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Abstract

We study elliptic differential and pseudo-differential operators with periodic coeffi-

cients. For a wide class of such operators we prove the Bethe-Sommerfeld conjecture,

i.e. that the spectrum can have only finitely many gaps. We also study the inte-

grated density of states of periodic Schröedinger operators and prove a lower bound

for its variance in the high energy regime. This results in the lower bound for the

non-integrated density of states of such operators.
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Chapter 1

Introduction

We will consider periodic elliptic differential and pseudo-differential operators acting

in Rd. By periodicity of an operator H = Op(h) we understand that there exists

full ranked lattice Γ such that h(x + γ, ξ) = h(x, ξ) for every γ ∈ Γ.

Let Γ ⊂ Rd (d ≥ 1) be a lattice. Denote by O its fundamental domain: O = Rd/Γ.

For example, for O one can choose a parallelepiped spanned by a basis of Γ.

Γ† is a lattice dual to Γ:

Γ† = {η : 〈η,γ〉 ∈ 2πZ,∀γ ∈ Γ}

and its fundamental domain is denoted by O†.

Under very broad conditions, spectra of elliptic differential operators with peri-

odic coefficients in L2(Rd), have a band structure. In order to describe this band

structure it is convenient to introduce the Floquet-Bloch decomposition (see, e.g.,

[28]) and thus express our operator H as a direct integral

H =

∫
O†

H(k)dk.

Here H(k) is a pseudo-differential operator, acting on O† with a symbol h(x, ξ+ k),

where h(x, ξ) is the symbol of the original operator H. The parameter k is usually

called the quasi-momentum.

All the operators H(k) have compact resolvents, therefore their spectra are

purely discrete, and by applying a simple perturbation theory argument, one can
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see that their eigenvalues λj(k) are continuous functions of the quasi-momentum

k. Here by λj(k) we denote the j-th eigenvalue of the operator H(k) counting the

multiplicities and arranged in the increasing order . Now the spectrum of the initial

operator H can be represented as the union of the closed intervals `j =
⋃
k

λj(k)

which are called spectral bands:

σ(H) =
⋃
j

`j,

possibly separated by spectrum-free intervals (gaps) (see [28] and [18]).

The natural first question to ask in this setting is how does the spectrum look

like a set.

Since the 30’s it has been a general belief among physicists that the number

of gaps in the spectrum of the Schrödinger operator HV = −∆ + V with a pe-

riodic electric potential V in dimension three must be finite. After the classical

monograph [2] this belief is known as the Bethe-Sommerfeld conjecture. It is rela-

tively straightforward to see that this conjecture holds for potentials which admit

a separation of variables, as shown in [5], p.121. But for general potentials this

conjecture turned out to be quite difficult, thus the first rigorous results appeared

only in the beginning of the 80’s. Though the original conjecture was stated only for

three-dimensional space, we will say that ‘Bethe-Sommerfeld conjecture holds’ for

an elliptic pseudo-differential periodic operator in general dimension if the number

of gaps in its spectrum is finite.

In the case of the Schrödinger operator HV it is known that the number of gaps

is generically infinite if d = 1 (see [28]). For d ≥ 2 there has been a large number of

publications proving the conjecture for HV under various conditions on the potential

and the periodicity lattice.

Define the counting function:

N(λ,H(k)) = #{j : λj(k) ≤ λ}

8



Due to the mentioned boundedness of the counting function N(λ,H(k)), each

interval (−∞, λ] has non-empty intersection with finitely many spectral bands. We

define two quantitative characteristics of overlapping of the bands:

1. The multiplicity of overlapping, which measures the number of bands covering

given point λ:

m(λ) = #{j : λ ∈ `j}

2. The overlapping function, which shows how far the bands penetrate into each

other. This function ζ(λ), λ ∈ R is defined as the maximal number t such that the

symmetric interval [λ− t, λ+ t] is entirely contained in one band, i.e.

ζ(λ) = ζ(λ;H) =

maxj max{t : [λ− t, λ+ t] ⊂ `j}, λ ∈ σ(H);

0, λ /∈ σ(H).

(1.0.1)

Both these functions were first introduced by M. Skriganov (see [34]). The

quantities m(λ) and ζ(λ) can be linked with the counting function N(λ) of the

operator H(k):

 m(λ) = maxkN(λ,H(k))−minkN(λ,H(k)),

ζ(λ) = sup{t : minkN(λ+ t,H(k)) < maxkN(λ− t,H(k))}
(1.0.2)

Here we assume that λ is not an end point of any `j.

3. The integrated density of states (IDS) for H is defined as

N(λ) := lim
L→∞

L−dN(λ;H
(L)
D ), λ ∈ R. (1.0.3)

Here, H
(L)
D is the restriction of H to the cube [0, L]d with the Dirichlet boundary

conditions, and N(λ; ·) is the counting function of the discrete spectrum below λ.

The existence of the limit in (1.0.3) is well known, see e.g. [28], [32]. Moreover there

is a nice explicit formula

N(λ) =
1

(2π)d

∫
O†

N(λ,H(k))dk.
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Also we can formulate in terms of the IDS that a point belongs to a gap: λ

belongs to a gap if and only if the IDS is a constant in a neighborhood of λ: there

exists a number ε > 0 such that for any λ1 ∈ (λ−ε, λ+ε) it we have N(λ1) = N(λ).

Similarly, to say that λ belong so the band is equivalent to saying that m(λ) ≥ 1 or

ζ(λ) > 0.

Now we briefly discuss a history of the subject until now. The first rigorous

results for the Bethe-Sommerfeld conjecture for the Schrödinger operator relied on

number-theoretic ideas, and they appeared in [27], [4] (d = 2) and [33], [34], [35]

(d ≥ 2). At that time it was found that the complexity of the problem increases

with the dimension: the validity of the conjecture for dimensions d ≥ 4 was estab-

lished by M. Skriganov only for rational lattices, see [34]. Later, the conjecture for

arbitrary lattices was extended to d = 4 in the work of B. Helffer and A. Mohamed

[8]. The definitive result was obtained in the paper of L. Parnovski [21] where the

Bethe-Sommerfeld conjecture was proved for the Schrödinger operator for any pe-

riodicity lattice in all dimensions d ≥ 2, with an arbitrary smooth potential V .

We observe that the complexity of the problem increases dramatically when instead

of the bounded potential perturbation one introduces in the Schrödinger operator

a periodic magnetic potential a = a(x) = (a1, a2, . . . , ad), H = (−i∇ − a)2 + V .

Bethe-Sommerfeld conjecture for this operator was proven in the case of d = 2,

see [19], [14]. The Bethe-Sommerfeld conjecture for the polyharmonic operator in

L2(Rd)

H = H0 + V, H0 = (−∆)m, m > 0

with a periodic real-valued function V , was also studied by various authors. The

first result is due to M. Skriganov (see [34], [35]), who showed that the number of

gaps is finite if 2m > d; d ≥ 3. Then the polyharmonic operator was studied by

Yu. Karpeshina in [10] (see also [12] and references therein) in the framework of the

analytic perturbation theory. The high energy asymptotics of the Bloch eigenvalues

found in [8] implied the Bethe-Sommerfeld conjecture for 4m > d+ 1; d ≥ 2.

Later, L. Parnovski and A. Sobolev [22], [23] extended the result for potential
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perturbations to the case 8m > d + 3, d ≥ 2. For the Schrödinger case m = 1,

the latter condition is equivalent to the requirement that d = 2, 3 or 4. These are

exactly the dimensions for which the conjecture was justified in [8]. In the paper [1]

G. Barbatis and L. Parnovski considered the case of a pseudo-differential operator

of the form:

H = (−∆)m +B, m > 0, (1.0.4)

with a pseudo-differential perturbation B of order a < 2m − 1 and arbitrary d ≥

2 and proved Bethe-Sommerfeld conjecture. Note that this class does not cover

the case of magnetic Schrödinger operator. Finally, the paper [24] extended the

results of [1] to the case of arbitrary perturbations of order smaller than 2m. Thus,

in particular, they have settled the Bethe-Sommerfeld conjecture for the magnetic

Schrödinger operator.

Note that all these operators considered so far are perturbations of the Schrödinger

operator (−∆)m. One of the aims of this thesis is to extend these results to a slightly

wider class of pseudo-differential operators.

Now we want to discuss different methods used by researchers in order to tackle

this problem.

Due to its physical relevance, the case of the Schrödinger operator, has been

studied better than the general one.

There are three main methods in dimensions d ≥ 2 of dealing with this type of

problems in literature, which lead in one way or another to the justification of the

conjecture.

The first one is due to M. Skriganov, and it presents a combination of number-

theoretic ideas and analytics tools. The main object of studies in this context is the

dependence of the counting function N(λ,H(k)) on the quasi-momentum. For the

first time this approach was used in [27] by V. Popov and M. Skriganov to give the

first rigorous proof of the conjecture for the case d = 2. Then M. Skriganov (see [34]

and references therein) obtained a proof for all dimensions d ≥ 3 for rational lattices

Γ. For d = 3 the result was extended to arbitrary Γ in [15]. A slightly simpler proof
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in the case d = 2 was given by B.E.J. Dahlberg and E. Trubowitz in [4]. The case of

rational lattices was revisited in paper [36] by M. Skriganov and A. Sobolev. In [36]

the original Skriganov proof [34] was simplified by separating the number-theoretic

part from the spectral one.

The other two methods are indirect in the sense that the finiteness of the number

of gaps in both of them is inferred from other spectral properties of the operator

in question, the study of which presents a separate difficult problem. The first of

these indirect approaches was described by Yu. Karpeshina in [12] and based on the

high energy asymptotics of the Bloch eigenvalues and corresponding eigenfunctions

of the operator H(k). It was first applied by O. Veliev (see also [41]) to prove the

validity of the Bethe-Sommerfeld conjecture for d = 3. Another proof can be found

in the book [12] by Yu. Karpeshina. We point out that in [12] the conjecture was

also proved for a wide class of singular potentials, including Coulomb potentials.

The third method was first introduced by L. Parnovski in [21]1. He has shown

that, by obtaining a very precise asymptotics of the eigenvalues and using certain

arguments from the geometrical combinatorics it is possible to prove the Bethe-

Sommerfeld conjecture without requesting any information on the eigenfunctions.

Afterwards in paper [24] this method was improved by combining it with the gauge

transformation method.

The fruitful technique of gauge transformation was first introduced by A. Sobolev

in [39]2 and [38] and was also used in [24]. This method consists of constructing

two pseudo-differential operators, H1 and H2. Here, H1 = eiΨHe−iΨ, where Ψ is is

a bounded periodic self-adjoint pseudo-differential operator of order 0. Thus, the

eigenvalues of H1(k) coincide with the eigenvalues of H(k). The operator H2 is close

to H1 in norm; also, operators H2(k) are ”almost diagonal” and, in particular, have

a lot of invariant subspaces. These invariant subspaces can be generated by two

different types of eigenvalues of H(k). Eigenvalues of the first type are called stable

or non-resonant eigenvalues and in order to study them one employes the perturba-

1For 2008, L. Parnovski receives the Annales Henri Poincaré Prize for this paper
2For 2005, A Sobolev receives the Annales Henri Poincaré Prize for this paper
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tion theory of simple eigenvalues. The corresponding invariant subspaces of H2(k)

are one-dimensional. The second type, called unstable or resonant eigenvalues, is

much more complicated so that the perturbation theory for multiple eigenvalues is

required in order to describe their behaviour, and thus they are not so well con-

trolled. The corresponding invariant subspaces of H2(k) are generated by clusters

of unstable eigenvalues.

The approach suggested in the papers [39] and [38] can be viewed as a variant of

the method of “near-similarity” put forward by G. Rosenblum in [29] for the PDO’s

on the unit circle. Rosenblum’s idea was to construct for a given elliptic PDO A

a suitable Fourier Integral Operator S such that the operator S−1AS up to some

negligible terms coincides with a PDO with constant coefficients.

Then this method was further developed in the the joined work [24] of L. Parnovski

and A. Sobolev to prove Bethe-Sommerfeld conjecture for the polyharmonic opera-

tor.

Let us give some notational conventions.

We use notation f � g or g � f for two positive functions f, g, if there is a

constant C > 0 independent of f, g such that f ≤ Cg. If f � g and g � f , then

we write f � g.

Now we discuss the results related to the studies of the asymptotic behaviour of

functions describing the spectrum.

As we have seen, the condition that λ belongs to the gap can be reformulated

in terms of either of 3 functions: N , m, ζ. Thus, together with proving Bethe-

Sommerfeld conjecture, one can try to obtain additional information about the be-

haviour of this functions. In particular following facts are known: in dimensions

d = 2, 3, 4 it have been proved in [34], [35], [4], and [23] that for large λ we have

m(λ)� λ
d−1
4

ζ(λ)� λ
3−d
4
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In [21] it is shown that in arbitrary dimensions

ζ(λ)� λ
1−d
2

Notice that when we increase the dimension, estimates for the multiplicity of

overlapping improve at least when d ≤ 4, whereas the estimates for the overlapping

function are becoming worse. This explains why it is becoming more difficult to

prove the conjecture as the dimension increases.

If we denote by N0(λ) the density of states of the unperturbed operator H0 =

−∆, one can easily see that for positive λ one has

N0(λ) = Cdλ
d/2

where

Cd =
wd

(2π)d
and wd =

πd/2

Γ(1 + d/2)

is the volume of the unit ball in Rd. There is a long-standing conjecture that the

density of states of H enjoys the following asymptotic behaviour as λ→∞:

N(λ) ∼ λd/2

(
Cd +

∞∑
j=1

ejλ
−j

)
, (1.0.5)

meaning that for each K ∈ N one has

N(λ) = λd/2

(
Cd +

K∑
j=1

ejλ
−j

)
+RK(λ) (1.0.6)

with RK(λ) = o(λ
d
2
−K). In those formulas, ej are real numbers which depend on the

potential b. They can be calculated relatively easily using the heat kernel invariants

(computed in [9]); they are equal to certain integrals of the potential b and its

derivatives.

Indeed, in the paper [17], all these coefficients were computed; in particular, it

turns out that, if d is even, then ej vanish whenever j > d/2. Formula (1.0.5) was

proved in the case d = 1 in [31]. There were important results due to A. Sobolev,

who obtained the complete asymptotic expansion of N(λ) in the case of d = 1 and

pseudo-differential perturbation in [38]. Later, using similar methods, he obtained
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3 asymptotical terms of N(λ) (i.e. K = 2 in (1.0.6)) for the two-dimensional case in

[39]. In paper by L. Parnovski and R. Shterenberg [25], the complete asymptotics

(1.0.5) was obtained in the case d = 2.

In the paper of B. Helffer and A. Mohamed [8] the authors, using microlocal

machinery, derived a suitable two-term asymptotic formula for the integrated density

of states of the operator H at large energies (i.e. K = 1). This was later used to

show the validity of the Bethe-Sommerfeld conjecture for d = 2; 3; 4.

By Yu. Karpeshina in [13] it was proved that formula (1.0.6) is valid with K = 1

and R(λ) = O(λ−δ) with some small positive δ when d = 3 and

R(λ) = O(λ−δ)

when d > 3.

Finally, the complete asymptotic expansion of the integrated density of states of

a Schrödinger operator is proved in the work of L. Parnovski and R. Shterenberg

[26].

These were the results in the asymptotical behaviour of the IDS.One can also

study the size of the local variation of the IDS. For example, in [21] it was shown

that for each n ∈ N and ε = λ−n we have

N(λ+ ε)−N(λ)� ελ(d−2)/2. (1.0.7)

The second objective of this thesis is to obtain a lower bound similar to (1.0.7).

This naturally leads us to the discussion of the results of the thesis.

As we have already noted, all the mentioned results concern the operators with

the principal symbol |ξ|2m. Naturally, one would think of generalizing to a wider

class.

Consider a pseudo-differential operator H with a homogeneous principal symbol

h0(ξ) : h0(tξ) = tmh0(ξ). Consider its level set M(ξ∗) = {ξ : h0(ξ) = h0(ξ∗)}. If

this level set is the surface of a cube, then due to result by M. Skriganov in [34] we

know, that one can add a perturbation of arbitrarily small order so that the resulting

perturbed operator has infinite number of gaps. This phenomenon occurs because
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for the cube there are points where spectral bands do not intersect but only tough

each other, that is to say that there are points where ζ = 0. In view of this, we

want to assume the strict convexity for the level set, that is we require all principal

curvatures to be positive.

In chapter 2 we extend the results of L. Parnovski and A. Sobolev to this class of

operators. When doing this, we apply method similar to those of [24]. Thus, in some

steps we will repeat the calculations from the work [24] with minor adjustments, in

order to make this thesis self-contained.

On the other hand there are some essential differences that arise if the principal

symbol is not |ξ|2m. The most tricky part is how to redefine the resonance sets.

In particular, due to this difficulty we have to define two different classes of reso-

nance sets (“narrow” and “wide” ones) and play around with their properties. The

definitive result on this matter is presented in Chapter 2, see theorems 2.1.1, 2.1.2.

The next question we want to consider is the lower bound for the non-integrated

density of states, that is the rate of increase of the IDS. As we have already seen for

Schrödinger operators, there is an upper bound, which assumes that the variation is

calculated between the points located not too close to each other (i.e. ε can decay

like the power of λ but not faster).

It turned out that similar lower bound can be proved for arbitrarily small values

of ε. When ε tends to zero we can prove that non-integrated density of states,

thought of as a measure, is bounded below.

These results were published in [20], and in chapter 3 we present them similar

to the published version. Therefore several definitions of the resonance sets are

different in chapter 2 and 3. Also chapter 3 is less self-contained than chapter 2: in

chapter 3 we use several results from [21] without proof.
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Chapter 2

Bethe-Sommerfeld conjecture for

pseudo-differential operators

The exposition of this chapter follows that of [24], in particular sections 2.4 (Proper-

ties of periodic PDO’s) 2.5 (A ”gauge transformation”), 2.8 (Estimates of volumes)

follow with minor changes corresponding sections of [24]. The other sections however

contain the material, which is completely new.

2.1 Periodic pseudo-differential operators. Main

result

2.1.1 Classes of PDO’s

Before we define the pseudo-differential operators (PDO’s), we introduce the rel-

evant classes of symbols. Let Γ ∈ Rd be a lattice. Denote by O its fundamental

domain. For example, for O one can choose a parallelepiped spanned by a basis of

Γ. The dual lattice and its fundamental domain are denoted by Γ† and O† respec-

tively. Sometimes we reflect the dependence on the lattice and write OΓ and O
†
Γ.

In particular, in the case Γ = (2πZ)d one has Γ† = Zd and it is natural to take

O = [0, 2π)d, O† = [0, 1)d. For any measurable set C ⊂ Rd we denote by |C| or
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vol(C) its Lebesgue measure (volume). The volume of the fundamental domain does

not depend on its choice, it is called the determinant of the lattice Γ and denoted

d(Γ) = |O|. By e1, e2, . . . , ed we denote the standard orthonormal basis in Rd.

Let ρ ∈ R be some value, that will be later chosen large enough.

Now we introduce a notation: let Amax > 1 be a number such that

1

Amax
< h0(ξ) < Amax, ∀ξ : |ξ| = 1.

Clearly, Amax exists, due to the compactness of the unit sphere. Denote

S(ρ) = {ξ :
ρ2m

Amax
< h0(ξ) < Amaxρ

2m}. (2.1.1)

For r ∈ R denote by Θr the following set of vectors:

Θr = {θ ∈ Γ : |θ| < r}.

Here

r < ρκ, (2.1.2)

where κ < 1 is some fixed number independent of ρ. The value of κ will be chosen

later.

For any u ∈ L2(O) and f ∈ L2(Rd) define the Fourier coefficients and Fourier

transform respectively:

û(θ) =
1√
d(Γ)

∫
O

e−i〈θ,x〉u(x)dx, θ ∈ Γ†, (Ff)(ξ) =
1

(2π)
d
2

∫
Rd
e−i〈ξ,x〉f(x)dx, ξ ∈ Rd.

Let us now define the periodic symbols and PDO’s associated with them. Let

b = b(x, ξ), x, ξ ∈ Rd, be a Γ-periodic complex-valued function, i.e.

b(x + γ, ξ) = b(x, ξ), ∀γ ∈ Γ.

Let w : Rd → R be a locally bounded function such that w(ξ) ≥ 1 ∀ξ ∈ Rd and

w(ξ + η) ≤ Cw(ξ)〈η〉κ, ∀ξ,η ∈ Rd, (2.1.3)
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for some κ ≥ 0. Here we have used the standard notation 〈t〉 =
√

1 + |t|2, ∀t ∈ Rd.

We say that the symbol b belongs to the class Sγ = Sγ(w) = Sγ(w, Γ), γ ∈ R, if for

any l ≥ 0 and any non-negative s ∈ Z the condition

b
(γ)
l,s := max

|s|≤s
sup
ξ,θ
〈θ〉l w(ξ)−γ+|s||Ds

ξb̂(θ, ξ)| <∞, |s| = s1 + s2 + · · ·+ sd, (2.1.4)

is fulfilled. Here, of course, b̂(θ, ξ) is the Fourier coefficient of the symbol b(·, ξ) with

respect to the first variable. The quantities (2.1.4) define norms on the class Sγ. In

the situations when it is not important for us to know the exact values of l, s, we

denote the above norm by b (γ). In this case the inequality A ≤ C b (γ) means that

there exist values of l and s, and a constant C > 0, possibly depending on l, s, such

that A ≤ C b
(γ)
l,s . Similarly, when we write b (γ1) ≤ C g (γ2) for some symbols

b ∈ Sγ1 , g ∈ Sγ2 , we mean that for any l and s the norm b
(γ1)
l,s is bounded by g

(γ2)
p,n

with some p and n depending on l, s, and some constant C = Cl,s. Here we of course

assume that b belongs to some set of symbols ang g is dependent on b; an example

of using this convention can be seen in formulas (2.5.20)-(2.5.23). In general, by C, c

(with or without indices) we denote various positive constants, whose precise value

is unimportant. Throughout this chapter we adopt the following convention. An

estimate (or an assertion) is said to be uniform in a symbol b ∈ Sγ if the constants in

the estimate (or assertion) at hand depend only on the constants Cl,s in the bounds

b
(γ)
l,s ≤ Cl,s. This is sometimes expressed by saying that an estimate (or assertion)

is uniform in the symbol b satisfying b (γ) ≤ C.

We use the classes Sγ mainly with the weight w(ξ) = 〈ξ〉β, β ∈ (0, 1], which

satisfies (2.1.3) for κ = β. Note that Sγ is an increasing function of γ, i.e. Sγ2 ⊂ Sγ1

for γ2 < γ1. For later reference we write here the following convenient bounds that

follow from definition (2.1.4) and property (2.1.3):

|Ds
ξ b̂(θ, ξ)| ≤ b

(γ)
l,s 〈θ〉

−lw(ξ)γ−s, (2.1.5)

|Ds
ξb̂(θ, ξ + η)−Ds

ξb̂(θ, ξ)| ≤ C b
(γ)
l,s+1〈θ〉

−lw(ξ)γ−s−1〈η〉κ|γ−s−1||η|, s = |s|,

(2.1.6)

where a constant C = max{1, c(γ−s−1)}, where c is the constant from (2.1.2). For a
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vector η ∈ Rd introduce the symbol

bη(x, ξ) = b(x, ξ + η),η ∈ Rd, (2.1.7)

so that b̂η(θ, ξ) = b̂(θ, ξ + η) . The bound (2.1.6) implies that for all |η| ≤ C we

have

b− bη (γ−1)
l,s ≤ Cs b

(γ)
l,s+1|η|, (2.1.8)

uniformly in η: |η| ≤ C.

Now we define the PDO Op(b) in the usual way:

Op(b)u(x) =
1

(2π)
d
2

∫
b(x, ξ)ei〈ξ,x〉(Fu)(ξ)dξ,

the integrals being over Rd. Under the condition b ∈ Sγ the integral in the r.h.s.

is clearly finite for any u from the Schwarz class S(Rd). Moreover, the condition

b ∈ S0 guarantees the boundedness of Op(b) in L2(Rd), see Proposition 2.4.1. Unless

otherwise stated, from now on S(Rd) is taken as a natural domain for all PDO’s

at hand. Observe that the operator Op(b) is symmetric if its symbol satisfies the

condition

b̂(θ, ξ) = b̂(−θ, ξ + θ). (2.1.9)

We shall call such symbols symmetric.

Our aim is to study the spectrum of the operator

H = Op(h), h(x, ξ) = h0(ξ) + b(x, ξ),

h0(ξ) = a(ξ′)|ξ|2m, m > 0,

b ∈ Sγ(〈ξ〉β), γβ < 2m,

(2.1.10)

with a symmetric symbol b. Here ξ′ = ξ
|ξ| , a - is a positive smooth (we require the

continuity of the first derivative) function, m ∈ R.

Also we put one more restriction on the function a: the set

{ξ ∈ Rd : h0(ξ) ≤ 1}
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is strictly convex.

The operator Op(b) is infinitesimally H0-bounded, see Lemma 2.4.2, so that H

is self-adjoint on the domain D(H) = D(H0) = H2m(Rd). Due to the Γ-periodicity

of the symbol b, the operator H commutes with the shifts along the lattice vectors,

i.e.

HTγ = TγH, γ ∈ Γ.

with (Tγu)(x) = u(x + γ). This allows us to use the Floquet decomposition.

For an arbitrary point ξ∗ ∈ Rd \ {0} we consider a level set

M(ξ∗) = {ξ : h0(ξ) = h0(ξ∗)}.

Since the function h0 is smooth and grows in any direction from the origin (i.e.

increases when the argument is multiplied by a constant greater than 1) and is zero

at the origin, then any level set is a smooth convex surface, homeomorphic to a

sphere. Also it is clear that ξ∗ ∈M(ξ∗).

