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Ever since Thomas Young demonstrated interference effectsof light with his famous double-

slit experiment, there has been intense interest in understanding its wave nature. An intense

area of research has focussed on determining the interference properties of the light wave-

field via its coherence properties, which play an important role in imaging applications. One

imaging technique that has experienced rapid growth is coherent diffractive imaging (CDI)

1–5. CDI recovers an object from its diffraction pattern with th e potential of wavelength-

limited resolution. A critical requirement of the method is that the illumination is coherent.

Diminished coherence results in reconstructions that suffer from artefacts or fail completely

6–9. In this letter we demonstrateab initio phasing of partially coherent diffraction patterns in

3 dimensions by recovering the complex density of a gold nanocrystal whilst simultaneously

determining the coherence properties of the illuminating wavefield. This has broad implica-

tions for both CDI and wavefield characterisation with x-rays, electrons and lab-based x-ray

sources10.

CDI offers great opportunities to image a wide variety of samples1–4 in 2- and 3-dimensions
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5, 8 with atomic and sub-atomic resolution3, 11. CDI works by illuminating a sample with a co-

herent wavefield after which the coherent diffraction pattern is recorded. The missing phase of

the diffracted wave is retrieved through iterative12 or single step methods13. The CDI method

requires that the wavefield emanating from the object be isolated. Isolation of the object ensures

that a minimum sampling requirement is met14 when the diffracted intensity is recorded. If the

sample is not sufficiently isolated, the illuminating wavefield can be used to define the extent of the

sample15 while using overlap between adjacent positions facilitates imaging of extended objects

16. Essential for CDI is the requirement that the illuminatingwavefield is coherent. By performing

CDI with visible laser light or an x-ray free electron laser ensures this requirement is closely met.

However, many CDI experiments use 3rd generation synchrotron or electron sources which can be

far from fully coherent17, 18. Consequently, there has been recent progress in adapting the current

algorithms to accommodate both spatial6 and temporal19, 20 partial coherence. Until now these

methods have been limited to 2 dimensions with completea priori knowledge of the coherence

properties of the illumination.

Under the far-field approximation, the diffracted intensity, I (q) from a sample’s complex

electron density,ρ(r), is given by

I (q) =

∫ ∫

Γ(r1, r2, τ)ρ(r1)ρ
∗(r2) exp [i2πq · (r1 − r2)] dr1dr2 (1)

= |ψ̂(q)|2, (2)

wherer is a sample space co-ordinate,q is a reciprocal space coordinate,ψ̂ is the complex scalar

diffracted wavefield given by,̂ψ(q) = |ψ̂(q)| exp [iφ(q)] andΓ(r1, r2, τ) is the mutual coherence
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function (MCF) of the illumination. Iterative algorithms are used to recover the phase ofψ̂ by en-

forcing constraints in the detector and sample plane. The first of the two more common constraints

is the modulus constraint, which requires that the modulus of the wavefield at the detector agrees

with that measured (from its intensity). The second constraint is the support constraint, which

assumesa priori that the sample is finite in extent. Ensuring that there is a sufficient no-density

region surrounding the sample ensures that under ideal conditions (i.e., noiseless) the recovered ob-

ject is unique21 for dimensions of 2 or more (aside from the “trivial solutions” such as conjugation

and reflection). The MCF for partially coherent illumination is given by,

Γ(r1, r2, τ) = J(r1, r2)γ(τ), (3)

whereγ(τ) is the normalised temporal MCF and

J(r1, r2) = ψi(r1)ψ
∗
i (r2)γ(r2 − r1), (4)

is the mutual optical intensity (MOI) described by the generalised-Schell model22, ψi is the illu-

minating wavefield andγ(r2 − r1) is the normalised spatial MCF. The recorded intensity is now

given by9, 23,

Ipc (q) = Ic (q)⊗ γ̂(q), (5)

whereγ̂(q) is the Fourier transform of the normalised MCF. The normalised MCF can be written so

thatγ(x) = γ(x⊥)γ(x‖) wherex = r2−r1 with x⊥ andx‖ representing the directions transverse

and along the beam direction respectively with a change fromthe time domain to the longitudinal

direction for the normalised temporal MCF. The transverse coherence properties are embodied in
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γ(x⊥) and the temporal (or longitudinal) coherence properties relating to the monochromaticity

of the wavefield are embodied inγ(x‖).

