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Abstract

Prognosis is one of the central principles of medical practice; useful prognostic models

are vital if clinicians wish to predict patient outcomes with any success. However, prog-

nostic studies are often performed retrospectively, which can result in poorly validated

models that do not become valuable clinical tools. One obstacle to planning prospective

studies is the lack of sample size calculations for developing or validating multivariable

models. The often used 5 or 10 events per variable (EPV) rule (Peduzzi and Concato,

1995) can result in small sample sizes which may lead to overfitting and optimism. This

thesis investigates the issue of sample size in prognostic modelling, and develops calcu-

lations and recommendations which may improve prognostic study design.

In order to develop multivariable prediction models, their prognostic value must be

measurable and comparable. This thesis focuses on time-to-event data analysed with

the Cox proportional hazards model, for which there are many proposed measures of

prognostic ability. A measure of discrimination, the D statistic (Royston and Sauerbrei,

2004), is chosen for use in this work, as it has an appealing interpretation and direct

relationship with a measure of explained variation.

Real datasets are used to investigate how estimates of D vary with number of events.

Seeking a better alternative to EPV rules, two sample size calculations are developed and

tested for use where a target value of D is estimated: one based on significance testing

and one on confidence interval width. The calculations are illustrated using real datasets;

in general the sample sizes required are quite large.

Finally, the usability of the new calculations is considered. To use the sample size

calculations, researchers must estimate a target value of D, but this can be difficult if no

previous study is available. To aid this, published D values from prognostic studies are

collated into a ‘library’, which could be used to obtain plausible values of D to use in

the calculations. To expand the library further an empirical conversion is developed to

transform values of the more widely-used C-index (Harrell et al., 1984) to D.
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Chapter 1

Prognostic research: an introduction

1.1 Prognostic factors

Prognosis is one of the central principles of medical practice. Understanding the likely

course of a disease or condition is vital if clinicians are to treat patients with confidence

or any degree of success. No two patients with the same diagnosis are exactly alike,

and the differences between them – e.g. age, sex, disease stage, genetics – may have

important effects on the course their disease will take. Such characteristics are called

‘prognostic factors’, and this phrase is usually taken to mean a factor which influences

outcome regardless of treatment.

1.1.1 Using prognostic factors

Prognostic factors enable the estimation of patient prognosis, which has many applica-

tions.

Provides evidence for making treatment decisions

Prognostic factors are used routinely to guide clinical decisions. They help clinicians

gauge the likely benefit of a treatment or course of action on an individual basis, which

makes it easier to weigh up the risk-benefit ratio for a specific patient. One example is

axillary lymph node status in breast cancer patients (Cianfrocca and Goldstein, 2004).

While the proportional effect of therapy on hazard is the same for patients with positive

or negative node status, their absolute risk is different to start with. If a treatment reduces

the risk of death by 20%, then a patient with a positive node status and an underlying
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risk (hazard) of death of 30% (say) would have their risk decreased to 24%; while a node-

negative patient with a risk of death of 10% would have their risk decreased to 8%. A

clinician may decide that the small absolute reduction in risk to the second patient is not

worth the side effects and other inconveniences they would experience when undergoing

the treatment.

Informs patients about the likely outcome of their disease

When a patient receives the news that they have a particular disease or condition, the first

question in their mind is usually ‘What is going to happen to me?’. Knowing the likely

course of their disease can make it easier to come to terms with the news, and assist with

patient counselling (Simon and Altman, 1994). There are practical as well as emotional

issues to deal with at this time, particularly when patients have a terminal diagnosis.

Enables fairer comparisons of health care systems

It is becoming more common for hospitals or Trusts to be ranked in some way and the

resulting ‘league tables’ are often publicly available. Patients awaiting surgery are also

being given more choice in terms of their surgeon, and again statistics on outcome are

available to help them make their decision. However, patient demographics and other

factors can be very different from one hospital to the next and these differences must be

taken into account if a comparison is to be fair (Moons et al., 2009).

Guides recruitment of patients to clinical trials

Existing known prognostic factors can be used to help define eligibility criteria for clinical

trials. This ensures that an appropriate subset of patients are chosen for the research; for

example researchers may be interested in recruiting a cohort of low or high risk patients

for their study (Moons et al., 2009).

Allows stratification in randomised trials

Knowledge of prognostic factors means that they can be used as stratification factors in

randomised trials (Altman and Lyman, 1998). Without stratification there is always the

risk that an important factor may be imbalanced between treatment arms. This may make
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the analysis more complex and results difficult to interpret, and at worst could render the

trial useless.

Allows between-trial comparison and better meta-analyses

In order for trials to be compared, or combined in a good quality meta-analysis, prog-

nostic characteristics of the patients may be quantified and accounted for (Simon and

Altman, 1994). In the same way, analyses for non-randomised trials can be adjusted for

important factors to facilitate a better comparison of treatment groups (Altman and Ly-

man, 1998).

Gives insight into pathogenesis and disease mechanisms

Prognostic factors may provide a starting point for research which could go on to expose

important disease mechanisms or the pathogenesis of the condition (Simon and Altman,

1994).

1.1.2 What makes a good prognostic factor?

Several authors have listed the properties of an ideal prognostic factor; or properties

which a potential prognostic factor should fulfil before being accepted into clinical prac-

tice (Gasparini et al., 1993; Simon and Altman, 1994; Henderson and Patek, 1998; Her-

manek, 1999). These may be summarised as follows:

Feasible and reliable Determination of the factor must be standardised, reproducible

and widely available. Results should be available within an acceptable timeline. Cost

should be reasonable, and relative to the information gained from the factor. There

should be some method of quality control to ensure that results remain accurate and

that inter- and intra- observer variability is acceptably low.

Value added The factor should add substantial new prognostic information over

and above what is already available from existing factors. However, a factor which does

not add extra information may be of interest if it presents other advantages such as cost

savings or a less invasive method of determination.
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Discriminatory The factor must identify specific groups of patients with a better or

worse outcome.

Interpretable The factor and its implications for treatment should be easily inter-

preted by clinicians.

Well described The nature of the factor should be known. It must be clear whether

the factor is prognostic for a wide range of patients or just for specific subgroups.

Beneficial The differences in outcome that the factor defines should be of benefit to

the patient.

Proven The factor must have been shown to be significant and independent of ex-

isting or suspected prognostic factors in more than one (independent) dataset.

1.1.3 Predictive factors

As well as signposting likely medical outcomes, certain factors may also indicate how

likely a patient is to respond to a particular therapy. These are known as predictive

factors and can be very useful in decision making; they are most often biomarkers such

as gene mutations or proteins. For example, a patient with breast cancer may be treated

with the monoclonal antibody trastuzumab only if their tumour overexpresses the HER2

gene; if it does not, this particular drug will have no positive effect and another therapy

would be chosen. Thus HER2 status is a predictive factor for treatment with trastuzumab.

However HER2 was first identified as a prognostic factor, as tumours which overexpress

HER2 are generally more aggressive (Cianfrocca and Goldstein, 2004), and only later was

it used as a starting point for a new treatment.

Like HER2, virtually all predictive factors are also prognostic; but this is not nec-

essarily always the case, however exceptions in the literature are few and far between.

Karapetis et al. (2008) reported that although the mutation status of the K-Ras gene was

highly predictive of colorectal tumour response to the drug cetuximab, it did not appear

to be prognostic when best supportive care alone was given. Many prognostic factors

are not predictive of treatment effect; one example is axillary lymph node status in breast

cancer patients (Cianfrocca and Goldstein, 2004). McShane et al. (2005) summarise the

19



practical difference between prognostic and predictive factors thus: ‘Prognostic markers

... may be used as decision aids in determining whether a patient should receive adju-

vant chemotherapy or how aggressive that therapy should be. Predictive markers are

generally used to make more specific choices between treatment options.’ However, the

terms predictive and prognostic are often confused.

In basic terms, groups defined by a factor which is prognostic only, have a difference

in survival and this (relative) difference between the groups remains the same regardless

of treatment. Groups defined by a prognostic factor which is also predictive for a particu-

lar treatment show a difference in survival without the treatment of interest, and a larger

difference if they receive treatment.

All the considerations involved in prognostic factor research also apply to predictive

factor research. However, the latter requires additional work, as detecting interactions

between variables adds complexity and many extra statistical considerations. Thus, is-

sues specific to predictive factor research are not discussed further in this thesis.

1.2 Multivariable prognostic models

For most applications, a single predictor is not sufficiently precise; rather a multivariable

approach to prognosis is required. Multivariable prognostic research enables the devel-

opment of tools which give predictions based on multiple important factors; these may

variously be called prognostic models, prediction models, prediction rules or risk scores

(Moons et al., 2009). Multivariable research also means that potential new prognostic

factors are investigated more thoroughly, as it allows the additional value of the factor,

above and beyond that of existing variables, to be established (Moons et al., 2009). Most

of the uses of prognostic factors described previously can be accomplished to a much

greater degree when a multivariable prognostic model is used. As such, most of this

thesis concentrates on the situation where a multivariable prognostic model is required,

rather than a single prognostic factor.

1.2.1 Developing a prognostic model

In order to develop a prognostic model, it must be discovered to what extent each poten-

tial factor influences the outcome of interest, taking into account all the other factors of
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interest as well. Some important issues to be considered when developing a prognostic

model are discussed briefly.

Study design

The majority of prognostic studies are retrospective, simply because results are obtained

much more quickly and cheaply by using existing data; especially where pathological

samples are concerned. In their 2010 paper, Mallett et al. found that 68% of prognostic

studies using time-to-event data in their review were retrospective. Altman (2009) con-

ducted a search for and review of publications which presented or validated prognos-

tic models for patients with operable breast cancer, and found that of the 61 papers re-

viewed, 79% were retrospective studies. However there are disadvantages to such stud-

ies. Missing data is almost invariably a problem, and there is little that researchers can

do to mitigate this. The usual assumption that data are missing at random may be im-

plausible in such datasets, biasing results (Altman and Lyman, 1998). This is particularly

true with stored samples, as McGuire (1991) reports that tumour banks usually contain

a disproportionate amount of samples from larger tumours, which would certainly in-

troduce bias. Also, existing datasets may contain far more candidate variables than are

really required (Royston et al., 2009), which can lead to multiple testing problems and a

temptation to ‘dredge’ the data.

The best way to study prognosis is in a prospective study, which ‘enables optimal

measurement of predictors and outcome’ (Moons et al., 2009). It may be convenient to

make a prognostic study part of a randomised trial of treatment; however there are still

issues to be considered in this situation. If the trial treatment proves to be effective, this

must be taken into account in the analysis. A more serious potential problem is that strict

trial eligibility criteria may mean the resulting model is not widely generalisable (Moons

et al., 2009).

Sample size

This is always an important issue for clinical studies; however little research has been

performed which pertains specifically to the sample size requirements of multivariable

prognostic studies. In a review of publications developing and / or validating breast

cancer models, Altman (2009) found that none of the 61 papers found justified the sample
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size used; and indeed, for many it was impossible to even discern the number of patients

or events contributing to the final model. Mallett et al. (2010) found that although 96%

of studies in their review of survival models reported the number of patients included in

analyses, only 70% reported the number of events – which is the key quantity for time-to-

event data. In the same review, 77% of the studies included did not give any justification

for the sample size used.

Sample size in prognostic studies, specifically for multivariable prognostic models, is

the central theme of this thesis. Chapter 2 outlines the work that has been done so far

in this area, and Chapter 3 proposes and describes the results of an investigation into

sample size in multivariable prognostic model-building with time-to-event data. The

remaining chapters extend this theme in order to provide sample size calculations for

use in prognostic studies, and practical tools to try and ensure that these calculations are

usable in real situations.

Candidate predictors

The predictors that are to be potentially included in the prognostic model should be de-

cided on before data collection starts (or in the case of retrospective studies, before analy-

sis). These are likely to be a mixture of already known and newly proposed prognostic

factors, and may include patient baseline characteristics as well as factors relating to dis-

ease and treatment. All should be available at the time the model is to be used (Moons

et al., 2009); for example, factors relating to surgery would not be appropriate in a model

to be used in the neoadjuvant setting. If possible, any treatment received by patients in

the study should be standardised (or randomised) and included as a prognostic factor

(Simon and Altman, 1994). However, standardisation is often not possible in an observa-

tional setting and this can lead to bias (Moons et al., 2009).

Selection of variables

Once the set of candidate predictors has been chosen and data collected, the problem of

how to choose a final model rears its head. One option is to use all candidate predictors

in the final model, as sidestepping the issue in this way avoids some problems associated

with selection of variables, for example selection bias which contributes to overfitting

(Harrell, 2001). However using a full model does place greater importance on choos-
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ing candidate predictors in the first place which may add complexity to study planning

(Royston et al., 2009).

A popular alternative which is straightforward to implement is an automatic selection

procedure using a fixed significance level, however these methods are known to result in

selection bias and optimism (a result of overfitting) (Royston et al., 2009). Optimism and

the effect of significance level in prognostic models developed using automatic variable

selection are investigated in Chapter 3 of this thesis.

Validation

Having produced a prognostic model, its performance must be assessed. It should of

course be assessed in the original dataset used to develop the model (internal validation);

however it also must be shown to predict outcome well for other groups of patients if it

is to be considered for general use (external validation) (Altman et al., 2009). There are

various reasons that a model may perform poorly in a validation dataset, as described

and illustrated in Altman et al. (2009). These include problems or errors in the model

development process (e.g. small sample size, dichotomisation of continuous variables),

the validation dataset being different in important ways from the development dataset

(e.g. markedly different patient demographics or healthcare settings, changes in the way

variables were measured), or an important predictor being excluded from the model (e.g.

if a model was developed in patients with a narrow age range, the need to include a term

for age in the model may not have been observed).

External validation of prognostic models is still relatively rare (Altman et al., 2009).

In their review of prognostic models in operable breast cancer, Altman (2009) reported

that of the 61 studies reviewed, only 19 included validation studies; and of these just 3

models were validated on external data. A similar rate of validation was found by Perel

et al. (2006) who performed a review of models in traumatic brain injury. They found that

of the 66 papers identified, only 25 validated the model under consideration, and only 7

performed external validation.

In this thesis we consider both the model development and validation situations.

23



1.3 Scope of the thesis

The desire of researchers across clinical areas to model patient prognosis seems to have

somewhat outpaced the methodology required to ensure that prognostic studies are per-

formed well and analysed carefully, and that the resulting multivariable models are valid

and clinically useful. This thesis outlines the current sample size guidelines available to

prognostic researchers using the Cox proportional hazards model and describes an in-

vestigation of the relationship between a measure of a model’s prognostic ability and

sample size, using both real data and simulated data. Sample size calculations are devel-

oped, tested and presented for use in two main scenarios in prognostic modelling: firstly

where it is desired to validate an estimate of prognostic ability from a previous study, and

secondly where only a target estimate of prognostic ability is available. Finally, these cal-

culations are assessed in real data and some tools developed to increase their usefulness

in real research.
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Chapter 2

A review of sample size in prognostic

studies

2.1 Introduction

Sample size is of vital importance when planning clinical research. If too few patients are

included in a study, analysis results will have wide confidence intervals and low statisti-

cal power and precision. Including too many patients increases precision and power but

is resource-costly and may not be feasible in reality. Balance is needed to ensure that a

study collects enough data to give statistically valid and clinically useful results, whilst

making efficient use of resources and completing in a timely fashion.

Before starting a prospective clinical study, a sample size calculation is performed

virtually without fail. In the case of randomised controlled trials, a carefully considered,

formal sample size calculation is usually a condition of funding and often required for

subsequent publications, for example by journals that endorse the CONSORT statement

(Moher et al., 2001). For retrospective studies, formal sample size calculations are avail-

able (based on the analysis methods used; for example, calculations for logistic regression

are explored by (Demidenko, 2007)), but are not performed as frequently. Such studies

are often based on whatever suitable existing data can be easily obtained, therefore sam-

ple sizes are haphazard and may be too low.

Sample size calculations for prognostic studies, which are usually retrospective, are

not routinely available, meaning these studies may often be underpowered. Existing for-

mulae can be used in some particular situations, but for most analyses of prognostic data,
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particularly time-to-event data, little guidance is available to researchers. Mallett et al.

(2010) found that in a systematic review of 47 published articles aiming to develop prog-

nostic models in time-to-event data, all but one of the studies performed on retrospective

data (n=32) did not provide any justification at all for the sample size used. In a review

of publications developing and / or validating models in operable breast cancer, none of

the 61 papers found justified the sample size (Altman, 2009).

To gain a better idea of the guidance and recommendations which are available, a

literature search for papers dealing with sample size calculations in prognostic studies

was performed. A keyword search was initially attempted; however the wide variety of

terms associated with prognostic modelling, and their use in a range of different topics

meant that this was not a fruitful strategy. Instead, some relevant papers were identified,

and then citation searches were used to identify further related papers. The papers found

in this search form the first part of this chapter.

In the second part, the possibility of a sample size recommendation based on prog-

nostic ability is explored. Again, a literature review was initiated to explore proposed

measures of prognostic ability; two previous detailed reviews of this area were found

which informs much of this section (Schemper and Stare, 1996; Choodari-Oskooei, 2008).

Finally, one measure of prognostic ability is selected to form the basis of a novel recom-

mendation.

2.2 Current sample size calculations for prognostic studies

2.2.1 Binary outcome

Where logistic regression is to be used in analysis, there are various sample size formulae

available, but no consensus on which is the best approach (Demidenko, 2007). There are

methods applicable to situations where just one factor is of interest, and where multiple

factors are to be investigated, for example using a variance inflation factor to allow for

additional variables (Hsieh et al., 1998).

The situation is more complicated when a time-to-event outcome is used, as is most

common in cancer research; such an outcome will be concentrated on in this thesis.
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2.2.2 Time-to-event outcome: single variable of interest

Sample size formulae have long been available for randomised group comparisons using

survival analysis, commonly based on the log-rank test (Lakatos and Lan, 1992; Freed-

man, 1982) or the Cox proportional hazards (PH) model (Schoenfeld, 1983). However

these formulae are not necessarily valid when a prognostic factor is the effect of interest,

as such a factor is expected to be correlated with other covariates, whereas a randomised

treatment should not be. For example, Bernardo et al. (2000) showed that the power of

the unadjusted log-rank test is overestimated when the binary prognostic factor of in-

terest is correlated with other covariates. Three papers, all published in the same year,

independently found the same correction to Schoenfeld’s (1983) sample size formula for

this situation (Schmoor et al., 2000; Bernardo et al., 2000; Hsieh and Lavori, 2000).

Schmoor et al. (2000) extended Schoenfeld’s (1983) formula to the situation where the

Cox PH analysis is adjusted for a correlated factor. They framed this work in the context

of studying the ‘prognostic relevance’ of one factor (X1) in the presence of another (X2).

The effects of X1 and X2 can be analysed using the Cox PH model:

h(tjX1, X2) = h0(t) exp(β1X1 + β2X2),

where h0(t) is the unspecified baseline hazard function, and β1 and β2 are the regression

coefficients for X1 and X2. In the article it is assumed that X1 and X2 are binary and that

P(X1 = 1) = p and P(X2 = 1) = q. The hazard ratio between the groups defined by X1

is denoted by θ = exp(β1) and that between the groups defined by X2 is η = exp(β2).

It is assumed that the effect of X1 will be tested by a two-sided test based on the partial

likelihood of the Cox model (Schoenfeld, 1983), with significance level α and power 1� β

to detect an effect of exp(β1) = θ1. If X1 and X2 are independent, the total number of

patients required was shown by Schoenfeld (1983) to be

N =
(z1�α/2 + z1�β)

2

(log θ1)2ψ(1� p)p
, (2.1)

where 1� ψ is the probability of a censored observation (so ψ is the proportion of events

in the dataset) and zγ is the γ-quantile of the standard normal distribution.
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Schmoor et al. (2000) then considered the case where X1 and X2 (both binary) are not

independent, having correlation ρ = corr(X1, X2). In their calculations they used the

same approximation as Schoenfeld (1983); namely that the asymptotic variance of the

maximum partial likelihood estimator (MPLE) of β1 under H1 : β1 = log(θ1) may be

approximated by the asymptotic variance under H0 : β1 = 0. They also assumed that

the probability of censoring is approximately equal under H0 and H1. This led to the

following sample size calculation:

N =
(z1�α/2 + z1�β)

2

(log θ1)2ψ(1� p)p

�
1

1� ρ2

�
. (2.2)

The first part of Formula 2.2 contains Schoenfeld’s calculation 2.1, and Schmoor et al.

termed the bracketed second part involving ρ the ‘variance inflation factor’. In a simula-

tion study, it was found that this approximate formula was quite accurate (Schmoor et al.,

2000). There was little deviation from the desired power while parameters were of ‘mod-

erate size’, either when increasing the effect size of X2 or when increasing ρ; however

quantitative results of the simulation study were not presented in the paper.

Bernardo et al. (2000) also worked on this problem but in the context of non-randomised

studies, modelling survival times using the exponential distribution. Their solution has

wider application as more than one secondary variable can be in the model, and these do

not have to be binary. They used general likelihood theory to derive the variance of bβ1,

and express this as a function of the coefficient of determination gained from regressing

X1 on the other covariates. Using the same notation as previously, the calculation they

obtained can be rearranged to mirror Schmoor et al.’s calculation 2.2:

N =
(z1�α/2 + z1�β)

2

(log θ1)2ψ(1� p)p

 
1

1� R2
X1jX2

!
, (2.3)

where X1 is the variable of primary interest and X2 is now the vector of additional co-

variates (more details can be found in Bernardo et al. (2000)). R2
X1jX2

is the coefficient

of determination obtained by regressing X1 on X2. It is clear that calculation 2.2 is the

special case of calculation 2.3 when there is just one additional covariate.

Hsieh and Lavori (2000) also proposed the same calculation for the situation where

the binary primary factor of interest is correlated with other covariates. They argued
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that if the vector of secondary covariates X2 explains some of the variance in the primary

covariate X1, then the conditional variance of X1j X2 will be less than the marginal vari-

ance of X1 by a factor of 1� R2
X1jX2

. Thus to preserve the desired power, the standard

Cox PH sample size calculation 2.1 must be multiplied by the variance inflation factor

1/(1� R2
X1jX2

). Clearly this gives the same final calculation as 2.2 and 2.3.

In the same paper, the authors presented another sample size calculation, again for

the Cox PH model, for use when the covariate of interest X1 is not binary but rather

continuous, with a linear effect:

N =
(z1�α/2 + z1�β)

2

(log ∆)2ψσ2 . (2.4)

Here, log ∆ is the log hazard ratio associated with a one unit change in X1, and σ2

is the variance of X1. As for the binary case, the same variance inflation factor 1/(1�

R2
X1jX2

) can be used to take into account correlated patient covariates. If the X1 is bi-

nary rather than continuous, then its variance σ2 = p(1� p) and the equation reverts to

Schoenfeld’s formula 2.1.

The above calculations were developed using various assumptions and approxima-

tions. In contrast, Schoenfeld and Borenstein (2005) used the asymptotic distribution of

the Wald test statistic to develop an exact algorithm for calculating power for Cox PH

and logistic regression models. The authors used simulation to assess the performance

of the algorithm in the Cox PH model under various scenarios, and found that it gener-

ally compared favourably to simulation unless censoring levels were high (such as 90%).

The main practical benefit of using the exact algorithm to determine power rather than

simulation, as reported by the authors, was that the algorithm required less computing

time than simulations; however the times reported for both methods were not lengthy.

Despite mentioning Schmoor et al’s and Bernando et al’s work, these calculations were

not compared to the exact algorithm, rather the paper concentrates mainly on the logistic

regression case.

We have shown that sample size calculations exist for use in situations where just

one variable is of primary interest, but other correlated variables need to be taken into

account in the analysis. This is common in prognostic research, for example when a new

factor of uncertain prognostic value is discovered, and also in epidemiology when a risk
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factor is investigated in the presence of confounders. In this case the main research aim

may be to estimate the additional predictive value of the new factor; other known factors

need to be accounted for but it is not of interest to estimate any quantities relating to

them. In this scenario the sample size calculations 2.2 and 2.3 would be suitable for a

binary primary factor, and 2.4 with the variance inflation factor if the primary factor was

continuous.

Examples

Two brief examples are given to illustrate sample size calculation for the Cox model when

the primary variable of interest is correlated with other variables, and to gain a better idea

of how this correlation affects sample size. The above sample size formula 2.4 (Hsieh

and Lavori, 2000) is implemented in Stata by the command stpower, which was used to

perform the following calculations. Real datasets are used to obtain clinically realistic

values for correlation. This is similar to what would be done in real life: an existing

dataset in the disease of interest would be used to give an idea of the likely parameters

for a new study or trial.

Breast Cancer Example The first dataset used originates from a German trial which re-

cruited patients with primary node positive breast cancer (Sauerbrei and Royston, 1999).

The dataset used here includes 7 prognostic variables and a variable for hormonal treat-

ment (for details see dataset FBC in Appendix B). In this example the variable of primary

interest is chosen to be menopausal status, a binary variable which is split approximately

40% / 60% pre- / post-menopausal. Linear regression of this variable on the other 7 gives

R2 = 0.60. The following assumptions are made in the calculations: α = 0.05 (two-sided),

power is 80%, standard deviation of the primary variable is 0.5 (as is approximately cor-

rect for a 40/60 binary variable), and for simplicity there is no censoring nor loss to fol-

low up. The sample size required to detect hazard ratios from 1.1 to 1.5 in steps of 0.1 are

given in Table 2.1: firstly for the situation where correlation between variables is ignored

(R2 = 0) and then where correlation is R2 = 0.6, as in the breast cancer dataset.

As shown by Hsieh and Lavori, the sample size required when no correlation is as-

sumed is multiplied by 1/(1� R2) to account for an R2 > 0. In this case, with R2 = 0.6,
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Events required
R2 = 0 R2 = 0.6

HR=1.1 3457 8641
HR=1.2 945 2362
HR=1.3 457 1141
HR=1.4 278 694
HR=1.5 191 478

Table 2.1: Sample sizes (events) required to detect HR for menopausal status variable
according to Hsieh and Lavori (2000)

Events required
R2 = 0 R2 = 0.5

HR=1.02 5004 10008
HR=1.04 1276 2552
HR=1.06 578 1156
HR=1.08 332 663
HR=1.10 217 433

Table 2.2: Sample sizes (events) required to detect HR for Gleason stage-grade variable
according to Hsieh and Lavori (2000)

the multiplier is 2.5. A lower R2 of 0.2 results in a multiplier of 1.25, and a higher R2 of

0.8 results in a multiplier of 5.

Prostate Cancer Example In our second example, we use data from a randomised trial

in advanced prostate cancer (Byar and Green, 1980), which includes 13 prognostic vari-

ables plus a treatment variable. The variable of interest is Gleason stage–grade category,

which takes discrete values from 5 to 15 in this dataset. In this example we will treat it as

continuous and use equation 2.4 to calculate sample size. Linear regression of this vari-

able on the other 14 gives R2 = 0.5. The same assumptions are made as in the previous

example, however a realistic standard deviation for the primary variable is calculated

from the dataset, which gives σ = 2. This time, hazard ratios are based on a one unit

increase in the variable of interest. Table 2.2 shows the sample size required to detect

hazard ratios from 1.02 to 1.10 in steps of 0.02, for the situation where correlation be-

tween variables is ignored and then where correlation is R2 = 0.5.

This time the multiplier is 2 as R2 = 0.5. Although the hazard ratios chosen are small,

the high standard deviation of the continuous variable of interest makes the sample sizes

required lower than for the binary example.
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2.2.3 Time-to-event outcome: multivariate case

Another – perhaps more common – scenario in prognostic research is when researchers

wish to produce a multivariable prognostic model. In this situation, all the variables

in the model are of equal importance. Since there is not one single variable of primary

importance, the previously mentioned formulae do not apply and a different solution

must be sought.

Standard sample size formulae

With multiple variables of equal interest, development of ‘standard’ sample size formulae

is problematic. Such formulae are usually based on effect size, but in the situation where

an arbitrary number of variables are of interest, which effect is being measured? The

magnitude of each covariate individually? Some combined measure of magnitude? The

formulae shown in the previous section could possibly be extended to the case where

there are two variables of primary interest to be tested, with a composite null hypothesis,

but beyond this the covariance matrices would make the algebra required intractable and

specification of the alternative hypothesis difficult.

Events per variable calculations

There are various recommendations in the literature about how many patients or out-

come events are required to estimate regression coefficients in a multivariable model

with reasonable accuracy. The most often cited recommendation is the rule of ‘10 events

per variable (EPV)’ which originated from two simulation studies (Concato et al., 1995;

Peduzzi et al., 1995). In these papers, exponential survival times were simulated for

673 patients from a real randomised trial with 252 deaths and 7 variables (36 EPV), and

then the number of deaths were varied to reduce the EPV. From this they considered

whether there was a minimum EPV needed for tests based on Cox PH analysis to have

the required power, confidence intervals the right coverage, and reasonably unbiased

coefficient estimation. They found that choosing a single minimum value for EPV was

difficult but that results from studies having fewer than 10 EPV should be ‘cautiously

interpreted’.
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A later simulation study by Vittinghoff and McCulloch (2007) found that in ‘a range

of circumstances’ having less than 10 EPV still provided acceptable confidence interval

coverage and bias when using Cox regression. Unlike the Concato and Peduzzi (1995)

papers, this study did not directly consider the statistical power of analyses nor the vari-

ability of the estimates. The final line of this paper states that ‘systematic discounting

of results...from any model with 5-9 EPV does not appear to be justified’. The authors

do not recommend aiming for less than 10 EPV when planning analyses and agree with

Peduzzi et al. (1995) that results from studies with low EPV should be interpreted with

caution. However it is perhaps inevitable that this paper has been cited to justify low

sample sizes, for example in (Mahambrey et al., 2009) and (Putman et al., 2009). Mallett

et al. (2010) found in their review of papers reporting development of prognostic models

in time-to-event data, that of the 28 papers reporting sufficient information to calculate

EPV, 14 had fewer than 10 EPV.