Now define a function ψ : Rd \ {0} → Sd−1 at ξ∗ as the unit outer normal vector

to the set M(ξ∗) at the point ξ∗.

2.1.2 Floquet decomposition

We identify the underlying Hilbert space H = L2(Rd) with the direct integral

G =

∫
O†

Hdk, H = L2(O).

This identification is implemented by the Gelfand transform

(Uu)(x,k) =
1√

d(Γ†)
e−i〈k,x〉

∑
γ∈Γ

e−i〈k,γ〉u(x + γ), k ∈ Rd, (2.1.11)

which is initially defined on u ∈ S(Rd) and extends by continuity to a unitary

mapping from H onto G. In terms of the Fourier transform the Gelfand transform

is defined as follows: (̂Uu)(θ,k) = (Fu)(θ + k), θ ∈ Γ†. The unitary operator U

reduces Tγ to the diagonal form:

(UTγU
−1f)( · ,k) = eik·γf( · ,k), ∀γ ∈ Γ.
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Let us consider a self-adjoint operator A in H which commutes with Tγ for all

γ ∈ Γ, i.e. ATγ = TγA. We call such operators (Γ-)periodic. Then A is partially

diagonalised by U (see [28]), that is, there exists a measurable family of self-adjoint

operators (fibres) A(k),k ∈ O† acting in H, such that

UAU∗ =

∫
O†
A(k)dk. (2.1.12)

It is easy to show that any periodic operator T , which is A-bounded with relative

bound ε < 1, can be also decomposed into a measurable set of fibers T (k) in the

sense that

(UTf)( · ,k) = T (k)(Uf)( · ,k), a.e. k ∈ O†,

for all f ∈ D(A). Moreover, the fibers T (k) are A(k)-bounded with the bound ε,

and if T is symmetric, then the operator A(k) + T (k) is self-adjoint on D(A(k)).

Suppose that the operator A (and hence A(k)) is bounded from below and that

the spectrum of each A(k) is discrete. Denote by λj
(
A(k)

)
, j = 1, 2, . . . , the eigen-

values of A(k) labeled in the ascending order. Define the counting function in the

usual way:

N
(
λ,A(k)

)
= #{j : λj

(
A(k)

)
≤ λ}, λ ∈ R.

If A = Op(a) with a real-valued symbol a ∈ L∞loc(Rd) depending only on ξ, then A(k)

is a self-adjoint PDO in H defined as follows:

A(k)u(x) =
1√
d(Γ)

∑
m∈Γ†

eim·xa(m + k)û(m).

If a(ξ) → ∞ as |ξ| → ∞, then the spectrum of each A(k) is purely discrete with

eigenvalues given by λ(m)(k) = a(m + k),m ∈ Γ†. Consequently, the number of

eigenvalues below each λ ∈ R is bounded from above uniformly in k ∈ O†. If T is

a periodic symmetric operator which is A-bounded with a bound ε < 1, then the

spectrum of A(k) + T (k) is also purely discrete and the counting function is also

bounded uniformly in k. In particular, the above applies to the elliptic operator H

defined in (2.1.10). In fact, applying the Gelfand transform (2.1.11) to Op(b), one

22



finds that, similarly to A considered above, the operator H(k) is a PDO in H of the

form

H(k)u(x) =
1√
d(Γ)

∑
m∈Γ†

eim·xh(x,m + k)û(m), k ∈ Rd. (2.1.13)

The values H(k) for k ∈ O† determine H(k) for all k ∈ Rd due to the following

unitary equivalence:

H(k + m) = e−imxH(k)eimx, m ∈ Γ†.

This implies, in particular, that

λj(H(k + m)) = λj(H(k)), j = 1, 2, . . . , (2.1.14)

for all m ∈ Γ†. The images

σj =
⋃

k∈O†

λj(H(k)),

are called spectral bands of H. The spectrum of H is the union

σ(H) =
⋃
j

σj.

Due to the mentioned boundedness of the counting function N(λ,H(k)), each in-

terval (−∞, λ] has non-empty intersection with finitely many spectral bands.

The main result of this section is the following Theorem:

Theorem 2.1.1. Let H = H0 + Op(b) where H0 = Op(a(ξ′)|ξ|2m), with some

m > 0, and b ∈ Sγ(w), w = 〈ξ〉β, with some γ ∈ R and β ∈ (0, 1) satisfying the

condition

2m− 2 > β(γ − 2). (2.1.15)

Here a(·) - is a positive smooth (the first derivative should be continuous) function

and ξ′ = ξ
|ξ| . Then the spectrum of the operator H contains a half-line, i.e. there

exists a number λ0 ∈ R such that [λ0,∞) ⊂ σ(H). Moreover, there is a number

S ∈ R and a constant c > 0 such that for each λ ≥ λ0 we have ζ(λ;H) ≥ cλS. The

constant c and parameter λ0 are uniform in b satisfying b (γ) ≤ C.
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If one prefers stating the conditions on b in terms of the “standard” classes

Sa(〈ξ〉), one can re-write Theorem 2.1.1 as follows:

Theorem 2.1.2. Let H = H0 + Op(b) where H0 = Op(a(ξ′)|ξ|2m), with some

m > 0, and b ∈ Sa(w), w = 〈ξ〉, with some a < 2m. Here a(·) - is a positive smooth

function and ξ′ = ξ
|ξ| . Then the spectrum of the operator H contains a half-line, i.e.

there exists a number λ0 ∈ R such that [λ0,∞) ⊂ σ(H). Moreover there is a number

S ∈ R and a constant c > 0 such that for each λ ≥ λ0 we have ζ(λ;H) ≥ cλS. The

constant c and parameter λ0 are uniform in b satisfying b (γ) ≤ C.

To deduce Theorem 2.1.2 from 2.1.1 it suffices to note that Sa(〈ξ〉) ⊂ Sγ(〈ξ〉β) for

any β ∈ (0, 1) and γ = aβ−1, and that for this γ the condition (2.1.15) is equivalent

to

β >
a

2
−m+ 1. (2.1.16)

2.1.3 Some notational conventions

For any measurable set C ⊂ Rd we denote by P(C) the operator Op(χ( · ; C)), where

χ( · ; C) is the characteristic function of the set C. We denote H(C) = P(C)H,

H = L2(Rd). Accordingly, the fibres P(k,C),k ∈ O†, of P(C), which act in H, are

PDO’s with symbols
∑

m∈Γ† χ(m+k; C). In other words, each P(k; C) is a projection

in H on the linear span of the exponentials

Em(x) :=
1√
d(Γ)

eim·x, m ∈ Γ† : m + k ∈ C. (2.1.17)

The subspace P(k; C)H of H is denoted by H(k; C).

Suppose that H(C) is an invariant subspace of the operator H defined in (2.1.10),

that is (H − iI)−1H(C) ⊂ H(C). Then the subspace H(k; C), k ∈ O†, is invariant

for H(k). We denote by H(k; C) the part of H(k) in H(k; C), so that

H(k) = H(k; C)⊕H(k; Rd \ C), k ∈ O†,

where ⊕ denotes the orthogonal sum. If H(C) is invariant for H, then we denote by

N(λ,H(k); C) the counting function of H(k; C) on the subspace H(k; C).
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Each ξ ∈ Rd can be uniquely represented as the sum ξ = m + k, where m ∈ Γ†

and k ∈ O†. We say that m =: [ξ] is the integer part of ξ and k =: {ξ} is the

fractional part of ξ.

The notation B(x0, R) is used for the open ball in Rd of radius R > 0, centered

at x0 ∈ Rd. We also write B(R) for the open ball of radius R centered at 0.

2.2 Elementary estimates for the sets Λ(θ)

In this section we are going to define the elementary resolvent set Λ(θ) and establish

its basic properties.

The sets we are interested in will be described in terms of a number ρ. All the

considerations will be taken for “sufficiently large” values of ρ. Exact conditions on

ρ will be defined on the way.

The set Λ(θ) is the set of the points such that when we move from them by

the vector θ, the value of the function h0 changes by sufficiently small amount. A

precise definition will be given later.

Note the following auxiliary fact.

Lemma 2.2.1. Let b(r) = min
θ1,..,θk∈Θr

max
i=1,..,k

sin βi, where βi is the angle between the

vector θi and the linear span of the remaining k−1 vectors and {θ1, .., θk} are linear

independent. Then there exists a value ς > 0 such that b(r)� rς .

Proof:

Follows from Lemma 5.1 in [24] �

First we will obtain a necessary condition (in terms of the vector function ψ)

for the vector ξ to be in the set Λ(θ) ∩ S(ρ) for large enough positive values of

ρ� |θ|1/κ.

Then some more useful facts will be proven, and the section is finished by an

upper bound for the volume of the set Λ(θ) ∩ S(ρ).

Consider a positive value α, exact conditions for it will be stated later (in

(2.2.13)).
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First, let us introduce the definition for Λ(θ).

Definition 2.2.2. Let θ ∈ Rd be an arbitrary vector. Then the set Λ(θ) ⊂ Rd is

defined as follows:

Λ(θ) = {ξ : |τθ(ξ)| < ρα|θ|}, (2.2.1)

where

τθ(ξ) := |h0(ξ + θ)− h0(ξ)|.

Lemma 2.2.3. For any ξ ∈ Rd and a positive t ∈ R+ we have:

ψ(ξ) = ψ(tξ).

Proof:

Since the function h0 is homogeneous of order 2m, it holds that

h0(tξ) = t2mh0(ξ),

therefore the homothety with the factor t maps the level set M(ξ) onto M(tξ).

Thus, the directions of the normals at the point ξ (to the level set M(ξ)) and tξ

(for the level set M(tξ)) coincide. �

So the value of ψ(ξ) depends only on ξ′ = ξ
|ξ| , and does not depend on |ξ|.

Giver a vector γ 6= 0, by the derivative ∂h0(ξ)
∂γ

we denote the derivative of the

function h0(ξ) in the direction of the vector γ at the point ξ, that means:

∂h0(ξ)

∂γ
= lim

t→0

h0 (ξ + tγ)− h0 (ξ)

t|γ|
.

Lemma 2.2.4. For unit vectors α, β, γ, such that γ = Aα +Bβ, we have that

∂h0(ξ)

∂γ
= A

∂h0(ξ)

∂α
+B

∂h0(ξ)

∂β
. (2.2.2)

Proof:

∂h0(ξ)

∂γ
= lim

t→0

h0 (ξ + tγ)− h0 (ξ)

t|γ|
= lim

t→0

h0 (ξ + Atα +Btβ)− h0 (ξ)

t
=
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= lim
t→0

h0 (ξ + Atα +Btβ)− h0 (ξ +Btβ) + h0 (ξ +Btβ)− h0 (ξ)

t
=

= lim
t→0

h0 (ξ + Atα +Btβ)− h0 (ξ +Btβ)

t
+ lim

t→0

h0 (ξ +Btβ)− h0 (ξ)

t
=

(this equality is justified, by decomposing h0 into Taylor’s series)

= lim
t→0

h0 (ξ + Atβ)− h0 (ξ)

t
+ lim

t→0

h0 (ξ +Btβ)− h0 (ξ)

t
= A

∂h0(ξ)

∂α
+B

∂h0(ξ)

∂β
.

�

Now we are ready to prove first estimate for the set Λ(θ).

Proposition 2.2.5. There exists a constant C1, such that for sufficiently large val-

ues of ρ and any θ such that 1 < |θ| < ρκ, the following inclusion holds:

Λ(θ) ∩ S(ρ) ⊂ Λ(C1)(θ) ∩ S(ρ), (2.2.3)

where

Λ(C1)(θ) :=

{
ξ ∈ S(ρ) :

∣∣∣∣〈θ, ψ(ξ)〉
|θ|

∣∣∣∣ < C1ρ
α+1−2m

}
(2.2.4)

and the set Λ(θ) is defined by (2.2.1)

Proof:

Let us transform the difference h0(ξ + θ)− h0(ξ).

Since h0 is homogeneous of order 2m,

h0(ξ + θ) = |ξ|2mh0

(
ξ′ +

θ

|ξ|

)
. (2.2.5)

Let us decompose the function h0 in the right hand side of (2.2.5) into Taylor’s

series (here we use smoothness of h0, the value |θ||ξ| < ρκ−1 we assume to be sufficiently

small)

h0

(
ξ′ +

θ

|ξ|

)
= h0(ξ′) +

∂h0(ξ′)

∂θ
|θ||ξ|−1 +O

(
|ξ|2κ−2

)
.

Therefore, substituting this decomposition into (2.2.5) we obtain

h0(ξ + θ) = |ξ|2m
(
h0(ξ′) +

∂h0(ξ′)

∂θ
|θ||ξ|−1 +O

(
|ξ|2κ−2

))
. (2.2.6)

Now denote by θ
||
ψ(ξ) and θ⊥ψ(ξ) vectors of length |θ|, in directions parallel and per-

pendicular to ψ(ξ) correspondingly.
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Let us decompose θ into linear sum of this vectors:

θ = cos(∠(θ, ψ(ξ)))θ
||
ψ(ξ) + sin(∠(θ, ψ(ξ)))θ⊥ψ(ξ).

Note that since the vector θ⊥ψ(ξ) is tangent to the level set, the derivative ∂h0(ξ′)

∂θ⊥ψ(ξ)

= 0.

Therefore,
∂h0(ξ′)

∂θ
= cos(∠(θ, ψ(ξ)))

∂h0(ξ′)

∂θ
||
ψ(ξ)

.

Applying this expression for the derivative to (2.2.6), we obtain (for the simplicity

of the notation, temporally denote cos(∠(θ, ψ(ξ))) = W ):

h0(ξ + θ) = |ξ|2m
(
h0(ξ′) +W

∂h0(ξ′)

∂θ
||
ψ(ξ)

|θ||ξ|−1 +O
(
|ξ|2κ−2

))
. (2.2.7)

Now let is transform the formula τθ(ξ) = |h0(ξ+θ)−h0(ξ)|, using the expression

for h0(ξ + θ) from (2.2.7) and canceling the terms |ξ|2mh0(ξ′):

τθ(ξ) = |h0(ξ + θ)− h0(ξ)| = |ξ|2m
∣∣∣∣∣W ∂h0(ξ′)

∂θ
||
ψ(ξ)

|θ||ξ|−1 +O
(
|ξ|2κ−2

)∣∣∣∣∣ =

=

∣∣∣∣∣W ∂h0(ξ′)

∂θ
||
ψ(ξ)

|θ||ξ|2m−1 +O(|ξ|2m−2+2κ)

∣∣∣∣∣ . (2.2.8)

To obtain a condition that the vector ξ ∈ Λ(θ), use for τθ(ξ) right hand side of

(2.2.8)

Λ(θ) ⊂

{
ξ :

∣∣∣∣∣W ∂h0(ξ′)

∂θ
||
ψ(ξ)

|θ||ξ|2m−1 +O(|ξ|2m−2+2κ)

∣∣∣∣∣ < ρα|θ|

}
.

Dividing by |ξ|2m−1 and using that A
−1/m
max ρ ≤ |ξ| ≤ A

1/m
maxρ:

Λ(θ) ⊂

{
ξ :

∣∣∣∣∣W ∂h0(ξ′)

∂θ
||
ψ(ξ)

|θ|+O(ρ2κ−1)

∣∣∣∣∣ < A2
maxρ

α+1−2m|θ|

}
. (2.2.9)

Therefore (remembering that W = cos(∠(θ, ψ(ξ))) = 〈θ,ψ(ξ)〉
|θ| ), we obtain

Λ(θ) ⊂

{
ξ :

∣∣∣∣∣〈θ, ψ(ξ)〉
|θ|

∂h0(ξ′)

∂θ
||
ψ(ξ)

|θ|+O(ρ2κ−1)

∣∣∣∣∣ < A2
maxρ

α+1−2m|θ|

}
⇒
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⇒ Λ(θ) ⊂

{
ξ :

∣∣∣∣∣〈θ, ψ(ξ)〉
|θ|

∂h0(ξ′)

∂θ
||
ψ(ξ)

|θ|

∣∣∣∣∣ < 2A2
maxρ

α+1−2m|θ|

}
.

The last inequality can be fulfilled by the choice of κ. Here α+1−2m is some fixed

number in the interval (−1, 0) (we will make in (2.2.13) an assumption about value

of α) and the value 2κ − 1 can be chosen to be as close to −1 as needed.

The statement of this proposition immediately follows if we introduce a notation:

1

2A2
max

min
θ

min
ξ

∣∣∣∣ 1

|∇h0|

∣∣∣∣ =
1

C1

.

The internal minimum is nonzero as a minimum of a strictly positive continuous

function considered on a compact. The external minimum exists because |θ| > 1.

�

Our next aim is to obtain some explicit estimates for the set Λ(θ): we will

estimate the volume of the intersection Λ(θ) with the set S(ρ), defined in (2.1.1).

Proposition 2.2.6. There exist constants C2, C
′
2 > 0 independent of ρ such that

C2|ξ1 − ξ2| ≤ |ψ(ξ1)− ψ(ξ2)| ≤ C ′2|ξ1 − ξ2|,

where ξ1, ξ2 are two arbitrary points on the unit sphere Sd−1.

Proof:

We will prove the upper bound, the lower one can be proved similarly.

First, assume the proposition is true for the dimension 2. Then we can derive this

result for higher dimensions in the following way. For any intersection of a sphere

with a plane containing the origin, this constant can be chosen (if the proposition

holds for d = 2). Therefore, the minimum of these constants taken for different

planes will satisfy our statement (since there exists a plain containing our arbitrary

points ξ1, ξ2 and the origin). The minimum exists (and is also non-zero) since the

constant continuously depends on the chosen plane, and the set of all such planes is

a compact. Thus without loss of generality we can only consider the case d = 2.

This means that the points ξ1, ξ2 are on a smooth curve on the plane. Also note

that the curvature of this curve is positive at every point (since the level sets are

strictly convex). Denote by κ∗ > 0 the minimum of the curvature.
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Suppose the statement is false. Then (due to the compactness of the set Sd−1 ×

Sd−1) there exists a convergent sequence of pairs {(ξ(n)
1 , ξ

(n)
2 )}n∈N, such that the

expression
|ψ(ξ

(n)
1 )−ψ(ξ

(n)
2 )|

|ξ(n)
1 −ξ

(n)
2 |

tends to zero. Denote the limit of the sequences {ξ(n)
1 }n∈N,

{ξ(n)
2 }n∈N by ξ∗1 and ξ∗2 correspondingly.

If ξ∗1 6= ξ∗2, then

0 = lim
n→∞

|ψ(ξ
(n)
1 )− ψ(ξ

(n)
2 )|

|ξ(n)
1 − ξ

(n)
2 |

=
ψ(ξ∗1)− ψ(ξ∗2)

ξ∗1 − ξ∗2
.

But the last expression cannot be zero, since the normal vectors in different

points of the strictly convex surface can not coincide. Therefore, ξ∗1 = ξ∗2.

Denote by κ the curvature at the point ξ∗1. Then the value of

lim
ξ1 6=ξ2→ξ∗1

|ψ(ξ1)− ψ(ξ2)|
|ξ1 − ξ2|

for this curve coincides with the same limit for the circle of the radius 1
κ
. For the

circle this limit can easily be calculated explicitly since for any non-collinear vectors

ξ1, ξ2 we have |ψ(ξ1)−ψ(ξ2)|
|ξ1−ξ2|

= 1
R

, where R is the radius of the circle. So we can

conclude that on the curve that we consider

lim
ξ1 6=ξ2→ξ∗1

|ψ(ξ1)− ψ(ξ2)|
|ξ1 − ξ2|

= κ ≥ κ∗ > 0.

Thus we arrive at a contradiction. �

This statement has a usefull corollary.

Corollary 2.2.7. Suppose vectors ξ and θ satisfy the inequality |ξ| ≥ 2|θ|. Then

we have

|ψ(ξ + θ)− ψ(ξ)| ≤ 4C ′2|θ|
|ξ|

, (2.2.10)

Proof: Applying the Triangle inequality to the left hand side of (2.2.10) we can

rewrite it using the homogeneity of the function ψ(ξ) as

|ψ(ξ + θ)− ψ(ξ)| ≤
∣∣∣∣ψ((ξ + θ)|ξ|

|ξ + θ|

)
− ψ(ξ)

∣∣∣∣+

∣∣∣∣ψ(ξ + θ)− ψ
(

(ξ + θ)|ξ|
|ξ + θ|

)∣∣∣∣ =
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=

∣∣∣∣ψ((ξ + θ)|ξ|
|ξ + θ|

)
− ψ(ξ)

∣∣∣∣ .
The second summand equals to zero, since ψ(ξ) does not depend on the length of

the vector. Due to Proposition 2.2.6 we obtain

|ψ(ξ + θ)− ψ(ξ)| ≤
∣∣∣∣ψ((ξ + θ)|ξ|

|ξ + θ|

)
− ψ(ξ)

∣∣∣∣ ≤
≤ C ′2
|ξ|

∣∣∣∣(ξ + θ)|ξ|
|ξ + θ|

− ξ
∣∣∣∣ ≤ C ′2
|ξ||ξ + θ|

|(ξ + θ)|ξ| − ξ|ξ + θ|| .

Let |ξ + θ| = |ξ|+ C, where |C| ≤ |θ|. Then

|(ξ + θ)|ξ| − ξ|ξ + θ|| = |(ξ + θ)|ξ| − ξ|ξ| − Cξ| ≤ |ξ| |C + |θ|| ≤ 2|ξ||θ|.

Thus we conclude that

|ψ(ξ + θ)− ψ(ξ)| ≤ 2C ′2|θ|
|ξ + θ|

≤ 4C ′2|θ|
|ξ|

.

�

Let us consider an arbitrary two-dimensional plane P, containing the origin and

the vector θ, and consider the unit circle S1 on this plane. Since the level sets of

the function h0 are convex, there exist exactly two points on this unit circle where

the tangent vector to the level curve is collinear to the vector θ. Denote them by

ξ1, ξ2.

Now, for an arbitrary point ξ 6= ξ1, ξ2 on the unit circle, we define the function

as follows:

F (ξ) := min{∠(θ, ψ(ξ1)− ψ(ξ));∠(θ, ψ(ξ2)− ψ(ξ))},

where ∠(δ1, δ2) is the acute angle between the lines containing the vectors δ1 and δ2.

Lemma 2.2.8. For the function, constructed as above, the following holds:

max
ξ
F (ξ) <

π

2
.

Proof:
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Denote γ2 := max
ξ
F (ξ), where the maximum is taken over the unit circle. Ob-

viously, γ2 ≤ π
2
.

Let us prove that γ2 <
π
2

by contradiction. Indeed, assume γ2 = π
2
, then there

exists a sequence {ξ(k)}k=1,2,..., such that

lim
k→∞

min{∠(θ, ψ(ξ1)− ψ(ξ(k)));∠(θ, ψ(ξ2)− ψ(ξ(k)))} =
π

2
.

.

We choose a convergent subsequence of this sequence and denote by ξ̂ its limit.

Then we can state that

∠(θ, ψ(ξ1)− ψ(ξ̂)) = ∠(θ, ψ(ξ2)− ψ(ξ̂)) =
π

2
⇒

⇒
〈
θ, ψ(ξ1)− ψ(ξ̂)

〉
=
〈
θ, ψ(ξ2)− ψ(ξ̂)

〉
= 0.

Given that 〈θ, ψ(ξ2)〉 = 0, we can conclude that
〈
θ, ψ(ξ̂)

〉
= 0. This implies that

either ξ̂ = ξ1 or ξ̂ = ξ2. Neither of this can be true since when we are approaching

the point ξ1 (or ξ2) the expression F (ξ) tends to zero.

Thus, we conclude that the values of the function F (ξ) are separated from π
2
. �

Proposition 2.2.9. For the set Λ(c)(θ) defined in (2.2.4) and sufficiently large value

ρ there exists a constant C4 such that:

vol(Λ(c)(θ) ∩ S(ρ)) ≤ C4cρ
α−2m+d.

Proof:

Firstly, one should note that

vol(Λ(c)(θ) ∩ S(ρ))

vol(S(ρ))
≤ A2

max

vold−1(Λ(c)(θ) ∩ Sd−1)

vold−1(Sd−1)
(2.2.11)

(here vold−1 - is a natural measure on Sd−1). This follows from the observation that

the set Λ(c)(θ) is a cone.

Now let us consider a set Dθ ⊂ Sd−1 consisting of all the points, where the vector

θ is a tangent vector to the corresponding level set. This set is a d− 2-dimensional
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surface embedded into the sphere (the dimension of the surface is one less then the

dimension of the sphere).

Let us consider an arbitrary two-dimensional plane P, containing the origin and

the vector θ, and consider the intersection of this plane with the unit sphere Sd−1(it

is a unit circle S1).

Denote the points ξ1, ξ2 and the function F according to the notation introduced

before Lemma 2.2.8.

By Lemma 2.2.8 we can conclude that the values of the function F (ξ) are sepa-

rated from π
2
.

Using the uniform continuity of F (·) (as a function of P) and the compactness

of Sd−1 we see that there exists a positive γ < π
2
, such that for any ξ ∈ Sd−1 we

have F (ξ) < γ.

Denote C3 := cos γ. Let us transform the expression |〈θ,ψ(ξ)〉|
|θ| in a following way:

| 〈θ, ψ(ξ)〉 |
|θ|

=
| 〈θ, ψ(ξ)〉 − 〈θ, ψ(ξi)〉 |

|θ|
=
| 〈θ, ψ(ξ)− ψ(ξi)〉 |

|θ|
≥

≥ |θ||ψ(ξ)− ψ(ξi)| cos γ

|θ|
= |ψ(ξ)− ψ(ξi)| cos γ ≥ C2C3|ξ − ξi|.

