposes of data collection and handling Microsoft’s Access and Excel

programs were used. For the purpose of analysing the data for statistical

calculations the latest version of the SPSS package (SPSS Inc, Chicago, Illinois

Version 16.0) was used. The SPSS package was used for the production of

graphs.

The data was entered in a database and held securely with the help of a password.

This password was known to the Primary Investigator and Research Fellow only,

or to properly authorised individuals.

The data was pseudo-anonymised for the protection of the subject’s anonymity.

That means that each subject was given a unique identifiable number specific for

this study, which will allow us to track.

Outcome assessment

The surgical outcome was assessed by means of the Black grading scale (Black

1980) at 6 weeks and 6 months. In this scale the patients are categorised

depending on the level of activity from excellent to poor in 6 subscales.

Statistical considerations

A Univariate analysis (one factor vs. outcome) was used for the analysis of the

continuous factors and used correlation or regression to report this value. For the
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categorical factors analysis of variance was used. A multiple regression model with

all the factors included was used finally.

Non-parametric tests were used for calculation of all results. The independent

samples t-test was used to compare means. The Spearman rank order test was

used to assess bivariate correlations. ROC (receiver operating characteristic)

curves were used to calculate the sensitivity and specificity of each market in

predicting surgical outcomes. The significance level for all tests was set at 0.05.

Discriminant functional analysis was used to determine if the combination of any

two markers would discriminate successfully between favourable and unfavourable

outcomes.

Compliance

Patients could withdraw from the study at any time without giving further

explanation. If there were any subjects who would not comply with the follow-up

and we did not have notification of their willing withdrawal form the study, we would

write initially to the subject’s General Practitioner (GP) and enquire on whether

there is an awareness of particular problems that prohibited the subject of

attending the follow-up. If we did not receive a satisfactory answer form the

subject’s GP we may have had to contact a telephone interview with the non-

compliant subject.

Ethical considerations
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The research programme received an approval from the Great Ormond Street

Hospital Local Research Ethics Committee (G.S.O.H. L.R.E.C.) on 22nd February

2005 (REC reference number: 05/Q0508/3). Furthermore, we received ethical

approval from G.S.O.H. L.R.E.C. on 27th July 2006 (REC reference number:

06/Q0505/59) with regard to collecting the CSF samples from patients suffering

from trigeminal neuralgia.

Finance and Insurance

As this was NHS-sponsored research compensation for harm arising from

negligence remained the responsibility of the UCLH Foundation NHS Trust, this

being the employer of the Principal Investigator. The Principal Investigator (L.

Watkins) had a suitable contract with the Trust that ensures indemnity issues that

might arise are covered. This is according to the Health Service Guidelines

document, namely HSG (96)48, published on 8 November 1996.

A participant suffering injury as a result of having taken part in research would

need to pursue a claim for negligence through litigation, or may be offered an ex

gratia payment by the Trust. Each case will be considered on its merits.

As this was an NHS-sponsored research there was no provision to offer advance

compensation for non-negligent harm to participants. However, the Trust (UCLH

Foundation NHS Trust) is aware of the possibility of a compensation claim should

a problem occurs.
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Patient recruitment and treatment flowchart

Figure 2.1 Patient selection flowchart
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2.1 Cerebrospinal fluid analysis

E.L.I.S.A. (Enzyme Linked Immuno Sorbent Assay) is an immunoassay technique

utilizing an antibody labelled with an enzyme marker such as horseradish

peroxidase. While either the enzyme or the antibody is bound to an

immunosorbent substrate, they both retain their biologic activity; the change in

enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional

to the concentration of the antigen and can be measured spectrophotometrically or

with the naked eye. Many variations of the method have been developed. The

advantages of E.L.I.S.A are: 1) its simplicity, 2) rapidity, 3) sensitivity, 4) the

possibility of using commercially available reagents or kits, 5) its relatively low cost.

Three main methods form the basis of all ELISA’s, namely: 1) The direct ELISA, 2)

Indirect ELISA and 3) sandwich ELISA. Apart from the calculation of the albumin

and lactate ELISA was used for the other 6 markers.

All CSF samples were collected prospectively in polypropylene tubes, centrifuged,

and stored at -80C within 2 hours of sampling in 1.5–2-ml Eppendorf tubes until

analysis. All tubes were coded, and the CSF was analyzed with the analyst (A.T.)

blinded to all other information. The results were independently double checked for

accuracy by an author (A.P., G.K. or M.D.C.) who were masked to all other

information. Results based on duplicates with a coefficient of variation (CV) more

than10% were rejected and repeated unless the manufacturer’s instructions

suggested otherwise. In order to ensure that the analysts remained masked, the

CSF data was entered into a database. Only after this step were the other clinical

and paraclinical data linked to each individual sample.
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2.1.1. Albumin

2.1.1.1. Description of laboratory method

The method of immunoturbidimetry was used to calculate the CSF albumin

concentration. Each of the 96-well plates contained a blank well, a standard well,

and a quality control well in addition to the samples tested. We used an antiserum

solution (goat anti-human) albumin, and a calibrant solution (human albumin

standard 1mg/mL). The reagent was prepared as follows: First a solution of 3%

weight/volume PEG60000 in saline was made. Then to each 4 mLs polypropylene

tube we added 250 μL of anti-albumin serum mixing well. For each well first 250

μL of reagent were added and then 10 μL of either blank, standard, quality control

or tested sample were added. The plate was allowed to stand for 10 minutes and

then the optical densities were read at 405 nm.

2.1.1.2. Calculation of results

The tested sample’s albumin concentration is derived by the formula

Albumin= (Odtest-Odblank/ Odstandard-Odblank) X 1.0 g/L, where OD stands for optical

density.

2.1.2. Lactate

CSF lactate was analyzed enzymatically on an YSI 2700 STAT PLUS analyzer

(YSI, USA) according to manufacturer’s instructions.
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2.1.3. Vascular Endothelial Growth Factor (V.E.G.F.)

2.1.3.1. Description of laboratory method

For our experiments we used the Amersham Biotrak Vascular Endothelial Growth

Factor [(h) VEGF], Human ELISA system (GE Healthcare, UK Limited). This ELISA

was designed for the measurement of natural and recombinant human VEGF165.

The isoform VEGF121 cross reacts 100% in the assay. The sensitivity of this

assay or lower limit of detection was <8.0 pg/ml. That was the smallest value that

was not zero with 95% confidence.

The assay range was 31.3-2000 pg/ml. The standard curve points were 0, 31.3,

62.5, 125. 250, 500, 1000 and 2000 pg/ml.

The steps of the procedure will be summarised below:

1. We added 50 μL of sample diluent to each well.

2. We then added 50 μL of the standard and consecutive CSF samples in

duplicate. The plate was covered and was incubated at room temperature (20-25

0C) for 2 hours. We then decanted and washed the plate 3 times.

3. 100 μL of biotinylated antibody reagent was added to each well.

4. The plate was covered and incubated at room temperature for 1 more hour. At

the end the plate was decanted and washed 3 more times.

5. We then added 100 μL of Streptavdin-HRP horseradish peroxidase) reagent to

each of the 96 wells.

6. The plate was covered again and incubated once again for 30 minutes. At the

end the content was decanted and washed 3 times.
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7. 100 μL of premixed Tetramethylbenzidine (TMB) substrate solution reagent was

added to each well.

8. The plate was incubated at room temperature again for 30 minutes in the dark.

After this final step the optical density was calculated at 450 nm straight away

within 30 minutes after stopping the reaction.

2.1.3.2. Calculation of results

The standard curve was used to determine the amount of (h) VEGF. The standard

curve was generated by plotting the average absorbance (450-550 nm) obtained

for each of the standard concentrations on the vertical (X) axis versus the

corresponding (h) VEGF concentration on the horizontal (Y) axis. Readings at

550nm were subtracted from readings obtained at 450 nm. Readings at dual

wavelengths corrected for optical imperfections in the microplate.

The aim according to the manufacturer’s advice was that all optical density values

obtained for duplicates should be within 10% of the mean. Duplicate values that

differed from the mean by greater than 10% were considered inaccurate and have

been repeated. One of the standard curves obtained is shown below:
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Figure 2.1.3.2.1. Standard curve for VEGF generated by plotting the average
absorbance (450-550 nm) obtained for each of the standard concentrations on the
vertical (X) axis versus the corresponding (h) VEGF concentration on the
horizontal (Y) axis.

2.1.4. 8-Isoprostane

2.1.4.1. Description of laboratory method

The commercial kit 8-Isoprostane EIA Kit (Cayman Chemical Company, Ann

Arbor, MI, US) was used for the purpose of our experiments. The assay is based

on the competition between 8-isoprostane and an 8-isoprostane –

acetylcholinesterase (AchE) conjugate (8-isoprostane tracer) for a limited number

8-isoprostane-specific rabbit antiserum binding sites. The amount of 8-isoprostane

tracer that is able to bind to the rabbit antiserum will be inversely proportional to

the concentration of 8-isoprostane in the well. This rabbit antiserum-8-isoprostane

(either free or tracer) complex binds to the rabbit IgG mouse monoclonal antibody
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that has been previously attached to the well. The plate is washed to remove any

unbound reagents and then Ellman’s reagent (which contains the substrate to

AchE) is added to the well. The product of the enzymatic reaction has a distinct

yellow colour and absorbs strongly at 412 nm. The intensity of the colour,

determined spectrophotometrically, is proportional to the amount of 8-isoprostane

tracer bound to the well, which is inversely proportional to the amount of free 8-

isoporostane present in the well during the incubation. Each of the 96 well plates

contained 2 blanks (Blk), two non-specific binding wells (NSB), two maximum

binding wells (B0), and an eight point standard curve in duplicate.

The steps of the procedure will be summarised below:

1 The EIA buffer was prepared (used Vial #4 & 90 mLs H20).

2 The wash solution was prepared (Used Vial #5 & 2 Lt H20 & 1 mL Tween 20 (vial

#5a)).

3 The 8-isoprostane standard was prepared and 50 μL was added per well. 50 μL

of sample was added per well in duplicate.

4 The tracer solution was prepared (Use vial #2 and 6 mL EIA buffer). 50 μL were

added to each well except the Total Activity (TA) and the Blank (Blk) wells.

5 The anti-serum was prepared (Use vial #1and 6 mL EIA buffer). 50 μL were

added to each well except the Total Activity (TA), the Non-Specific Binding (NSB),

and the Blank (Blk) wells.

6 The plate was incubated for 18 hours overnight.

7 The next day it was washed 5 times.

8 200 μL Ellman’s reagent were added to all wells.

9 5 μL of Tracer were added to B1 & B2.
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10 The plate was covered and incubated for 60-90 min in dark with gentle shaking.

11 The plate was read at wavelength 405 nm.

2.1.4.2. Calculation of results

According to the manufacturer’s instructions a 20% or greater disparity between

the apparent concentrations of two different solutions of the same sample would

indicate interference and then the sample will be reassessed.

The calculations were made as follows: First the %B/ B0 value for each sample was

calculated. The concentration of each sample was determined by identifying the

%B/ B0 on the standard curve and reading the corresponding values on the x-axis.

The specificity of the ELISA for 8-isoprostane is 100%. The detection limit (80%

%B/ B0) is 5 pg/mL.

y = -12.002Ln(x) + 88.036

R2 = 0.967
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Figure 2.1.4.1. Standard curve for 8-isoprostane



171

2.1.5. Glial Fibrillary Acidic Protein (GFAP)

2.1.5.1. Description of laboratory method

The in-house method used has been described in detail in the following paper

(Petzold, Keir et al. 2004). For the procedure the following were used. A

Barb2EDTA buffer that was made up of 13.1 g sodium barbitone, 2.1. g barbitone

and 0.45 g disodium EDTA per litre of solution.

A block solution that was made up of 2% Bovine Serum Albumin (BSA) in working

strength Barb2EDTA buffer (i.e. 2 g BSA in 100 mL buffer solution).

The sample diluent that was made of 0.2% BSA in Barb2EDTA buffer (i.e. 0.2 g

BSA in 100 mL buffer).

The wash solution that was made from 0.2% BSA, 0.05% Tween20 in Barb2EDTA

buffer (i.e. 500 μL Tween20 in 1 Lt Buffer solution).

The 2 antibodies that were used were for capture a monoclonal anti-GFAP (SMI

26, Sternberger) and as a detector HRP (horseradish peroxidase) polyclonal rabbit

anti-cow-GFAP (DAKO).

For the calibration procedure we used GFAP (50 μg protein vial) diluted with 500

μL H20 giving a concentration of 0.1 μg/μL (0.1 mg/mL). We then diluted by 1;

1000 to give a stock solution of 100 ng/mL.

The standard curve ranges from 10 ng/mL to 0 ng/mL. We then prepared 2 sets of

double dilutions from 10 ng/mL down to 0.078 (7 dilution steps).

The ELISA steps are as follows:

Stage 1: 2 μL anti-GFAP were added to 10.5 mL carbonate buffer (0.05M) and

100 μL added to each well of a 96-well plate. The plate was left overnight at 4 0C.
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Stage 2: the plate was decanted and rinsed with 250 μL wash solution. The wells

were blocked with 250 μL block solution for 1 hour.

Stage 3: the plate was rinsed twice with 250 μL wash solution. 50 μL of sample

diluent were added. 50 μL of calibration standard, blank, quality control and tested

CSF sample were added. The plate was subsequently incubated for 1 hour at

room temperature.

Stage 4: The plate was washed 6 times of 5 minutes each with wash solution. 10

μL of the 2nd antibody was added to 10.5 mL of sample diluent. 100 μL of the

diluted second antibody were added to each well. The plate was then incubated at

room temperature for 1 hour.

Stage 5: the plate was washed again for 30 minutes. 100 μL of DAKO-TMB one

step substrate were added to each well. It was then incubated for 15-20 minutes

and the reaction was stopped by adding 50 μL of 1M Hcl to the wells. The

absorbance was then read at 450 nm.

2.1.5.2. Calculation of results

The sensitivity of the assay is 5 pg/ml, the upper reference limit 9 pg/ml and the

standard curve ranges from 0 to 200 pg/ml. One of the standard curves obtained in

order to calculate the results per sample is shown below:
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Calibration Line
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Figure 2.1.5.1. Standard curve for GFAP

2.1.6. Heavy chain of Neurofilament Protein (NfH)

2.1.6.1. Description of laboratory method

The in-house method used has been described in detail in the following paper

(Petzold and Shaw 2007). For the procedure the following were used. A

Barb2EDTA buffer that was made up of 13.1 g sodium barbitone, 2.1. g barbitone

and 0.25 g disodium EDTA per litre of solution. A carbonate buffer that was made

of 13.85 g anhydrous sodium carbonate and 26.1 g sodium hydrogen carbonate. A

block solution that was made up of 2% Bovine Serum Albumin (BSA) in working

strength Barb2EDTA buffer (i.e. 2 g BSA in 100 mL buffer solution). The sample

diluent that was made of 0.2% BSA in Barb2EDTA buffer (i.e. 0.2 g BSA in 100 mL

buffer). A wash solution that was made from 0.2% BSA, 0.05% Tween20 in

Barb2EDTA buffer (i.e. 500 μL Tween20 (polyoxyethylene 20-sorbitan

monolaurate; Fisher Scientific, Pittsburgh, PA) in 1 Lt Buffer solution).
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The 3 antibodies that were used were for capture a monoclonal anti-NfH (SMI 35,

Sternberger), as a detector a polyclonal anti-NfH (N4142, Sigma) and as a reporter

a 3rd HRP swine anti-rabbit (DAKO, Copenhagen, Denmark).

For the calibration procedure we used NfH (50 μg protein vial) diluted with 500 μL

H20 giving a concentration of 0.1 μg/μL (0.1 mg/mL). We then diluted by 1:1000 to

give a stock solution of 100 ng/mL.

The standard curve ranges from 20 ng/mL to 0 ng/mL. We then prepared 2 sets of

double dilutions from 10 ng/mL down to 0.078 (7 dilution steps).

The steps of the ELISA are as follows:

Stage 1: 2 μL anti-NfH (SMI35) were added to 10.5 mL carbonate buffer (0.05M)

and 100 μL were added to each of the 96 wells of each plate. The plate was left

overnight at 4 0C.

Stage 2: The plate is then decanted and rinsed with 250 μL NfH wash solution.

The wells are then blocked for one hour with 250 μL block solution.

Stage 3: The plate is then decanted and rinsed with 250 μL NfH wash solution. 50

μL of sample diluent are then added. 50 μL of calibration standard, blank, quality

control or tested sample is added. The plate is then incubated for 1 hour at room

temperature.

Stage 4: The plate is washed 6 times of 5 minutes each with 250 μL wash solution.

10 μL of the second antibody (polyclonal rabbit anti-NfH) are added to 10.5 μL

sample diluent. Then 100 μL of diluted second antibody are added to each well.

The plate is then incubated for 1 hour at room temperature.
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Stage 5: The plate is washed 6 times of 5 minutes each with 250 μL wash solution.

10 μL of the 3rd antibody (HRP swine anti-rabbit) are added to 10.5 μL sample

diluent. 100 μL of the diluted third antibody are then added to each well. The plate

is then incubated for 1 hour at room temperature.

Stage 6: The plate is washed 6 times of 5 minutes each with 250 μL wash solution.

100 μL of DAKO TMB one-step substrate to each well. The plate is incubated for

15-20 minutes and the reaction is stopped by adding 50 μL 1M Hcl. The

absorbance is then read at 450 nm.

2.1.6.2. Calculation of results

The detection limit of the method is 0.1 mg/l with a sensitivity of 0.2 mg/l. The

upper reference value for CSF NfHSMI35 levels was 0.73 ng/ml. One of the

standard curves obtained using this method is shown below:

Figure 2.1.6.1. Standard curve for NfH-SM135
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2.1.7. Total-tau protein

2.1.7.1. Description of laboratory method

For the experiments the commercial kit INNOTEST hate Ag (Inn genetics, Gent,

Belgium) was used. This is a solid-phase enzyme immunoassay in which the

human tau protein is captured by a first monoclonal antibody (AT120) bound on the

solid phase. CSF samples are added in 25 μL volumes and subsequently

incubated with two biotinylated tau-specific monoclonal antibodies (HT7 and BT2).

The three monoclonal antibodies recognise different epitopes on the tau protein.

These antibodies are then detected by a peroxidase-labelled streptavidin. After

addition of substrate solution, positive samples will develop a blue colour.

The conjugate 1 solution is made of 2 monoclonal anti-hTAU antibodies labelled

with biotin, in phosphate buffer.

The conjugate 2 solution is made of peroxidase-labelled streptavidin. The

conjugate diluent is phosphate buffer with stabilising proteins and 0.03% Proclin

300 as preservative. The substrate is Tetramethyl benzidine (TMB) dissolved in

dimethyl sulfoxide. The hTAU standard contains lyophlized recombinant hTAU

standard. 500 μL sample diluent are added to it. Starting with this standard (1200

pg/mL) serial half dilutions are carried out in sample diluent to give standards of

600, 300, 150 and 75 pg/mL. The standard blank is the sample diluent alone. The

steps of the ELISA are as follows:

Step 1: 75 μL of conjugate working solution are added to each well of the antibody-

coated plate.

Step 2: 25 μL of each standard and the tested samples are added in duplicate

wells. The plate is left overnight in an incubator at 25 0C.
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Step 3: Every well is then washed 4 times. 100 μL of conjugate solution 2 is added

to each well. The plate is covered for 30 minutes in an incubator at 25 0C.

Step 4: each well is washed 4 times. 100 μL of substrate working solution is added

to each well and incubated for 30 minutes at room temperature. Following that, 100

μL of 2N sulfuric acid is added to each well to stop the reaction. The plate is then

read at 450 nm absorbance.

2.1.7.2. Calculation of results

According to the manufacturers instructions the test was repeated if individual

optical density (OD) values differed by more than 20%. The standard curve was

constructed by plotting the mean absorbency value obtained for each of the

standard solutions on the horizontal (X) axis versus the corresponding tau

concentrations on the vertical (Y) axis. The standard levels range between 75 and

1200 pg/mL. Using the mean absorbency value of each unknown CSF sample

determine the corresponding concentration of tau protein in pg/mL from the

standard curve.

The lowest detection limit of the assay is +/- 59.3 pg/mL. The mean recovery of tau

is 92.16%. Below is an example of a standard curve obtained during the

experiments.
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Figure 2.1.7.1. Standard curve for total tau

2.1.8. Amyloid beta peptide 1-42 (Aβ 1-42)

2.1.8.1. Description of laboratory method

For the experiments the commercial INNOTEST β-AMYLOID (1-42)

(INNOGENETICS, Gent, Belgium) was used. The assay is a solid-phase enzyme

immunoassay in which the amyloid peptide is first captured by a monoclonal

antibody (21F12) bound on the solid phase. CSF samples are added in 25 μL

volumes and subsequently incubated with a biotinylated antibody (3D6). This

antibody is then detected by am peroxidase-labelled streptavidin. After addition of

substrate solution, positive samples developed a blue colour.

The sample diluent is phosphate buffer with stabilising proteins and 0.01%

MIT/0.1% CAA as preservative. The conjugate 1 is a mouse anti-β-amyloid(1-42)

IgG labelled with biotin> this was diluted 100 X with conjugate diluent 1 prior to

use.



179

The conjugate 2 is a peroxidase-labelled streptavidin containing 0.02% MIT and

0.02% bromonitrodiaxone as preservative. This was diluted 100X with conjugate

diluent 2 prior to use.

Conjugate diluent 1 is phosphate buffer with stabilising proteins and 0.01%

MIT/0.1% CAA as preservative.

Conjugate diluent 2 is phosphate buffer with stabilising proteins and 0.01%

MIT/0.1% CAA as preservative.

Substrate TMB is tetramethyl benzidine (TMB) dissolved in dimethyl sulfoxide

(DMSO). Substrate buffer is phosphate-citrate buffer containing 0.02% hydrogen

peroxide used to dilute the Substrate TMB. The stop solution is 0.9 N sulfuric acid.

The wash solution is phosphate buffer containing 0.01% MIT/ 0.09% CAA as

preservative diluted 25X with distilled water.

The standards were prepared by serial dilutions of 1500 μL of the highest standard

(2000 pg/mL). The concentrations are as follows: 2000, 1500, 1000, 500, 250, 125

(pg/mL).

The ELISA procedure is as follows:

Step 1: The conjugate solution 1 is prepared and 75 μL are added to each well of

the plate.

Step 2: 25 μL of each standard including the blank and the tested samples are

added to duplicate wells. The plate is washed 5 times.

Step 3: 100 μL of the conjugate solution 2 is added to each well. The plate is

covered and incubated for 30 minutes at room temperature. The plate is then

washed 5 times.

Step 4: 100 μL of substrate is added to each well. The plate is then incubated for

30 minutes at room temperature in the dark.
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Step 5: 50 μL stop solution is added to each well. The plate is read at 450 nm

absorbance.

2.1.8.2. Calculation of results

The assay range is between 125 and 2000 pg/mL. The lowest detection limit is +/-

50 pg/mL. The mean absorbance for the standard solutions and the tested

samples was calculated. According to manufacturer’s instructions if the duplicate

values differed by more than 20% the samples were repeated. A standard curve

was constructed by plotting the mean absorbance values obtained for each of the

standard solutions on the horizontal (X) axis versus the corresponding

concentrations on the vertical (Y) axis. Using the mean absorbance value of each

tested sample the corresponding concentration of in pg/mL is calculated from the

standard curve. An example of one of the standard curves obtained is shown

below:

Figure 2.1.8.1. Standard curve for Amyloid beta 1-42
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2.2. Neuropsychology assessment

A battery of tests was administered in our Institution by the department of

Neuropsychology on all patients who were physically able to undergo testing.