Looking at this issue from a different angle, Smith, Harrell, and Muhlbaier (1992b)

used simulation to assess the error in survival predictions with increasing numbers of

model covariates. Datasets of 250 and 750 subjects (64 and 185 events respectively) were

drawn from an exponential distribution such that the average 5-year survival was 75%.

Cox models were fitted to the simulated data, with between 1 and 29 uniformly distrib-

uted covariates. The authors found that in both the 64 and 185 event datasets, 5-year

survival predictions from the Cox models became increasingly biased upwards as the

EPV decreased. In both datasets, the average error was below 10% when EPV>10, and

below 5% when EPV>20. For ‘sick’ subjects – those at high risk of death – higher EPVs

were required: EPV>20 was required to reduce the expected error to 10%.

It should be noted that when calculating EPV all the candidate variables should be

counted, even if they are not included in the final model. This is of particular importance

when using a stepwise model selection method, as the variables initially considered for

inclusion may be far greater in number than those in the final model. However, defining

what exactly constitutes a candidate variable may not be straightforward, especially in

retrospective studies where the list of variable available for analysis may be extensive. It

can also be difficult to count candidate variables when model variables are to be trans-

formed; for example, if fractional polynomials or splines are to be used to model con-

tinuous variables, a single variable may be represented in the model by multiple power
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terms. Another issue arises with categorical variables: a categorical variable taking 5 pos-

sible values is equivalent to 4 dummy binary variables. Does such a variable contribute

one or four to the denominator of the EPV calculation? Some statisticians prefer to con-

sider events per parameter (EPP) (Hosmer and Lemeshow, 2000) but again, this phrase is

not clearly defined and indeed EPV and EPP are often used interchangeably, which adds

to the confusion.

2.3 Sample size and prognostic model performance

When developing a prognostic model it is likely that individual covariate effects are not

of major interest. Instead the main aim is likely to be measuring the ability of the model

to predict outcomes for future patients, or to discriminate between groups of patients.

Copas (1983) says that ‘...a good predictor may include variables which are “not signif-

icant”, exclude others which are, and may involve coefficients which are systematically

biased’. Thus basing sample size decisions on the significance of model coefficients alone

may not result in the best prognostic model.

Currently there do not seem to be any sample size calculations or recommendations

based on the prognostic ability of a model, rather than the significance of its coefficients.

Developing such tools would be of great use considering how much research – especially

in oncology – attempts to produce multivariable prognostic models which are clinically

useful.

Before trying to develop a recommendation based on the prognostic ability of a sur-

vival model, it must be decided how best this ability can be assessed. This section reviews

proposed measures, which can broadly be divided into those measures which are based

on the statistical quantity R2, and those which are not. Potentially useful measures are

described in more detail.

2.3.1 R2 based measures of prognostic ability

The quantity R2 in a model describes how much of the variation in the dependent vari-

able is explained by the independent variables. Thus it is is a measure of how well the

model may predict outcome in future cases. In normal linear regression the single quan-

tity R2 measures the explained variation, explained randomness and predictive accuracy
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of the model, but in models of time-to-event data these three quantities do not coincide.

This leads naturally to the categorisation of this family of measures into three classes.

Schemper and Stare (1996) outlined and reviewed the various R2 based measures

proposed for the Cox PH model. They did not find a measure that fulfilled all their

criteria for a good measure; in particular, most of the measures were affected by cen-

soring. Since 1996 new measures have been developed and in his PhD thesis Choodari-

Oskooei (2008) comprehensively reviewed and investigated the currently proposed mea-

sures, again against a list of properties. The properties classed as essential were inde-

pendence from censoring, independence from sample size, and monotonicity of the mea-

sure’s magnitude in terms of the magnitude of parameters and number of variables in

the model. Desirable properties were robustness to outliers, generalisability to different

types of survival model and availability of confidence intervals, partial R2, and adjusted

R2. This review informs the following three sections.

Measures of explained variation

One interpretation of R2 is that it is the proportion of variation in the dependent vari-

able which is explained by the model. The higher the proportion explained, the better

the predictive ability of the model. The measures in this class differ in how they mea-

sure the variation in outcome; more detail can be found in Choodari-Oskooei (2008) and

subsequent paper Choodari-Oskooei et al. (2011).

Five measures in this class were found to be potentially useful based on work done

prior to the review. These were Kent and O’Quigley’s (1988) measure R2
PM (see below

for details), O’Quigley and Flandre’s (1994) R2
OQF (which utilises Schoenfeld residuals),

O’Quigley and Xu’s (2001) R2
XuOQ (a further development of R2

OQF), Royston and Sauer-

brei’s (2004) R2
D (see below for details), and Royston’s (2006a) R2

Royston (a modification of

O’Quigley’s (2005) ρ2
k , a measure of explained randomness described below).

A conclusion of Choodari-Oskooei’s thesis and his subsequent paper (Choodari-Osk-

ooei et al., 2011) was that this class of measures was most recommended for use because

they are easily interpretable. For example, a value of 0.3 means that the prognostic vari-

ables explain 30% of the variation in the outcome on the log hazard scale. The other

classes do not have such intuitive explanations. Further to this, R2
PM and R2

D were specif-

ically recommended as they mostly fulfilled the essential criteria set out, and among
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other benefits noted by Choodari-Oskooei (2008), may be used with flexible parametric

models (Royston and Parmar, 2002).

As a measure of explained variation, the simplest way to describe R2 is:

R2 =
variation in outcome explained by covariates

total variation in outcome
,

where the total variation in outcome is made up of the variation explained by the co-

variates, and the remaining unexplained variation. Kent and O’Quigley’s (1988) measure

R2
PM for the Cox PH model uses the variance of the prognostic index β0x, and approx-

imates the unexplained variation by the variance in the error term of the log-Weibull

model ( π2

6 ):

R2
PM =

Var(β0x)
Var(β0x) + π2

6

.

One drawback to R2
PM is that it cannot be used in this form as a tool for external model

validation (that is, validation on data not used to develop the model), since it does not

take into account the fit of the model to the outcome data. It is also mildly affected by

extreme and outlier observations in the data; but appears not to be affected by the level

of censoring (Choodari-Oskooei et al., 2011).

Royston and Sauerbrei’s (2004) R2
D is based on R2

PM but uses their measure of prog-

nostic separation of survival curves D to create a new measure for the Cox PH model:

R2
D =

D2/κ2

D2/κ2 + σ2 .

For more details on D see section 2.3.2.

R2
D can be used with various survival models by defining the scaling parameter σ2

differently; in the Cox PH model σ2 = π2

6 (Royston and Sauerbrei, 2004), again the vari-

ance in the error term of the log-Weibull model. The constant κ =
p

8/π is used to give

a direct interpretation to D (see Section 2.3.2 for more information). R2
D is not affected

by censoring if the model prognostic index (PI) is normally distributed (see section 2.3.2);

but if this assumption is violated, censoring can have a large effect on its value (Choodari-

Oskooei et al., 2011).
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Measures of explained randomness

This class exploits the relationship between R2 and the concept of information as a mea-

sure of uncertainty (see Choodari-Oskooei (2008) for a more detailed explanation of in-

formation in this context).

Three measures in this class were potentially recommendable based on previous work.

These were Kent and O’Quigley’s (1988) measures ρ2
W and ρ2

W,A (based on model likeli-

hoods), Xu and O’Quigley’s (1999) ρ2
XuOQ (similar to ρ2

W and ρ2
W,A but with an alternative

information gain), and O’Quigley et al.’s (2005) ρ2
k . Just one of these (ρ2

W) fulfilled all the

essential criteria, but it was not recommended for use because it is difficult to interpret,

may be complex to calculate and lacks generalisability to survival models other than Cox

PH (Choodari-Oskooei, 2008).

Measures of predictive accuracy

This interpretation of R2 measures how close model predictions are to observed out-

comes. In a survival model context, these predictions are in terms of a subject’s survival

probability over time, rather than length of survival.

Only two members of this class were found to be possibly suitable on initial review:

Graf et al.’s (1999) measure R2
G and Schemper and Henderson’s (2000) VSchH. Both calcu-

late predictive accuracy of a model by taking a weighted average of the prediction error

at every event time. Choodari-Oskooei (2008) found these measures both lacking due to

their dependency on length of study follow up.

Other R2 based measures

There are some R2 based measures which do not fall into any of the three categories

above. Choodari-Oskooei (2008) found the most promising of these to be Schemper and

Kaider’s R2
SchK, which imputes censored survival times and then uses nonparametric cor-

relation to measure association. Upon further investigation it was found to fulfill all of

the essential criteria on the checklist, but its complexity and lack of a clear interpretation

made other options more favourable.
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2.3.2 Non R2 based measures of prognostic ability

There are several measures not based on R2 which quantify the prognostic ability of a

model. These are primarily measures of discrimination; they consider how well a prog-

nostic model can distinguish between observed outcomes. In the case of survival analy-

sis, this is between the patients who do and do not experience the event in question.

These measures fall into two classes. Firstly, concordance statistics, which measure the

agreement between observed outcomes and predicted risk, and secondly, those which

measure how the observed risk varies from the lowest to highest predicted risks.

Concordance statistics

Harrell et al.’s (1984) c-index is a rank-based test which measures agreement between

pairs of subjects, in terms of their outcome and predicted risk. A pair is concordant if

the subject with the higher predicted risk experienced the event of interest before the

other subject. It considers all possible pairs where the shorter follow-up time ends in fail-

ure, and c is then the proportion of concordant pairs. Thus c can be interpreted as the

probability that for a random pair of patients, the one with the higher prognostic index

will experience the event first. c = 0.5 indicates that the model predicts no better than

would be expected by chance, and c = 1 means perfect concordance. c < 0.5 implies

that patients with lower model risk are more likely to experience the event than those

with higher risk; thus the model still has predictive value, but in the opposite direction

to that expected. Being based on rank, the c-index is not model dependent. In his book

‘Regression Modeling Strategies’, Harrell (2001) reports that ‘the c-index is relatively un-

affected by the amount of censoring’; however Gonen and Heller (2005) found that its

value seemed to increase slightly with the proportion of censoring.

To improve upon the c-index for time-to-event data, Gonen and Heller (2005) derived

an analytical expression for concordance probability within the Cox model specifically.

They termed their result, based on the partial likelihood estimator of β, the ‘concordance

probability estimator’, Kn(bβ). Because the effect of censoring on bβ is negligible, their

statistic Kn(bβ) is robust to censoring.

One problem with concordance statistics is that their scale may not be intuitive to

researchers and clinicians. Also, on a practical level, Kn(bβ) is a non-smooth function of bβ
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and so must be approximated by smoothing or numerical differentiation before applying

to data. For these reasons other measures of prognostic ability are preferred; however,

the c-index is commonly reported for prognostic models in the literature.

Measures of difference in observed risk across the prognostic index

These measures attempt to quantify the separation in observed survival curves between

subgroups of patients with differing predicted risks. This should be intuitively easy to

understand for researchers with understanding of Kaplan-Meier survival curves.

To measure this separation, Sauerbrei et al. (1997) proposed the measure SEP , which

is the geometric mean of the absolute relative risks in each strata, weighted by the number

of patients in the strata. It was further explored by Graf et al. (1999) who described SEP

as being ‘constructed to assess by which amount survival within risk strata differs on

average from survival in the entire population’. There are some problems with SEP, noted

by Royston and Sauerbrei (2004): it requires the prognostic index to be split into risk

groups prior to calculation, it does not take into account the ordering of risk categories,

it is always positive regardless of the predictive usefulness of the model, and it has no

easily calculated standard error. Some of these problems are particularly important when

validating a model in another dataset and as a result of this, Royston and Sauerbrei (2004)

worked to develop an improved measure of prognostic separation, called D.

D was developed in the Cox model framework and is based on risk ordering, in that

the first step in deriving D is to order individuals’ prognostic indices from lowest to

highest risk. Thus D can be calculated whether the prognostic tool outputs a continuous

prognostic index, prognostic groups, or is even a subjective rule. However, it is assumed

that the prognostic index resulting from the model is Normally distributed (although this

is an approximation in the case of a non-continuous prognostic index). The full derivation

of D is described in Royston and Sauerbrei (2004); an abridged version follows below.

The standard Cox model can be written

ln h(tijxi) = ln h0(ti) + hi,

where hi = β0xi, the prognostic index of the ith subject. The hi are ranked and then

replaced with the corresponding standard Normal order scores; these scores are then
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divided by κ =
p

8/π ' 1.60. Cox regression is performed on these scaled Normal

scores and the log hazard ratio resulting is

D = κσ�,

where under the assumption that the hi are normally distributed, σ� is an estimate of

the standard deviation of the prognostic index values. The motivation for scaling by κ

is that it gives D an intuitively appealing interpretation as the log hazard ratio between

two equally sized prognostic groups, formed by dichotomising the prognostic index at

its median. This is because the mean of a standard half-Normal distribution is 1
2 κ, and

again relies on normality of the prognostic index; for a full explanation see Royston and

Sauerbrei (2004).

D can theoretically take any value in the range (�∞, ∞), but in real situations it is

likely to be much closer to zero. D = 0 implies that the selected model has zero predictive

ability, and D < 0 may arise when a model fitted to one dataset is validated on another,

indicating that the original model was overfitted. D’s interpretation as a log hazard ratio

means that it can be translated to a hazard ratio between the equally sized prognostic

groups; so a D of 1 corresponds to a hazard ratio of e1 = 2.7 and D = 2 to e2 = 7.4. This

allows researchers familiar with hazard ratios of treatments (for example) to have some

idea of the increase in risk across the prognostic index of the model.

We have previously described R2
D (Royston and Sauerbrei, 2004), a measure of ex-

plained variation based on D, and the two quantities have a one-to-one relationship:

R2
D =

D2/κ2

σ2 + D2/κ2 .

The value of σ2 depends on the survival model being used; it is 1 for standard Nor-

mal distribution with probit link, π2

3 for standard logistic distribution with proportional

odds, and π2

6 for standard extreme value distribution with proportional hazards (Royston

and Sauerbrei, 2004). Figure 2.1, adapted from a graph in Royston and Sauerbrei (2004),

shows the relationship between R2
D and D for the Cox model (σ2 = π2

6 ). This relationship

is important as most researchers will be more familiar with the 0–100% range of R2.

As well as its interpretability and applicability to many types of prognostic model, D

has many other properties which make it suitable for practical use. These include robust-
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Figure 2.1: Relationship between D and R2
D, for proportional hazards survival model

ness to outliers, sensitivity to risk ordering, independence from censoring (provided the

prognostic model has been correctly specified and the PI is normally distributed), and an

easily calculated standard error (Royston and Sauerbrei, 2004). Also, since it takes into

account the fit of the model to the outcome data, it can be used in a model validation

context; a vital part of a good prognostic study.

2.4 Discussion

In this chapter we have explored sample size calculations for prognostic research when

a time-to-event outcome is used. The situation where one variable of primary interest

is correlated with other secondary variables already appears to be covered by existing

calculations, as seen in Section 2.2.2. When a multivariable prognostic model is of inter-

est, the only sample size guidance currently available comes in the form of events-per-

variable recommendations, which generally suggest having at least 10 events for each

candidate predictor variable. However this rule of thumb is based on just a few sim-

ulation studies and is focused on the estimation of individual variables rather than the

performance of the model as a whole.

Since the aim of forming a prognostic model is to be able to predict outcomes accu-

rately, it would be useful for a sample size recommendation to be based on the predictive

ability of a model, rather than the effect size of model covariates. As a first step towards

this end we reviewed proposed measures of prognostic ability in survival models and

found R2
PM and R2

D or D to be the most promising. Due to their utility in the model

41



validation context, D and R2
D were felt to be slightly superior and so D was chosen for

use in the development of a sample size recommendation for multivariable prognostic

models. Later in the thesis, in Chapter 8, we will return to another of the measures of

prognostic value discussed here, Harrell’s c-index. Because it is so commonly reported

in the medical literature, we consider a conversion from c to D, in order that the value of

D in various different disease areas may be estimated.

In the next chapter we investigate the properties of our chosen quantity D further,

particularly looking at how it varies with sample size, its standard error, and its sampling

distribution.
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Chapter 3

Investigating D

3.1 Introduction

Chapter 2 discussed the lack of existing sample size recommendations for studies aiming

to develop a multivariable prognostic model. In particular there are no recommendations

based on the prognostic ability of a model, rather than the effect size of one key covariate.

In order to develop such recommendations, Royston and Sauerbrei’s D was chosen as the

preferred measure of prognostic ability.

In this chapter we consider various properties of D in order to facilitate the develop-

ment of a sample size calculation. Firstly, we investigate how D behaves as sample size

or events-per-variable (EPV) changes, using real data. Secondly, we look at how best to

calculate the standard error of D. Finally, we consider the distribution of D.

3.2 How is D affected by sample size?

The aim of this investigation is to discover how D is affected by sample size, using

real datasets. Breaking this down further, we wish to determine how the estimate of

D changes as the sample size (in terms of both number of events and EPV) increases; in

particular, to find out whether the convergence of estimates to the full sample value of D

happens at a common sample size across different datasets. We also aim to look at how

the optimism present in D, caused by model overfitting, changes with increasing sample

size. A secondary aim is to investigate how D, and the optimism present in D, changes

with the p value used in the model selection procedure.
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3.2.1 Considerations for investigation

The basic plan of the investigation is to take a real clinical dataset consisting of failure

time and censoring indicator for each patient, along with various covariates. Subsamples

of the dataset of decreasing size will be randomly chosen and the best model selected

using a reproducible method. D will then be calculated using the Stata command str2d

(Royston, 2006b), and the various Ds for different sized subsamples compared.

There are several aspects of this plan that need further consideration before we design

this investigation. Firstly, we must account for the optimism that will be inherent in

estimates of D, since we are fitting a model and assessing its goodness-of-fit on the same

dataset. Secondly, a model selection procedure needs to be chosen. Finally, consideration

should be given to the subsample sizes used.

Optimism

Optimism is a consequence of model overfitting, and of using the same dataset to both

estimate model parameters and evaluate model performance. One cause of overfitting

is selection bias, which occurs when variables are selected for inclusion in a model by

their statistical significance, such as in a stepwise procedure. In this situation, variables

are more likely to be selected if they have a large estimated effect size in the dataset,

regardless of their true effect. This causes an upward bias in the size of estimated pre-

dictor effects in the model (Copas and Long, 1991). Selection bias does not occur if the

terms (variables and any transformations) to be included in the model are pre-specified.

The problem is lessened when predictors truly have large effects – as they will almost

always be selected for the model – and when sample size is increased. A closely related

issue, parameter uncertainty, can occur regardless of model selection technique, because

parameters are estimated in the model with uncertainty (Steyerberg, 2008). This adds a

component of variance to the variance of the prognostic index across patients, and can

result in overestimation at the extremes of the linear predictor, expressed as low predic-

tions being generally too low and high predictions too high. It is related to regression to

the mean.

The result of these issues may be a model containing too many variables, some with

optimistic effect estimates. Some of the model variables are likely to be spurious and
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contribute explanations of noise rather than true relationships in the data. Thus if model

performance is assessed in the same dataset, it is likely to be over-estimated, presenting

an optimistic view of how good the model is. It will probably perform less well in an

independent dataset from the same population, because some (or much) of its apparent

ability in the first dataset was due to explaining noise and other idiosyncrasies. The

difference between the statistic as calculated in the first dataset and as calculated in the

second is the optimism inherent in the first estimate.

This means that we must take steps to estimate the optimism present in D if we are to

avoid overfitted models and inflated estimates of predictive ability. The easiest way to do

this would be to split the dataset to form training and validation sets, develop the model

in the training set and then evaluate D in both (Harrell, 2001). However, in this investi-

gation we wish to see how D varies across a wide range of sample sizes, so reducing the

size of the available datasets to start with is not desirable. Another possibility is to use the

quantity Dadj which was introduced by Royston and Sauerbrei in their 2004 paper on D.

Dadj is based on an adjusted R2 which was developed to account for the known positive

bias of R2 in a linear regression model with Normal errors, and Royston and Sauerbrei

found that indeed Dadj showed low bias in their tests using simulated and real data. Dadj

accounts for the bias due to parameter uncertainty, so adjusts for one source of optimism,

but does not adjust for the optimism caused by data dependent modelling techniques.

We plan to use a reproducible method such as backwards elimination or stepwise se-

lection to select models in this investigation, so this will mean an additional source of

optimism which Dadj will not adjust for. Instead we will use the method described by

Harrell et al. (1996) to estimate the optimism in D.

Harrell’s method is based on Efron’s (1983) refined bootstrap method, and can be

used for any index of model performance where overfitting is a concern. The method is

broadly as follows, but is described in more detail in Section 3.2.2. After estimating D in

the original dataset, draw a sample with replacement of the same size n. Select a model

and calculate D based on the bootstrap sample. Then predict from the same model using

the original dataset and re-calculate D. The difference between these two values (D in

the bootstrap sample � D in the original data) is an estimate of the optimism inherent

in the original D calculated. Repeating this for 100 or more bootstrap samples gives an
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averaged optimism which can then be used to correct the original estimate for overfitting,

and also provides an estimate of the standard error of the optimism.

Model selection procedure

In order to use this bootstrap method to estimate optimism, the same model selection

procedure must be used with each bootstrap sample. Thus we must use an automatic

procedure so it can be exactly replicated. Royston and Sauerbrei’s (2008) multivariable

fractional polynomials (MFP) method will be used, as implemented by the Stata com-

mand mfp. This combines backward elimination of variables, which is generally pre-

ferred to forward selection or a stepwise method (Harrell, 2001), with the use of fractional

polynomials to flexibly model continuous variables.

The selection procedure will be repeated with various p values for variable selection,

to observe how D varies as the strictness of the model inclusion criteria changes. The p

values chosen were 0.01, 0.05, 0.157, 0.50 and 1.00. This list encompasses ‘traditional’ p

values (0.01, 0.05), the p value corresponding to Akaike’s information criterion for select-

ing a single variable (0.157) and the full model (1.00). p = 0.50 allows deletion of some

variables without being too stringent, and bridges the gap between 0.157 and 1.00.

In general, higher p values result in larger models, and hence we would expect to

see increasing values of D (since in general larger models mean better prediction) and

increasing optimism (due to the increased likelihood of overfitting) as p rises.

Sub-dataset size

The sub-datasets chosen for each dataset should be a compromise between getting a good

spread of sample sizes to base analyses on, while ensuring that the planned protocol will

run in a reasonable time frame. Steps of at least 3 EPV, and not more than 10 EPV between

sub-datasets should ensure we get good coverage across the range from the minimum to

the complete dataset. This means that the values chosen will vary between datasets.

Another consideration is that the modelling procedure may fail for very small samples.

Starting with a lowest EPV of around 5 should minimise this (Vittinghoff and McCulloch,

2007). For simplicity, the sample size n will be chosen rather than the number of events;

this means that the censoring proportion will not be the same across all the subsamples.
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3.2.2 Methods

The protocol for investigation of D is as follows.

1. Choose integers n1, n2, ..., nx such that 0 < n1 < n2 < ... < nx < N, where N is the

number of records in the full dataset.

2. For each chosen ni, randomly select a sub-dataset of size ni.

3. Use the MFP method to select the best model for the chosen sub-dataset.

4. Calculate D for this model, in this sub-dataset. Call this quantity Dorig.

5. Bootstrap 100 samples from the sub-dataset. For each sample:

(a) Use the MFP method with the same list of candidate variables to select the best

model for the bootstrap sample. Call this model A.

(b) Calculate D for model A, in this bootstrap sample. Call this quantity Dboot
boot .

(c) Calculate D for model A, in the original sub-dataset from step 2. Call this

quantity Dorig
boot.

6. Calculate the average estimated optimism op over the bootstrap samples.

op =
1

100

100

∑
j=1
(Dboot

boot(j) � Dorig
boot(j)),

where DX
boot(j)is the DX

boot from the jth bootstrap sample.

7. Subtract the estimated optimism from the original estimate of D to get the optimism-

adjusted D, called Dopt.

Dopt = Dorig � op

Steps (2) to (7) will be repeated for each chosen subset size ni, and each p for variable

selection within the MFP procedure, p =0.01, 0.05, 0.157, 0.50 and 1.00. Stata code is

provided in Appendix C for the .ado file written to perform the bootstrap procedure

used in steps (3) to (7).
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Datasets

In order to draw generalisable conclusions from this investigation, especially since we

only select one subdataset of each sample size for each dataset, we need to perform the

procedure on various different datasets. The datasets used in this chapter are FBC (breast

cancer), APC (prostate cancer), GLI (glioma), RBC (breast cancer), MYE (myeloma), PBC2

(primary biliary cirrhosis), LVA (lung cancer), KCA (renal cancer), SEER (breast cancer; 9

separate datasets). Full details of all these datasets can be found in Appendix A, and the

Stata mfp command lines used for each one in Appendix B.

For this chapter, three additional datasets RBC5, RBC10 and RBC 15 were formed by

adding 5, 10 and 15 uniformly distributed uncorrelated random variables respectively to

the RBC datasets to make three new datasets. These are used to investigate the effect of

additional noise variables on optimism and D.

Due to the size of the SEER datasets only two p values were used when working with

these data, p = 0.05 and p = 1.00.

Practical issues

The investigation and analyses were performed in Stata 10 (StataCorp, 2000). Results

are structured so as to separate the results for Dorig, optimism and Dopt. Within each of

these three sections, the results relating to the relationship of the quantity with EPV and

with p for variable selection are described. Selected results are also displayed graphically

to aid understanding and interpretation. On the whole these graphs are simple plots of

one quantity against EPV, number of events, or p. Note that we define the number of

variables in the EPV calculation as a simple count of variables in the mfp command line

(which is given for all datasets in Appendix B).

3.2.3 Results

The first section gives example graphs from the investigation to further illustrate the

procedure outlined in Section 3.2.2. Sections 3.2.4, 3.2.5 and 3.2.6 give results pertaining

to Dorig, optimism, and Dopt respectively and each is divided into 3 sub-sections. These

cover the relationship between the statistic and sample size, the relationship between the

statistic and p for model selection, and the differences seen across datasets. The results
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concerning sample size are drawn from all 17 datasets considered. The results concerning

p are drawn from all 17 datasets, however the 9 SEER datasets contribute less as only

p = 0.05 and p = 1.00 were used for these.

Example output

For each combination of dataset and p, two graphs were created, which were inspected

to check that the procedure was working as expected. An example of each of these is

given to aid understanding of the steps of the investigation outlined in Section 3.2.2.

The first of these is a panel of scatter plots, one for each sub-dataset size, giving the

output from the bootstrap process. An example is given in Figure 3.1. These show that

the values of Dorig
boot (D of model estimated in bootstrap sample, fitted to original dataset)

have a narrower range than those of Dboot
boot (D of model estimated in and fitted to boot-

strap sample); this would be expected since the latter quantity contains more optimism

and so will range higher. The plots also show that outlying low values of Dorig
boot are seen in

some instances. This may occur when one or more particularly influential datapoints are

repeated in the bootstrap sample, which can cause the resulting model to fit to this idio-

syncrasy in the data. Once this model is fitted back on the original sample, it loses most

of its predictive ability, as the original dataset does not contain this cluster of influential

points so the model is a poor fit. This results in a very low Dorig
boot. Such outliers may affect

the mean Dorig
boot which in turn affects the estimates of optimism and Dopt. However upon

inspection of these plots, it was felt that none of the datasets considered in this investiga-

tion appeared to have a severe problem with outliers, so we did not attempt to mitigate

their effects.

The second type of graph is illustrated in Figure 3.2. This is a connected scatter plot

showing how the final values of Dorig, Dboot
boot , Dorig

boot, Dopt, optimism, and standard error of

Dopt vary as n increases (averaged over the 100 bootstrap replications). Figure 3.2 shows

examples of these graphs for for two datasets (FBC & RBC) and one p value (0.05). The

patterns in the various D and optimism can be seen, as well as the decreasing standard

error in Dopt as the subsample size increases.

As mentioned above these graphs are numerous, being available for each dataset and

p combination. Thus they are not presented further in this chapter; instead graphs are
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presented which aggregate results across one or more of EPV, p, or dataset. The next

three sections report results and patterns across datasets.

3.2.4 Results for Dorig

Results are presented below to illustrate the relationships between Dorig and sample size,

Dorig and p for variable selection, and to show how Dorig varies across the datasets used.

Dorig over changing sample size

Figure 3.3 shows the profile of Dorig across EPV for each (non-SEER) dataset and p-value.

There is quite high variability amongst values of Dorig up to around 10 EPV, with values

tending to start high and then decrease. The profile seems to be flatter for lower p. From

about 20 EPV, Dorig remains fairly stable. However four of the datasets have a maximum

EPV of around 20 (or less), so it is difficult to see any firm patterns. The standard error

of Dorig is also shown on these graphs (for p = 0.05 only) to illustrate how the uncer-
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tainty around the estimate varies. As expected from Figure 3.1, there is a decrease in the

standard error with increasing number of events.

Figure 3.4 plots Dorig vs number of events for each (non-SEER) dataset and p-value.