Now applying the formula (2.2.3) we obtain:

ξ ∈ Λ(c)(θ) ∩ S(ρ)⇒ C2C3

c
|ξ − ξi| < ρα+1−2m.

so we use similarity transformation with ratio 1
ρ
)

ξ ∈ Λ(c)(θ) ∩ S1 ⇒ C2C3

c
|ξ − ξi| < ρα−2m. (2.2.12)

Clearly, there exists a constant C4 (which does not depend on c), such that

vol1({ξ ∈ S1 :
C2C3

c
|ξ − ξi| < ρα−2m}) ≤ C4c

A2
max

ρα−2m ⇒

⇒ vol1(Λ(c)(θ) ∩ S1)

vol1(S1)
≤ C4c

A2
max

ρα−2m.

Integrating in the cylindrical coordinates we arrive at the estimate

vold−1(Λ(c)(θ) ∩ Sd−1)

vold−1(Sd−1)
≤ C4c

A2
max

ρα−2m.
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Due to (2.2.11)
vol(Λ(c)(θ) ∩ S(ρ))

vol(S(ρ))
≤ C4cρ

α−2m.

�

Remark. If m > α
2

then the proportion of the volume of S(ρ) occupied by Λ(θ),

tends to zero when ρ goes to infinity.

We introduce a notation α1 = α+2−2m. The value of the original α we consider

to be such that α1 ∈ (0, 1), so

α ∈ (2m− 2, 2m− 1). (2.2.13)

(Obviously, we can increase α without loss of generality)

2.3 Resonance sets

Consider the set Θr. For each point ξ we denote by Υ(ξ) the set of points that can

be reached from ξ in several “steps”, with the following rules:

Rules 2.3.1. 1. Each step is a translation by a vector ±θ where θ ∈ Θr.

2. We are allowed to make a translation step in the direction θ only if both the

starting and the end points of this step belong to the set Λ(c)(θ).

This way all the points in Rd can be divided into equivalence classes Υ(ξ), where

Υ(ξ) = {η : η is reachable from ξ}

We say that a subspace V ⊂ Rd is a lattice r-subspace if V is spanned by some

linearly independent lattice vectors from the set Θr. The set of all lattice r-subspaces

of dimension n is denoted by V(n) and V =
⋃d
n=0 V(n).

The main goal of this section is the construction of the sets Ξ(V), Ξ∗(V), V ∈ V

satisfying following properties:

Properties 2.3.2. i. If V1 6= V2, then Ξ(V1) ∩ Ξ(V2) = ∅.

ii. For each V Ξ(V) ⊂ Ξ∗(V).
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iii. Rd =
⋃
V

Ξ(V) (the union includes V = {0}).

iv. If ξ ∈ Ξ(V), then Υ(ξ) ⊂ Ξ(V).

v. For any set V there exists a direction, such that if η is a shift of ξ in this

direction and both ξ and η belong to Ξ∗(V) then Υ(ξ) + η − ξ ⊂ Ξ∗(V).

vi. vol

( ⋃
V:dim(V)≥1

Ξ∗(V)

)
is not too big.

The construction will be performed in several steps. On each step we will intro-

duce a new class of sets, based on the classes already defined. In the last step we

will define the set Ξ∗(V).

2.3.1 The set Ξ
(c)
1 (V)

The crucial fact we use here is the statement 2.2.5. It shows us that a point ξ

belongs to the set Λ(θ) if and only if the scalar product 〈ψ(ξ),θ〉 is less then a

certain value. It is fairly clear that the set of all ξ defined by bounding 〈ψ(ξ),θ〉

from above is constructed in a simple way. Therefore, we would prefer to work with

a more convenient set Ξ
(c)
1 (Vθ) instead of the set Λ(θ), where

Vθ := span{θ},

and the set Ξ
(c)
1 (Vθ) is defined as follows (for a lattice subspace V let as denote the

length of the orthogonal projection of the normal vector ψ(ξ) on the space V by

(ψ(ξ))V):

Definition 2.3.3. 1. For an arbitrary vector θ and a number c > 0

Ξ
(c)
1 (Vθ) := {ξ : |〈ψ(ξ),θ〉| ≤ c|θ|}.

2. For a lattice subspace V ∈ V

Ξ
(c)
1 (V) := {ξ : |(ψ(ξ))V| ≤ c}.

Note that c here is the parameter describing the width of the zone, which can

depend on ρ later on.

For any c > 0 if V = {0} then Ξ
(c)
1 (V) = Rd.

Let us prove a helpful fact:
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Lemma 2.3.4. Let θ1,θ2, ...,θk be some vectors in a k-dimensional space, satisfying

the following property: for any k − 1-dimensional plane we can choose i ∈ {1, .., k}

so that the angle between this plane and the vector θi is at least β∗, where β∗ is a

fixed acute angle.

Then for any unit vector x the following inequality holds:

max
1≤i≤k

|〈x,θi〉|
|θi|

≥ sin β∗.

Proof:

Consider an arbitrary unit vector x. Choose a vector θi0 from the set {θi}i=1..k

so that the angle between θi0 and the plane orthogonal to x is at least β∗. Then

∠(θi0 , x) ≤ π

2
− β∗ ⇒ |〈x,θi〉|

|θi|
≥ sin β∗. �

Remark. At this point one should note that due to Lemma 2.2.1, for linearly

independent vectors from the set Θr there exists β such that β∗ = 2β satisfies the

conditions of the Lemma 2.3.4, and at the same time following estimate for β holds:

sin β ≈ r−ς . (2.3.1)

Let us keep in mind this condition, though we will still use β, when proving

“general” facts. Afterwards, when obtaining final estimates we will replace β, using

the expression (2.3.1). Also without loss of generality we can consider the case of

β < π
3
.

Lemma 2.3.5. For an arbitrary affine space L (with a condition 0 6∈ L) there exists

a unique point ξ∗(L) ∈ L, such that L is tangent to the level set M = {ξ : h0(ξ) =

h0(ξ∗)} at the point ξ∗.

Proof:

The fact that the level sets for the function h0 are strictly convex immediately

implies that there can be no more than one point ξ∗ satisfying the condition of the

lemma. Let us prove that there exists at least one such point.

36



We will consider two cases.

1. dim L = d − 1. Let MA = {ξ : h0(ξ) = A} be some level set. It is strictly

convex so it has exactly two tangent planes parallel to L. And only one of them

can be transformed into L by a homothetic transformation with a positive scaling

factor. Clearly, this homothety transforms the set MA into some other level set MB

(due to the homogeneity of the function h0).

Obviously, L is tangent to MB which gives us the existence of ξ∗.

2. dim L < d − 1. Then we can consider a new linear space L0 = span{L, 0}.

Consider the function h0 restricted to the space L0. All its main properties are

preserved: homogeneity and strict convexity of the level sets.

Now for this new space L0 we can apply the result proven in the first case (since

the dimension of L is one less then the dimension of L0). Consequently there exists

a level set M = {ξ ∈ L0 : h0(ξ) = A}, such that L is a tangent plane to M . That

means that #(L ∩M) = 1, and therefore

#(L ∩ {ξ ∈ Rd : h0(ξ) = A}) = 1.

Also since L ⊂ L0, we have L ∩W = L ∩ (W ∩ L0) for any set W .

So we have proven that L has exactly one common point with M , which means

that L is tangent to it. �

Lemma 2.3.6. Let L be the collection of all planes which do not contain zero. Then

the following inequality holds (here (x)L is the orthogonal projection of the vector x

on the plane L):

C̃ = inf
L∈L

inf
ξ∈L,ξ 6=ξ∗(L)

|(ψ(ξ)− ψ(ξ∗(L)))L|
|ψ(ξ)− ψ(ξ∗(L))|

> 0,

Proof:

For a plane L which does not contain zero, we define the value C̃(L) as follows:

C̃(L) = inf
ξ∈L,ξ 6=ξ∗(L)

|(ψ(ξ)− ψ(ξ∗(L)))L|
|ψ(ξ)− ψ(ξ∗(L))|

.

First, let us show that for every L, C̃(L) > 0.
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Let us assume the contrary: C̃(L) = 0. That would mean that there exists a

sequence {ξk}k∈N ⊂ L, such that the sequence of vectors ψ(ξk) tends to ψ(ξ∗(L)) or

to −ψ(ξ∗(L)). The case of ψ(ξ∗(L)) is trivial and has to be considered separately:

|(ψ(ξk)− ψ(ξ∗(L)))L|
|ψ(ξk)− ψ(ξ∗(L))|

≥ sin(∠(ψ(ξk), ψ(ξ∗(L))))

∠(ψ(ξk), ψ(ξ∗(L)))
, so

ψ(ξk) −−−→
k→∞

ψ(ξ∗(L))⇒ |(ψ(ξk)− ψ(ξ∗(L)))L|
|ψ(ξk)− ψ(ξ∗(L))|

−−−→
k→∞

1

Now consider the case where ψ(ξk) tends to −ψ(ξ∗(L)). Since the vector ψ(ξ)

does not change when we multiply ξ by a positive coefficient, consider a sequence

{ξ∗k}k∈N, where ξ∗k - is the point of the intersection of semi-infinite line starting at

the origin and containing the point ξk with a unit level set M(1). For this new

sequence the property that ψ(ξ∗k) tends to −ψ(ξ∗(L)) will also hold.

Since the level set is compact, we can choose a convergent subsequence of the

sequence {ξ∗k}k∈N. Denote its limit by ξ∗. By construction, the half-line starting at

0 and containing ξ∗ has either to intersect the plane L or to be parallel to it. But

since ψ(ξ∗) = −ψ(ξ∗(L)), this half-line intersects the plane −L, that means that

our assumption was false. Therefore, we have proven that C̃(L) > 0.

Now we are ready to prove the lemma. Assume that C̃ = 0. Then there exists a

sequence of planes {Lk}k∈N, such that that corresponding sequence C̃(Lk) tends to

zero. Therefore we can choose a sequence of planes of same dimension for which this

property will also hold (denote this dimension by p). Now, since C̃(L) = C̃(υL),

where υ is a positive number, we can choose a sequence of planes of same dimension

tangent to a unit sphere again satisfying the property for C̃(Lk).

Now we can choose a convergent subsequence: first we choose subsequence such

that the tangency point (on unit sphere) tends to some limit (since the sphere Sd is

a compact); and then we choose a convergent subsequence from the of the set planes

with the same tangent point on the unit sphere Sd−1−p (this can be done since the

set of the subspaces tangent to a sphere is compact in the natural metric).

Thus from the condition that C̃(L) > 0 for each plane L we see that C̃ can be

chosen as a positive constant depending only on the original function h0.�

38



Lemma 2.3.7. Consider a lattice subspace V ∈ V and an arbitrary point ξ ∈ Rd\V.

We construct a plane L = ξ + V . Then there exists a point ξ∗ ∈ L, such that

1. For any ξ0 ∈ Ξ
(c)
1 (V) ∩ L the following inequality holds:

|ψ(ξ0)− ψ(ξ∗)| ≤ c

C̃
.

2. If for some ξ0 ∈ L it is true that

|ψ(ξ0)− ψ(ξ∗)| ≤ c,

then ξ0 ∈ Ξ
(c)
1 (V) ∩ L.

Proof:

Let ξ∗ be the point obtained by applying Lemma 2.3.5 to the set L.

Let us prove the first statement of this lemma.

Consider an arbitrary point ξ0 ∈ Ξ
(c)
1 (V) ∩ L. Denote by ψ0 the orthogonal

projection of the vector ψ(ξ0) − ψ(ξ∗) onto L. Note that by the Lemma 2.3.6

|ψ0| ≥ C̃|ψ(ξ0)− ψ(ξ∗)|.

But on the other hand

|(ψ(ξ0)− ψ(ξ∗))L| = |(ψ(ξ0))L| ≤ c (2.3.2)

(here we were using the definition of the point ξ∗ and the fact that ξ0 ∈ Ξ
(c)
1 (V)).

Consequently applying (2.3.2) we obtain:

|ψ(ξ0)− ψ(ξ∗)| ≤ |(ψ(ξ0)− ψ(ξ∗))L|
C̃

≤ c

C̃
.

This concludes the proof of the first statement of the lemma.

Now let us prove the second part. If |ψ(ξ0) − ψ(ξ∗)| ≤ c, then for each θ ∈ V

we have

|〈ψ(ξ0),θ〉| = |〈ψ(ξ0)− ψ(ξ∗),θ〉| ≤ c|θ|,

which finishes the proof. �

We denote by ξ∗(L) the point ξ∗ constructed for the plane L using Lemma 2.3.5.
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2.3.2 The set Υ(ξ)

The set Υ(ξ) was defined in the beginning of Section 2.3. Here we will obtain several

estimates for the vectors belonging to such set.

Consider a k-dimensional lattice subspace Vk ∈ V. Denote the orthogonal pro-

jection of the vector ξ on the space Vk by (ξ)Vk
.

Proposition 2.3.8. There exists a monotonically increasing sequence of the real

numbers {ck}dk=1 independent of ρ, such that if we can reach the point η starting

from the point ξ following Rules 2.3.1 (1 and 2) by means of translation steps from

the set Vk ∩ Θr (i.e. for each j, the vector θj we use on the j-th step belongs to

Vk ∩Θr) then

1. |ψ(ξ)− ψ(η)| ≤ ckρ
α1−1(sin β)(3−2k)−, where A− = min{0, A},

2. (ψ(ξ))Vk
≤ ckρ

α1−1(sin β)2−2k, (ψ(η))Vk
≤ ckρ

α1−1(sin β)2−2k.

For convenience in writing out some expressions below we will denote ck =

ckρ
α1−1, where ck is independent of ρ.

Proof:

The proof goes by induction. Firstly, we consider the base case k = 1. In this

case the space Vk is spanned by a single vector θ1 ∈ Θr.

(ψ(ξ))V1 =
〈ψ(ξ),θ1〉
|θ1|

.

The statement that η is reachable from the point ξ using only translation steps by

θ1 means that ξ ∈ Λ(θ1). Therefore, Proposition 2.2.5 implies that for sufficiently

large values of ρ there exists a constant C0 such that

〈ψ(ξ),θ1〉
|θ1|

≤ C0ρ
α1−1,

which finishes the proof of the second statement of this lemma in the base case k = 1

(one just has to choose c1 ≥ C0).

Now consider the first hypothesis of the lemma in the base case k = 1. Consider

a point ξ∗ = ξ∗(ξ + V1). By Lemma 2.3.6 applying the fact that ξ∗ ∈ Λ(θ1)

|ψ(ξ)− ψ(η)| ≤ |ψ(ξ)− ψ(ξ∗)|+ |ψ(ξ∗)− ψ(η)| ≤
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≤ 1

C̃
(|(ψ(ξ)− ψ(ξ∗))V1|+ |(ψ(ξ∗)− ψ(η))V1|) ≤

≤ 1

C̃
|ψ(ξ)V1|+

2

C̃
|ψ(ξ∗)V1|+

1

C̃
|ψ(η)V1| ≤

4C0

C̃
ρα1−1.

So choosing the first constant to be c1 = 4C0/C̃ we claim both parts of the lemma

k = 1 to be true in the base case.

Now we move on to the induction. Assume that the statement is true for k and

let us prove it for k + 1 (denote the corresponding lattice subspace by Vk+1). We

prove the induction step for the case when k > 1. If k = 1 all the considerations

are similar. Consider the first step when the amount of linear independent vectors

θ used as the translation steps on our way from the point ξ to η becomes more

then k; that means that there exists a point η1 such that we reach η1 from ξ only

by means of translations by the vectors from the set Vk, and from the point η1 we

make a step using for translation the vector θk+1 6∈ Vk.

The base case of the statement applied to the point η1 and the vector θk+1 gives

us

(ψ(η1))Vθk+1 ≤ c1. (2.3.3)

The inductive hypothesis applied to the point η1 and the space Vk states that

(ψ(η1))Vk
≤ ck(sin β)2−2k. (2.3.4)

Due to the monotonicity of the sequence {ci} we see that the right hand side of

(2.3.4) is larger than the right hand side of (2.3.3), thus we can state that

η1 ∈ Ξ
(c)
1 (Vk+1)

with the parameter c = ck(sin β)1−2k.

Consider a plane L = ξ + Vk+1 (note that η1 ∈ L). Without loss of generality

we can assume that 0 6∈ L due to the contiuity of the function ψ(·)). Applying now

the first statement of Lemma 2.3.7 to the plane L, we find a point ξ∗ = ξ∗(L) such

that

|ψ(η1)− ψ(ξ∗)| ≤ c

C̃
.
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By the induction hypothesis

|ψ(ξ)− ψ(η1)| ≤ ck(sin β)3−2k ⇒

due to the triangle inequality

⇒ |ψ(ξ)− ψ(ξ∗)| ≤ ck(sin β)3−2k +
c

C̃
⇔

⇔ |ψ(ξ)− ψ(ξ∗)| ≤ ck(sin β)3−2k +
ck

C̃
(sin β)1−2k ≤

(given that ck+1 ≥ 4ck(1/C̃ + 1))

≤ ck+1

2
(sin β)1−2k =

ck+1

2
(sin β)3−2(k+1). (2.3.5)

Similarly, it is easy to show that

|ψ(η)− ψ(ξ∗)| ≤ ck+1

2
(sin β)3−2(k+1),

so

|ψ(η)− ψ(ξ)| ≤ ck+1(sin β)3−2(k+1).

Therefore, by (2.3.5) and recalling the Definition 2.3.3 we have proven that

ξ ∈ Ξ
(c′)
1 (Vk+1),

with the parameter c′ = ck+1(sin β)1−2k.

Now for an arbitrary element of Ξ
(c)
1 and any vector θ ∈ Vk+1 ∩Θr we can state

that

〈ψ(ξ),θ〉 ≤ |θ|ck+1(sin β)1−2k ⇔ (ψ(ξ))〈θ〉 ≤ ck+1(sin β)1−2k.

We plug the vector θ = θk+1 in this inequality and apply it the the second part

of the induction hypothesis. Given that we already obtained the upper bounds for

the orthogonal projections of the vector ψ(ξ) on the linear spaces Vk and 〈θk+1〉,

we can write down an upper bound for the projection on the space Vk+1 as the

maximum of those two projections divided by sin β:

(ψ(ξ))Vk+1
≤ ck+1(sin β)−2k = ck+1(sin β)2−2(k+1).

This way we have proven the induction step for the second part of our statement.

The induction step for the first part immediately follows from (2.3.5). �
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Corollary 2.3.9. There exists a constant C5, such that under the assumptions of

the 2.3.8 (and the assumption that ξ,η ∈ S(ρ)) we have

|ξ − η| ≤ C5ρ
α1(sin β)(3−2d).

Proof:

Follows from Proposition 2.3.8 and Proposition 2.2.6. �

2.3.3 The set Ξ2(V)

Definition 2.3.10. Let V ∈ V. Then we define Ξ2(V) as follows:

Ξ2(V) =
⋃

ξ∈Ξ
(ĉn)
1 (V)

Υ(ξ), for n = dim(V),

with the parameters ĉn = Cραn , where the sequence {αk}dk=1 is increasing and each

αn ∈ (0, 1). Here C is an arbitrary constant chosen so that C > cd where cd is the

last term of the sequence in the conditions of the Proposition 2.3.8.

Proposition 2.3.11. Consider two different lattice subspaces V1,V2, V1 6= V2.

Then for sufficientlysmall parameter κ

Ξ2(V1) ∩ Ξ2(V2) ⊂ Ξ2(V1 + V2).

Proof:

If V1 ⊂ V2 the statement turns into the obvious one, so we can assume without

loss of generality that neither of these spaces is a subset of the other.

Consider an arbitrary point from the intersection ξ ∈ Ξ2(V1) ∩ Ξ2(V2). Denote

by k the maximum of the dimensions of V1 and V2. According to the Proposition

2.3.8:  (ψ(ξ))V1 ≤ ckρ
α1−1(sin β)2−2k,

(ψ(ξ))V2 ≤ ckρ
α1−1(sin β)2−2k.
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Given that we have upper bounds for the projections of the vector ψ(ξ) on two

linear spaces, we can write down the estimate for the projection on the V1 + V2 as

the maximum of these two projections divided by sin β:

(ψ(ξ))V1∪V2 ≤ ckρ
α1−1(sin β)1−2k.

Therefore, the point ξ belongs to the set Ξ1(V1 + V2) (and thus also to the set

Ξ2(V1 + V2)) whenever

ckρ
α1−1(sin β)1−2k < ραl−1,

where l is the dimension of V1 ∪V2. Obviously, l > k, and because C > ck

ckρ
α1−1(sin β)1−2k < Cραl−1 ⇐ (sin β)1−2k < ραl−α1 .

Now one can see that for our goal the sequence {αk} has to be chosen in such a

way that

(sin β)1−2k < ραk+1−α1 . (2.3.6)

Apply the formulas (2.1.2) and (2.3.1). Using (2.3.1) we obtain

(sin β)1−2k < ραk+1−α1 ⇔ r−ς(1−2k) < Cραk+1−α1 ,

and then applying (2.1.2) we conclude that

rς(2k−1) < ραk+1−αk ⇐ ρκς(2k−1) < ραk+1−α1 .

Recall that the value ς is fixed, and the parameter κ can be chosen sufficiently

small so that for any k it will be true that

κς(2k − 1) < αk+1 − α1, (2.3.7)

since {αk} is strictly increasing. Also as a corollary

κς(2k − 1) < (αk+1 − α1)⇒ ρκς(2k−1) < ραk+1−α1 .

�
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In this proof we obtained all the necessary conditions for the sequence {αk} no

other will appear.

Here we have obtained all the conditions on the terms of the sequence {αk} when

k ≤ d− 1. Also we will postulate that

ad = ad−1 + κd2. (2.3.8)

Obviously, for sufficiently small value of the parameter κ all the terms of the se-

quence {αk} will belong to the interval (0, 1).

Let us make an easy remark:

Lemma 2.3.12.

ξ ∈ Ξ2(V)⇔ Υ(ξ) ⊂ Ξ2(V).

Proof:

⇒ By definition of Ξ2(V), if ξ ∈ Ξ2(V), then there exist a η ∈ Ξcn
1 (V) such that

ξ ∈ Υ(η). Therefore Υ(ξ) = Υ(η) ⊂ Ξ2(V)

⇐ Is also true since ξ ∈ Υ(ξ).

�

Now we are going to estimate the volume of the union of the sets Ξ2(V) (aiming

to satisfy point vi of Properties 2.3.2 ):

Proposition 2.3.13.

vol

( ⋃
V:dim V≥1

Ξ2(V)

)
� ρd−3+2αd+(2d−2)κς .

Proof:

Consider the lattice V and the set Ξ2(V). Let ξ ∈ Ξ2(V). Then (due to the

definition of Ξ2) there exists a point η ∈ Ξ
(cd)
1 , such that ξ ∈ Υ(η). (Let L be

a linear space spanned by the lattice V and the point ξ. Consider a point ξ∗(L),

defined in Lemma 2.3.7 (We do not need to consider the case of 0 ∈ L since we are

interested in the volume).
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Due to Lemma 2.3.7 following holds:

|ψ(η)− ψ(ξ∗(L))| ≤ C̃cd. (2.3.9)

From Proposition 2.3.8 we have:

|ψ(ξ)− ψ(η)| ≤ cdρ
(2d−3)κς . (2.3.10)

Therefore (right hand side of (2.3.10) is greater the right hand side of (2.3.9))

|ψ(ξ)− ψ(ξ∗(L))| ≤ 2cdρ
(2d−3)κς .

Now we can apply again Lemma 2.3.7 and conclude that

ξ ∈ Ξ
(c∗)
1 ,

where c∗ = 2cdρ
(2d−3)κς .

Thus, ⋃
V:dim V≥1

Ξ2(V) ⊂
⋃

V:dim V≥1

Ξ
(c∗)
1 (V). (2.3.11)

One can easily note that

Ξ
(c∗)
1 (V) ⊂ Ξ

(c∗)
1 (V1),

where V1 is a one dimensional lattice subspace of V.

But for a one dimensional lattice V1 due to Proposition 2.2.9 the following

inequality holds

vol(Ξ
(c∗)
1 (V1))� c∗ρd+α1−2.

The total number of one-dimensional subspaces can be estimated by #(Θr) ≤

Ĉρκd for a positive constant Ĉ, therefore, applying (2.3.11), we obtain

vol

( ⋃
V:dim V≥1

Ξ2(V)

)
� ρκdρd+α1−2cdρ

(2d−3)κς .

Finally, keeping in mind the fact that cd � ραd−1 (see Proposition 2.3.8), we obtain

an estimate

vol

( ⋃
V:dim V≥1

Ξ2(V)

)
� ρκd+d+α1−2+α1−1+(2d−3)κς = ρd−3+2αd+(2d−2)κς .

�
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2.3.4 The set Ξ(V)

Take a lattice subspace V ∈ V. Then the set Ξ(V) is defined by the formula

Ξ(V) := Ξ2(V) \

( ⋃
V′)V

Ξ2(V′)

)
.

We aim to prove that for sufficiently large values of ρ the new defined sets Ξ(V)

do not intersect.

Proposition 2.3.14. If V1 6= V2, then Ξ(V1) ∩ Ξ(V2) = ∅.

Proof:

By definition and Proposition 2.3.11:

Ξ(V1) ∩ Ξ(V2) ⊂ Ξ2(V1) ∩ Ξ2(V2) ⊂ Ξ2(V1 + V2).

But by construction Ξ(V1) ∩ Ξ2(V) = ∅ for any V, such that V1 ⊂ V, thus it also

holds for V = V1 + V2. So

Ξ(V1) ∩ Ξ(V2) = Ξ(V1) ∩ (Ξ(V1) ∩ Ξ(V2)) ⊂ Ξ(V1) ∩ Ξ2(V1 + V2) = ∅. �

Proposition 2.3.15. If ξ ∈ Ξ(V) then Υ(ξ) ⊂ Ξ(V).

