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Abstract

The entropy-reduction hypothesis claims that the cognitive processing difficulty on a word in

sentence context is determined by the word’s effect on the uncertainty about the sentence. Here,

this hypothesis is tested more thoroughly than has been done before, using a recurrent neural net-

work for estimating entropy and self-paced reading for obtaining measures of cognitive processing

load. Results show a positive relation between reading time on a word and the reduction in

entropy due to processing that word, supporting the entropy-reduction hypothesis. Although this

effect is independent from the effect of word surprisal, we find no evidence that these two mea-

sures correspond to cognitively distinct processes.

Keywords: Sentence comprehension; Self-paced reading; Cognitive load; Word information;

Entropy reduction; Surprisal; Recurrent neural network

1. Introduction

Although many cognitive scientists believe information processing to be central to

cognition, it is not always clear what is meant by “information” (cf. Piccinini & Scaran-

tino, 2011). Presumably, stimuli that are more “informative” increase “cognitive load”

and should therefore require more “mental effort” to process, but unless information

content is properly quantified such statements remain somewhat metaphorical. To go

beyond the metaphor, we need to turn to information theory, which has indeed been

brought to bear in explanations of cognitive phenomena. For example, information-

theoretic considerations have recently been called upon to explain aspects of language

production (Jaeger, 2010) and properties of language itself (Piantadosi, Tily, & Gibson,

2012).
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This article looks at information-theoretic measures of cognitive processing load in lan-

guage comprehension. In particular, it investigates to what extent experimentally obtained

word-reading times are predicted by formally derived measures of the amount of informa-

tion conveyed by each word in a sentence. In this context, the most common quantifica-

tion of a word’s information content is its surprisal (also known as self-information), a
measure of the extent to which the word came unexpected to the reader or listener. For-

mally, if word sequence wt
1 (short for w1w2. . .wt) forms the first t words of a sentence,

the surprisal of the next word, wtþ1, is defined as � logPðwtþ1jwt
1Þ. It has been argued

that a word’s surprisal is an important predictor of the cognitive load experienced on

encountering the word (Hale, 2001; Levy, 2008), and indeed it is well established by now

that word-reading times correlate positively with surprisal values (e.g., Boston, Hale, Pa-

til, Kliegl, & Vasishth, 2008; Boston, Hale, Vasishth, & Kliegl, 2011; Demberg & Keller,

2008; Frank & Bod, 2011).

Although any sufficiently accurate probabilistic language model1 generates surprisal

estimates that can account for reading times, constructing such an accurate model can be

problematic. For this reason, surprisal values are often assigned to the words’ part-of-

speech (i.e., syntactic category) rather than to the words themselves. Nevertheless, read-

ing-time effects of the surprisal of actual words have also been demonstrated (Brakel,

2009; Fernandez Monsalve, Frank, & Vigliocco, 2012; Fossum & Levy, 2012; Mitchell,

Lapata, Demberg, & Keller, 2010; Roark, Bachrach, Cardenas, & Pallier, 2009; Smith &

Levy, 2008).

A lesser known alternative operationalization of a word’s information content follows

from the idea that at each point during sentence comprehension, the reader or listener

experiences some degree of uncertainty about what is being communicated. This uncer-

tainty (usually) decreases with each incoming word, and the extent of this decrease corre-

sponds to the information conveyed by the word in the current sentence context.

Formally, if X denotes the set of all possible sentence structures (or “interpretations”),

the goal of comprehension is to identify which structure x ∈ X is being communicated.

We can view X as a random variable, where each x has an occurrence probability P(x).
The uncertainty about x is quantified as the entropy (Shannon, 1948) of the probability

distribution over X, defined as:

HðXÞ ¼ �
X

x2X
PðxÞ logPðxÞ:

The larger the entropy, the more uncertainty there is about the value of x. It is easy to

show that entropy is maximal when all x have the same probability (which, intuitively,

indeed comes down to maximal uncertainty) and that entropy is zero if (and only if)

P(x) = 1 for one particular x, that is, there is absolute certainty about what is communi-

cated.

When the first t words of a sentence (i.e., wt
1) have been processed, the probability

distribution over X has changed from P(X) to PðXjwt
1Þ. The corresponding entropy

equals
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HðX;wt
1Þ ¼ �

X

x2X
Pðxjwt

1Þ logPðxjwt
1Þ: ð1Þ

The amount of information that the sentence’s next word, wtþ1, gives about the random

variable X is defined as the reduction in entropy due to that word2:

DHðX;wtþ1Þ ¼ HðX;wt
1Þ � HðX;wtþ1

1 Þ: ð2Þ

Hale (2003, 2006, 2011) argues that this entropy reduction should be predictive of the

cognitive load experienced when processing wtþ1 and demonstrates how the relevant

entropy values can be computed given a probabilistic grammar (Hale, 2006). Blache and

Rauzy (2011) propose a simpler entropy measure that is computed over the probabilities

of part-of-speech assignments rather than syntactic tree structures, in effect marginalizing

over these structures. However, they do not compare the resulting entropy-reduction val-

ues to empirical measures of cognitive processing load. Wu, Bachrach, Cardenas, and

Schuler (2010) did find an effect of entropy reduction on word-reading time, but their

model takes only the possible structures of the sentence so far (rather than complete sen-

tences) into account. Roark et al. (2009) also found an entropy-reduction effect but

greatly simplified the computation of entropy by considering the probability of the single

next word only.