Obviously patterns are similar to those seen in Figure 3.3; it is difficult to pinpoint a

particular number of events above which values of Dorig are stable.

Dorig over changing p

In considering the relationship between Dorig and p, we look primarily at the n = N case,

where results should be most stable. When n = N, Dorig slightly increases with p (Figure

3.5). In fact the profile of Dorig over increasing p is non-decreasing between p values, for

all 8 datasets. The profile appears to be flatter for larger datasets (MYE, RBC, SEER).

Dorig over changing p in RBC noise datasets

To see whether the relationship between Dorig and p changes with increasing number of

noise variables, Figure 3.6 plots Dorig vs p for the four RBC datasets. The same model

is chosen for all four datasets when p = 0.01 and p = 0.05, and for the three noise

datasets when p = 0.157. However for p = 0.5 and p = 1.0, different models are chosen

and in this example the Dorig appears to increase more for the datasets that have more

noise variables added. The scale of change in Dorig is however quite small across the four

datasets; at p = 1.0 the difference between the highest and lowest Dorig is just 0.06.
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Dorig across datasets

It can be clearly seen from Figure 3.5 that Dorig varies in magnitude across the datasets

used. The cirrhosis dataset PBC2 has by far the highest Dorig at around 2.5 (R2
D = 60%);

the SEER datasets vary from 1.59-2.07 (38%-51%) and the others from about 0.7-1.5 (10%-

35%) when n = N. This wide range of explained variation reflects the different diseases

represented and the varying amounts of prognostic information in the covariates. Even

within a particular disease, D will be affected by the case mix in the study; a more het-

erogenous group means more scope for differentiating patients and thus greater potential

for a higher value of D.

3.2.5 Results for optimism

Optimism over changing sample size

Figure 3.7 shows the proportion of optimism in Dorig for every combination of dataset,

n and p, plotted against EPV and number of events respectively. The pattern is clear:

optimism decreases as EPV and number of events increases. The SEER and non-SEER

datasets appear to form two bands, with the SEER datasets showing markedly lower

optimism at the same EPV. The optimism in the SEER datasets drops below 10% once

EPV>20 (approximately), or once there are more than 200 events. For the non-SEER
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Figure 3.8: Optimism vs EPV for all datasets, p = 0.05. Note x axis is log scale.

datasets EPV>70 or more than 500 events seem to be required for 10% optimism; al-

though there is more variation for these datasets.

Figure 3.8 contains graphs of optimism vs EPV separately for each dataset (for p =

0.05 only) and shows that the same pattern is present over all datasets. Figure 3.10 shows

the same graphs for p = 1.00; the pattern clearly still holds when no selection is used.

Optimism seems to show a similar profile against EPV for all the datasets investigated:

it decreases fairly sharply from the minimum EPV to 20-30 EPV, and then continues to

decrease more gently as EPV increases further. For datasets with high EPV (RBC, the

larger SEER datasets), the optimism continues to decrease even as EPV passes 50 or 100;

albeit in much smaller increments. Figures 3.9 shows optimism vs number of events for

each dataset, for p = 0.05. Similar patterns are seen as for EPV.

Optimism over changing p

When n is much smaller than N, optimism varies widely with increasing p. As n ap-

proaches N these fluctuations lessen and a pattern appears which is seen across the 8

datasets used. In general, when n = N (where optimism is lowest and most stable), opti-

mism increases with p (Figure 3.11). There were individual deviations from this general

pattern between datasets; a couple showed decreasing optimism from one p to a higher

p, or sharper increases over the lower p values.
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Figure 3.9: Optimism vs events for all datasets, p = 0.05. Note x axis is log scale.
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Figure 3.10: Optimism vs EPV for all datasets, p = 1.0. Note x axis is log scale.
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Figure 3.12: Optimism vs p for original RBC dataset, and for dataset with 5, 10 and 15
noise variables added

Optimism over changing p in RBC noise datasets

To see whether the relationship between optimism and p changes with increasing number

of noise variables in the dataset, Figure 3.12 plots optimism vs p for the original RBC

dataset and the 3 with additional noise variables added. It shows that the relationship

between optimism and p does appear to be stronger for the datasets with added noise

variables, and that the amount of optimism increases roughly in line with the number of

noise variables added. However in absolute terms, the amount of optimism is small for

this dataset and so are the increases seen.

Optimism across datasets

The amount of optimism present (as a proportion of Dorig) when n = N does vary

quite widely between datasets, even accounting for the different maximum EPV in each

dataset. This can be clearly seen in Figures 3.8 and 3.10.

Optimism is much lower in the SEER datasets than other datasets. This is clearly seen

in Figure 3.7, where the SEER datasets are identified. The SEER points appear to split

off from the other datasets, most clearly from about 30 EPV onwards, but have lower

optimism throughout the whole range of EPV. For example, at 5 EPV the SEER datasets

have less than 40% optimism, and often less than 20%. This compares with more than

50% and sometimes 100% for the other datasets at this EPV.
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Figure 3.13: Dopt vs EPV for each dataset, p = 0.05. Note x axis is log scale.
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Figure 3.14: Dopt vs events for each dataset, p = 0.05. Note x axis is log scale.

3.2.6 Results for Dopt

Dopt over changing sample size

We have already seen that Dorig decreases with increasing EPV for most datasets, sharply

at first and then more gently. Optimism also showed a strong inverse relationship with

EPV across all datasets. Since Dopt = Dorig � optimism, we might expect Dopt to show a

relatively flat profile against EPV.

As can be seen in Figures 3.13, 3.15, Dopt can be quite variable when EPV is low and

this variability decreases as EPV increases. Despite these fluctuations there is a clear

pattern: Dopt increases with EPV. The level of increase varies across the datasets; for
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Figure 3.15: Dopt vs EPV for each dataset, p = 1.00. Note x axis is log scale.
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Figure 3.16: Dopt vs events for each dataset, p = 1.00. Note x axis is log scale.
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datasets with low optimism at low EPV (for example the SEER datasets), the increase is

less noticeable in the graph. In general, the increase occurs up to about 25 EPV. From

about 25 or 30 EPV, further increases in Dopt are not easily distinguished from random

fluctuations, which may still be as large as 20% of the value of the statistic. Once 50 EPV

is reached, Dopt continues to fluctuate about a ‘middle’ value to a greater or lesser degree,

however the variability is reduced, with fluctuations mostly <10% of the value of Dopt.

Figures 3.14, and 3.16 plot Dopt against number of events. The same patterns are seen

as with EPV but there is no common number of events across all the dataset which could

be said to be sufficient for a reliable estimate of Dopt.

In order to quantify the convergence of Dopt as n approaches N, we combined results

for all datasets, n and p into one plot. For simplicity denote Dopt,N as the Dopt for a

particular dataset and p when n = N (i.e. in the full dataset). Figure 3.17 shows the

size of the Dopt relative to Dopt,N for the same dataset and p value as EPV increases,

with one point for each dataset / n / p combination (excluding the full datasets). When

considering this plot, it must be remembered that it contains results from 17 heterogenous

datasets. Going from 5 to 20 EPV improves the accuracy of the estimated Dopt greatly as

from 20 EPV the vast majority of estimates are within 50% of Dopt,N . From 30 EPV almost

all are within 25%. A smoothed line fitted to the scatter of points suggests that if a dataset

has less than 30 EPV, it is likely that Dopt from the dataset is underestimating the ‘true’

Dopt. From about 30 EPV upwards, it is as likely to be overestimating as underestimating.

Figure 3.18 plots the same y-axis as Figure 3.17 against number of events. In this plot,

the majority of datasets with more than 200 events were within 25% of Dopt,N . Datasets

with 300 events or fewer were more likely to be underestimating the ‘true’ Dopt than

overestimating.

Dopt over changing p

We have seen that Dorig increases slightly with p, with this increase lessened for larger

datasets. Optimism as a percentage of Dorig also appears to increase slightly with p.

Since Dopt = Dorig � optimism, we might expect not to see a strong relationship between

Dopt and p.

Figure 3.19 shows that this is indeed the case, as the profile of Dopt against p varies

across the datasets chosen, so no firm conclusions can be drawn. The highest value of
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Dopt occurs variously at p = 0.05, 0.50 and 1.00 for the 8 datasets. The larger datasets

seem to have a flatter profile for Dopt against p than smaller ones, as was seen for Dorig.

Dopt across datasets

Dopt varies quite substantially between the 17 datasets used. As might be expected, the 9

SEER datasets had quite similar values for Dopt, with the Dopt for the four largest datasets

varying between 1.73 and 1.89 (R2
D 42%� 46%). The dataset with the highest Dopt was

the PBC2 database, with Dopt = 2.3 (104 events); this corresponds to R2
D = 56%. This

was much higher than any other dataset, the next highest non-SEER datasets were FBC

and RBC at Dopt '1 (R2
D = 19%). APC and MYE datasets showed the lowest Dopt, both

at '0.7 (R2
D = 10%).

3.2.7 Conclusion

This investigation has elucidated some relationships between D and sample size which

have not been previously studied. These are described and commented on in this section.

Dorig

The wide range of values of Dorig seen across the datasets investigated here – equivalent

to levels of explained variation between 10% and 60% – likely reflects the different dis-

eases represented and the varying amounts of prognostic information in the covariates.
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Optimism is still included in Dorig and again this will have an effect on its magnitude in

a particular dataset.

We found that Dorig decreased as sample size increased. Overfitting is worse in small

datasets and this is likely why Dorig is so high when sample size is very low. The smaller

n is, the better a fitted model will be at predicting outcomes in that dataset, leading to a

high Dorig. As the sample size increases the models fitted don’t have the same predictive

accuracy, so Dorig decreases.

Dorig appeared to increase slightly with p, but the slope of the increase seemed to

be flatter for datasets with higher number of events. An increase of Dorig with p might

be expected, since the models selected get larger as p increases, and more model terms

mean better prediction. Thus the potential of Dorig to increase with p may depend on the

number of potential covariates available; however, we did not see a greater increase in

Dorig with p for the RBC datasets with added noise variables. It may be that there is an

effect but more than 15 noise variables are needed to see it; unfortunately with limited

computing power we cannot investigate this further.

The fact that Dorig increased less with p in datasets with higher number of events

is again due to the fact that a model will have better apparent predictive ability in a

small dataset than a large one. If there are few events, adding a couple of terms to the

model could potentially make a big difference to the model’s predictive ability (e.g. going

from 3 terms to 5 terms in a model used to predict 20 events will appear to greatly assist

prediction). If there are many events, adding a couple of terms to the model does not

make as much difference to the model’s predictive ability (e.g. going from 3 terms to 5

terms in a model used to predict 200 events).

Optimism

Our investigation has highlighted the importance of accounting for optimism when de-

veloping a prognostic model. The method we used to estimate optimism (Harrell et al.,

1996) found that with 25–30 EPV, the median optimism in Dorig was 18% and the maxi-

mum was 40%. Even with 50 EPV, 20% optimism was seen in some datasets. We have

not validated Harrell et al.’s method here, but in their work Royston and Sauerbrei (2004)

found that it may overestimate optimism, causing Dopt to be overcorrected (too low). De-

spite this, it is still clear that prognostic ability is likely to be overestimated to some extent
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if overfitting and parameter uncertainty are not accounted for, even in some datasets with

high EPV.

We found that the SEER datasets showed consistently lower optimism in estimates

(expressed as a proportion of D) than others. While this may be explained by the fact

that the values of D in the SEER datasets were higher than in most of the other datasets

used, we speculate that it may also be partly because the SEER datasets are designed to

contain only variables which are known to have some prognostic value. Thus in a model

they explain true relationships in the data rather than noise, which should result in lower

optimism.

A clear pattern of optimism decreasing with increasing number of events was ob-

served, and such a relationship is expected; since the smaller the sample size, the better

a fitted model will be at predicting outcomes in that dataset. However, this prediction

ability is mostly spurious and the model is likely to be severely overfitted, leading to high

optimism.

In the full dataset, optimism showed an increase with increasing p. To explain this

pattern we must consider the two causes of optimism. We have already seen that Dorig

increases slightly with p as the models selected contain more covariates. However, the

new ‘extra’ terms now included have lower statistical significance and so are more likely

to explain noise than true relationships in the data – increasing overfitting. Furthermore,

parameter uncertainty increases as more variables enter the model, again contributing to

higher optimism. Under these explanations, we might expect to see more of an increase

in optimism across p for datasets containing more variables. Our investigation of the

datasets with added noise variables did support this hypothesis but we cannot draw any

firm conclusions.

Dopt

Below 30 EPV, estimates of Dopt were quite variable, but showed a clear increase with

sample size. Above around 30 EPV, the estimated value of Dopt did not increase much

further but fluctuated around what what appears to be a stable value. The fluctuations

lessened in magnitude as EPV increased further. We are unsure of the reason for the

positive relationship between Dopt and sample size in the 0–30 EPV range but it may be

related to the finding of Royston and Sauerbrei (2004) that Harrell et al.’s (1996) method
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for measuring optimism may overestimate the quantity; or an artefact from using the

bootstrap method in small samples. Another possibility arises if we consider the idea

of the ‘true’ (but unknown) model using the parameters selected, which must give the

highest possible Dopt. As the size of the dataset increases our model selected approaches

the true model and thus Dopt is seen to increase.

From the datasets studied in this chapter we have gathered some evidence which

may be useful in eventually determining some specific recommendations. Among our

heterogenous group of datasets, we observed that if we have 30 EPV or more; or 200

events or more, the vast majority of estimated Dopt values were within 25% of the stable

value of Dopt for their dataset. Up to about 30 EPV, or�300 events, more estimated values

of Dopt were lower than the stable Dopt, than were higher.

We also considered the effect that the p value used for model selection in the MFP

procedure has on Dopt. This investigation did not find a strong relationship between Dopt

and p. Again this emphasises the importance of eliminating optimism from estimates;

since as already mentioned Dorig increases with p, which might lead researchers looking

for the highest possible predictive ability to always choose the full model.
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3.3 Investigation of SE(D)

Some of the data produced in Section 3.2 suggested that the method used in Royston and

Sauerbrei (2004) (and implemented in Stata command str2d) to estimate the standard

error of D may be underestimating this quantity. We need to ensure that our estimate

of the standard error is accurate enough before we go on to try and develop sample

size calculations. To investigate this further we carry out a simulation study to compare

various possible estimators of SE(D) in a systematic way.

3.3.1 Aims

The aim of this investigation is to explore the best way to estimate SE(D), using simu-

lated data. Specifically, we wish to determine more conclusively whether the method in

Royston and Sauerbrei (2004) and used by the Stata command str2d (producing a quan-

tity we term SE(D)cox) is underestimating the true value of SE(D). If we do find that

this is the case, we hope to gain some idea of the magnitude of the underestimation and

whether any data or model parameters influence this. We also wish to investigate an

alternative estimator of SE(D), a bootstrap estimator which we term SE(D)boot.

3.3.2 Methods

Broadly, a survival dataset and normally distributed model PI is simulated; D and SE(D)cox

are calculated for the model using str2d and SE(D)boot is calculated using bootstrapping.

This is repeated 500 times and the empirical standard error generated: the standard de-

viation of the 500 values of D from the repetitions. We will call D’s empirical standard

error SD(D).

Simulations of survival data are performed in Chapters 5 and 6 as well as this chap-

ter, and here we outline in detail the method used to produce independent identically

distributed (iid) datasets for all of these studies.

Generation of simulated time-to-event data in this thesis

Generation of survival times The method of simulation used is that described by Ben-

der et al. (2005), who described how a random variable with U[0,1] distribution (called
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U) can be transformed to survival times Ts of the Cox model by using the equation

Ts = H�1
0 [� log(U) exp(�β0X)], (3.1)

where H0 is the baseline (cumulative) hazard function (the precise form of which depends

on the desired distribution of survival times), X is the vector of covariates and β is the

vector of regression coefficients (log hazard ratios). In all simulations performed in this

thesis, we wish to use an exponential distribution for survival times and thus set the

baseline hazard to be a scalar θ; thus the cumulative baseline hazard function is H0(t) =

θt and its inverse H�1
0 (t) = θ�1t. Specifically, we set θ = 0.002 for most simulations. Since

simulating a full multivariable vector is complex both computationally and in terms of

interpretation, we chose to instead use a surrogate variable X for the multivariable index,

so β and X were effectively scalar. The surrogate variable X was simulated as normally

distributed: X � N(0, 1), so that the resulting prognostic index βX was also normal.

Generation of censoring times In many of our simulations we wish to consider cen-

sored data. We obtained random non-informative right-censoring by using the equation

3.1 to simulate a censoring time (Tc) for each record, again these are exponentially dis-

tributed (note that Tc were not dependent on x). Records where Tc < Ts were considered

censored at time Tc; records where Ts < Tc were considered failures at time Ts. The de-

sired censoring proportion was achieved by changing h0; the baseline hazard required

depends on β and was determined through an iterative process.

Detailed protocol for investigation of SE(D)

1. Generate dataset with N records and approximate censoring proportion cens using

the method outlined above. Note this means the number of events e is not fixed.

2. Calculate D and SE(D)cox for the model PI using str2d. Note, D is not adjusted for

optimism in this simulation or any other simulations presented in this thesis.

3. Bootstrap 500 samples from the simulated dataset. For each sample, calculate D for

the model PI in the bootstrap sample.
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4. Calculate and record the standard deviation of D from the 500 bootstrap samples;

this is SE(D)boot.

5. Repeat steps (1) to (4) 500 times.

6. Calculate the empirical standard error SD(D): the standard deviation of D over the

500 simulations.

These steps will be repeated for various values of N (150, 300, 600, 1000, 2000), censor-

ing proportion cens (0%, 40%, 80%) and β (0.5, 1.0, 2.0). Note that ‘manual’ bootstrapping

as implemented in step (3) is not a requirement of this method; we could have used the

bootstrap variance option available in str2d.

3.3.3 Results

Tables 3.1, 3.2 and 3.3 contain the results of this investigation for β=0.5, 1.0 and 2.0 respec-

tively. Note table column headers: N is the number of patients, e is the average number

of events in the 500 datasets simulated, D is the average value of D over the 500 simu-

lations, SD(D) refers to the standard deviation of D over the 500 simulations, SE(D)cox

refers to the mean of the 500 values of SE(D)cox produced by the str2d command, and

SE(D)boot refers to the mean of the 500 values of SE(D)boot. The biases presented for the

estimators of SE(D) are calculated relative to SD(D), these were calculated using the

Stata command simsum (White, 2010).

These tables show clearly that SE(D)cox is almost always negatively biased (in 44 out

of the 45 combinations of parameters in Tables 3.1, 3.2 and 3.3 it is lower than SD(D))

which means the variance of D is being consistently underestimated, as suspected. The

magnitude of the underestimation increases markedly with β. In almost all cases SE(D)boot

is less biased than SE(D)cox and the biases are both positive and negative (although

slightly more often negative). The magnitude of bias in SE(D)boot does not appear to

change with β in relative terms, although there is a slight increase in absolute terms with

β.
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These results are summarized in Figure 3.20, which shows the absolute bias in SE(D)cox

and SE(D)boot over the different values of β, censoring and sample size. The increas-

ing bias in SE(D)cox as D increases – and lack of corresponding increase in the bias of

SE(D)boot – is clear to see. Figure 3.20 also shows the decrease in bias with increasing

sample size in both estimands; although it is not always the case that the largest sample

size considered here (n = 2000) has the lowest bias. It also shows that SE(D)boot may still

be slightly negatively biased for large D.

β=0.5 (D=0.8) β=1.0 (D=1.6) β=2.0 (D=3.2)
0% 40% 80% 0% 40% 80% 0% 40% 80%cens level:

­0.10

­0.05

0.00

SE(D)cox SE(D)boot

Bias in SE(D)cox and SE(D)boot compared to SD(D)

Figure 3.20: Absolute bias in SE(D)cox and SE(D)boot. Hollow markers represent bias of
SE(D)boot and solid markers SE(D)cox

Table 3.4 gives the mean absolute and relative bias for each combination of censoring

and β (across all sample sizes). It shows that for low β (and hence D), the difference

between SE(D)cox and SD(D) is fairly low. For D = 0.8, all mean absolute biases are

<0.006. The bias increases as D increases; with D = 3.2 the value of SE(D)cox is only 80%

of the value of SD(D).
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Absolute bias Relative bias
cens cens

β (True D) 0% 40% 80% β (True D) 0% 40% 80%
0.5 (0.8) -0.0058 -0.0039 -0.0047 0.5 (0.8) 0.941 0.962 0.979
1.0 (1.6) -0.0144 -0.0137 -0.0217 1.0 (1.6) 0.879 0.900 0.922
2.0 (3.2) -0.0386 -0.0430 -0.0616 2.0 (3.2) 0.792 0.801 0.808

Table 3.4: Mean absolute and relative bias of SE(D)cox

Table 3.5 shows the mean absolute and relative bias between SE(D)boot and SD(D)

for each combination of censoring and β. The absolute bias is much smaller than seen

with SE(D)cox in Table 3.4, and the relative bias is much better too: SE(D)boot is no worse

than 97.7% of SD(D) even for D = 3.2, compared to 80% for SE(D)cox.

Absolute bias Relative bias
cens cens

β (True D) 0% 40% 80% β (True D) 0% 40% 80%
0.5 (0.8) -0.0019 0.0000 -0.0023 0.5 (0.8) 0.985 0.996 0.992
1.0 (1.6) -0.0015 -0.0010 -0.0070 1.0 (1.6) 0.993 0.993 0.986
2.0 (3.2) -0.0029 -0.0029 -0.0052 2.0 (3.2) 0.991 0.990 0.977

Table 3.5: Mean absolute and relative bias of SE(D)boot

3.3.4 Conclusion

The simulation study reported in this section shows that there is an important differ-

ence between the SE(D)cox calculated by the str2d command and the ‘best’ estimate of

SD(D) from 500 repetitions. SE(D)cox almost consistently underestimates SD(D) but

the magnitude of the underestimation varies: it is smaller with lower D. Bootstrapping

SE(D) appears to correct the problem well, with estimates consistently much closer to the

SD(D) and not much affected by the magnitude of D. Although here the bootstrapping

was done manually, the str2d command does include an option to calculate bootstrap

standard error.
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3.4 Distribution and magnitude of D

Before beginning to develop any formal sample size calculations it is important to know

the sampling distribution of D and confirm its magnitude in relation to β. In their (2004)

paper on D, Royston and Sauerbrei suggested that with a normally distributed prognos-

tic index (PI) X � N(0, 1), since var(βX) = β2, β estimates the standard deviation of the

PI values, and thus D = βκ = β
p

8/π. We wish to confirm this.

Both these questions (distribution of D and relationship of D to β) can be investigated

using simulation data obtained in Section 3.3.

We also conduct a small bootstrap study to investigate the sampling distribution of D

in various real datasets. The method for this bootstrap study is:

1. Select a ‘best’ model from the full dataset using MFP, with model selection α=0.05.

Save this model (variables & coefficients).

2. Fit the saved model to the dataset and calculate D.

3. Bootstrap 500 samples from the dataset. For each sample fit the saved model to the

bootstrap sample and calculate D for this model in the bootstrap sample.

These steps are repeated for a number of real datasets (all described in Appendix B).

3.4.1 Results

Simulation study

Figure 3.21 shows the distribution of the 2000 values of D found in Section 3.3 for every

combination of cens and β. In all cases values are approximately normally distributed

and appear to peak at D ' βκ. The exception to this is for the smallest datasets (N =150

and 300) with 80% censoring, where there is a slight positive skew to the distribution.

This is likely due to the very small number of events in these datasets (e =30 and 60)

producing overfitting in a few simulated datasets. As would be expected, the spread of

D values is wider for lower values of N, and for higher proportions of censoring, as the

number of events decreases.

The mean D from Tables 3.1, 3.2 and 3.3 for the smallest (N = 150) and largest (N =

2000) datasets simulated are given in Table 3.6 along with the bias (compared to βκ)
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0 .8 1.6

0% cens

0 .8 1.6

40% cens

0 .8 1.6

80% cens

β=0.5
.8 1.6 2.4

0% cens

.8 1.6 2.4

40% cens

.8 1.6 2.4

80% cens

β=1.0
2 3.2 4.4

0% cens

2 3.2 4.4

40% cens

2 3.2 4.4

80% cens

β=2.0

Figure 3.21: Sampling distribution of D from simulated data. From top to bottom, rows
correspond to N = 150, 300, 600, 1000 and 2000.

1 1.3 1.6 1.7 2.5 3.4 1.5 2.1 3.1 .9 1.1 1.3 .6 .8 1 .5 .9 1.1 .8 1.1 1.5 1.9 2.7 3.5 .8 1.5 2.1 .9 1.2 1.5 1 1.2 1.5 1.6 2 2.7 1 1.3 1.5

.7 .9 1.2 1.2 1.41.5 1 1.2 1.4 .4 .8 1.1 1.7 2.1 2.4 1.3 1.6 1.9 1.4 1.7 2 1.5 1.7 2 1.71.8 2 1.81.9 2.1 1.6 1.8 1.9 1.7 1.9 2.1 1.7 1.9 2

Figure 3.22: Sampling distribution of D for 26 real datasets (500 bootstraps)

and standard error of this bias. This shows that the mean of D over the 2000 simulated

datasets does indeed closely approximate βκ for all combinations of β and censoring and

that there is no bias to be concerned about.

Real data study

Figure 3.22 shows the sampling distribution for the real datasets; they are all quite nor-

mally distributed.

3.4.2 Conclusion

D appears to be normally distributed in both simulated and real datasets. For our simu-

lations with model PI simulated as X � N(0, 1), with log hazard ratio β, D ' βκ.

The spread of D across identically and independently distributed (iid) simulated

datasets, and across bootstraps of the real datasets, is quite high when N is small. We

should be aware that by chance a dataset being used for a study could be in the tails of

this theoretical distribution and so the estimate of D too high or too low.
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β βκ (expected D) censoring N D mean bias se of bias
0.5 0.7978 0% 150 0.8038 0.0059 0.0072

2000 0.8023 0.0044 0.0019
40% 150 0.7999 0.0020 0.0149

2000 0.7990 0.0011 0.0024
80% 150 0.8375 0.0396 0.0149

2000 0.8007 0.0028 0.0037
1.0 1.5958 0% 150 1.6049 0.0091 0.0094

2000 1.6008 0.0050 0.0025
40% 150 1.5896 -0.0612 0.0109

2000 1.5950 -0.0007 0.0029
80% 150 1.6203 0.0246 0.0186

2000 1.5972 0.0014 0.0043
2.0 3.1915 0% 150 3.1600 -0.0315 0.0145

2000 3.1932 0.0017 0.0036
40% 150 3.1632 -0.0283 0.0168

2000 3.1854 -0.0062 0.0045
80% 150 3.2411 0.0495 0.0262

2000 3.1940 0.0025 0.0070

Table 3.6: Mean, bias and se of bias of D from simulated datasets with N=150,2000: by β
and censoring proportion

3.5 Discussion

The three investigations of D presented in this chapter were designed as ground work to

help us develop sample size guidelines based on D.

In Section 3.2 we considered the behaviour of D as sample size changes, both in terms

of number of events and EPV. This investigation showed that a dataset with 10 EPV –

widely viewed as sufficient for multivariable modelling – is not likely to produce reliable

estimates of model prognostic value (in terms of D). We found that such a small dataset

may easily result in an estimate of D containing as much as 50% optimism. We conclude

that at least 20 or 30 EPV, or at least 200-300 events, is a preferable rough rule in order to

minimise optimism and have a better chance of estimating D with reasonable accuracy.

However, another conclusion from this investigation is that a blanket rule of thumb based

on number of events, or EPV, is too coarse to give a reliable, efficient estimate of D in

every situation. A formal calculation will be better able to take into account the nuances

of different datasets and so this is what we aim to develop in the next chapters.

Also in this investigation, we considered the optimism present in an estimate of D.

We found that Harrell et al.’s (1996) bootstrap method was quite time consuming to im-

plement here as the MFP model must be reselected from scratch in each bootstrap dataset.

75



As such, for each combination of dataset, n, and p we only selected one subdataset, and

only used 100 bootstraps, but the whole investigation still took months rather than weeks

or day to complete. Using the technique on a single dataset should be feasible in most

cases, however, and could be a useful tool to temper expectations when a high D is

reported from an automatically selected model, especially if the dataset is quite small.

Royston and Sauerbrei (2004) suggests that this method may overestimate optimism in

D , but we have not investigated this concern here.

Section 3.3 showed that the method used by the Stata command str2d to estimate the

standard error of D consistently underestimates this quantity, and the underestimation

is worse for higher values of D. We found that estimating the standard error using a

bootstrap gives a much more accurate result with any errors being both positive and

negative. As the bootstrap method is straightforward to implement and quick to run on

a single dataset, we would recommend it for use when an accurate estimate of SE(D)

is required. Since it is likely that any formal sample size calculation will include the

standard error of D as a term, it is important that we are able to calculate it accurately.

Finally, in Section 3.4 we confirmed that D has a normal sampling distribution. We

also confirmed that if βX is the normally distributed prognostic index, D ' βκ
p

var(X),

so that in our simulation studies where X � N(0, 1), the D resulting from a given β is

roughly 1.6β. The only small deviations from this are likely to be when a dataset contains

very few events, or where β and hence D is close to 0, so that the lower bound of D at

zero causes skewing. This information is likely to be important for developing formal

sample size calculations, which we move on to do in the next few chapters.
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Chapter 4

A new structural parameter, λ

4.1 Introduction

In Chapter 3 we considered the behaviour of D with respect to changing sample size. We

were not able to find a single rule of thumb for the sample size required to estimate D

with reasonable precision, and so concluded that a more customisable solution would be

needed. This motivated us to consider more formal sample size calculations which could

be applied across a variety of scenarios, and the development and validation of these

calculations are described in detail in Chapters 5 and 6.