Proof:

Suppose the opposite: let η ∈ Υ(ξ) and η 6∈ Ξ(V). Then there exists some

V′ ⊃ V such that η ∈ Ξ2(V′) holds. Now, applying the fact that ξ ∈ Υ(η) and

Lemma 2.3.12 we can conclude that ξ ∈ Ξ2(V′). Hence ξ 6∈ Ξ(V), which contradicts

the assumption of our Proposition. �

Lemma 2.3.16. If θ and V0 are such that θ 6∈ V0, then

Λ(θ) ∩ Ξ(V0) = ∅.

Proof: Clearly,

Λ(θ) ⊂
⋃

V:θ∈V

Ξ(V),

but for any V : θ ∈ V it holds that Ξ(V) ∩ Ξ(V0) = ∅. �
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Lemma 2.3.17. ⋃
Ξ(V) = Rd. (2.3.12)

Proof: Obvious.

2.3.5 The set Ξ∗(V)

We build a new family of sets in the following way: for each V we

1. build the set Ξ(V),

2. construct the intersection Ξ(V) ∩ LAmaxρ, where

LAmaxρ := {ξ : |ξ| = Amaxρ}

3. “extend” this intersection towards the origin for ξ ∈ S(ρ).

The set that we obtain as a result of this sequence of steps we denote by Ξ∗(V).

Let us recall that in the Property 2.3.2 (iii) we red for existence of a direction,

such that if η is a shift of ξ in this direction and both ξ and η belong to Ξ∗(V) then

Υ(ξ) + η − ξ ⊂ Ξ∗(V).

Define the mapping F in the following way:

F (ξ) := ξ∗(ξ + V).

Taking some point ξ from the set Ξ(V) we construct the plane L = ξ + V and

apply Lemma 2.3.7 to obtain the point ξ∗.

Now we define Ξ∗(V). If dim(V) > 0, then we have

Ξ∗(V) :=

{
ξ + γF (ξ) : ξ ∈ Ξ2(V) ∩ LAmaxρ, γ ∈

(
− 1

A2
max

, 0

)}
∩ S(ρ).

For X = {0}

Ξ∗(X) = Rd \
⋃

dim V≥1

Ξ∗(V).

The sets

B := Ξ(X) = Rd \
⋃
m≥1

⋃
W∈V(m)

Ξ(W) and D = Rd \B. (2.3.13)
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are called the non-resonant set and resonant set of Rd respectively. The sets in-

troduced above obviously depend on the parameter ρ. Whenever necessary, the

dependence on ρ is reflected in the notation, e.g. Ξ(V; ρ), B(ρ),D(ρ).

Similarly denote

BL := Ξ(X) = Rd \
⋃
m≥1

⋃
W∈V(m)

Ξ∗(W) and DL = Rd \BL. (2.3.14)

For simplicity we introduce slightly abused notation. Consider a point ξ and a

lattice subspace V. The point ξ∗(ξ + V) ∈ ξ + V is the tangency point to the level

set containing ξ (as in Lemma 2.3.5).

For an arbitrary vector µ ∈ S(ρ) denote by µ/V the vector

µ/V = µ+ Aξ∗(µ+ V) ∈ V (2.3.15)

(clearly, there exists a unique A ∈ R with such a property), and µ−µ/V we denote

by µ//V.

Note an immediate consequence of the definition of set Ξ2 and Proposition 2.3.8:

Lemma 2.3.18. Let V ∈ V(n), n = 1, 2, . . . , d, and ξ ∈ Ξ2(V). Then for suffi-

ciently large ρ we have:

|ξ/V| ≤ 2ραd−1. (2.3.16)

Proof: By Definition 2.3.10, ξ ∈ Υ(η) for some η ∈ Ξ1(V). Thus, by Proposi-

tion 2.3.8,

|ξ/V| ≤ |η/V|+ max
m∈Υ(η)

|m− η| � 2ρα1−1r2d−3 ≤

≤ 2ρα1−1rd
2

= 2ρα1−1+κd2 ≤ 2ραd−1−1+κd2 = 2ραd−1.

In view of monotonicity of αj’s and of (2.3.8), this proves (2.3.16).

Lemma 2.3.19. Let V ∈ V(n), n = 1, 2, . . . , d, and ξ ∈ Ξ∗(V). Then for suffi-

ciently large ρ we have:

|ξ/V| ≤ 2ραd−1. (2.3.17)
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The proof can be easily obtained following the proof of the previous Lemma.

This Lemma shows that the resonant sets Ξ∗(V),V 6= X, are “small” relative to

the non-resonant set B∗ = Ξ∗(X). More precisely, we show that the resonant set D∗

has a small angular measure. To this end for each θ ∈ Θr define

Λ̃(θ) = {ξ ∈ Rd : |ψ(ξ) · θ| < 2ραd−1−1|θ|}.

By Lemma 2.3.19, for any V ∈ V(n), n ≤ d− 1 we have

ΞL(V) ⊂
⋃

θ∈V∩Θr

Λ̃(θ),

so that

D \B
(

ρ

4Amax

)
⊂
⋃

θ∈Θr

Λ̃(θ) \B
(

ρ

4Amax

)
.

An elementary calculation shows that

Λ̃(θ) \B
(

ρ

4Amax

)
⊂ S(θ; ρ)×

[
ρ

4Amax
,∞
)
,

S(θ; ρ) := {Ω ∈ Sd−1 : |ψ(Ω) · θ| < 8Amaxρ
αd−1−1|θ|},

for all sufficiently large ρ. Let

S(ρ) =
⋃

θ∈Θr

S(θ; ρ), T(ρ) = Sd−1 \ S(ρ). (2.3.18)

Lemma 2.3.20. Let the sets S(ρ) ⊂ Sd−1, T(ρ) ⊂ Sd−1 be as defined above. Then

volSd−1 S(ρ)� ραd−1, volSd−1 T(ρ) � 1, (2.3.19)

for sufficiently large ρ.

Proof: The elementary bound

volSd−1 S(θ; ρ) =

∫
Sd−2

∫
| cosω|≤8Amaxρ

αd−1−1
sind−2 ωdωdΩ̂� ραd−1−1,

together with the observation that the number of the sets Λ̃(θ) is bounded above

by card Θr � rd, gives the estimate

volSd−1 S(ρ)� rdραd−1−1 � ραd−1.
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The second bound in (2.3.19) immediately follows from the first one by definition

(2.3.18).

In what follows, apart from the non-resonant set B(ρ), the set

B̃(ρ) = T(ρ)×
[

ρ

4Amax
,∞
)

(2.3.20)

will play an important role. Since D ⊂ S(ρ) ×
[

ρ
4Amax

,∞
)

, and B = Rd \ D (see

(2.3.13)), we have

B̃(ρ) ⊂ B(ρ).

2.4 Properties of periodic PDO’s

In this section we follow the path of the corresponding section in [24]. Main correc-

tions are induced by the change of the considered cut-off functions in the formuli

(2.4.8), (2.4.9).

In this section we collect various properties of periodic PDO’s to be used in what

follows.

2.4.1 Some basic results on the calculus of periodic PDO’s

We begin by listing some elementary results for periodic PDO’s, some of which can

be found in [38].

Recall that S(Rd) is taken as a natural domain of Op(b). Unless otherwise stated,

all the symbols are supposed to belong to the class Sγ = Sγ(w; Γ), γ ∈ R, with an

arbitrary function w satisfying (2.1.3) and a lattice Γ. The functions w and the

lattice Γ are usually omitted from the notation.

Proposition 2.4.1. (See e.g. [38]) Suppose that b
(0)
l,0 <∞ with some l > d. Then

B = Op(b) is bounded in H and ‖B‖ ≤ C b
(0)
l,0 , with a constant C independent of

b.

Since Op(b)u ∈ S(Rd) for any b ∈ Sγ and u ∈ S(Rd), the product Op(b) Op(g),

b ∈ Sγ1 , g ∈ Sγ2 , is well defined on S(Rd). A straightforward calculation gives the
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following formula for the symbol b ◦ g of the product Op(b) Op(g):

(b ◦ g)(x, ξ) =
1

d(Γ)

∑
θ,φ

b̂(θ, ξ + φ)ĝ(φ, ξ)ei(θ+φ)x,

and hence

(̂b ◦ g)(χ, ξ) =
1√
d(Γ)

∑
θ+φ=χ

b̂(θ, ξ + φ)ĝ(φ, ξ), χ ∈ Γ†, ξ ∈ Rd. (2.4.1)

Here and below θ,φ ∈ Γ†. In particular, one sees that Op(b) Op(wδ) = Op(bwδ) for

any δ ∈ R. This observation leads to the following Lemma. We remind that the

symbol bη is defined in (2.1.7).

Lemma 2.4.2. Let b ∈ Sγ(w) with w(ξ) = 〈ξ〉β, β ∈ (0, 1]. Then for any u ∈ S(Rd)

and any l > d, we have

‖Op(b)u‖ ≤ C b
(γ)
l,0 ‖(H0 + I)γ̃u‖, γ̃ =

γβ

2m
, (2.4.2)

with a constant C independent of b, u. In particular, if γβ < 2m, then Op(b) is

H0-bounded with an arbitrarily small relative bound.

Moreover, for any η ∈ Rd and any l > d,

‖(Op(b)−Op(bη))u‖ ≤ C|η| b (γ)
l,1 ‖(H0 + I)γ̂u‖, γ̂ =

β(α− 1)

2m
, (2.4.3)

where the constant C does not depend on b, u, and is uniform in η: |η| ≤ C̃.

Proof: Define G = BOp(w−γ). As we have observed earlier, G = Op(g)

with g = bw−γ, so that g ∈ S0(w) and g
(0)
l,0 = b

(γ)
l,0 . Hence, by Lemma 2.4.1,

‖G‖ ≤ C b
(γ)
l,0 and

‖Op(b)u‖ = ‖GOp(wγ)u‖ ≤ C b
(γ)
l,0 ‖Op(wγ)u‖. (2.4.4)

As Op(wγ) ≤ C(H0 + I)γ̃, γ̃ = γβ(2m)−1, we get (2.4.2).

The bound (2.4.3) follows from (2.4.2) when applied to the symbol b − bη, and

from the estimate (2.1.8).

The bound (2.4.2) allows one to give a proper meaning to the operator (2.1.10),

since b is infinitesimally H0-bounded. The bound (2.4.3) will be useful in the study

of the Floquet eigenvalues as functions of the quasi-momentum k.

For general symbols b, g we have the following proposition (see e.g. [38]).
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Proposition 2.4.3. Let b ∈ Sγ1, g ∈ Sγ2. Then b ◦ g ∈ Sγ1+γ2 and

b ◦ g (γ1+γ2) ≤ C b (γ1) g (γ2),

with a constant C independent of b, g.

We are also interested in the estimates for symbols of commutators. For PDO’s

A,Ψl, l = 1, 2, . . . , N , denote

ad(A; Ψ1,Ψ2, . . . ,ΨN) = i
[
ad(A; Ψ1,Ψ2, . . . ,ΨN−1),ΨN

]
,

ad(A; Ψ) = i[A,Ψ], adN(A; Ψ) = ad(A; Ψ,Ψ, . . . ,Ψ), ad0(A; Ψ) = A.

For the sake of convenience we use the notation ad(a;ψ1, ψ2, . . . , ψN) and adN(a, ψ)

for the symbols of multiple commutators. It follows from (2.4.1) that the Fourier

coefficients of the symbol ad(b, g) are given by

âd(b, g)(χ, ξ) =
i√
d(Γ)

∑
θ+φ=χ

[
b̂(θ, ξ + φ)ĝ(φ, ξ)− b̂(θ, ξ)ĝ(φ, ξ + θ)

]
,

χ ∈ Γ†, ξ ∈ Rd. (2.4.5)

Proposition 2.4.4. (See e.g. [38]) Let b ∈ Sγ0 and gj ∈ Sγj , j = 1, 2, . . . , N . Then

ad(b; g1, . . . , gN) ∈ Sγ with

γ =
N∑
j=0

(γj − 1),

and

ad(b; g1, . . . , gN) (γ) ≤ C b (γ0)

N∏
j=1

gj
(γj), (2.4.6)

with a constant C independent of b, gj.

2.4.2 Partition of the perturbation

From now on the weights in the definition of classes Sγ = Sγ(w) are assumed to

be w(ξ) = 〈ξ〉β with some β ∈ (0, 1]. Here we partition every symbol b ∈ Sγ into

the sum of several symbols, restricted to different parts of the phase space. These
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symbols depend on the parameter ρ ≥ 1, but this dependence is usually omitted

from the notation.

Let ι ∈ C∞(R) be a non-negative function such that

0 ≤ ι ≤ 1, ι(z) =

 1, z ≤ 1
2Amax

;

0, z ≥ 1
Amax

.

(2.4.7)

For L ≥ 1 and θ ∈ Γ†,θ 6= 0, define the following C∞-cut-off functions:

eθ(ξ) = ι

(∣∣∣∣ |ξ + θ/2|
ρ

− 1

∣∣∣∣),
`>θ (ξ) = 1− ι

(
|ξ + θ/2|

ρ
− 1

)
,

`<θ (ξ) = 1− ι
(

1− |ξ + θ/2|
ρ

)
,

(2.4.8)

and 
ζθ(ξ;L) = ι

(
|〈θ, ψ̂(ξ + θ/2)〉|

L|θ|

)
,

ϕθ(ξ;L) = 1− ζθ(ξ;L),

(2.4.9)

where ψ̂(ξ) = |ξ|ψ(ξ), and ψ(ξ) is a unit normal vector at the point ξ to the surface

defined by {ς : h0(ς) = h0(ξ)}.

Note that eθ + `>θ + `<θ = 1. The function `>θ is supported on the set |ξ+ θ/2| >

ρ(1 + 1
2Amax

), and `<θ is supported on the set |ξ+ θ/2| < ρ(1− 1
2Amax

). The function

eθ is supported in the shell ρ(1− 1
Amax

) ≤ |ξ| ≤ ρ(1+ 1
Amax

). Omitting the parameter

L and using the notation `θ for any of the functions `>θ or `<θ , we point out that
eθ(ξ) = e−θ(ξ + θ), `θ(ξ) = `−θ(ξ + θ),

ϕθ(ξ) = ϕ−θ(ξ + θ), ζθ(ξ) = ζ−θ(ξ + θ).

(2.4.10)

Note that there exists constant C > 0 (not depending on ρ) such that∣∣∣∣∣∂ψ̂(ξ)

∂xi

∣∣∣∣∣ ≤ C
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for any vector ξ and component i.

Therefore,

|Ds
ξϕθ(ξ;L)|+ |Ds

ξζθ(ξ;L)| � L−|s|C |s|.

Since afterwards we are going to choose L = ρβ, we can conclude that the above

functions satisfy the estimates
|Ds

ξeθ(ξ)|+ |Ds
ξ`θ(ξ)| � ρ−|s|,

|Ds
ξϕθ(ξ;L)|+ |Ds

ξζθ(ξ;L)| � L−|s|.

(2.4.11)

Let

Θr = Θr(Γ) = {θ ∈ Γ† : 0 < |θ| ≤ r}, Θ0
r = Θr ∪ {0}, (2.4.12)

with r = ρκ. Using the above cut-off functions, for any symbol b ∈ Sγ(w) we

introduce six new symbols bLF, bSE, bo, bLE, bNR, bR in the following way:

bLF(x, ξ; ρ) =
1√
d(Γ)

∑
θ/∈Θ0

r

b̂(θ, ξ)eiθx, (2.4.13)

bLE(x, ξ; ρ) =
1√
d(Γ)

∑
θ∈Θr

b̂(θ, ξ)`>θ (ξ)eiθx, (2.4.14)

bNR(x, ξ; ρ) =
1√
d(Γ)

∑
θ∈Θr

b̂(θ, ξ)ϕθ(ξ; ρβ)eθ(ξ)eiθx, (2.4.15)

bR(x, ξ; ρ) =
1√
d(Γ)

∑
θ∈Θr

b̂(θ, ξ)ζθ(ξ; ρβ)eθ(ξ)eiθx, (2.4.16)

bSE(x, ξ; ρ) =
1√
d(Γ)

∑
θ∈Θr

b̂(θ, ξ)`<θ (ξ)eiθx, (2.4.17)

bo(x, ξ; ρ) = bo(ξ; ρ) =
1√
d(Γ)

b̂(0, ξ). (2.4.18)

The superscripts here are chosen to mean correspondingly: LF =‘large Fourier’ (co-

efficients), LE = ‘large energy’, NR = ‘non-resonance’, R = ‘resonance’, SE =‘small

energy’, o =0-th Fourier coefficient. Sometimes the dependence of the introduced

symbols on the parameter ρ is omitted from the notation. The corresponding oper-

ators are denoted by

BLF = Op(bLF), BLE = Op(bLE), BNR = Op(bNR),

BR = Op(bR), BSE = Op(bSE), Bo = Op(bo).
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By definition (2.4.7),

b = bo + bSE + bR + bNR + bLE + bLF.

The role of each of these operator is easy to explain. The symbol bLF contains only

Fourier coefficients with |θ| > r, and the remaining symbols contain the Fourier

coefficients with |θ| ≤ r. Note that on the support of the functions b̂NR(θ, · ; ρ) and

b̂R(θ, · ; ρ) we have

|θ| ≤ ρκ, ρ

(
1− 1

Amax

)
≤ |ξ + θ/2| ≤ ρ

(
1 +

1

Amax

)
⇒

⇒ ρ

(
1− 1

Amax

)
− 1

2
ρκ ≤ |ξ| ≤ ρ

(
1 +

1

Amax

)
+

1

2
ρκ. (2.4.19)

On the support of bSE(θ, · ; ρ) we have∣∣∣∣ξ +
θ

2

∣∣∣∣ ≤ ρ

(
1− 1

2Amax

)
, |ξ| ≤ ρ

(
1− 1

2Amax

)
+

1

2
ρκ. (2.4.20)

On the support of bLE(x, · ; ρ) we have∣∣∣∣ξ +
θ

2

∣∣∣∣ ≥ ρ

(
1 +

1

2Amax

)
, |ξ| ≥ ρ

(
1 +

1

2Amax

)
− 1

2
ρκ. (2.4.21)

The introduced symbols play a central role in the proof of the Main Theorem 2.1.1.

As we show in the course of the proof, due to (2.4.20) and (2.4.21) the symbols bLF,

bSE and bLE make only a negligible contribution to the spectrum of the operator

(2.1.10) near the point λ = ρ2m. The only significant components of b are the

symbols bNR, bR and bo. The symbol bNR will be transformed in the next Section

into another symbol, independent of x.

We will often combine BR, BLE and BLF, BSE: for instance BR,LE = BR +BLE,

BR,LE,LF = BR,LE + BLF. A similar convention applies to the symbols. Under the

condition b ∈ Sγ(w) the above symbols belong to the same class Sγ(w) and the

following bounds hold:

bR
(γ)
l,s + bNR (γ)

l,s + bLE (γ)
l,s + bo

(γ)
l,s + bSE (γ)

l,s + bLF (γ)
l,s � b

(γ)
l,s . (2.4.22)
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Indeed, let us check this for the symbol bNR, for instance. According to (2.4.19) and

(2.4.11), on the support of the function b̂NR(θ, · ; ρ) we have

|Dsϕθ(ξ, ρβ)| � ρ−β|s| � w−|s|,

|Ds`>θ (ξ)|+ |Ds`<θ (ξ)|+ |Dseθ(ξ)| � ρ−|s| � w−|s|.

This immediately leads to the bound of the form (2.4.22) for the symbol bNR.

The introduced operations also preserve symmetry. Precisely, calculate using

(2.4.10):

b̂R(−θ, ξ + θ) = b̂(−θ, ξ + θ)ζ−θ(ξ + θ; ρβ)e−θ(ξ + θ)

= b̂(θ, ξ)ζθ(ξ; ρβ)eθ(ξ) = b̂R(θ, ξ).

Therefore, by (2.1.9) the operator BR is symmetric if so is B. The proof is similar

for the rest of the operators introduced above.

Let us list some other elementary properties of the introduced operators. In

the Lemma below we use the projection P(C),C ⊂ R whose definition was given in

Subsection 2.1.3.

Lemma 2.4.5. Let b ∈ Sγ(w), w = 〈ξ〉β, β ∈ (0, 1] with some α ∈ R. Then the

following hold:

(i) The operator Op(bSE) is bounded and

‖Op(bSE)‖ � b
(γ)
l,0 ρ

βmax(γ,0).

Moreover, (
I − P

(
B

(
ρ

(
1− 1

4Amax

))))
Op(bSE) =

= Op(bSE)

(
I − P

(
B

(
ρ

(
1− 1

4Amax

))))
= 0.
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(ii) The operator BR satisfies the following relations

P

(
B

(
ρ

(
1− 5

4Amax

)))
BR = BRP

(
B

(
ρ

(
1− 5

4Amax

)))
=

=

(
I − P

(
B

(
ρ

(
1 +

5

4Amax

))))
BR =

=BR

(
I − P

(
B

(
ρ

(
1 +

5

4Amax

))))
= 0, (2.4.23)

and similar relations hold for the operator BNR as well.

Moreover, for any γ1 ∈ R one has bNR, bR ∈ Sγ1 and

bNR (γ1)
l,s + bR

(γ1)
l,s � ρβ(γ−γ1) b

(γ)
l,s , (2.4.24)

for all l and s, with an implied constant independent of b and ρ ≥ 1. In

particular, the operators BNR, BR are bounded and

‖BNR‖+ ‖BR‖ � ρβγ b
(γ)
l,0 ,

for any l > d.

(iii)

P

(
B

(
ρ

(
1 +

1

4Amax

)))
BLE = BLEP

(
B

(
ρ

(
1 +

1

4Amax

)))
= 0.

(iv) If R ≤ Amaxρ, then

‖P(B(R))BLF‖+ ‖BLFP(B(R))‖ � b
(α)
l,0 r

p−lρβmax(α,0), (2.4.25)

for any p > d and any l ≥ p.

In what follows a central role is played by the operator of the form

A := H0 +Bo +BR (2.4.26)

with some symmetric symbol b ∈ Sγ. In the next Theorem we study the continuity of

the Floquet eigenvalues λj(A(k)), j = 1, 2, . . . , as functions of the quasi-momentum

k. Here, A(k) are the fibers of the operator (2.4.26). For any vector η ∈ Rd we

define the distance on the torus:

|η|T = min
m∈Γ†

|η −m|. (2.4.27)
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Theorem 2.4.6. Suppose that ρ ≥ 1 and

β(γ − 1) < 2m− 1. (2.4.28)

If for some j

λj(A(k)) � ρ2m, (2.4.29)

then for any l > d we have

|λj(A(k + η))− λj(A(k))| �
(
1 + b

(γ)
l,1

)
|η|Tρ2m−1. (2.4.30)

The implied constant in (2.4.30) depends on the constants in (2.4.29).

Proof: The proof coincides with the proof of Theorem 3.6 in [24].

2.5 A “gauge transformation”

In this and all the subsequent sections we assume that Sγ = Sγ(w) with w(ξ) = 〈ξ〉β,

β ∈ (0, 1]. Recall that we study spectral properties of the operator H defined in

(2.1.10). Our ultimate goal is to prove that each sufficiently large λ belongs to the

spectrum of H. We are going to use the notation from the previous section with the

parameter ρ = λ
1

2m ≥ 1.

2.5.1 Preparation

Our strategy is to find a unitary operator which reduces H = H0 + Op(b) to an-

other PDO, whose symbol, up to some controllable small errors, depends only on

ξ. The unitary operator sought is constructed in the form U = eiK with a suitable

bounded self-adjoint Γ-periodic PDO K. This is why we sometimes call it a “gauge

transformation”. It is useful to consider eiK as an element of the group

U(t) = exp{iKt}, ∀t ∈ R.

We assume that the operator ad(H0, K) is bounded, so that U(t)D(H0) =

D(H0). This assumption will be justified later on. Let us express the operator

At := U(−t)HU(t)
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via its (weak) derivative with respect to t:

At = H +

∫ t

0

U(−t′) ad(H;K)U(t′)dt′.

By induction it is easy to show that

A1 = H +
M∑
j=1

1

j!
adj(H;K) +R

(1)
M+1, (2.5.1)

R
(1)
M+1 :=

∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tM

0

U(−tM+1) adM+1(H;K)U(tM+1)dtM+1.

The operator K is sought in the form

K =
M∑
k=1

Kk, Kk = Op(κk), (2.5.2)

with symbols κk from some suitable classes Sσ, σ = σk to be specified later on.

Substitute this formula in (2.5.1) and rewrite, regrouping the terms:

A1 = H0 +B +
M∑
j=1

1

j!

M∑
l=j

∑
k1+k2+···+kj=l

ad(H;Kk1 , Kk2 , . . . , Kkj)

+R
(1)
M+1 +R

(2)
M+1,

R
(2)
M+1 :=

M∑
j=1

1

j!

∑
k1+k2+···+kj≥M+1

ad(H;Kk1 , Kk2 , . . . , Kkj). (2.5.3)

Changing this expression yet again produces

A1 = H0 +B +
M∑
l=1

ad(H0;Kl) +
M∑
j=2

1

j!

M∑
l=j

∑
k1+k2+···+kj=l

ad(H0;Kk1 , Kk2 , . . . , Kkj)

+
M∑
j=1

1

j!

M∑
l=j

∑
k1+k2+···+kj=l

ad(B;Kk1 , Kk2 , . . . , Kkj) +R
(1)
M+1 +R

(2)
M+1.

Next, we switch the summation signs and decrease l by one in the second summation:

A1 = H0 +B +
M∑
l=1

ad(H0;Kl) +
M∑
l=2

l∑
j=2

1

j!