According to our protocol there were 4 stages in the assessment: the first prior to a

lumbar drain insertion, the second as soon as possible after the lumbar drain was

removed, the third in their first follow-up after surgery (usually at 6-8 weeks), and

the final stage at 6 months postoperatively. The same battery of tests was

administered throughout to all patients. Patients who did not speak English fluently

were excluded by the neuropsychological assessment. The battery was composed

of the following tests:

i) General intelligence was assessed by WAIS-R (Wechsler Adult Intelligence

Scale, Revised). This test has been used previously in research with NPH patients

(Iino, Yoshinari et al. 2000; Ogino, Kazui et al. 2006)

ii) Verbal memory was assessed by the RMT Words and visual memory by

the RMT faces tests. The Recognition Memory Test (RMT; Warrington, 1984)

comprises a verbal (words) and a non-verbal (unfamiliar faces) subtest. It is

commonly included in neuropsychological batteries, which are used both in routine

clinical assessments and in clinically oriented research (Bird, Papadopoulou et al.

2003). The RMT has also been extensively used in research into

neurodegenerative disease. Thus, this test has been used in studying the early

memory changes associated with familial Alzheimer’s Disease (Fox, Warrington et

al. 1998); the distinct cognitive profiles associated with Pick’s Disease and

Alzheimer’s Disease (Mummery, Patterson et al. 2000) and with early-onset
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autosomal dominant familial Alzheimer’s Disease caused by mutation of the

presenilin 1 gene (Janssen, Lantos et al. 2001).

iii) The frontal executive functions were assessed by the phonemic verbal

fluency and trail making test B tests. Verbal fluency is one of the most

frequently used measures of executive functioning (Baldo, Shimamura et al. 2001)

and is used regularly by approximately 50% of neuropsychologists (Butler, Retzlaff

et al. 1991). The two types of verbal fluency tasks are phonemic and semantic.

Phonemic fluency tasks require participants to say (or write) as many words as

possible beginning with a specific letter. The Trail Making Test (TMT; Army

Individual Test Battery, 1944) is one of the most widely used neuropsychological

tests (Retzlaff, Butler et al. 1992). It has been widely accepted as one of the most

sensitive general indicators of the presence of brain dysfunction (Crawford, Parker

et al. 1992); several studies of the effects of aging have used the TMT as an index

of frontal lobe dysfunction (Hänninen and Soininen 1997). The test is composed of

two parts A and B and it is the added demands of Part B that supposedly elicit

executive processes of some type, resulting in the extrapolation to the frontal lobes

(Alvarez and Emory 2006). The test has been used in other studies of cognitive

assessment in NPH (Akiguchi, Ishii et al. 2008; Solana, Poca et al. 2009)

iv) The subcortical function was assessed by cancelling 0’s or A’s (Willison

and Warrington 1992).

2.1.2.1. Criteria for banding on WAIS-R

A subject was categorized as Normal where the score on testing was no more than

10 point drop from NART (National Adult Reading Test – test of premorbid
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functioning); Mild if there was a10-20 point drop, and impaired when there was

more than a 20 point drop.

Criteria for banding on focal tests: A subject was categorized as Normal where

the score on testing was 25th%ile and above; Mild when the score was10-25th%ile;

and impaired when the score was below the10th%ile.

Improvement criteria on neuropsychological testing: For the RMT words test =

1 to 2 percentile band change (Bird, Papadopoulou et al. 2003). For the RMT faces

test = 2 to 4 percentile band change (Bird, Papadopoulou et al. 2003). For the

Phonemic Verbal fluency = 1 SD change (Murkin, Baird et al. 1997) based on the

idea of single case analysis technique which uses each patient as his/her own

control- endorsed 1999 at an international consensus meeting as the preferred

method of defining cognitive impairment. Although this technique is susceptible to

the potential bias of regression toward the mean. For the cancelling tasks 1 SD

change (Murkin, Baird et al. 1997).

2.3. Imaging analysis- Volumetric process

All the MRI images were obtained at the Department of Radiology at our Institution

on a 1.5 T system (GE Signa EchoSpeed , General Electric Medical Systems,

Milwaukee, WI) using the same protocol. The T2-weighted images wares

transferred to a Sun UNIX workstation (Sun Microsystems, Palo Alto, California,

USA) and converted to the Analyze format using the Analyze software (Analyze

7.5, Biomedical Imaging Resource, Mayo Foundation, Rochester, MN, USA) for
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volumetric analysis using our software, “MRreg” (Lemieux, Wieshmann et al.

1998). The ventricular (VV), intracranial (ICV), periventricular (PVL), deep white

matter hyperintensities (DWMH) and white matter (WM) volumes were measured

using the “seed and region growing” algorithm of MRreg. The method has been

described in detail elsewhere (Lemieux, Liu et al. 2000). In brief a slice comprising

the structure of interest is displayed using MRreg and the display intensity level

and window settings selected to optimise visualisation in terms of contrast with

neighbouring structures and for consistency across datasets; this is helped by

visualising data from different patients in a preliminary phase. A threshold level is

then selected and a seed is placed in the region of interest by mouse clicking.

Automatic 2D region growing automatically connects the seed point to all

neighbouring voxels, in the original, unmagnified, image, that have an intensity

value equal to or above the threshold value. “Spillage” of the connected region

across anatomical boundaries can be corrected manually. The volume of the

structure of interest within each individual slice is calculated by multiplying the

number of connect voxels by the voxel volume; these are summed to give the total

structure volume. The minimum and maximum threshold values for the PVL and

DWMH were different at all patients representing the different pathological origin of

these imaging features.

For the calculation of VV the lower or first slice used was through the third ventricle

at the level of the thalami extending to the highest visible lateral ventricular slice.

The same slices were used for the calculation of all parameters. The

periventricular lucencies (PVL) were calculated by placing the seeds in the

periventricular white matter of the frontal and/or occipital horns and by selecting
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the threshold manually. The same was done for the deep white matter

hyperintensities (DWMH). In order to account for volumetric differences per subject

due to anatomical (related to gender, head size, etc) variations, the ventricular

volumes were normalised to the intracranial volume. The following relative volume

measures were also calculated: ventricular per PVL ratio (VV/PVL) to express the

impact of ventriculomegaly on the PVLs, ventricular per DWMH ratio (VV/DWMH)

to represent the degree of ventriculomegaly versus the vascular ischemic load , as

well as ventricular per WM ratio (VV/WM) to express the impact of

ventriculomegaly on white matter volume. We also calculated the PVL/WM ratio as

an index of severity of PVL and the DWMH/WM ratio as an index of gravity of

ischemic changes in this cohort. The operator (AT) was blind to the identity and

clinical status of the subject during the volumetric process.
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Figure 2.3.1. An example of the volumetric process in a single patient. The top row

(A) shows measurement of intraventricular volumes (VV) in the lower slice chosen

at the level of thalami (left), with two higher slices presented (middle and right

picture). The bottom row (B) shows calculation of periventricular lucencies (PVL) in

similar slices (middle and right picture) for comparison.
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Figure 2.3.2. An example of the volumetric process in the same patient

(continued). The top row (C) shows measurement of periventricular lucencies

(PVL) in the lower slice chosen at the level of thalami (left), with two higher slices

presented (middle and right picture). The bottom row (B) shows calculation of deep

white matter hyperintensities (DWMH) in similar slices for comparison. The

minimum and maximum threshold values for the PVL and DWMH were different at

all patients representing the different pathological origin of these imaging features.
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Figure 2.3.3. An example of the volumetric process in the same patient

(continued). The top row (A) shows measurement of intraventricular volumes (VV)

in the lower slice chosen at the level of thalami (left), with two higher slices

presented (middle and right picture). The bottom row (E) shows calculation of white

matter volume (WM) in similar slices for comparison.
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Figure 2.3.4. An example of the volumetric process in two different patients. The

green line outlines the total intracranial volume in the respective slices chosen for

demonstration. The method of volumetry on this occasion was manual tracing and

not region drawing.

2.4. Insertion of external lumbar drain

The procedure was carried out under general anaesthetic. The patient was

positioned in a lateral decubitus position as for a lumbar puncture. The skin was

prepped and draped in a standard fashion, and the subcutaneous tissue was

infiltrated with 1% Lignocaine and Adrenaline 1:200.000. A 14-gauge Tuohy needle

was inserted with the bevel facing cranially. Once CSF flow was obtained the

pressure of CSF was recorded; following that 5 MLs of CSF were sent for a

standard cell count, microbiological analysis, as well as kept for research

purposes. Following CSF sampling a lumbar drainage catheter with wire stylet was

inserted until resistance was met (between 20-30 cm length). The needle and the

stylet were subsequently removed and satisfactory CSF flow was confirmed
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visually. The catheter was then attached to the supplied Luer-Lok connector,

secured with a 2.0 silk ligature and then connected to a closed CSF drainage

reservoir with a three-way stopcock. The site was dressed with a 2 X 2 inch gauze

and a transparent Opsite dressing. The drainage was set to 10-15 mLs/ h for 72

hours. For the purposes of the study 2 further CSF samples were taken under

strictly aseptic conditions; the first after 48 hours of drainage (day 2) and the

second just prior to removal of the LD (day 3).

2.5. Insertion of ventriculoperitoneal shunt

The procedure is carried out under general anaesthesia. Intravenous antibiotics

with skin flora coverage were given at induction. The patient was placed in the

table supine with the head turned 900 to opposite side (if no contraindications) and

an ipsilateral shoulder roll in place. The area of the proposed skin incision was

shaved using a disposable razor. The cranial, neck, thoracic and abdominal area

were prepped initially with betadine detergent scrub for 5 minutes and then

betadine paint. A small semilunar scalp flap was marked as the incision in the

posterior parietal area. In the abdominal area a horizontal 3-4 cm was marked in

the right subcostal area. The patient was then draped over the exposed neck,

thorax and abdomen, and the skin is infiltrated with 1% Lignocaine and Adrenaline

1:200.000. Following a hockey-stick scalp incision, haemostasis is achieved with

bipolar cautery. A burr hole is fashioned using an air-powered perforator 3 cm from

midline and 6 cm up from the inion. A subgaleal pocket for the valve is made in

plane above the pericranium and a shunt-passer path is developed with a

haemostat. Following an abdominal skin incision, and subcutaneous tissue
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dissection the anterior rectus sheath is incised. The rectus muscle is then split in

layers in the direction of fibres. Straight forceps are placed initially in the posterior

rectus sheath and after its incision the peritoneum is identified. Straight forceps are

placed onto the peritoneum and the peritoneal cavity is entered. A bent metal

shunt-passer is advanced from the cranial to caudal direction and the shunt tube is

passed through from the cranial to the abdominal end. The passer is then

removed. The dura is coagulated with bipolar cautery and incised in a cruciate

fashion with a no.11 blade. The pia is cauterized and subsequently incised.

Following study of each patient’s individual imaging a trajectory is planned and a

styleted ventricular catheter is passed aiming usually for the ipsilateral medial

canthus. When CSF backflow is achieved the stylet is removed and the ventricular

catheter is forwarded to a depth according to the surgeon’s preference. The first

few mLs of CSF are discarded and then 5 mLs of CSF were sent for a standard

cell count, microbiological analysis, as well as kept for research purposes. The

distal shunt catheter is fed into the peritoneal cavity with non-toothed forceps, and

a purse string suture secures the catheter position. The wounds are closed in

layers with interrupted Vicryl and clips to skin.

The choice of the valve and valve settings depended on the individual surgeon’s

preference, taking into account the degree of ventriculomegaly and physiological

measurements such as intracranial or CSF pressure. Two patients had a fixed

pressure Delta valve (Medtronic, PS Medical) with medium settings. Ten patients

were implanted with a Strata programmable valve (Medtronic, PS Medical) with

initial settings ranging from 1.0-2.5 performance level. Nine patients were

implanted with the proGAV Programmable valve (Aesculap-Miethke) with settings
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ranging from 5-10 cm H20. One patient was implanted with the Polaris

programmable valve (Sophysa) pre-programmed at 150 mm H20.
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Chapter 3 Results

3.1. Epidemiology

25 consecutive patients were recruited in total between February 2005 and

February 2007. Out of this group one patient died prior to having a

ventriculoperitoneal shunt (VPS) insertion, one patient refused to have the

procedure even though he underwent ELD and fulfilled the criteria to enter the

study, and one patient underwent the procedure after February 2007 hence only

partial data (pre and post lumbar drain) exists. The patient who died underwent

ELD and also fulfilled the criteria to have a VPS.

22 patients had a VPS inserted in the above period and we report on their

outcomes.

There were 15 males and 7 females. The mean age of the subjects was 71.45 (+/-

9.5) years. The mean symptom duration was 45 (+/- 59) months.

3.2. Clinical characteristics

Fourteen patients (64%) had gait ataxia as the first presenting symptom; 6 patients

presented firstly with cognitive decline and 2 patients with urinary incontinence.

Four patients (18%) have diabetes mellitus, 7 (32%) had hypertension, 1 (4.5%)

had suffered a transient ischaemic attack (TIA) previously, 3 (14%) patients had a

previous cerebrovascular accident (CVA), 1 had suffered a myocardial infarction

(MI) and 1 had concomitant peripheral vascular disease (PVD).
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All 22 patients had gait ataxia and cognitive decline at the time of assessment and

17 (77%) had urinary incontinence. Seventeen patients had the entire triad of the

symptoms at the time of the assessment.

On clinical examination 5 (23%) patients had documented mild motor weakness of

the lower limbs. 2 (10%) patients had concomitant cerebellar symptoms. 8 (36%)

patients had extrapyramidal symptoms. 9 (41%) patients had apraxia. The gait

independence is displayed in Table 3.2.1.

Gait
score

Description of gait (n=22) Number of
patients per
category

0 Normal 0
1 Unstable but independent gait 8
2 Walking with one cane 4
3 Walking with two canes or a walking frame 9
4 Walking not possible 1
Table 3.2.1. Description of gait

Clinical examination characteristics (n=22) Number of
patients

Percentage of
total (n=22)

Difficulty rising from chair 9 41
Difficulty withstanding a push from front or rear 11 50
Difficulty in maintenance of standing 7 32
Starting hesitation 7 32
Turning hesitation 12 55
Arm swing during gait 14 64
Wide based gait 13 60
Short Stride 18 82
Brakynesia affecting gait 17 77
Improvement of walking upon counting aloud 4 18
Writing disturbance 9 41
Frontal release signs 13 69

Table 3.2.2. Clinical characteristics on examination
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A 10-metre walking test was carried out in all patients, apart from one for whom

walking was not possible at the time of examination. The average number of steps

and the time taken in seconds was measured from two attempts. Where possible

we would ask the patient to walk without assistance; if not possible the patient

would use his normal walking aid. The average number of steps needed to

transverse this distance was 31.6 (range: 14-58) requiring 25.3 (range: 6.5-84)

seconds.

The severity of urinary incontinence was categorised according to table 3.2.3. .

Urinary
incontinence
score

Description of urinary incontinence
(n=22)

Number of
patients per
category

0 Absent 5
1 Absent but with frequency or urgency 4
2 Sometimes only at night 4
3 Sometimes even during the day 6
4 Frequent 3
Table 3.2.3. Description of urinary incontinence

The average M.M.S.E score for 16 patients was 20.2 (+/- 6.6) with a range of 8-29.

16 patients completed the neuropsychological assessments pre-shunt; the

remaining 6 either refused to participate, or the assessment was not completed

due to tiredness of the participants during the test or the presence of severe

cognitive decline.
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3.3. Patients undergoing external lumbar drainage

Eleven patients (out of the total 25) underwent assessment before and after the

insertion of a lumbar drainage. As mentioned previously only eight of those 11 had

insertion of a VPS, since one patient died prior to VPS insertion, one patient

refused the procedure and the third patient had the procedure following the end of

this study (February 2007), hence only partial (pre-post drainage) data exists.

The group was comprised of 9 males and 2 females. Age was 71.1 (+/- 5.85) years

at the time of assessment. The ages of the 2 populations (ELD and VPS as

described in § 3.1. do not differ (p=0.38, paired samples t-test). The preoperative

symptom duration is 36.9 (+/- 19.4) months; this does not differ from the previous

population (p=0.48, paired samples t-test). The clinical characteristics of those 3

additional patients not described previously will be described below.

Two patients (64%) had gait ataxia as the first presenting symptom and the third

presented firstly with cognitive decline. Two patients had diabetes mellitus, and all

three had hypertension. One patient was suffering from ischemic heart disease.

One had suffered a transient ischaemic attack previously.

All 3 patients had gait ataxia and cognitive decline at the time of assessment and 2

had urinary incontinence.
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None of the three patients had motor weakness of the lower limbs. None had

demonstrated cerebellar or extrapyramidal symptoms or apraxia. The gait

independence was categorised according to Table 3.3.1. .

Gait
score

Description of gait category Number of
patients per
category

0 Normal 0
1 Unstable but independent gait 1
2 Walking with one cane 1
3 Walking with two canes or a walking frame 1
4 Walking not possible 0
Table 3.3.1. Description of gait

Clinical examination characteristics Number of
patients

Percentage of
total (n=25)

Difficulty rising from chair 12 48
Difficulty withstanding a push from front or rear 13 54
Difficulty in maintenance of standing 7 28
Starting hesitation 8 32
Turning hesitation 14 56
Arm swing during gait 14 58
Wide based gait 15 60
Short Stride 21 84
Brakynesia affecting gait 19 79
Improvement of walking upon counting aloud 4 18
Writing disturbance 10 43
Frontal release signs 14 61

Table 3.3.2. Clinical characteristics on examination

A 10-metre walking test was carried out in all 3 patients. The average number of

steps and the time taken in seconds was measured from two attempts. The

average number of steps needed to transverse this distance was 68 (range: 15-

152) requiring 76 (range: 10-171) seconds.
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The severity of urinary incontinence was categorised according to table 3.3.3. .

Urinary
incontinence
score

Description of urinary incontinence Number of
patients per
category

0 Absent 1
1 Absent but with frequency or urgency 0
2 Sometimes only at night 1
3 Sometimes even during the day 1
4 Frequent 0
Table 3.3.3. Description of urinary incontinence

2 of the three patients had neuropsychological assessment prior to ELD insertion;

the third did not participate due to language barrier.

3.4. Walking test before and after external lumbar drainage

In the table below one may see the results of the walking test.

10 metre Walking test (average of 2 attempts) pre ELD insertion

N Minimum Maximum Mean Std. Deviation

Steps required 11 15 152 39.5 39.05

Time taken (secs)
11 6.5 171 38.8 48.15

Table 3.4.1. Walking test before external lumbar drain insertion

Eight patients improved in the walking test following a 72 hours external lumbar

drainage. These eight patients were selected to have insertion of a VPS at a later

time. The results of the walking test 72 hours post ELD insertion can be seen in the

table below.
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10 metre walking test 9average of 2 attempts) post ELD insertion

N Minimum Maximum Mean Std. Deviation

Steps required 11 15 107 34.15 29.3

Time taken (secs)
11 9.5 90 29.9 32.21

Table 3.4.2. Walking test after external lumbar drain removal

Although there is a reduction in the mean number of steps required and time taken

the difference pre and post assessment is not statistically significant (paired

samples t-test; p=0.26 for steps required and p=0.16, for time taken).

3.5. Neuropsychological assessment before and after external lumbar

drainage

The neuropsychological battery was administered to 10 patients. The test was not

possible to be administered to one patient due to language barrier. The results of

the pre ELD insertion assessment as well as the difference between the 2

assessments may be seen in the tables below.

Neuropsychological assessment prior to ELD insertion (n=10)
Memory tests Frontal executive

(anterior)
Speed

(subcortical)
Tests General

Intelligence
(WAIS-R)

Verbal
Memory
RMT
Words

Visual
Memory
RMT Faces

Phonemic
VF

Trail
Making Test
B

Speed
(Cancelling 0’s
or A’s)

Normal 4 6 4 4 1 0

Mild 3 2 0 3 1 3

Severe 3 2 6 3 8 7

Table 3.5.1. Neuropsychological assessment prior to ELD insertion
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UPre and Post Lumbar Drain changes

Memory tests Frontal executive
(anterior)

Speed
(subcortical)

Tests General
Intelligence
(WAIS-R)

Verbal
Memory
RMT
Words

Visual
Memory
RMT
Faces

Phonemic
Verbal
Fluency

Trail
Making
Test B

Speed
(Cancelling
0’s or A’s)

No difference 7 6 9 8 3

Significant
improvement

2 1 1 1 3

Significant
decline

N/A as not
repeated post
drain due to

practise effects
1 3 0 0 3

Not
administered

1 1

Table 3.5.2. Neuropsychological assessment after ELD removal

3.6. Surgical procedure

Twenty-two patients had insertion of ventriculoperitoneal shunt in total. The

procedure was carried out by 4 different surgeons, although the majority of the

patients (sixteen) were operated by the same surgeon (LW). All the 11 patients

who had insertion of a lumbar drain were operated by the same surgeon (LW).

3.6.1.1. Complications of external lumbar drainage and ventriculoperitoneal

shunting

One patient (8.3% of the total who underwent ELD) who underwent external

lumbar drainage returned 5 days following his discharge home feeling unwell and

feverish, as well as being disorientated and confused. He was initially admitted to

his local hospital where he was given i.v. Cefotaxime empirically, as well as p.o.

Nitrofurantoin for a presumed urinary tract infection (the patient had an indwelling
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urinary catheter). On admission in our hospital he was feeling better and he had no

photophobia or neck stiffness. An MRI spine did not reveal any spinal abscess and

a CT brain showed equal size ventriculomegaly. However, the patient had

increased CRP but normal WCC A lumbar puncture showed normal pressure with

41 white cells that were predominantly lymphocytes. The Gram stain was negative

and there was no growth of organisms on culture. A urethral swab grew Candida

species and the patient was treated accordingly and later discharged home.

Five patients (23% of the total) who received a ventriculoperitoneal shunt had

postoperative complications. One patient suffered a pontine ischaemic stroke 7

months following the operation and was not followed-up further. However, this is

not thought to be a surgical complication.

Three patients (14%) suffered a subdural haematoma 3, 4 and 7 months

postoperatively. One patient had a fixed pressure and two had a programmable

valve. In particular, they had a medium Delta valve, a proGAV valve preset at 5 cm

H20, and a Polaris valve preset at 150 mm H20. One patient (fixed-pressure valve)

had bilateral subdural effusions/haematomas that were managed conservatively

due to minor symptomatology and eventually disappeared on subsequent imaging.

The other two patients required surgical evacuation of the haematoma.

One patient had an ischemic infarct immediately postoperatively in his right

occipital lobe that manifested as left sided homonymous hemianaopia.
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One patient who was implanted with the proGAV valve experienced low-pressure

headaches 6 weeks postoperatively in an initial valve setting of +5 cm H20.

However, the valve was reset to a higher setting (+10 H20) in an outpatient setting

and the symptoms disappeared. Notably there were no infections during our study

period.

3.7. Imaging and volumetric data

Fifteen patients had MR imaging preoperatively; the remaining 7 had only CT

brain. On three patients the MR imaging obtained was of poor quality due to

movement artefact and it could not be used further in the volumetric analysis.

However, the ventricular and intracranial volume could be extracted from those

three patients and was used accordingly. Ventricular, intracranial and

periventricular lucencies volumes were extracted by volumetric analysis from CT

scans; however it was not technically possible to extract the volumes of the deep

white matter hyperintensities, or white-matter volume due to the technical

limitations of CT scanning..