During the development of these D-based sample size calculations, we increasingly

came to see the importance of a structural parameter which we have termed λ. For a

survival dataset and model of interest, λ is the product of the number of events in the

dataset and the variance of D (for that particular dataset and model). This parameter

seemed to be pivotal in our sample size calculations and so to ensure that Chapters 5 and

6 are as clear as possible to the reader, we will first introduce and define λ, look at some

of its properties and also investigate its relationship with D.

4.2 Definition of λ

λ is the product of the number of events in the dataset and the variance of D; that is

λ = e � var(D).
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As e increases, var(D) decreases; so we may speculate that λ may not have a wide range

of values. Indeed, the assumption of a constant λ for a particular dataset and model is key

to developing sample size calculations based on D. We outline and test this assumption

in Sections 4.3 and 4.4.

The variance of λ can be written

var(λ) = var(e � var(D))

= e2 � var(var(D))

and thus its standard error as SE(λ) = e � SE(var(D)). The nested bootstrap required to

estimate SE(var(D)) with most accuracy is time consuming, so instead

SE(λ) = e � SEboot(var(D)cox)

is used in this chapter, where var(D)cox = (SE(D)cox)2, and SEboot(var(D)cox) is the boot-

strap standard error of var(D)cox.

4.3 λ proportionality assumption

The proportionality assumption for λ is as follows. For a given model with a certain ‘true’

value of D, the ratio of the variances σ2
1, σ2

2 of D in two datasets with differing numbers

e1, e2 of events but sampled from the same distribution of covariates equals the reciprocal

of the ratio of the corresponding numbers of events:

σ2
1

σ2
2
=

e2

e1
.

This is reasonable, since the variance of a statistic is inversely related to the information

in the data, which in a censored time-to-event sample is represented by the number of

events (Volinsky and Raftery, 2000). Under this proportionality assumption we can write

λ = e1σ2
1 = e2σ2

2.

Note that we don’t expect or require λ to be constant across different datasets and models.

We will now test this assumption with empirical work and simulation.
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4.4 Testing proportionality assumption for λ: real data

We have stated the assumption that for a particular model used on data with a particu-

lar covariate structure, λ is independent of sample size (number of events). In order to

test this assumption and also investigate the sampling error of λ we will carry out two

investigations. The first essentially calculates λ for subsamples of varying sizes of a real

dataset and compares the results; the second (described in Section 4.5) utilises simulated

data.

4.4.1 Methods

For investigation of λ in real datasets, the following procedure was used.

1. Select a ‘best’ model from the full dataset using MFP, with model selection α=0.05.

Save this model (variables & coefficients).

2. Choose integers e1, e2, ..., ej such that 0 < e1 < e2 < ... < ej < e , where e is the

number of events in the full dataset. Let N be the total number of patients in the

full dataset. It follows that N � e is the number of censored observations in the

full dataset. Each integer number of events chosen e1, e2, ..., ej has a corresponding

subdataset size N1, N2, ..., Nj such that ei/Ni = e/N for all i 2 1, 2, ..., j.

3. From the full dataset, bootstrap a subdataset of size Ni, stratified on event, so that

it contains exactly ei events and exactly Ni � ei censored observations. This means

that the censoring proportion is the same in each subdataset as in the full dataset.

4. Bootstrap 500 samples from the subdataset. For each sample fit the saved model to

the bootstrap sample and calculate D for this model in the bootstrap sample. Also,

for each sample record var(D)cox, the variance of D using the Cox model method

in str2d.

5. Calculate and record the standard deviation of D from the 500 bootstrap samples;

this is SE(D)boot.

6. Calculate and record the standard deviation of var(D)cox from the 500 bootstrap

samples; this is SEboot(var(D)cox) and is used to estimate the standard error of λ,

SE(λ) = e � SEboot(var(D)cox).

79



7. Calculate λ = ei � SE(D)boot.

8. Repeat steps (3) to (7) 500 times for each value of ei chosen in step 1 and also the

full dataset with N patients and e events.

9. Calculate a mean value of λ and SE(λ) over the 500 sub-datasets bootstrapped.

This procedure is repeated for six datasets described in Appendix B (FBC, PBC2, LEG,

RBC, MYE, SEER_CT).

4.4.2 Results

Table 4.1 gives pertinent results from this investigation; namely mean D, mean SE(D)boot,

mean λ and mean SE(λ) from the 500 bootstrapped subdatasets. It suggests that λ is

higher for smaller sub-datasets, but then decreases and stabilises as the sub-datasets get

larger.

Figure 4.1 shows the values of λ obtained from the 500 bootstrap samples for each

sample size of each of the six datasets. This shows that there can be wide variation in λ

between datasets from the same population; and this variation is greater for smaller boot-

strap datasets, as would be expected. These graphs also appear to show a positive skew

to the distribution of λ for the smaller subdataset sizes; again this would be expected

as this quantity is proportional to a variance. Generally once e > 100 the distribution

appears fairly symmetrical.

Our estimates of SE(λ) show that as expected, the sampling error of λ reduces as

the dataset size increases. Figure 4.2 shows that to obtain a SE(λ) of 10% or less of the

magnitude of λ, at least 150 events are needed. For a SE(λ) of 5% of the value of λ, at

least 500 events are needed, and only very small reductions in SE(λ) are obtained by

increasing the sample size beyond this.
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Figure 4.1: Distribution of λ over 500 bootstrapped datasets of each size, for 6 real
datasets

Dataset Patients Events EPV D SE(D)boot λ SE(λ)
FBC 115 50 6.3 1.29 0.278 3.942 0.649
FBC 229 100 12.5 1.25 0.191 3.666 0.408
FBC 344 150 18.8 1.26 0.155 3.631 0.324
FBC 459 200 25.0 1.26 0.134 3.621 0.277
FBC 574 250 31.3 1.26 0.119 3.570 0.244
FBC 686 299 37.4 1.26 0.109 3.578 0.222
LEG 82 40 4.4 2.15 0.431 7.758 1.826
LEG 144 70 7.8 2.08 0.313 7.042 1.164
LEG 200 97 10.8 2.07 0.267 7.113 0.979
MYE 62 50 4.5 0.78 0.293 4.417 0.628
MYE 123 100 9.1 0.78 0.206 4.309 0.412
MYE 247 200 18.2 0.78 0.146 4.311 0.285
MYE 494 400 36.4 0.77 0.103 4.232 0.197
MYE 740 600 54.6 0.77 0.084 4.245 0.161
MYE 1056 856 77.8 0.77 0.070 4.266 0.135
PBC2 82 40 6.7 2.47 0.483 9.593 2.081
PBC2 144 70 11.7 2.55 0.362 9.333 1.393
PBC2 216 105 17.5 2.53 0.292 9.077 1.052
RBC 98 50 5.6 1.14 0.301 4.631 0.674
RBC 196 100 11.1 1.13 0.210 4.453 0.451
RBC 589 300 33.3 1.11 0.119 4.274 0.251
RBC 982 500 55.6 1.11 0.091 4.199 0.192
RBC 1473 750 83.3 1.09 0.074 4.113 0.153
RBC 1964 1000 111.1 1.10 0.064 4.125 0.133
RBC 2456 1250 138.9 1.09 0.057 4.092 0.119
RBC 2982 1518 168.7 1.10 0.052 4.093 0.109

SEER_CT 837 80 5.7 1.85 0.199 3.192 0.429
SEER_CT 1569 150 10.7 1.84 0.141 3.003 0.296
SEER_CT 3138 300 21.4 1.83 0.099 2.953 0.202
SEER_CT 5230 500 35.7 1.83 0.076 2.860 0.153
SEER_CT 7322 700 50.0 1.83 0.064 2.840 0.128
SEER_CT 9414 900 64.3 1.83 0.056 2.810 0.112
SEER_CT 11393 1084 77.4 1.83 0.051 2.820 0.101

Table 4.1: Results of investigation of λ in real datasets
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Figure 4.2: SE(λ) as proportion of λ vs number of events, for 6 real datasets

4.4.3 Conclusion

This investigation using real data has shown that λ appears to converge to a stable ‘true’

value as the number of events increases. This suggests that our assumption about the

constant nature of λ in a dataset is correct as long as the dataset is above a certain size.

Additionally, it has flagged that even in supposedly similar datasets λ can vary quite

widely, although this variability reduces as N increases. If more than 150 events are

present in the dataset the standard error of λ is likely to be less than 10% of the value of

λ; by increasing the sample size to 500 or more events the standard error can be reduced

further to 5%. Due to a positive skew it may be slightly more likely that an estimate of λ

is too large, rather than too small, if fewer than 100 events are present in the dataset.
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4.5 Testing proportionality assumption of λ: simulation

4.5.1 Methods

A simulation study was performed to investigate the proportionality assumption of λ

further and hopefully strengthen and generalise the results of Section 4.4. In this study

we generate differently sized (but identically distributed) datasets and compare λ for

each. Again, SE(D)boot was used to calculate λ. The protocol used was as follows.

1. Generate dataset with N records and approximate censoring proportion cens using

the method outlined in 3.3.2.

2. Calculate D for the model.

3. Bootstrap 500 samples from the simulated dataset. For each sample, calculate D

for the model PI in the bootstrap sample. Also, for each sample record var(D)cox,

the variance of D using the Cox model method in str2d.

4. Calculate and record the standard deviation of D from the 500 bootstrap samples;

this is SE(D)boot for the dataset.

5. Calculate and record the standard deviation of var(D)cox from the 500 bootstrap

samples; this is SEboot(var(D)cox) and is used to estimate the standard error of λ,

SE(λ) = e � SEboot(var(D)cox).

6. Calculate λ = e � (SE(D)boot)
2.

7. Repeat steps (1) to (6) 500 times.

8. Calculate a mean value of λ and SE(λ) over the 500 sub-datasets selected.

These steps will be repeated for various values of N (150, 300, 600, 1000, 2000), cens

(0%, 40%, 80%), and β (0.5, 1.0, 2.0).

4.5.2 Results

Tables 4.2, 4.3 and 4.4 contain the results of this investigation for β = 0.5, 1.0 and 2.0

respectively. The results agree with the findings in Section 4.4.2 that mean λ is slightly

higher for the smallest datasets, but decreases and stabilises as sample size increases.
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For the datasets with β = 0.5 (D = 0.8), the magnitude of the difference in λ between

the smallest and largest subdatasets is only about 0.3. For the datasets with β = 1.0

(D = 1.6), the difference is slightly greater, at between 0.3-0.8, and for the datasets with

β = 2.0 (D = 3.2) it is greater still, at 0.65 when the censoring rate = 0%, but as high

as 2.4 when the rate is 80%. For most of the combinations considered, a sample size of

300-500 events seemed adequate to be able to assume a constant value of λ. We also note

a decrease in the value of λ with increasing censoring.

Figure 4.3 shows the distribution of values of λ across the 500 identically simulated

datasets for each sample size, for β = 1.0, β = 0.5 and β = 2.0. It shows how λ can vary

among identically distributed data, and confirms the result in Section 4.4.2 that the dis-

tribution of λ appears positively skewed, especially for lower values of n. The different

scale of the y axis in the three rows of the graphs should be noted; λ is higher for larger

β, so the scales are different.

The estimated standard error of λ was quite high in the smallest datasets but drops

quickly as the number of events increases. Similarly to the real datasets, it seems that to

obtain a SE(λ) of 10% or less of the magnitude of λ, at least 150 events are needed, and

for a SE(λ) of 5%, 500 events are needed (shown in Figure 4.4).

Mean over 500 simulations
β (True D) Censoring N e D SE(D)boot λ SE(λ)
0.5 (0.8) 0% 150 150 0.80 0.155 3.662 0.335

300 300 0.80 0.108 3.502 0.232
600 600 0.81 0.076 3.502 0.166
1000 1000 0.81 0.059 3.452 0.129
2000 2000 0.80 0.041 3.433 0.092

40% 150 90.0 0.81 0.192 3.357 0.421
300 180.8 0.80 0.133 3.221 0.279
600 360.8 0.80 0.093 3.144 0.197
1000 600.2 0.80 0.072 3.158 0.153
2000 1199.7 0.80 0.051 3.111 0.109

80% 150 29.6 0.83 0.319 3.021 0.746
300 59.5 0.80 0.223 2.973 0.447
600 119.0 0.81 0.155 2.859 0.298
1000 197.3 0.80 0.119 2.815 0.227
2000 396.8 0.80 0.084 2.800 0.159

Table 4.2: Results of simulation investigation into λ: β = 0.5
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Mean over 500 simulations
β (True D) Censoring N e D SE(D)boot λ SE(λ)
1.0 (1.6) 0% 150 150 1.61 0.199 6.042 0.565

300 300 1.60 0.139 5.873 0.385
600 600 1.60 0.098 5.735 0.262
1000 1000 1.59 0.076 5.728 0.203
2000 2000 1.60 0.053 5.707 0.144

40% 150 88.9 1.60 0.239 5.126 0.655
300 178.8 1.61 0.166 4.954 0.438
600 357.5 1.60 0.115 4.783 0.299
1000 596.7 1.59 0.090 4.796 0.232
2000 1192.9 1.60 0.063 4.750 0.164

80% 150 30.0 1.60 0.375 4.252 1.047
300 59.4 1.62 0.257 3.937 0.626
600 119.8 1.61 0.179 3.739 0.402
1000 119.4 1.59 0.136 3.693 0.304
2000 398.1 1.60 0.095 3.613 0.212

Table 4.3: Results of simulation investigation into λ: β = 1.0

Mean over 500 simulations
β (True D) Censoring N e D SE(D)boot λ SE(λ)
2.0 (3.2) 0% 150 150 3.16 0.314 14.984 1.524

300 300 3.17 0.219 14.568 0.998
600 600 3.18 0.155 14.512 0.688

1000 1000 3.18 0.120 14.431 0.526
2000 2000 3.18 0.085 14.327 0.368

40% 150 89.4 3.18 0.371 12.476 1.757
300 178.8 3.17 0.260 12.146 1.122
600 358.4 3.18 0.181 11.853 0.787

1000 596.3 3.17 0.140 11.659 0.577
2000 1193.5 3.19 0.099 11.753 0.408

80% 150 30.2 3.22 0.582 10.424 3.090
300 60.0 3.23 0.390 9.198 1.577
600 120.1 3.19 0.264 8.416 0.961

1000 199.8 3.20 0.205 8.478 0.727
2000 401.4 3.19 0.144 8.393 0.499

Table 4.4: Results of simulation investigation into λ: β = 2.0
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4.5.3 Conclusion

This more systematic investigation of λ and its relationship with sample size has con-

firmed the findings of the investigation using real data. λ is higher for smaller datasets

and decreases as the number of events increases (with the distribution of data kept the

same); at first steeply and then more gently. The lower the D of the dataset and model,

the lower the absolute difference between the estimates of λ in the smallest and largest

subdatasets. For most situations, 300–500 events seem to be required to obtain a reason-

ably reliable estimate of λ. Additionally, the value of λ decreases as the proportion of

censoring in the dataset increases (everything else being equal). The heterogeneity seen

in estimates of λ across identically simulated datasets can be quite large, especially in

smaller datasets and this should be borne in mind; two studies of identical (small) size,

performed in similar populations, may give quite different estimates of λ. As for the real

datasets, a sample size of 150 or more events gives a SE(λ) of 10% of the value of λ, and

500 events should give a SE(λ) of 5% or less.

4.6 Estimating λ through simulation or bootstrap

The estimates of SE(λ) found in the previous two sections allow us to consider how many

simulations or bootstraps are required to estimate λ. According to Burton et al. (2006), to

estimate a quantity with standard error σ to within a desired accuracy δ at the two-sided

α% level,

B =
� z1�α/2σ

δ

�2
(4.1)

bootstraps are required, where z1�α/2 is the 1 � α/2 quantile of the standard normal

distribution. If we wish to express the level of accuracy as a proportion (p) of the value

of the parameter, for λ this translates to

B =
�

z1�α/2SE(λ)
pλ

�2

.

Inputting our estimates of λ from real data in Table 4.1, if we wish our bootstrap

estimate to be within 1% of the value of λ (at the two-sided 5% level), then between

30 and 2100 bootstraps would be required for the various combinations of parameters.
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Rearranging equation 4.1 tells us that the 500 bootstraps actually used in the study should

gave us accuracy of between 0.2% and 2% of the value of λ, which is acceptable.

Assuming that equation 4.1 also holds for simulation studies, for the estimates of

λ and SE(λ) from Tables 4.2-4.4 we observe that between 25 and 3000 simulations are

required for estimates of λ to have 1% accuracy. Again, the 500 simulations used should

result in accuracies of between 0.2% and 2.6%, according to equation 4.1.

How many bootstraps for SE(D)boot?

We can also use equation 4.1 to calculate a rough rule for the number of bootstraps re-

quired to estimate SE(D)boot.

We saw in Figures 4.2 and 4.4 that SE(λ)
λ ' 0.1 when there are around 150 events in

the dataset, and SE(λ)
λ ' 0.05 for around 500 events. Since

SE(λ)
λ

=
e � SE(var(D))

e � var(D)

=
SE(var(D))

var(D)
,

it holds that that SE(var(D)) ' 0.1var(D) for datasets of �150 events and SE(var(D)) '

0.05var(D) for �500 events. Thus the number of bootstraps required to estimate var(D)

to an accuracy of proportion p of its value is

B =

�
z1�α/2SE(var(D)boot)

p � var(D)boot

�2

=

�
z1�α/2 � 0.1

p

�2

for datasets of �150 events, and for datasets of �500 events

B =
�

z1�α/2 � 0.05
p

�2

.

Note that as these equations refer to estimating var(D)boot, a desired accuracy level for

SE(D)boot must be squared before being inserted into the equation as p.

These equations result in the following. If α = 0.05, then for datasets of around �150

events, 6147 bootstraps are required for 5% accuracy in the estimate of SE(D)boot, and 384
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bootstraps for 10% accuracy. For datasets of �500 events, 1537 bootstraps are required

for 5% accuracy and 96 for 10% accuracy.

The 500 bootstraps we have used so far for estimating SE(D)boot give accuracy of 6.6%

for a 500 event dataset and 9% for a 150 event dataset. We feel these levels are acceptable.

For datasets with less than 100 events, Figures 4.2 and 4.4 suggest that SE(var(D)) �

0.15var(D); in this case 500 bootstraps could lead to accuracy of up to� 13% of the value

of SE(D)boot . If this is felt to be too high, 1000 bootstraps will give an accuracy of around

10%, but up to 25000 bootstraps would be required to bring this down to 5%.

4.7 Relationship between λ and D

Since λ is defined by var(D) we expect there to be a relationship between λ and D. As

it may be easier to estimate D for a dataset than var(D), such a relationship may give us

an easier way to estimate λ. To try and uncover this relationship a simulation study is

performed.

4.7.1 Aim

A simulation study is performed to produce data which will be used to investigate and

describe the relationship between λ and D. The proposed relationship will then be as-

sessed in simulated datasets with a different censoring pattern and also in real datasets

to see how generalisable it is.

4.7.2 Methods

This is similar to the procedure outlined in 4.5.1; but we chose to use SD(D), the empirical

standard error of D, in the calculation of λ in order to get more accurate estimates. We

also repeated the study 5000 times to try and ensure smooth results which would make

any pattern easily visible.

1. Generate dataset with 5000 records and approximate censoring proportion cens us-

ing the method outlined in 3.3.2.

2. Calculate D for the model.

3. Repeat steps (1) and (2) 5000 times.
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4. Calculate the empirical standard error SD(D) from the 5000 estimates of D; calcu-

late λ = e � SD(D)2.

These four steps were repeated for censoring rates of 0%, 20%, 40%, 60% and 80%;

and closely spaced values of the log hazard ratio β: 0.1, 0.2 and then in steps of 0.2 up to

β = 3.4, which corresponds to D = 5.4.

The results of the simulation study will be inspected and we will attempt to describe

the relationship numerically using fractional polynomials to regress λ on D.

4.7.3 Results

Figure 4.5 shows graphically the results of this simulation study. There is clearly a strong

positive relationship between λ and D, and increasing the proportion of censoring ap-

pears to reduce the magnitude of λ.
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Figure 4.5: Plot of λ vs D from simulation study, for five censoring rates

Regressing λ on D with additional fractional powers over the full range of D tested

(0.1-5.4) we found the optimal regression model to be

c0 + c1D1.9 + c2(D � cens)1.2,

where c0 = 2.64, c1 = 1.32, and c2 = �1.98. This resulted in a R2
adj = 99.8%.

Figure 4.6 shows the accuracy of this model’s predictions compared to the results of

the simulation study for censoring levels of 0%, 40%, 80%. Although it fits very well over

the full range of D, the fit of this model to the lower ranges of D (where real life data is
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tion study results, over range D � 3.2

more likely to lie) is slightly poorer, especially for higher censoring levels. This is shown

in Figure 4.7, which shows the plots in Figure 4.6 zoomed in to the range D � 3.2.

For a better estimate of λ over this more likely range of D, we regressed λ on D over

the range D � 3.2, which corresponds to a log hazard ratio of up to β = 2. The resulting

optimal model was

c0 + c1D1.9 + c2(D � cens)1.3, (4.2)

where c0 = 2.66, c1 = 1.26, and c2 = �1.65. This resulted in a better fit over the range

D � 3.2 (as shown in Figure 4.8); R2
adj = 99.7% for this range. The fit is not quite so good

over the full range of D as shown in Figure 4.9; the model appears to underestimate λ

for high D, low censoring scenarios; and slightly overestimate λ when there is high D

and high censoring. However, the errors in the higher range of D are quite small. In the

trade off between a good fit for the lower ranges of D and for the higher ranges of D, we

must choose a better fit for the lower ranges as this is where the vast majority of real life

datasets will lie.

4.7.4 Performance in simulated data with administrative censoring

To check the generalisability of this model to datasets with different patterns of censoring

we generated datasets with administrative censoring only, and compared the observed λ

to the value predicted by equation 4.2 above. To simulate datasets of patients with purely

administrative censoring we followed this procedure.

1. Simulate N survival times (Ts) by following the procedure in 3.3.2.
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Figure 4.9: Alternative model: predicted λ from equation 4.2 vs D, overlaid with simula-
tion study results

2. Calculate a censoring time Tc for the nth record as follows:

Tc =
n
N

r+ f

where r was the length of the study recruitment period and f the study follow up

period. This assumes that entry of patients to the trial was uniformly staggered

over the recruitment period, and that all patients were censored at the end of the

follow up period if they had not failed by this time.

3. Records where Tc < Ts were considered censored at time Tc; records where Ts < Tc

were considered failures at time Ts. No other censoring was performed.

Here, r was set to 2 years and f to 4 years to reflect a likely study duration (but

this particular choice of r and f was essentially arbitrary), and generated datasets of

size N = 2000. Steps (1) to (3) were repeated 1000 times for each β value of 0.2–2.0 in

steps of 0.2, and censoring levels of 40% and 80%. The desired censoring proportion was

achieved by changing the baseline hazard of the survival times Ts; the hazard required is

dependent on β and was determined through an iterative process.

Figure 4.10 shows the observed λ marked against the line of equation 4.2, for both the

full range of D and for D � 3.2 only. Equation 4.2 fits this data remarkably well, in fact

there is little difference in fit between this data and the data the model was developed on.

Clinical trials are often used as data sources for prognostic studies, and since censoring

in such datasets is mostly administrative, it is reassuring that equation 4.2 works well for

simulated data with this pattern of censoring.
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Figure 4.10: Predicted λ from equation 4.2 vs D, overlaid with observed λ from simula-
tion study with administrative censoring

4.7.5 Performance in real data

Having developed and checked this model on simulated data with different censoring

patterns, we must assess its performance in real data. To do this we use the 26 datasets

already described and select models using MFP with p = 0.05 (using the Stata mfp com-

mand lines given in Appendix B).

Table 4.5 presents the following quantities for each dataset. λtrue is the λ calculated

in the dataset for the MFP model (using SE(D)boot), note that this is not a mean λ over

bootstraps, but rather the single value of λ calculated from the original dataset; this is

why the values of λ for FBC, PBC2, LEG, RBC, MYE and SEER_CT in Table 4.5 are not

the same as those already seen in Table 4.1. SE(λ) is also given: for the six datasets

used in Section 4.4.2 this quantity is taken from Table 4.1; the same method of estimation

described in Section 4.4.1 was also used to estimate SE(λ) in the other 20 datasets. λpred

is the λ predicted using equation 4.2, based on the D and cens in the dataset.

Table 4.5 appears to show that the estimates of λ predicted by equation 4.2 are rea-

sonable. There is no obvious systemic bias as errors are as often positive as negative.

Most predicted values of λ are within 20% of the true value (21 out of 26 datasets), and

importantly for this work, most of the predicted λ are within 2 standard errors of the true

value (20 out of 26). This means that for most of the datasets in this list, equation 4.2 is

likely to give as accurate an estimate of λ as would be obtained from calculating λ from

the data itself using SE(D).
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Figure 4.11: λpred vs λtrue for real datasets; models selected by MFP with various p

Dataset λtrue (SE) λpred
λpred
λtrue

Dataset λtrue (SE) λpred
λpred
λtrue

FBC 3.34 (0.222) 3.56 +7% SEER_DE 3.54 (0.297) 3.56 +1%
PBC2 9.62 (1.052) 7.75 -19% APC 3.02 (0.234) 3.32 +10%
LEG 6.92 (0.979) 5.88 -15% GLI 3.90 (0.313) 3.82 -2%
RBC 4.23 (0.109) 3.42 -19% PBC 8.99 (1.781) 7.86 -13%
MYE 4.19 (0.135) 3.29 -21% LVA 6.84 (0.616) 5.07 -26%

SEER_HI 3.07 (2.017) 3.76 +22% KCA 3.45 (0.303) 4.37 +27%
SEER_UT 3.54 (0.660) 3.05 -14% FOL 4.80 (0.258) 4.17 -13%
SEER_NM 2.79 (0.661) 3.21 +15% HOS 5.23 (0.742) 5.34 +2%
SEER_AT 3.30 (0.436) 3.24 -2% STE 3.23 (0.475) 2.75 -15%
SEER_CT 2.56 (0.101) 3.43 +34% OVA 3.90 (0.245) 3.59 -8%
SEER_SE 3.25 (0.362) 3.65 +12% WHI2 3.02 (0.225) 2.88 -5%
SEER_IA 3.53 (0.323) 3.31 -6% WHI3 3.18 (0.340) 2.86 -10%
SEER_SF 3.35 (0.361) 3.61 +8% WHI4 2.31 (0.333) 2.56 +11%

Table 4.5: Comparison of true and predicted λ for 26 real datasets

Figure 4.11 shows the results from Table 4.5 in graphical form, as well as equivalent

graphs for models selected using α = 0.01, 0.157, 0.50 and 1.0. In all five cases the pre-

dicted λ is reasonably close to the true λ and no clear patterns are seen across values of

p.

It is difficult to know the true reasons for the divergence from our λ model which

predicted so well in simulated datasets, however we can speculate on some possible

explanations. Any non-normality of the prognostic index (PI) is likely to have an effect,

as D is based on the assumption that the model PI is normally distributed.

4.8 Discussion

λ appears to be an important structural parameter which is closely related to D. It is the

product of two inversely proportional quantities, the number of events in a dataset and
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the variance of D as measured in the dataset. In this chapter we have researched some

of the properties of λ.

We have tested the assumption that for a particular model and dataset sampled from

the same distribution of covariates, λ is the same regardless of the size of the dataset.

This assumption is vital in producing sample size calculations based on D, as we will

show in the next chapter. We first tested this in real datasets in Section 4.4 and found

that the assumption did hold, as long as the dataset is large enough. When small subsets

of the data were used, we found that they tended to show higher values of λ than the

full dataset. In Section 4.5 we checked the proportionality assumption of λ again, this

time using simulated survival data. Once again we came to the same conclusion: the

assumption holds as long as the dataset is large enough.

While testing the proportionality assumption, we also investigated the sampling error

of λ, in order to assess whether this quantity can be well estimated. We found that for

both real and simulated datasets, randomly selected subdatasets of the same size could

show quite variable estimates of λ. This variability was much greater in small samples:

datasets with more than 150 events showed a standard error for λ of less than 10% of the

value of λ. With more than 500 events, SE(λ) was less than 5% of λ.

Finally we used simulated data to develop an equation to predict λ from D and the

proportion of censored records in a dataset. This equation predicted λ well in simulated

datasets with both random and administrative censoring, and worked fairly well in real

datasets too. In particular, the sampling error for λ meant that for most of the real datasets

investigated, the prediction equation for λ was likely to give as accurate an estimate of

the quantity as would be obtained from calculating λ from the data itself using SE(D).

96



Chapter 5

Sample size calculation in validation

studies using D

5.1 Introduction

In Chapter 2 the importance of performing a sample size calculation prior to starting a

prospective study was discussed, as well as the non-availability of such calculations for

prognostic studies. We also looked at various measurements of prognostic value in Cox

survival models and chose Royston and Sauerbrei’s (2004) D measure to form the basis

of a novel sample size calculation. In Chapter 3 we considered the behaviour of D with

changing sample size and found that there was no common sample size or events per

variable level which gave reasonably precise values of D across all the datasets we con-

sidered. For this reason we wish to develop a more formal sample size calculation which

provides results tailored more to individual study circumstances. To aid development

of such a calculation, in Chapter 3 we showed that the sampling distribution of D is ap-

proximately normal, both in simulated and real datasets. In Chapter 4 we introduced a

parameter, λ, which is the product of the number of events in a dataset and the variance

of D, and as such is a relationship of some importance when considering formal sample

size calculations.