∑
k1+k2+···+kj=l

ad(H0;Kk1 , Kk2 , . . . , Kkj)

+
M+1∑
l=2

l−1∑
j=1

1

j!

∑
k1+k2+···+kj=l−1

ad(B;Kk1 , Kk2 , . . . , Kkj) +R
(1)
M+1 +R

(2)
M+1.
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Now we introduce the notation

B1 := B,

Bl :=
l−1∑
j=1

1

j!

∑
k1+k2+···+kj=l−1

ad(B;Kk1 , Kk2 , . . . , Kkj), l ≥ 2, (2.5.4)

Tl :=
l∑

j=2

1

j!

∑
k1+k2+···+kj=l

ad(H0;Kk1 , Kk2 , . . . , Kkj), l ≥ 2. (2.5.5)

We emphasize that the operators Bl and Tl depend only on K1, K2, . . . , Kl−1. Let

us make one more rearrangement:

A1 = H0 +B +
M∑
l=1

ad(H0, Kl) +
M∑
l=2

Bl +
M∑
l=2

Tl +RM+1,

RM+1 = BM+1 +R
(1)
M+1 +R

(2)
M+1. (2.5.6)

Now we can specify our algorithm for finding Kk’s. The symbols κk will be found

from the following system of commutator equations:

ad(H0;K1) +BNR
1 = 0, (2.5.7)

ad(H0;Kl) +BNR
l + TNR

l = 0, l ≥ 2, (2.5.8)

and hence 

A1 = A0 +XR
M +XSE,LE,LF

M +RM+1,

XM =
∑M

l=1 Bl +
∑M

l=2 Tl,

A0 = H0 +X
(o)
M .

(2.5.9)

Below we denote by xM the symbol of the PDO XM . Recall that by Lemma 2.4.5(ii),

the operators BNR
l , TNR

l are bounded, and therefore, in view of (2.5.7), (2.5.8), so is

the commutator ad(H0;K). This justifies the assumption made in the beginning of

the formal calculations in this Section.

2.5.2 Commutator equations

Recall that

h0(ξ) = |ξ|2ma
(
ξ

|ξ|

)
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with m > 0. Before proceeding to the study of the commutator equations (2.5.7),

(2.5.8) note that for ξ in the support of the function b̂NR(θ, · ; ρ) the symbol

τθ(ξ) = h0(ξ + θ)− h0(ξ) (2.5.10)

can be estimated as follows.

Let us estimate τθ(ξ) = h0(ξ + θ)− h0(ξ) on the support of the bNR(x, ξ; ρ).

The upper bound follows from the Taylor expansion for the τθ(ξ) and (2.4.19).

For simplicity we introduce one more notation: â(ξ) = a
(

ξ
|ξ|

)
, in terms of this

function we can rewrite

h0(ξ + θ)− h0(ξ) = |ξ|2m
(
â(ξ + θ)(|ξ + θ||ξ|−1)2m − â(ξ)

)
=

= |ξ|2m
(
(â(ξ + θ)− â(ξ))(|ξ + θ||ξ|−1)2m + â(ξ)((|ξ + θ||ξ|−1)2m − 1)

)
.

Note that â(ξ)((|ξ + θ||ξ|−1)2m − 1) � 1. Also, note that there exist a value

B∗ > 0, such that for any θ, ξ in region defined by (2.4.19)

|â(ξ + θ)− â(ξ)| =
∣∣∣∣â(ξ + θ

|ξ|

)
− â

(
ξ

|ξ|

)∣∣∣∣ ≤ B∗
|θ|
|ξ|
. (2.5.11)

Obviously, B∗ can be chosen once for all ρ > ρ0 (nothing changes when we simulta-

neously proportionally increase both vectors θ and ξ, that means that increasing of

ρ is equivalent to contracting of the area, that we consider). Then

|h0(ξ + θ)− h0(ξ)| � |ξ|2m(B∗|θ||ξ|−1 + (|ξ + θ||ξ|−1)2m)� |θ|ρ2m−1.

For the lower bound, let us note that on the support of bNR(x, ξ; ρ),

|〈θ, ψ̂(ξ + θ/2)〉|
ρβ|θ|

>
1

4
⇒ |〈θ, ψ(ξ + θ/2)〉|

|θ|
� ρβ−1

(because ψ̂(ξ + θ/2) � ξψ(ξ + θ/2)).

By Proposition 2.2.5 if |θ| < ρκ then

τθ(ξ) < ρα|θ| =⇒ |θψ(ξ)| � |θ|ρα+1−2m. (2.5.12)
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Consequently, when considering

α + 1− 2m = β − 1⇔ α = 2m− 2 + β,

we can conclude that

|〈θ, ψ(ξ)〉|
|θ|

� |〈θ, ψ(ξ + θ/2)〉|
|θ|

� ρβ−1 ⇒ |〈θ, ψ(ξ)〉| � |θ|ρα+1−2m,

so by (2.5.12)

τθ(ξ)� ρα|θ| = ρ2m−2+β|θ|.

Now let us estimate derivatives of τθ.

Note that using considerations similar to (2.5.11), for any s we can obtain

|Ds
ξâ(ξ + θ)−Ds

ξâ(ξ)| ≤ Bs
|θ|
|ξ|
. (2.5.13)

Thus, we conclude that

|Ds
ξτθ(ξ)| � |θ|ρ2m−1−|s|.

Now for the inverse one can write out:

τ−1
θ (ξ) =

1

h0(ξ + θ)− h0(ξ)
⇒

for |s| = 1 we obtain

|Ds
ξτ
−1
θ (ξ)| =

∣∣∣∣ Ds
ξτθ(ξ)

(h0(ξ + θ)− h0(ξ))2

∣∣∣∣� |θ|ρ2m−2

|θ|2ρ4m−4+2β
=

1

|θ|ρ2m−2+2β
.

Similarly, for any s we obtain

|Ds
ξτ
−1
θ (ξ)| � |θ|−1ρ−2m+2−(|s|+1)β � |θ|−1w−(2m−2)β−1−1−s, (2.5.14)

for all ξ in the support of the function b̂NR(θ, · ; ρ). This estimate will come in

handy in the next lemma.

Lemma 2.5.1. Let G = Op(g) be a symmetric PDO with g ∈ Sω. Then the PDO

K with the Fourier coefficients of the symbol κ(x, ξ; ρ) given by
κ̂(θ, ξ; ρ) = i

ĝNR(θ, ξ; ρ)

τθ(ξ)
, θ 6= 0,

κ̂(0, ξ; ρ) = 0,

(2.5.15)
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solves the equation

ad(H0;K) + Op(gNR) = 0. (2.5.16)

Moreover, the operator K is bounded and self-adjoint, its symbol κ belongs to Sγ

with any γ ∈ R and the following bound holds:

κ
(γ)
l,s � ρβ(σ−γ) g

(ω)
l−1,s, (2.5.17)

where

σ = ω − (2m− 2)β−1 − 1. (2.5.18)

Proof: For brevity we omit ρ from the notation. Let t be the symbol of

ad(H0;K). The Fourier transform t̂(θ, ξ) is easy to find using (2.4.1):

t̂(θ, ξ) = i
(
h0(ξ + θ)− h0(ξ)

)
κ̂(θ, ξ) = iτθ(ξ)κ̂(θ, ξ).

Therefore, by definition (2.4.15), the equation (2.5.16) amounts to

iτθ(ξ)κ̂(θ, ξ) = −ĝNR(θ, ξ; ρ) = −ĝ(θ, ξ; ρ)ϕθ(ξ; ρβ)eθ(ξ), |θ| ≤ r.

By definition of the functions ϕθ, eθ, the function κ̂ given by (2.5.15) is defined for all

ξ. Moreover, the symbol κ̂ satisfies the condition (2.1.9), so that K is a symmetric

operator.

In order to prove that κ ∈ Sγ for all γ ∈ R, note that according to (2.4.24) and

(2.1.5),

|Ds
ξĝ

NR(θ, ξ; ρ)| � ρβ(ω−γ) g
(ω)
l,s w

γ−s|θ|−l.

Together with (2.5.14) this implies that

|Ds
ξκ̂(θ, ξ; ρ)| � ρ−βγ a

(ω)
l,s w

σ+γ−s|θ|−l−1,

so that κ ∈ Sγ and it satisfies (2.5.17).

The estimate (2.5.17) with γ = 0, s = 0, and Proposition 2.4.1 ensure the bound-

edness of K.

Let us apply Lemma 2.5.1 to equations (2.5.7) and (2.5.8).
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Lemma 2.5.2. Let b ∈ Sγ∗ be a symmetric symbol, ρ ≥ 1, and let
σ = γ∗ − (2m− 2)β−1 − 1,

σj = j(σ − 1) + 1,

εj = j(σ − 1) + (2m− 2)β−1 + 2,

(2.5.19)

j = 1, 2, . . . . Then there exists a sequence of self-adjoint bounded PDO’s Kj, j =

1, 2, . . . with the symbols κj such that κj ∈ Sγ for any γ ∈ R, (2.5.7) and (2.5.8)

hold, and

κj
(γ) � ρβ(σj−γ)

(
b (γ∗))j, j ≥ 1. (2.5.20)

The symbols bj, tj of the corresponding operators Bj, Tj belong to Sγ for any γ ∈ R

and

bj
(γ) + tj

(γ) � ρβ(εj−γ)( b (γ∗))j, j ≥ 2. (2.5.21)

If ρβ(σ−1) b (γ∗) � 1, then for any M and κ =
∑M

j=1 κj the following bounds

hold:

κ (γ) � ρβ(σ−γ) b (γ∗), ∀γ ∈ R; xM
(γ∗) � b (γ∗), (2.5.22)

‖RM+1‖ � ( b (γ∗))M+1ρβεM+1 ; (2.5.23)

uniformly in b satisfying ρβ(σ−1) b (γ∗) � 1.

Let us now summarize the results of this section in the following Theorem: the

implications of the above Lemma for the operator H = H0 + Op(b), defined in

(2.1.10).

Theorem 2.5.3. Let b ∈ Sγ∗(w), w(ξ) = 〈ξ〉β, β ∈ (0, 1], γ∗ ∈ R be a symmetric

symbol, and let H be the operator defined in (2.1.10). Suppose that the condition

(2.1.15) is satisfied. Then for any positive integer M there exist symmetric symbols

κ = κM , x = xM , and a self-adjoint bounded operator RM+1 satisfying the following

properties:
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1. κ ∈ Sγ for all γ ∈ R, x ∈ Sγ∗, and

κ (γ) � ρβ(σ−γ) b (γ∗),

x (γ∗) � b (γ∗),

‖RM+1‖ � ( b (γ∗))M+1ρβεM+1 ,

uniformly in b satisfying b (γ∗) � 1;

2. The operator A1 = e−iKHeiK , K = Op(κ), has the form

A1 = A0 +XR +XSE,LE,LF +RM+1, A0 = H0 +Xo. (2.5.24)

2.6 Invariant subspaces for the “gauged” opera-

tor

In this section we will consider modified sets ΥL(ξ) which are defined as follows:

Definition 2.6.1. Consider a point ξ and the set Υ(ξ), defined in the beginning

of Section 2.3. Let V be the corresponding lattice subspace, then we have following

inclusion: Υ(ξ) ⊂ ξ+ V. The point ξ∗(ξ+ V) ∈ ξ+ V is the tangency point to the

level set containing ξ (as in Lemma 2.3.5). Denote

AL = sup{A : ξ + Aξ∗(ξ + V) ∈ S(ρ)}

(the set S is defined in (2.1.1))and ξL = ξ + ALξ
∗(ξ + V).

The set ΥL(ξ) is defined as the projection of Υ(ξL) on ξ + V along the vector

ξ∗(ξ + V).

Let us prove some of the properties of ΥL(ξ).

Lemma 2.6.2. 1. The set ΥL(ξ) is finite.

2. If |ξ| > ρ/Amax, then

max
ΥL(ξ)

|η| � min
ΥL(ξ)

|η| � |ξ|.
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3. If ξ0 ∈ ΥL(ξ), A ∈ R and both points ξ0 and ξ0 + Aξ∗(ξ + V) belong to the

set S(ρ), then ξ0 + Aξ∗(ξ + V) ∈ ΥL(ξ + Aξ∗(ξ + V)).

4. Υ(ξ) ⊂ ΥL(ξ).

Proof:

1. It is sufficient to prove that the set ΥL(ξ) is bounded (since it is a subspace

of a lattice). Due to the Proposition 2.3.8 and the Corollary 2.2.10 we can conclude

that if ξ1 ∈ ΥL(ξ), then

|ψ(ξ1)− ψ(ξ)| ≤ cd(sin β)3−2d ⇒

⇒ |ξ1 − ξ| ≤
cd
C2

(sin β)3−2d = C. (2.6.1)

So the set ΥL(ξ) is bounded (all its points are have at most distance C to the

point ξ), and therefore finite.

2. Immediately follows from (2.6.1).

3. Follows from the fact that ξL = ηL where η = ξ + Aξ∗(ξ + V).

4. Follows from the fact that for an arbitrary vector ξ ∈ Ξ2(V) and a positive

number A we have that ξ + Aξ∗(ξ + V) ∈ Ξ2(V) (which is clearly true, since the

set Ξ2(V) is a convex cone and ξ∗(ξ + V) ∈ Ξ2(V)). �

The resonant sets Ξ(V) are designed to describe the invariant subspaces of the

periodic PDO’s having the form

A = H0 +Bo +BR, (2.6.2)

with the symbols h0(ξ) = |ξ|2m and b ∈ Sγ(w), where γ ∈ R, w(ξ) = 〈ξ〉β, β ∈ (0, 1).

By (2.1.5) and (2.4.22),

|Ds
ξb(θ, ξ)|+ |Ds

ξb̂
o(θ, ξ)|+ |Ds

ξb
R(θ, ξ)| � b

(γ)
l,s 〈ξ〉

(γ−|s|)β〈θ〉−l, (2.6.3)

for all s. We always assume that (2.1.15) is satisfied, so that

2m > γβ, 2m− 1 > β(γ − 1), 2m− 2 > β(γ − 2). (2.6.4)

This guarantees that the symbol b and its first two derivatives grow slower than the

principal symbol h0 and its corresponding derivatives respectively.
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In order to use the resonant sets Ξ∗(V) constructed previously, set

α1 = β,

and assume that the condition (2.3.7) is satisfied. In addition to the symbol (2.4.16),

for any lattice subspace V ∈ V(n), n = 1, 2, . . . , d we define

bRV(x, ξ; ρ) =
1√
d(Γ)

∑
θ∈Θr∩V

b̂(θ, ξ; ρ)ζθ(ξ; ρβ)eθ(ξ)eiθx. (2.6.5)

It is clear that the above symbol retains from bR only the Fourier coefficients with

θ ∈ V. Introduce also the notation for the appropriate reduced version of the model

operator (2.6.2):

AV = H0 +Bo +BR
V, B

R
V = Op(bRV).

Recall (see Subsect. 2.1.3) that for any set C ⊂ Rd we denote by P(C) the operator

χ(D; C), where χ( · ; C) is the characteristic function of the set C. Accordingly, for

the operators in the Floquet decomposition acting on the torus, we define P(k; C)

to be χ(D + k; C).

In what follows the estimates which we obtain are uniform in the symbol b,

satisfying the condition b (γ) � 1.

Lemma 2.6.3. Let b be as above. Then for sufficiently large ρ, and any V ∈ V(n)

we have

BRP
(
Ξ(V)

)
= BR

VP
(
Ξ(V)

)
= P

(
Ξ(V)

)
BR

VP
(
Ξ(V)

)
, (2.6.6)

and

BR(k)P(k; Υ(µ)) = P(k; Υ(µ))BR
V(k)P(k; Υ(µ)), (2.6.7)

for any k ∈ O† and any µ ∈ Ξ(V) with {µ} = k.

Proof: Assume without loss of generality that bR has only one non-zero Fourier

coefficient, i.e.

bR(x, ξ; ρ) =
1√
d(Γ)

b̂(θ, ξ; ρ)ζθ(ξ; ρβ)eθ(ξ)eiθx, (2.6.8)
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so that bRV = 0 if θ /∈ V. According to (2.1.13),

(BR(k)u)(x) =
1

d(Γ)

∑
m∈Γ†

b̂R(θ,m + k)ei(m+θ)xû(m),

(
BR(k)P(k; Υ(µ))u

)
(x) =

1

d(Γ)

∑
m:m+k∈ΥL(µ)

b̂R(θ,m + k)ei(m+θ)xû(m), (2.6.9)

for any u ∈ L2(Td). Observe that by virtue of (2.4.9) for any ξ := m + k ∈

supp ζθ( · ; ρβ) we have (use Corollary 2.2.10)

|〈ψ(ξ),θ〉| ≤ |〈θ, ψ(ξ + θ/2)〉|+ |〈θ, ψ(ξ + θ/2)− ψ(ξ)〉| ≤

≤ (ρβ−1/2 + 2C ′2r/ρ)|θ| < ρβ−1|θ|,

that is ξ ∈ Λ(θ), and a similar calculation shows that ξ + θ ∈ Λ(θ) as well. By

Lemma 2.3.16, Υ(µ) ∩ Λ(θ) = ∅, if θ /∈ V, so it follows from (2.6.9) that

BR(k)P(k; Υ(µ)) = BR
V(k)P(k; Υ(µ)) = 0, if θ /∈ V.

In the case θ ∈ V, by the definition of Υ, the points ξ := m + k ∈ Υ(µ) and ξ+ θ

belong to Λ(θ), so that ξ + θ ∈ Υ(µ). This completes the proof of (2.6.7).

Using (2.3.16) we get from (2.6.7):

BR(k)P(k; Ξ∗(V)) = P(k; Ξ(V))BR
V(k)P(k; Ξ(V)).

Taking the direct integral in k yields (2.6.6).

2.6.1 Operator A in the invariant subspaces

Let us denote equivalence relation ↔ by ξ↔η if η ∈ Υ(ξ).

Due to Properties 2.3.2 (i,iii), the formulas (2.6.6) and (2.6.7) imply the following

orthogonal decomposition for the Floquet fibres A(k):

A(k) =
⊕
V∈V

A(k; Ξ(V)) =
⊕
V∈V

⊕
µ∈Ξ(V)/↔
{µ}=k

AV(k; Υ(µ)). (2.6.10)

69



Since card ΥL(µ) <∞, see Lemma 2.6.2, for each µ ∈ Ξ∗(V) the operatorAV(k; ΥL(µ))

is finite dimensional (therefore it also holds for the operator AV(k; Υ(µ))). Denote

N(µ) = Υ(µ)− µ. In the basis

E[µ]+m(x), m ∈ N(µ)

(see definition (2.1.17)) of the subspace H
(
k; Υ(µ)

)
, the operator A(k; Υ(µ)) re-

duces to the matrix A(µ) with the entries

Am,n(µ) =
1√
d(Γ)

â(m− n,µ+ n; ρ), m,n ∈ N(µ). (2.6.11)

(Similarly can be defined a matrix AL for the operator A(k; ΥL(µ))).

Denote by λj(A
L(µ)), j = 1, 2, . . . , N(µ) = card N(µ) the eigenvalues (counting

multiplicities) of the matrix AL(µ), arranged in descending order. It is easy to check

that the matrices AL(µ) and AL(µ′) with µ′ ∈ Υ(µ), are unitarily equivalent 1, so

that the eigenvalues do not depend on the choice of µ, but only on the set Υ(µ).

Lemma 2.6.4. Let λj(A
L(µ)) be the eigenvalues introduced above. Then for suffi-

ciently large ρ, for all |µ| � ρ, and for all j = 1, 2, . . . , N(µ) one has

λj(A
L(µ)) � min

η∈ΥL(µ)
|η|2m � max

η∈ΥL(µ)
|η|2m � |µ|2m,

uniformly in µ.

Proof: The operator A has the form H0 + bo,R, and since αβ < 2m (see (2.6.4)),

by Lemma 3.2 in [PS], the perturbation bo,R is infinitesimally H0-bounded, so that

cH0− C̃ ≤ A ≤ CH0 + C̃ with some positive constants C, c, C̃. Therefore, the same

bounds hold for the fibers H0(k) and A(k). As a consequence, the restriction of

both operators to the subspace H(k,ΥL(µ)) satisfy the same inequalities:

cH0(k; ΥL(µ))− C̃ ≤ A(k; ΥL(µ)) ≤ CH0(k; ΥL(µ)) + C̃.

Now the claimed inequalities follow from Lemma 2.6.2.

1It is sufficient to note that if m′ = m + µ − µ′ and n′ = n + µ − µ′, then m′ − n′ = m − n

and µ′ + n′ = µ+ n.

70



If Υ(µ) is non-critical2, the set N(µ) remains constant in a neighbourhood of µ.

Since the entries of the matrix A depend continuously on µ, we conclude that the

eigenvalues λj(A( · )) are continuous in a neighbourhood of such a point µ.

Moreover, by virtue of Lemma 2.6.2, for any µ ∈ Ξ(V) the set N(µ) remains

constant if µ/V is kept constant, and hence it makes sense to study the eigenvalues

as functions of the component ν = µ//V. Define the matrix

Ã(t) = AL(µ/V + te(ν)), e(ν) =
ν

|ν|
,

with a real-valued parameter t ≥ t0 := |ν|. By (2.6.11) the entries of this matrix

are

Ãm,n(t) =
1√
d(Γ)

â(m− n,µ/V + n + te(ν); ρ), m,n ∈ N(µ). (2.6.12)

By the definition of ΥL the matrix Ã is well-defined on the interval [t0, T0].

Lemma 2.6.5. Let (2.6.4) be satisfied. Suppose that µ ∈ Ξ∗(V) and |µ| � ρ. Then

λj(Ã(t2))− λj(Ã(t1)) � ρ2m−1(t2 − t1), (2.6.13)

for any t1, t2 � t0, t0 ≤ t1 < t2, uniformly in j = 1, 2, . . . ,N(µ), µ and V.

Proof: Clearly, ν ∈ S(ρ), so that t0 = |ν| � |µ| � ρ. By elementary perturba-

tion theory, it would suffice to establish for the matrix

Ã(t1, t2) = Ã(t2)− Ã(t1)

the relation

(Ã(t1, t2)u, u) � ρ2m−1(t2 − t1)‖u‖2, t1, t2 � ρ, t2 > t1 ≥ t0,

for all u ∈ H. The entries of this matrix are∫ t2

t1

Ym,n(t)dt, Ym,n(t) =
d

dt
Ãm,n(t).

2That means that for a small perturbation of the vector µ by a vector ∆ the set Υ(µ) is moved

by the same vector. Clearly, the set of all critical points is a zero measure set.
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We show that the matrix Y(t) satisfies

(Y(t)u, u) � ρ2m−1‖u‖2, t � ρ, (2.6.14)

for all u ∈ H, uniformly in µ, V, and the symbol b. Denote

µt = µ/V + te(ν),ν = µ//V.

Lemma 2.3.16 implies that N(ξ) ∈ V. Therefore, Y(t) is the sum of the matrix with

diagonal entries

d

dt
h0(µt + m) � |µt + m|2m−2t, m ∈ N(µ),

and the matrix Z(t) with the entries

Zm,n(t) =
1√
d(Γ)

∇ξb̂
o,R(m− n, ξ; ρ) · e(ν)

∣∣∣
ξ=µt+n

.

By Proposition 2.3.8, |µt + m| � ρ, and hence

ρ� t ≤ |µt + m| � ρ, m ∈ N(µ). (2.6.15)

Thus
d

dt
h0(µt + m) � ρ2m−1. (2.6.16)

Also, by (2.6.3),

|Zm,n(t)| � 〈m− n〉−l|µt + n|(α−1)β � 〈m− n〉−lρ(α−1)β,

for any l > 0. Assuming that l > d, from here we get:

‖Z(t)‖ ≤ max
n

∑
m

|Zm,n(t)|

≤ Clρ
(α−1)β sup

n
max

m
〈m− n〉−l � Cρ(α−1)β.

This, together with (2.6.4) and (2.6.16), leads to (2.6.14), which implies (2.6.13), as

required.
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2.7 Global description of the eigenvalues of the

operator A(k)

In this section we continue the study of the discrete spectrum of the fibres A(k).

Our aim is to construct a function g : Rd → R, which establishes a one-to-one

correspondence between the points of Rd and the eigenvalues ofA(k). More precisely,

we seek a function g such that

1. for every ξ ∈ Rd such that |ξ| � ρ the value g(ξ) is an eigenvalue of the

operator A(k), k = {ξ}, and

2. for every j ∈ N such that λj(A(k)) � ρ there exists a uniquely defined point

ξ with {ξ} = k such that g(ξ) = λj(A(k)).

In other words, we intend to label the eigenvalues of A(k) by the points of the lattice

Γ†, shifted by k. The construction of the convenient function g is conducted using

the decomposition (2.6.10), individually in the invariant subspaces generated by the

sets Ξ∗(V).

Since the sets Ξ∗ may be intersected, we introduce an auxiliary function ĝ(·) on

each of the sets Ξ∗(V) (we omit the dependance on Ξ∗ in notation), and then will

consider the possible situation of it being multivalued.

2.7.1 Construction of the function ĝ(·, ·)

We begin with the non-resonant set B = Ξ(X),X = {0}. On the subspace H(Ξ(X))

the symbol of the operator A is x-independent, and it is ao(ξ) = h0(ξ) + bo(ξ).

Therefore the eigenvalues of the operator A(k) are given by ao(µ+k),µ ∈ Γ†,µ+k ∈

Ξ(X). Clearly, it is natural to label the eigenvalues by lattice points. Let us define

ĝ(ξ,X) = ao(ξ), ξ ∈ Ξ(X) = B.