Volumetric characteristics of 22 patients with iNPH

Minimum Maximum Mean Std. Deviation

Ventricular
volume

41.59 276.22 126.7437 57.91708

Periventricular
lucencies volume

.74 52.91 28.3744 13.96503

Deep white
matter
hyperintensities
volume

2.32 193.83 45.5371 53.67868

White matter
volume

120.39 414.17 275.4692 84.96347

Total intracranial
volume

445.48 1244.12 681.3395 200.42722

Table 3.7.1. Volumetric characteristics of patients
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Volumetric characteristics of 22 patients with iNPH

Minimum Maximum Mean Std. Deviation

Evans index .33 .51 .3842 .04623

Ventricular
volume ratio

.08 .31 .1850 .05766

Periventricular
lucencies volume
ratio

.00 .09 .0418 .02341

Deep white
matter
hyperintensities
volume ratio

.00 .26 .0598 .07385

White matter
volume ratio

.00 .58 .2629 .21752

Intracranial
volume (mm3)

445.48 1244.12 681.3395 200.42722

Table 3.7.2. Relative volumetric ratios of patients



204

Intracranial volumeWhite matter
volume

Deep white matter
hyperintensities

Periventricular
Lucencies

Ventricular Volume

1,250

1,000

750

500

250

0

6

2

3

2

9

Volume
(mm3)

Figure 3.7.1. Boxplot diagram of volumetric characteristics of 22 patients
with iNPH

3.8. CSF marker results of patients undergoing external lumbar drainage

There were no differences in red cell count, white cell count or CSF/serum albumin

ratio between the samples. There was also no significant difference in the total

volumes drained per patient in 72 hours. The results of the assays for the markers

can be seen in Table 3.8.1.
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CSF markers Day 0 Difference
between Day 0

and Day 2

Day 2 Difference
between Day 2

and Day 3

Day 3 Difference
between Day 0

and Day 3
CSF/ serum

albumin ratio
(X 10

3
)

8.19
(7.04)

↑, ns 10.62
(10.07)

↓, ns 7.64 (6.47) ↓, ns

Lactate
(mmol/L)

2.27
(.26)

↑, ns 2.68 (.23) ↑, ns 2.74 (.26) ↑,  * [0.027-0.033]]

8-Isoprostane
(pg/ml) 38.13

(.29)
↓, ns

37.8953

(.33)

↑, * [0.027-0.034] 38.66 (.32) ↑, ns

VEGF (ng/ml)
4.08

(1.14)

↑, * [0.010-0.014] 13.61

(2.81)

↑, ns 16.8 (4.09) ↑, * [0.007-0.011]

GFAP (ng/ml)
2.01

(1.41)

↑, * [0.022-0.028] 6.9750

(.99)

↑,  ns 16.3 (6.46) ↑, ** [0.001-0.003]

NfH (ng/ml)
0.1618

(.052)

↓ * [0.07-0.010]
.0156

(.015)

↑, ns .0345 (.016)
↓ * [0.013-0.018]

Aβ 1-42
(pg/ml)

366.05

(74.71)

↑, ns 464.04

(43.62)

↓, ns 449.02

(74.50)

↑, ns

Total Tau
(pg/ml)

151.88

(27.28)

↑, * [0.006-0.010] 310.57

(51.68)

↑, * [0.038-0.046] 415.55

(69.78)

↑, * [0.002-0.004]

Table 3.8.1. Concentrations of markers in all 3 days of collection and the
relationship between days 0 and 3. Values represent mean and standard error of
mean in brackets. The one-tailed Wilcoxon signed ranks test was used to identify
significant differences. Levels of significance: * p<0.05, ** p<0.001, ns: non
significant. In brackets the 95% Confidence Intervals of the levels of significance.

The CSF/serum albumin ratio (Qalb) increases between day 0 and 2 and then

decreases in the following 24 hours, in a non-significant fashion. Lactate levels

increase as drainage progresses, and this increase reaches statistical significance

within 72 hours of drainage. Furthermore, even though lactate levels are within

normal limits at time 0 (upper normal limit: 2.40 mmol/L) they become pathological

at 48 and 72 hours post drainage. The levels of the 8-isoprostane increased over

72 hours with the difference reaching statistical significance only between 48 and

72 hours. Concentration of VEGF also increased in a statistically significant

manner, particularly between day 0 and 2, where the change is most prominent.

Similar results occur for GFAP, with the most prominent change happening within



206

the first 48 hours and the significance reaching p≤0.001 after 72 hours of drainage.

The levels of NfH decrease significantly between day 0 and 3. The levels of Aβ1-42

increase overall but in a non-significant fashion. A consistent increase is noted in

the concentration of total tau as drainage continues.

3.8.1. Correlations between markers

Correlations between the markers were calculated for all three time-points. Table 2

presents the correlations for day 0.

Lactate IP VEGF GFAP NfH Aβ1-42 tau

Correlation
Coefficient

Lactate

Sig. (2-tailed) . NS NS NS NS NS NS

Correlation
Coefficient

8-isoprostane

Sig. (2-tailed) NS . NS NS NS NS NS

Correlation
Coefficient

-0.758VEGF

Sig. (2-tailed) NS NS . NS 0.007 NS NS

Correlation
Coefficient

-0.676 -0.785GFAP

Sig. (2-tailed) NS NS NS . NS 0.022 0.004

Correlation
Coefficient

-0.758NfH

Sig. (2-tailed) NS NS 0.007 NS . NS NS

Correlation
Coefficient

-0.676 0.636Aβ1-42

Sig. (2-tailed) NS NS NS 0.022 NS . 0.035

Correlation
Coefficient

-0.785 0.636Total tau

Sig. (2-tailed) NS NS NS 0.004 NS 0.035 .

Table 3.8.1.1. Correlations of CSF markers. Table demonstrates only results for
the samples collected at day 0. The two-tailed Spearman’s test for bivariate
correlations was used. Levels of significance: * p<0.05, ** p<0.001, NS: non
significant

Lactate has virtually no correlation with either 8-isoprostane or VEGF in day 0, 2

and 3. Equally 8-isoprostane has no correlation with any marker in any of the 3 day

samples. VEGF has a negative correlation with NfH (r= -0.758, p=0.007) in the first
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sample which does not continue in day 2 and 3. This is because the VEGF levels

increase and NfH levels decrease as drainage continues.

GFAP has also a significant negative correlation with total tau level on day 0

(r= -0.785, p=0.004); this becomes non significant as the drainage ensues. Aβ1-42

also has a significant negative correlation with GFAP level on day 0 (r= -0.676,

p=0.022); this negative relationship is maintained as drainage continues but it

becomes non significant.

Aβ1-42 and tau have a moderately positive correlation (r= 0.636, p=0.035) which is

statistically significant during day 0. This positive trend is maintained in day 2 (non

significant) and reverses in day 3 since the concentration of total tau increases as

drainage ensues, that of Aβ1-42 decreases from day 2 to 3.

Linear Regression w ith

95.00% Mean Prediction Interval

0.00 2.50 5.00 7.50 10.00

VEGF

-0.20

0.00

0.20

0.40

0.60

N
F

(h
)


















NFH0 = 0.27 + -0.03 * VEGF0

R-Square = 0.35

Correlation of NF(h) levels with VEGF levels at day 0 sample

Figure 3.8.1.1. Scatterplot and linear regression analysis of lumbar NfH and
VEGF levels. Solid line is best-fit regression line with 95% Confidence Intervals
(CIs) (curved lines).
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Correlation of GFAP levels and total tau levels at day 0 sample

Linear Regression with

95.00% Mean Prediction Interval

100.00 200.00 300.00

Total tau

-10.00

0.00

10.00

G
F

A
P

  







  

GFAP0 = 5.56 + -0.03 * TAU0

R-Square = 0.19

Figure 3.8.1.2. Scatterplot and linear regression analysis of lumbar GFAP and
total tau levels. Solid line is best-fit regression line with 95% CIs (curved lines).
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Linear Regression w ith

95.00% Mean Prediction Interval
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GFAP0 = 4.42 + -0.01 * AB0

R-Square = 0.12

Correlation of GFAP levels with Ab1-42levels at day 0 sample

Figure 3.8.1.3. Scatterplot and linear regression analysis of lumbar GFAP and
Ab 1-42 levels. Solid line is best-fit regression line with 95% CIs (curved lines).
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Linear Regression w ith

95.00% Mean Prediction Interval
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R-Square = 0.72

Correlation of total tau levels with Ab1-42 levels at day 0 sample

Figure 3.8.1.4. Scatterplot and linear regression analysis of lumbar total tau
and Ab 1-42 levels. Solid line is best-fit regression line with 95% CIs (curved
lines).

3.8.2. Correlations of CSF markers at day 2 and 3

In the tables below the correlations between the markers as drainage ensues are

displayed. It is noted that all correlations noted at the initial CSF sample have

become non-significant. There are two trends worth noting. At day 2 there is a

positive trend (non-significant) between the levels of 8-isoprostane and total tau

(R=0.714, p=0.071). This correlation becomes weaker at day 3 (R=0.583). At day 0

the correlation was negative (R=-0.064, p=0.853).
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At day 3 we note a positive trend between the levels of lactate and NfH (R=0.634,

p=0.67). This trend was negative at the initial sample (R=-0.237, n.s.) becoming

positive at day 2 (R=0.411, n.s.)

Correlations of CSF markers obtained at day 2 of ELD

1.000 .000 -.059 .311 .411 -.381 .167

. 1.000 .881 .453 .272 .352 .693

.000 1.000 -.500 -.252 . .607 .714

1.000 . .207 .548 . .148 .071

-.059 -.500 1.000 .216 .481 -.515 -.252

.881 .207 . .608 .190 .192 .548

.311 -.252 .216 1.000 . -.468 -.505

.453 .548 .608 . . .289 .248

.411 . .481 . 1.0 .082 .412

.272 . .190 . . .846 .310

-.381 .607 -.515 -.468 .082 1.000 .262

.352 .148 .192 .289 .846 . .531

.167 .714 -.252 -.505 .412 .262 1.000

.693 .071 .548 .248 .310 .531 .

Correlation
Coefficient

Sig.
(2-tailed)

Correlation
Coefficient

Sig.
(2-tailed)

Correlation
Coefficient

Sig.
(2-tailed)

Correlation
Coefficient

Sig.
(2-tailed)

Correlation
Coefficient

Sig.
(2-tailed)

Correlation
Coefficient

Sig.
(2-tailed)

Correlation
Coefficient

Sig.
(2-tailed)

Lactate

8-isopro
stane

VEGF

GFAP

NfH

Ab1-42

Total tau

Lactate
8-isopro

stane VEGF GFAP NfH Ab1-42
Total
tau

Table 3.8.2.1. Correlations of CSF markers obtained at day 2 of ELD
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Correlations of CSF markers obtained at day 3 of ELD

1.000 -.262 -.008 .183 .634 .000 .024

. .531 .983 .637 .067 1.000 .955

-.262 1.000 -.259 -.200 -.525 -.200 .583

.531 . .500 .606 .147 .606 .099

-.008 -.259 1.000 .419 .127 .301 -.527

.983 .500 . .228 .726 .431 .145

.183 -.200 .419 1.000 -.186 -.367 -.067

.637 .606 .228 . .606 .332 .865

.634 -.525 .127 -.186 1.000 -.068 -.251

.067 .147 .726 .606 . .861 .515

.000 -.200 .301 -.367 -.068 1.000 -.367

1.000 .606 .431 .332 .861 . .332

.024 .583 -.527 -.067 -.251 -.367 1.000

.955 .099 .145 .865 .515 .332 .

Correlation
Coefficient

Sig. (2-tailed)

Correlation
Coefficient

Sig. (2-tailed)

Correlation
Coefficient

Sig. (2-tailed)

Correlation
Coefficient

Sig. (2-tailed)

Correlation
Coefficient

Sig. (2-tailed)

Correlation
Coefficient

Sig. (2-tailed)

Correlation
Coefficient

Sig. (2-tailed)

Lactate

8-isopro
stane

VEGF

GFAP

NfH

Ab 1-42

Total tau

Lactate
8-isopro

stane VEGF GFAP NfH
Ab

1-42
Total
tau

Table 3.8.2.2. Correlations of CSF markers obtained at day 3 of ELD
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3.9. Cognitive, biochemical and imaging profile of patients suffering from

idiopathic normal pressure hydrocephalus

Although the theory of disturbed CSF dynamics in patients suffering from iNPH is

well-established, routine CSF dynamic investigations do not always predict

favourable surgical outcomes for patients undergoing cerebrospinal fluid diversion.

Recently, a review of metabolic disturbance in chronic adult hydrocephalus

suggested that during the course of the syndrome there is a “point of no return” of

metabolic failure that becomes uncoupled from the CSF dynamics disturbance and

therefore self-sustaining (Kondziella, Sonnewald et al. 2008). The triad of

symptoms characterising iNPH has been partly attributed to the CSF dynamics

failure although it is not clear what the role of the metabolic failure in the

progression or maintenance of these symptoms is.

The exact relationship between the cognitive profile of these patients, as well as

imaging characteristics and biochemical profile has not been studied extensively.

Tullberg et al. have studied the association of neurofilament light chain (NFL) with

white matter pathology (Tullberg, Blennow et al. 2007), whilst another group

attempted to study the relationship between neuropsychological parameters, CBF

and cerebrovascular reserve capacity (CVR) using PET (Klinge, Ruckert et al.

2002; Klinge, Brooks et al. 2008). Iddon et al have studied the associations

between white matter hyperintensities and the neuropsychological profile in a small

group of patients with iNPH (Iddon, Pickard et al. 1999). Furthermore, there have

been recent attempts to understand whether biochemical markers and imaging
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play a role in predicting surgical outcomes (Tarnaris, Watkins et al. 2006; Tarnaris,

Kitchen et al. 2008).

There has been little research focusing on cognitive dysfunction in NPH and

biomarkers, which have used a comprehensive neuropsychological testing battery

(Molins, Catalán et al. 1991; Schettini 1991; Mataro, Poca et al. 2003). Research is

also limited regarding the degree of ventriculomegaly and cognitive impairment in

NPH (Golomb, de Leon et al. 1994; Palm, Walchenbach et al. 2006; DeVito,

Salmond et al. 2007).

It seems necessary to attempt to study all these clinical parameters in a single

study in order to understand the interrelationships that characterise the syndrome.

The aim of this study was to analyse and report the biochemical, cognitive and

imaging profile of patients suffering from iNPH. Furthermore, any relationships

obtained may provide further insight into the pathophysiology of iNPH.
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3.9.1. Patient characteristics

Ten consecutive patients (8 male, 2 female) were recruited prospectively between

February 2005 and February 2007 and investigated for possible iNPH as part of a

hydrocephalus research programme carried out in our institution. Inclusion criteria

for patients were an ataxic gait, combined with cognitive decline and/or urinary

incontinence. All patients had pre-operative imaging that demonstrated

ventriculomegaly of communicating type and an Evans Index > 0.3. Furthermore,

all patients had at least one measurement of CSF pressure during the insertion of

an external lumbar drain to confirm a normal CSF pressure (within the limits of 5-

18 mm Hg). All 10 patients recruited suffered from the idiopathic form of normal

pressure hydrocephalus and fulfilled the criteria of “probable” NPH as laid out in

recently published guidelines (Relkin, Marmarou et al. 2005). All participants had

signed a consent form with regards to the aims of the study and the study has

been approved by the Local Research Ethics Committee.

Mean patient age was 71.4 (range: 62-82) years. Mean pre-operative duration of

symptoms was 35.9 (range: 12-60) months. In seven of the ten patients ataxic gait

was the first symptom. All patients had ataxic gait as their main symptom at the

time of investigation. Nine patients had problems with memory and cognitive

decline. Seven patients had urinary incontinence at the time of investigation.

3.9.2. Statistical analysis

All results were calculated and compared for each group using the non-parametric

Wilcoxon signed ranks test. The independent samples t-test was used to compare
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means. The Spearman rank order test was used to assess bivariate correlations.

The significance level was set at 0.05.

3.9.3. Correlation of age and preoperative symptom duration with any

of the variables tested

There was no significant correlation with any of the variables except a significant

negative correlation of preoperative symptom duration and total tau levels (R=-

0.841, p=0.002; Figure 1).
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Figure 3.9.3.1. Scatterplot showing linear regression between total tau levels
(pg/mL) and preoperative duration of symptoms (in months).
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3.9.4. Volumetric analysis

Table 3.9.4.1. shows the mean volumes of the different compartments as well as

their respective ratios. The ventricular volume occupies up to 17% of the

intracranial volume in the specific area measured. There appears to be in our

cohort a larger volume of DWMH (mean: 36.9 mm3) when compared to the PVL

volume (mean 21.5 mm3). Subsequently PVL occupy 2.99% of the intracranial

volume, whereas DWMH occupy 4.13% of the ICV. The volume of white matter

had a mean value of 302 mm3 occupying almost 42% of the intracranial volume.

Volume (mm3) Mean SD % ICV

Ventricular volume (VV) 124 56.11 17.22

Periventricular lucencies (PVL) 21.54 8.37 2.99

Deep white-matter hyperintensities (DWMH) 36.92 58.22 5.13

White matter (WM) 302.04 117.68 41.96

VV/PVL 7.38 5.93

VV/DWMH 8.43 7.08

PVL/WM 0.08 0.05

DWMH/WM 0.05 0.04

Intracerebral volume (ICV) 719.69 239.74

Table 3.9.4.1. Volume characteristics in 10 patients with iNPH as well as their
ratios to the intracranial volume.
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3.9.5. Neuropsychological testing

Table 3.9.5.1 presents the neuropsychological profile of 10 patients. Due to small

numbers the patients were grouped as either normal or mild/moderate-severe

cognitive impairment. No association was found between the results of the different

tests. Also only one performed in the normal range on the Trail Making Tests B, a

test of frontal executive functioning. These findings are therefore consistent with

the ‘fronto-subcortical dementia’ profile associated with NPH.

Table 3.9.5.1. Neuropsychological profile of the 10 patients by using a
specific battery of test.

3.9.6. CSF biochemical profile in lumbar CSF

The mean value of lactate in our cohort was 2.24; 3 patients had pathological

lactate values (>2.4 which was our laboratory reference value). There are no other

studies that present CSF reference values for 8-isoprostanes and VEGF. One of

Test of

intelligence

Recognition

Memory tests

Executive Functioning Test of subcortical

function

Tests WAIS-R RMT

words

RMT faces Phonemic VF Trails Speed (cancelling)

Normal 4 6 4 4 1 0

Mild/Moderate -

severe cognitive

impairment

6 4 6 6 9 10
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our patients had no detectable VEGF in the CSF. The mean value of the GFAP

levels was 2.19 pg/mL and was within the normal range (upper reference value: 9

pg/mL); one of our patients had pathologically elevated GFAP levels. The mean

levels of NfH in our cohort was 0.63 pg/mL which was normal (upper reference

value: 0.73 ng/mL); no patient had pathologically raised NfH levels. The mean

value of Aβ1-42 was 366 pg/mL (median 315 pg/mL) which is lower than the control

reference value given by the manufacturers (median 849 pg/mL)(Hulstaert,

Blennow et al. 1999); only one patient had pathological high values. Also the total

tau levels had a mean of 143 pg/mL (median: 120 pg/mL) which was lower than

the control subjects median value for total tau (195 pg/mL) as provided by the

manufacturer (Hulstaert, Blennow et al. 1999); in the case of total tau 2 subjects

had values above that median value.

Descriptive Statistics

10 1.32 4.32 2.24 .90

10 36.78 39.98 38.17 1.03

10 .00 10.00 4.49 3.74

10 .05 14.93 2.19 4.89

10 .00 .63 .17 .18

10 111.92 1029.00 365.92 247.85

10 50.73 338.00 142.87 82.74

Lactate

8-Isoprostanes

VEGF

GFAP

NF (h)

Ab 1-42

Total tau

N Minimum Maximum Mean Std. Deviation

Descriptive Statistics

10 1.32 4.32 2.24 .90

10 36.78 39.98 38.17 1.03

10 .00 10.00 4.49 3.74

10 .05 14.93 2.19 4.89

10 .00 .63 .17 .18

10 111.92 1029.00 365.92 247.85

10 50.73 338.00 142.87 82.74

Lactate

8-Isoprostanes

VEGF

GFAP

NF (h)

Ab 1-42

Total tau

N Minimum Maximum Mean Std. Deviation

Table 3.9.6.1. Biochemical profile of the CSF obtained during the insertion of
a lumbar drain in 10 patients with iNPH. Lactate levels in (mmol/L), VEGF and
NfH levels in ng/mL, 8-isoprostane, GFAP, Aβ 1-42 and tau levels in pg/mL.
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3.9.7. Correlation of CSF markers with volumetric analysis

Neither lactate nor 8-isoprostane levels had significant correlations with any of the

analysed volumes. However, there was a negative trend between the isoprostane

levels and the VV/WM ratio (R= -0. 667, p= 0.071). There was a significant positive

correlation (R= 0.648, p=0.043) between the levels of VEGF and the VV/ICV ratio;

there was also a positive trend between the VEGF and the WM volume (R= 0.667,

p= 0.071). There was a significant positive correlation of the levels of GFAP and

the VV/ DWMH ratio (R= 0.828, p=0.006). There was a significant negative

correlation between the levels of NfH and the VV/ICV ratio (R= -0.657, p=0.039),

as well as a negative trend (R= -0.612, p=0.06) with the IVV. In addition, the white

matter and NfH levels were inversely correlated (R= -0.778, p=0.023). There was

also a significant positive correlation between the PVL/WM ratio and NfH levels

(R= 0.738, p= 0.037) and a positive trend with the DWMH/WM ratio (R= 0.667, p=

0.071). Aβ1-42 and total tau had no significant correlations with any of the structural

volumes, however there was a negative trend between tau and VV/DWMH (R= -

0.617, p= 0.077).

3.9.8. Correlations of CSF markers and neuropsychological profile

There was no difference in any of the levels of the examined markers between the

patients who had normal and mild/moderate-severe cognitive decline in WAIS-R,

RMT Words, and Verbal Fluency test. Patients who were in the normal category,

when examined with the RMT Faces test, had lower lactate levels compared to the

subjects who performed worse in this particular test (independent samples t-test,
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p=0.060). It was also observed that the patient who has pathologically high GFAP

levels showed no cognitive decline when tested on the Trail Making Test B.

3.9.10. Correlations of volumetric analysis and

neuropsychological profile

Patients who performed normal in the RMT Words had significantly higher ICV

than the rest of the patients (879.42 +/- 215 vs. 574.05 +/- 155.6 mm3; p=0.05,

independent samples t-test).
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3.10.1. Rostrocaudal gradient of CSF markers

The dynamics of CSF markers along the craniospinal axis has not been

adequately studied (Grove, Schechter et al. 1982; Menachem, Persson et al. 1989;

Sommer, Gaul et al. 2002). Many proteins are produced by the brain parenchyma

and then are transported across the ependyma into the CSF spaces. A fraction of

some of them is derived from serum, whereas others are produced exclusively by

the brain parenchyma. The movement of the molecules across the blood-brain

barrier (BBB) and the blood-CSF barrier depends on concentration gradients. The

particular dynamics of the brain-derived proteins depend on their sources which

are either the

brain cells (neurons, glial cells) or the leptomeningeal cells (Reiber 2003). From

then following the bulk flow a portion flows down the spinal axis to the lumbar

thecal sac where appropriate reabsroption as well as secretion occurs.