Having laid this groundwork, in this chapter and the next we move on to formulate

possible sample size calculations for two scenarios which may arise in the development

or validation of multivariable prognostic models. The first, presented in this chapter, is

where the researcher has a model in mind which they wish to validate and access to suit-
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able individual patient data from some previous study. Thus estimates of D and SE(D)

are available for this model and dataset, and it is desired to validate the estimate of D

in new data. The second scenario, covered in Chapter 6, covers several possible research

situations but is broadly similar to what usually happens in a clinical trial, where re-

searchers anticipate a particular target value of D and collect data to test this hypothesis.

In this chapter we develop two sample size calculations for the first validation sce-

nario, one based on significance testing and another on confidence interval width. For

want of a better expression we term these calculations Sig-1 and CI-1 respectively. We

give some examples of their use, and evaluate them using simulated data.

5.2 Sample size calculation based on significance test

We first suggest a method based on significance testing.

First let us introduce some notation. The scenario we consider in this chapter is where

estimates of D and SE(D) exist from a previous study using the same model, and re-

searchers wish to validate the estimate of D in a new study. Let D1 be the value of D in

the first study, σ2
1 the variance of D1, and e1 the number of events in the first study. We

ask the question as to how to do a sample size calculation for a second, ‘validation’, study

in the same disease. Let D2 be the D value in the second study, σ2
2 = var(D2) and e2 the

number of events. Suppose we were willing to tolerate a reduction in D in the second

study of δ; so that D1 � D2 � δ. We want to estimate e2 so that a true difference of δ is

just significant at the one-sided α level with probability (power) 1� β.

This is a non-inferiority design and δ is the non-inferiority margin, hence the use of

one-sided α. Let z1�α = Φ�1(1� α) and z1�β = Φ�1(1� β), where Φ�1(�) is the inverse

normal probability function. Then, as in Armitage et al. (2001) (4th printing, p186), we

note that positive values of the difference in the estimators fD1 � fD2 = eδ are significant at

the one-sided α level if fD1 � fD2 > z1�α

q
σ2

1 + σ2
2, (5.1)

where Armitage’s σ
p

2/n has been substituted with
q

σ2
1 + σ2

2, the standard error of D1�

D2.
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To obtain power greater than 1� β, the right hand side of (5.1) must be less than the

point defining a one-sided probability of β when D1 � D2 = δ; that is

z1�α

q
σ2

1 + σ2
2 < δ� z1�β

q
σ2

1 + σ2
2

(z1�α + z1�β)
q

σ2
1 + σ2

2 < δ

δ > zz
q

σ2
1 + σ2

2,

where zz = z1�α + z1�β. Rearranging, we obtain

σ2
2 <

�
δ

zz

�2

� σ2
1. (5.2)

Before rearranging further to get the number of events e2, we note that unlike in the

classic study design mode, here the value of σ2
1 is known from the first study. Since σ2

2

must be positive, the expression places a lower limit on δ:

δ > σ1zz. (5.3)

To convert values in equation 5.2 to numbers of events, we must use the proportion-

ality assumption on λ which was described and tested in Chapter 4. This assumption

states that if a given model is fitted to two datasets sampled from the same distribution

of covariates but with differing numbers e1, e2 of events, with D variances of σ2
1 and σ2

2,

then

e1σ2
1 = e2σ2

2 = λ.

Using this assumption, to calculate e2 given δ, e1, σ2
1 and zz we set σ2

2 to the limiting

value (δ/zz)2 � σ2
1 in equation 5.2 and write

e2 = e1
σ2

1

σ2
2

e2 = e1
σ2

1�
δ
zz

�2 � σ2
1

e2 = e1

"�
δ

σ1zz

�2

� 1

#�1

. (Sig-1)
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This final calculation – which we term Sig-1 for reference – is independent of D. Note

that calculation Sig-1 can also be written in terms of λ from the previous study, if required:

e2 =
λ

(δ/zz)2 � σ2
1

. (5.4)

5.2.1 Example

The parameters for this example are taken from the FBC breast cancer dataset (detailed

in Appendix A). Suppose that the first study had e1 = 299, and the estimates of D and

SE(D) were D1 = 1.226 and σ1 = 0.105. According to equation 5.3, the lower limit of δ

is 0.307, representing a 25% degradation in D1. The moral of this is that the difference in

D detectable in the validation study with a particular power depends on the size of the

original study. If the original study was small, the power to detect a small reduction in D

in the validation study will be very low.

In this example, if we desire to detect a difference of δ = 0.4 with significance level

α = 0.05 and and 90% power (β = 0.1), then
�

δ
σ1zz

�2
= 1.694 and

e2 > 299� [1.694� 1]�1 = 431 events.

With these assumptions, we would need a validation study with 431 events to have 90%

power to detect a degradation of D of 0.4 or more at the one-sided 5% level. Notice that

these results do not depend on the value of D in either of the two datasets.

We will use this example to illustrate how sample size varies with δ and e1.

5.2.2 Effect of parameters on calculation Sig-1

In all sample size calculations, the smaller the effect that it is desired to detect or exclude,

the larger the study must be. Thus here, the smaller δ is, the larger the sample size output

from calculation Sig-1. In the example in Section 5.2.1, λ = 3.3 . Figure 5.1 shows how the

sample size required in this situation varies with δ, if we consider λ and e1 (and hence

σ2
1) fixed at these values (keeping 90% power and one-sided α = 0.05).

The size of the first study will also affect the number of events required in the valida-

tion study. As λ is fixed for a particular data structure and model (as shown in Chapter

4), σ2
1 varies as e1 changes. Figure 5.2 shows the relationship between the size of the first
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Figure 5.2: Sig-1 example: events required vs size of first study

study and the required size of the validation study, where we fix λ = 3.3 (as per the ex-

ample), and δ = 0.4, and keep 90% power and one-sided α = 0.05. This suggests that in

this situation the original study needs to have at least 400 events if the second study is to

be kept to a reasonable size of 300 events or fewer.

Note that the minimum size of the first study is constrained here by the fact that

δ > σ1zz. As we have fixed δ = 0.4 and λ = 3.3, and σ1 =
p

λ/e1, we have δ > zz
p

λ/e1

which rearranges to

e1 > λ
� zz

δ

�2

which in this example means that e1 > 176.5, thus if the original study has fewer than

177 events, we must choose a larger δ to be detected.
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minimum δ
Dataset Disease Events D se(D) minimum δ as % of D
APC Prostate cancer 338 0.85 0.095 0.28 33%
FBC Breast cancer 299 1.26 0.106 0.31 25%
FOL Follicular lymphoma 573 1.23 0.091 0.27 22%
GLI Malignant glioma 273 1.15 0.120 0.35 30%
HOS Cardiovascular disease 215 1.98 0.156 0.46 23%
KCA Kidney cancer 322 1.20 0.103 0.30 25%
LEG Leg ulcer 97 2.07 0.267 0.78 38%
LVA Lung cancer 128 1.43 0.231 0.68 48%
MYE Myeloma 856 0.77 0.070 0.20 26%
OVA Ovarian cancer 402 0.91 0.098 0.29 32%
PBC Primary biliary cirrhosis 125 2.70 0.268 0.78 29%
PBC2 " 105 2.55 0.303 0.89 35%
RBC Breast cancer 1518 1.09 0.053 0.15 14%
SEER AT " 731 1.69 0.067 0.20 12%
SEER CT " 1084 1.83 0.049 0.14 8%
SEER DE " 1540 1.86 0.048 0.14 8%
SEER HI " 235 2.07 0.114 0.33 16%
SEER IA " 1269 1.76 0.053 0.15 9%
SEER NM " 400 1.71 0.084 0.24 14%
SEER SE " 1184 1.93 0.052 0.15 8%
SEER SF " 1270 1.92 0.051 0.15 8%
SEER UT " 386 1.59 0.096 0.28 18%
STE Cardiovascular disease 460 1.25 0.084 0.25 20%
WHI2 " 1628 1.36 0.043 0.13 10%
WHI3 " 515 1.21 0.079 0.23 19%
WHI4 " 331 0.77 0.083 0.24 31%

Table 5.1: Minimum δ detectable in validation studies, for various real datasets

5.2.3 Minimum δ for various datasets

As already described, when using calculation Sig-1 the difference that can be detected in

a validation study (δ ) is constrained by the size of the initial study: δ > σ1zz, where σ1

is the standard error of D in the initial study. To see how this translates in real life, Table

5.1 shows the minimum δ that could be detected in validation studies with α = 0.05 and

power 90%, for the various studies outlined in Chapter 3, using the models found using

MFP with p = 0.05 described in Appendix B.

Of all these datasets, the smallest minimum δ that can be detected is 0.13; this size δ

is only seen in the largest studies with more than 1000 events. The smallest studies with

around 100 events have the largest minimum δ in this list, of around 0.7-0.9, surely too

large to be of any practical use.
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This raises a question: when is an estimate of D so poor – in terms of being based on

too small a study – that it isn’t worth basing a validation study on it? Firstly, there is little

value in recruiting thousands of patients to a study where the non-inferiority margin is

so large as to be useless. Secondly, with high SE(D) and a low number of events, there is

such a large amount of uncertainty around the estimate of D it may be that researchers are

better off not using the sample sizes in this chapter, but instead considering the estimate

of D as a target parameter (effectively assuming SE(D) = 0), and using the calculations

that will be presented in the next chapter.

5.3 Simulation study: significance based calculation Sig-1

To check the validity of the sample size calculation based on significance testing (Sig-1)

a simulation study is needed. As we are now concerned with sample size in terms of

number of events, it is important that we can specify exactly the number of events in

each simulated dataset. The procedure for this is as follows.

5.3.1 Simulating datasets with exact numbers of events

For a dataset with exactly e1 events and exact censoring proportion cens, generate e1
1�cens

records as follows:

1. Generate dataset with 2( e1
1�cens ) records (twice as many as required) and approxi-

mate censoring proportion cens using the method outlined in 3.3.2.

2. Randomly select e1 records ending in failure, and e1
1�cens � e1 censored records, to

form the final dataset.

5.3.2 Method

The method for testing calculation Sig-1 using a simulation study is as follows.

Note that in this simulation study (and all others in this chapter and Chapter 6), 200

bootstraps are used to obtain SE(D)boot, in order to keep the running time of the studies

reasonable. According to equation 4.1, the lowest accuracy resulting from 200 bootstraps,

given the sizes of datasets used in this chapter and the next, should be around 15% of the

value of SE(D); but the majority of scenarios tested will have better accuracy than this
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(between 5%–10%). We feel this is a reasonable compromise of estimate accuracy and

time required.

1. Generate dataset with e1/(1� cens) records, exactly e1 events and exact (random)

censoring proportion cens using the method outlined in 5.3.1.

2. Compute the D value for this sample; this is D1. Note that since X � N(0, 1),

var(βX) = β2, so we have D = βκ, where κ =
p

8/π (as shown in Section 3.3).

3. Bootstrap this sample 200 times, calculating D each time. Use these 200 values of D

to estimate the standard error of D; this is s1.

4. Compute e2 from δ (the maximum difference in D that we will tolerate), e1, s1, α and

power using equation Sig-1. Note that e2 will vary across the repetitions of these

steps.

5. Simulate a new sample with e2/(1� cens) records, exactly e2 events and exact cen-

soring proportion cens using the same methods as step 1, under a proportional

hazards model with linear predictor (β � δ/κ)X. This sample is regarded as cre-

ated under the null hypothesis of inferiority: H0 : D � βκ � δ (specifically, under

the assumption that D = βκ � δ).

6. Compute the D value for this sample; this is D20.

7. Bootstrap the sample 200 times, calculating D each time. Use these 200 values of D

to estimate the standard error of D; this is s20.

8. Simulate a new sample with e2/(1� cens) records, exactly e2 events and exact cen-

soring proportion cens under a proportional hazards model with linear predictor

βX, using the methods in step 1. This sample is regarded as created under the al-

ternative hypothesis of non-inferiority: H1 : D � βκ � δ (specifically, under the

assumption that D = βκ).

9. Compute the D value for this sample; this is D21.

10. Bootstrap the sample 200 times, calculating D each time. Use these 200 values of D

to estimate the standard error of D; this is s21.
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11. Compute test statistics z0 and z1 for testing H0 and H1 respectively:

z0 =
D20 � (D1 � δ)q

s2
1 + s2

20

z1 =
D21 � (D1 � δ)q

s2
1 + s2

21

.

12. Repeat the whole procedure (steps 1-11) 2000 times and store the results.

13. The type I error rate is estimated by the proportion of observations for which z0 >

Φ�1(1 � α); the power is estimated by the proportion of observations for which

z1 > Φ�1(1� α).

These steps will be repeated for various values of e1 (750, 1500), power (80%, 90%),

cens (0%, 50%), β (1, 1.5; hence D = 1.6, 2.4) and δ (0.4, 0.5). α=0.05 for all.

5.3.3 Results

Table 5.2 shows the results we would hope for if the sample size calculation Sig-1 was

correct. The type I error is close to 5% and the power is close to 80% or 90%, not showing

any particular bias above or below the desired value. The standard errors of the estimates

of type I error and power are given; these were calculated using the usual binomial vari-

ance np(1� p) where n = 2000 (the number of simulations) and p is the type I error or

power.

How does censoring affect sample size?

Although the censoring proportion in the dataset is not directly included in the calcula-

tion of sample size, it does have an indirect effect, as can be seen in Table 5.2. For an initial

study with constant D and constant number of events, the number of events required for

the validation study decreases as the proportion of censoring in the initial study increases

(but number of events stays constant). However, while the number of events decreases,

the number of patients required will increase with censoring. This means that if the cen-

soring proportion in the validation study is higher than in the initial study, it is likely

that results from the validation study will be less precise than were planned, because not

enough patients were recruited.
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Simulation parameters Observed
e1 β Power δ cens e2 % Type 1 (se) % Power (se)
750 1.0 80% 0.4 0% 320 5.3 (0.51) 80.8 (0.88)

50% 270 4.3 (0.46) 81.2 (0.87)
0.5 0% 177 4.9 (0.49) 80.3 (0.89)

50% 153 4.5 (0.47) 81.4 (0.87)
90% 0.4 0% 535 5.5 (0.52) 91.4 (0.63)

50% 435 4.7 (0.48) 91.6 (0.62)
0.5 0% 272 5.1 (0.50) 90.4 (0.66)

50% 230 4.2 (0.46) 91.1 (0.64)
1.5 80% 0.4 0% 730 5.2 (0.51) 79.7 (0.90)

50% 525 4.4 (0.47) 80.5 (0.89)
0.5 0% 340 5.6 (0.53) 79.8 (0.90)

50% 264 4.7 (0.48) 83.0 (0.84)
90% 0.4 0% 1929 5.4 (0.52) 90.5 (0.66)

50% 1043 5.0 (0.50) 91.9 (0.61)
0.5 0% 583 4.4 (0.47) 89.1 (0.70)

50% 432 4.3 (0.46) 90.6 (0.65)
1500 1.0 80% 0.4 0% 261 4.4 (0.47) 82.0 (0.86)

50% 227 4.9 (0.49) 82.3 (0.85)
0.5 0% 158 4.8 (0.49) 81.6 (0.87)

50% 139 4.7 (0.48) 83.8 (0.82)
90% 0.4 0% 388 4.6 (0.48) 91.0 (0.64)

50% 334 4.1 (0.45) 91.8 (0.61)
0.5 0% 227 5.1 (0.50) 90.6 (0.65)

50% 198 4.5 (0.47) 92.6 (0.59)
1.5 80% 0.4 0% 480 4.7 (0.48) 80.2 (0.89)

50% 386 4.5 (0.47) 82.0 (0.86)
0.5 0% 274 5.1 (0.50) 79.8 (0.90)

50% 227 4.1 (0.45) 82.1 (0.86)
90% 0.4 0% 766 4.9 (0.49) 90.3 (0.66)

50% 590 4.2 (0.46) 91.3 (0.63)
0.5 0% 410 4.7 (0.48) 90.1 (0.67)

50% 330 4.3 (0.46) 92.1 (0.60)

Table 5.2: Simulation study results for significance-based calculation Sig-1
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How does the value of D affect sample size?

The magnitude of D seen in the original study has an indirect effect on sample size, as can

be seen in Table 5.2. Higher values of D require larger sample sizes. Thus, if the value of

D in the validation study is different to that seen in the original study, then the precision

of results from the validation study will not be as desired. If the value of D is lower in

the validation study, then the study will have greater precision to estimate D. If the value

of D is higher in the validation study, then the study will have less precision. However,

in the latter scenario a higher value of D may mean that slightly lower precision in its

estimate is acceptable, so all may not be lost. This scenario is discussed in more detail in

Chapter 7.

5.3.4 Conclusion

The significance-based sample size calculation developed appears to work well. The

calculation, Sig-1, shows no systematic errors in power or α as a result of censoring,

but the estimates of D from the validation study may be less precise if the censoring

proportion or magnitude of D is higher than it was in the initial study.

When considering this significance based calculation it is important for researchers

to be aware of the constraint it places on the minimum detectable difference in the val-

idation study. If the initial study is small, then the minimum detectable difference will

be quite large, and may be too large to be of use in planning future studies. In this sit-

uation one of the other calculations proposed in this and the next chapter may be more

appropriate.
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5.4 Sample size calculation based on CI for D

In the previous section we considered a traditional significance based calculation. We

may alternatively wish to base our sample size calculation on the desired precision of the

estimate of D, in the form of the width of its confidence interval (CI).

To this end we extend the work in Section 5.2 to obtain a formula for the CI of the D

estimated in the second study. D is normally distributed (as shown in Section 3.4), thus

the (1� α)� 100% two-sided CI for D is

eD2 � z1�α/2

q
var(D), (5.5)

where eD2 is the estimate of D from the new study. As we have defined λ = e1σ2
1 = e2σ2

2,

we can obtain λ from the first study and write var(D) in the validation study as σ2
2 =

λ/e2. Thus 5.5 becomes

eD2 � z1�α/2

s
λ

e2
. (5.6)

We can finally substitute λ = e1σ2
1 back in and rearrange equation 5.6 to give the required

number of events e2 for our validation study. If we wish the (1� α)� 100% CI for the

resulting estimate of D not to be larger than �w we must rearrange

w = z1�α/2

s
e1σ2

1
e2

to be in terms of e2, which gives us the final calculation:

e2 = e1σ2
1

� z1�α/2

w

�2
. (CI-1)

Note that this equation is not dependent on the magnitude of D, and the only restriction

on the value of w – the half-width of the CI – is that it must be greater than zero.

We can also write this equation in terms of λ:

e2 = λ
� z1�α/2

w

�2
.
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Figure 5.3: CI-1 example: events required vs w: various λ from 1 to 10. Note log scale for
events.

5.4.1 Example

Using the same example as in Section 5.2.1, assume we have an original study with 299

events, D1 = 1.226 and σ1 = 0.105. If we wish our estimate of D in the second study, eD2,

to have a 95% confidence interval of total width 0.25 (so w = 0.125), we require

e2 = 299� 0.1052 �
� z0.975

0.125

�2
= 811 events.

If we want a much narrower CI of total width 0.1, the sample size increases to 5066.

Once again we will use the parameters of this example to illustrate some of the rela-

tionships between sample size and the various parameters in the calculation.

5.4.2 Effect of parameters on calculation CI-1

Again, the more precise we wish our estimate of D to be (in terms of w), the larger the

study must be. Figure 5.3 shows the variation in e2 versus w, for λ = e1σ2
1 of 1, 2, . . .

10, and illustrates that for many situations a half-width of 0.1 requires more than 1000

events; sometimes many more than 1000. For the example in Section 5.4.1 with λ = 3.3, if

we want a study with fewer than 1000 patients, we must accept a CI of half width> 0.10.

Unlike calculation Sig-1, the sample size of the first study (e1) and the estimate of

SE(D) from the first study (σ1) only enter calculation CI-1 through the parameter λ =

e1σ2
1. As a result of this, if λ is assumed to be fixed for a particular data structure and

model (as per the proportionality assumption described and tested in Chapter 4), then
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the sample size of the validation study is independent of the size of the previous study.

This is in contrast to calculation Sig-1 in which σ1 appears in the calculation additionally

to λ (see expression 5.4) and so the size of the first study does have an indirect effect on

the calculation through its effect on σ1, even when λ is considered fixed.

5.5 Simulation study: CI based calculation CI-1

In order to test our proposed sample size calculation CI-1, we must perform a simula-

tion study to test whether the sample size output from the calculation gives the desired

confidence interval width.

5.5.1 Method

1. Generate dataset with e1/(1� cens) records, exactly e1 events and exact censoring

proportion cens using the method outlined in 5.3.1.

2. Compute the D value for this sample; this is D1. Estimate its standard error using

a bootstrap with 200 replications; this is s1.

3. Compute e2 from e1, s1, α and the desired half-width of CI w using equation CI-1.

4. Simulate a new sample with e2/(1� cens) records, exactly e2 events and exact cen-

soring proportion cens records using the same methods as step 1.

5. Calculate D in this dataset and record it; this is eD.

6. Repeat steps (2) and (3) 2000 times. Note that while e1 is fixed, e2 varies over the

2000 repetitions since D1 and s1 will vary according to the dataset generated in step

1.

7. The proportion of repetitions for which eD 2 (βκ � w, βκ + w) gives the % CI which

has half-width w in the simulated dataset. This should approximate 1� α, if the

sample size calculation is correct.

These steps will be repeated for various values of e1 (750, 1500), cens (0%, 40%, 80%),

β (1, 1.5; thus D=1.6, 2.4), w (0.05, 0.1, 0.2). α = 0.05 for all.
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Simulation Parameters Observed (95% CI)
% of eD (se)

e1 β w cens mean e2 within βκ � w
750 1.0 0.10 0% 2193 95.0 (0.49)

50% 1731 95.0 (0.49)
0.20 0% 550 94.3 (0.52)

50% 435 95.7 (0.46)
0.30 0% 247 94.8 (0.50)

50% 194 96.0 (0.44)
1.5 0.10 0% 3607 93.9 (0.54)

50% 2742 95.1 (0.49)
0.20 0% 904 95.0 (0.49)

50% 682 95.0 (0.49)
0.30 0% 401 94.1 (0.53)

50% 307 95.5 (0.47)
1500 1.0 0.10 0% 2194 94.8 (0.50)

50% 1731 94.8 (0.50)
0.20 0% 552 95.3 (0.48)

50% 434 94.5 (0.51)
0.30 0% 245 94.8 (0.50)

50% 192 95.0 (0.49)
1.5 0.10 0% 3608 94.7 (0.50)

50% 2730 95.0 (0.49)
0.20 0% 894 95.5 (0.47)

50% 682 95.0 (0.49)
0.30 0% 399 94.3 (0.52)

50% 305 95.1 (0.48)

Table 5.3: Simulation study results for CI based sample size calculation CI-1

5.5.2 Results

The results are given in Table 5.3. The observed percentage proportion of eD 2 (βκ � w, βκ + w)

is very close to 95% which suggests that the calculation works well. Table 5.3 also shows

that the required sample size in many cases is rather large, and that (as expected) there

is little difference in e2 as a result of doubling the sample size of the initial study (here,

from 750 to 1500).

From these results we can gain an idea of how two parameters which are not directly

included in the sample size calculation – D and censoring rate – actually affect sample

size.

5.5.3 How does censoring affect sample size?

Similarly to Sig-1, censoring has an indirect effect on sample size in the CI-based calcula-

tion, as can be seen in Table 5.3. A higher censoring proportion in the initial study means
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slightly fewer events are required in the validation study, however more patients will be

needed. Again, if the censoring proportion in the initial study is lower than in the valida-

tion study, it is likely that confidence intervals will have lower than expected coverage,

because not enough patients were recruited.

We did a further simulation study to try and quantify the effect of censoring misspec-

ification on sample size and power.

Method

The methods used were broadly the same as outlined in section 5.5. Briefly, an ‘initial

study’ with 50% censoring was simulated using these methods; e2 was calculated, and

then five validation studies with e2/0.50 patients were simulated (separately), with ap-

proximately 20%, 30%, 40%, 60%, 70% and 80% censoring. Thus when generating the

simulated data for the second study, the number of patients was based on 50% censoring

but the distribution of censoring times was based on a different censoring proportion.

This was repeated 2000 times for each combination of parameters, for both e1 = 1500 and

e1 = 750.

Results

The results for e1 = 1500 and e1 = 750 were very similar, so only the former are presented,

in Table 5.4. As well as the proportion of eD within the desired width of CI, we also present

the half-width of 95% CI actually observed in the resulting validation dataset; since even

if coverage is too low, the observed 95% CI may not be much wider than was desired.

As expected, a higher proportion of censoring in the validation study led to a lower

than expected proportion of eD being within the prescribed limits (βκ � w, βκ + w) and

hence wider 95% CIs. With 70% censoring instead of 50%, the 95% CI width was around

0.24 instead of the planned 0.20, and 0.48 instead of planned 0.40. For 80% censoring

instead of 50%, observed widths were 0.28 instead of 0.20 and 0.58 instead of 0.40.

Conversely lower censoring proportions led to (βκ � w, βκ + w) containing more than

95% of output values, and so slightly narrower 95% CIs; for 20% or 30% censoring instead

of 50%, widths were around 0.18 instead of 0.20, and 0.36–0.37 instead of 0.40.

There was little difference between the desired width and the widths observed when

the validation dataset had 40% or 60% censoring instead of 50%.
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Simulation Parameters Observed (95% CI)
cens cens planned % of eD (se) half-width

e1 init. study β w val. study mean e2 mean e2 within βκ � w of 95% CI
1500 50% 1.0 0.10 20% 1725 2760 98.0 (0.32) 0.083

30% 1725 2415 96.7 (0.40) 0.090
40% 1725 2070 96.3 (0.42) 0.093
60% 1725 1380 92.6 (0.59) 0.110
70% 1725 1035 88.3 (0.72) 0.123
80% 1725 690 83.5 (0.83) 0.144

0.20 20% 434 694 98.2 (0.30) 0.165
30% 434 608 96.9 (0.39) 0.181
40% 434 521 96.1 (0.44) 0.187
60% 434 347 92.4 (0.59) 0.220
70% 434 260 90.1 (0.67) 0.241
80% 434 174 84.4 (0.81) 0.288

1.5 0.10 20% 2724 4358 97.9 (0.32) 0.087
30% 2724 3813 97.1 (0.38) 0.090
40% 2724 3269 96.4 (0.42) 0.094
60% 2724 2179 91.9 (0.61) 0.113
70% 2724 1634 90.3 (0.66) 0.119
80% 2724 1090 83.4 (0.83) 0.140

0.20 20% 683 1093 97.7 (0.34) 0.174
30% 683 956 96.9 (0.39) 0.184
40% 683 820 96.3 (0.42) 0.187
60% 683 546 93.2 (0.56) 0.213
70% 683 410 89.8 (0.68) 0.241
80% 683 273 82.9 (0.84) 0.290

Table 5.4: Simulation study results for CI based sample size calculation CI-1: misspecifi-
cation of censoring rate, e1 = 1500

5.5.4 How does D affect sample size?

Although D is not a parameter in the sample size calculation CI-1, it has an effect on

sample size through λ. Table 5.3 shows that the higher D is, the larger the sample size

(number of events) required. We ran another simulation study to try and quantify the

effect of misspecifying D – for example in the situation where D in the validation study

turns out to be higher or lower than the D in the initial study.

Method

An ‘initial study’ with D = 1.6 (β = 1.0) was simulated using the methods in Section 5.5,

and then two validation studies were simulated; one with D = 0.8 (β = 0.5) and one with
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D = 2.4 (β = 1.5). Thus when generating the simulated data for the second study, the

number of events was based on D = 1.6, but the distribution of survival and censoring

times were based on either D = 0.8 or D = 2.4. This was repeated 2000 times for each

combination of parameters.

Results

The results are given in Table 5.5. As expected, observing a higher D than was expected

in the validation study leads to a lower proportion than 95% of eD being in the interval

(βκ � w, βκ + w). However, with the parameters used here – going from D = 1.6 to

D = 0.8 – the resulting 95% CI is not much wider than was planned; generally a total

width of 0.21–0.22 rather than 0.20, and 0.42–0.44 rather than 0.40. Going from D = 1.6

to D = 2.4 leads to wider intervals (0.25-0.28 instead of 0.20, 0.50-0.54 instead of 0.40).

However, once again it should be noted that a higher than expected D in the validation

study may mean that a wider CI is acceptable than was originally desired.

If the D in the validation study was lower than expected, the validation study will

have narrower CIs than planned. Going from D = 1.6 to D = 0.8 results in intervals of

0.13 instead of 0.20 and 0.26–0.28 instead of 0.40.

5.5.5 Conclusion

The sample size calculation CI-1 based on CI width works well, giving the desired con-

fidence interval width over a variety of parameter values. The sample size for obtaining

a confidence interval of half width less than 0.1 is generally very large, increasing for

higher values of D. A point of note for this calculation based on precision of estimates

is that under the assumption that λ is fixed for a particular covariate distribution and

model, the sample size required for the validation study is independent of the size of the

initial study.

The calculation works well for censored datasets under the assumption that the cen-

soring rate in the validation study will be the same as the rate seen in the original study.