According to (2.6.3),

ĝ(ξ,X) = h0(ξ) + bo(ξ),

∣∣∣∣ ∂∂|ξ|bo(ξ)

∣∣∣∣ ≤ C〈ξ〉(α−1)β,

∣∣∣∣ ∂2

∂|ξ|2
bo(ξ)

∣∣∣∣ ≤ C〈ξ〉(α−2)β

(2.7.1)
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for all ξ ∈ B.

Suppose now that ξ ∈ Ξ(V) with some non-trivial lattice subspace V. Let us

label all points η ∈ ΥL(ξ), ξ ∈ Ξ(V) in the increasing order of the difference

|η − ξ∗(η + V)| by natural numbers from the set {1, 2, . . . , N(ξ)}; if there are two

different vectors η, η̃ ∈ ΥL(ξ) with |η−ξ∗(η+V)| = |η̃−ξ∗(η̃+V)|, we label them

in the lexicographic order of coordinates of point η/V, η̃/V, i.e. we put η/V (with

η/V−ξ∗(η+V) = (η1, η2, . . . , ηd)) before η̃/V (with η̃/V−ξ∗(η̃+V) = (η̃1, η̃2, . . . , η̃d))

if either η1 < η̃1, or η1 = η̃1 and η2 < η̃2, etc. Such a labeling associates in a natural

way with each point η ∈ ΥL(ξ) a positive integer ˆ̀ = ˆ̀(η) ≤ N(ξ). Clearly, this

number does not depend on the choice of the point ξ as long as ξ remains within

the same ΥL set. In particular,

|η|2m = λˆ̀(η)(H0(k; ΥL(η))). (2.7.2)

Now for every η ∈ Rd we define

ĝ(η,V) := λˆ̀(η)(A
L(η)).

Note that in view of Lemma 2.6.4

ĝ(η,V) � |η|2m, |η| � ρ, (2.7.3)

for sufficiently large ρ.

2.7.2 Definition of function g(·)

Our goal is to construct a function uniquely matching an eigenvalue to a point. The

function ĝ(·,V) depends on the set V and can assign two or more eigenvalues to one

point, when we change V. So we introduce one more function g(·).

This function will not possess same nice properties as ĝ(·,V), since Υ does not

obey some of properties of ΥL (i.e. changes other way under small shifts in the

direction ξ∗(V), see Lemma 2.6.2). But we will derive required properties of g(·)

from those of ĝ(·,V).
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Let us define the function g(·) similarly to the function ĝ(·, ·), replacing ΥL(ξ)

by Υ(ξ):

Following previous consideration we label the points η ∈ Υ(ξ), ξ ∈ Ξ(V), asso-

ciating a number `(η) to each point η and denote

g(η) := λ`(η)(A(η)).

Similarly,

g(η) � |η|2m, |η| � ρ, (2.7.4)

for sufficiently large ρ.

2.7.3 Properties of the function ĝ(·, ·)

In order to analyze the continuity of ĝ(·, ·), we assume that η is a non-critical point,

i.e. the set N( · ) remains constant in a neighbourhood of η. Furthermore, in

the non-critical set, `(η) remains constant, if the point ξ∗(V) stays away from the

Voronoi hyper-planes associated with pairs of points from the set ΥL(η). Recall

that the Voronoi hyper-plane for a pair η1,η2 ∈ Rd is the set of all points z ∈ Rd

such that |η1− z| = |η2− z|. Thus, the function ĝ(·, ·) is continuous on an open set

of full measure in Rd.

In each set Ξ∗(V) the labeling function ` possesses the following important prop-

erty.

Lemma 2.7.1. Let η, η̃ ∈ Ξ∗(V) satisfy η̃ − η := ν is proportional to ξ∗(η + V).

Then `(η̃) = `(η).

Proof: Recall that by Lemma 2.6.2 ΥL(η) + ν = ΥL(η̃).

Let us note that, if we move the point η by a vector ν ‖ ξ∗(η+V), the set ΥL(η)

and the point ξ∗(η+V) are also moved by the vector ν. Therefore, the distance we

are interested in does not change:

|η̃ − ξ∗(η̃ + V)| = |η − ξ∗(η + V)|.
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Similar equality holds for any point in ΥL(η). Thus, when arranging points of the

set ΥL(η̃) by the distance from ξ∗(η̃+V), the point η̃ will obtain the same number

as the point η when arranging the points of the set ΥL(η) according to their distance

to the point ξ∗(η + V).

Also note that, similarly, the order would not change when we have several points

from ΥL(η) equidistant from the point ξ∗(η + V), since for any point µ ∈ ΥL(η)

we have µ/V = µ̃/V, with µ̃ = µ+ ν. Recall that we have defined µ/V in (2.3.15).

Therefore, `(η) = `(η + ν).

The next lemma allows us to establish smoothness of the function ĝ with respect

to the variable η//V.

Lemma 2.7.2. Let V ∈ V(n), 1 ≤ n ≤ d − 1 and let (2.6.4) be satisfied. Suppose

that η ∈ Ξ∗(V) and |η| � ρ, and let ν = η//V. Then for sufficiently large ρ, on

the interval [t0, T0), t0 := |ν|, T0 : T0

t0
η ∈ S(ρ), the function g̃(t;η) := ĝ(η1(V) +

te(ν),V) satisfies

g̃(t2,η)− g̃(t1,η) � ρ2m−1(t2 − t1), (2.7.5)

for any t1, t2 ∈ [t0, T0] such that t1 < t2 and t1, t2 � t0, uniformly in η ∈ Ξ∗(V) and

V.

Proof: Let us remind that by construction of the set Ξ∗(V) we have η1(V) +

te(ν) ∈ Ξ(V) for all t ∈ [t0, T0]. Thus, by Lemma 2.7.1, `(η) = `(η/V + te(ν)) =: `

for t ∈ [t0, T0). Therefore,

g̃(t;η) = λ`(A
L(η/V + te(ν))).

It remains to apply Lemma 2.6.5.

For the following Lemma recall that the distance on the torus | · |T is defined

in (2.4.27).

Lemma 2.7.3. Let V ∈ V(n), 1 ≤ n ≤ d − 1 and a,b ∈ Rd be such that |a| � ρ.

Then there exists a vector n ∈ Γ† such that

|ĝ(b + n,V)− ĝ(a,V)| � ρ2m−1|b− a|T, (2.7.6)
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for sufficiently large ρ.

Suppose in addition, that m ∈ Γ†,m 6= 0, is a vector such that |a + m| � ρ.

Then there exists a ñ ∈ Γ†, such that n 6= ñ and

|ĝ(b + ñ)− ĝ(a + m)| � ρ2m−1|b− a|T, (2.7.7)

for sufficiently large ρ.

Proof: As λJ(a)(A(k)) = ĝ(a,V), by (2.7.3), we have

|λJ(a)(A(k))| � ρ2m.

Denote k = {a}, k1 = {b}. Recall that the condition (2.4.28) is satisfied due to

(2.6.4), so by Theorem 2.4.6

|λJ(a)(A(k))− λJ(a)(A(k1))| � ρ2m−1|k− k1|T = ρ2m−1|b− a|T. (2.7.8)

Let p ∈ Rd be a vector such that {p} = k1 and ĝ(p,V) = λJ(a)(A(k1)). Now (2.7.8)

implies (2.7.6) with n = p− b.

In order to prove (2.7.7), we use (2.7.8) with a+m instead of a. Then, as above,

one can find a vector p̃ such that {p̃} = k1 and ĝ(p̃,V) = λJ(a+m)(A(k1)). Since

J is one-to-one, we have J(a + m) 6= J(a), and hence p 6= p̃. As a consequence,

ñ = p̃− b 6= n, as required, and (2.7.8) again leads to (2.7.7).

2.8 Estimates of volumes

In this section we continue the investigation of the operator of the form (2.6.2), with

a symbol b ∈ Sγ(w), w(ξ) = 〈ξ〉β, with parameters γ, β, satisfying the conditions

(2.6.4). Let ĝ : Rd → R be the function defined in the previous section, and let

B(ρ),D(ρ) and B̃(ρ) be the sets introduced in Section 2.3 respectively.
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Let δ ∈ (0, λ/4], λ = ρ2m, and let

AL(ρ, δ) = AL(ĝ; ρ, δ) :=
⋃
V

ĝ(·,V)−1([λ− δ, λ+ δ]),

BL(ρ, δ) = BL(ĝ; ρ, δ) := AL(ρ, δ) ∩BL(ρ),

DL(ρ, δ) = DL(ĝ; ρ, δ) := AL(ρ, δ) ∩DL(ρ),

B̃L(ρ, δ) = B̃L(ĝ; ρ, δ) := AL(ρ, δ) ∩ B̃L(ρ).

(2.8.1)

Also 

A(ρ, δ) = A(g; ρ, δ) := g−1([λ− δ, λ+ δ]),

B(ρ, δ) = B(g; ρ, δ) := A(ρ, δ) ∩B(ρ),

D(ρ, δ) = D(g; ρ, δ) := A(ρ, δ) ∩D(ρ),

B̃(ρ, δ) = B̃(g; ρ, δ) := A(ρ, δ) ∩ B̃(ρ).

(2.8.2)

The estimates for the volumes of the above sets are very important for our argument.

First, let us prove an auxiliary statement.

Lemma 2.8.1. For an arbitrary V : dim V ≥ 1 it holds that

vol(g−1([λ− δ, λ+ δ]) ∩V) ≤ vol(ĝ(·,V)−1([λ− δ, λ+ δ])).

Proof:

Denote I := [λ − δ, λ + δ]. We are going to show that for any ξ ∈ Ξ(V) there

exists a unique vector η ∈ Ξ∗(V) such that g(ξ) = ĝ(η,V)

ξ − η ∈ Zd
(2.8.3)

Indeed, there exists i, such that g(ξ) = λi(A(ξ)). Note that A(ξ) is unitarily

equivalent to PHP where P is the projection onto an invariant subspace of H.

Therefore A(ξ) is unitarily equivalent to PAL(ξ)P . Thus, there exists some number

l and η ∈ Υ(ξ), such that λi(A(ξ)) = λl(A
L(η)) and (2.8.3) holds.

Denote for each ξ: γ(ξ) = ξ− η(ξ), where η(ξ) - is the vector from the relation

(2.8.3).
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Therefore,

vol(g−1(I) ∩V) =
∑
µ∈Zd

vol{ξ ∈ g−1(I) : γ(ξ) = µ} =

=
∑
µ∈Zd

vol{η(ξ) ∈ ĝ(·,V)−1(I) : γ(ξ) = µ} ≤ vol(g(·,V)−1(I))

Corollary 2.8.2. It holds that

vol(D(ρ, δ)) ≤ vol(DL(ρ, δ)).

Lemma 2.8.3. Let A be the operator (2.6.2), and let α, β satisfy the conditions

(2.6.4). Then for all sufficiently large ρ and any δ ∈ (0, ρ2m/4] the following esti-

mates hold

vol B̃L(ρ, δ) � δρd−2m, (2.8.4)

and

vol(DL(ρ, δ))� δρd−1−2m+αd . (2.8.5)

Here αd ∈ (0, 1) is defined in (2.3.8) above.

Before proving this lemma we find a convenient representation of the set B̃L(ρ, δ).

Since B̃L(ρ, δ) ⊂ BL(ρ), for all ξ ∈ B̃L(ρ, δ) the function ĝ is defined by the for-

mula (2.7.1), and in particular, it is continuous. For all Ω ∈ T (ρ) (see (2.3.18) for

definition), we introduce the subsets of the real line defined as follows:

I(Ω; ρ, δ) = {t > 0 : ρ2m − δ ≤ ĝ(tΩ,X) ≤ ρ2m + δ}. (2.8.6)

By (2.7.1), for t ∈ I(Ω; ρ, δ) we have ρ/Amax < t < Amaxρ, and hence tΩ ∈ B̃L(ρ, δ).

If ρ is sufficiently large, by virtue of (2.7.1), for these values of t the function ĝ(tΩ,X)

is strictly increasing, and hence I(Ω; ρ, δ) is a closed interval. Moreover, (2.7.1)

implies the relation

|I(Ω; ρ, δ)| � δρ1−2m (2.8.7)

for its length, uniformly in Ω. By construction,

B̃L(ρ, δ) =
⋃

Ω∈T (ρ)

I(Ω; ρ, δ)Ω. (2.8.8)

79



Proof:[Proof of Lemma 2.8.3] In view of Lemma 2.3.20 and of the bound (2.8.7),

we obtain from (2.8.8):

vol B̃L(ρ, δ) =

∫
T (ρ)

∫
I(Ω;ρ,δ)

td−1dtdΩ � δρd−2m.

This proves (2.8.4).

Proof of (2.8.5). By definition (2.3.13) and relation (2.3.12),

D(ρ) =
⋃

V⊂V(n),1≤n≤d

Ξ(V; ρ) ⊂
⋃

V⊂V(n),1≤n≤d

Ξ∗(V; ρ).

Let us estimate the volume of each intersection Ξ∗(V; ρ) ∩ AL(ρ, δ). Clearly,

Ξ∗(Rd) ∩AL(ρ, δ) = ∅, thus we assume that n ≤ d− 1.

Consider a vector χ ∈ V and a vector Ω, |Ω| = 1, collinear with ξ∗(V). Denote

S(χ,Ω; ρ) = {t ≥ 0 : χ+ tΩ ∈ Ξ∗(V; ρ)}.

Due to Corollary 2.3.9 it holds that if S(χ,Ω; ρ) 6= ∅, then |χ| < 2ραd−1 . Con-

sider the subset

S(χ,Ω; ρ, δ) = {t ∈ S(χ,Ω; ρ) : ρ2m − δ ≤ ĝ(χ+ tΩ,V) ≤ ρ2m + δ}. (2.8.9)

In view of (2.7.3), t � ρ. By (2.7.5), the function g̃(t) = ĝ(χ + tΩ,V) is strictly

increasing and continuous, and hence, S(χ,Ω; ρ, δ) is an interval. The bound (2.7.5)

also guarantees the upper bound

|S(χ,Ω; ρ, δ)| � δρ1−2m,

for the length of this interval, uniformly in χ and Ω. Now we can estimate the

volume of the intersection:

vol(Ξ(V; ρ) ∩AL(ρ, δ)) =

∫
|χ|<2ραd−1

∫
Sd−n−1

∫
S(χ,Ω;ρ,δ)

td−n−1dtdΩ dχ

� ρd−n−1

∫
|χ|<2ραd−1

∫
Sd−n−1

|S(χ,Ω; ρ, δ)|dΩ dχ

� δρ1−2mρd−n−1(ραd−1)n � δρd−1−2m+αd−1 .
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To prove the last step it is enough to show that

−n+ αd−1n < −1 + αd−1 ⇐

⇔ (−1 + αd−1)n < −1 + αd−1.

Recall that the number of distinct subspaces V ⊂ V does not exceed Crd
2

with

some universal constant C, so that

vol DL(ρ, δ)� δρd−1−2m+αd−1rd
2 � δρd−1−2m+αd ,

where we have used the conditions (2.3.8). Now (2.8.11) is proved.

Applying the fact that on non-resonance sets the values of functions g and ĝ

coincide and Corollary 2.8.2, we obtain

Lemma 2.8.4. Let A be the operator (2.6.2), and let α, β satisfy the conditions

(2.6.4). Then for any δ ∈ (0, ρ2m/4] and for all sufficiently large ρ, the following

estimates hold

vol B̃(ρ, δ) � δρd−2m, (2.8.10)

and

vol(D(ρ, δ))� δρd−1−2m+αd . (2.8.11)

Here, αd ∈ (0, 1) is the number defined together with α1, α2, . . . , αd−1 above.

The next section is devoted to the most important statements about the volumes

of our sets.

2.9 More subtle volume estimates

We aim to construct an upper bound for the volume of an intersection set:

B(ρ, δ) ∩ (B(ρ, δ) + b).

First we need to introduce extra notation.
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Denote

b(ξ′) = (a(ξ′))
1
m (2.9.1)

and

h1(ξ) = b(ξ′)|ξ|2 = (h0(ξ))
1
m . (2.9.2)

We consider the function b defined on the unit sphere only, and the function h1

- in the whole of Rd.

Let b be a vector such that

1� |b| � ρ. (2.9.3)

Due to the definition of the function g (see Subsection 2.7.2), in the non-resonant

set B(ρ) it can be expressed in a following form, with some nice properties on G:

g(ξ) = ĝ(ξ,X) = h0(ξ) +G(ξ).

Since g satisfies properties (2.7.1) and (2.6.4) (to be more precise, the property

(2.7.1) is true for ĝ, but on the non-resonant set the functions g and ĝ coincide), we

can conclude that the following properties hold for G:

|G(ξ)| � ρκ, where κ < 2m, (2.9.4)

|∇G(ξ)| � ρω, where ω < 2m− 1, (2.9.5)

|H(G(ξ))| � ργ, where γ < 2m− 2 and H is the Hessian, (2.9.6)

(i.e, all second derivatives of G are O(ργ)).

Remark. Note that (2.9.5) implies the formula

|G(ξ + b)−G(ξ)| � |b|ρσ, where σ < 2m− 1. (2.9.7)
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Also, we will be assuming that the values of ρ and δ are constrained by the

following relation:

δ < ρκ, κ < 2m− 1. (2.9.8)

Consider a set A∗(ρ, δ) = {ξ ∈ Ξ(X) : |h0(ξ) + G(ξ) − ρ2m| < δ} and a set

Ab(ρ, δ), denoted as follows:

Ab(ρ, δ) = {ξ ∈ A∗(ρ, δ) : ξ + b ∈ A∗(ρ, δ)}.

Obviously,

B(ρ, δ) ⊂ A∗(ρ, δ), (2.9.9)

B(ρ, δ) ∩ (B(ρ, δ) + b) ⊂ Ab(ρ, δ). (2.9.10)

Our aim is to estimate the volume of the set Ab(ρ, δ) for “sufficiently large ρ” and

arbitrary δ, satisfying the condition (2.9.8).

First we will consider the case d = 2, and then derive the general result from

that. Consider a plane with orthonormal basis x1, x2. Without loss of generality

we can assume that x1 is collinear to b. We emphasize that we will be estimating

only the part of the set Ab(ρ, δ) which belongs to the upper halfplane. A similar

estimate can be done for the lower “half” of the set.

First let us prove several auxiliary facts.

Lemma 2.9.1. If |H(G(ξ))| � ργ for some γ < 2m− 2, then the function h0(ξ) +

G(ξ) is convex (all its level sets are convex) for sufficiently large values of ρ.

Proof:

The function h0(ξ) +G(ξ) is convex if and only if the Hessian

H(h0(ξ) +G(ξ)) = H(h0(ξ)) +H(G(ξ))

is a positive matrix.

Due to Euler’s homogeneous function theorem, for a homogeneous function f

of degree m the first-order partial derivatives are homogeneous of degree m − 1.
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Therefore, its second-order partial derivatives are homogeneous of degree m − 2.

Thus, the following equality holds:

H(h0(ξ)) = |ξ|m−2H(h0(ξ′)).

Now we use the strict convexity of the h0(ξ′). This property implies that for any

non-zero vector x ∈ Rd, |x| = 1,

x∗(H(h0(ξ′)))x > 0.

Due to the compactness of the unit sphere, there exists a positive constant ν > 0

such that for any vector x, |x| = 1, it holds

x∗(H(h0(ξ′)))x > ν.

Therefore,

x∗H(h0(ξ)))x� ρ2m−2.

If |H(G(ξ))| � ργ, where γ < 2m− 2, then for sufficiently large ρ

x∗(H(h0(ξ)) +H(G(ξ)))x� ρ2m−2,

thus the matrix H(h0(ξ)) +H(G(ξ)) is positive. �

Lemma 2.9.2. There exists a positive constant C11 such that for an arbitrary θ

the intersection of the line passing through the origin and θ and the set A∗(ρ, δ) is

a segment of the length not greater then C11ρ
1−2mδ (where C11 does not depend on

θ).

Proof:

Consider the function h0(ξ)+G(ξ) on the line containing the origin as a function

of one variable and differentiate it in the direction θ:

∂(h0(ξ) +G(ξ))

∂θ
=
∂h0(ξ)

∂θ
+ 〈∇G(ξ),θ〉 ≥ C12|ξ|2m−1 + |∇G(ξ)| > C13ρ

2m−1

(here we used (2.9.5), and denoted by C12 maximum of the function a).
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Therefore, this line makes a cut in the set A∗(ρ, δ) of length not greater than

C11ρ
1−2mδ. �

Now we are going to prove one more auxiliary statement. Recall that we consider

only the upper halfplane.

Lemma 2.9.3. For any ε > 0 there exists a value ρε such that for any ρ > ρε,

b : |b| ≥ 1 and δ satisfying (2.9.8), we have that the set Ab(ρ, δ) can be covered by

a ball of the radius ρε.

Proof:

Obviously, it is sufficient to prove the statement for the maximal possible value

of δ, that is δ = ρκ. Let us take a look at the whole picture scaled down by a factor

ρ. After this rescaling we will have 1 instead of linear size ρ, δnew = ρκ−2m instead

of δold = ρκ, and we will be interested in a ball of radius ε instead of ρε. This way

we can reformulate our statement: we have to prove that there exists a large enough

value of ρ such that the set Ab(ρκ−2m, 1) can be covered by a ball of radius ε for

any vector b of length greater than or equal to 1
ρ
.

For convenience let us consider a horizontal vector b. Denote by ξ0 the highest

point of the curve U defined by U = {ξ : h0(ξ) +G(ξ) = 1}. Let us consider a ball

of radius ε
2

with center at the point ξ0.

In Figure 2.1 we show the layer A∗(ρ
κ−2m, 1), the unit level set U in the middle

of the layer, the point ξ0 and the ball around it. Denote by T the distance between

the points of intersection of the ball and U . Let y0 be the least of the ordinates of

these two points.

Let us prove the following fact.

Fact: There exists a value ρ0 such that for any ρ > ρ0 and any vector b satisfying

1
ρ
≤ |b| ≤ T

2
, the set Ab(ρe−2m, 1) lies inside the ball Bε(ξ0) of the radius ε and the

center ξ0.

Define the function v(·) as follows: the value v(y) equals the sum of lengths of

the sections cut by a horizontal line of height y on our layer A∗(ρ
κ−2m, 1).

Denote by Y the right one of the points of the intersection of Bε(ξ0) with U .
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Figure 2.1: Layer

Denote by γ the acute angle between the horizontal line and the tangent to the

curve at the point Y . It is clear that for all the other points on U in the top right

quarter of the plane outside the ball, this angle (between the horizontal line and the

tangent one) will be greater than or equal to γ.

Let us show that for any y < y0 the function v(y) has an upper bound: v(y) ≤
Cρκ−2m

sin γ
. This can be seen on the picture. The distance we are interested in for the

drawn horizontal line is the length of the interval CE. It can be estimated from

above by |CF |. For the triangle CDF we can apply the sine theorem and recall

that the value of the angle CFD is at least γ.

Thus we obtain that |CF | ≤ |CD| sin ∠CDF
sin γ

. Obviously sin∠CDF ≤ 1, and we

know that |CD| � ρκ−2m.

Now let us finally prove our Fact. Choose a value ρ0, so that for any ρ > ρ0 we

will have
Cρκ−2m

sin γ
<

1

ρ
.

This value exists due to κ−2m < −1 (according to 2.9.8). This concludes the proof

of the Fact.
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Now let us consider a horizontal vector b, such that 1
ρ
≤ |b| ≤ T

2
and shift our

layer by b. Below the height y0 the distance between the left and the right parts

of the layer is greater then T
2

(if not, just increase ρ, this condition can be satisfied

independently of the previous one). Also, below the height y0 the horizontal line

cuts in the layer sections of total length less than 1
ρ
. This means that all the set

Ab(ρκ−2m, 1) has to be above the height y0.

Now let us note that we can choose a value ρ1, so that for any ρ > ρ1 all the

points of the layer lying above y0, will be inside the ball with the center ξ0 and the

radius ε (recall that up to this moment we were using the ball of the radius ε
2
).

Now we can apply the uniform continuity argument. Assume that the statement

of the lemma is false. Then there exist sequences ρk → ∞ and bk, such that for

any k the set Abk(ρ
κ−2m
k , 1) can not be covered by a ball of the radius ε. Vectors bk

belong to a compact set, therefore we can choose a converging subsequence of this

sequence. Thus without loss of generality in order to keep notation simple, we will

assume that the sequence {bk} converges. Take its limit. Consider two cases:

1. If this limit is a zero vector, there exists a number k∗, such that for any

k > k∗ we have 1
ρk
≤ |bk| ≤ T

2
. Then for sufficiently large values of ρk we arrive at

a contradiction to the Fact.

2. If this limit is a nonzero vector, it means that the set Abk(ρ
κ−2m
k , 1) tends to

a point, and again we arrive at a contradiction.

�

Fix the values of ρ, δ and b. Consider the angle between ξ and ξ + b for all

ξ ∈ Ab(ρ, δ) and its sine. Denote by β∗(b)(= β∗(b, ρ, δ)) the angle for which this

sine is minimal. Obviously, this angle depends also on the values of ρ and δ, but for

convenience of the notation we will omit this dependence.

Proposition 2.9.4. If sin β(b) > 0, then there exists a constant C > 0 independent

of b such that for any sufficiently large ρ and arbitrary value of δ satisfying the

condition (2.9.8) we have:

vol(Ab(ρ, δ)) ≤
Cδ2ρ2−4m

sin β(b)
.
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Proof:

We construct the proof of this statement according to the following plan:

1. For each point ξ : h0(ξ)+G(ξ) = ρ2m and a number ε we construct a rectangle

Rec(ξ, ε), whose side lengths depend on ρ.