Access to lumbar CSF provides us with diagnostic information about different

neurological conditions (Hühmer, Biringer et al. 2006). Levels of markers in the

CSF may be studied and conclusions about the pathophysiology mechanisms

underlying each condition may be extrapolated (Reiber 1998). However, it is not

true that the concentrations of proteins in the lumbar thecal sac reflect accurately

the concentrations in higher levels, such as the cisternal or ventricular CSF. Hence

obtaining information only from lumbar CSF may leads us to erroneous

conclusions. Sampling of higher levels along the craniospinal axis may not be

ethically feasible hence limiting the yield of diagnostic information from lumbar CSF

only.
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Although numerous studies have examined the diagnostic and prognostic

significance of markers in lumbar CSF of patients with iNPH, less data exists in the

difference between ventricular and lumbar concentration of different markers.

3.10.2. Methods: Ventricular (vNPH) and lumbar CSF (lNPH) was collected

from 8 patients fulfilling the criteria of “probable” iNPH. Cisternal CSF was

collected from 6 patients suffering from trigeminal neuralgia (TGN) acting as

control group (CC). Lumbar CSF was collected from 6 patients investigated for

headache and acted as a control group for lumbar samples (LC). The mean age of

the 6 TGN patients was 60 (+/-9.3) years (range: 52-76). The mean age of the 6

patients investigated for headache was 52.7 (+/- 10.6) years (range: 37-72). The

difference in age of the two control groups was not statistically significant (Mann

Whitney U test, p=0.234).

3.10.3. Rostrocaudal gradient of Lactate

There is no correlation of lactate levels and age neither in iNPH nor on control

subjects.

Correlation of age and ventricular lactate levels in NPH

1.000 -.096

. .821

8 8

-.096 1.000

.821 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Ventricular
lactate
levels

Spearman's rho
age_nph vCSF_nph

Table 3.10.3.1. Correlation of age and ventricular lactate levels in NPH
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Correlation of age and lumbar lactate levels in NPH

1.000 -.108

. .799

8 8

-.108 1.000

.799 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Lumbar
lactate
levels

Spearman's rho
age_nph lCSF_nph

Table 3.10.3.2. Correlation of age and lumbar lactate levels in NPH

Correlation of age and cisternal lactate levels in TGN

1.000 -.029

. .957

6 6

-.029 1.000

.957 .

6 6

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patientsl

Cisternal
lactate
levels

Spearman's rho
age_ctrl cCSF_ctrl

Table 3.10.3.3. Correlation of age and cisternal lactate levels in NPH

Comparison of means between ventricular and lumbar CSF lactate levels in
NPH

8 2.0213 .50879 1.55 2.91

8 2.3000 .93274 1.56 4.32

ventricular
lactate
(mmol/L)

lumbar
lactate

N Mean Std. Deviation Minimum Maximum

Table 3.10.3.4. Comparison of means between ventricular and lumbar CSF
lactate levels in NPH

The rostrocaudal gradient (RCG) for lactate in iNPH is 0.88.

Cisternal lactate levels in patients with TGN (mmol/L)

6 1.8783 .66490 .27145Cisternal Lactate
N Mean Std. Deviation

Std. Error
Mean

Table 3.10.3.5. Cisternal lactate levels in patients with TGN
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The RCG of lactate in the control group is 1.17. The values for the

control lumbar lactate levels were 1.59 (+/- 0.30) (Wandrup, Tvede et al. 1989).

There is no significant difference between the ventricular and lumbar samples in

patients with iNPH (Wilcoxon signed ranks test, exact significance (two tailed)

p=0.688). There is no statistical difference between the ventricular lactate levels in

NPH and the cisternal lactate levels in the control group (Kruskal Wallis test,

p=0.519).

Figure 3.10.3.1. Scatterplot and linear regression between Qalb and lactate
levels in CSF

3.10.4. Rostrocaudal gradient of 8-isoprostane

There was a significant negative correlation of the age of iNPH patients with the

lumbar levels of 8-isoprostane (table 3.10.4.2.).
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Correlation of age with ventricular 8-isoprostane levels in patients with iNPH

1.000 .491

. .217

8 8

.491 1.000

.217 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of patients

8-isoprostane
levels of
ventricular CSF

Spearm
an's rho

age_nph vCSF_nph

Table 3.10.4.1. Correlation of age and ventricular 8-isoprostane levels in NPH

Correlation of age with lumbar 8-isoprostane levels in patients with NPH

1.000 -.753*

. .031

8 8

-.753* 1.000

.031 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of patients

8-isoprostane
levels of
lumbar CSF

Spearm
an's rho

age_nph lCSF_nph

Correlation is significant at the 0.05 level (2-tailed).*.

Table 3.10.4.2. Correlation of age and lumbar 8-isoprostane levels in NPH

Correlation of age with lumbar 8-isoprostane levels in patients with TGN

1.000 .086

. .872

6 6

.086 1.000

.872 .

6 6

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

8-isoprostane
levels of
cisternal CSF

Spearm
an's rho

age_ctrl cCSF_ctrl

Table 3.10.4.3. Correlation of age and lumbar 8-isoprostane levels in TGN

Correlation of age and lumbar 8-isoprostane levels in control subjects

1.000 .800

. .200

6 6

.800 1.000

.200 .

6 6

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of patients

Lumbar
8-isoprostane
levels

Spearman's
rho

VAR00003 VAR00004

Table 3.10.4.4. Correlation of age and lumbar 8-isoprostane levels in TGN
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The RCG for 8-isoprostane in iNPH is 1. The RCG for 8-isoprostane in control

subjects is 1.06. There is no significant difference between the levels of ventricular

and lumbar levels in iNPH (Wilcoxon signed ranks test, p=0.641). There is a

significant difference between the ventricular and cisternal levels of 8-isoprostane

between iNPH patients and TGN controls (Mann-Whitney test, p=0.02). There is

not a significant difference between the lumbar levels of 8-isoprostane between

iNPH patients and controls (Mann-Whitney test, p=0.74).

Comparison of means between ventricular and lumbar CSF 8-isoprostane
levels in NPH

8 38.3938 1.26782 36.16 40.07

8 38.3288 1.32331 36.78 40.41

ventricular
8-isoprostane
(pg/mL)

lumbar
8-isoprostane

N Mean Std. Deviation Minimum Maximum

Table 3.10.4.5. Comparison of means between ventricular and lumbar CSF 8-
isoprostane levels in NPH

Comparison of means between cisternal and lumbar CSF 8-isoprostane
levels in control subjects

6 40.8833 2.43341 .99344

6 38.7450 3.13911 1.56956

sample_type
cisternal
8-isoprostane
(pg/mL0

lumbar 8-isoprostane

N Mean Std. Deviation
Std. Error

Mean

Table 3.10.4.6. Comparison of means between cisternal and lumbar CSF 8-
isoprostane levels in TGN
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1 2 3 4

1: ventricular NPH, 2: Cisternal control, 3: Lumbar control, 4: Lumbar NPH
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Figure 3.10.4.1. Boxplot levels of CSF 8-isoprostane in the 4 groups tested

Figure 3.10.4.2. Scatterplot and linear regression between Qalb and 8-
isoprostane levels in CSF
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3.10.5.1. Rostrocaudal gradient of VEGF

There is no correlation between the age of the subjects and the VEGF levels in

either NPH or control subjects. However, there is a positive trend between VEGF

cisternal levels and age in patients with TGN.

Correlation of age and ventricular VEGF levels in NPH

1.000 -.108

. .799

8 8

-.108 1.000

.799 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Ventricular
VEGF
levels

Spearman's rho
age_nph vCSF_nph

Table 3.10.5.1. Correlation of age and ventricular VEGF levels in NPH

Correlation of age and lumbar VEGF levels in NPH

1.000 -.024

. .955

8 8

-.024 1.000

.955 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patiensts

Lumbar
VEGF
levels

Spearman's rho
age_nph lCSF_nph

Table 3.10.5.2. Correlation of age and lumbar VEGF levels in NPH

Correlation of age and cisternal VEGF levels in TGN

1.000 .771

. .072

6 6

.771 1.000

.072 .

6 6

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Cisternal
VEGF
levels

Spearman's rho
age_ctrl cCSF_ctrl

Table 3.10.5.3. Correlation of age and cisternal VEGF levels in TGN
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Correlation of age and lumbar VEGF levels in control subjects

1.000 .500

. .667

6 6

.500 1.000

.667 .

6 6

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Lumbar
VEGF
levels

Spearman's rho
VAR00001 VAR00002

Table 3.10.5.4. Correlation of age and lumbar VEGF levels in TGN

The RCG for VEGF in NPH and control subjects is 3.2 and 0.38 respectively.

There was a statistical significant difference between the ventricular and lumbar

VEGF levels in NPH (Wilcoxon signed ranks test, p=0.036). There was no

statistical difference between the ventricular and cisternal VEGF levels in NPH and

control subjects respectively (Kruskall-Wallis test, p=0.071). There was a

significant difference between the lumbar VEGF levels in NPH and control subjects

(Mann-Whitney test, p=0.014).

Comparison of means between ventricular and lumbar CSF VEGF levels in
NPH

8 18.2375 15.71671 6.10 44.99

8 5.6875 5.38652 .00 15.49

ventricular VEGF
(ng/ml)

lumbar VEGF

N Mean Std. Deviation Minimum Maximum

Table 3.10.5.5. Comparison of means between ventricular and lumbar CSF
VEGF levels in NPH

Comparison of means between cisternal and lumbar CEF VEGF levels in control
subjects

6 7.7917 8.84722 3.61186

6 20.4267 2.75264 1.58924

sample_type
cisternal VEGF

lumbar VEGF

ng/mL
N Mean Std. Deviation

Std. Error
Mean

Table 3.10.5.6. Comparison of means between cisternal and lumbar CSF
VEGF levels in controls
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Figure 3.10.5.1. Boxplot levels of CSF VEGF levels in the 4 groups tested
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Figure 3.10.5.2. Scatterplot and linear regression between Qalb and VEGF
levels in CSF



233

Figure 3.10.5.3. Scatterplot and linear regression between Qalb and VEGF
levels in lumbar CSF from 8 iNPH patients

3.10.6. Rostrocaudal gradient of GFAP

There is no correlation of age and ventricular or lumbar GFAP levels in patients

with NPH. However, there is a significant negative correlation between the GFAP

levels and the age of the control group (p<0.001). With regards to the GFAP levels

of lumbar CSF from control subjects the reference median value of 0 (range: 0-60)

pg/mL were used (Petzold, Brettschneider et al. 2009). The median GFAP in

cisternal CSF in patients with TGN is 0.2 pg/mL.
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Correlation of age and ventricular GFAP levels in NPH

1.000 -.250

. .589

8 8

-.250 1.000

.589 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Ventricular
GFAP
levels

Spearman's rho
age_nph vCSF_nph

Table 3.10.6.1. Correlation of age and ventricular GFAP levels in NPH

Correlation of age and lumbar GFAP levels in NPH

1.000 -.398

. .329

8 8

-.398 1.000

.329 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Lumbar
GFAP
levels

Spearman's rho
age_nph lCSF_nph

Table 3.10.6.2. Correlation of age and lumbar GFAP levels in NPH

Correlation of age and cisternal GFAP levels in control subjects

1.000 -1.000**

. .000

6 6

-1.000** 1.000

.000 .

6 6

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Cisternal
GFAP
levels

Spearman's rho
age_ctrl cCSF_ctrl

Correlation is significant at the 0.01 level (2-tailed).**.

Table 3.10.6.3. Correlation of age and cisternal GFAP levels in controls

The RCG in NPH is 8.85. In normal subjects it cannot be calculated since the

median value for a control population is 0 (with a range of 0-60). Although one will

assume that the gradient is >1 since the cisternal median GFAP value is 0.2

pg/mL. There is a statistical significant difference between the ventricular and

lumbar GFAP levels of NPH patients (Wilcoxon signed ranks test, p=0.034). There
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is no statistical difference between the ventricular GFAP levels in NPH and the

cisternal GFAP levels in patients with TGN (Mann-Whitney test, p=0.267). The

statistics between cisternal and lumbar levels in the control group were not

calculated.

Comparison of means between ventricular and lumbar GFAP levels in NPH

8 24.3529 26.10363 .16 69.32

8 2.7588 5.38169 .05 14.93

Ventricular
GFAP
(pg/mL)

lumbar
GFAP

N Mean Std. Deviation Minimum Maximum

Table 3.10.6.4. Comparison of means between ventricular and lumbar CSF
GFAP levels in NPH

Cisternal GFAP levels in patients with TGN (pg/mL)

6 .13 1.31 .5467 .66199Cisternal GFAP
N Minimum Maximum Mean Std. Deviation

Table 3.10.6.5. Mean cisternal GFAP levels in TGN

0.00 1.00 2.00 3.00 4.00 5.00

CSF sample 1:Ventricular NPH,2: Cisternal control, 3: lumbar control (not available), 4: Lumbar NPH
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Figure 3.10.6.1. Boxplot levels of CSF GFAP levels in the 3 groups tested
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Figure 3.10.6.2. Scatterplot and linear regression between Qalb and GFAP
levels in CSF

3.10.7 Rostrocaudal gradient of NfH

There is no correlation of age with NfH levels in any of the groups tested. With

regards to the NfH levels of lumbar CSF from control subjects the reference mean

value of 0.25 (+/-0.23) ng/mL was used (Petzold, Keir et al. 2003).

Correlation of age and ventricular NfH levels in NPH

1.000 .430

. .287

8 8

.430 1.000

.287 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Ventricular
NfH levels

Spearman's rho
age_nph vCSF_nph

Table 3.10.7.1. Correlation of age and ventricular NfH levels in NPH
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Correlation of age with lumbar NfH levels in NPH

1.000 -.359

. .382

8 8

-.359 1.000

.382 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Lumbar
NfH levels

Spearman's rho
age_nph lCSF_nph

Table 3.10.7.2. Correlation of age and lumbar NfH levels in NPH

Correlation of age and cisternal NfH levels in TGN

1.000 .154

. .805

6 5

.154 1.000

.805 .

5 5

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Cisternal
NfH
levels

Spearman's rho
age_ctrl cCSF_ctrl

Table 3.10.7.3. Correlation of age and cisternal NfH levels in TGN

The RRG of NfH is therefore 4.84 and 1.08 in NPH and control subjects

respectively. There is no significant difference between the ventricular and lumbar

levels in NPH (Wilcoxon signed ranks test, p=0.208). There is no difference

between the ventricular levels in NPH and cisternal levels in TGN (Mann-Whitney

test, p=0.298). There were no statistical calculations between the lumbar levels of

NfH in NPH and control subjects.

Comparison of means between ventricular and lumbar CSF NfH levels in NPH

8 .9225 1.83993 .00 5.45

8 .1988 .19475 .00 .63

ventricular
NfH
(ng/mL)

lumbar
NfH

N Mean Std. Deviation Minimum Maximum

Table 3.10.7.4. Comparison of means between ventricular and lumbar CSF
NfH levels in NPH
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Cisternal NfH levels in patients with TGN (ng/mL)

6 .2740 .59597 .00 1.34
Cisternal
NfH

N Mean Std. Deviation Minimum Maximum

Table 3.10.7.5. Mean cisternal NfH levels in TGN

Type of sample tested
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Lumbar controls (not assessed)

Lumbar NPH

Figure 3.10.7.1. Boxplot levels of CSF NfH levels in the 3 groups tested
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Figure 3.10.7.2. Scatterplot and linear regression between Qalb and NfH
levels in CSF

3.10.8 Rostrocaudal gradient of Aβ 1-42

There is no correlation of age with either ventricular of lumbar Aβ 1-42 levels in

NPH. There is a trend (but not a significant correlation) between the age of patients

with TGN and Aβ 1-42 levels. With regards to the Aβ 1-42 levels of lumbar CSF

from control subjects the reference mean value of 849 (682-1063) pg/mL was used

(Hulstaert, Blennow et al. 1999). The median cisternal value in patients with TGN

is 930.05 (113-1458) pg/mL.

Correlation of age with ventricular Ab levels in NPH

1.000 .036

. .939

8 8

.036 1.000

.939 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Ventricular
Ab levels

Spearman's rho
age_nph vCSF_nph

Table 3.10.8.1. Correlation of age and ventricular Aβ 1-42 levels in NPH
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Correlation of age with lumbar Ab levels in NPH

1.000 .335

. .417

8 8

.335 1.000

.417 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Lumbar
Ab levels

Spearman's rho
age_nph lCSF_nph

Table 3.10.8.2. Correlation of age and lumbar Aβ 1-42 levels in NPH

Correlation of age with cisternal Ab levels in TGN

1.000 .771

. .072

6 6

.771 1.000

.072 .

6 6

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Cisternal
Ab levels

Spearman's rho
age_ctrl cCSF_ctrl

Table 3.10.8.3. Correlation of age and cisternal Aβ 1-42 levels in TGN

The RCG is therefore 0.93 and 1.09 in NPH and control subjects respectively.

There was no difference between the ventricular and lumbar levels in patients with

NPH (Wilcoxon signed ranks test, p=0.398). There was a significant difference

between the ventricular levels of Aβ 1-42 in patients with NPH and cisternal levels

in TGN (Mann-Whitney test, p=0.035). No statistical calculations were performed

for difference between lumbar concentrations in NPH and control subjects.

Comparison of means between ventricular and lumbar Ab levels in NPH

8 229.3086 100.27197 108.00 409.92

8 246.7813 86.71816 111.92 325.00

Ventricular
Ab
(pg/mL)

Lumbar
Ab

N Mean Std. Deviation Minimum Maximum

Table 3.10.8.4. Comparison of means between ventricular and lumbar CSF
Aβ 1-42 levels in NPH



241

Cisternal Ab levels in patients with TGN (pg/mL)

6 841.3250 451.87560 113.00 1458.00
Cisternal
Ab

N Mean Std. Deviation Minimum Maximum

Table 3.10.8.5. Mean cisternal Aβ 1-42 levels in TGN
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Figure 3.10.8.1. Boxplot levels of CSF Aβ 1-42 levels in the 3 groups tested
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Figure 3.10.8.2. Scatterplot and linear regression between Qalb and Aβ 1-42
levels in CSF

3.10.9. Rostrocaudal gradient of total tau

There is no correlation of total tau levels with age in any of the patient groups.

With regards to the total tau levels of lumbar CSF from control subjects the

reference mean value of 195 (121-294) pg/mL was used (Hulstaert, Blennow et al.

1999). The median value of cisternal total tau levels in patients with TGN is 285

pg/mL.

Correlation of age with ventricular total tau levels in NPH

1.000 .623

. .099

8 8

.623 1.000

.099 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Ventricular
total tau
levels

Spearman's rho
age_nph vCSF_nph
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Table 3.10.9.1. Correlation of age and ventricular total tau levels in NPH

Correlation of age with lumbar total tau levels in NPH

1.000 .108

. .799

8 8

.108 1.000

.799 .

8 8

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Lumbar
total tau
levels

Spearman's rho
age_nph lCSF_nph

Table 3.10.9.2. Correlation of age and lumbar total tau levels in NPH

Correlation of age with cisternal total tau levels in TGN

1.000 .200

. .704

6 6

.200 1.000

.704 .

6 6

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Age of
patients

Cisternal
total tau
levels

Spearman's rho
age_ctrl cCSF_ctrl

Table 3.10.9.3. Correlation of age and cisternal total tau levels in TGN

Therefore, the RCG for total tau is 6.01 and 1.46 in NPH and control subjects

respectively. There is a significant difference between the ventricular and lumbar

levels in NPH (Wilcoxon signed ranks test, p=0.028. The difference between the

ventricular total tau levels in NPH and cisternal total tau levels in patients with TGN

is statistically significant (Mann Whitney test, p=0.002)

Comparison of means between ventricular and lumbar total tau levels in NPH

8 842.2388 665.13976 121.00 1830.00

8 140.1075 70.18270 50.73 258.00

Ventricular total tau
(pg/mL)

Lumbar total tau

N Mean Std. Deviation Minimum Maximum

Table 3.10.9.4. Comparison of means between ventricular and lumbar CSF
total tau levels in NPH
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Cisternal total tau in patients with TGN (pg/mL)

6 392.3050 386.52071 54.54 1158.00
Cisternal
total tau

N Mean Std. Deviation Minimum Maximum

Table 3.10.9.5. Mean cisternal total tau levels in TGN
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Figure 3.10.9.1. Boxplot levels of CSF total tau levels in the 3 groups tested
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Figure 3.10.9.2. Scatterplot and linear regression between Qalb and total tau
levels in CSF

Tabulated table of mean CSF values of markers examined and statistical
differences

Ventricular
CSF in NPH

Lumbar CSF
in NPH

Cisternal CSF in
TGN

Lumbar CSF in
controls

Lactate 2.02 2.3 1.87 1.59
8-isoprostane 38.39 38.32 40.88 ƒ 38.74

VEGF 18.23 5.68 * 7.79 20.42 ‡
GFAP 24.35 2.75 * 0.54 0
NfH 0.92 0.19 0.27 0.25

Aβ 1-42 229.3 246.78 841.32 (930.05) ƒ 849
Total tau 842.23 140.10 392.3 ƒ 195

Table 3.10.9.6. Tabulated table of mean CSF values of markers examined and
statistical differences
* Significant difference p<0.05 between ventricular and lumbar CSF levels in NPH

ƒ significant difference p<0.05 between ventricular and cisternal levels in NPH and

control subjects respectively

‡ significant difference in lumbar CSF levels in NPH and controls.
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3.11. Correlation of CSF markers from external lumbar drainage with

neuropsychology

There was no difference in any of the levels of the examined markers between the

patients who had normal and mild/moderate-severe cognitive decline in WAIS-R,

RMT Words, and Verbal Fluency test. Patients who were in the normal category,

when examined with the RMT Faces test, had lower lactate levels compared to the

subjects who performed worse in this particular test (independent samples t-test,

p=0.060). It was also observed that the patient who has pathologically high GFAP

levels showed no cognitive decline when tested on the Trail Making Test B.

3.12. Correlation of CSF markers from external lumbar drainage with

volumetric data

Neither lactate nor 8-isoprostane levels had significant correlations with any of the

analysed volumes. However, there was a negative trend between the isoprostane

levels and the VV/WM ratio (R= -0. 667, p= 0.071).

There was a significant positive correlation (R= 0.648, p=0.043) between the levels

of VEGF and the VV/ICV ratio; there was also a positive trend between the VEGF

and the WM volume (R= 0.667, p= 0.071).

There was a significant positive correlation of the levels of GFAP and the VV/

DWMH ratio (R= 0.828, p=0.006).
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There was a significant negative correlation between the levels of NfH and the

VV/ICV ratio (R= -0.657, p=0.039), as well as a negative trend (R= -0.612, p=0.06)

with the IVV. In addition, the white matter and NfH levels were inversely correlated

(R= -0.778, p=0.023). There was also a significant positive correlation between the

PVL/WM ratio and NfH levels (R= 0.738, p= 0.037) and a positive trend with the

DWMH/WM ratio (R= 0.667, p= 0.071).

Aβ1-42 and total tau had no significant correlations with any of the structural

volumes, however there was a negative trend between tau and VV/DWMH (R= -

0.617, p= 0.077).