If the censoring rate is higher in the validation study, then the desired CI for D will be

wider than expected; a lower censoring rate means CIs will be narrower than expected.

Misspecification of D also has an effect; a higher D in the validation study than in the

initial study means the validation study will have slightly wider than expected CIs, but

114



the difference is quite small. A lower D means that the CIs will be slightly narrower than

expected.

Simulation Parameters Observed (95% CI)
β β mean % of eD (se) half-width

e1 init. study w cens val. study e2 within βκ � w of 95% CI
750 1.0 0.10 0% 0.5 2211 98.6 (0.26) 0.064

1.5 2211 86.2 (0.77) 0.113
2.0 2211 78.4 (0.92) 0.131

50% 0.5 1739 98.1 (0.31) 0.067
1.5 1739 90.0 (0.67) 0.101
2.0 1739 79.4 (0.91) 0.127

0.20 0% 0.5 549 98.6 (0.26) 0.128
1.5 549 86.2 (0.77) 0.222
2.0 549 78.7 (0.92) 0.266

50% 0.5 434 97.8 (0.33) 0.139
1.5 434 89.4 (0.69) 0.203
2.0 434 80.2 (0.89) 0.258

1500 1.0 0.10 0% 0.5 2205 98.8 (0.25) 0.065
1.5 2205 87.5 (0.74) 0.109
2.0 2205 78.3 (0.92) 0.129

50% 0.5 1732 98.3 (0.29) 0.069
1.5 1732 89.7 (0.68) 0.101
2.0 1732 79.3 (0.91) 0.130

0.20 0% 0.5 550 99.1 (0.22) 0.132
1.5 550 87.5 (0.74) 0.217
2.0 550 77.1 (0.94) 0.276

50% 0.5 432 97.9 (0.32) 0.138
1.5 432 89.2 (0.69) 0.207
2.0 432 80.4 (0.89) 0.259

Table 5.5: Results of simulation study of D for CI based sample size calculation CI-1:
misspecification of D

5.6 Discussion

We have considered the issue of required study sample size in the situation where a

previous study is used to estimate the required parameters such as D and SE(D). For

this situation we have developed and explored two sample size calculations; one based

on significance testing and one on the desired precision of the resulting estimate of D (in

terms of confidence interval width).

The calculation based on significance testing (Sig-1) appears to work well, giving the

correct type I error and power, for both uncensored and censored data (under the as-

sumption that the censoring rate in the validation study will be the same as in the initial
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study). One consequence of using the significance based calculation is that if the initial

study was small, the minimum detectable difference may be too large to be of practical

use.

The calculation based on precision of estimates (CI-1) also works well, and there is no

lower limit on the desired width of confidence interval; although the sample size may be

prohibitively high if a narrow interval is desired. This calculation is independent of the

size of the initial study. It shows no apparent bias with censored data (again, under the

assumption that the previous and validation study have the same rate of censoring), al-

though it should be remembered that the calculation gives the number of events required,

rather than number of patients.

For these two calculations, if D or the censoring rate seen in the validation study are

markedly different to their values in the initial study, this will affect the precision of the

estimate of D from the validation study. In particular, an increase in D or an increase

in censoring rates will see lower observed precision in the validation study than was

planned, while a decrease in D or censoring rates will result in higher precision. The

magnitude of the effects are difficult to quantify as these parameters are not included in

the calculation but our simulation studies seem to suggest that no concern arises if the

difference in censoring is 10% or less (in absolute terms).

The consequences of overestimation of D in the initial study should not be ignored;

due the the large numbers of patients required in general for these studies, overestimat-

ing D could increase sample size by hundreds or thousands of patients. In Chapter 3, we

found that the optimism present in D can be quite large when study size is small and the

model of interest was selected using an automatic selection procedure. If this is the case,

it is likely that the estimate of D from a small initial study is too high, which could lead to

an inflated sample size for a validation study. This makes it important in this situation to

determine the optimism present in D, in order that a realistic value of D can be obtained

for use in the sample size calculation.

If researchers suspect that the value of D or censoring proportion may be markedly

different in a future study to what they were in the initial study, it may be prudent to

perform simulation studies to obtain a range of likely sample sizes.
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Chapter 6

Sample size calculations using a

point estimate of D

6.1 Introduction

In the previous chapter we considered sample size calculations for the scenario where the

researcher has access to suitable individual patient data from some previous study and

has already formulated a model for the situation at hand. Thus an estimate of D (and

SE(D)) is available and the model known, and it is desired to validate this estimate for

the model in a new dataset.

The second possible scenario, which we cover in this chapter, is where researchers

have some estimate of D and wish to test it in a new dataset. This is akin to the situ-

ation we usually see in a clinical trial: a difference in effect size between two groups is

postulated and a study designed to test this. The main difference between this scenario

and the scenario in Chapter 5 in terms of derivation of sample size calculations is that an

estimate of SE(D) is not used here, we just have a target value of D.

This target value will be based on some amount of evidence; on one hand the number

may be just plucked from the range of likely values of D, on the other hand it might be

based on a few published articles or a D reported in a similar disease or group of patients.

Again, this is similar to how a target parameter is arrived at for a clinical trial; investi-

gators may have nothing more than a clinically significant difference to guide them, or

there may be previous similar studies that give them an idea of the effect size they are

likely to see.
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This scenario covers a more diverse range of possible situations than the scenario

presented in Chapter 5. It may be that researchers wish to externally validate a published

model for which the authors reported a value of D, but no SE(D), hence the calculations

in Chapter 5 cannot be used. Alternatively – and probably more commonly – they may

wish to develop a new model, and have little idea of what the value of D might be, let

alone SE(D). Another possible situation is where estimates of D and SE(D) are available,

but a significance based calculation is desired and the minimum difference in D to be

detected (δ) using calculation Sig-1 is too large to be of any use.

As in the previous chapter, for this scenario we develop and test two sample size

calculations, the first based on significance testing (which we term Sig-2) and confidence

interval width (CI-2), and give examples of their use.

6.2 Sample size calculation based on significance test

Here D is specified in advance and the desire is to determine the number of events needed

to detect fD2 (the estimate of D in the new study) falling below D � δ with power 1� β

at a one-sided significance level α. This effectively assumes that e1 is infinite and σ2
1 is 0.

We can calculate the ‘asymptotic’ sample size e2 as e1 approaches ∞ and σ2
1 approaches 0

as follows.

Starting with equation Sig-1 and substituting σ2
1 = λ/e1 we have

e2 = e1

"�
δ

σ1zz

�2

� 1

#�1

=
λ

(δ/zz)2 � λ/e1
.

We want to compute the asymptotic sample size e2 as e1 ! ∞, which is

e2 =
λzz2

δ2 . (6.1)

To use this calculation, we need an estimate of λ. Thus the next step is to substitute

the formula for λ in terms of D which we derived in Chapter 4, that is

λ = c0 + c1D1.9 + c2(D � cens)1.3,
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where c0 = 2.66, c1 = 1.26, and c2 = �1.65. Our sample size calculation is now

e2 >
� zz

δ

�2 �
2.66+ 1.26D1.9 � 1.09(D � cens)1.3

�
. (Sig-2)

In order to keep consistent notation with Chapter 5 we continue to call the sample size

for the new study e2; although technically it is not a second study here as there is no first

study. A point of note is that unlike the significance based calculation Sig-1 in Chapter 5,

the only limit on δ is that it must be positive (e2 tends to infinity as δ approaches 0).

Censoring proportion

Calculation Sig-2 includes cens, the proportion of censoring in the dataset. We believe

that most researchers will have a good idea of the likely censoring proportion in their

proposed study by the time they come to do a sample size calculation. They should

know approximate survival rates for their disease and have planned the length of study

follow up, so they should have a reasonable estimate of the proportion of patients who

will not have had an event by the time of analysis. We would recommend that a sensi-

tivity analysis is done by researchers; i.e. the calculation be repeated for a range of likely

censoring proportions, to see how this affects the number of events and patients required.

6.2.1 Example

Suppose we want to detect a reduction in D of δ = 0.3 with 90% power at the one-sided

5% significance level. Thus zz = z1�α + z1�β = 1.645+ 1.282 = 2.927 and the sample size

required is

e2 =
λ� 2.932

0.32 = 95.12λ.

Thus if we believe D = 1.2 and estimated 50% censoring (approximately the same as in

the breast cancer example in Chapter 5), then

λ = 2.66+ 1.26� 1.21.9 � 1.09(1.2� 0.5)1.3 = 3.88

and e2 = 370.

This example will be used to inform the next section which considers how various

parameters in the calculation Sig-2 affect sample size.
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Figure 6.1: Sig-2: events required vs δ, for various D. Note log scale for events

6.2.2 Effect of parameters on calculation Sig-2

As with all sample size calculations, the smaller the difference to be detected (δ), the

larger the sample size. Figure 6.1 shows the drop in number of events required in the

example in Section 6.2.1, as δ increases from 0.1 to 0.5 for various values of D.

As calculation Sig-2 includes both D and the level of censoring as parameters, we can

easily see the relationships between these two quantities and sample size.

Increasing D increases λ and hence increases sample size. Thus if the final value of D

in a validation study is larger than was anticipated in the planning stages, this will likely

mean the estimate of D in the study has less precision than was planned. Likewise, if

the value of D is smaller than expected, the estimate of D in the validation study will be

more precise. The increase in study size with D is more marked the smaller δ is, as shown

in Figure 6.1.

Increasing censoring leads to a small decrease in number of events required, because

equation 4.2 for λ includes a negative term for censoring, so λ decreases slightly as cen-

soring increases. However although the number of events required may have decreased,

the increased censoring leads overall to an increase in number of patients, which can be

quite large. Figure 6.2 shows the relationship between level of censoring and (a) events

and (b) patients, over δ. If at the time of analysis, the proportion of censored patients

in the validation study is greater than was expected at the planning stages, the valida-

tion study is likely to have lower precision, because the original sample size calculation
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Figure 6.2: Sig-2: events (left) and patients (right) required vs δ. Note log scale for events

assumed a lower proportion of censoring (and so although slightly more events were

needed, fewer patients were recruited).

6.3 Simulation study: significance based calculation Sig-2

To check the validity of the sample size calculation based on significance testing a simu-

lation study is needed.

6.3.1 Method

1. Select δ, α, power and β (note D1 = βκ where κ =
p

8/π).

2. Calculate e2 from the equation Sig-2 using the selected δ, α and power.

3. Generate dataset with e2/(1� cens) records, exactly e2 events and exact (random)

censoring proportion cens using the method outlined in 5.3.1, under a proportional

hazards model with linear predictor (β� δ/κ)X, where X � N(0, 1). This sample

is regarded as created under the null hypothesis of inferiority: H0 : D � βκ � δ

(specifically, under the assumption that D = βκ � δ).

4. Compute the D value for this sample; this is D20. Estimate its standard error using

a bootstrap with 200 replications; this is s20.

5. Generate dataset with e2/(1� cens) records, exactly e2 events and exact censoring

proportion cens using the method outlined in 5.3.1, under a proportional hazards
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model with linear predictor βX. This sample is regarded as created under the al-

ternative hypothesis of non-inferiority: H1 : D � βκ � δ (specifically, under the

assumption that D = βκ).

6. Compute the D value for this sample; this is D21. Estimate its standard error using

a bootstrap with 200 replications; this is s21.

7. Compute test statistics z0 and z1 for testing H0 and H1 respectively:

z0 =
D20 � (D1 � δ)q

s2
20

z1 =
D21 � (D1 � δ)q

s2
21

.

Note that D1 = βκ, and since D1 is considered fixed, the standard error of D1 is 0

(this quantity was termed s1 in Chapter 5).

8. Repeat steps (3) to (7) 2000 times and store the results.

9. The type I error rate is estimated by the proportion of observations for which z0 >

Φ�1(1 � α); the power is estimated by the proportion of observations for which

z1 > Φ�1(1� α).

These steps will be repeated for various values of power (80%, 90%), cens (0%, 40%,

80%), β (1, 2; hence D=1.6, 3.2) and δ (0.4, 0.5). α=0.05 for all.

6.3.2 Results

The results from this study are given in Table 6.1. Power and type I error are generally as

expected.

For fixed combinations of β, power and δ, there is a slight decrease in observed power

with increasing censoring, which is more noticeable when β = 2.0. This is expected

as our model slightly overestimates λ when the proportion of censoring is low, while

slightly underestimating it when censoring is higher (shown in Section 4.7), and the ef-

fect increases as D increases. This means that power is generally slightly higher for the

scenarios with 0% censoring than for the scenarios with 80% censoring; however the ob-

served differences are small.
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The observed type I error appears to be slightly reduced below the expected 5% for

the simulations with β = 2.0; again this may be related to the errors in estimation of λ.

However, if this decrease is a real effect, it is only small, and it is better that the observed

error is lower than expected, rather than higher.

Simulation parameters Observed
β Power δ cens e2 % Type 1 (se) % Power (se)
1.0 80% 0.4 0 228 5.1 (0.50) 82.8 (0.84)

40 205 4.3 (0.46) 78.8 (0.91)
80 170 4.4 (0.47) 80.1 (0.89)

0.5 0 146 5.3 (0.51) 81.3 (0.87)
40 131 4.2 (0.46) 83.2 (0.84)
80 109 4.6 (0.48) 79.1 (0.91)

90% 0.4 0 316 5.1 (0.50) 91.0 (0.64)
40 283 4.4 (0.47) 91.8 (0.61)
80 235 5.3 (0.51) 92.2 (0.60)

0.5 0 202 4.9 (0.49) 91.5 (0.62)
40 181 4.5 (0.47) 93.0 (0.57)
80 151 4.8 (0.49) 90.3 (0.66)

2.0 80% 0.4 0 543 4.7 (0.48) 77.1 (0.94)
40 485 3.8 (0.44) 81.9 (0.86)
80 400 4.4 (0.47) 82.5 (0.85)

0.5 0 348 3.9 (0.44) 79.8 (0.90)
40 311 4.0 (0.45) 82.3 (0.85)
80 256 4.7 (0.48) 83.2 (0.84)

90% 0.4 0 752 3.5 (0.42) 89.8 (0.68)
40 672 3.6 (0.42) 89.8 (0.68)
80 554 4.9 (0.49) 90.9 (0.64)

0.5 0 482 3.5 (0.42) 88.6 (0.71)
40 430 3.5 (0.42) 90.7 (0.65)
80 355 4.1 (0.45) 91.2 (0.63)

Table 6.1: Simulation study results for significance based calculation Sig-2

6.3.3 Conclusion

This sample size calculation based on significance testing appears to work well; although

slight errors in power (of one or two percent) were seen as a result of imperfect estimation

of λ. If D and the level of censoring are correctly estimated then the resulting study

will have the precision required, or very close to it. If D or the censoring proportion is

underestimated, then the precision of estimates will be lower; conversely, overestimating

either of these two parameters will result in higher precision. The type I error may be

slightly lower than expected (by one percent or so) when D is greater than 3, but such

values of D are rare in practice, as will be shown in Chapter 8 (Figure 8.8).
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6.4 Sample size calculation based on CI for D

In order to develop a sample size calculation based on the width of the (1� α)� 100%

two-sided confidence interval (CI) for D for the situation where a target value of D is

known, we must substitute λ back in to equation CI-1, to give us

e2 = λ

� z(1�α/2)

w

�2

.

Using the same estimate of λ from D as in the previous section, our final sample size

calculation is

e2 =

� z(1�α/2)

w

�2 �
2.66+ 1.26D1.9 � 1.09(D � cens)1.3

�
. (CI-2)

Once again, in order to use this calculation researchers must have some idea of the

magnitude of D, and the proportion of censoring they are likely to observe.

6.4.1 Example

If we wish to estimate D with a 95% confidence interval of half-width 0.15, then the

sample size calculation is

e2 = λ
� z0.975

0.15

�2

= 170.7� λ.

If we believe that D = 1.2 and the censoring level will be 50%, as in the example in the

previous section, then λ = 3.88 and e2 = 663.

6.4.2 Effect of parameters on calculation CI-2

The narrower the confidence interval desired, the larger the sample size output by calcu-

lation CI-2. Figure 6.3 shows graphically the relationship between half-width w and the

number of events required for a 95% CI for the example in Section 6.4.1, using values of

D from 0.8 to 3.2 and 50% censoring. The width of confidence interval has probably the

greatest impact on sample size, especially for higher values of D. This graph also allows
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Figure 6.3: CI-2: events required (log scale) vs w. Note log scale for events

us to consider the trade off between events required and CI width; researchers may want

to know what precision a certain study size will ‘buy’ them given D.

As for all the other sample size calculations in this and the previous chapter, increas-

ing D increases sample size, and this relationship is stronger when w is small. This is also

illustrated in Figure 6.3. This graph clearly shows the importance of calculating a range

of sample sizes, especially when the value of D is not very certain, since it can have a

large effect on the number of events required.

As for calculation Sig-2, increasing censoring leads to a small decrease in the number

of events required, but an increase in the number of patients required. Figure 6.4 shows

separately events and patients required vs w for a fixed value of D = 1.2 and five different

censoring levels. If the proportion of censored patients in the validation study is larger

than was expected at the planning stages, the validation study is likely to have wider

confidence intervals than desired.
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6.5 Simulation study for CI based calculation CI-2

A simulation study is performed to check the validity of sample size calculation CI-2.

6.5.1 Method

1. Compute e2 from D, cens , α and the desired half-width of CI w using equation CI-2.

2. Generate dataset with e2/(1� cens) records, exactly e2 events and exact censoring

proportion cens using the method outlined in 5.3.1, under a proportional hazards

model with linear predictor βx.

3. Calculate D in this dataset and record it; this is eD.

4. Repeat steps (2) and (3) 2000 times.

5. The proportion of repetitions for which eD 2 (βκ � w, βκ + w) gives the % CI which

has width �w in the simulated dataset. This should approximate 1� α, if the sam-

ple size calculation and estimation of λ are correct.

These steps will be repeated for various values of cens (0%, 40%, 80%), β (1, 2; thus

D=1.6, 3.2), w (0.1, 0.2, 0.3), and α (0.05, 0.10).

6.5.2 Results

The results are given in Table 6.2 and show that the proportion of eD 2 (βκ � w, βκ + w)

is close to that desired across all parameter combinations. As seen with the significance-
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based calculation Sig-2, the small errors in our estimation of λ means that we would

expect to see a slightly higher than desired proportion of eD falling within the interval

(βκ � w, βκ + w) when cens = 0% and a slightly lower proportion when cens = 80%.

This pattern is observed in some combinations of parameters but the differences are not

large.

Simulation Parameters Observed (95% CI) Observed (90% CI)
% of eD (se) % of eD (se)

β D w cens λ mean e2 within βκ � w mean e2 within βκ � w
1.0 1.6 0.10 0% 5.72 2199 94.5 (0.51) 1549 90.1 (0.67)

40% 4.80 1844 96.3 (0.42) 1299 91.7 (0.62)
80% 3.45 1324 94.9 (0.49) 933 89.9 (0.68)

0.20 0% 5.72 550 95.7 (0.46) 388 90.2 (0.67)
40% 4.80 461 95.2 (0.48) 325 89.8 (0.68)
80% 3.45 331 94.3 (0.52) 234 88.0 (0.73)

0.30 0% 5.72 245 95.5 (0.47) 173 88.6 (0.71)
40% 4.80 205 95.0 (0.49) 145 91.4 (0.63)
80% 3.45 148 94.2 (0.52) 104 88.9 (0.70)

2.0 3.2 0.10 0% 14.09 5414 94.9 (0.49) 3813 89.2 (0.70)
40% 11.81 4539 95.9 (0.45) 3197 92.2 (0.64)
80% 8.48 3259 95.2 (0.48) 2296 92.2 (0.63)

0.20 0% 14.09 1354 95.3 (0.47) 954 90.5 (0.66)
40% 11.81 1135 95.7 (0.45) 800 91.2 (0.63)
80% 8.48 815 95.7 (0.45) 574 91.1 (0.64)

0.30 0% 14.09 602 94.2 (0.52) 424 89.5 (0.69)
40% 11.81 505 95.9 (0.45) 356 91.2 (0.64)
80% 8.48 363 95.3 (0.47) 256 90.3 (0.66)

Table 6.2: Simulation study results for CI based calculation CI-2

6.5.3 Conclusion

The sample size calculation based on CI width works well. If D and the level of censoring

are correctly estimated then the resulting confidence interval will be the desired width. If

D or the censoring proportion is underestimated, then the CI will be wider than desired.

Conversely, overestimating either of these two parameters will result in a narrower CI

than was planned.

Depending on the strength of prior information on D and the censoring proportion,

it may be pertinent for researchers to perform a number of sample size calculations in

order to obtain a range of study sizes which cover the most likely eventualities. This

is straightforward with calculations Sig-2 and CI-2 since they include D and censoring

proportions as explicit terms.
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6.6 Discussion

In this chapter we have presented sample size calculations for the situation where an

estimate or guess of D is available, but there is no estimate of the uncertainty around

it. This is likely to be a common scenario; we envisage the most likely situation to be

where researchers have a target value of D to investigate, but there may also be occasions

where D was estimated from a previous study but no estimate of SE(D) is available, or

where estimates of D and SE(D) are available but researchers do not believe the source

provides reliable evidence.

As in Chapter 5, both the significance based (Sig-2) and the confidence interval based

(CI-2) calculation appear to be correctly powered and both show no bias associated with

censoring. Calculation Sig-2 did show some minor fluctuations in observed power due to

the imperfect nature of our estimation of λ, specifically that observed power was some-

times slightly too low for the lowest censoring level considered (0%), and slightly too

high for the highest censoring level (80%). However, the errors were a matter of 3%

(absolute) at most so are not too concerning.

The sample size calculations in this chapter have the advantage that they contain

parameters for D and censoring, so it is easy for researchers to calculate a a range of

sample sizes for the proposed study in order to consider a variety of possible values

of D and censoring proportions. We particularly recommend researchers do this, since

estimates of D and censoring rates may not be based on strong evidence if a previous

good-quality study is not available.

Having these calculations available may be very useful, but in the situation where

no previous estimate of D is available, a researcher’s first question is likely to be, how

do we come up with an educated guess of the value of D to input into these calcula-

tions? In Chapters 8 and 9 we will collate and present values of D for various research

areas, and anticipate that this ‘library’ will provide a starting point for research where no

comparable previous studies have been performed.

In the next chapter we will illustrate the use of the sample size calculations presented

in this and the previous chapter, using real life studies as starting points.
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Chapter 7

Sample size examples

In this chapter we will more comprehensively illustrate the four sample size calculations

developed in Chapters 5 and 6. First we will perform each calculation using observed

parameters from ten real datasets. This will cover a wide variety of real scenarios and will

show how the required numbers of events and patients change according to the various

parameters of the dataset. Secondly, we will fix the number of events and calculate how

much precision this sample size will ‘buy’ us under each calculation, again using real

datasets for estimates of the parameters required. This will show more clearly how the

four sample size calculations perform (in terms of precision obtained) when all other

variables are held equal. Finally, we will show that precision can be considered as a

proportion of D in calculations Sig-2 and CI-2, and illustrate how this can be exploited to

avoid the loss of precision seen when D is higher than anticipated in a study.

Let us first recapitulate the four calculations and notation. First, let zx be the x-

quantile of the standard normal distribution.

Calculation Sig-1: Validating D from previous study: significance based

When estimates of D and the standard error of D are available from a previous study, the

number of events required to detect a difference in D of δ with one-sided α and power

1� β is

e2 = e1

"�
δ

σ1zz

�2

� 1

#�1

, (Sig-1)
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where e1 is the number of events and σ1 the standard error of D from the previous study,

and zz = z1�α+ z1�β. For this calculation, there is a restriction on the difference in D that

can be detected: δ > σ1zz.

Calculation CI-1: Validating D from previous study: CI based

When a previous study is available, the number of events required in order that an esti-

mate of D has a two-sided 95% confidence interval (CI) of half width w is

e2 = e1σ2
1

� z1�α/2

w

�2
. (CI-1)

Calculation Sig-2: Point estimate of D: significance based

When researchers have a target value of D but no previous estimate of its standard error,

the number of events required to detect a difference in D of δ with one-sided α and power

1� β is

e2 =
� zz

δ

�2 �
2.66+ 1.26D1.9 � 1.09(D � cens)1.3

�
, (Sig-2)

where D is the point estimate of D, cens is the estimated proportion of censored records

in the final study dataset, and zz = z1�α + z1�β as before.

Calculation CI-2: Point estimate of D: CI based

When researchers have a target value of D but no previous estimate of its standard er-

ror, the number of events required in order that an estimate of D has a two-sided 95%

confidence interval (CI) of half width w is

e2 =

� z(1�α/2)

w

�2 �
2.66+ 1.26D1.9 � 1.09(D � cens)1.3

�
. (CI-2)
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7.1 Effect of dataset parameters on sample size

For each of the ten real datasets, the required parameters will be given and the four

calculations performed.

For the first calculation Sig-1, a δ close to the minimum δ detectable is chosen; for the

third calculation Sig-2 δ = 0.2 is used (hence the two calculations are not always directly

comparable in this table). For the CI based calculations (CI-1 and CI-2) w = 0.1 is used,

so these two calculations are comparable.

For Sig-1 and Sig-2, α = 0.05 and power is 90%; for CI-1 and CI-2, the confidence

intervals are always 95%.

Table 7.1 shows the number of events and patients required for the ten datasets under

each of the four calculations, for these selected values. More detailed results showing

how sample size varies with w and δ for the four calculations are given in Appendix D.
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Significance based calculations

Calculation Sig-1 – the significance based calculation for validating D from previous

study – is unique among the four calculations in that it is the only one where the differ-

ence to be detected is constrained (beyond the restriction δ > 0 which applies to all four

calculations). If the previous study was relatively small the minimum difference can be

quite large, and even the largest datasets we consider in this chapter, with approximately

1500 events, have a minimum δ of around 0.15. However the sample size drops quite

rapidly as the δ increases, and a δ of about 0.05 above the minimum generally produces

a more reasonable sample size in terms of numbers of events. It is worth remembering

that this calculation is for a non-inferiority study and so if the minimum δ detectable is

large, this may not be the best calculation to use, since a positive result from such a study

will not add much information to what is already known.

For the two datasets where the δ to be detected in Table 7.1 is 0.2 for both Sig-1 and Sig-

2 (RBC and SEER DE), we can compare the calculations directly and see that Sig-1 outputs

2291 and 1500 events for the RBC and SEER DE parameters, while Sig-2 outputs 731 and

771. In fact, to detect a particular δ with a fixed power and α, the number of events

required according to calculation Sig-1 (call it eSig-1) is always larger than the number

required according to calculation Sig-2 (call it eSig-2). To show this, consider calculation

Sig-1 in terms of λ (Formula 5.4 from Chapter 5):

eSig-1 =
λ

(δ/zz)2 � σ2
1

=
λ( zz

δ )
2

1� ( zz
δ )

2σ2
1

=
eSig-2

1�
�

σ1zz
δ

�2

When using calculation Sig-1, we have the restriction δ > σ1zz, hence

σ1zz
δ

< 1

1�
�σ1zz

δ

�2
< 1

eSig-1 > eSig-2.
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Figure 7.1: Events required vs δ: comparison of calculations Sig-1 and Sig-2. Note log
scale of y axis

Under calculation Sig-1, as δ ! σ1zz, the number of events eSig-1 approaches infinity;

but using Sig-2, the lower limit on δ is 0, so eSig-1 and eSig-2 diverge as δ approaches σ1zz.

This is illustrated in Figure 7.1, which uses the parameters of dataset APC as a basis for

the calculations.

CI-based calculations

Calculation CI-1 – the CI based calculation for validating D from previous study – gener-

ally gives reasonable sample sizes for a half-width of 0.1. It is only when D is high (over

2.0, say) and the previous study was quite small (less than 300, say) that this sample size

is pushed over 2000 events. Of course, if the censoring proportion is expected to be high

this may still be an unfeasibly high sample size.

The sample sizes required by CI-1 and CI-2 are generally fairly similar. The only dif-

ference between CI-1 and CI-2 is that CI-1 uses observed parameters σ1 and e1 to estimate

λ, while CI-2 estimates λ using the prediction model Equation 4.2 developed in Chapter

4. Thus in a single situation, any difference in output sample sizes from the two calcu-

lations is due to error in predicting λ with D and cens. Such errors can be positive or

negative (as shown in Table 4.5), and thus the sample size from CI-2 may be either higher

or lower than the sample size from CI-1.
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7.2 Effect of calculation choice on precision

A different way of comparing the sample size calculations is to consider what precision

(in terms of δ or w) each of the four sample size calculations can ‘buy’ with a fixed number

of events. To do this we need to rearrange the four calculations to be in terms of δ or w;

that is

Sig-1: δ = σ1zz
q

e1
e2
+ 1 CI-1: w = σ1z1�α/2

q
e1
e2

Sig-2: δ = zz
q

λ
e2

CI-2: w = z1�α/2

q
λ
e2

where λ = 2.66+ 1.26D1.9 � 1.09(D � cens)1.3 as previously. Using these expressions, we

can calculate what precision a particular number of events (e2) will buy us, assuming for

Sig-1 and CI-1 a first study with observed parameters e1, D and σ1, and for Sig-2 and CI-2

estimates of D and cens. The precision obtained with study sizes of 200, 500 and 1000

events (δ or CI half-width w) is given in Table 7.2 for each of the four calculations and

parameters provided by the ten real datasets.
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As seen in Table 7.1, calculations CI-1 and CI-2 behave similarly, both resulting in

approximately the same precision in all ten situations.