To look further ahead than a single word, Frank (2010) used a much simpler language

model that does not assign syntactical categories or structures. Reading times were shown

to depend on both surprisal and entropy reduction. However, these two information mea-

sures were defined over parts-of-speech rather than words, which has at least two draw-

backs: First, the particular choice of syntactic categories is theory dependent and it is not

at all clear whether a similar (or, for that matter, any) categorization is cognitively rele-

vant. Second, a word’s syntactic category can be ambiguous, in particular at the moment

the word appears. Although it is most often possible to unambiguously classify each word

after the sentence has been fully interpreted, both the surprisal and entropy-reduction

measure are based on the assumption that each word is interpreted immediately, that is,

sentence processing is perfectly incremental.

In the study presented here, surprisal and entropy reduction are estimated for actual

words rather than just their syntactic categories, allowing for a more thorough investiga-

tion into the entropy-reduction hypothesis. Section 2 presents the model that was used for

generating the word-information estimates, as well as the text corpus on which it was

trained. As in Frank (2010), entropy is not computed over structures but over input

sequences. In addition to simplifying the estimation of entropy, this has the advantage

that it does not rely on any particular grammar or other assumption about how sentences

are interpreted or parsed. Since it is unknown which particular structures people assign to

sentences, it may be more appropriate to abstract away from structures altogether and

deal only with the sequential input. Note that this is a simplifying assumption that should

not be taken as a claim about the cognitive process of sentence comprehension.
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Section 3 describes a self-paced reading study in which reading-time data are collected

on sentences for which the model estimates information values.3 As presented in

Section 4, an analysis of these word-information and reading-time measures reveals that

surprisal and entropy reduction have independent effects, confirming the entropy-reduc-

tion hypothesis. Further analyses, discussed in Section 5, were intended to uncover a cog-

nitively relevant distinction between the surprisal and entropy-reduction information

measures. However, no evidence was found that the two measures correspond to cogni-

tively distinct representations, processes, or strategies. As concluded in Section 6, finding

such a distinction may require more rigorous, theory-driven experiments.

2. Estimating word information

2.1. Model architecture

Fig. 1 presents the architecture of the recurrent neural network (RNN) that was used

as the probabilistic language model for estimating word-surprisal and entropy-reduction

values. This network is not proposed as a cognitive model; rather, it serves as a tool for

obtaining the required word-information measures with several advantages over alterna-

tive models. For one, RNNs process more efficiently than phrase-structure grammars (or

other structure-assigning models), which is of particular importance for computing

entropy. Also, they can be trained on unannotated sentences (i.e., word strings instead of

tree structures). In addition, RNNs have been shown to estimate surprisal values that fit

reading times better than do grammar-based surprisal estimates (Frank & Bod, 2011).

This was also demonstrated by Fernandez Monsalve et al. (2012), using the very same

Fig. 1. Architecture of neural network language model, and its three learning stages. Numbers indicate the

number of units in each network layer. Reproduced from Fernandez Monsalve et al. (2012).
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model and data set as in the current study, which suggests that the model’s entropy-

reduction estimates, too, may provide a good fit to the data.

Although the use of RNNs as cognitive models of sentence processing has been com-

mon ever since the seminal work by Elman (1990), these simulations always deal with

hand-crafted toy languages. The current objective, in contrast, was to obtain entropy mea-

sures for a realistic sample of English, without resorting to part-of-speech strings (as in

Frank, 2010) or a miniature grammar (as in Hale, 2003, 2006). To make this task compu-

tationally feasible, the vocabulary was limited to 7,754 highly frequent items.4 This

included two special symbols, the comma and an end-of-sentence marker, that replaced

the period, question mark, and exclamation point.

2.2. Model training

The network training data consisted of all the 702,412 sentences (comprising 7.6 mil-

lion word tokens) in the written-text part of the British National Corpus (BNC) that con-

tained only words from the vocabulary. The training procedure was divided into three

distinct stages corresponding to distinct parts of the network, as shown in Fig. 1 and

explained below. Additional technical details can be found Appendix A.