3.13. Correlations of neuropsychology and volumetric data in patients

undergoing external lumbar drainage

Patients who performed normal in the RMT Words had significantly higher ICV

than the rest of the patients (879.42 +/- 215 vs. 574.05 +/- 155.6 mm3; p=0.05,

independent samples t-test).
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3.14. Surgical outcomes

Black grading scale for shunt assessment

Excellent Pre-illness activity resumed without
deficit

2 9.1

Good Pre-illness activity resumed with
moderate deficit

4 18.2

Fair Improvement, but no return to previous
work

11 50

Transient Temporary major improvement 3 13.6
Poor No change or worse 2 9.1

Dead Death within 6 weeks of surgery, or a
result of surgery

0 0

Table 3.14.1.Surgical outcomes at 6 weeks

3.13.9.1. Surgical outcomes at 6 months

One patient did not return for follow-up despite enquiries made. Neither her or

nursing care were available for interview at the 6 months point, hence the

outcomes for 1 patient are unavailable. One patient moved abroad following the

intervention however the outcome was communicated to us by the daughter of the

patient who is a general practitioner and are therefore considered valid.

Black grading scale for shunt assessment

Excellent Pre-illness activity resumed without
deficit

8 38.1

Good Pre-illness activity resumed with
moderate deficit

4 19

Fair Improvement, but no return to previous
work

5 24

Transient Temporary major improvement 0 0
Poor No change or worse 4 19

Dead Death within 6 weeks of surgery, or a
result of surgery

0 0

Table 3.14.2.Surgical outcomes at 6 months
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3.15. Prognostic accuracy of CSF markers

For the purpose of providing meaningful statistical calculations due to the small

numbers the results are dichotomised as “favourable” which include BGS

excellent, good and fair categories and “unfavourable” which include BGS

transient, poor and dead categories. In this sense in 6 weeks 17 (77.3%) patients

had favourable and 5 (22.7%) patients unfavourable outcome. In 6 months follow-

up 17 (80.9%) patients had favourable and 4 (19.04%) unfavourable outcome.

For each marker tested we perform a Receiver Operating Characteristic (ROC)

curve in order to calculate a cut-off value that will provide a sensitivity and

specificity of predicting a favourable outcome. The area under the curve is also

calculated and reported with 95% CI. Mean, median, SD and range values for each

marker as well as boxplots for the favourable and unfavourable groups are

presented. The Youden’s index (equals to Sensitivity + Specificity − 1) is also

reported for each marker.

3.15.1. Prognostic accuracy of lactate levels in 6 months

Area Under the Curve

Test Result Variable(s): lactate

.518 .148 .906 .228 .807

Area Std. Error
a

Asymptotic
Sig.

b
Lower Bound Upper Bound

Asymptotic 95% Confidence
Interval

Under the nonparametric assumptiona.

Null hypothesis: true area = 0.5b.
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Table 3.15.1.1. Calculation of the area under curve for ventricular lactate with

CI’s

1.00.80.60.40.20.0

1 - Specificity

1.0
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ROC Curve for CSF Lactate

Figure 3.15.1.1. ROC curve for CSF lactate.

A level of CSF lactate=1.58 will have a sensitivity of 88.2% and specificity of 20%

of predicting a favourable outcome at 6 months. The Youden’s index is 0.08.
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FavourableUnfavourable

Outcome at 6 months
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Figure 3.15.1.2. Boxplots of ventricular Lactate levels of favourable and
unfavourable groups at 6 months
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3.15.2. Prognostic accuracy of 8-isoprostane levels in 6 months

Area Under the Curve

Test Result Variable(s): isoprostane

.400 .141 .513 .124 .676

Area Std. Error
a

Asymptotic
Sig.

b
Lower Bound Upper Bound

Asymptotic 95% Confidence
Interval

Under the nonparametric assumptiona.

Null hypothesis: true area = 0.5b.

Table 3.15.2.1. Calculation of the area under curve for ventricular 8-
isoprostane with CI’s

1.00.80.60.40.20.0

1 - Specificity

1.0
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it
y

ROC Curve of CSF 8-isoprostane
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Figure 3.15.2.1. ROC curve for CSF 8-isoprostane.

A level of CSF 8-isoprostane=37.28 will have a sensitivity of 73% and specificity of

20% of predicting a favourable outcome at 6 months. The Youden’s index is -0.07.
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Figure 3.15.1.2. Boxplots of ventricular 8-isoprostane levels of favourable
and unfavourable groups at 6 months
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3.15.3. Prognostic accuracy of VEGF levels in 6 months

.

Area Under the Curve

Test Result Variable(s): vegf

.329 .119 .256 .096 .563

Area Std. Error
a

Asymptotic
Sig.

b
Lower Bound Upper Bound

Asymptotic 95% Confidence
Interval

Under the nonparametric assumptiona.

Null hypothesis: true area = 0.5b.

Table 3.15.3.1. Calculation of the area under curve for ventricular VEGF with
CI’s

1.00.80.60.40.20.0

1 - Specificity

1.0
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ROC Curve for VEGF
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Figure 3.15.3.1. ROC curve for CSF VEGF.

A level of CSF VEGF=9.03 will have a sensitivity of 58.8% and specificity of 20%

of predicting a favourable outcome at 6 months. The Youden’s index is -0.22
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Figure 3.15.3.2. Boxplots of ventricular VEGF levels of favourable and
unfavourable groups at 6 months
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3.15.4. Prognostic accuracy of GFAP levels in 6 months

Area Under the Curve

Test Result Variable(s):gfap

Asymptotic 95% Confidence

Interval

Area Std. Error
a

Asymptotic Sig.
b

Lower Bound Upper Bound

.549 .146 .791 .263 .835

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5

Table 3.15.4.1. Calculation of the area under curve for ventricular GFAP with
CI’s
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Figure 3.15.4.1. ROC curve for CSF GFAP.

A level of CSF GFAP=0.2 will have a sensitivity of 43.8% and specificity of 75% of

predicting a favourable outcome at 6 months. The Youden’s index is 0.18.
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Figure 3.15.4.2. Boxplots of ventricular GFAP levels of favourable and
unfavourable groups at 6 months
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3.15.5. Prognostic accuracy of CSF NfH at 6 months

Area Under the Curve

Test Result Variable(s): nfl

.318 .132 .225 .059 .576

Area Std. Error
a

Asymptotic
Sig.

b
Lower Bound Upper Bound

Asymptotic 95% Confidence
Interval

Under the nonparametric assumptiona.

Null hypothesis: true area = 0.5b.

Table 3.15.5.1. Calculation of the area under curve for ventricular NfH with
CI’s

1.00.80.60.40.20.0

1 - Specificity
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Figure 3.15.5.1. ROC curve for CSF NfH.
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A level of CSF NfH=0.15 will have a sensitivity of 70% and specificity of 20% of

predicting a favourable outcome at 6 months. The Youden’s index is -0.1.
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Outcome at 6 months
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Figure 3.15.5.2. Boxplots of ventricular NfH levels of favourable and
unfavourable groups at 6 months
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3.15.6. Prognostic accuracy of Aβ 1-42

Area Under the Curve

Test Result Variable(s): Ab142

.135 .087 .015 -.036 .307

Area Std. Error
a

Asymptotic
Sig.

b
Lower Bound Upper Bound

Asymptotic 95% Confidence
Interval

The test result variable(s): Ab142 has at least one tie between the
positive actual state group and the negative actual state group. Statistics
may be biased.

Under the nonparametric assumptiona.

Null hypothesis: true area = 0.5b.

Table 3.15.6.1. Calculation of the area under curve for ventricular Aβ 1-42 with
CI’s

1.00.80.60.40.20.0

1 - Specificity
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ROC Curve of Ab 1-42

Figure 3.15.6.1. ROC curve for CSF Aβ 1-42 .
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A level of CSF Aβ 1-42=180 will have a sensitivity of 35% and specificity of 20% of

predicting a favourable outcome at 6 months. The Youden’s index is -0.45.

FavourableUnfavourable

Outcome at 6 months
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p=0.011

Figure 3.15.6.2. Boxplots of ventricular Aβ 1-42 levels of favourable and
unfavourable groups at 6 months
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3.15.7. Prognostic accuracy of CSF total tau levels at 6 months

Area Under the Curve

Test Result Variable(s): tau

.165 .088 .026 -.008 .337

Area Std. Error
a

Asymptotic
Sig.

b
Lower Bound Upper Bound

Asymptotic 95% Confidence
Interval

Under the nonparametric assumptiona.

Null hypothesis: true area = 0.5b.

Table 3.15.7.1. Calculation of the area under curve for ventricular total tau
with CI’s

1.00.80.60.40.20.0

1 - Specificity
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ROC Curve of total tau



263

Figure 3.15.7.1. ROC curve for CSF total tau.

A level of CSF total tau=767 will have a sensitivity of 17% and specificity of 20% of

predicting a favourable outcome at 6 months. The Youden’s index is -0.63.
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Figure 3.15.7.2. Boxplots of ventricular total tau levels of favourable and
unfavourable groups at 6 months
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3.15.8. Total tau/ Aβ 1-42 ratio

Area Under the Curve

Test Result Variable(s): tau_ab142

.388 .115 .457 .164 .613

Area Std. Error
a

Asymptotic
Sig.

b
Lower Bound Upper Bound

Asymptotic 95% Confidence
Interval

Under the nonparametric assumptiona.

Null hypothesis: true area = 0.5b.

Table 3.15.8.1. Calculation of the area under curve for ventricular Total tau/
Aβ 1-42 ratio with CI’s

1.00.80.60.40.20.0

1 - Specificity
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Figure 3.15.8.1. ROC curve for CSF Total tau/ Aβ 1-42 ratio.

A cut-off level of 2.28 will have a sensitivity of 47% and specificity of 20% of

predicting a favourable outcome at 6 months. The Youden’s index is -0.33.
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Figure 3.15.8.2. Boxplots of ventricular Total tau/ Aβ 1-42 ratio of favourable
and unfavourable groups at 6 months

A discriminant function analysis of both total tau and Aβ 1-42 was undertaken. in

order to calculate the prognostic accuracy of the combination of both markers. The
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Wilks’ lambda is a multivariate test. Because p <0.05, we can say that the model is

a good fit for the data.

The discriminant function coefficients seen below are used to write an equation in

order to calculate the discriminant function. Hence:

DF= 0.841 X Aβ + 0.474 X Total Tau

Functions at Group Centroids

Function

6 months Outcome 1

Unfavourable 1.467

Favourable -.431

Unstandardized canonical discriminant functions

evaluated at group means

Table 3.15.8.2. Discrimination function analysis of the combination of total
tau and Aβ 1-42

The table demonstrates the group’s centroids. The cut score= 1.036 is the average

of the two above values. Hence if the:

UScore >1.036U by substituting the respective Aβ and total tau in the above equation

it is more likely to have an unfavourable outcome and if the

UScore < 1.036U then a Ufavourable Uoutcome is more likely

Standardized Canonical Discriminant Function Coefficients

.841

.474

ab142

tau

1

Function

Wilks' Lambda

.590 10.035 2 .007

Test of Function(s)
1

Wilks'
Lambda Chi-square df Sig.
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Classification Results
a

Predicted Group Membership6 months

outcome 0 1 Total

Unfav 4 0 4Count

Favour 3 14 17

Unfav 80.0 20.0 100.0

Original

%

Favour 17.6 82.4 100.0

a. 81.8% of original grouped cases correctly classified.

Table 3.15.8.3. Classification results of the discriminant function analysis for
total tau and Aβ 1-42

According to the classification 81.8% of cases were classified correctly with a

sensitivity of 80% and specificity of 82.4%
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Figure 3.15.8.3. Scatterplot of favourable and unfavourable cases based on
the discriminant function analysis for total tau and Aβ 1-42

3.15.9. Summary of descriptive statistics from all CSF markers

The means and median of the levels of the different markers are presented below.

The levels of Aβ 1-42 and total tau are smaller in the favourable group with the

difference being statistically significant (Mann-Whitney test, p=0.011 and p=0.025

respectively).

Descriptive statistics of ventricular CSF levels from 22 patients with idiopathic NPH

2.0060 38.8366 302.10 1086.2393 3.8980 .6380 17.5350 19.2640

.53882 2.01567 96.060 347.19529 1.55884 .57954 34.52339 11.93046

1.8900 38.0848 288.00 1034.0000 4.3000 .5500 .3050 16.0000

1.55 37.18 177.60 764.20 1.88 .14 .21 8.96

2.93 42.33 409.92 1570.00 5.45 1.62 69.32 37.98

2.0884 38.0296 177.64 550.9750 3.3118 .6447 8.1100 15.5435

.80601 1.31128 67.902 551.65230 3.08204 1.29287 14.48425 15.44091

1.8300 37.8855 173.49 359.0000 1.8500 .2500 .1750 9.8900

.25 36.03 107.06 48.00 .34 .00 .01 2.09

3.80 40.07 288.00 1830.00 10.55 5.45 38.28 53.50

2.0697 38.2314 205.92 672.6260 3.4450 .6432 9.9950 16.3891

.74265 1.50029 90.116 554.55965 2.78629 1.15651 19.20355 14.53661

1.8300 38.0699 176.80 618.0000 2.7800 .3200 .2200 10.0800

.25 36.03 107.06 48.00 .34 .00 .01 2.09

3.80 42.33 409.92 1830.00 10.55 5.45 69.32 53.50

Mean

Std. Deviation

Median

Minimum

Maximum

Mean

Std. Deviation

Median

Minimum

Maximum

Mean

Std. Deviation

Median

Minimum

Maximum

Outcome
Unfavourable

Favourable

Total

Lactate
8-isopro

stane
Ab

1-42 Total tau

Total tau/
Ab 1-42

ratio NfH GFAP VEGF

Table 3.15.9.1. Summary of descriptive statistics from all CSF markers for

favourable and unfavourable groups
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Comparison of means of CSF markers in favourable and unfavourable outcome groups b

41.000 30.000 11.500 14.000 33.000 27.000 16.500 28.000

56.000 150.000 164.500 167.000 186.000 180.000 152.500 181.000

-.118 -.655 -2.429 -2.233 -.744 -1.216 -1.466 -1.136

.906 .513 .015 .026 .457 .224 .143 .256

.940
a

.553
a

.011
a

.025
a

.493
a

.249
a

.148
a

.283
a

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed
Sig.)]

Lactate
8-isoprosta

ne Ab 1-42 Total tau
Tau_Ab

ratio NfH GFAP VEGF

Not corrected for ties.a.

Grouping Variable: good_bb.

Table 3.15.9.2. Comparison of means of CSF markers in favourable and
unfavourable outcome groups

The correlations of the different ventricular markers were also calculated. 8-

isoprostane has a significant positive correlation with both NfH and GFAP. Total

tau levels correlate positively in a significant fashion with NfH, GFAP and VEGF

levels. NfH also has a strong correlation with GFAP levels. Lactate and Aβ 1-42

levels do not correlate with any of the other markers.
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Table 3.15.9.3. Intercorrelations of all ventricular CSF markers

Inter-correlations of ventricular CSF markers

Qalb
Lactate

8-isoprostane Aβ 1-42 Total tau NfH GFAP VEGF

Correlation

Coefficient
NS NS NS NS NS NS NS

Qalb

Sig. (2-tailed) .

Correlation

Coefficient
NS NS NS NS NS NS NS

Lactate

Sig. (2-tailed)

Correlation

Coefficient
NS NS NS NS .494 .483 NS

8-isoprostane

Sig. (2-tailed) .027* .042*

Correlation

Coefficient
NS NS NS NS NS NS NS

Aβ 1-42

Sig. (2-tailed)

Correlation

Coefficient
NS NS NS NS .506 .498 .423*

Total tau

Sig. (2-tailed) .016* .025* .050*

Correlation

Coefficient
NS NS .494 NS .506 .703 NS

NfH

Sig. (2-tailed) .027* .016* . .001**

Correlation

Coefficient
NS NS .483 NS .498 .703 NS

GFAP

Sig. (2-tailed) .042* .025* .001** .

Correlation

Coefficient
NS NS NS NS .423 NS NS

Spearman's

rho

VEGF

Sig. (2-tailed) .050* .

*. Correlation is significant at the 0.05 level (2-tailed).
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3.15.10. Logistic regression of markers as predictors of outcome

A logit regression was used as a means of predicting favourable outcome from the

ventricular levels of the CSF marker examined. None of the markers proved to be

significant predictors of favourable outcome.

Logistic regression as predictor of favourable outcome

2.451 1.898 1.666 1 .197 11.596

-.032 .030 1.139 1 .286 .969

.000 .008 .001 1 .982 1.000

-.280 1.770 .025 1 .874 .756

.443 1.264 .123 1 .726 1.558

-.026 .107 .059 1 .809 .974

-.939 .914 1.056 1 .304 .391

.031 .077 .164 1 .685 1.032

40.629 36.957 1.209 1 .272 4E+017

Lactate

Ab 1-42

Total tau

Total tau/ Ab
1-42 ratio

NfH

VEGF

8- isoprostane

GFAP

Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

.a.

Table 3.15.10.1. Logistic regression of all ventricular CSF markers as
predictor of surgical outcome at 6 months.

3.16. Influence of epidemiological data on 6-months outcome

A chi-square test was used to find associations between favourable and

unfavourable outcomes and epidemiological data. The factors of sex, symptom

appearing first, history of diabetes mellitus, hypertension, history of transient

ischaemic attacks, history of cerebrovascular accident, history of myocardial

infarction, history of ischaemic heart disease and peripheral vascular disease.

None of the factors proved to have significant associations with the outcome.

The Mann-Whitney test was used to identify associations between outcomes and

age of patient, and symptomatic duration, as well as duration of each individual
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symptom. No significant association was identified. In a logistic regression model

none of the above factors was a significant predictor of favourable outcome at 6

months.

3.17. Influence of clinical parametres on outcome

Chi-square test was used to test for association between outcome at 6 months and

clinical parametres at examination (see table 3.2.2.). None of the parametres had a

significant association with outcome.

3.18. Prognostic accuracy of neuropsychological assessment

Cross tabulations were performed in order to test for association between outcome

at 6 months and the different test of neuropsychological assessment. None of the

associations proved statistically significant. Similarly improvement on the individual

tests post drainage cannot predict the 6 months outcome.
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≠: not repeated post drain due to practise effects

Table 3.18.1. Neuropsychological assessment before and after insertion of

ELD, at 6 weeks and 6 months

The above table demonstrates improvement in all the tests (apart from the RMT

faces test) that continues beyond the first assessment at 6 weeks to the second

assessment at 6 months. However no more than 60% of patients that had the

assessment demonstrated improvement on individual tests at any time point.

Test of
intelligence

Recognition
Memory tests

Executive Functioning Speed (subcortical)

Tests WAIS-R RMT words RMT faces Phonemic VF Trails Speed (cancelling)

Normal 5 7 4 4 1 0

Mild/Moderate
-severe
cognitive
impairment

10 8 11 11 9 15

Post ELD
significant
improvement

≠ 2
(20%)

1
(11%)

1
(11%)

1
(12%)

3
(38%)

Post ELD no
difference/
significant
decline

≠ 8 9 9 7 5

6 weeks
significant
improvement

0 5
(50%)

5
(55%)

2
(22%)

1
(12%)

3
(38%)

6 weeks no
difference/
significant
decline

10 5 4 7 7 5

6 months
significant
improvement

1
(12%)

6
(60%)

4
(40%)

3
(27%)

2
(30%)

3
(38%)

6 months no
difference/
significant
decline

8 5 6 8 4 5
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3.19. Prognostic accuracy of volumetric imaging data

The Mann Whitney U test was used to calculate significant differences between the

favourable and unfavourable outcome groups. The only significant differences

between the 2 groups were in the PVL normalised ratio (0.035 vs. 0.059, p=0.044),

the IVV/PVL ratio (28.89 vs. 2.95, p=0.035), and the PVL/WM ratio (0.07 vs. 0.15,

p=0.09).

A logistic regression of the volumetric variables did not show any significant

predictor of the favourable outcome.
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Figures 3.19.1. 3.19.2. and 3.19.3. Boxplots of PVL/ICV ratios, IVV/PVL ratios
and PVL/WM ratios and differences between groups with favourable and
unfavourable outcome.
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3.20 Walking test on follow-up

The walking test at baseline and follow-up is displayed below. 18 patients

undertook the follow-up test. The Wilcoxon signed ranks test showed a significant

reduction in the number of steps at follow-up (p=0.015; 99 CI=0.012-0.018) and a

non significant difference in the time (p=0.125; 99 CI=0.116-0.133).

Walking test at baseline and 6 months follow-up

N Mean Std.

Deviation

Minimum Maximum

Baseline steps 24 38.53 34.6 15.5 152

Steps at 6 months 18 19.56 6.2 14 31

Baseline time (secs) 24 43.8 50.4 6.5 171

Time at 6 months (secs) 18 13.09 7.13 8 31

Table 3.20.1. Walking test at baseline and 6 months follow-up
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Chapter 4 Discussion

External lumbar drainage is thought to mimic shunting which could explain its high

accuracy in selecting patients for CSF diversion (Marmarou, Bergsneider et al.

2005; Marmarou, Young et al. 2005). No study in the literature to date has

recorded the changes in the CSF composition occurring during external drainage.

Our study therefore is the first, to our knowledge, which attempts to record such

changes. Tullberg et al. on a recent study have recorded increased postoperative

levels of lumbar CSF albumin, albumin ratio, neuropeptide Y (NPY), vasoactive

intestinal peptide (VIP), ganglioside GD3, and tau, whereas homovanillic acid

(HVA), 5-hydroxy-indoleacetic acid (5-HIAA) and 4-hydroxy-3-methoxyphenylglycol

(HMPG) and sulphatide levels remained unchanged following shunting in patients

with iNPH (Tullberg, Blennow et al. 2008). The increase in tau levels agrees with

our current findings. In another earlier study from the same group (albeit in a

mixed NPH group of idiopathic and secondary forms) a significant postoperative

increase in the same markers as before as well as in gamma amino butyric acid

and sulfatide was noted, whereas the lumbar levels in CSF of NFL, HVA, HMPG

and 5-HIAA remained unchanged (Tullberg, Blennow et al. 2007)

The role of lactate as a prognostic biomarker

CSF lactate is produced by immigrated leukocytes and by anaerobic glycolysis in

the CNS parenchyma. Mean lactate level increased from day 0 to day 2 and then

further to day 3. The difference from day 0 to day 3 was statistically significant.

One would expect that as the drainage proceeds, lactate level would decrease
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since the element of ischaemia is alleviated. Inao et al. have demonstrated a slow

seepage of lactate into the CSF following experimental barotrauma in cats hence

demonstrating the dynamics of lactate absorption and production into and out of

the CSF spaces (Inao, Marmarou et al. 1988).

Two previous studies gave contradictory results with regards to the levels of lactate

in NPH (Malm, Kristensen et al. 1991; Nooijen, Schoonderwaldt et al. 1997). Malm

et al. found lower lactate levels in iNPH when compared to controls and

hypothesised that there is ventricular accumulation and consequent

transependymal absorption of lactate due to inverse, caudo-rostral, flow of CSF.

However, our results show that the rostrocaudal gradient (RCG) of lactate was

0.93 and 1.13 in iNPH and control subjects, not supporting the above argument.