In all cases calculation Sig-1 gives less precision than Sig-2 with the same number of

patients. Additionally, increasing the number of events in the second study has a lesser

impact on the precision available from Sig-1 than from the other three calculations. This

is because for calculations CI-1, Sig-2 and CI-2, the precision available is proportional to
p

1/e2, which means that increasing e2 by a factor of k reduces w or δ by a factor of
p

k.

The precision available from calculation Sig-1, however, is proportional to

r
e1

e2
+ 1.

This means that increasing the number of events in the second study from e2 to k � e2

increases the precision available by a factor of

p
k
r

e1 + e2

e1 + ke2
,

which is less than
p

k and dependent on both e1 and e2 .

So, using calculation Sig-1, if e1 = 400, doubling e2 from 100 to 200 reduces δ by a

factor of 1.29, whereas doubling from 200 to 400 reduces δ by a factor of 1.22. If e1 =

1000, the corresponding factors for the same increases in e2 are 1.35 and 1.31. When

using calculations CI-1, Sig-2 and CI-2, doubling e2 always reduces δ or w by a factor of
p

2 = 1.41.

7.3 Precision as a percentage of D

Having D – but importantly, not SE(D) – explicit in the calculations Sig-2 and CI-2 allows

the possibility of not directly specifying δ or w as values but rather as functions of D itself.

This allows the situation where we can specify a sample size which allows a δ of, say, 10%

of D, regardless of the actual value of D.

This has two key benefits. Firstly, when D is thought to be high (say, D � 2) the

sample sizes required by Sig-2 and CI-2 can get very large if the same fixed value of δ or

w is desired as for a smaller D. Considering δ or w as a proportion of D instead may lead

researchers to think more carefully about what level of precision is actually acceptable
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when D is large, which could lead to more relaxed constraints and a smaller sample size.

Secondly, it should prevent the loss of precision seen if the D observed in the new study

is higher than anticipated in the planning stages.

We are able to do this with calculations Sig-2 and CI-2 because the prediction model

for λ implicitly adjusts SE(D) as D changes; it cannot be done with Sig-1 and CI-1 as

SE(D) is an explicit term in these two calculations.

The theory is similar for both Sig-2 and CI-2; in order to explain it more clearly we

focus on Sig-2.

7.3.1 Sig-2

Let us replace δ in calculation Sig-2 with pD, where p is the percentage of D that we are

happy with, expressed as a proportion (so for 10%, p = 0.1). This gives us

e2 =

�
zz
pD

�2 �
2.66+ 1.26D1.9 � 1.09(D � cens)1.3

�
. (7.1)

Figure 7.2 shows the sample size profiles for a desired precision of 10%, 15% and

20% of D (assuming 30% censoring in this case). We can see that when we specify δ as a

percentage of D, the sample size actually decreases as D increases, the opposite to what

happens when δ is a fixed value. This means that we can choose a sample size for a

particular value of D, and if the D in the new study turns out to be higher than this, we

still have the percentage precision we originally aimed for (assuming the proportion of

censored observations is still the same).

However, if D in the new study is lower than planned, then we lose precision quite

rapidly and will not be able to achieve the δ that we aimed for. A pragmatic solution to

enable precision to be controlled regardless of whether D is higher or lower than origi-

nally planned, is to specify both a fixed value of δ and a percentage of D that are accept-

able. At each possible value of D take whichever option of the two gives the larger value

of precision (and hence smaller sample size). Thus we have a ‘composite’ sample size

calculation.

For example, we may say that we want precision of δ = 0.15 or 10% of D, whichever

requires the smaller sample size at each possible value of D. We can plot the required

sample size versus D for both δ = 0.15 and δ = 0.1D and read off the resulting profile,
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Figure 7.2: Sample sizes required from Sig-2 for δ considered as a percentage of D
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Figure 7.3: Events vs D for composite Sig-2 calculation: δ = 0.15 or 10% of D

shown in Figure 7.3. The heavier lines give the required sample size at each value of D;

the maximum occurs at 0.15/0.1 = 1.5 and requires 1827 events.

Thus, in this particular situation a sample size of 1827 events (2610 patients) would

achieve the desired precision regardless of the value of D output from the new study.

From looking at Figure 7.3 we can see that as D either increases or decreases away from

the peak at D = 1.5, the required sample size decreases (to 1089 events when D = 0.5,

and 1084 patients when D = 3). This means that if the value of D from a study with 1827

events turns out to be greater than 1.5, the observed precision will be better than 10% of

D, and if D turns out to be less than 1.5, the observed precision will be better than 0.15.
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Figure 7.4: Anticipated and actual precision vs D from study with 1827 events

The actual precision obtained can be calculated quite simply by rearranging equation

7.1, and this is shown in Figure 7.4. The planned precision (δ = 0.15 or δ = 0.1D) is

shown by a red dashed line, while the actual precision that would be obtained with 1827

events is shown as a solid navy line. The two lines coincide at D = 1.5.

7.3.2 CI-2

We can use the same procedure for calculation CI-2, this time replacing w – the half-width

of the confidence interval – with kD. The resulting calculation is

e2 =

� z(1�α/2)

kD

�2 �
2.66+ 1.26D1.9 � 1.09(D � cens)1.3

�
.

Figure 7.5 shows how this required sample size varies with D, for confidence interval

half-widths of 10%, 15%, and 20% of the value of D.

As for calculation Sig-2, a composite sample size calculation may be used to ensure a

minimum precision is achieved across the possible range of D.

Table 7.3 gives the required sample sizes output from calculations Sig-2 and CI-2, for

various composite precision limits and censoring levels.
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Precision Censoring Sig-2 CI-2
Fixed δ or w δ or w as % of D proportion Events (Patients) Events (Patients)

0.1 10% 20% 3183 (3979) 1428 (1785)
0.1 10% 40% 2928 (4880) 1314 (2190)
0.1 10% 60% 2630 (6575) 1180 (2950)
0.1 10% 80% 2300 (11500) 1032 (5160)

0.15 10% 20% 1918 (2398) 1120 (1400)
0.15 10% 40% 1726 (2877) 1074 (1790)
0.15 10% 60% 1501 (3753) 1020 (2550)
0.15 10% 80% 1253 (6265) 959 (4795)
0.2 10% 20% 1469 (1837) 861 (1077)
0.2 10% 40% 1312 (2187) 774 (1290)
0.2 10% 60% 1129 (2823) 674 (1685)
0.2 10% 80% 926 (4630) 562 (2810)
0.1 20% 20% 2497 (3122) 555 (694)
0.1 20% 40% 2393 (3989) 520 (867)
0.1 20% 60% 2272 (5680) 479 (1198)
0.1 20% 80% 2138 (10690) 434 (2170)

0.15 20% 20% 1237 (1547) 659 (824)
0.15 20% 40% 1159 (1932) 589 (982)
0.15 20% 60% 1068 (2670) 507 (1268)
0.15 20% 80% 967 (4835) 416 (2080)
0.2 20% 20% 796 (995) 357 (447)
0.2 20% 40% 732 (1220) 329 (549)
0.2 20% 60% 658 (1645) 295 (738)
0.2 20% 80% 575 (2875) 258 (1290)

Table 7.3: Sample sizes required by calculations Sig-2 and CI-2 for various composite
precision limits and censoring levels
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7.4 Discussion

7.4.1 Which calculations should be used?

Performing the four sample size calculations for a variety of different input parameters

gives a good idea of how they perform in real life. In general, to obtain a fairly precise

estimate of D, more than 500 events are required, and to detect a reasonably small differ-

ence in D more than 1000 events; often 2000 or more. If there is no previous study data

with which to estimate λ = e � var(D), then Sig-1 and CI-1 cannot be used; however if

an estimate of λ is available, how do researchers choose between using Sig-1 or Sig-2, or

CI-1 or CI-2?

CI based calculations

Firstly, the decision between CI-1 and CI-2. If it is desired to base sample size on the

confidence interval around the estimate of D in the new study, CI-1 and CI-2 perform

approximately equivalently. Any difference between CI-1 and CI-2 is caused by errors in

the prediction of λ from equation 4.2; however, since in CI-2 there is no first study, we

cannot know the magnitude of this error until the proposed study is finished. Addition-

ally, in Chapter 4 we found that we can’t say for certain that the value of λ in a first study

is going to be more accurate than λ predicted from D and cens using equation 4.2, when

it comes to estimating λ in the second study (although our research in Chapter 4 into the

sampling distribution of λ and accuracy of equation 4.2 is quite limited).

CI-2 is more flexible than CI-1 as it includes D and cens explicitly in the calculation,

making it easy for researchers to calculate a range of sample sizes for different values

of these two parameters. For this reason we would recommend using CI-2 rather than

CI-1, even if an estimate of SE(D) is available from a previous study. We would however

add the caveat, that if a previous study exists and λ from that previous study is very

different to the λ predicted from equation 4.2, researchers should consider the sample

sizes output by both CI-1 and CI-2, as they may be quite different and we cannot be sure

which estimate of λ is more accurate.
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Significance based calculations

If a significance based calculation is preferred, we have seen in this chapter that there

can be a large difference between the sample sizes output by Sig-1 and Sig-2 for the same

input parameters. The restriction on δ implicit in Sig-1 makes this calculation less flexible

than Sig-2; but even aside from this, Sig-1 will always output a larger sample size than

Sig-2, everything else being equal. So, if researchers do have an estimate of SE(D) and

hence λ from a previous study, should they ignore it and use calculation Sig-2, just to

have a smaller sample size? We cannot see a strong argument against this.

Firstly, as already mentioned in Chapter 4, we cannot be sure that the value of λ from

a first study is going to be more accurate than a λ predicted using equation 4.2; so using

all available information from the previous study is not necessarily going to provide a

‘truer’ sample size. Secondly, in clinical trials of time-to-event data, the standard error of

the effect size (hazard ratio) is not generally involved in the sample size calculation, even

though an estimate of it might be available; so we don’t believe there is a philosophical

argument in favour of using every scrap of available information, simply because it is

there to be used. Thus we can’t see a good reason to insist that Sig-1 should always

be used if an estimate of SE(D) is available. There are also two practical arguments in

favour of Sig-2. As for CI-2, using Sig-2 means that a range of sample sizes can be easily

calculated for different values of D and cens. Finally, the reduction in D to be detected is

constrained in Sig-1, often with such a high lower bound that it is effectively useless. For

this reason our current recommendation would be for researchers to use Sig-2 over Sig-1.

7.4.2 Precision as proportion of D

We have shown that considering the precision of estimates of D as a proportion of the

value of D may be a useful way to avoid the loss of precision experienced when D is

higher than anticipated in a study. Using a composite sample size made up of both a fixed

value of δ or w and a percentage of D means additionally that precision is not reduced

when D is lower than planned. This somewhat mitigates the worry about whether an

obtained estimate of D is accurate enough, as the precision from the planned study will

be at least as good as originally desired regardless of the value of D observed. Although

this isn’t a traditional way to consider sample size we feel it is quite a practical solution,
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especially when the target value (of D, in this case) is not very certain. Using this method

means that researchers will know the minimum precision they will have before doing the

study, rather than having to do a post hoc calculation if their study comes back with a

different D than anticipated.
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Chapter 8

Systematic review of D values

8.1 Introduction

In Chapter 6 we looked at the situation where researchers wish to validate a point esti-

mate of D in a new dataset. In this scenario the point estimate of D must be provided

in order to calculate sample size; but how are researchers to assign a value to D for their

disease area, dataset and model combination if there is no prior dataset to guide them?

Although D depends on many things (what data is collected, the number of patients

and events, the model used, etc.) and no two situations will be exactly comparable, any

realistic estimate is better than none.

In this chapter we describe a review to determine D values in a number of disease

areas. In addition to reviewing published values of D, we also consider a transformation

from Harrell’s c to D. c is widely reported in the literature, and being able to use this

quantity as the basis of an estimation for D would provide a large pool of potential D

estimates from a wide range of diseases.

The values found, along with values of D calculated in previous chapters, will form

the basis of a ‘D Library’ which could be used by researchers when planning a prognostic

study. In this chapter we describe our methods and present initial results from the review.

The library itself is presented in more detail in Chapter 9.

145



8.2 Methods

In previous chapters we have already calculated D and λ for a number of datasets in

different diseases; these will form the first part of the library. The bulk of the library will

be formed from twin literature searches of D values and c values in published articles.

The search strategy and results for these reviews are presented in Sections 8.3 and 8.5. In

Section 8.4 an empirical conversion for obtaining D from c is developed.

8.3 Literature search for papers reporting D or R2
D

8.3.1 Aim

The aim of this literature search was to find published papers which either quote a value

of D for a particular dataset and model, or which provide enough other information

such that D can be calculated. This search was originally performed in February 2011

and updated in July 2011.

8.3.2 Search strategy

This literature search consisted of a citation search in Web of Science to find all papers

citing Royston and Sauerbrei’s (2004) original paper on D. All papers were read and any

which present D, R2 (any type) or Harrell’s c-index for real data were recorded.

Publications were excluded if they were purely methodological, not in human medi-

cine, not available as full text online or not reporting analyses of time-to-event data.

8.3.3 Results

This section comprises a brief overview of the number of papers found and which quan-

tities were reported. A more thorough discussion of the results is given in Chapter 9.

71 papers were found to have cited the original Royston and Sauerbrei (2004) paper.

23 papers were excluded as purely methodological. Two papers were excluded for not

having full text available online. This left 44 papers, which between them describe 142

models. Of these 44 papers, 34 actually reported values of D or R2
D for a total of 108

models. Table 8.1 shows which relevant quantities were included in these 34 papers in

addition to either D or R2
D. 12 papers out of the 34 (32%) did not report the number of
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Quantities reported Number of papers
D SE(D) 95 % CI for D R2

D Harrell’s c e
1 0 0 0 1 1 7
1 0 1 0 1 0 6
1 0 1 0 1 1 6
1 0 1 0 0 1 3
1 1 0 0 1 1 2
1 0 0 0 0 0 2
0 0 0 1 1 0 2
1 0 0 0 0 1 2
0 0 0 1 0 0 1
0 0 0 1 1 1 1
1 0 1 1 1 1 1
1 0 1 0 0 0 1

Table 8.1: Quantities reported in the 34 papers reporting D or R2
D. 0 indicates absence

and 1 presence of that quantity

events in the dataset used to develop the model, a proportion similar to the 30% found by

Mallett et al. (2010). 10 papers did not actually calculate D or R2
D for any models despite

referencing the Royston and Sauerbrei paper. 8 of these 10 reported Harrell’s c, the other

two reported neither D nor c.

Of the 34 papers that did report D or R2
D, 17 reported models predicting death or

disease progression events in patients with a particular disease. These 17 comprised 11 in

cancer, 2 each in cardiac disease and respiratory disease, 1 in HIV and 1 in neurology. The

other 17 papers reported risk models predicting first disease events in healthy patients.

Of these 17, 10 looked at cardiac endpoints, three at bone fracture, two at occurrence of

diabetes, one at renal disease, and one looked at a variety of endpoints (cardiac, liver,

renal disease and cataracts).

Figure 8.1 gives a histogram of the 101 values of D available from the 34 papers. The

distribution is roughly Normal, however there is a slight positive skew. The mean is 1.62

and the median is 1.47. The highest value is D = 3.44.

Table 8.1 shows that 25 of these papers contained both D or R2
D and Harrell’s c. These

papers included a total of 89 models and so could contribute 89 data points to the process

of modelling the relationship between c and D.
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Figure 8.1: Histogram of 101 D values from first literature search

8.4 Converting Harrell’s c-index to D

The 34 articles found which report D form a good basis for a library of D values, but

being few in number they are limited in practical use; many researchers will not be able

to find a suitable estimate of D amongst these 34 papers. Thus we wish to expand the

library to cover more disease areas, and also make it as easy as possible for researchers

to find a realistic estimate of D themselves, for the situation where there isn’t a suitable

estimate available in our library. One way to achieve both of these aims is to develop a

transformation from a more widely used measure of prognostic value to D.

A suitable target measure of prognostic value is Harrell et al.’s (1984) c-index (see

Chapter 2 for more details about this measure). The c-index is widely reported in prog-

nostic studies and should provide a rich source of estimates of D for our sample size

calculation, if a reasonable transformation can be found.

We begin our search for a transformation with a method proposed by White (2011) to

convert D to c.

8.4.1 Proposed conversion (White)

Underlying the theory of D is the assumption that the linear predictor (prognostic index)

of the model is normally distributed; that is β0x � N(µ, σ2). This is the key step in a

proposed theoretical conversion between D and the c-index, developed by White (2011).

The c-index in time-to-event data is the proportion of pairs where predictions and

outcomes are concordant; that is, the patient with lower risk (according to the model) has
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a lower hazard and hence survives longer than the patient with higher risk. Equivalently,

if we assume no censoring, it is the expected probability that for any randomly chosen

pair of observations in the dataset, the patient with lower PI survives longer (PI2, with

survival time T2) than the patient with higher PI (PI1, with survival time T1); that is,

c = E [P(T2 > T1)] .

over all random pairs of patients in the dataset where PI1 > PI2.

Now let us assume that survival times are exponentially distributed with a constant

hazard h, and that we model survival using the Cox proportional hazards model. Let

θ be the hazard ratio between the patient with the higher PI (PI1) and the patient with

the lower PI (PI2). This implies the hazard ratio θ is greater than 1, as risk of an event

occurring increases with PI. Thus for a randomly chosen pair, the patient with the higher

PI (PI1) has hazard hθ and thus survival function S(t) = exp(�hθt); the patient with the

lower PI (PI2) has hazard h and function S(t) = exp(�ht).

We now use a general result that if random variables X � Exp( 1
µx
) and Y � Exp( 1

µy
),

then

P(X > Y) =
µx

µx + µy

=

1
µy

1
µy
+ 1

µx

(Casella and Berger, 2001). Using this result, for our randomly chosen pair we have

T1 � Exp(hθ) and T2 � Exp(h) and so

P(T2 > T1) =
hθ

hθ + h

=
θ

θ + 1
.

We have defined the hazard ratio θ = exp(PI1)
exp(PI2)

= exp(PI1 � PI2) so

P(T2 > T1) =
exp(PI1 � PI2)

exp(PI1 � PI2) + 1
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Thus returning to our definition of c, which considers all the possible pairs of patients in

the dataset where PI1 > PI2,

c = E [P(T2 > T1)]

= E
�

exp(PI1 � PI2)

exp(PI1 � PI2) + 1

�
= E

h
logit�1(PI1 � PI2)

i

where logit�1(x) is the inverse logit function exp(x)
1+exp(x) . We assume that the prognostic

index is normally distributed, PI1 � N(µ, σ2) and PI2 � N(µ, σ2); thus for two randomly

selected patients their difference is also normally distributed: PI1 � PI2 � N(0, 2σ2).

Thus E [PI1 � PI2] = E
h

Z
p

2σ
i

and so

c = E
h
logit�1(Z

p
2σ)
i

, (8.1)

where Z � N(0, 1).

Since D = κσ�, where σ� is an estimate of the standard deviation of the prognostic

index values under the assumption of Normality and κ =
p

8/π (Royston and Sauerbrei,

2004), we can express σ as σ = Dp
8/π

= D
p

πp
8

. Substituting this into (8.1) we can obtain an

equation for c in terms of D:

c = E
�

logit�1
�

ZD
p

π

2

��
. (8.2)

This expectation can be calculated using Gauss-Hermite quadrature or numerical inte-

gration. Thus for a given D we can calculate c.

Table 8.2 gives the transformation of various values of D to c according to equation

8.2, as well as the backwards transform of D to c. Some useful points in this relationship

are that when D = 0.6, c = 0.6 also, and that a D of 1 transforms to a c of 0.66 ( 2
3 ).

Performance - simulated data

First we assessed the performance of equation 8.2 in simulated survival data with ran-

dom censoring. This data was simulated using the same methods as outlined in Chapter

5, Section 5.3.2. Datasets of 1000 patients were simulated 2000 times for each β value from

0.2–2.0 in steps of 0.2, and each censoring proportion of 0%, 20%, 40%, 60%, and 80%. We
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D �! c D �! c c �! D c �! D
0 0.500 2.6 0.801 0.50 0 0.76 1.99

0.2 0.535 2.8 0.812 0.52 0.11 0.78 2.26
0.4 0.570 3.0 0.822 0.54 0.23 0.80 2.58
0.6 0.602 3.2 0.831 0.56 0.35 0.82 2.97
0.8 0.632 3.4 0.839 0.58 0.46 0.84 3.43
1.0 0.659 3.6 0.847 0.60 0.60 0.86 4.00
1.2 0.684 3.8 0.854 0.62 0.72 0.88 4.73
1.4 0.707 4.0 0.860 0.64 0.86 0.90 5.71
1.6 0.727 4.2 0.866 0.66 1.00 0.92 7.07
1.8 0.745 4.4 0.872 0.68 1.16 0.94 9.07
2.0 0.761 4.6 0.877 0.70 1.34 0.96 12.15
2.2 0.776 4.8 0.882 0.72 1.53 0.98 17.56
2.4 0.789 5.0 0.886 0.74 1.74 1.00 ∞

Table 8.2: Conversion tables for c, D using White’s transformation
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Figure 8.2: Predicted c from equation 8.2 vs D overlaid with observed c from simulated
datasets, 0% and random 80% censoring

expected that the transformation may not work well with censored data, since its devel-

opment included the assumption that data was not censored. However, we found that

the magnitude of c did not change with level of censoring and the prediction worked

very well for all β and censoring proportions, as shown in Figure 8.2, which is a plot of

observed and predicted c separately for 0% and 80% censoring.

We repeated this study with purely administrative censoring, which is where a po-

tential censoring time is fixed and known for all patients in advance (for example, when

a date is fixed for data freeze for final study analysis; all patients who have not failed by

this time will be censored on that date). Gonen and Heller (2005) found that c increased

slightly – up to 2 or 3 percent – with increasing administrative censoring. To simulate
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datasets of patients with purely administrative censoring we followed the procedure de-

scribed in Chapter 4, Section 4.7.4:

1. Simulate N survival times (Ts) by following the procedure in 3.3.2.

2. Calculate a censoring time Tc for the nth record as follows:

Tc =
n
N

r+ f

where r was the length of the study recruitment period and f the study follow up

period. This assumes that entry of patients to the trial was uniformly staggered

over the recruitment period, and that all patients were censored at the end of the

follow up period if they had not failed by this time.

3. Records where Tc < Ts were considered censored at time Tc; records where Ts < Tc

were considered failures at time Ts. No other censoring was performed.

Once again r and f were set to 2 and 4 years and datasets of size N = 2000 were

generated. Steps (1) to (3) were repeated 1000 times for each β value of 0.2–2.0 in steps of

0.2, and censoring levels of 40% and 80%. The desired censoring proportion was achieved

by changing the baseline hazard h.

With administrative censoring we found that there was an effect on c with censor-

ing: c increased with increasing censoring and the effect was stronger the higher β was.

Thus c was under-predicted when D � 1 (β � 0.63) and the censoring proportion was

high. Figure 8.3 shows the observed and predicted c vs D for 0% censoring and 80%

administrative censoring.

Performance - real data

Finding that the transformation generally worked well with some simulated data we

moved on to assessed how well it worked with real data. Figure 8.4 plots the conversion,

and overlays the D and c from the 26 datasets used in chapter 9 (calculated using a MFP

model with α = 0.05), and also those from the 89 articles from the literature search which

reported both D (or R2
D) and c. Figure 8.4 seems to show that the conversion underesti-

mates c when D � 1.5 approximately.
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Figure 8.3: Predicted c from equation 8.2 vs D overlaid with observed c from simulated
datasets, 0% and administrative 80% censoring
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Figure 8.4: Plot of c vs D, using White’s conversion, overlaid with D and c from arti-
cles found in literature search (blue dots); and from datasets used throughout the thesis
(circle).

In summary, we found that equation 8.2 did not predict c well for real data and indeed

the results from the real data generally showed even higher values of c than those in the

simulated data results with 80% administrative censoring (Figure 8.5). This discrepancy

is likely to be due in part to censoring – as we noted that administrative censoring affects

the value of c – however the fact that the under-prediction of c is worse in the real datasets

than in the simulated data implies there are other forces at play. We speculate that the

additional discrepancy may be due to non-normality of the prognostic index but we have

not investigated this.
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Figure 8.5: Predicted c from equation 8.2 vs D (line) overlaid with observed c from simu-
lated datasets with 0% (blue dots) and 75% administrative (black dots) censoring; plus D
from 89 literature search & thesis datasets (circles).

8.4.2 Empirical relationship between D and c

As this theoretical relationship does not seem to work sufficiently well in practice, an

empirical relationship was sought to help us predict D from c.

Source of data

To strengthen the relationship additional datapoints were added to the graph in Figure

8.4 above. These were obtained from the Surveillance, Epidemiology, and End Results

Program datasets for (1) leukemia, myeloma and lymphoma, (2) colorectal cancers, (3)

urinary cancers and (4) female genital cancers (SEER, 2000). These datasets were further

broken down into particular disease areas, and some further into the 9 geographical reg-

istry areas of SEER, to give us a total of 179 data points. SEER datasets all utilise the same

common variable set, so the datasets were inspected and potentially useful variables se-

lected manually for each disease area. The same mfp command line was used for each

disease area, but models were selected separately for each registry within that disease

area. An α for selection of 0.05 was used for most datasets; although after inspection of

results, the process was repeated using α = 0.50 for some of the smaller datasets, purely
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to get a model with higher D and ‘fill in’ as much of the likely D range as possible. Fur-

ther details on the mfp command lines used for each disease area are given in Appendix

B. In each case, the specifics of the final model and whether or not it was a good prognos-

tic model for the disease were unimportant for this exercise; all that was required was a

value of D and a value of c for one model.

Optimism was not calculated for any of the estimates of D or c from the thesis datasets,

since most of the papers reporting D and c did not appear to have attempted to either ad-

just for optimism or externally validate the models developed. Additionally, adjusting

for optimism may lead to the problem of negative values of D which do not really have

an equivalent on the c scale, since c < 0.5 implies that the model does have predictive

value; just in the opposite direction to that expected.

After the values were obtained and plotted it became clear that all the values of D

were greater than 0.5, which meant there was a gap in the graph for 0 < D < 0.5. In

order to ensure that the empirical model developed from this was accurate across the

full range of D, one SEER disease area (with all 9 registries) was selected from each of

the 4 main cancer areas above and used to develop ‘poor’ models (again, described in

Appendix B). The list of potentially included variables for these poor models was short;

only including a few demographic variables and no disease-related variables, to ensure

that the resulting D was very low.

The final spread of 294 data points from the three sources (179 from SEER, 89 from

literature search, 26 from thesis datasets) is shown in Figure 8.6. The highest values of D

obtained were just under D = 3. Higher values would have been desirable but are rarely

seen in practice.

Model development

Using these 294 points, D was regressed on c using fractional polynomials. The regres-

sion line was forced through the point D = 0, c = 0.5, which corresponds to a model

which has no predictive value. A clustering variable was used to identify models eval-

uated on the same dataset, to allow cluster-robust variance estimation. The resulting

model found that an FP2 model with powers (1,3) provided the best fit. The final model

was

D = 5.48(c� 0.5) + 10.59(c� 0.5)3. (8.3)
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Figure 8.6: Plot of 294 datapoints used to create model for predicting D from Harrell’s c:
from literature search (circles), thesis datasets (black) and SEER datasets (blue); overlaid
with final model line

Figure 8.6 shows this model overlaid over the data used to develop it.

The model seems a good fit for this data but for higher values of c it does not perform

as well. When c = 1, D = ∞; so the upper tail of the line in the figure should perhaps be

rising more steeply as it passes c = 0.9. However, it is unlikely that values of D greater

than 3 would be seen in a real dataset, so we should not be too concerned about this.

Another issue relates to the effect of administrative censoring on c reported by Gonen

and Heller (2005). It could be argued that there should be a term included in the model

to account for such censoring, however even with high censoring the largest difference

observed in c by Gonen and Heller was not more than 3%. As we can see from the spread

of data in Figure 8.6, our conversion is not an exact method and should not be considered

as such, thus any effect of censoring is small enough to be ignorable here.

The fact that we did not adjust any of the thesis dataset D and c estimates for optimism

here – and most of the D and c estimates from the literature search were also not adjusted

– should also be considered. It is possible that if optimism-adjusted D and c values were

used to develop the transformation, the curve in Figure 8.6 would look different, however

we cannot speculate on this as we have not looked in any detail at the optimism present in

c. It is possible that the proportion of optimism in c estimated from a model would be the

same as in D from the same model, and thus the transformation would still hold. The lack

of adjustment for optimism in the development of the transformation does not concern us

too greatly, but researchers should perhaps be wary of using it for transforming values
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of c from very small studies, or from studies where serious overfitting is expected for

whatever reason.