2.2.1. Stage 1: Developing word representations
Words were represented as vectors in a continuous, high-dimensional space, such that

similarities between the representations mirror the distributional similarities between the

corresponding words. The vectors were extracted in an efficient and unsupervised manner

from word co-occurrences in the selected BNC sentences, using a method akin to that of

the Hyperspace Analog to Language model (Burgess, Livesay, & Lund, 1998): First, a

matrix of co-occurrence frequencies was constructed in which each value equals the num-

ber of times two word types directly precede or follow each other. After a simple trans-

formation of these values, the 400 matrix columns with the highest variance were

selected, resulting in a 400-dimensional word-representation space. As can be seen from

Table 1, words cluster by syntactic category and even within categories there is some evi-

dence for semantic clustering (e.g., the three words closest to “parents” are “pupils,”

“teachers,” and “mothers”). Such clustering of word representations facilitates generaliza-

tion in RNN training (Frank & Čerňansk�y, 2008).
Earlier work on distributional semantics in psychology (e.g., Landauer & Dumais,

1997) and, more recently, in computational linguistics (e.g., Baroni & Lenci, 2010) has

applied more advanced techniques for extracting lexical semantic information from much

larger text copora, but the current goal was not to obtain word representations that are

interesting in their own right. Instead, they merely need to reduce learning and processing

complexity for the RNN model.

2.2.2. Stage 2: Learning temporal structure
The central part of the model is a standard simple recurrent network (SRN; Elman,

1990). Such a network can incrementally process temporal sequences because (as
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indicated in Fig. 1) the hidden layer receives not only external input but also its own pre-

vious state. That previous state, in turn, depends on even earlier inputs and previous states,

so that the processing of the current input depends on the entire input stream so far. The

SRN learned to predict, at each point in the training corpus, the next word’s vector repre-

sentation given the sequence of word vectors corresponding to the sentence so far.

2.2.3. Stage 3: Decoding predicted word representations
After processing the input sequence wt

1, the output of the trained SRN from Stage 2 is

a 400-dimensional vector that combines the 7,754 individual word representations, some-

how weighted by each word’s estimated probability of being wtþ1. A feedforward “deco-

der” network was trained to disentangle that complex mix of vectors. It took as input

the SRN’s output vector at each point in the training sentences, while it received the

actual next word as target output. That target output was encoded as 7,754-dimensional

vector consisting of all 0s except for a single 1 at the element corresponding to the

target word.

2.3. Obtaining word-information values

The model was used to compute surprisal and entropy-reduction values for each word

of the experimental sentences (see Section 3). This was done at 10 intervals over the

course of Stage 3 training: after presenting 2K, 5K, 10K, 20K, 50K, 100K, 200K, and

350K sentences, and after presenting the full training corpus once and twice. In this man-

ner, a range of information values was obtained for each word token.

2.3.1. Surprisal
The decoder network’s output activations at each time step are rescaled to constitute a

probability distribution over word types. That is, the model’s output after processing

Table 1

Clustering of word representations. Each column corresponds to a syntactic category from which one word

(shown in bold font) was chosen at random. That word’s ten nearest neighbors are listed in order of increas-

ing Euclidean distance

Noun (singular) Noun (plural) Verb (present) Verb (past) Adjective Adverb Preposition

nightmare parents agree stood equal maybe beyond
verdict pupils argue sat identical unfortunately beneath

realization teachers confirm stayed absolute meanwhile onto

portrait mothers depend waited part-time although despite

packet patients listen walked agricultural wherever beside

mattress workers cope remained accurate instead among

succession relatives admit paused electrical fortunately unlike

skull clients fail lived enormous nevertheless throughout

rifle employers respond stared informal perhaps alongside

plea children rely laughed artificial unless regarding

scrutiny lawyers appreciate rang adequate hence ignoring
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sentence prefix wt
1 forms an estimate of Pðwtþ1jwt

1Þ for each possible next word wtþ1,

which translates directly into the surprisal of the actual upcoming word.

2.3.2. Simplified entropy
The RNN does not assign any structure or other kind of interpretation to sentences.

Instead, entropy is computed over probabilities of the sentences themselves, that is, the

set X of Eq. 1 contains only (and all) word sequences instead of structures. As a conse-

quence, there is no more uncertainty about what has occurred up to the current word wt.

Although the intended structure of wt
1 may be uncertain, the word sequence itself is not.

This means that only the upcoming input sequence (i.e., from wtþ1 onward) is relevant

for entropy. However, the number of sequences is far too large for exact computation of

entropy, even if infinite-length sequences are not allowed and some realistic upper bound

on sequences length is assumed. Therefore, probabilities are not estimated over complete

sentence continuations. Instead, the “lookahead distance” is restricted to some small value

n, that is, only the upcoming n words are considered. Entropy is computed over the distri-

bution Pðwtþn
tþ1jwt

1Þ. These probabilities can (at least in principle) be computed from the

model’s output by applying the chain rule: Pðwtþn
tþ1jwt

1Þ ¼ Qn
i¼ 1 Pðwtþijwtþi�1

1 Þ. The defi-

nition of entropy from Eq. 1 now becomes

HnðWn;wt
1Þ ¼ �

X

wtþn
tþ1

2Wn

Pðwtþn
tþ1jwt

1Þ logPðwtþn
tþ1jwt

1Þ;

where Wn denotes the set of all sequences of n words (including shorter sequences that

end in the end-of-sentence marker). The number of elements in Wn grows exponentially

as the lookahead distance n increases, and, consequently, so does computation time.

Therefore, n needs to remain very small. The current simulations do not go beyond n = 4.