There was no significant differences between the two levels of sampling both in

iNPH patients and control subjects verifying the earlier studies of Posner and Plum

who found almost equal CSF lactate levels between the cisterns and lumbar thecal

sac (Posner and Plum 1967). A ventriculo-lumbar ratio of lactate equal to 0.8 has

been found in a study of patients with suspected CNS bacterial infections with

higher lumbar than ventricular concentration (Gerber J 1998). In another study

comparing lumbar and ventricular lactate levels in patients with CNS infections and

cerebral haemorrhage, no significant difference existed between the two (Sommer,

Gaul et al. 2002). We postulate that the hydrostatic pressure gradient from the

ventricles to the interstitial space is reversed during drainage and therefore the

resorption of lactate by the subependyma occurring in normal circumstances

(Bateman 2002) might cease. Under normal circumstances lactate clearance from

CSF is slow taken up by the brain via diffusion (Prockop 1968), and by the
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arachnoid villi by bulk flow (Valenca, Shannon et al. 1971), and partially

metabolised to pyruvate. In control subjects it appears that lactate accumulates

more in the ventricles, however in subjects with iNPH lactate is in larger

concentration in the thecal sac. The higher RCG in control subjects agrees with the

suggestion by Bateman. Eide et al. have shown in a microdialysis study of 28

patients with iNPH that in 29% of the participants a reduction was seen in the

microdialysate lactate (Eide and Stanisic 2009). This finding corresponds well with

our findings and the suggestion by Bateman. This hypothesis is further

strengthened by the findings of the other microdialysis study in patients with iNPH

where following CSF drainage lactate levels increase (Agren-Wilsson, Roslin et al.

2003). The difference in the two studies is that in the former the probe was placed

20 mm from the cortical surface, whereas in the latter it was placed in the

periventricular white matter. During ELD therefore a reduction in the brain lactate

occurs due to a reversal of the hydrostatic gradient from the ventricles to interstitial

space causing subsequently causing a net flow from the brain parenchyma

towards the ventricular space and hence lactate appears in the CSF.

Lactate entrance into the CSF from the brain may occur by diffusion, by bulk flow

via extracellular channels, or by direct volume entry by choroid plexus.

Furthermore elevated CSF lactate may be derived not only from the brain but also

from the circulating blood lactate secondary to impairment of the blood- brain

barrier (BBB). However, brain lactate concentration does not depend on serum

levels (Posner and Plum 1967). Our data suggests a degree of BBB in the 11

patients undergoing ELD hence suggesting a leakage of serum lactate via the BBB

in patients with iNPH
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At the initial sample there is no significant correlation with the levels of the other

markers or the Qalb. However, as drainage continues a positive trend between NfH

and lactate is noticed, that was negative on the initial sample.

Patients who categorized in the normal category, when examined with the RMT

Faces test, had lower lactate levels compared to the subjects who performed

worse in this particular test. That signified a trend between pathological CSF

lactate levels and memory (non-verbal) failure. As visual memory is localised to the

right temporal lobe (Ariza, Pueyo et al. 2006), this finding may be considered as

being consistent with literature suggesting deficits of some right hemisphere

functions in NPH (Iddon, Pickard et al. 1999). This signifies a lateralising effect;

whereas lactate levels would be the result of a global ischemic insult. In a study

evaluating changes in regional blood flow post shunting, Tamaki et al. did not

identify any lateralising effect in blood flow of the temporal lobe of the improved

group (Tamaki, Kusunoki et al. 1984). On the other hand a single patient case

report correlating neuropsychological and findings from cerebral metabolism (as

measured by PET using fluodeoxyglucose F 18) found asymmetric

hypometabolism with more extensive involvement of right-hemisphere regions

(Kaye, Grady et al. 1990). Hence, although interesting we cannot further elucidate

on the significance of this finding.

A cut-off level of CSF lactate=1.58 mmol/L will have a high sensitivity of 88.2%

and low specificity of 20% of predicting a favourable outcome at 6 months. With

higher lactate levels the sensitivity decreases whereas the specificity increases.
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Lactate may be then used for selecting patients for surgery; however patients with

higher levels should not be excluded from having surgery on the basis of an

expected unfavourable outcome, due to the low specificity of CSF lactate. As

proposed from other studies lactate is a marker of cerebral ischemia (Brouns,

Sheorajpanday et al. 2008) it makes sense that patients with a lower ischemic load

would have better surgical outcomes as previously reported (Boon, Tans et al.

1999). The fact that increased lactate should not exclude patients from having

surgery may be explained by the fact that patients with AD or VD may also have

increased CSF lactate levels (Parnetti, Reboldi et al. 2000). Increased CSF lactate

therefore may be a marker of more than one pathological comorbidity occurring at

any one time.

The role of 8-isoprostane as a prognostic biomarker

The isoprostanes are a family of eicosanoids of non-enzymatic origin produced by

the random oxidation of tissue phospholipids by oxygen free radicals. F2-

isoprostanes are exclusively products of free radical–mediated damage to

arachidonic acid which form as esters bound to membrane lipid which are then

enzymatically hydrolyzed and released into extracellular fluid. They are known to

be elevated by oxidative stress. One of the isoprostanes, 8 –Isoprostane (8-iso

PGF2a), has been proposed as a marker of antioxidant deficiency and oxidative

stress (Domenico Praticò 2000). Levels have been found increased in ventricular

(Montine, Beal et al. 1999) and lumbar CSF (Domenico Praticò 2000) in patients
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with AD, and they are thought to enhance its laboratory diagnosis (Montine, Kaye

et al. 2001). Lipid peroxidation was increased when compared to controls in NPH

(Fersten, Gordon-Krajcer et al. 2004) and similar results suggesting that vascular

changes observed in hydrocephalic rats may be due to the high level of lipid

peroxidation have been published (Caner, Atasever et al. 1993). Isoprostanes

represent the product of free-radical peroxidation of polyunsaturated fatty-acids

(Montuschi, Barnes et al. 2004). Oxidative stress and chronic cerebral ischemia

are two pathophysiological processes closely linked together (Faraci 2005; Cai,

Yan et al. 2008).

Our results have shown that the temporal profile of 8-isoprostane remains mostly

unaltered during the 72 hours of drainage, even though there appears to be a

significant increase between day 2 and 3. That might mean that; a) the ischaemic

process cannot be reversed within such a short time and therefore any changes

will not shown in the CSF profile obtained during this study, b) any ventricular

changes will not be reflected in the lumbar concentrations, or c) the background

ischaemic process is negligible and therefore no temporal difference is shown.

Ischaemia is known to be an established pathophysiological process in iNPH as

demonstrated by various imaging studies (Bradley, Whittemore et al. 1991; Krauss,

Regel et al. 1997; Tanaka, Kimura et al. 1997). Our results of volumetric

calculations of the DWMH area in the above set of patients point to an ischemic

process which is non-negligible (DWMH represent 5.1% of the total intracerebral

volume) hence our third suggestion is not valid. Our second suggestion may be

less likely bearing in mind that we found the RCG to be equal to 1. Therefore we

propose that the ischemic process may not be able to be reversed within 72 hours
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of drainage. In a recent study Lenfeldt et al. showed that recovery of N-acetyl

aspartate and choline during 3 days of external lumbar drainage is slow and little

different when these metabolites were measured with the aid of proton

spectroscopy (Lenfeldt, Hauksson et al. 2008). The results of this latter study might

support the hypothesis that 72 hours is not long enough to reverse long-

established damage. CSF drainage produced reduction in levels of 8-isoprostane

in AD patients undergoing drainage with a low-flow shunt, but significant reduction

was produced after 9 months, and not at 3 and 6 months (Praticoa, Yaoa et al.

2004).

CSF F2-isoprostanes levels are elevated early in the course of AD and correlated

with disease progression (Montine, Beal et al. 1999). In our study we did not find a

correlation with symptom duration. Also, in patients with AD it was found that the

levels are correlated in a significant fashion with brain weight and the degree of

cortical atrophy (Montine, Markesbery et al. 1999). It is known that in patients with

iNPH ventriculomegaly is disproportionate to the degree of cortical atrophy that

differentiating their imaging from patients with AD. The volumetric study from 10

patients with iNPH found a negative trend between the isoprostane levels and the

VV/WM ratio (R= -0. 667, p= 0.071). The smaller levels of F2 isoprostane in our

study (38 pg/mL) when compared with studies of patients with AD (8-128 pg/mL)

may be because the ventricular volume versus white matter volume ratio in NPH

would be larger. This correlation therefore suggests that in iNPH the main source

of 8-isoprostane is the white matter, which would explain the trend observed.
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The RCG of 8-isoprostane was 1.0 and 1.06 in iNPH and controls. It appears

therefore that 8-isoprostane is secreted and absorbed in an equal rate across the

craniospinal axis both in iNPH and control subjects. There are no previous similar

studies from patients with AD or other degenerative neurological disorders that

have studied the dynamics across the craniospinal axis. A study measuring F2

isoprostane levels from autopsied cerebral samples and ventricular CSF (VF) from

AD patients undergoing autopsy, and lumbar CSF intra vitam (LF) again from

patients with AD showed a brain tissue>VF>LF gradient (Montine, Markesbery et

al. 1999). However lumbar levels were measured early in the course of disease,

whereas ventricular levels were measured in patients with more advanced AD. In

our study the levels were measured a few weeks apart in each case.

Levels of F2 isoprostanes are not influenced by the density of neuritic plaques or

neurofibrillary tangles (Montine, Markesbery et al. 1999). That agrees with our

findings of no correlation of 8-isoprostane with tau or Aβ 1-42 levels. However

there was a significant positive correlation of the ventricular 8-isoprostane both

with GFAP (R=0.483, p=0.042) and NfH (R=0.494, p=0.027) levels. Cerebral

GFAP has been shown to correlate with markers of oxidative damage in a mouse

model of AD pathology (Zhu, Gu et al. 2008). Reactive astrocytes are known to

protect neurons from oxidative stress via a glutathione dependent mechanism

(Iwata-Ichikawa, Kondo et al. 1999; Chen, Vartiainen et al. 2001; Muntane, Dalfo et

al. 2006); this positive correlation therefore signifies a close association between

irreversible gliosis and oxidative stress in normal pressure hydrocephalus. It has

also been suggested that free radical activity plays an important role in the

reorganizations of the neurofilament structure and the cytoplasmic inclusions
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observed in several neurodegenerative diseases (Gélinas, Chapados et al. 2000;

Bizzozero, Reyes et al. 2007). Our findings therefore suggest a common pathway

of oxidative stress affecting both astrocyte function and neurofilament structure as

part of a neurodegenerative process.

An interesting finding was that of a significant difference between the ventricular

and cisternal levels between patients with iNPH and control subjects suffering from

TGN. This finding is unexpected since our initial hypothesis was to use 8-

isoprostane to characterise oxidative stress. In our study group 4 patients (18%)

had diabetes mellitus, 7 (32%) suffered from hypertension, 1 (4.5%) had suffered a

transient ischaemic attack previously, and 3 (14%) patients had a previous

cerebrovascular accident. The prevalence of hypertension in both males and

female blacks in non-Hispanic whites and blacks in a large US study in the age

group 70-79 years old is more than 60% (Burt, Whelton et al. 1995). Our study

group therefore appears to have a smaller incidence of hypertension than what

expected from an average population. Patients with TGN do not suffer from

hypertension more often than a control population; the incidence of hypertension

appears equal to that in our group of NPH patients (Teruel, Ram et al. 2009). F2-

isoprostanes have been found locally in atherosclerotic plaques (Pratico, Iuliano et

al. 1997). The association of TGN and atherosclerosis is established (Lewy and

Grant 1938). It might be therefore that the increased cisternal levels in patients

with TGN reflect the local disease process. That may also explain the slightly

higher cisternal than lumbar CSF levels in our control population.
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Although oxidative stress and chronic cerebral ischaemia are two important

pathophysiological processes that can influence the surgical outcome in iNPH the

prognostic value of 8-isoprostane appears limited at present. The reason for this

might be that 8-isoprostanes, as we have discussed, may not be able to

characterise the pathological processes influencing surgical outcomes in iNPH. It

may be that oxidative damage occurs early in the process of chronic

hydrocephalus development and hence at the point of our examination, when most

patients had a mean of 4 years of symptoms, the levels have levelled off and

hence they do not appear of use in differentiating responders from non-

responders. A cut-off level of 37.3 pg/mL or less has a sensitivity of 73% of

predicting a favourable outcome; however its specificity appears limited to 20%.

Hence with levels less than 37.3 pg/mL we may be able to predict a favourable

surgical outcome with greater than 73% sensitivity; however with levels greater

than 37.3 pg/mL the specificity is small

The role of VEGF as a prognostic biomarker

There is increasing evidence that blood vessels and angiogenic factors such as

VEGF play an important role in the control of neurogenesis via crosstalk pathways

(Vagnucci and Li 2003). It has been suggested that neurogenesis continues on the

adult brain especially after an ischemic insult and that the role of VEGF in these

processes appears central (Lichtenwalner and Parent 2005). We know that chronic

vascular insufficiency in the CNS and possibly insufficient VEGF-dependent

neuroprotection leads to selective degeneration of motor neurons in mice with a

targeted deletion of the hypoxic response element in the promoter of the VEGF
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gene (Oosthuyse, Moons et al. 2001). The damage may be the combination of

insufficient neuroprotection and impaired neural perfusion. VEGF affects vascular

tone by controlling the release of the vasorelaxant nitric oxide (NO) by endothelial

cells. Alternatively, VEGF may be required for the normal functioning of

perivascular autonomic nerves, which critically regulate vascular tone and, hence,

tissue perfusion (Storkebaum and Carmeliet 2004). VEGF’s implication in the

development of AD has been already suggested (Vagnucci and Li 2003).

VEGF in the CSF has been studied before and has been identified in patients with

astrocytomas (Peles, Lidar et al. 2004). In that study the authors measured CSF

VEGF level in ten patients with communicating hydrocephalus and identified a

median concentration of 8.3 ng/mL, which is not dissimilar from our study.

However, the type of communicating hydrocephalus was not further elucidated in

that study. The role of VEGF in cerebral ischemia has also been studied in

aneurysmal subarachnoid haemorrhage in human subjects (Scheufler, Drevs et al.

2003). Dombrowski et al. have identified increased density of VEGF positivity in

neurons, glia and blood vessels in an animal model of hydrocephalus

(Dombrowski, Leichliter et al. 2006). Increased levels of VEGF-A were found in

children undergoing shunt surgery when compared to a control group; the authors

suggested that patients with other conditions of altered CSF flow pathways, which

would also be expected to interfere with the

intracranial or intraspinal pulsation absorption mechanisms (as in Chiari

malformations, some arachnoid cysts, and the like) also had elevations in CSF

VEGF-A (Madsen, Shim et al. 2009).
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The level of VEGF increased during the 3 days drainage. This difference was

significant between day 0 and day 2 and continued to day 3, even though in the

last 24 hours the difference was not significant. Our study supports a degree of

angiogenesis in patients with iNPH, even though this angiogenesis does not seem

to be induced by ischaemia, since VEGF is not correlated with the other 2 markers

we chose to characterise hypoxia. It might be that VEGF is increased as a means

to promote neurogenesis/neuroregeneration once the increased transmantle

pressure ceases (due to drainage) (Sun, Jin et al. 2003; Storkebaum, Lambrechts

et al. 2004).

In the day 0 sample the lumbar levels of NfH are negatively correlated with the

levels of VEGF which might signify a reverse established association between

neurodegeneration and angiogenesis/ neurogenesis. However, the reversal of this

relationship as drainage continues might be explained by the washout of

ventricular metabolites. The ventricular levels of VEGF are positively correlated

with total tau (R=0.494, p=0.05), another marker of neurodegeneration. No similar

findings have been identified in humans, however in a transgenic model of AD

continuous release of VEGF over a 3 month period has led to attenuation of

hyperphosphorylated tau and amyloid load suggesting an element of

neuroprotection (Jeynes and Provias 2009). Tortuous thickening of the basement

membrane, collagen deposition, cerebral amyloid angiopathy, and the presence of

plaques/tangles impede diffusion of oxygen (Storkebaum and Carmeliet 2004),

thus explaining the positive correlation between total tau and VEGF levels in

ventricular CSF. Amyloid plaques characteristic of AD pathology are known to

generate reactive oxygen species that damage brain endothelium (Vagnucci and Li
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2003). VEGF obtains therefore a central role between a chronic hypoxic/ischemic

insult and neurodegeneration in iNPH.

The positive correlation of the VEGF levels with the VV/ICV ratio may mean that

VEGF is produced as a response to ventriculomegaly. If this is the case the VEGF

secretion might be due to chronic ischemia induced by the ventriculomegaly-

produced increased transmantle pressure, which other studies have suggested

(Deshpande, Dombrowski et al. 2007). There is, however, no evidence whether the

reverse may be true. Experimental studies in rats have shown that infusion of

VEGF produces prominent bilateral ventriculomegaly (Harrigan, Ennis et al. 2003);

leading to the hypothesis that bilateral ventriculomegaly may be the result of

increased VEGF production. The presence of VEGF in choroid plexus is already

known (Stopa, Berzin et al. 2001). The positive trend between the white matter

volume and the VEGF levels might indicate that the latter is also produced from the

white matter (Arai, Deguchi et al. 1998), thus the role of VEGF in ventriculomegaly

and in particular in iNPH requires further investigation.

The RCG for VEGF in NPH and control subjects is 3.2 and 0.38 respectively. The

ventricular levels were much higher than the lumbar in iNPH patients, whereas the

reverse was true in the control population. There was therefore almost a reversal

of the RCG in the 2 groups we examined. The dynamics of brain-derived proteins

have been elegantly described by Reiber (Reiber 2001; Reiber and Peter 2001;

Reiber 2003). He suggested that the CSF flow rate, and not the blood-CSF barrier

dysfunction as previously thought, is the most important determinant for

understanding the pathological changes if both blood and brain-derived proteins in
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CSF. In his work in order to characterise the dynamics he analysed the

concentration gradients of CSF /serum albumin ratio (Qalb) and the ventricular/

lumbar CSF concentration gradient. Pathologically decreased CSF flow rate was

characterised by increased CSF /serum albumin ratio (Qalb). According to his

theory therefore:

1) brain-derived proteins show a decrease of concentration between ventricular

and lumbar CSF (i.e. RCG>1) in normal situations; their concentration does not

vary with pathologically decreasing CSF flow rate, i.e. in cases of a blood CSF

barrier dysfunction, and therefore it is independent of the Qalb.

2) In the case of CSF proteins from leptomeningeal cells an increasing

concentration between normal ventricular and lumbar CSF is observed (similar to

blood-derived proteins) (i.e. RCG<1). In the case of pathologically decreasing CSF

flow rate a linearly increasing concentration in CSF is observed, that therefore

being dependent on Qalb.

3) a group with a non-negligible blood-derived fractions in addition to brain-derived

fractions. In this group it is important to decide whether a quotient or an absolute

concentration of the brain-derived protein is preferred as the most sensitive

evaluation with reference to the albumin quotient.

In the case of VEGF the ventricular levels were independent of Qalb (Spearman’s

correlation, R=-0.32, p=0.144). VEGF has both a brain and blood derived fraction.

A limitation of our study was that we did not have access to serum samples and

therefore it is impossible to calculate the blood-derived fraction of the ventricular
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VEGF levels. The RCG however is 3.2 in iNPH following the dynamics of brain-

derived proteins as described by Reiber. We thus suggest that there is increased

release of VEGF in the CSF of patients with iNPH which is mostly derived from the

brain or choroid plexus as research has shown. This is positively correlated with

the degree of ventriculomegaly, however from the current data we cannot explore

whether ventriculomegaly is a cause or a consequence of VEGF release.

Furthermore, we are not able to explore the issues of angiogenesis versus

neuroregeneration in hydrocephalus.

Despite what seems to be an important role in the pathogenesis and

pathophysiology of chronic hydrocephalus VEGF levels have a low sensitivity and

specificity in predicting a favourable outcome (VEGF=9.03 ng/mL,

sensitivity=58.8% and specificity=20%). The favourable outcome group has

smaller VEGF levels however the difference is not statistically significant. If we

assume that VEGF is increased because of chronic ischemia we may therefore

assume (as before with lactate and 8-isoprostane) that the element of ischemia at

the time of assessment of our cohort is not so important in predicting a favourable

surgical outcome.

The role of GFAP as a prognostic biomarker

Tullberg (Tullberg, Rosengren et al. 1998) and Albrechtsen (Albrechtsen,

Sorensen et al. 1985) have both demonstrated increased GFAP levels in iNPH

patients compared to controls. GFAP is particularly abundant in reactive astrocytes

and gliotic tissue (Albrechtsen, Sorensen et al. 1985) and raised GFAP in CSF
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suggests irreversible damage since GFAP is not actively secreted by the

astrocytes.

In our study, the levels increased significantly in relation to time of drainage. This

might signify a release of GFAP from a ventricular pool due to previous

accumulated GFAP as result of the underlying astrocytic damage. These findings

are supported by the high RCG (8.85) we have observed in our patients, and is

also supported by other studies (Albrechtsen, Sorensen et al. 1985). It could not

possibly be explained by further astrocytic damage since CSF drainage is known

to reverse any pathological effects. Whether GFAP levels decrease as one would

expect the longer the drainage continues is not possible to conclude from our

current findings.

GFAP had a statistically significant negative correlation with both Aβ1-42 and total

tau in the first sample. This negative relationship with Aβ1-42 continued in the next

72 hours but became non-significant. These results signify an inverse relationship

between astrogliosis and neuronal degeneration, as is reflected in the CSF profile

of these patients. One would expect to see a positive relationship between these

two processes, i.e. increased gliosis associated with increased neuronal

degeneration as a reflection of ongoing damage. It is for example known that Aβ1-

42 accumulates in astrocytes as a by-product of their local neuronal debris clearing

function (Heneka 2006). Following that lysis of these Aβ1-42 burdened astrocytes

occurs to form astrocyte-derived amyloid plaques (Nagele, Wegiel et al. 2004).

However, even though there have been many studies in heterogeneous

populations looking into the above relationship this is not always the case

(Joachim, Morris et al. 1989; Rozemuller, Eikelenboom et al. 1989). It has been
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reported that astrogliosis in the AD brain, as measured by GFAP levels, increases

independently of beta-amyloid accumulation but correlates with the duration of the

disease, suggesting that deposition of beta-amyloid reaches an early “ceiling”

whereas the gliosis continues throughout the time course of the condition

(Ingelsson, Fukumoto et al. 2004). This last finding is supported by our present

data. In a previous study that investigated neurofilament light chain and GFAP in

patients with NPH (inclusive of secondary cases) this relationship was not

examined (Tullberg, Rosengren et al. 1998).

GFAP is a marker of reactive gliosis and it correlates in a positive manner with the

VV/DWMH, a ratio that represents the degree of ventriculomegaly versus the

vascular ischemic load in this cohort of patients. Positive GFAP immunostaining

has been found in areas of gliosis (Fazekas 1993) commonly associated with

ventriculomegaly (Rubin, Hochwald et al. 1976), but not in areas related to DWMH

(Young, Halliday et al. 2008) which may explain our finding. This diverse and

distinct relationship between reactive gliosis and DWMH has been also

documented in patients suffering from other types of dementia (Barber, Scheltens

et al. 1999).

A significant negative correlation between the GFAP levels and the age of the

control group (p<0.001). This relationship (Conde and Streit 2006) is established

and confirms our findings. The ventricular levels of GFAP were found to have a

positive correlation with 8-isoprostane, total tau and particularly NfH. These

findings have not previously been confirmed in patients with iNPH. However,

neuronal degeneration has been associated with astrogliosis in experimentally
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induced excitotoxicity in aged rat brains (Castillo-Ruiz, Campuzano et al. 2007).