The effect of Eq. 5 is to blur the coherent intensity by convolving it with the Fourier trans-

form of the normalised MCF9, 23. The partially coherent diffraction pattern is no longer the mod-

ulus of the diffracted wavefield which results in there beingno object that will simultaneously

satisfy the modulus and support constraints7, 17. Depending on the degree of degradation, the it-

erative algorithms can produce reconstructions that contain artefacts, non-unique solutions or fail

to converge at all6–9. As a consequence, we have developed a modified iterative algorithm that

allows successful inversion of partially coherent diffraction patterns whilst simultaneously recov-

ering coherence properties of the illuminating wavefield without assumption abouta priori form

in 3-dimensions.

To demonstrate simultaneous recovery of a sample and the normalised MCF of the illumi-

nation from 3-dimensional diffraction data (Fig. 1), an experiment was carried out at beamline

34-ID-C at the Advanced Photon Source in Chicago (see Methods). The sample consisted of Au

nano-crystals several hundred nanometers in diameter (seeMethods). In order to accommodate

partial coherence the modulus constraint needs to be modified. Modification of the modulus con-

straint has proven successful in accommodating partial temporal19, 20and spatial6 coherence using

modal techniques. The modal methods assume the recorded diffraction is made up of a number

of modes, with the estimate at the recorded diffraction being the incoherent sum of each modes

intensity. Other modifications of the modulus constraint have successfully been incorporated for
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dynamic sample imaging24 and molecular damage from X-ray free electron lasers25. Ten recon-

structions were carried out for each of the slit settings, each starting with a random phase for the

wavefield at the detector. All reconstructions used the samerecipe which consisted of 10 iterations

of Error Reduction (ER)12 then 160 iterations of Hybrid Input-Output (HIO)12 usingβ = 0.9 then

40 iterations of ER. The support was updated every fifth iteration using shrink-wrap26. For each of

the random starts; two reconstructions were carried out, the first used the usual modulus constraint

and the second used the modified modulus constraint given by Eq. 6 and Eq. 7.̂γk(q) was updated

every 15 iterations using the iterative Richardson-Lucy algorithm (see Methods). Updatinĝγk(q)

can be performed in a number of ways. Previous methods24, 27 have used a Gaussian model for

γ̂k(q,σ) and minimisedE =
∫
∣

∣Ipc(q)− Ik(q)⊗ γ̂k(q,σ)
∣

∣dq with respect to the model param-

etersσ. In the limit of full coherence,γ → δ and Eq. 7 becomes the usual modulus constraint

which sets the amplitude of the iterate to square root of the measured intensity while retaining

the phase. It should be noted that in this framework algorithms can be developed that connect

seemingly unrelated reconstruction’s through a common MCF.

Figure 2 shows a typical reconstructed image of the gold nanocrystal comparing the ampli-

tude (shown as an isosurface at 50% of the maximum) for the high (a and b) and low coherence

(c and d) data sets assuming perfect coherence (a and c) and accommodating partial coherence (b

and c). It is quite clear that, without correcting for the partial coherence, the reconstructed image

suffers from significant unphysical density modulations, manifesting itself as a missing segment

at the contour level shown (c). On the other hand, the reconstruction accommodating the partial

coherence (d) represents the expected shape for a defect free nano-crystal of uniform density. This
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is also in agreement with the high coherence reconstruction(a and b). Shown in Fig. 3 are trans-

parent isosurfaces of the recovered amplitude. Such variations in density have been reported before