If the vocabulary consisted of a small number of syntactic categories (as in Frank,

2010), no further simplification would be needed. However, a 7,754-word vocabulary is

used here, and so for each increase in n by 1, the number of sequences in Wn multiplies

by 7,753 (not by 7,754 because one of the word types is the end-of-sentence marker that

signals sentence completion). If all possible continuations wtþn
tþ1 are taken into account,

even the modest value of n = 4 yields over 4� 1011 sequences. Clearly, further simplifi-

cation is required. This is accomplished by taking only the 40 most probable words wtþi

(i.e., those with highest Pðwtþijwtþi�1
1 Þ) when expanding to i+1 according to the chain

rule. Consequently, the number of relevant sequences equals 7754� 40n, which approxi-

mates 5� 108 for n = 4.

2.3.3. Simplified entropy reduction
Be reminded that entropy was originally intended to measure the uncertainty about the

complete sentence structure x ∈ X being communicated. The reduction in entropy due to

processing word wtþ1 was expressed by Eq. 2. However, an alternative expression for

entropy reduction is needed now that we have simplified entropy to measure the uncer-

tainty about the upcoming n words wtþn
tþ1 2 Wn.
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Processing word wtþ1 comes down to identifying the first word of wtþn
tþ1, so this word

drops out of the computation of uncertainty about the upcoming word string. What is left

is uncertainty about the n�1 words following wtþ1. Hence, the relevant entropy at this

point is over the probabilities of word strings in Wn�1 (see Frank, 2010 for a more formal

derivation) so that the simplified reduction in entropy due to wtþ1 becomes

DHnðWn;wtþ1Þ ¼ HnðWn;wt
1Þ � Hn�1ðWn�1;wtþ1

1 Þ: ð3Þ

Note that positive DHn corresponds to a decrease in entropy.

2.3.4. Word-information examples
Table 2 shows two examples of 10-word sentences, with each word’s surprisal and

DH4 as estimated by the model after complete training. Note that entropy reduction can

occasionally be negative (Blachman, 1968). Hale (2006) treats these negative values as

0s, but they were included in the results of Section 4.

3. Collecting reading-time data

Most previous studies on the relation between word information and reading time used

data collected over newspaper editorials (e.g., Demberg & Keller, 2008; Fossum & Levy,

2012; Frank, 2010; Frank & Bod, 2011; Smith & Levy, 2008) or narrative texts (e.g.,

Roark et al., 2009; Wu et al., 2010). Considering the claim that word information is a

general predictor of cognitive processing effort, it does make sense to look at reading

times over a piece of natural discourse rather than sentence stimuli constructed for spe-

cific psycholinguistic experiments. However, there are a few drawbacks to using newspa-

per texts or narratives. For one, understanding discourse engages a vast amount of

background knowledge that the language models cannot access. Also, the language mod-

els assume that sentences are independent from one another, whereas word probabilities

in texts also depend on material from previous sentences.

For these reasons, this study uses word-reading times over individual sentences, which

were drawn semi-randomly from novels that were freely available on www.free-online-

novels.com, a website where aspiring authors can publish their work. Considering that

Table 2

Two example sentences and corresponding word-information estimates

she would soon be found if she tried to hide

Surprisal 3.22 4.16 6.79 0.78 5.13 4.85 2.55 5.69 0.17 7.29

DH4 1.53 0.54 1.50 1.50 0.63 �1.03 2.14 2.42 0.44 1.22

the brothers stood up and came down from the platform

Surprisal 2.26 8.92 5.61 3.02 2.66 5.43 3.19 3.96 1.00 8.69

DH4 2.48 �0.94 0.51 2.09 0.85 �0.84 1.80 0.67 1.63 1.96
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these novels are not published through more traditional channels, it is very unlikely that

they were known to the participants. Three novels from different genres were selected,5

each written in British English spelling. From these novels, 361 sentences were chosen

that were at least five words long, could be interpreted without their story context, and

contained only words from the 7,754-word vocabulary on which the model was trained.

Two of these experimental sentences are shown in Table 2. The average sentence length

was 13.7 words, with a maximum of 38. To prevent re-occurrence of protagonists’ names

across sentences, which may lead participants to connect the sentences into a narrative,

names were changed such that none occurred more than twice across the stimuli.

A total of 117 students took part in the experiment as part of their first-year Psychol-

ogy program at University College London. Forty-seven were not native English speakers,

so their data were discarded. Because of concerns that the participants would not remain

attentive while reading 361 individual sentences, the stimuli were drawn randomly from

the total set until 40 min had elapsed.6 Each sentence was preceded by a fixation cross,

presented centrally on a computer monitor. As soon as the participant pressed the space

bar, the fixation cross was replaced by the sentence’s first word in 40-point Courier New

font. At each subsequent key press, the current word was replaced by the next, always at

the same central location on the display. Just, Carpenter, and Woolley (1982) compared

this manner of sentence presentation to the more common moving-window technique and

to eye tracking, and found that the obtained reading times are qualitatively similar across

methodologies. However, presentation at a fixed display location tended to cause stronger

spillover effects, where reading difficulty on word wt is in fact observed at wtþ1. As will

be discussed shortly, such an effect was also found in the current reading-time data.