Increased gliosis has been shown to precede AD pathology in patients with AD,

although the correlation was between GFAP and amyloid beta in pathological

sections of lateral temporal cortex (Wharton, O'Callaghan et al. 2009)

The RCG in NPH is 8.85. In normal subjects it cannot be calculated since the

median value for a control population is 0 (with a range of 0-60). Although one may

assume that the gradient is >1 since the cisternal median GFAP value is 0.2

pg/mL. The gradient agrees with the model for brain-derived proteins described by

Reiber. Furthermore in iNPH the concentrations are independent of the Qalb again

that verifying Reiber’s model.

The levels of GFAP are higher in iNPH when compared to cisternal controls, even

though the difference is not significant. Similar results have been published by

Albrechtsen when compared lumbar GFAP concentrations to patients with AD and

controls (Albrechtsen, Sorensen et al. 1985), and Tullberg who compared the

lumbar levels of 65 patients with NPH and 40 controls (Tullberg, Rosengren et al.

1998).

A level of CSF GFAP=0.2 pg/mL will have a sensitivity of 43.8% and specificity of

75% of predicting a favourable outcome at 6 months. The Youden’s index is 0.18.

We therefore conclude that GFAP is the most useful marker among the ones

examined with regards to its prognostic use. The levels of GFAP are lower in

patients with favourable outcome, although the difference is not statistically

significant. It use is particularly demonstrated by its high specificity, meaning that
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astrogliosis is a phenomenon specific to patients with iNPH who are likely to

improve following shunting. Since raised GFAP has been associated with

irreversible brain damage (Taraszewska, Zelman et al. 2002) our findings suggest

that good outcomes would be achieved in patients who have not yet sustained

irreversible damage due to ongoing ischemia and/ or degenerative processes. It

has been demonstrated that shunting can reverse the astrogliosis observed in

hydrocephalic H-Tx rats (Miller, McAllister et al. 2007). The irreversible damage

maybe a combination of both background processes (i.e. ischemia and

neurodegeneration) rather than the product of one only since levels of GFAP did

not differ between patients with mixed forms (idiopathic and secondary) NPH and

subcortical arteriosclerotic encephalopathy (Tullberg, Mansson et al. 2000).

The role of NfH as a prognostic biomarker

Neurofilament (NF) proteins are major constituents of the neuronal cytoskeleton.

Localised in large neurons and axons, they play an important role in neuronal

structure. Increased levels of NFs in CSF may reflect neuronal degeneration in

neurological disease (Petzold, Keir et al. 2007). The neurofilament light chain has

been previously studied in patients with iNPH and its levels were no different

between improved and non-improved patients following a ventriculoperitoneal

shunt insertion (Tullberg, Blennow et al. 2007). However, the heavy subunit of the

neurofilament protein (NfH) has not been investigated so far in iNPH. The drop in

level of NfH between the onset of drainage and day 2 was significant. The increase

between day 2 and 3 was not significant. NfH levels were reduced significantly

within 72 hours. Tullberg et al. did not find a significant difference in the levels of
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NfL (light chain of neurofilament protein) as they were measured before and after 3

months in 18 patients with iNPH (Tullberg, Blennow et al. 2008). In their study the

levels of NfL increased rather than decreases as in our case with NfH; however the

difference may be due to the different protein studied as well as the different time

of sampling (3 days versus 3 months).

Our results may indicate the reversal of neuronal degeneration that one would

expect to occur with shunting. However, the levels on all three days were within

normal limits (upper limit of normal = 0.73 ng/ml (Petzold, Keir et al. 2006)). Such

results may reflect either a) a lack of neuronal degeneration in the subjects, or b)

an inability of NfH to reflect the neuronal degeneration characteristic of patients

with iNPH.

The presence of neurofilaments is related to axonal degeneration (Petzold, Keir et

al. 2007) and our findings confirm a negative correlation with white matter volume.

This inverse relationship signifies an association between axonal degeneration and

white matter volume loss. Indeed it was shown that white matter volume loss may

be associated with increased risk of Alzheimer’s dementia (Beauregard, Cristinzio

et al. 2008). White matter changes being characteristic of demyelination of white

matter axons, partial loss of axons and oligodendroglial cells, mild reactive fibrillary

gliosis, and fibrohyaline thickening of the small vessels supplying the white matter

has been associated with increased levels of the light chain of neurofilament triplet

protein (NFL) (Sjogren, Blomberg et al. 2001). Its significant positive correlation

with the PVL/WM ratio and positive trend with the DWMH/WM ratio may indicate

an origin from the periventricular gliotic areas as well the chronic hypoxic areas of
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the deep subcortical white matter. Similar findings about the light chain of the

neurofilament protein (NFL) have been reported by other groups (Tullberg, Hultin

et al. 2002; Tullberg, Blennow et al. 2007). A significant association of CSF NFL

levels with the volume of DWMH in normal subjects has been reported from the

authors of the Leukoaraiosis and Disability in the Elderly Study (LADIS) study

(Jonsson, Zetterberg et al. 2009). It is worth noting however that the levels of NfH

were normal and they might not be able to characterize the pathology observed in

iNPH as well as NFL (Tullberg, Blennow et al. 2007). However, the association

with the white matter volume warrants further study in a larger sample.

The ventricular levels of NfH are positively correlated with the levels of 8-

isoprostane (R=0.494, p=0.027), total tau (R=0.506, p=0.016) and GFAP

(R=0.703, p<0.001) in a significant fashion. The relationships with 8-isoprostane

and GFAP have been already discussed in the relevant sections. The correlation

with the levels of total tau may be explained by the observation that both markers

represent a degree of neurodegeneration, and hence that degree is representative

in the CSF levels in ventricular sampling. Such positive correlation has not been

found in a study measuring markers of neurodegeneration (NfHSMI35, total tau, p-

tau, Aβ 1-42 and Aβ 1-40) in various cohorts of dementia (Brettschneider, Petzold

et al. 2006); however, the CSF samples were from lumbar fluid and, as our studies

show, there are rostrocaudal dynamics that may influence the relationships of

different proteins as they move along the craniospinal axis. Another publication

which examined the same markers did not examine their relationship (De Jong,

Jansen et al. 2007).
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The levels of NfH did not correlate with age in any of the groups tested, agreeing

with previous reports (Brettschneider, Petzold et al. 2006). The ventricular levels of

NfH are almost 5-fold the levels in the lumbar sac. That as well as the fact that the

levels of NfH are independent of Qalb verifies again the dynamics for brain-derived

proteins as described by Reiber. The ratio in control subjects is slightly over 1.0

again being independent from Qalb. The ventricular levels in iNPH are higher than

the cisternal controls albeit in a non-significant fashion. These increased levels are

a reflection of the neurodegenerative process in this group of patients

Patients with favourable outcome have lower NfH levels than the unfavourable

group, with the difference being non-significant. A cut-off level of CSF NfH=0.15

will have a sensitivity of 70% and specificity of 20% of predicting a favourable

outcome at 6 months; the sensitivity increases with levels ≤ 0.15 with the specificity

decreasing accordingly. The relatively high sensitivity figures with relatively small

levels in predicting favourable outcomes is another indication of neurodegeneration

being a burden towards a favourable outcome.

The role of total tau as a prognostic biomarker

Aβ1-42 and tau and their neuronal toxicity are known to be associated with

neurodegenerative diseases (Taylor, Hardy et al. 2002). The tau protein interacts

with other cytoskeleton proteins, such as neurofilament proteins (Hirokawa,

Shiomura et al. 1988), which play an important role in the maintenance of the
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normal architecture and axonal calibre of the neurons. The over expression of tau

causes changes in cell morphology, retards cell growth and dramatically alters the

distribution of various organelles transported by microtubule-dependent motor

proteins.

Tau has been suggested as a potential biomarker for NPH (Tarnaris, Watkins et al.

2006) and both phosphorylated forms have been found to be increased in NPH

patients when compared to controls (Kapaki, Paraskevas et al. 2007); these results

were, however, contradicted in a larger study (Agren-Wilsson, Lekman et al. 2007).

In both the latter studies Aβ1-42 was decreased when compared to controls (Agren-

Wilsson, Lekman et al. 2007; Kapaki, Paraskevas et al. 2007). Kapaki et al.

identified a cut-off level of the phosphorylated form of tau (P-tau) greater than 47

(pg/mL) which is able to distinguish between AD and idiopathic NPH with a

sensitivity of 88.7% and specificity of 88.6%. The authors used a commercial

ELISA assay (Innotest, Innogenetics, Gent, Belgium) to determine the total and

phosphorylated tau, and β-amyloid 1-42. The authors also found that total tau was

increased in both conditions when compared to controls, whereas β-amyloid levels

were decreased in both. The diagnosis of iNPH was based on history, examination

and relevant imaging but no external lumbar drainage or tap test. A lumbar

puncture was performed but the authors do not mention the pressures obtained.

Increased tau levels when compared to a control group (orthopaedic subjects)

were detected also by Kudo et al. (Kudo, Mima et al. 2000) in a mixed NPH group

using the same commercial assay (Innotest, Belgium). However, their results

contradict the studies of Agren-Willson (Agren-Wilsson, Lekman et al. 2007),

Zemlan (Zemlan, Rosenberg et al. 1999), Lins (Lins, Wichart et al. 2004) and
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Gloeckner (Gloeckner, Meyne et al. 2008) where the levels of tau were either lower

than the control group or within the normal range. Agren-Willson et al. used an “in

house” ELISA published previously (Blennow, Wallin et al. 1995), using patients

undergoing orthopaedic surgery as controls. This sample (n=62) of iNPH patients

is of value because of its size and its appropriate selection (lumbar infusion test

and tap test performed in patients with relevant history and imaging). In the study

by Zemlan et al. the levels of the cleaved form of the tau protein were barely

detectable with their in house ELISA and Western Blot assays. Lins et al. used a

commercial assay (Innotest, Belgium) to measure amyloid as well as total tau

immunoreactivities. They constructed a combined evaluation of amyloid b peptide

(1–42)-immunoreactivity (Ab42-IR) and total tau protein-immunoreactivity (TTIR)

plot described previously (R?sler, Wichart et al. 2001), which discriminated all NPH

from the AD samples. They concluded that the combined use of both markers

rather than one separately is of diagnostic use. No separate sensitivity or

specificity figures were provided though. TTIR was not higher (ns) when compared

to controls. Gloeckner et al. in their study using the same commercial assay found

lower tau levels than controls (Gloeckner, Meyne et al. 2008).

In patients with NPH the average value of total tau levels of the 4 studies that

used the same commercial assay (Innotest, Belgium) was 294.7 pg/mL (Lins,

Wichart et al. 2004; Agren-Wilsson, Lekman et al. 2007; Kapaki, Paraskevas et al.

2007; Gloeckner, Meyne et al. 2008). The range of total tau in two studies was

from 75 to 1040 pg/mL. We used the same commercial assay having a mean of

140.10 pg/mL. The average level of total tau from control subjects was 188.6

pg/mL and 534 pg/mL in AD subjects, in the same four studies.



302

Our results from the initial lumbar sample for these two markers agree with those

of Agren-Wilsson and colleagues (Agren-Wilsson, Lekman et al. 2007). The

increase in total tau levels over the 3 days of drainage was significant, both from

day 0 to day 2 and from day 2 to day 3 signifying possibly a release from a

ventricular pool. That could coincide with the known “toxic theory” suggested for

the pathogenesis of AD (Selkoe 2000) which would mean that either an

overproduction or reduced clearance of the tau protein could be responsible for the

changes observed in NPH (Silverberg, Mayo et al. 2003).

The lumbar levels of Aβ1-42 and tau are positively correlated only in the first 24

hours of ELD meaning that CSF drainage clears an established metabolic pool of

these markers, even though this clearance is delayed in the case of tau protein.

Our results might mean that there is a predominance of tau rather than Aβ1-42

accumulation in NPH, and that is reflected on the increased concentration or that

there is a reverse caudo-rostral concentration (RCG=0.93) gradient as we have

seen in the case of Aβ1-42 protein. The ventricular levels of total tau correlate in a

significant positive manner with NfH (R=0.506, p=0.016), GFAP (R=0.498,

p=0.025) and VEGF (R=0.429, p=0.05) and the significance of these findings has

been discussed earlier.

The ventricular levels of total tau were 6-fold higher than the respective lumbar in

patients with iNPH and 1.5 fold higher in the control group. The levels were

independent of Qalb verifying Reiber’s theory about the CSF dynamics of brain-

derived proteins. The ventricular total tau levels in NPH were significantly higher
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than cisternal total tau levels in patients with TGN as would be expected by

patients with no clinical signs of a neurodegenerative process. This adds to

evidence that total tau characterizes not just the well known neurodegenerative

disorders but also patients with iNPH. One study had found contradictory results

with total tau levels not being different than the control group (Lins, Wichart et al.

2004); their results (266.9 +/- 29.8 pg/mL) do not differ than ours with reference to

the lumbar CSF levels. However, as we have shown the ventricular levels are

significantly higher demonstrating the importance of the study of the CSF dynamics

along the craniospinal axis for each marker.

Ventricular total tau levels had no associations with any of the structural volumes.

An association has been demonstrated between the gray matter loss and

neurofibrillary tangles (NFT) pathology (Whitwell, Josephs et al. 2008); however

the NFT is a measure of the hyperphosphorylated tau load and not the total tau as

was measured in our study. Furthermore the authors studied the NFT load in

autopsy and not CSF samples.

Total tau might act as a marker of the progression of the condition. Our findings of

a significant negative correlation of preoperative symptom duration and total tau

levels (R=-0.841, p=0.002) in lumbar CSF suggest that a degree of

neurodegeneration occurs in early stages of the syndrome. The ventricular levels

of the same 10 patients demonstrate the negative correlation exhibited in the

lumbar levels, but the relationship is becoming non significant (R=-0.258, p=0.538).

This demonstrates the importance of studying the CSF dynamics for each marker

studies since erroneous conclusions may be drawn if one studies only the lumbar
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levels of a biomarker. Other proteins such as NfH did not show duration

dependence; this needs further exploration and may be due to a specific

pathological process in INPH or in the cohort of our patients. Studies in patients

with AD have not found a correlation of CSF levels with the disease stage (Kurz,

Riemenschneider et al. 1998; Mecocci, Cherubini et al. 1998). Other studies have

contradicted these results (Nishimura, Takeda et al. 1998).

A level of CSF total tau=767 pg/mL will have a sensitivity of 17% and specificity of

20% in predicting a favourable outcome at 6 months. The low sensitivity and

specificity of the cut-off value may mean that there is more than one pathological

process which will determine the final outcome of surgery. Since the cut-off value

of total tau is high and comparable to levels seen in patients with AD our results

suggest that patients who bare a significant comorbidity of AD are unlikely to have

a favourable of surgical outcome. We may also see that the surgical group with the

favourable outcome had significantly lower ventricular levels than the unfavourable

group (p=0.025).

The role of Aβ 1-42 as a prognostic biomarker

The pathological hallmark of AD are the extracellular amyloid plaques, composed

of aggregates of amyloid-beta peptides and the intracellular neurofibrillary tangles,

which contain accumulations of hyperphosphorylated forms of the neurofilament-

associated protein tau (Poirier 2005). Amyloid peptides (Aβ) are fragments of the

amyloid precursor protein (APP), an integral membrane protein. Aβ peptides are

continuously generated by neurons and non-neuronal cells via sequential cleavage
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of APP by proteases (Selkoe and Kopan 2003). The longer and more hydrophobic

Aβ 1-42 fragment is much more prone to fibril formation than Ab 1-40, and even

though Aβ 1-42 is a minor form of Aβ, it is the major Aβ species found in cerebral

plaques. Damage to neurons may be caused by intracellular and, to a lesser

extent, extra-cellular highly reactive and toxic Aβ dimers and oligomers.

The mechanism(s) leading to a reduction in CSF Aβ 1-42 level in patients with AD

is still unclear. One possible explanation is that reduction is secondary to the

progressive degeneration of neurons. However, after acute ischemic stroke, there

is a marked increase in CSF-tau within 1 to 2 days that peaks after 2 to 3 weeks

and returns to normal values after 3 to 4 months, whereas

the level of CSF Aβ 1-42 remains unchanged (Innogenetics and Gent 2000)

These data support the hypothesis that the CSF level of tau reflects neuronal

damage and degeneration, whereas the CSF level of Aβ 1-42 does not seem to

simply be a marker for neurodegeneration. Glial cells participate in the efficient

uptake of soluble extra-cellular Ab and in the clearance of this material at localized

sites where the Aβ is concentrated (Walsh, Klyubin et al. 2002).

Alternative explanations include reduced production or secretion of b-amyloid in

AD brains. Alternatively, a reduction of CSF- Aβ 1-42 level in patients with AD may

be secondary to an aggregation in the amyloid deposits, decreasing the amount of

Aβ 1-42 that can be secreted to extracellular space and thereby resulting in lower

levels remaining in CSF.
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Aβ 1-42 is secreted to the extracellular space, which is continuous with CSF. In

AD, a portion of Aβ aggregates and is incorporated into highly insoluble fibrils in

the plaques. These amyloid deposits consist primarily of Aβ 1-42. It seems that the

peptide is cleared out of the CNS to blood mainly via transport through the blood–

brain barrier (BBB) (DeMattos, Bales et al. 2002) and/or via the interstitial fluid

(ISF) bulk flow into the CSF, and from there into the bloodstream (Silverberg, Mayo

et al. 2003).

Amyloid beta aggregates may be as high as 38% of patients with NPH (Holm,

Savolainen et al. 2003). Silverberg et al. have proposed a unifying theory that may

explain the pathogenesis of both AD and NPH based on CSF circulatory failure

leading to the toxic deposition of Aβ in the meninges (Silverberg, Mayo et al.

2003). In a rat model of adult hydrocephalus immunocytochemistry revealed

increased expression of Aβ and its transporters (Receptor for Advanced Glycation

End products) RAGE as well as an increased of GFAP (Deren, Forsyth et al.

2009). As aging progresses there might be a breakdown in the homeostasis of Aβ

as demonstrated by the decrease of the low-density lipoprotein receptor-related

protein (LRP-1) receptor in aging rats (Johanson, Flaherty et al. 2006).

With regards to β-amyloid 1-42 levels they were assayed in 3 studies using the

same commercial ELISA as in our study (Lins, Wichart et al. 2004; Kapaki,

Paraskevas et al. 2007; Gloeckner, Meyne et al. 2008) The average value for

patients with NPH was 447.1 pg/mL, whereas that of the control subjects was

718.9 pg/mL and 402.4 pg/mL in AD subjects.
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We observed an increase in the levels of Aβ1-42 between day 0 and day 2 of ELD,

and levels slightly decreased on the third day of drainage, a change which was not

significant. Overall there was a non-significant increase in the levels over three

days of drainage. We postulate that this is because Aβ 1-42, as said earlier is

aggregated in the amyloid plaques and hence only a small fraction that is free is

allowed to drain from the ECS to the CSF compartment. It would have been

interesting to see whether Aβ 1-42 levels continue to increase or level off if

drainage continued further. In a longitudinal study of AD and normal subjects the

levels of Aβ 1-42 were shown to decrease over a period of years but no significant

difference was recognized in the levels between the initial and last examinations

(Kanai, Matsubara et al. 1998). On the other hand another report showed steady

levels of Aβ 1-42 levels when they were studied a year apart (Andreasen, Hesse et

al. 1999).

The levels of Aβ1-42 and tau are positively correlated only in the first 24 hours

meaning that CSF drainage clears an established metabolic pool of these markers,

even though this clearance is delayed in the case of tau protein. The ventricular

levels of Aβ1-42 did not correlate with any of the other markers.

Aβ1-42 and total tau had no significant correlations with any of the structural

volumes. No association between the Aβ burden or CSF Aβ levels and brain

atrophy, DWMH or ventriculomegaly were found in other reports (Josephs,

Whitwell et al. 2008; Jonsson, Zetterberg et al. 2009).
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There is no correlation of age with either ventricular of lumbar Aβ 1-42 levels in

NPH. There is a positive trend (but not a significant correlation) between the age of

patients with TGN and Aβ 1-42 levels; similar findings with normal groups have

been reported (Van Gool, Schenk et al. 1994; Kanai, Matsubara et al. 1998)

The RCG of Aβ 1-42 is 0.93 and 1.09 in NPH and control subjects respectively.

The Aβ 1-42 levels are dependent on the Qalb (R=0.886, p=0.019) in the control

subjects but not the iNPH group. Increases in Aβ levels due to decreasing CSF

clearance and hence dependence in Qalb has been demonstrated in experimental

models of chronic hydrocephalus (Silverberg, Caralopoulos et al. 2009).The

dynamics of Aβ 1-42 suggest according to Reiber’s theory that Aβ 1-42 is secreted

by the leptomeningeal cells along the craniospinal axis. It has been indeed shown

that there is amyloid accumulation in the cortical leptomeninges of both aged

individuals and patients with AD (Hamano, Yoshimura et al. 1997; Shinkai,

Yoshimura et al. 1997); the potential of amyloid deposition in the spinal cord has

been demonstrated in vivo with MR imaging in cases of amyloidosis and spinal

vascular malformations (Hart, Merz et al. 1988; Horowitz, Thomas et al. 1998). The

fact that in NPH the RCG is less than 1 may be explained that the ventricular CSF

levels are lower than the control levels (229.3 vs. 841.32 pg/mL respectively). Aβ

1-42 would be then secreted along the craniospinal axis resulting in higher lumbar

than ventricular levels in iNPH and hence a RCG <1. Authors of a study where the

fluctuation of Aβ 1-42 levels were studied assumed that there was no RCG in

normal subjects (Bateman, Wen et al. 2007); however they did not sample

ventricular CSF but collected 25-35 mLs of lumbar CSF. Our study found a small

gradient (1.09). However, as it has been shown the volume of the spinal CSF is a



309

mean of 81 +/- 13 mL in normal individuals (Edsbagge M, Starck G et al. 2009)

rendering the above method of calculating a RCG methodologically incorrect.

There was a significant difference between the ventricular levels of Ab in patients

with NPH and cisternal levels in TGN (Mann-Whitney test, p=0.035). The reasons

for this have been explained above. It is however of note that the levels are much

lower than ones previously reported for patients with iNPH. This may be explained

by the <1 RCG that we have demonstrated since the previous studies reported

lumbar CSF levels.

The levels of Aβ 1-42 are lower in the favourable group with the difference being

statistically significant (Mann-Whitney test, p=0.011). When correction for multiple

comparisons is applied however in a logit regression model the difference is not

statistically significant (see table 3.15.10.1). A cut-off level of CSF Aβ 1-42=180 pg/

mL will have a sensitivity of 35% and specificity of 20% of predicting a favourable

outcome at 6 months. It is worth noting that the cut-off value provided by the ROC

curve is much lower than the mean ventricular CSF level. The fact that the Aβ 1-42

levels alone do not prove useful to predict outcomes may be explained by the

possibility that there are multiple path anatomical factors that influence the surgical

outcome.

The combined role of total tau and Aβ 1-42 as a prognostic biomarker

We decided to examine the ratio of total tau/ Aβ 1-42 in our cohort since in

previous publications that used the same commercial ELISA kit as our experiments
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this ratio appears different in the groups examined; and in particular it is 0.65 in

NPH, 0.26 in control subjects and 1.32 in patients with AD. In our study the

unfavourable group had a higher index than the favourable group (3.89 vs. 3.31)

but the difference was not significant. A cut-off level of 2.28 will have a sensitivity

of 47% and specificity of 20% of predicting a favourable outcome at 6 months.

However, the discriminant analysis undertaken for a combination for total tau and

Aβ 1-42 classified more than 80% cases correctly and had a sensitivity and

specificity greater than 80%. The above demonstrates the importance of the

concomitant AD pathology in predicting surgical outcomes.