2, 8, 9, 28with the high-density regions being labelled as ‘hot spots’. The hot spots were attributed to

partial coherence effects due to beamline window placement9. The coherence corrected images (b

and d) show a much more uniform interior with a well faceted crystal shape compared with those

assuming full coherence (a and c). Shown in Fig. 4 are histograms of the reconstructed amplitude

for points within the crystal. The low coherence histogram (c) has a significantly broader distri-

bution of values compared with the high coherence (a) and corrected cases (b and d). A Gaussian

was fitted to the histogram of the amplitude values. The standard deviation of the distribution

improved by a factor of 2.7 and 3.9 for the high and low coherence reconstructions respectively

after using the partially coherent modulus constraint. Importantly, these results also show us that

significant improvements can be made even to the high coherence data by incorporating a partially

coherent modulus constraint. We attribute this to the fact the longitudinal coherence was the same

for both data sets. The resolution of the final images was estimated by fitting an error function

to the edge of the reconstructed nanocrystal. The resolution was 17 nm, 8 nm and 14 nm forx,

y andz directions respectively. A second nano-crystal was studied and found to show the same

improvement, as presented in the suplementary information. The improvements are found to be

fully three dimensional, as can be seen in the movie S1.

The full 3 dimensional normalised MCF is also recovered. Line-outs, averaged from 10

random starts, for the horizontal (x) and longitudinal (z) normalised MCF are shown in Fig. 5

along with a 2 dimensionalx-z slice for the low coherence data set. The horizontal coherence
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length, which can be read off as a characteristic width of these distributions is 220 nm (defined as

the half-width at half maximum (HWHM) of|γ|). This compares well with the value range of 200-

300 nm estimated from the beamline geometry (see supplementary information). The recovered

longitudinal HWHM is 485 nm which compares well with a previously measured28 HWHM of

660 nm for the same beamline. It is also seen that the HWHM of the horizontal coherence function

increases by approximately 60% from the low (blue line) to the high (red line) coherence dataset

(Fig. 5 a.). There is excellent agreement between the recovered longitudinal normalised MCF

from the low (red line) and high (blue line) coherence data sets (Fig. 5 b.). We note that no

a priori form or model was assumed in this analysis. The beamline optics will largely predict

the coherence properties of the illumination. Our result shows we can obtain an estimate of the

coherence properties of the wavefield whilst simultaneously reconstructing an image of the sample.

The method proposed and demonstrated experimentally here has broad implications for CDI

as it allows objects to be reconstructed to high resolution in 3-dimensions when their diffraction

patterns have been recorded under less than ideal spatial and/or temporal coherence. This should

allow considerable extension of CDI to less perfect X-ray and electron sources. It has the addi-

tional benefit of recovering coherence properties of the illumination without the need fora priori

information. We note this has not been achieved by any other method before to this level of detail.

It is anticipated that the proposed algorithm will find widespread use in CDI for high-resolution 3

dimensional imaging of biological and materials science samples from synchrotron and lab based

x-ray sources as well as electron sources.
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Methods

Sample preparation. To make the nano-crystals, a 2 nm layer of Ti was deposited using thermal

evaporation onto an Si wafer followed by 20 nm of Au. The thin film was then annealed in air

at 1000◦C for approximately 10 hours after which time the film had de-wetted and formed nano-

crystals.

Experiment. The sample was placed on a diffractometer and illuminated by8.9 keV x-rays. To

record the diffraction from the nano-crystals a 1350×1300 pixel CCD detector with 22.5µm square

pixels was placed 550 mm from the crystal centred about one ofthe(111) Bragg peaks. A set of

Kirkpatrick-Baez (KB) mirrors with focal lengths of 100 mm and 200 mm in the horizontal and

vertical directions respectively were used to focus the illumination onto the sample. Approximately

600 mm in front of the sample, roller blade slits were used to aperture the x-ray wavefield in the

horizontal direction. Opening and closing the roller bladeslits allowed adjustment of the MOI

incident on the KB mirrors. To record the 3-dimensional diffraction pattern, the nano-crystals

were rocked in 50 0.02◦ degree steps with each frame exposed for approximately 16 seconds.