Nearly half the sentences were followed by a yes/no comprehension question. Of the

70 native English-speaking participants, 16 scored below 80% correct on the comprehen-

sion questions, so their reading times were not analyzed.7 The remaining 54 participants

read between 120 and 349 sentences each, with an average of 224. Data on sentence-

initial and sentence-final words were removed, as well as words directly preceding or

following a comma. Also, reading times below 50 ms were excluded from the analysis,

leaving a total of 136,481 data points.

4. Results

4.1. Language model accuracy

An accurate language model is one that captures the linguistic patterns in the training

data and generalizes well to the experimental sentences; that is, it assigns high probabili-

ties to the words. More precisely, the model’s accuracy was quantified as the average of

logPðwtþ1jwt
1Þ over the experimental sentences, where each item is weighted by the num-

ber of participants for which it took part in the analysis.8 Fig. 2 shows how the accuracy

develops as the decoder network (Stage 3) is trained on more and more sentence tokens.

As expected, the network improves its knowledge of the language over the course of
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training. Importantly, accuracy increases monotonically, showing that the model does not

suffer from overfitting.

4.2. Relation between surprisal and entropy reduction

Considering that both surprisal and entropy reduction express the information conveyed

by words, one would expect these two values to correlate strongly. This should be the case in

particular for n = 1, because DH1 ¼ �P
wtþ1

Pðwtþ1jwt
1Þ logPðwtþ1jwt

1Þ, which equals the

expected value of the surprisal of wtþ1. Indeed, surprisal and DH1 correlate considerably but,

as Fig. 3 shows, this correlation is fairly weak for n = 3 and virtually absent for n = 4.

4.3. Effect of word information

A mixed-effects regression model (Baayen, Davidson, & Bates, 2008) was fitted to the

log-transformed reading times9 (see Appendix B for details). This “baseline” model did not
include factors for surprisal or entropy reduction, but it did have several well-known predic-

tors of word-reading time such as: word length, frequency, and forward transitional probabil-

ity (i.e., the word’s probability given the previous word). To factor out effects of the previous

word, its length, frequency, and forward probability were also included. As recommended by

Fig. 2. Accuracy of the language model as a function of the number of sentences presented in Stage 3

training.

Fig. 3. Coefficient of correlation (where each item is weighted by the number of participants for which it

took part in the analysis) between estimates of surprisal and DHn, as a function of n and of the number of

sentences on which the network was trained. Because of the very long computation time for DH4, these

values are obtained from the fully trained model only.
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Baayen and Milin (2010), the effect of auto-correlation was reduced by including also the

reading time on the previous word as a predictor. In addition, the model had linear and qua-

dratic factors for sentence position in the experiment (capturing practice and fatigue effects)

as well as linear and quadratic factors for word position in the sentence (capturing non-linear

speed-up or slowdown over the course of a sentence). Finally, significant two-way interac-

tions were included, as were by-subject and by-item random intervals and the three random

slopes with the strongest effect.

To quantify the effect of one information measure over and above the other (and all the

baseline predictors), three extensions of the baseline model were fitted: one with a factor for

surprisal, one with a factor for entropy reduction, and one with both. The difference in devi-

ance (i.e., lack of fit) between the model that includes both information measures and a

model with only one quantifies the goodness-of-fit to reading times of the other information

measure. This value is the v2-statistic of a log-likelihood test for that measure’s additional

effect (where v2 [ 3:84 corresponds to statistical significance at the p = .05 level). The fit

to reading times of surprisal and of entropy reduction (with n = 3) was estimated at each of

the 10 points during Stage 3 network training. When the network was fully trained, the fit of

entropy reduction was also estimated for n = 1, 2, and 4.

Preliminary analyses revealed a considerable spillover effect: Reading time on a word

was predicted much more strongly by surprisal and entropy reduction of the previous word
than by the word’s own information content, although the latter did have a statistically sig-

nificant effect (cf. Fernandez Monsalve et al., 2012). This does not imply that there is a

delay in the integration of the word in its sentence context. More likely, the participants tend

to respond too quickly, that is, the key press occurs before the word has been fully pro-

cessed. Because of the spillover effect, the results presented here show how response time

on word wtþ1 is related to the amount of information conveyed by word wt.

The extent to which surprisal and entropy reduction predict reading times is displayed

in Fig. 4. Either information measure has a statistically significant effect over and above

the other and the baseline model predictors (all v2[ 10:7; p\ :002, except for the effect

of surprisal when language model accuracy is still very low). Importantly, all effects are

in the correct direction, that is, larger information content corresponds to longer reading

time. Also, as expected, the effects grow stronger as the network learns more about the

statistics of the language.

Fig. 5 shows how the unique effect of entropy reduction depends on the lookahead dis-

tance n, when the network is fully trained. For n = 1 or n = 2, there is no additional

effect of DHn on reading times, but the effect clearly grows with larger n.