The lower values of Aβ 1-42 and total tau in the favourable outcome group raises

questions about the pathophysiology of the syndrome. The pathological hallmark of

AD are the extracellular amyloid plaques, composed of aggregates of amyloid-beta

peptides and the intracellular neurofibrillary tangles, which contain accumulations

of hyperphosphorylated forms of the neurofilament-associated protein tau (Poirier

2005). If a reduction of CSF Aβ 1-42 levels in patients with AD is secondary to an

aggregation in the amyloid deposits (Tamaoka, Kondo et al. 1994), decreasing the

amount of Aβ 1-42 that can be secreted to extracellular space and thereby

resulting in lower levels remaining in CSF, why are the levels of total tau lower?

Could iNPH represent an earlier stage of a common pathway that may have

Alzheimer’s dementia as its one end? Or could iNPH as suggested by Silverberg et

al. represent one part of a hybrid nosological entity that has its primary origins in

CSF circulatory failure? (Silverberg, Mayo et al. 2003). The findings of four studies

that have used the same commercial ELISA assays as our studies have suggested
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that a combination of lower total tau levels (mean: 294.7 pg/mL) but comparable

Aβ 1-42 levels to Alzheimer’s dementia (mean: 447.1 pg/mL) may be unique to the

biochemical profile of iNPH patients and therefore may be applicable as a

diagnostic biomarker (Tarnaris, Toma et al. 2009). Our finding of higher total tau

levels in patients with smaller symptomatic duration may represent the earlier

stages of a dynamic tauopathy. In patients with longer symptomatic duration total

tau levels may be reduced due to abnormal hyperphosphorylated levels of tau

being produced. They in turn represent the hallmark of development of an AD-like

state; hyperphosphorylated tau behaves as an inhibitory/toxic protein unable to

stimulate microtubule assembly, but also sequestering normal tau and contributing

to inhibition of assembly and disruption of microtubules. The breakdown of the

microtubule network in the affected neurons compromises axonal transport,

leading to retrograde degeneration which, in turn, results in dementia (Iqbal 2005).

To provide such answers in a future study the levels of hyperphosphorylated tau

should be measured in the same cohort.

The role of volumetric analysis as a prognostic tool

Although volumetric analysis was not undertaken as a predictor to surgical

outcomes but as a means to find associations with biochemical markers,

nevertheless a logistic regression analysis did not reveal any significant predictors

for surgical outcome. The favourable group appeared to have a significantly lower

PVL normalised ratio and PVL load in the white matter and higher IVV/PVL ratio. In

essence the group that had favourable outcome following shunting in our study

had relatively larger ventricles and smaller load of periventricular lucencies when
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compared to the unfavourable group. However, neither of these parameters were

an independent predictor of outcome. It is known that PVLs are due to due to

pressure-related changes in the volume of the extracellular fluid (ECF) (James,

Flor et al. 1980; Murata, Handa et al. 1981; Page 1985; Takei, Shapiro et al. 1987).

Patients with PVLs exhibited greater improvement post shunting (Borgesen and

Gjerris 1982; Thomsen, Borgesen et al. 1986; Poca, Mataro et al. 2004). This

might be explained by the fact that the presence of the lucencies on a patient might

indicate that the hydrocephalus is still not fully “compensated” (Bradley 2001), and

therefore the pathologic changes are reversible if CSF dynamics are restored. A

study of 26 patients that reviewed the ventricular volume ratio, brain volume ratio,

pericerebral CSF volume ratio, and the ratio of ventricular volume to pericerebral

CSF volume found no predictive use in the above parameters (Palm, Walchenbach

et al. 2006). In our review of imaging as a predictor to surgical response only

SPECT and phase-contrast MR imaging were useful in predicting surgical

response in patients with iNPH (Tarnaris, Kitchen et al. 2008). Even though one

would expect that the ventricles would decrease in size postoperatively and that

this change would correlate favourably with clinical outcomes this may not always

be the case (Meier and Mutze 2005). This is most likely due to changes of cerebral

elastance and an increase in brain “stiffness”. Even though shunting restores

physiological parameters of intracranial dynamics patients do not always

experience clinical improvement accordingly (Petrella, Czosnyka et al. 2008).

Another explanation could be that the patients have passed a “stage of no-return”

and that the metabolic disturbance might now be the prevalent factor that will

determine the improvement or not of the patient (Kondziella, Sonnewald et al.

2008). Nevertheless other authors have argued that computerised measurement of
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ventricular size might actually reveal decreased ventricular volume in patients who

improve postoperatively (Frucht and Goodman 2002). Ours study despite using

computerised-assisted volumetric analysis of intracranial volumes did not confirm

the above argument.

The mean ventricular volume in a study of 24 iNPH patients was found to be 109.3

(50.7) mL (Tsunoda, Mitsuoka et al. 2001). These values are very similar to our

volumetric finding of 126.7 (57.9) mL. However, our reported ICV of 681.3 (200.4)

mL are lower than the values reported by Matsumae et al. (1370 (133) mL in a

study of 26 normal subjects) (Matsumae, Kikinis et al. 1996). Very similar ICV to

the latter study (1321.7 (118.6) mL) are reported in the over 70’s in 215 males

(DeCarli, Massaro et al. 2005). Yet, in a recent study of 87 control subjects having

imaging while participating in the Alzheimer’s Disease Neuroimaging Initiative the

intracranial volumes were reported as 997.9 (98.4) mL (Ott, Cohen et al.).

Variations in the range of 20-30% for VV have been noted by much earlier reports

based on CT and radioisotope ventriculography (Wyper, Pickard et al. 1979); these

may be due to methodological differences, since currently no standardization

exists with regards to semi-automated intracranial volumetric analysis.

The role of neuropsychology as a prognostic tool

As with volumetric analysis neuropsychological assessment was used primarily as

a tool to assess suitability for shunting. Many clinicians use the M.M.S.E instead of

a formal neuropsychological assessment (Golomb, de Leon et al. 1994; McGirt,
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Woodworth et al. 2005); however, the M.M.S.E. should only be used as a

screening tool of dementia due to its limitations of matching all neuropsychological

test scores with premorbid intelligence quotient levels and age-matched control

data to obtain an accurate perception of any cognitive decline (Savolainen,

Hurskainen et al. 2002; Tarnaris, Stephenson et al. 2007). Formal

neuropsychological assessment improves the standard diagnostic algorithm used

at present in selecting patients for shunt (Farace and Shaffrey 2005).

The baseline cognitive status of our group is not able to predict outcomes at 6

months. Thomas et al. have found that significant improvement in cognitive

function occurs when INPH is treated with a shunt, and the likelihood of cognitive

recovery is influenced by the extent of baseline cognitive impairment (Thomas,

McGirt et al. 2005); however, they only suggested prediction of cognitive

outcomes. This disagrees with the findings of Savolainen et al. who found only the

recognition of words test (RMT words) as being able to distinguish the patients

needing shunt surgery (Savolainen, Hurskainen et al. 2002).

The improvement in cognition in our group continued to 6 months and this has

been demonstrated previously (Duinkerke, Williams et al. 2004). However, only

half of the patients demonstrate improvement at any time point. Despite the

documented improvement patients with iNPH still score less than control healthy

population (Hellström, Edsbagge et al. 2008).

The more noticeable improvement in our study occurred in the verbal and visual

memory in the 6 weeks assessment, and verbal memory and speed in information
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processing in the 6 months follow-up. The repeated administration of the RMT for

words and facial recognition has been extensively used in research into

neurodegenerative disease (Fox, Warrington et al. 1998; Mummery, Patterson et

al. 2000; Chan, Fox et al. 2001). Improvement following shunting may reach up to

67% in the 12 months follow-up period (Raftopoulos, Deleval et al. 1994). In fact it

may be that patients with more severe cognitive impairment exhibit more

pronounced improvement (Goodman and Meyer 2001). More elderly patients have

less chances of cognitive improvement following shunting (Chang, Agarwal et al.

2006); however this is contradicted in a recent large study (Hellström, Edsbagge et

al. 2008). The average M.M.S.E. in our cohort was 20 (range 8-29) which is similar

to a cohort of NPH with significant CVD comorbidity in a study of 58 iNPH patients;

their cohort without CVD comorbidity had a higher M.M.S.E. score on first testing

(Hellström, Edsbagge et al. 2007).

The role of epidemiology and comorbidities in influencing surgical outcome

Co morbid factors did not have an influence in surgical outcomes in our study;

similar findings have been reported by other studies (Bech-Azeddine, Hogh et al.

2007). In the large European Multicentre study of 146 patients with INPH 25% had

DM, 58% had hypertension, 14% had suffered a stroke, 20% had cardiac disease

and 10% had peripheral vascular disease (Wikkelso Carsten, Tans Jos et al.

2009). The results of the influence of co morbid factors on surgical outcomes from

that study have not been presented yet. In the large Dutch NPH study the

incidence of diabetes was 15%, that of hypertension was 28%, 14% had suffered a
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stroke, 21% had cardiac disease and 4% had peripheral vascular disease (Boon,

Tans et al. 1999). The authors do not discourage the offer of surgery in patients

with concomitant CVD, although its role in poor surgical outcomes is

acknowledged. In our study the incidence of respective comorbidities was slightly

smaller but not dissimilar from the numbers quoted. Hypertension has been

strongly associated with iNPH (Casmiro, D'Alessandro et al. 1989; Krauss, Regel

et al. 1996). A much higher incidence of DM in patients with NPH has been

reported (Jacobs 1977). Patients with iNPH and those with first-ever stroke

exhibited very similar survival rates which were reduced when compared to that of

a normal elderly population (Malm, Kristensen et al. 2000). Raftopoulos et al. noted

that of the 13 patients (56% of the total study group) who died during the first 6

years of follow-up , half of the deaths were caused by brain or heart ischemic

related conditions (Raftopoulos, Massager et al. 1996). In our study the outcomes

may not be related to the comorbidities due to our short-term (6 months) reported

outcomes. It may be that if our cohort is followed-up for a longer period the co

morbid factors would have played a more significant role.

Furthermore we found no evidence of age, symptomatic duration of the each

individual symptom being able to predict surgical outcomes. This comes in

antithesis with many reports of shorter duration of symptoms being a predictor of

favourable surgical outcome (Caruso, Cervoni et al. 1997; Meier and Miethke

2003; Kiefer, Eymann et al. 2006; McGirt, Woodworth et al. 2008); on the other

hand other studies found symptomatic duration irrelevant to surgical outcomes

(Greenberg, Shenkin et al. 1977; Poca, Mataró et al. 2004). In a large study with

long follow-up each additional year of iNPH symptom duration was associated with
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a 13% lower likelihood of treatment response (McGirt, Woodworth et al. 2008). In

our study only 5 patients (23% of total) had symptomatic duration less than 12

months, and only 7 patients (33% of total) had symptomatic duration less than 24

months.

Limitations of the study

Since the drainage was established at 15 mLs/h it is possible that the changes

observed in day 2 and day 3 represent the levels of ventricular rather than lumbar

CSF. This is because CSF would follow the path of least resistance through the

lumbar drain rather than the upstream route via the venous sinuses.

Is the difference in CSF markers during ELD explained by washout from a

ventricular pool?

We postulated that the observed change of CSF markers during ELD maybe due

to washout from a ventricular pool or actual changes induced by drainage. We

have observed significant increases in VEGF, GFAP and total tau levels following

ELD which may be explained by a washout of ventricular pooling of these proteins.

This is because the above markers demonstrated a RCG>1. However, the

changes of lactate, 8-isoprostane, NfH and Aβ 1-42 may not be explained as a

washout since the RCG of these markers is less than 1 (equal to 1 in the case of 8-

isoprostane). We may then assume that these changes represent physiological

changes induced due to CSF drainage.
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However, in a recent study it was found that the volume of the spinal CSF

compartment was 81 +/- 13 mL (Edsbagge M, Starck G et al. 2009). Similar

findings have been confirmed by Gjerris et al. who sampled ventricular and lumbar

CSF in patients with NPH (Gjerris, Gjerris et al. 1988). Therefore, using sequential

CSF sampling to assess the ventriculo-lumbar gradients of different markers may

be methodologically invalid.

3BIt has been shown that variations of body mass index or narrowing of the spinal

canal may influence the levels of CSF protein concentration (Seyfert, Kunzmann et

al. 2002). In our study the BMI was not recorded and hence not correlated with

marker levels. However, all patients were assessed for the possibility of

degenerative cervical or lumbar spondylosis either by the referring team or

ourselves.

Another limitation was that we have not obtained serum samples for the proteins

with a non negligible blood derived fraction in addition to the brain derived fractions

assessed; such protein would be the VEGF in our study. Isoprostane dynamics

may follow the same rules described by Reiber. In the design of future studies the

inclusion of serum samples and appropriate analysis should be included.

One of the limitations of our study was that the markers were measured after 72

hours of external lumbar drainage which might prove insufficient in order to provide

any significant alterations in the neuronal environment and the effect this will have

on the composition of the CSF. There has so far been one more group which

measured the differences postoperatively (Tullberg, Blennow et al. 2007), and

although this would be ideal to provide firm conclusions it was not permitted in our
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study for ethical reasons. Even though 72 hours is a short time significant

alteration did occur in the composition of CSF and the correlations between

markers might have been strengthened further if we were able to obtain CSF

samples at a later time point.

Our results should be interpreted with caution due to the small sample size,

however, they represent a platform to further our understanding of the radiological,

biochemical and cognitive manifestations of the syndrome of iNPH. One of the

limitations of our study was the volumetric process undertaken. By selecting the

slices chosen it is true that not all ventricular volume is calculated as the fourth

ventricle is excluded from calculations. In addition, the selection of the PVL and

DWMH areas based on the pixel intensities and not on an algorithm may be further

improved by a fully-automated method in a future study (Tullberg, Hultin et al.

2002). It has been shown that semi-automated analysis of brain volumes may be

comparable to hand-measured volumes (Giesel, Thomann et al. 2008). However,

semi-automated or fully-automated volumetry gives continuous values which may

be better in assessing correlations with markers than the ordinal values of the

Fazekas scale (Wahlund, Barkhof et al. 2001).

The neuropsychological assessment undertaken may be criticized for its

complexity which led to many patients not being able to complete the battery at all

times, especially preoperatively. At present there is no standardised battery of

neuropsychological assessment in patients with iNPH and the problems this

creates have been recognised by the international community. This

acknowledgement has led to a Neuropsychology Conference for iNPH on
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September 16, 2009, where an attempt to reach a consensus opinion on

appropriate neuropsychological testing was undertaken.

One of the surgical limitations of our study was that our cohort was not operated by

the same surgeon. However, the technique of an insertion of a VPS remains more

or less a standard procedure with little variation and hence we do not think that this

might have introduced bias in the results. More important than the surgeon

remains the choice of valve as well as the setting if a programmable valve is

chosen. Drake in a review of shunt technology of the last 50 years concluded that

in paediatric hydrocephalus it is not the shunt technology but rather factors like the

type of hydrocephalus, placement of the ventricular catheter and the ventricular

catheter environment that predispose to ventricular failure or not in the paediatric

population (Drake, Kestle et al. 2000). We do not know whether the hydrodynamic

properties of each valve may have had a significant role to the surgical outcomes

since our cohort is small, however our reported outcomes are in line with those of

other studies.

Future directions

One of the most interesting findings of our studies was the dynamics of VEGF and

its role. Our current data cannot answer the question of what causes VEGF

elevation during drainage i.e. is VEGF a result of the chronic ischemia or does it

increase as an attempt to offer neuroprotection. The role of angiogenesis in the

pathophysiology of chronic hydrocephalus in both humans and rats has been

highlighted recently (Dombrowski, Deshpande et al. 2008; Tarnaris, Toma et al.
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2009). The development of chronic hypoxia and ischemia remains central in the

evolution of chronic hydrocephalus (Boon, Tans et al. 1999; Bradley 2001).

However the element of neurodegeneration has emerged as a parallel

pathophysiological pathway and of equal importance to that of chronic ischemia

(Silverberg, Mayo et al. 2003; Silverberg 2004). Aberrant angiogenesis appears to

be the link of those two processes (Johanson and Jones 2001; Zlokovic 2005). To

date though no attempt has been made to investigate the role of angiogenesis and

neurogenesis in chronic hydrocephalus.

It has been postulated that NPH may share common pathophysiological

mechanism with both vascular dementia and Alzheimer’s disease, two conditions

that appear commonly in the elderly population (Bateman 2004). Angiogenesis

appears as a common pathway of both Alzheimer’s and vascular dementia

(Tarkowski, Issa et al. 2002; Vagnucci and Li 2003).

Vascular changes noted in an autopsy study were those of multiple microinfarcts,

arteriosclerosis, demyelination and loss of axons in white matter; altogether,

changes compatible with arteriosclerotic encephalopathy (Akai, Uchigasaki et al.

1987). Changes typical for Alzheimer’s disease (AD) and arteriosclerotic changes

have been reported. In two recent retrospective studies, clinical improvement was

reported in three of five (Del Bigio, Cardoso et al. 1997) and two of eight

(Savolainen, Paljarvi et al. 1999) shunted patients with Alzheimer’s disease

pathology established by biopsy indicating that comorbidity with this disease does

not always mitigate against a beneficial neurosurgical result. There is one

comparative study showing significantly more changes of Alzheimer-type in

biopsies from hydrocephalus patients than in age-matched autopsy controls (Del
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Bigio, Cardoso et al. 1997). In a prospective study of 56 patients who underwent

ventriculoperitoneal shunting for iNPH and cortical biopsy a diagnosis of definite

Alzheimer’s disease could be made in seven cases (12.5%), probable disease in

nine (16%), and possible disease in seven (12.5%) (Golomb, Wisoff et al. 2000).

Neurofibrillary tangles (Ball 1976) and granulovacuolar degeneration in

hippocampal neurons is prevalent in shunted patients who do not improve (Ball

and Vis 1978) and the pathologic changes seen are very similar to those of AD.

One of the most important findings of that study is that the patients with positive

biopsies for AD had similar improvement in gait, psychometric testing and urinary

control when compared with the patients with negative biopsies.

Deficiency of neurogenesis resulting in abnormal cortical development has been

shown in a rat model of obstructive hydrocephalus (Mashayekhi, Draper et al.

2002). Destruction of neurons as a result of chronic hydrocephalus has already

been shown (Klinge, Muhlendyck et al. 2002). The role of neurogenesis has not

been so far studied in chronic hydrocephalus because models of chronic

hydrocephalus have so far focused on the role of ischemia in its development (Del

Bigio and Bruni 1988; Klinge, Samii et al. 2003). It is therefore unknown whether

the levels of neurotrophic factors alter as a result of the progression of the

syndrome. Furthermore we do not know the changes that occur with shunting and

whether the functional recovery achieved both in mobility and cognitively is

associated with enhanced neurogenesis secondary to shunting.

If the hypothesis of reduced neoangiogenesis and neurogenesis is correct the

infusion of growth factors in experimental (animal) models may reduce or reverse



323

the development of the syndrome. If NPH is an angiogenesis-dependent disorder,

then development of antiangiogenic drugs targeting the abnormal brain endothelial

cell and neuron might be able to prevent and treat the syndrome. Angiogenesis

promoters (such as VEGF) can be studied by immunohistochemistry, and

temporally and spatially correlated with markers of neurodegeneration and

neuronal death. Furthermore, antiangiogenic agents can be administered to

investigate whether pathological features are ameliorated.

In view of potential therapeutic considerations, it would seem worthwhile to

delineate, for different brain regions, the time-course of expression of vascular

endothelial growth factor (VEGF) and other neurotrophic growth factors induced by

the development of chronic hydrocephalus. Such experiments could be carried out

in animal models of chronic hydrocephalus, such as by infusing kaolin into the

cisterna magna.

Thesis conclusions

We have demonstrated that CSF removal in patients with iNPH produce

measurable changes in the composition of CSF which may reflect changes of the

ECS milieu in this group. It is not known though whether these changes are

sustained or plateau following further CSF removal. Some of these changes may

be responsible for the clinical improvement, although we cannot extrapolate this

from this data.
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We have demonstrated a disturbance in the blood-cerebrospinal fluid barrier which

may explain the leakage of proteins across the barrier.

Most of the markers demonstrated gradients across the craniospinal axis. Hence, a

careful interpretation of the pathophysiological significance of markers in lumbar

CSF is warranted, since pathological associations occurring in the C.N.S. may not

be accurately reflected in lumbar CSF.

CSF lactate exhibits the highest sensitivity in selecting patients for shunting,

however its low specificity precludes it from being a useful biomarker.

The source of 8-isoprostane appears to be the white matter. Patients with iNPH

suffer oxidative stress affecting both astrocyte function and neurofilament structure

as part of a neurodegenerative process.

In iNPH there is a degree of angiogenesis as a response to ischemia or as an

attempt for neuroregeneration. From the current studies, we are not able to explore

the issues of angiogenesis versus neuroregeneration in hydrocephalus. VEGF

obtains therefore a central role between a chronic hypoxic/ischemic insult and

neurodegeneration in iNPH. We thus suggest that there is increased release of

VEGF in the CSF of patients with iNPH which is mostly derived from the brain or

choroid plexus. This is positively correlated with the degree of ventriculomegaly,

however from the current data we cannot explore whether ventriculomegaly is a

cause or a consequence of VEGF release.
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The element of ischemia at the time of assessment of our cohort is not so

important in predicting a favourable surgical outcome.

An inverse relationship between astrogliosis and neuronal degeneration has been

shown in iNPH. However, a larger study population is required to reach a firm

conclusion. GFAP appears the most useful single marker to predict outcomes;

however it is not as useful as the combination of total tau and Aβ 1-42. The

findings suggest that favourable outcomes would be achieved in patients who have

not yet sustained irreversible damage due to ongoing ischemia and/ or associated

degenerative processes.

The heavy chain of the neurofilament may originate from the periventricular gliotic

areas as well the chronic hypoxic areas of the deep subcortical white matter.

However, it may not be as useful to characterise the changes occurring in patients

with iNPH as the light chain of the same protein. The relatively high sensitivity

figures with relatively small levels in predicting favourable outcomes is another

indication of neurodegeneration being a burden towards a favourable outcome.

Aβ 1-42, may be aggregated in amyloid-plaque like pathology in iNPH and hence

only a small fraction that is free is allowed to drain from the ECS to the CSF

compartment. Total tau might act as a marker of the progression of the condition

and our results suggest that an element of neurodegeneration occurs in early

stages of the syndrome. A combination of Aβ 1-42 and total tau appear to be able

to predict with sufficient sensitivity and specificity surgical outcomes.
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Patients who have a favourable outcome have lower levels of both total tau and Aβ

1-42 when compared to control subjects; this may be due to a smaller degree of

CSF circulatory failure when compared to patients with AD. The biochemical profile

of patients with iNPH appears unique and to a degree different than that of AD. On

the other hand co-morbid factors like hypertension, previous stroke or

cardiovascular disease did not have an influence in surgical outcomes in our study

and therefore patients with probable iNPH should not be refused surgery on the

basis of the above.

The group that had favourable outcome following shunting in our study had

relatively larger ventricles and smaller load of periventricular lucencies when

compared to the unfavourable group. However, none of the imaging characteristics

as calculated with semi-automated computer software was able to predict surgical

outcomes.

Cognitive improvement continues up to 6 months paralleling the overall clinical

improvement. Baseline neuropsychological assessment does not proves useful in

predicting surgical outcomes, but it should be used to rule out concomitant AD

pathology in patients with probable NPH.
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