Data were recorded at two different roller blade slit settings, 12.5 and 50µm, chosen to achieve

the horizontally “coherent” and “partially coherent” illumination conditions respectively. Figure 1

shows lineouts taken through the 3 dimensional recorded intensity. Degradation in fringe visibility

is clearly visible in the horizontal (qx) direction only.

Phase retrieval algorithm. In order to accommodate partial coherence and simultaneously deter-

mine the coherence function, the algorithm is as follows:
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1. At iterationk, givenψk(r) propagate to the detector plane to obtainψ̂k(q).

2. Updateγ̂k(q) and then form the current estimate of the measured partiallycoherent data

Ikpc(q):

Ikpc(q) = Ik(q)⊗ γ̂k(q), (6)

whereIk(q) = |ψ̂k(q)|2.

3. Apply the modulus constraint tôψk(q), using the measured dataIpc(q):

ψ̂k′(q) = ψ̂k(q)

(√
Ipc(q)√
I
k

pc(q)

)

. (7)

4. Propagatêψk′(q) to the sample plane.

5. Enforce real space constraints, form the next iterate andproceed to step 1.

The iterative Richardson-Lucy (RL) algorithm29, 30 was employed to update a numerical

estimate ofγ̂k(q) using the measured intensity,Ipc(q), and the current iterates estimate of the

coherent intensity,Ik(q) whereγ̂k(q) is given by,

γ̂k,i+1(q) = γ̂k,i(q)

(

Ik(−q)⊗ Ipc(q)

Ik(q)⊗ γ̂k,i(q)

)

, (8)

wherei is the sub iteration number relating to the coherence function determination. The coherence

function was updated every 15 iterations with the RL algorithm typically run for no more than 50

iterations per update.
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Figure 1: Line-outs through the centre of the diffraction pattern of a gold nanocrystal measured un-

der two coherence conditions. The “high coherence” (top line) and“low coherence” (bottom line)

data are displayed on the same plot. From left to right,Ipc(qx, 0, 0),Ipc(0, qy, 0) andIpc(0, 0, qz).

The lower line out has been offset for clarity.
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a

d

Figure 2: Isosurfaces (50% of the maximum) of the reconstructed nanocrystal for differing coher-

ence conditions. a) Imaged under high coherence conditionsassuming full coherence and b) using

the partially coherent modulus constraint. Images from thelow coherence conditions assuming

assuming full coherence (c) and using the partially coherent modulus constraint (d). The viewing

plane isx− z and the black scale bar represents 100 nm.
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a

d

Figure 3: Transparent isosurfaces (40-60% of the maximum) of the reconstructed nanocrystal

for differing coherence conditions. a,b Shown is the reconstruction under the high coherence

conditions assuming full coherence (a) and using the partially coherent modulus constraint (b).

Reconstructions under the low coherence conditions assuming assuming full coherence (c) and

using the partially coherent modulus constraint (d). The viewing plane isx− z and the black scale

bar represents 100 nm.
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Figure 4: Histograms of amplitude values of pixels within the crystal. The high coherence con-

ditions assuming full coherence (a) and using the partiallycoherent modulus constraint (b). The

histograms for the low coherence reconstructions assumingfull coherence (c) and using the par-

tially coherent modulus constraint (d).
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a b c

Figure 5: Lineouts through the center of the recovered coherence function in the plane of the

sample. Shown is the recovered coherence function for thex (a) andz (b) directions for the high

(red line) and low (blue) coherence data sets. Also shown (c)is anx−z slice through the recovered

coherence function. The black scale bar represents 500 nm.
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