5. Discussion

The results presented above clearly support the entropy-reduction hypothesis. Entropy

reduction is a significant predictor of reading time, over and above many other factors,

including surprisal. Moreover, increasing suffix-length n improves model fit, suggesting

that what really matters is uncertainty about the complete sentence. These findings
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contribute to a growing body of evidence that the amount of information conveyed by a

word in sentence context is indicative of the amount of cognitive effort required for pro-

cessing, as can be observed from word-reading times. A considerable number of previous

studies have shown that surprisal can serve as a cognitively relevant measure for a word’s

information content. In contrast, the relevance of entropy reduction as a cognitive

measure has not been investigated this thoroughly before.

It is tempting to take the independent effects of surprisal and entropy reduction as

evidence for the presence of two distinct cognitive representations or processes, one

related to surprisal, the other to entropy reduction. If the two information measures are

indeed cognitively distinct, it may be possible to discover a corresponding dissociation in

the reading-time data. For example, the difference between surprisal and entropy reduc-

tion may correspond to a difference in reading strategies, such that some participants

show a stronger effect of surprisal and others of entropy reduction. Whether this is the

case can be investigated by including in the regression analysis by-subject random slopes,

which capture how participants vary in their sensitivity to surprisal or entropy reduction.

Crucially, it can be either assumed that there is no correlation between readers’ sensitivity

to surprisal and to entropy reduction, or that such a correlation does exist. In the first

case, the random slopes of surprisal are uncorrelated to those of entropy reduction. In the

second case, a correlation coefficient between the two sets of slopes is also estimated.

Fig. 4. Goodness-of-fit of surprisal (left) and entropy reduction (right) for n = 3, over and above all other

predictors, as a function of language model accuracy. Plotted are the estimated v2-statistics (9) and fitted

second-degree polynomials.

Fig. 5. Goodness-of-fit of entropy reduction as a function of lookahead distance n.
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As it turns out, estimating this coefficient increases the regression model’s fit

(v2 ¼ 6:62; p\ :02), indicating that the effects of the two information measures are

related across participants. However, the correlation coefficient between the sets of slopes

is positive (r = .56), which means that readers who show a stronger effect of surprisal

also show a stronger effect of entropy reduction. That is, readers differed in their overall

sensitivity to word information but not in their reading strategy.

The information-theoretic account of sentence comprehension is not merely applicable

to particular sentence types or syntactic constructions. Surprisal and entropy reduction are

general measures of information content, so, in principle, they should predict cognitive

load on each word of any sentence. This is not to say that they always predict equally

well. For instance, Grodner and Gibson (2005) compared reading times on sentences con-

taining a subject-relative clause (as in “the reporter who sent the photographer …”) to

object-relative sentences (“the reporter who the photographer sent …”) and found that the

verb “sent” is read more slowly in the object-relatives. It has been argued that surprisal

cannot account for this effect (Bartek, Lewis, Vasishth, & Smith, 2011; Levy, 2008),

whereas Hale (2003) shows that entropy reduction does predict the difference between

the two sentence types (at least, under the particular grammar he assumes). Although this

does not imply that the two information measures are cognitively distinct, it may provide

a starting point for teasing apart their effects and, thereby, their cognitive interpretations.

Therefore, it is of interest to investigate whether sentences differ regarding the informa-

tion measure that best explains the associated reading times. This can be done by includ-

ing in the regression by-sentence random slopes of surprisal and entropy reduction (just

like by-subject slopes were included to investigate differences across subjects). Possibly,

reading times on some sentences depend more on surprisal, whereas entropy reduction is

more important for others. However, this was not the case as there was no significant

correlation between the two sets of by-sentence random slopes (v2 � 0; p [ :8).
A third possibility is that reading times on different syntactic categories are affected

differentially by the two information measures. To investigate whether this was the case,

an automatic tagger (Tsuruoka & Tsujii, 2005) assigned a part-of-speech tag to each word

of the sentence stimuli, after which all tags where checked by hand and, if needed, chan-

ged to conform to the Penn Treebank guidelines (Santorini, 1991). Next, by-part-of-speech

random slopes of surprisal and entropy reduction were included in the regression model.10

Once again, the two sets of slopes were not significantly correlated (v2 ¼ 0:04; p [ :8).
In a final attempt to find a dissociation between effects of surprisal and entropy reduc-

tion, the words were divided into two broad syntactic classes: content words (i.e., those

tagged as nouns, verbs, adjectives) and function words (tagged as determines, pronouns,

prepositions, etc.). This time, the regression model was not extended with additional

random slopes but with interactions between each information measure and word class (a

categorical predictor). Neither interaction was significant (surprisal 9 class: t = �1.75,

p > .08; DH4� class: t = 0.75, p > .4; where a positive t-value indicates a stronger effect

for content words) and the difference between the coefficients of the two interactions was

only marginally significant (t = 1.87, p > .06).11 Hence, the effects of surprisal and

entropy reduction do not systematically differ between function and content words.