2. Choose ε∗ so that for sufficiently large values of ρ the set Ab(ρ, δ) is covered

by the rectangle Rec(ξ, ε∗).

3. Then we will show that the set Ab(ρ, δ) is covered by the rectangle Rec(ξ +

b, ε∗)− b.

4. We will estimate the area of the intersection for the rectangles from the

2nd and 3rd steps by the area of the intersection of two infinite strips of width

2C11δρ
1−2m (the constant C11 has been defined in Lemma 2.9.2) and with the angle

between them bounded from below by the value β(b).

So let us proceed according to plan.

1. Fix δ > 0. Take an arbitrary value ε < 1. For each point ξ : h0(ξ) + G(ξ) =

ρ2m denote by Rec(ξ, ε) a rectangle with the sides ερ and 2C11δρ
1−2m, such that

the side of length 2C11δρ
1−2m is parallel to the vector ξ and the point ξ is the center

of the rectangle.

2. Denote by ε(ξ) the maximal width of the rectangle Rec(ξ, ε), such that

its sides of length ερ do not intersect with the set A∗(ρ, δ). The function ε(ξ) is

continuous and thus attains its minimum on the compact. Denote:

ε∗ = min
ξ
ε(ξ)

(so far we were doing everything for a fixed value of ρ).

Clearly, for any ξ we have ε(ξ) > 0. Therefore also ε∗ > 0 (as a minimum of a

uniformly continuous strictly positive function defined on a compact set).

For this ε∗ the following holds: for any rectangle Rec(ξ, ε∗) its sides of length

ε∗ρ do not intersect with the set A∗(ρ, δ). Moreover, clearly, this remains true when

we increase the value of ρ.

Consider a positive ε∗ < ε∗

4
and a value ρε∗ , defined above.
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For any value ρ > ρε∗ and any point ξ ∈ Ab(ρ, δ) we have:

Ab(ρ, δ) ⊂ Rec(ξ, ε∗).

3. One can easily see that

Ab(ρ, δ) + b ⊂ Rec(ξ + b, ε∗)⇒ Ab(ρ, δ) ⊂ Rec(ξ + b, ε∗)− b.

4. Obviously, if ξ ∈ Ab(ρ, δ) and η = ξ + b, we have:

Ab(ρ, δ) ⊂ Rec(ξ, ε∗) ∩ (Rec(η, ε∗)− b)⇒

⇒ vol(Ab(ρ, δ)) ≤ vol(Rec(ξ, ε∗) ∩ (Rec(η, ε∗)− b))

≤ (2C11δρ
1−2m)2

sin∠(ξ,η)
≤ Cδ2ρ2−4m

sin β(b)
,

which finishes the proof.

�

Consider the function b(·) defined in (2.9.1) on the unit sphere. It is continuous,

smooth, and defined on a compact. Consequently, there exists a positive constant s

such that

|b(ξ′)− b(η′)| ≤ s|∠(ξ,η)| ξ,η ∈ Rd \ {0}. (2.9.11)

Let us divide the set Ab(ρ, δ) into two parts: Ab(ρ, δ) = A1 tA2, where

A1 = {ξ : ξ ∈ Ab(ρ, δ), |ξ2| < ρ−u}, A2 = Ab(ρ, δ) \A1

(here (ξ1, ξ2) are the coordinates of the vector ξ along the axes x1, x2 and u > 0 is

a constant to be determined later).

Lemma 2.9.5. vol(A1)� δρ1−2m−u.

Proof:

Let us estimate the volume of the set A1. Suppose, ξ ∈ A1.

Applying (2.9.4), we conclude that h0(ξ)� ρ2m.
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Consider the function b(·) and denote by b and B its lower and upper bounds

correspondingly: 0 < b < b(·) < B.

h1(ξ)� ρ2 ⇒ B(ξ2
1 + ξ2

2)� ρ2,

and since ξ2 � ρ−u, we have

ξ2
1 � ρ2. (2.9.12)

Consider a function

h2(ξ) =
h1(ξ)

ξ2 .

Let us note that h2(ξ) = h2(ξ′) = b(ξ′).

Then for the derivative we write put the following expression:

∂h0

∂x
(ξ) = m(b(ξ′))m−1|ξ|2(m−1)

(
∂h2(ξ′)

∂x
|ξ2|+ 2h2(ξ′)ξ1

)
. (2.9.13)

Consider the value ∂h2(ξ′)
∂x

. Let x be a unit vector in the direction of the axis

x, and ∆ be a real number. Take the triangle ABC with the vertices A = ξ′,

B = ξ′ + ∆x and C = 0. This derivative can be written as the following limit:

∂h2

∂x
(ξ′) = lim

∆→0

h2(ξ′ + ∆x)− h2(ξ′)

∆
= lim

∆→0

h2((ξ′ + ∆x)′)− h2(ξ′)

∆
.

Recalling (2.9.11), we obtain an inequality:

h2((ξ′ + ∆x)′)− h2(ξ′) ≤ s∠(ξ′ + ∆x, ξ′)⇒ ∂b

∂x
(ξ′) ≤ lim

∆→0

s∠(ξ′ + ∆x, ξ′)

∆
.

Consider a fraction s∠(ξ′+∆x,ξ′)
∆

. Applying the law of sines to our triangle and keeping

in mind that ∠(ξ′ + ∆x, ξ′) ≈ sin(ξ′ + ∆x, ξ′):

sin(ξ′ + ∆x, ξ′)

∆
=

sin∠C
|AB|

=
sin∠B
|AC|

.

By the definition of the set A1 and the property (2.9.12), the value sin∠B does

not exceed ρ−1−u, and the side |AC| has length of order ρ, therefore

sin∠B
|AC|

≤ ρ−u−2 ⇒
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⇒ ∂h2(ξ′)

∂x
� ρ−2−u ⇒ ∂h2(ξ′)

∂x
|ξ2|+ 2h2(ξ′)ξ1 � ρ⇒ ∂h0

∂x
(ξ)� ρ2m−1.

Using (2.9.5), we conclude that ∂(h0+G)
∂x

(ξ)� ρ2m−1.

Consequently, the volume of the set A1 does not exceed δρ1−2m−u (we estimate

the area as the product of the width (δρ1−2m) and the height (ρ−u)), which finishes

the proof of the Lemma. �

Now let us estimate the volume of the set A2, using the Proposition 2.9.4. Note

that for any vector ξ ∈ A2 it holds that sin∠(ξ, ξ + b)� ρ−1−u, and thus

vol(A2)� δ2ρ3−4m+u ⇒ vol(Ab(ρ, δ))� δ2ρ3−4m+u + δρ1−2m−u.

Now we will derive a result for higher dimensions from the proven facts for d = 2

(Proposition 2.9.4 and Lemma 2.9.5):

Theorem 2.9.6. If d ≥ 2 then for any u > 0

vol(Ab(ρ, δ))� δ2ρ1+d−4m+u + δρ1−2m−u(d−1).

Proof:

Let us estimate the volumes of the sets A1 and A2 separately.

Consider the set A1. It is contained in a cylinder of radius ρ−u, so the two-

dimensional result we have to multiply by ρ−u(d−2):

vol(A1)� δρ1−2m−uρ−u(d−2) = δρ1−2m−u(d−1).

Now consider the set A2. Similarly it is contained in a cylinder of radius ρ and

thus we multiply the two-dimensional result by ρd−2:

vol(A2)� δ2ρ3−4m+uρ(d−2) = δ2ρ1+d−4m+u.

Therefore,

vol(Ab(ρ, δ))� δ2ρ1+d−4m+u + δρ1−2m−u(d−1) .�

Corollary 2.9.7. As soon as conditions (2.9.3) - (2.9.8) are satisfied, for any u > 0

we have

vol(B(ρ, δ) ∩ (B(ρ, δ) + b))� δ2ρ1+d−4m+u + δρ1−2m−u(d−1). (2.9.14)
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Moreover,

vol
⋃

n∈Γ†\{0}

(
B(ρ, δ) ∩

(
B(ρ, δ) + n

))
� δ2ρ1+2d−4m+u + δρ1−2m+d−u(d−1). (2.9.15)

Another important ingredient is the following estimate on the volumes:

Lemma 2.9.8. Let B(ρ, δ), D(ρ, δ), δ ∈ (0, ρ2m/4], be as defined in (2.8.2). Let

u > 0 be some number, then

vol
⋃

n∈Γ†\{0}

(
B(ρ, δ)∩

(
D(ρ, δ) + n

))

� δ2ρ1+2d−4m+u + δρ1−2m+d−u(d−1) + δρd−1−2m+αd . (2.9.16)

Proof: Let us split D(ρ, δ) in three disjoint sets:

D0(ρ, δ) = {ξ ∈ D(ρ, δ) : ξ + n /∈ B(ρ, δ), for all n ∈ Γ† \ {0}},

D1(ρ, δ) = {ξ ∈ D(ρ, δ) :

there exists a unique n = n(ξ) ∈ Γ† \ {0} such that ξ + n ∈ B(ρ, δ)},

D2(ρ, δ) = D(ρ, δ) \
(
D0(ρ, δ)

⋃
D1(ρ, δ)

)
.

The definition of D0(ρ, δ) immediately implies that

B(ρ, δ)
⋂( ⋃

n∈Γ†\{0}

(
D0(ρ, δ) + n

))
= ∅. (2.9.17)

For the set D2(ρ, δ) we have the inclusion⋃
n∈Γ†\{0}

(
D2(ρ, δ) + n

)
⊂

⋃
n∈Γ†\{0}

(
B(ρ, δ) + n

)
. (2.9.18)

Indeed,for each ξ ∈ D2(ρ, δ) there are at least two distinct lattice vectors n1,n2 6= 0

such that ξ + n1 ∈ B(ρ, δ) and ξ + n2 ∈ B(ρ, δ), so that any lattice vector m 6= 0

is distinct either from n1 or from n2. Thus, assuming for definiteness that m 6= n1,

we get

ξ + m = ξ + n1 + (m− n1) ∈
(
B(ρ, δ) + m− n1

)
⊂

⋃
n∈Γ†\{0}

(
B(ρ, δ) + n

)
.
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This proves (2.9.18).

Now observe that by definition of D1(ρ, δ) the sets D1(ρ, δ) ∩
(
B(ρ, δ) + n

)
are

disjoint for different n ∈ Γ† \ {0}. Therefore

vol
⋃

n∈Γ†\{0}

((
D1(ρ, δ) + n

)
∩B(ρ, δ)

)
=

∑
n∈Γ†\{0}

vol
(
D1(ρ, δ) ∩

(
B(ρ, δ) + n

))

≤ vol D1(ρ, δ) ≤ vol D(ρ, δ).

Together with (2.9.17) and (2.9.18) this produces the bound

vol
⋃

n∈Γ†\{0}

(
B(ρ, δ)∩

(
D(ρ, δ)+n

))
≤ vol D(ρ, δ)+vol

⋃
n∈Γ†\{0}

(
B(ρ, δ)∩

(
B(ρ, δ)+n

))
.

The estimate (2.9.16) follows from (2.9.15) and (2.8.11).

2.10 Proof of the Bethe-Sommerfeld Conjecture

In this section, we prove Theorem 2.1.1. We do it in several steps. First we prove it

for the model operator A defined by (2.6.2) with conditions (2.6.4) satisfied. After

that we invoke Theorem 2.5.3, which states that the original operator H can be

reduced to the model operator up to controllable error terms. At the second step

we show that these errors do not destroy the spectral band overlap, obtained for the

model operator.

2.10.1 Theorem 2.1.1 for the model operator (2.6.2)

Our proof of the spectral band overlap for the operator A relies on the following

elementary Intermediate Value Theorem type result for the function g(ξ) defined in

Section 2.7. As before we assume that λ = ρ2m.

Lemma 2.10.1. Let ξ = ξ(t) ⊂ B, t ∈ [t1, t2], t1 < t2, be a continuous path. Suppose

that g(ξ(t1)) ≤ λ−δ, g(ξ(t2)) ≥ λ+δ with some δ ∈ (0, λ/4), and for each t ∈ [t1, t2]

the number g(ξ(t)) is a simple eigenvalue of A(k),k = {ξ(t)}. Then there exists a

t0 ∈ (t1, t2) such that λ = g(ξ(t0)), so that λ ∈ σ(A). Moreover, ζ(λ;A) ≥ δ.
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Proof: Since g(ξ(t)) is a simple eigenvalue of A(k) and {ξ(t)} = k for each

t ∈ [t1, t2], we have g(ξ(t)) = λj(A(k)) with j independent of the choice of t. Since

g is continuous on B, the function g(ξ(t)) is a continuous function of t ∈ [t1, t2], and

hence the intermediate value theorem implies that there is a t0 ∈ (t1, t2) such that

λj(A({ξ(t0)})) = λ. The bound ζ(λ;A) ≥ δ follows from the definition (1.0.1) of

ζ(λ;A).

Our next step is to prove that there is a path with the properties required in

Lemma 2.10.1. In fact we shall prove that the required properties will hold for an

interval I(Ω; ρ, δ) ⊂ (0,∞) (see (2.8.6)) with some Ω ∈ T (ρ).

Lemma 2.10.2. There exists a constant Z ≥ 1 with the following property. Suppose

that for some Ω ∈ T (ρ) and some t ∈ I(Ω; ρ, δ), δ ∈ (0, ρ2m/4], the number g(η),

η = tΩ is a multiple eigenvalue of A(k),k = {η}. Then for any τ ∈ I(Ω; ρ, δ) there

exists a vector n ∈ Γ† \ {0} such that τΩ + n ∈ A(ρ, Zδ).

Proof: Since the number g(η),η = tΩ, is a multiple eigenvalue, by definition

of the function g( · ), there is a vector p ∈ Γ† \ {0} such that g(η) = g(η + p). In

view of (2.7.3), |η + p| � ρ. Since on the non-resonant sets the functions g and ĝ

coincide, by Lemma 2.7.3, for any τ ∈ I(Ω; ρ, δ) there exist two vectors m1,m2 ∈ Γ†,

m1 6= m2 such that, with ξ = τΩ,
|g(η)− g(ξ + m1)| � ρ2m−1|η − ξ| � δ,

|g(η + p)− g(ξ + m2)| � ρ2m−1|η − ξ| � δ.

(2.10.1)

Here we have used the bound |t−τ | � δρ1−2m, which follows from (2.8.7). As m1 6=

m2, one of these vectors is not zero. Denote this vector by n. Since g(η) = g(η+p),

it follows from (2.10.1) that

|g(ξ + n)− g(η)| � δ,

so that ξ+ n ∈ A(ρ, Zδ) with some constant Z independent of ξ and ρ, as required.

The next Lemma is the key point of our argument: it shows that at least for one

Ω ∈ T (ρ) the interval I(Ω; ρ, δ) consists entirely of the points t such that g(tΩ) is

a simple eigenvalue.
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Lemma 2.10.3. There exists a vector Ω ∈ T (ρ) and a number c3 > 0 such that for

δ = c3ρ
2m−1−d−2(d−1)−1

and each t ∈ I(Ω; ρ, δ) the number g(ξ), ξ = tΩ is a simple

eigenvalue of A({ξ}). Moreover, ζ(ρ2m;A) ≥ δ.

Proof: Suppose the contrary, i.e. if ρ is sufficiently large, then for any Ω ∈ T (ρ)

there is a t ∈ I(Ω; ρ, δ) such that g(tΩ) is a multiple eigenvalue of A(tΩ). Then due

to formula (2.8.8), Lemma 2.10.2 implies that

B̃(ρ, δ) ⊂
⋃

n∈Γ†\{0}

(A(ρ, δ1) + n) (2.10.2)

with δ1 := Zδ. Since B̃(ρ, δ) ⊂ B(ρ, δ1), we can re-write (2.10.2) as

B̃(ρ, δ) ⊂
⋃

n∈Γ†\{0}

((
A(ρ, δ1) + n

)⋂
B(ρ, δ1)

)
=

⋃
n∈Γ†\{0}

((
B(ρ, δ1) + n

)⋂
B(ρ, δ1)

)⋃ ⋃
n∈Γ†\{0}

((
D(ρ, δ1) + n

)⋂
B(ρ, δ1)

)
.

(2.10.3)

Let us estimate the volumes of sets on both sides of this inclusion. For a fixed

u > 0, whose value is chosen a few lines down, we can use (2.9.14) and (2.9.16) for

the volume of the right hand side. For the left hand side we use (2.8.10), so that

(2.10.3) results in the estimate

δρd−2m � δ2ρ1−4m+2d+u + δρ1−2m+d−u(d−1) + δρd−1−2m+αd ,

which simplifies to

1� δρ1−2m+d+u + ρ1−u(d−1) + ρ−1+αd .

Choose u = 2(d−1)−1 and δ = c3ρ
2m−1−d−u with a suitably small c3. Then for large

ρ the right hand side is less than the left hand side, which produces a contradiction,

thus proving the Lemma.

2.10.2 Proof of the Main Theorem

We assume that the conditions of Theorem 2.1.1 are satisfied. The proof uses the

reduction of the operator H to A1, established in Theorem 2.5.3. The first step is to
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show that the spectrum of A1 is well approximated by that of the model operator

(2.6.2) with B replaced with X, i.e.

A = H0 +Xo +XR.

Let numbers αj < 1, j = 1, 2, . . . , d be as defined in Subsection 2.3.3.

Lemma 2.10.4. Suppose that the conditions of Theorem 2.1.1 are satisfied. Let A1

be the operator (2.5.24), and let r = ρκ with a number κ > 0, satisfying (2.1.2) and

the inequality

d2κ < (2m− γβ)αd. (2.10.4)

Then for any L > 0 there exists an M (i.e. the number of steps in Theorem 2.5.3)

such that

N(µ− ρ−L, A(k)) ≤ N(µ,A1(k)) ≤ N(µ+ ρ−L, A(k)) (2.10.5)

for all µ ∈
(
(1− c4)2mρ2m, (1 + c4)2mρ2m

)
with any c4 <

1
16Amax

.

Proof: By Theorem 2.5.3, ‖RM+1‖ � ρβεM+1 , uniformly in b : b (γ) � 1 (see

(2.5.19) for definition of εM+1). The condition (2.1.15) is equivalent to σ < 1,

so that εj → −∞ as j → ∞. Thus for sufficiently large M = M(L) we have

‖RM+1‖ � ρ−L/2. As a consequence,

N
(
µ− ρ−L/2, Ã1(k)

)
≤ N(µ,A1(k)) ≤ N

(
µ+ ρ−L/2, Ã1(k)

)
,

Ã1 = A+XSE,LE,LF, (2.10.6)

for all µ ∈ R. Due to (2.6.10), the operator Ã1 can be represented in the block-matrix

form:

Ã1 =
⊕
V∈V

P(Ξ(V))AVP(Ξ(V)) +
⊕

V,W∈V,

P(Ξ(V))XSE,LE,LFP(Ξ(W)).

Since the number of distinct subspaces W ∈ V is bounded above by Crd
2

with some

universal constant C > 0, the second term satisfies the two-sided estimate

−Crd2
⊕
V∈V

P(Ξ(V))|X|SE,LE,LFP(Ξ(V)) ≤
⊕

V,W∈V,

P(Ξ(V))XSE,LE,LFP(Ξ(W))

≤ Crd
2
⊕
V∈V

P(Ξ(V))|X|SE,LE,LFP(Ξ(V)).
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Here we have denoted |X|SE,LE,LF = |XSE|+ |XLE|+ |XLF|. Consequently,

Ã− ≤ Ã1 ≤ Ã+

with

Ã± =
⊕
V∈V

P(Ξ(V))
(
AV ± Crd

2|X|SE,LE,LF
)
P(Ξ(V)).

Since Ã± are orthogonal sums, the problem is reduced to estimating the counting

functions of Ã±(k) on each invariant subspace H
(
k; Ξ(V)

)
. From now on we assume

that V is fixed and omit it from the notation.

If V ∈ V(r, d), i.e. V = Rd, then Ξ = Ξ(V) ⊂ B(0, 2ραd), see Lemma 2.3.18.

Clearly, ‖H0P(Ξ)‖ ≤ ρ2mαd . Also, by (2.4.22),

xo (γ) + xSE (γ) + xLE) (γ) + xLF (γ) � b (γ),

and hence, by Lemma 2.4.2,

‖XoP(Ξ)‖+ rd
2‖P(Ξ)|X|SE,LE,LFP(Ξ)‖ � rd

2

ργβαd .

In view of (2.10.4), the right hand side of the last inequality does not exceed ρ2mαd .

Consequently, ‖Ã±P(Ξ)‖ � ρ2mαd , which implies that N(µ, Ã±(k); Ξ) = 0 for all

µ ≥ (ρ/2)2m.

Now, let us fix V ∈ V(r, n), n ≤ d− 1, and prove the bounds

N(µ− ρ−L/2, AV(k); Ξ) ≤ N(µ, Ã±(k); Ξ) ≤ N(µ+ ρ−L/2, AV(k); Ξ), (2.10.7)

for sufficiently large ρ. Split Ξ into three disjoint sets:

Ξ =C< ∪ C0 ∪ C>,

C0 =

{
ξ ∈ Ξ : ρ

(
1− 1

4Amax

)
≤ |ξ//V| ≤ ρ

(
1 +

1

8Amax

)}
,

C< =

{
ξ ∈ Ξ : |ξ//V| < ρ

(
1− 1

4Amax

)}
, C> =

{
ξ ∈ Ξ : ρ

(
1 +

1

8Amax

)
< |ξ//V|

}
.

Note that by definition of the operator AV (see (2.6.5)) all three subspaces H(C0),

H(C<), H(C>) (see Subsection 2.1.3) are invariant for AV. Since |ξV| < 2ραd−1 (see
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Lemma 2.3.18), we have

Ξ ∩B
(

0, ρ

(
1− 1

4Amax

))
⊂ C< ⊂ B

(
0, ρ

(
1− 3

16Amax

))
,

Ξ ∩B
(
ρ

(
1 +

1

8Amax

))
⊂ (C< ∪ C0) ⊂ B

(
0, ρ

(
1 +

1

4Amax

))
.

Therefore, by Lemma 2.4.5,

P(Ξ)|XSE|P(Ξ) = P(C<)|XSE|P(C<), P(Ξ)|XLE|P(Ξ) = P(C>)|XLE|P(C>).

Thus, Ã±P(Ξ) can be rewritten as

Ã±P(Ξ) = F± ± Crd
2(

P(Ξ)|X|LFP(Ξ)− P(C>)|X|LFP(C>)
)
,

with

F± = P(C<)
(
AV ± Crd

2|XSE|
)
P(C<)⊕ P(C0)AVP(C0)

⊕ P(C>)
(
AV ± Crd

2 |X|LF,LE
)
P(C>).

By (2.4.25),

rd
2‖P(C< ∪ C0)|XLF|‖+ rd

2‖|XLF|P(C< ∪ C0)‖ � rd
2+p−lρβmax(γ,0),

for any p > d and l ≥ p uniformly in b satisfying b (γ) � 1. As r = ρκ, κ > 0, by

choosing a sufficiently large l, we can guarantee that the right hand side is bounded

by ρ−L/2. This leads to the bounds

N(µ− ρ−L/2, F±(k); Ξ) ≤ N(µ, Ã±(k); Ξ) ≤ N(µ+ ρ−L/2, F±(k); Ξ), (2.10.8)

for all µ ∈ R. Consequently, (2.10.7) will be proved if we show that

N(µ, F±; Ξ) = N(µ,AV; Ξ),

(
ρ

(
1− 1

8Amax

))2m

≤ µ ≤
(
ρ

(
1 +

1

16Amax

))2m

.

(2.10.9)

To this end note first that the definition of C< and C> implies

H0P(C<) ≤
(
ρ

(
1− 3

16Amax

))2m

P(C<), H0P(C>) ≥
(
ρ

(
1 +

1

8Amax

))2m

P(C>).

(2.10.10)
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Also, by Lemma 2.4.5,

‖Xo‖+ ‖XR
V‖+ Crd

2‖XSE‖ � rd
2

ρβmax(γ,0).

Under the condition (2.10.4) the right hand side of this estimate is bounded by

o(ρ2m), ρ→∞ uniformly in b. Together with (2.10.10), this implies

N(µ,AV±Crd
2

P(C<)|XSE|P(C<); C<) = N(µ,AV; C<), µ ≥
(
ρ

(
1− 1

8Amax

))2m

.

(2.10.11)

Furthermore, in view of (2.4.22) and (2.4.2),

P(C>)(|Xo|+ |XR
V|+ Crd

2 |X|LF,LE)P(C>)� rd
2

(H0 + I)γ
∗
P(C>), γ∗ =

γβ

2m
.

Using again (2.10.4) and remembering (2.10.10), we conclude that the right hand

side is bounded above by o(1)H0P(C>), ρ → ∞, uniformly in b. Together with

(2.10.10), this implies that

N(µ,AV ± Crd
2

P(C>)|X|LF,LEP(C>); C>) = 0, µ ≤
(
ρ

(
1 +

1

16Amax

))2m

.

(2.10.12)

Putting together (2.10.11) and (2.10.12), we arrive at (2.10.9). In combination with

(2.10.8) this leads to (2.10.7). Together with (2.10.6) they yield (2.10.5).

Proof: [Proof of the Main Theorem] By Theorem 2.5.3, it suffices to prove that

ζ(ρ2m, A1) > cρS with some S for sufficiently large ρ. It follows from Lemma 2.10.3

that ζ(ρ2m;A) ≥ cρS with S = 2m− 4− d− 12(d− 1)−1. Using the bounds (2.10.5)

with L > −S, we get the required estimate ζ(ρ2m, A1) � ρS from the definition

(1.0.2). This completes the proof of Theorem 2.1.1.
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Chapter 3

Lower Bound on the Density of

States for Periodic Schrödinger

Operators

3.1 Introduction

Since now we will consider a different problem we would like to refresh various

definitions and the framework of the subject. Let H = −∆ + V be a Schrödinger

operator in L2(Rd) with a smooth periodic potential V . We will assume throughout

that d > 2. The integrated density of states (IDS) was defined in (1.0.3). The

existence of the limit in (1.0.3) is well known, see e.g. [28, 32]. For H0 := −∆ the

IDS can be easily computed explicitly (e.g. using the representation (3.2.6) below):

N0(λ) =

(2π)−dd−1ωdλ
d/2, λ > 0;

0, λ 6 0.