S. L. Frank / Topics in Cognitive Science 5 (2013) 487



In summary, no evidence was found of a dissociation between surprisal and entropy

reduction. The difference between the two effects does not correspond to a difference

between subjects, sentences, parts-of-speech, or content versus function words. On the

basis of these data and analyses, there is no reason to reject the null hypothesis that sur-

prisal and entropy reduction are cognitively indistinguishable. Hence, the two information

measures may merely form complementary formalizations of a single, cognitively relevant

(but not necessarily information-theoretically grounded) notion of how much a word con-

tributes to the communication. A demonstration of how this may work is provided by one

recent model (Frank & Vigliocco, 2011) that simulates sentence comprehension as the

incremental and dynamical update of a non-linguistic representation of the state-of-affairs

described by the sentence. In this framework, surprisal and entropy reduction are defined

with respect to a probabilistic model of the world, rather than a model of the language:
Information quantities do not depend on how well a sentence’s form matches the statistical

patterns of the language, but on the relation between the sentence’s meaning and the statis-

tical patterns of events in the world. As it turns out, the model’s word-processing times

correlate positively with both surprisal and entropy reduction, even though there is nothing

in the model itself that can be considered to generate either “surprisal effects” or “entropy-

reduction effects.” Rather, there is one comprehension mechanism that is responsible for

the incremental revision of a semantic representation. Surprisal and entropy reduction form

two complementary, imperfect quantifications of the extent of this revision.

6. Conclusion

Words that convey more information take longer to read. Two different measures of

information, surprisal and entropy reduction, were shown to have independent effects on

reading time, demonstrating that both these information-theoretic quantities have cogni-

tive import. More in general, there is at least some truth to the information-processing

metaphor of cognitive science.

The question remains which underlying cognitive mechanism is responsible for longer

reading times on words that convey more information. The surprisal and entropy-reduc-

tion theories describe the relation between information content and cognitive load at

Marr’s (1982) computational level only. That is, they do not propose, at the algorithmic

level, any sentence-processing mechanism that takes longer to process words that have

higher surprisal or lead to greater reduction in sentence entropy. If the two different mea-

sures had explained different parts of the reading-time data, this might have provided a

clue about the underlying cognitive mechanism. Alas, such a dissociation was not found.

Both Hale (2011) and Levy (2008) present a possible mechanism giving rise to effects

of word information, based on the notion that each incoming word rules out some possi-

bilities, be it either parser states (Hale, 2011) or (interpretations of) sentences (Levy,

2008). The more is ruled out by a word, the more information is conveyed and the more

processing work needs to be done. Hale (2011) relates this amount of work to entropy

reduction, whereas Levy (2008) derives surprisal as the relevant value, but considering
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the findings presented here, what we need is a mechanistic model that generates both
effects. Such a model should be able to make predictions about which information mea-

sure is most important under which circumstances. Testing these predictions in a set of

controlled experiments might then, after all, uncover a cognitive distinction between sur-

prisal on the one hand and entropy reduction on the other.
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Notes

1. A language model is, by definition, a probability model that assigns probabilities to

sentences. The next-word probabilities Pðwtþ1jwt
1Þ follow directly from these sen-

tence probabilities.

2. Although alternative definitions are possible, the entropy-reduction measure has the

important property that it is additive: The information conveyed by wtþ1
1 equals the

information given by wt
1 plus the additional information by wtþ1 (Blachman, 1968).

3. The reading times and information values are available as online supplementary

material.

4. These were the high-frequency content words used by Andrews, Vigliocco, and

Vinson (2009) plus the 200 most frequent words of English, most of which are

function words.

5. These were Aercu by Elisabeth Kershaw, The Unlikely Hero by Jocelyn Shanks,

and Hamsters! (or: What I Did on My Holidays by Emily Murray) by Daniel Der-

rett.

6. This included an initial, unrelated lexical decision task that took approximately

10 min.

7. The large number of badly performing subjects is probably caused by a lack of

motivation, due to the fact that they participated as part of their undergraduate

training rather than signing up for the study. Many participants with very high error

rates showed unrealistically short response times on each word, indicating that they

were simply trying to get the experiment over with (they were unaware that it was

time bound).

8. Alternatively, it would have been possible to measure performance by looking at

the output vectors of the SRN of Stage 2, but these do not have a probabilistic

interpretation and do not directly lead to word-information values.
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9. An analysis of raw reading times yielded qualitatively very similar results, although

all effects were slightly weaker.

10. Because of the spillover effect on reading times, the part-of-speech of the previ-

ous word was used. By-item random effects were not included in this analysis or

in the by-sentence analysis.

11. Using treatment coding for the variable “class,” the two interaction terms were

nearly orthogonal (r = .07).
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Appendix A: Language model training details

Stage 1

To obtain vector representations of words, a matrix of co-occurrence frequencies was

constructed in which each value at (w,v) equals the number of times word type v directly

precedes (for v� 7,754) or follows (for v > 7,754) word type w. These frequencies were

turned into probabilities pw;v using Simple Good-Turing smoothing (Gale & Sampson,

1995). Next, the probabilities were transformed into pointwise mutual information values:

fw;v ¼ logðpw;vÞ � logðpwpvÞ, which Bullinaria and Levy (2007) found to result in vectors

that perform well on a variety of tasks. Finally, the 400 columns with the highest vari-

ance were selected from the 7,754915,508-matrix formed by the values fw;v, resulting in

a 400-dimensional word-representation space.