(3.1.1)

Here ωd = 2πd/2/Γ(d/2) is the surface area of the unit sphere Sd−1 in Rd.

This chapter concerns the high–energy behaviour of the Radon–Nikodym deriva-

tive of the IDS

g := dN/ dλ,
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which is called the density of states (DOS) (see [28]). Our main result is that for

large values of λ

g(λ) > g0(λ)
(
1− o(1)

)
, (3.1.2)

where

g0(λ) = dN0(λ)/ dλ = (2π)−dωdλ
(d−2)/2/2.

We remark that (3.1.2) should be understood in the sense of measures; in particular,

we do not claim that g(λ) is everywhere differentiable.

It has been proved in [21] that the spectrum of H contains a semi-axis [λ0,+∞).

This result has an obvious reformulation in terms of the IDS: each point λ > λ0 is

a point of growth of N . It was also proved in [21] that for each n ∈ N and ε = λ−n

we have

N(λ+ ε)−N(λ)� ελ(d−2)/2. (3.1.3)

Later, Yu. Karpeshina suggested that using the technique from that [21], one should

be able to prove the opposite bound

N(λ+ ε)−N(λ)� ελ(d−2)/2 (3.1.4)

when λ is sufficiently large, not just with ε = λ−n (when the proof is relatively

straightforward given [21]), but also uniformly over all ε ∈ (0, 1]. In this Chapter

we prove that for large λ

N(λ+ ε)−N(λ) >
ωd

2(2π)d
ελ(d−2)/2

(
1− o(1)

)
. (3.1.5)

Note that (3.1.5) implies the claimed bound (3.1.2).

The main result of this Chapter is

Theorem 3.1.1. For sufficiently large λ and any ε > 0 the integrated density of

states of H satisfies (3.1.5).

The proof of Theorem 3.1.1 is heavily based on the technique of [21] and uses

various statements proved therein. In order to minimize the size of the Chapter,
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we will try to quote as many results as we can from [21], possibly with some minor

modifications where necessary.

The chapter is organized as follows. In Section 3.2 we introduce the necessary

notation and quote the results of [21] which we need for the proof of Theorem 3.1.1.

Sections 3.3 and 3.4 contain some auxiliary results, and the proof is finished in

Section 3.5.

3.2 Preliminaries

We study the Schrödinger operator

H = −∆ + V (x), x ∈ Rd (3.2.1)

with the potential V being infinitely smooth and periodic with the lattice of periods

Λ. We denote the lattice dual to Λ by Λ†; the fundamental cells of these lattices are

denoted by Ω and Ω†, respectively. We introduce

Q := sup
{
|ξ|
∣∣ξ ∈ Ω†

}
. (3.2.2)

Let

D := −i∇, D(k) := D + k. (3.2.3)

The Floquet-Bloch decomposition allows to represent our operator (3.2.1) as a

direct integral:

H =

∫
Ω†
⊕H(k) dk, (3.2.4)

where

H(k) = D(k)2 + V (x) (3.2.5)

is the family of ‘fibre’ operators acting in L2(Ω). The domain D of each H(k) is the

set of periodic functions from H2(Ω). The spectrum of H is the union over k ∈ Ω†

of the spectra of the operators (3.2.5). Let {λj(k)}, j ∈ N be the set of eigenvalues

of H(k) (counting with multiplicities). Then the integrated density of states (1.0.3)
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admits the following representation:

N(λ) := (2π)−d
∫

Ω†
#
{
j : λj(k) < λ

}
dk, (3.2.6)

see e.g. [28].

We denote by | · |◦ the surface area Lebesgue measure on the unit sphere Sd−1 in

Rd and put ωd := |Sd−1|◦ = 2πd/2/Γ(d/2). By vol(·) we denote the Lebesgue measure

in Rd. We write B(R) for the ball of radius R centered at the origin. The identity

matrix is denoted by I. By λ = ρ2 we denote a point on the spectral axis. We also

denote by v the L∞–norm of the potential V , and put J := [λ− 20v, λ+ 20v].

Any vector ξ ∈ Rd can be uniquely decomposed as ξ = n + k with n ∈ Λ† and

k ∈ Ω†. We call n =: [ξ] the ‘integer part’ of ξ and k =: {ξ} the ‘fractional part’ of

ξ. For ξ ∈ Rd \ {0} we define r = r(ξ) := |ξ| and ξ′ := ξ/|ξ|. For any h ∈ L2(Ω)

we introduce its Fourier coefficients

hn := (vol Ω)−1/2

∫
Ω

h(x) exp
(
− i〈n,x〉

)
dx, n ∈ Λ†. (3.2.7)

Given two positive functions f and g, we say that f � g, or g � f , or g = O(f)

if the ratio g/f is bounded. We say f � g if f � g and f � g. Whenever we use

O, o, �, �, or � notation, the constants involved can depend on d and norms of

the potential in various Sobolev spaces Hs; the same is also the case when we use

the expression ‘sufficiently large’.

Let

A :=
{
ξ ∈ Rd,

∣∣|ξ|2 − λ∣∣ 6 40v
}
. (3.2.8)

Notice that the definition of A obviously implies that if ξ ∈ A, then
∣∣|ξ|−ρ∣∣� ρ−1.

We put

R = R(ρ) := ρ1/(36d2(d+2)) (3.2.9)

(so that the condition stated after equation (5.15) in [21] is satisfied). For j ∈ N let

Θ′j := Λ† ∩B(jR) \ {0}.

Let M := 5d2 + 7d. We introduce the set

B :=
{
ξ ∈ A

∣∣∣∣∣〈ξ,η′〉∣∣ > ρ1/2, for all η ∈ Θ′6M

}
. (3.2.10)
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In other words, B consists of all points ξ ∈ A the projections of which to the

directions of all vectors η ∈ Θ′6M have lengths larger than ρ1/2. We also denote

D := A \B.

The main result we will need follows from Corollary 7.15 of [21]:

Proposition 3.2.1. There exist mappings f, g : A→ R which satisfy the following

properties:

(i) f(ξ) is an eigenvalue of H(k) with {ξ} = k;
∣∣f(ξ) − |ξ|2

∣∣ 6 2v. f is

an injection (if we count all eigenvalues with multiplicities) and all eigenvalues of

H(k) inside J are in the image of f .

(ii) If ξ ∈ A, then
∣∣f(ξ)− g(ξ)

∣∣ 6 ρ−d−3.

(iii) For any ξ ∈ B

g(ξ) = |ξ|2

+
2M∑
j=1

∑
η1,...,ηj∈Θ′M

∑
26n1+···+nj62M

Cn1,...,nj〈ξ,η1〉−n1 . . . 〈ξ,ηj〉−nj .
(3.2.11)

Remark 3.2.2. Formula (3.2.11) implies that

∂g/∂r(ξ) � ρ, for any ξ ∈ B. (3.2.12)

For each positive δ 6 v we denote by A(δ), B(δ), and D(δ) the intersections of

g−1
(
[ρ2 − δ, ρ2 + δ]

)
with A, B, and D, respectively.

It is proved in Lemma 8.1 of [21] that

vol
(
D(δ)

)
� ρd−7/3δ. (3.2.13)

The following statement (Corollary 8.5 of [21]) gives a sufficient condition for the

continuity of f :

Lemma 3.2.3. There exists a constant C1 with the following properties. Let

I :=
{
ξ(t) : t ∈ [tmin, tmax]

}
⊂ B(v).
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be a straight interval of length L < ρ−1δ. Suppose that there is a point t0 ∈

[tmin, tmax] with the property that for each non-zero n ∈ Λ† g
(
ξ(t0) + n

)
is either

outside the interval[
g
(
ξ(t0)

)
− C1ρ

−d−3 − C1ρL, g
(
ξ(t0)

)
+ C1ρ

−d−3 + C1ρL
]

or not defined. Then f
(
ξ(t)

)
is a continuous function of t.

By inspection of the proof of Lemma 8.3 of [21] we obtain

Lemma 3.2.4. For large enough ρ and δ < ρ−1 the following estimates hold uni-

formly over a ∈ Λ† \ {0}: if d > 3,

vol
(
B(δ) ∩

(
B(δ) + a

))
� (δ2ρd−3 + δρ−d); (3.2.14)

if d = 2,

vol
(
B(δ) ∩

(
B(δ) + a

))

� δ3/2, |a| 6 2ρ− 1,

� δ3/2 + δρ−2,
∣∣|a| − 2ρ

∣∣ < 1,

= 0, |a| > 2ρ+ 1.

(3.2.15)

3.3 Prevalence of regular directions

In this section we prove that for most directions ξ′ the image of the function f of

Proposition 3.2.1 is an isolated eigenvalue of H
(
{ξ}
)

continuously depending on |ξ|

if it belongs to a neighborhood of ρ2.

Lemma 3.3.1. For ρ big enough and

0 < δ 6 ρ−d−3

there exists a set F = F(ρ) on the unit sphere Sd−1 in Rd with

|F|◦ > ωd
(
1− o(1)

)
(3.3.1)

such that f(ξ) is a simple eigenvalue of H
(
{ξ}
)

continuously depending on r := |ξ|

for every ξ = (r, ξ′) ∈ f−1
(
[ρ2 − δ, ρ2 + δ)

)
with ξ′ := ξ/|ξ| ∈ F.
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Proof:It is enough to consider δ := ρ−d−3. For each ξ′ ∈ Sd−1 let

Iξ′(δ) := {rξ′, r > 0} ∩B(δ). (3.3.2)

Let F1 :=
{
ξ′ ∈ Sd−1

∣∣Iξ′(δ) 6= ∅, Iξ′(δ) ∩D(δ) = ∅
}

.

For any η ∈ Θ′6M the area of the set of points ξ′ ∈ Sd−1 satisfying∣∣〈rξ′,η′〉∣∣ 6 ρ1/2

is evidently O(ρ−1/2) if r > ρ/2 (the latter is true for all rξ′ ∈ A). Since the number

of elements in Θ′6M is O(Rd), by (3.2.9) and (3.2.10) we have

|Sd−1 \ F1|◦ = o(1). (3.3.3)

By definition B(δ) = B∩ g−1
(
[ρ2− δ, ρ2 + δ]

)
, hence (3.2.12) implies that for big

ρ the length lξ′(δ) of Iξ′(δ) satisfies

lξ′(δ) � δρ−1, ξ′ ∈ F1. (3.3.4)

Let

F :=
{
ξ′ ∈ F1

f is continuous on Iξ′(δ)
}
,

and

E(δ) :=
{
ξ ∈ B(δ)

∣∣ξ′ ∈ F1 \ F
}
.

Lemma 3.2.3 tells us that for each point ξ ∈ E(δ) there is a non-zero vector n ∈ Λ†

such that ∣∣g(ξ + n)− g(ξ)
∣∣ 6 C1

(
ρ−d−3 + ρlξ′(δ)

)
� (ρ−d−3 + δ). (3.3.5)

Since
∣∣g(ξ)− ρ2

∣∣ 6 δ, this implies∣∣g(ξ + n)− ρ2
∣∣ 6 C2(ρ−d−3 + δ) =: δ1 � ρ−d−3 = δ,

and thus ξ + n ∈ A(δ1); notice that C2 > 1 and so δ1 > δ. Therefore, each point

ξ ∈ E(δ) also belongs to the set
(
A(δ1) − n

)
for a non-zero n ∈ Λ†; obviously,

|n| � ρ. In other words,

E(δ) ⊂
⋃

n∈Λ†∩B(Cρ),n6=0

(
A(δ1)− n

)
=
⋃
n6=0

(
B(δ1)− n

)
∪
⋃
n6=0

(
D(δ1)− n

)
. (3.3.6)
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To proceed further, we need more notation. Denote D0(δ1) to be the set of all points

ν from D(δ1) for which there is no non-zero n ∈ Λ† satisfying ν −n ∈ B(δ); D1(δ1)

to be the set of all points ν from D(δ1) for which there is a unique non-zero n ∈ Λ†

satisfying ν − n ∈ B(δ); and D2(δ1) to be the rest of the points from D(δ1) (i.e.

D2(δ1) consists of all points ν from D(δ1) for which there exist at least two different

non-zero vectors n1,n2 ∈ Λ† satisfying ν − nj ∈ B(δ)). Then Lemma 8.7 of [21]

implies that we can rewrite (3.3.6) as

E(δ) ⊂
⋃
n6=0

(
B(δ1)− n

)
∪
⋃
n6=0

(
D1(δ1)− n

)
. (3.3.7)

From this we conclude that

E(δ) ⊂
⋃
n 6=0

((
B(δ1)− n

)
∩B(δ)

)
∪
⋃
n6=0

((
D1(δ1)− n

)
∩B(δ)

)
, (3.3.8)

since E(δ) ⊂ B(δ).

The definition of the set D1(δ1) and (3.2.13) imply that

vol

( ⋃
n6=0

((
D1(δ1)− n

)
∩B(δ)

))
6 vol

(
D1(δ1)

)
6 vol

(
D(δ1)

)
� δ1ρ

d−7/3 � δρd−7/3.

(3.3.9)

For d > 3 Lemma 3.2.4, inequality δ < δ1, and the fact that the union in (3.3.8)

consists of no more than Cρd terms imply

vol

( ⋃
n6=0

((
B(δ1)− n

)
∩B(δ)

))
� ρd(δ2

1ρ
d−3 + δ1ρ

−d)� δ(ρd−6 + 1). (3.3.10)

For d = 2 we obtain by Lemma 3.2.4

vol

( ⋃
n∈Λ†\{0}

(
B(δ) ∩

(
B(δ1) + n

)))
6

∑
n∈Λ†\{0}
|n|62ρ−1

vol
(
B(δ) ∩

(
B(δ1) + n

))

+
∑

n∈Λ†\{0}
||n|−2ρ|<1

vol
(
B(δ) ∩

(
B(δ1) + n

))

� δ
3/2
1 ρ2 + ρ(δ

3/2
1 + δ1ρ

−2)� δρ−1/2,

(3.3.11)
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where we have used that

#
{

n ∈ Λ†
∣∣∣∣∣|n| − 2ρ

∣∣ < 1
}
� ρ.

Applying (3.3.9), (3.3.10), and (3.3.11) to (3.3.8) we obtain for all d > 2

vol E(δ)� δρd−7/3. (3.3.12)

By definition,

E(δ) =
⋃

ξ′∈F1\F

Iξ′(δ).

Hence by (3.3.4)

|F1 \ F|◦ � δ−1ρ2−d vol E(δ). (3.3.13)

Combining (3.3.12) and (3.3.13) we conclude that for big ρ

|F1 \ F|◦ = o(1). (3.3.14)

We have

|Sd−1 \ F|◦ = |Sd−1 \ F1|◦ + |F1 \ F|◦. (3.3.15)

Substituting (3.3.3) and (3.3.14) into (3.3.15) we obtain (3.3.1).

Now we notice that for every ξ′ ∈ F the interval Iξ′(δ) has the following property:

for each point ξ ∈ Iξ′(δ) and each non-zero vector n ∈ Λ† such that ξ + n ∈ A we

have
∣∣g(ξ+ n)− g(ξ)

∣∣ > 2ρ−d−3. This implies f(ξ+ n)− f(ξ) 6= 0. Therefore, f(ξ)

is a simple eigenvalue of H
(
{ξ}
)

for each ξ ∈ Iξ′(δ). The lemma is proved.

3.4 Some properties of operators on the fibers

In this section we discuss some properties of operatorsH(k), k ∈ Ω†. In Lemma 3.4.1

we prove that the Fourier coefficients of the eigenfunctions of these operators satisfy

certain decay estimates if the corresponding eigenvalues are big enough. Using

this, we obtain an estimate on the rate of change of such eigenvalues with k in

Lemma 3.4.2.
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For m ∈ R let

V (m) :=
( ∑

n∈Λ†

|n|2m|Vn|2
)1/2

.

Since V is smooth, V (m) is finite for any m > 0. Recall that Q is defined by (3.2.2).

Lemma 3.4.1. Fix m ∈ N and κ ∈ (0, 1). For k ∈ Ω† let ψ be a normalized

eigenfunction of H(k):

H(k)ψ = ζψ (3.4.1)

with the eigenvalue

ζ > max
{

36Q2κ−2, (1 +mκ)2/(d−1)κ−2d/(d−1)
}
. (3.4.2)

Then there exists Mm = Mm(d,Λ, V ) ∈ R+ such that for all n ∈ Λ† with

|n| > (1 +mκ)
√
ζ (3.4.3)

the Fourier coefficients of ψ satisfy

|ψn| < Mmκ−m|n|−(3m+1)/2. (3.4.4)

Proof: We proceed by induction. Suppose that either m = 1, or m > 1 and the

statement is proved for m− 1. Substituting the Fourier series

ψ(x) = (vol Ω)−1/2
∑
n∈Λ†

ψn exp
(
i〈n,x〉

)
, x ∈ Ω

into (3.4.1) and equating the coefficients at exp
(
i〈n,x〉

)
on both sides, we obtain

by (3.2.5):

|n + k|2ψn +
∑
l∈Λ†

Vn−lψl = ζψn. (3.4.5)

Since |k| 6 Q, by (3.4.2) and (3.4.3) we have

2|n||k| 6 κ|n|2/6 + 6κ−1Q2 6 κ|n|2/3. (3.4.6)

For κ ∈ (0, 1), it follows from (3.4.3) that

|n|2 − ζ >
(
1− (1 + κ)−2

)
|n|2 = κ(2 + κ)(1 + κ)−2|n|2 > κ|n|2/2. (3.4.7)
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Combining (3.4.6) and (3.4.7) we obtain

|n + k|2 − ζ > |n|2 − 2|n||k| − ζ > κ|n|2/6,

and thus by (3.4.5)

|ψn| < 6κ−1|n|−2
∑
l∈Λ†

|Vn−lψl|. (3.4.8)

If m = 1 we estimate the sum on the r. h. s. by V (0) using Cauchy–Schwarz

inequality (since ψ is normalized) and obtain (3.4.4) with M1 := 6V (0).

If m > 1, we estimate∑
l∈Λ†: |l−n|6|n|1/d

|Vn−lψl| 6 sup
m: |m|>|n|−|n|1/d

|ψm|
∑

l∈Λ†: |l|6|n|1/d
|Vl|. (3.4.9)

By (3.4.3), (3.4.2), and monotonicity of the function q(t) = t− t1/d for t > 1 we have

|n| − |n|1/d > (1 +mκ)
√
ζ −

(
(1 +mκ)

√
ζ
)1/d
>
(
1 + (m− 1)κ

)√
ζ.

According to the induction hypothesis

sup
m: |m|>|n|−|n|1/d

|ψm| 6 κ1−mMm−1

(
1− |n|(1−d)/d

)1−3m/2|n|1−3m/2. (3.4.10)

Since κ ∈ (0, 1), from (3.4.3) and (3.4.2) we conclude

|n| > (1 +mκ)
√
ζ > (κ−1 +m)d/(d−1) > 2d/(d−1),

hence (
1− |n|(1−d)/d

)1−3m/2
< 23m/2−1. (3.4.11)

Let

W := sup
r>1

r−d#
{
l ∈ Λ†

∣∣|l| 6 r
}
.

Clearly, W <∞. By Cauchy–Schwarz inequality∑
l∈Λ†: |l|6|n|1/d

|Vl| 6 W 1/2V (0)|n|1/2. (3.4.12)

Substituting (3.4.10), (3.4.11), and (3.4.12) into (3.4.9) we get∑
l∈Λ†: |l−n|6|n|1/d

|Vn−lψl| < 23m/2−1κ1−mW 1/2V (0)Mm−1|n|3(1−m)/2. (3.4.13)
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On the other hand, since ‖ψ‖ = 1, applying Cauchy–Schwarz inequality we obtain∑
l∈Λ†: |l−n|>|n|1/d

|Vn−lψl| < |n|3(1−m)/2
∑

l∈Λ†: |l|>|n|1/d
|l|3(m−1)d/2|Vl||ψn−l|

6 |n|3(1−m)/2
( ∑

l∈Λ†: |l|>|n|1/d
|l|3(m−1)d|Vl|2

)1/2

6 V (3(m−1)d/2)|n|3(1−m)/2.
(3.4.14)

Inserting (3.4.13) and (3.4.14) into (3.4.8) we arrive at (3.4.4) with

Mm := 6(23m/2−1W 1/2V (0)Mm−1 + V (3(m−1)d/2)).

Lemma 3.4.2. For any η ∈ (0, 1) there exists ζ0 > 0 such that if ζ(k) > ζ0 is a

simple eigenvalue of H(k) for some k ∈ Ω† then

|∇kζ| 6 2(1 + η)
√
ζ. (3.4.15)

Proof: Let ψ(k) be the eigenfunction corresponding to ζ(k) with∥∥ψ(k)
∥∥ = 1. (3.4.16)

Then

∇kζ(k) = ∇k

(
ψ(k), H(k)ψ(k)

)
=
(
ψ(k),

(
∇kH(k)

)
ψ(k)

)
. (3.4.17)

By (3.2.5) and (3.2.3),

∇kH(k) = 2D(k).

Substituting this into (3.4.17) we obtain:∣∣∇kζ(k)
∣∣ 6 2

∥∥D(k)ψ(k)
∥∥ = 2

( ∑
n∈Λ†

|n + k|2
∣∣ψn(k)

∣∣2)1/2

. (3.4.18)

Let

m :=
[
(d+ 1)/3

]
+ 1 (3.4.19)

and

κ := η/(2m+ 1). (3.4.20)

We assume that

ζ := ζ(k) > max
{

36Q2κ−2, (1 +mκ)2/(d−1)κ−2d/(d−1)
}
. (3.4.21)
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Since by (3.2.2) |k| 6 Q, by (3.4.16), (3.4.21), and (3.4.20) we have∑
|n|<(1+mκ)

√
ζ

|n + k|2
∣∣ψn(k)

∣∣2 < (1 + (m+ 1/6)κ
)2
ζ < (1 + η/2)2ζ. (3.4.22)

For |n| > (1 +mκ)
√
ζ we apply Lemma 3.4.1 obtaining∑

|n|>(1+mκ)
√
ζ

|n + k|2
∣∣ψn(k)

∣∣2 6M2
mκ−2m

∑
|n|>(1+mκ)

√
ζ

|n + k|2
∣∣n|−3m−1. (3.4.23)

By (3.4.19) the r. h. s. of (3.4.23) is finite and is O(ζ−1/2). Thus, choosing ζ0 big

enough, by (3.4.18), (3.4.22), and (3.4.23) we obtain (3.4.15).

3.5 Proof of Theorem 3.1.1

We are now ready to finish the proof of the main result. It is enough to prove

Theorem 3.5.1. For any α ∈ (0, 1) there exists ρ0 > 0 big enough such that for all

ρ > ρ0

N(ρ2 + δ)−N(ρ2 − δ) > (1− α)(2π)−dωdδρ
d−2 (3.5.1)

for any

0 < δ 6 ρ−d−3. (3.5.2)

Indeed, the original statement of Theorem 3.1.1 can be obtained by partitioning

of the interval [λ, λ+ ε] into subintervals with lengths not exceeding 2λ(−d−3)/2 and

adding up estimates (3.5.1) on these subintervals (with ρ2 being respective middle

points).

Proof:We first express the growth of IDS in terms of the function f of Proposi-

tion 3.2.1(i) using (3.2.6):

N(ρ2 + δ)−N(ρ2 − δ) = (2π)−d vol
(
f−1[ρ2 − δ, ρ2 + δ)

)
. (3.5.3)

We can write

vol
(
f−1[ρ2 − δ, ρ2 + δ)

)
=

∫
Sd−1

∫ ∞
0

χ(r, ξ′)rd−1 dr dξ′, (3.5.4)
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where χ is the indicator function of f−1
(
[ρ2 − δ, ρ2 + δ)

)
. To obtain a lower bound

we can restrict the integration in (3.5.4) to ξ′ ∈ F defined in Lemma 3.3.1. Then

for any η ∈ (0, 1) there exists ρ0 > 0 such that for any ρ > ρ0 we have

|F|◦ > (1− η)ωd, (3.5.5)

and for any ξ′ ∈ F the support of χ(·, ξ′) contains an interval [r1, r2] with

(1− η)ρ 6 r1 < r1 + (1− η)ρ−1δ 6 r2. (3.5.6)

Indeed, the first inequality in (3.5.6) follows from Proposition 3.2.1(ii),(iii). The last

inequality in (3.5.6) follows from Lemmata 3.3.1 and 3.4.2.

Thus for all ρ > ρ0 by (3.5.5) and (3.5.6) we obtain∫
Sd−1

∫ ∞
0

χ(r, ξ′)rd−1 dr dξ′ >
∫

F

(1− η)dρd−2δ dξ′

> (1− η)d+1ωdρ
d−2δ,

(3.5.7)

Combining (3.5.3), (3.5.4), and (3.5.7), and choosing η small enough we arrive at

(3.5.1). The theorem is proved.
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9(3)(2008), 457-508.

[22] L. Parnovski and A. Sobolev, Bethe-Sommerfeld conjecture for polyhar-

monic operators, Duke Math. J. 107 no.2 (2001), 209–238.

[23] L. Parnovski and A. Sobolev, Perturbation theory and the Bethe-

Sommerfeld conjecture, Annales H. Poincaré 2(2001), 573–581.
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