Stage 2

The SRN was trained using basic backpropagation (i.e., without momentum or back-

propagation-through-time) with MSE as the minimized error measure. Hidden units had

logistic activation function but output units were linear. The training data were presented

five times (each time with a different random ordering of sentences) at which point the

MSE over the experimental sentences no longer decreased. The learning rate was set to

10�6 during the first four presentations and was lowered to 2� 10�7 for the fifth.

Stage 3

The decoder network was trained using backpropagation, minimizing cross-entropy.

Hidden units were logistic, but output units had softmax activation functions. The training

data (i.e., the trained Stage-2 outputs resulting from the training sentences) were presented

twice, the first time with a learning rate of 0.001 and the second time with 0.0002. Con-

nection-weight decay was applied to prevent overfitting: After each weight update, the

weights were reduced by a small fraction (0.001 times the learning rate) of themselves.

Appendix B: Regression model

To construct the baseline regression model, a number of predictors were chosen that

are likely to account for reading times. These factors, all of which were standardized, are

listed in Table 3. In addition, quadratic factors for SentPos and WordPos were present, as
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well as by-item and by-subject random intervals. Next, all two-way interactions were

included and the model was fitted to the log-transformed reading times. Insignificant

interactions were removed one at a time (starting with the least significant) until all

remaining interactions were significant (i.e., |t| > 2). Following this, the three random

slopes with the strongest effects were included. These were by-subject random slopes of

PrevRT, SentPos, and (SentPos)2. Finally, one more interaction was removed because

it lost significance as a consequence of including the random slopes. Table 4 shows the

factors and coefficients of the resulting baseline model.

Table 3

Predictors of word-reading time

Abbreviation Description

SentPos Position of sentence in presentation order

WordPos Position of word in sentence

Length Number of letters in word

PrevLength Number of letters in previous word

Freq Log of relative word frequency in written-text part of full BNC

PrevFreq Log of relative frequency of previous word

ForwProb Log of forward transitional probability (logPðwtþ1jwtÞ)
based on frequencies in written-text part of full BNC

PrevForwProb Previous word’s forward transitional probability (logPðwtjwt�1Þ)
PrevRT Reading time on previous word

Table 4

Fixed effects in the fitted baseline regression model (left) and in the model including surprisal and DH4

(right)

Factor Coeff ð�103Þ t Coeff ð�103Þ t

Intercept 5542.48 252.88 5543.05 252.74

Surprisal 12.59 6.25

DH4 3.52 4.67

SentPos �85.04 �10.23 �85.10 �10.25

(SentPos)2 24.15 3.10 24.19 3.11

WordPos 3.65 3.43 3.54 3.31

(WordPos)2 �1.97 �3.87 �1.91 �3.73

Length �0.24 �0.19 �0.63 �0.49

PrevLength 0.69 0.61 0.88 0.78

Freq 1.69 1.11 0.37 0.24

PrevFreq �5.06 �3.20 0.84 0.47

ForwProb �6.32 �4.69 �4.64 �3.41

PrevForwProb �9.41 �6.48 �2.53 �1.32

PrevRT 109.27 20.74 109.16 20.71

SentPos 9 (SentPos)2 �17.57 �21.73 �17.58 �21.74

(continued)
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Supporting Information

Additional Supporting Information may be found in

the online version of this article:

Data S1. Explanation of content of the two data files.

Data S2. Stimuli and information values (tab-separated

text file).

Data S3. Measured reading times (tab-separated text

file).

Table 4. (continued)

Factor Coeff ð�103Þ t Coeff ð�103Þ t

SentPos 9 Length �5.44 �7.42 �5.43 �7.41

SentPos 9 PrevForwProb 4.85 6.06 4.87 6.10

SentPos 9 PrevRT �11.04 �10.04 �10.99 �10.00

(SentPos)2� WordPos 1.73 3.36 1.73 3.36

(SentPos)2� Length 2.69 4.85 2.68 4.82

(SentPos)2� PrevForwProb 1.63 2.92 1.62 2.90

WordPos 9 ForwProb �1.81 �2.59 �2.04 �2.94

WordPos 9 PrevRT �4.58 �6.81 �4.59 �6.82

Length 9 PrevLength �1.67 �2.31 �1.62 �2.25

Length 9 Freq �5.85 �4.13 �5.60 �3.98

Length 9 ForwProb 2.76 2.11 2.30 1.76

PrevLength 9 PrevFreq �3.40 �3.79 �2.37 �2.62

PrevLength 9 PrevRT �2.00 �2.22 �1.96 �2.18

PrevFreq 9 PrevRT �4.82 �3.55 �4.65 �3.42

ForwProb 9 PrevRT �5.58 �7.94 �5.58 �7.95

PrevForwProb 9 PrevRT 3.14 2.52 3.05 2.45
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