Formula 8.3 can be used to calculate D from any value of c. Table 8.3 transforms given

values of c to D and also on to R2
D (up to c = 0.90, to avoid extrapolating beyond the data

used to develop the conversion). This table also presents the reverse transformation, D

to c.

c �! D �! R2
D c �! D �! R2

D D �! c D �! c
0.50 0.00 0.00 0.71 1.25 0.27 0.0 0.50 1.6 0.759
0.51 0.05 0.00 0.72 1.32 0.29 0.1 0.518 1.7 0.772
0.52 0.11 0.00 0.73 1.39 0.32 0.2 0.536 1.8 0.784
0.53 0.16 0.01 0.74 1.46 0.34 0.3 0.556 1.9 0.796
0.54 0.22 0.01 0.75 1.54 0.36 0.4 0.572 2.0 0.808
0.55 0.28 0.02 0.76 1.61 0.38 0.5 0.590 2.1 0.820
0.56 0.33 0.03 0.77 1.69 0.40 0.6 0.607 2.2 0.831
0.57 0.39 0.03 0.78 1.77 0.43 0.7 0.624 2.3 0.842
0.58 0.44 0.04 0.79 1.85 0.45 0.8 0.641 2.4 0.853
0.59 0.50 0.06 0.80 1.93 0.47 0.9 0.657 2.5 0.863
0.60 0.56 0.07 0.81 2.01 0.49 1.0 0.673 2.6 0.874
0.61 0.62 0.08 0.82 2.10 0.51 1.1 0.688 2.7 0.884
0.62 0.68 0.10 0.83 2.19 0.53 1.2 0.703 2.8 0.893
0.63 0.74 0.11 0.84 2.28 0.55 1.3 0.717 2.9 0.903
0.64 0.80 0.13 0.85 2.37 0.57 1.4 0.732 3.0 0.912
0.65 0.86 0.15 0.86 2.47 0.59 1.5 0.745
0.66 0.92 0.17 0.87 2.56 0.61
0.67 0.98 0.19 0.88 2.66 0.63
0.68 1.05 0.21 0.89 2.77 0.65
0.69 1.11 0.23 0.90 2.87 0.66
0.70 1.18 0.25

Table 8.3: Conversion tables for c to D to R2
D, and also from D to c, using empirical

transformation equation 8.3
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8.5 Literature search for papers reporting c

8.5.1 Aim

In the previous section we developed a transformation tool which can be used to obtain

an approximate value of D from a given value of c. We now aim to collate some values of

c which we can convert to D in order to widen the disease areas covered by our D library.

8.5.2 Search strategy

For this search, we performed a citation search in Web of Science to find all papers citing

Harrell et al.’s (1996) paper which is often cited when papers use the c-index (other papers

may also be referenced, for example Harrell et al., 1984). Only publications from 2010

were included. Papers were excluded if they are purely methodological, not in human

medicine, not available as full text online or not reporting analyses of time-to-event data.

This search was performed in April 2011.

8.5.3 Results

Again, this section includes just a brief overview of the number of papers found. A more

thorough discussion of the results is performed in Chapter 9.

The search resulted in 207 papers from 2010, and after excluding methodological pa-

pers and those not in human medicine 175 remained. Scanning abstracts to exclude any

papers which clearly did not use survival analysis, we were left with 114. Where use

of survival analysis could not be determined from the abstract, the full methods section

was read; this resulted in a further 23 papers being excluded, leaving 91. Finally, the re-

sults section of the remaining 91 papers were read, which left a body of 77 papers which

actually reported Harrell’s c for a model; in total 331 models were reported by these 77

papers.

Of these 77 papers, 60 described prediction of disease events in patients who had a

particular disease (true prognostic models), while 17 predicted onset of disease in healthy

patients (risk models). Of the 60 predicting disease events, 47 were in cancer, 9 were in

cardiac diseases, two in liver diseases, and additionally two in other diseases: Chagas

disease and Raynaud’s phenomenon. Of the 17 papers predicting disease in healthy pa-

tients, 15 considered cardiac endpoints, one cancer and one dental caries.
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c SE(c) 95 % CI for c e Number of papers
1 0 0 0 24
1 0 1 0 8
1 0 0 1 29
1 1 1 0 1
1 1 0 1 3
1 0 1 1 12

Table 8.4: Quantities reported in the 77 papers reporting c. 0 indicates absence and 1
presence of that quantity
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Figure 8.7: Histogram of 331 values of c obtained from second literature search.

Figure 8.7 gives a histogram of the 331 values of c given by the papers. They are ap-

proximately normally distributed, ranging from 0.50 to 0.94 and with mean and median

both 0.72.

8.6 Literature searches: summary of combined results

Once the values of c were converted to D we had 480 values of D in total, across all

papers and models within papers. This comprised 140 from the first literature search

(108 of which were D values; an additional 32 were values of c converted to D), 314 from

the second literature search (314 values of c converted to D) and 26 thesis datasets (26

D values). Note that the 190 models from SEER datasets used to develop the c ! D

transformation are not included in the library. Figure 8.8 shows a histogram of these 480

values. The values range from 0 – 3.44, their mean is 1.40 (median 1.38), and standard

deviation 0.584. Since D has the interpretation of the log hazard between the two groups
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Figure 8.8: Histograms of values of D for (left) 184 models in healthy patients, (middle)
296 models in patients with disease, (right) all 480 models

formed by dichotomising the model prognostic index at its median, we can translate a D

of 1.4 to a hazard ratio of e1.4 = 4 .

8.6.1 Risk models in healthy subjects

These models are developed to predict onset or incidence of some disease or condition in

apparently healthy subjects. Although risk models are not technically prognostic models,

they are still aiming to predict an event and it is still of primary interest to researchers

to measure and compare their predictive value. As we anticipate that our sample size

calculations could be used with risk models just as easily as with prognostic models, we

included them in our literature search. Figure 8.8 shows a histogram of the 184 values of

D from such models. These values have a minimum of 0.05 and maximum of 2.73. Their

mean and median are both 1.47 and standard deviation is 0.550.

8.6.2 Prognostic models in patients with disease

This section covers papers which develop and / or validate models in patients with a

disease, and attempt to predict some disease-related event, or death. Figure 8.8 shows a

histogram of the 296 values of D from such models. These values have a minimum of 0

and maximum of 3.44. They have mean 1.30 and median 1.35 – so somewhat lower than

the models in healthy patients – and their standard deviation is 0.601.
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8.7 Discussion

In this chapter we have outlined methodology used to collect values of D, through liter-

ature searches and a model developed to convert Harrell’s c to Royston and Sauerbrei’s

D. The model developed is based on fractional polynomials and was used to convert

the c values found, which gave us a final total of 480 values of D. We have presented

histograms for these values altogether and split by whether the models were based in

healthy patients or patients with disease; and found that the former show slightly higher

values of D.

In the next chapter we will summarise and comment on this collection of D values,

and describe some values of particular interest. A full narrative description on the pa-

pers found in the literature searches can be found in Appendix E, where D values are

presented by disease and endpoint to form a basic library.
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Chapter 9

D Library

9.1 Introduction

In the previous chapter we outlined the methods used to perform two literature searches

for values of Harrell’s c and Royston & Sauerbrei’s D, and developed a model to pre-

dict D from c. The full ‘library’ of D values resulting from the two literature searches is

described in Appendix E. In this chapter we present a broad overview of the findings:

describing the disease areas covered by the search and highlighting some results of inter-

est. We present first the results from risk models predicting first disease events in healthy

patients, and then the results from prognostic models predicting death or disease pro-

gression events in patients who already have a particular disease. Here, as in Appendix

E, we do not differentiate between D values which were originally reported in the paper

and values which were derived from Harrell’s c using the transformation developed in

Chapter 8. For brevity, where relevant we use the notation DF to indicate a D value for a

female-only group and DM for male-only.

For full references for all papers, see the D Library bibliography at the end of the

thesis.

9.2 Risk models in healthy subjects

These models are developed to predict onset or incidence of some disease or condition in

apparently healthy subjects. The majority of such papers found in our search concerned
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the prediction of cardiovascular (CV) events of various types, but a few other diseases

were also included.

9.2.1 Incidence of cardiovascular disease

Most of these papers considered the endpoint of cardiovascular disease (CVD), generally

defined as coronary heart disease (CHD) plus cerebrovascular disease, that is: myocardial

infarction, coronary heart disease, stroke, and transient ischaemic attacks. Most such pa-

pers presented separate results for women and men and interestingly all found that their

models predicted better in women than in men. A majority of papers used established

risk prediction scores or models based on such scores, and as a result D values across

these papers were reasonably similar in magnitude. For example, Hippisley-Cox et al.

(2007) derived the QRISK score for predicting CVD, finding DF = 1.55 and DM = 1.45

(R2
D = 36% and 33%) in the validation cohort. Later the score was externally validated,

with DF = 1.56 (37%) and DM = 1.39 (32%) (Collins and Altman, 2009; Hippisley-Cox

et al., 2008a). The successor to this score, QRISK2, was also developed by Hippisley-

Cox et al. (2008b), reporting DF = 1.80 (44%) and DM = 1.62 (39%) in the validation

cohort; the score was independently validated by Collins and Altman (2010) who found

DF = 1.66 (40%) and DM = 1.45 (33%). Yet another QRISK score, this time based on

lifetime risk of CVD, was developed by the same group, finding DF = 1.93 (47%) and

DM = 1.79 (43%) (Hippisley-Cox et al., 2010).

Several papers sought to predict CHD events alone, D values were similar to those

for CVD and again the pattern was seen of higher values of D in women than men.

Figure 9.1 shows graphically the values of D for models predicting CVD or CHD

events. The dots correspond to the mean of the D values found for that endpoint; the

lines are the 95% CI for the D values based only on the number of studies included, not

the number of patients or events within studies as this information was not consistently

reported.

Other cardiovascular endpoints covered in the search included cardiac death, heart

failure, coronary heart disease death, and stroke. The majority of these papers found DF

in the range 1.3-2.0 (R2
D = 29%–49%) and DM in the range 1.2–1.8 (26%–44%), similar to

the values seen for models predicting CVD and CHD events.
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Figure 9.1: Forest-type plot of D for CV and CHD events in healthy subjects.

One paper looking at the performance of the Framingham Risk Score (D’Agostino

et al., 2008) in hypertensive patients found very low D values for a variety of cardiac

endpoints: in particular D = 0.39 for CHD events (R2
D = 4%) (Nelson et al., 2010).

The authors concluded that this risk score discriminated poorly in hypertensive patients,

and this illustrates an important point that we will elaborate later: the less diverse the

population, the lower D is likely to be.

Figure 9.2 shows graphically the values of D for models predicting some of these

other cardiac endpoints in healthy patients.

9.2.2 Incidence of other diseases

Other papers found included risk models for diabetes, bone fracture, chronic kidney dis-

ease, predicting specific side effects of statins, colorectal cancer, and dental caries. The

models predicting diabetes and bone fracture tended to show quite high values of D, of

around 1.7–2.5 (R2
D = 41%–60%) and 1.6-2.7 (38%–64%) respectively.

The single model predicting chronic kidney disease, which was based on a large gen-

eral practice dataset, also found high values, DF = 2.32 (56%) and DM = 2.38 (57%)

(Hippisley-Cox and Coupland, 2010b).
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Figure 9.2: Forest-type plot of D for other cardiac events in healthy subjects.
HT=hypertension

9.3 Prognostic models

This section covers papers which developed and / or validated models in patients with

a disease, attempting to predict some disease-related event, or death; these are ‘true’

prognostic models.

9.3.1 Cardiovascular disease

13 papers were found which considered survival models in patients after cardiovascular

(CV) disease events including heart failure, stroke, and MI; or after CV interventions such

as coronary artery bypass graft and percutaneous coronary intervention. Most D values

in this category were in the range 1.4–2.1 (R2
D = 32%–51%) with a cluster around 1.7–1.8

(41%–44%).

Figure 9.3 shows graphically the magnitude of D in a selection of the studies predict-

ing CV events in patients with pre-existing conditions. Again, the dots correspond to the

mean of the D values found for that endpoint and disease, and the lines are 95% CI.

9.3.2 Cancer

Most of the papers in our literature search were in cancer; 99 in total. We divide dis-

cussion by cancer site, and sometimes further by early and advanced disease or other

characteristics where appropriate.
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Figure 9.3: Forest-type plot of D for CV events in patients with existing CV con-
dition. LVAD=left ventricle assist device, CABG=coronary arterial bypass graft,
PCI=percutaneous coronary intervention

Breast cancer

Several papers considered prediction models for breast cancer, and 11 of the datasets used

throughout this thesis were breast cancer datasets. The different patient groups (for ex-

ample defined by stage of disease or hormone-receptor status) and outcome events used

(including overall survival, cancer-specific survival, recurrence-free survival) makes it

difficult to compare D values across models. One place where it is more appropriate

to compare models, datasets and D values is the 9 SEER datasets used throughout the

thesis. These datasets contain exactly the same information on breast cancer patients in

9 different geographical areas of the USA and as such the patients within each dataset

should (arguably) be quite similar. The best models chosen within these datasets with an

MFP procedure with p = 0.05 had D values ranging from 1.59–2.07, corresponding to

R2
D of 38%–51%. This implies that the 9 datasets each have subtly different relationships

between variables and outcome.

Prostate cancer

The eight papers reporting on prostate cancer patients fell into various subcategories. The

most common category consisted of papers seeking to predict biochemical recurrence in

patients with organ-confined disease, who had been treated with radical prostatectomy
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(RP). The values of D found in these papers varied fairly widely, from 1.2–2.1 (R2
D = 26%–

51%) but due to differences in study follow up and the predictors used in the models,

again it is difficult to compare them directly.

Another example of more heterogenous patient groups giving higher D values is pro-

vided in Cao et al. (2010). This paper tested a model in a group of prostate cancer patients

with a Gleason score of 6–9, which gave DM = 1.38 (31%); while the same model in the

subset of patients with a Gleason score of 7 gave DM = 1.20 (26%).

One other example of note is a paper on prostate cancer patients after radiation mono-

therapy treatment (Williams et al., 2006). As well as developing a new model to predict

biochemical recurrence, the authors also sought to evaluate an existing model on two

independent datasets, with 864 and 271 events respectively. The model showed DM =

1.50 (R2
D = 35%) in the smaller dataset and DM = 1.02 (20%) in the larger, showing that

a validated model can produce quite different estimates of D when applied to different

datasets. We will discuss some possible reasons for this and the impact it may have on

use of our sample size calculations at the end of this chapter.

Renal cancer

Ignoring the different pathology types, the distribution of D values amongst papers in

renal cancer appeared to be roughly bimodal. Values from models predicting overall

survival were quite low, around D = 1 (R2
D = 19%), whereas models predicting disease

specific survival were much higher, with 5 of 6 such values greater than 2 (R2
D = 49%).

Other cancers found in the literature search included bladder cancer (where there was

no clear difference in D between models in patients with low and higher grade tumours)

and liver cancer (two papers each tested three models and none exceeded D = 1, R2
D =

19%). Models in lung cancer were also rather low with D < 1 for all models across three

papers, each considering different pathologies.

Figure 9.4 shows graphically the magnitude of D in a selection of the above cancer

areas, with the endpoint of overall survival. Figure 9.5 shows D values for the endpoint

cancer-specific survival, and Figure 9.6 shows D values for the endpoint progression-free

survival.

Several papers were also found within the broad descriptions of gynaecological, head

and neck, stomach and ‘advanced’ cancers, however the precise tumour types covered
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Figure 9.4: Forest-type plot of D for cancer papers with endpoint overall survival

Figure 9.5: Forest-type plot of D for cancer papers with endpoint cancer specific survival.
ER+ = estrogen-receptor positive, UT = urinary tract
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Figure 9.6: Forest-type plot of D for cancer papers with endpoint progression-free sur-
vival. ER+ = estrogen-receptor positive, RP = radical prostatectomy, RT = radiotherapy,
UT = urinary tract

within these categories were often disparate. There were several papers reporting on

outcomes in different classes of leukemia and lymphoma, and a handful of single papers

in other cancers were also found. One omission which we felt was notable due to its

frequency in the population, was colorectal cancer, for which only one paper returned in

our search. Researchers requiring a value of D in any of these disease sites would likely

need to do further literature searches in order to obtain a reliable value for their work.

9.3.3 Other diseases

Amongst the papers reporting prognostic models in areas other than cardiovascular dis-

ease and cancer, only HIV was seen more than once in our searches. Two of the datasets

used throughout the thesis included patients with primary biliary cirrhosis. Our best

models for these two datasets showed rather high D values of 2.7 (R2
D = 64%) and 2.55

(61%), however they were quite small in size.
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9.4 Discussion

In this chapter we have described the results of literature searches performed to obtain

values of D for prognostic models across a variety of disease areas, as well as for risk

models predicting disease in healthy subjects. The primary aim of this literature search

was to provide values of D for use with the sample sizes Sig-2 and CI-2 developed in

Chapter 6, as these calculations require point estimates of D. Although many diseases

had no representation in our searches, we envisage that it will be relatively easy for re-

searchers to follow the same process we followed to obtain approximate D values for

use in planning studies in their disease area. A literature search can be conducted to

find suitable papers in the disease area of interest which report c values, and the c to D

transformation given in Chapter 8 used to calculate D.

9.4.1 Differences in D within the same disease area

In some disease areas covered in this chapter, the same models were used with differ-

ent datasets. On the whole, the larger the datasets used, the better the consistency in

observed values of D from different papers. For example, the cardiovascular risk mod-

els QRISK and QRISK2 gave very similar values of D across independent datasets, since

very large general practice databases (tens of thousands of events) were used both for

their development and validation. For smaller datasets the values of D observed from

the same model could be quite different across studies, as in the prostate cancer example

described above (which included hundreds of events, so still reasonable sized by research

standards). Such differences in D could be a result of the model not having been prop-

erly validated or calibrated, however it could also be due to datasets being different in

important ways, some of which we discuss below. Observational studies in particular

may show differences in the apparent predictive ability of the same model, due to their

uncontrolled nature (Royston et al., 2004).

This heterogeneity in observed D values from the same model, let alone different

models in the same disease area, highlights the difficulty of finding a single ‘best’ value

of D for use in the sample size calculations. This leads us to recommend that a range of

possible D values (and censoring proportions) are input into the calculations, to obtain

a range of possible sample sizes. Alternatively, if there is a limit on the number of pa-
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tients that can be included in the planned study, the calculations can be used to work out

the power that will be obtained from various possible combinations of D and censoring

proportion. We outlined in Chapters 5 and 6 the effect of the final D estimate in the new

study being different to the value used in the sample size calculation; a higher D than

planned means lower precision, a lower D than planned means higher precision.

It is unlikely that a study will be found in the literature which provides an excellent

match to the planned study in all aspects. Researchers should read papers carefully and

bear in mind the ways in which the planned study is likely to differ from the previous

study found, and consider how they might affect D. Some aspects which may differ be-

tween studies which appear similar at first glance include whether the study’s primary

aim was model development or validation, the size of the study, the proportion of cen-

sored records, the model(s) used, and the case mix of the patient population.

Study type: validation or development It is important to consider whether a published

study is primarily a model development or model validation study, as a study aiming to

develop a new model is likely to report optimistic (over-estimated) measures of prognos-

tic value if these estimates have not been externally validated. Even when a study reports

both development and validation of a new model, the quality of this validation should be

carefully considered, as some commonly used methods do not use completely indepen-

dent data and so may still produce optimistic estimates. Examples of such methods are

internal validation techniques such as data splitting, where the whole dataset is split into

two parts: one for model development and one for validation; and temporal validation,

where a later cohort of patients from the same institution is used to validate the model.

On the other hand, a study with the primary aim of validating an existing prognostic

model on external data should produce estimates of prognostic value that can be con-

sidered free of optimism, assuming the validation cohort is truly independent of the de-

velopment data. The study methods and data sources should be inspected to determine

whether this is the case.

If it is suspected that the chosen estimate of D contains optimism, lower values of D

should also be input into the calculation to see what difference this makes to sample size.
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Study size Even before they have performed their sample size calculation, researchers

will have some idea of the scale of study they wish to conduct. A study from the literature

may be much smaller or much larger than this. If an estimate of D from the literature is

based on a small dataset and has not been validated, it is likely to contain optimism; that

is, the value of D is likely to have been overestimated. This shouldn’t be ignored, as in

Chapter 3 we saw that it is possible for optimism in estimates of D to make up 50% or

more of the estimated value of D, when datasets have 100 or fewer events.

Censoring proportion Increased administrative censoring increases the value of c (and

hence D output from the conversion) but only slightly – a few percent at most – and so we

feel this can safely be ignored, since we are dealing in approximations here. Censoring

proportion is a term in the sample size calculation so can be adjusted for and a range of

possible proportions used if desired.

Different models In the validation situation (where the model to be used in the new

study is already known) ideally a previous study utilising this model will be available

for estimation of D. If not, an estimate of D from a similar model should be used, bearing

in mind the subject specific knowledge of the researchers. If, for example, an impor-

tant factor has been omitted from the ‘similar’ model which will be included in the new

model, then researchers may decide that a slightly higher estimate of D is appropriate.

If the purpose of the study is to develop a new model, then obviously it is impossible

to know what D will be for this model (as that is why the study is planned!). Here

we suggest researchers choose an estimate of D after considering ‘good’ models in their

disease area, bearing in mind the data they plan to collect on patients.

Another point to consider is how many factors are included in the model compared

to events in the dataset. If the ratio of events to variables is lower than 20, and certainly

lower than 10, again overfitting is quite likely and so the value of D reported may be

optimistic. It is worth remembering, however, that such EPV calculations should ideally

include the count of all candidate variables originally considered for inclusion in the

model. Published papers are unlikely to give this information, so the EPV calculated

from variables in the published model should be considered as an upper bound.
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Case mix The studies found in the literature may be based on different case mixes to

the new study. This may affect D in several ways. Firstly, the heterogeneity of the dataset

impacts D. It is likely that a study with a wider patient demographic will output a higher

D value than the same model used in a narrower group, simply because the wider group

has more factors which can be used to differentiate the patients. This occurs due to the

broader case mix resulting in a higher variance for the model PI, which in turn results in

a higher D. This phenomenon is common to all measures of prognostic value, not just D.

It is difficult to know how to deal with differences in case mix between studies found

in the literature and the proposed new study. Of course the closest match should be

chosen; again it may be useful to calculate a range of sample sizes based on a range of D.

9.4.2 Other uses of D and the D library

The values of D collated here have other uses beyond our sample size calculations, and D

in general can tell us more than simply the prognostic value of one model in one dataset.

Values of D from the same (validated) model fitted to various datasets can tell us

something about how similar the datasets are. There may be obvious differences between

datasets, for example in terms of the distribution of patient characteristics or observed

outcomes, but if these aspects are similar in two datasets while the D values differ, there

must be different relationships between variables and outcomes at work. This could be

of use if researchers wish to ensure two datasets are similar; for example if a model is

to be developed in one dataset and validated on another, fitting an existing model to

both datasets may help determine if there are important differences between the datasets

which could affect the planned validation process. In this situation it would be important

to ensure that the model used for comparison is already validated, as otherwise optimism

could affect its performance.

Looking at D in other datasets may also help reassure researchers that estimates in a

new dataset are reliable. Let us take the example of assessing the additional prognostic

value of a new factor, when added to an existing model. If the existing model has shown

D = 1.3 in previous similar patient groups, then when fitting the model in a new dataset,

we would hope to see a value of around D = 1.3. Additionally, if we see D ' 1.3 and

adding the new factor to the model gives D = 1.6, then this reassures us that we have a

reliable estimate of the extra value of the new factor.
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Chapter 10

Discussion

10.1 Summary of thesis

Prognostic studies are often performed by researchers and so appear frequently in med-

ical literature. The aim of such studies is generally to develop a multivariable model

to predict the outcome of interest, and they often use time-to-event data analysed with

the Cox proportional hazards model. Many prognostic studies are performed retrospec-

tively and often without reference to sample size (Mallett et al., 2010), suggesting that

a reasonably reliable prognostic study may often be more a matter of luck than of good

planning. In this thesis we aimed to develop sample size calculations which could be

used by researchers planning prognostic studies or developing multivariable models, ei-

ther to ensure they have sufficient precision or to estimate the precision they do have

from the available data.

10.1.1 Review of available sample size guidance

Our first step was to review the sample size calculations already available (Chapter 2).

We found that a calculation is available for the situation where it is desired to detect

the prognostic value of a proposed new factor, in addition to an existing multivariable

model; however this is not suitable for the majority of prognostic research, where we are

interested in the (combined) effect of all factors on the outcome. The only other sample

size guidance available for the multivariable context is the Events Per Variable (EPV)

recommendation which states that at least 5 or 10 events per candidate model variable

should be available for estimated regression coefficients to have proper accuracy and
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precision and the correct coverage. We did not feel that this recommendation was optimal

for the prognostic study scenario, since it was developed with the regression coefficients

of the model in mind, rather than its prognostic ability, and does not appear to have been

much tested beyond the two papers in which the idea originated (Concato et al., 1995;

Peduzzi et al., 1995).

Finding no sample size calculations or recommendations which were well suited for

use with prognostic multivariable models, we considered development of a new calcu-

lation, rather than adaptation of an existing one. The first step was to consider how we

would measure the prognostic value of a model. In Chapter 2 we considered reviews per-

formed by Schemper and Stare (1996) and Choodari-Oskooei (2008), and chose Royston

& Sauerbrei’s D as our measure of prognostic value, due to its one-to-one relationship

with a measure of explained variation (R2
D), appealing interpretation and robustness to

outliers in the prognostic index.

10.1.2 Investigation of some properties of D

In Chapter 3 we investigated D to further uncover some of its properties. First we con-

sidered how it varied with sample size; to see whether there were any important rela-

tionships which would affect any potential sample size calculations. We also wanted to

see whether there were any obvious cut offs of sample size dividing ‘too small’ from ‘big

enough’ across all datasets. Our main result here was that D was variable while the sam-

ple size was small, but converged to a particular value as the sample size increased. We

found that roughly at least 30 EPV or 200-300 events were required for the estimate of D

to be within 25% of the ‘true’ D, but that this varied across datasets, and so a more formal

sample size calculation was required.

We also looked at the issue of optimism, finding that an estimate of D from a model

found using an automated variable selection procedure was virtually guaranteed to be in-

flated to some degree due to overfitting. We used Harrell et al.’s (1996) bootstrap method

for estimating optimism which found that with 20 EPV, or with 200 events, the observed

estimate of D contained between 10%–50% optimism for the vast majority of the datasets

considered. We did not validate this method, however, and Royston and Sauerbrei (2004)

found that it may overestimate optimism in D.
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We also found in Chapter 3 that the estimate of SE(D) described by Royston and

Sauerbrei (2004) consistently underestimated the true standard error, especially when D

was high, and so proposed using a bootstrap estimate of SE(D) instead. The bootstrap

estimate is quite quick to obtain for a single dataset and we found that for simulated data

it much more closely approximated the gold standard empirical standard error.

In Chapter 4 we introduced an important parameter for formal sample sale size cal-

culations: λ, the product of the number of events and the variance of D in a dataset. We

found that λ can be estimated in a dataset with reasonable precision as long as there are

more than about 170 events in the dataset. We also developed a fractional polynomial

prediction model for λ using D and the censoring proportion from the dataset; this per-

formed fairly well when tested in real datasets, not showing any obvious bias. Currently

we cannot say which estimate of λ will be a better predictor of the value in a planned

new study: the point estimate from a previous study, or λ from our equation, using the

values of D and censoring proportion from the previous study.

Finally, we showed that λ is reasonably independent of dataset size, assuming a par-

ticular covariate structure. This assumption was key to development of sample size cal-

culations for use in two different situations.

10.1.3 Development of sample size calculations

The first situation (in Chapter 5) is where it is desired to validate a value of D obtained

from a model in a previous study, and importantly, an estimate of SE(D) is available as

well as an estimate of D. Two calculations were presented. The first (Sig-1) is a signifi-

cance based calculation, where the proposed new study is a non-inferiority study and the

reduction in D that we are willing to tolerate (δ) is specified along with a one-sided type

I error (α) and power. The second (CI-1) is based on the precision of the estimate of D

that will be obtained from the new study, in terms of the width of its confidence interval.

Both calculations assume that the censoring proportion in the new study is the same as

in the previous study; although with differences of 10% or less, the difference in resulting

coverage is minimal. Broadly, if the censoring proportion in the new study is higher than

the proportion in the previous study, the study will have lower precision than planned,

whereas a lower censoring proportion would mean the new study has higher precision

than planned. Additionally, if the new study showed a D that was markedly different to

176



the previous study this would also impact the precision of the study; a higher D in the

new study implying lower precision, a lower D implying higher precision. This slightly

counter-intuitive effect occurs because the variance of D increases with D.

The second situation, described in Chapter 6, was where only a target value of D is

available, and no estimate of SE(D). In this situation we again have a significance based

(Sig-2) and a precision based (CI-2) calculation. For both these calculations we used the

prediction model we developed in Chapter 4 to estimate λ. As already described, this

model requires an estimate of the censoring proportion of the new study. This should be

approximately known by researchers, who should have a good idea of survival rates in

their disease area, and will have planned the length of study follow up. The model also

requires an estimate of D; obtaining this may be more problematic. At one end of the

scale, a good estimate of D may be available from a previous study (for which individual

patient data is not available to the researchers, and for which no estimate of SE(D) is

available), while at the other end D may have to be effectively guessed. However, as

censoring proportion and the estimate of D are explicit in the sample size calculations

for this scenario, it is straightforward to calculate a range of sample sizes for various

possible values of these parameters, and we strongly recommend this is done to help

decision making.

We have highlighted the issue of studies inadvertently having higher or lower pre-

cision than planned due to misspecification of important parameters in our sample size

calculations, however it is worth noting that this is a potential problem in any scenario,

including randomised clinical trials. Any divergence from the expected censoring rate

or hazard ratio for treatment in a clinical trial would mean that the originally calculated

sample size was either too large or too small; however post-hoc calculations of power are

not routinely performed. Thus the sample size calculations we have developed do not

differ in principle from the (widely accepted) calculations for randomised trials in this

respect.

As a final point on the calculations presented in Chapters 5 and 6, we note that there

are four further calculations that could have been presented in the same vein. The calcu-

lations developed here were based on two binary factors: firstly whether the quantity λ

was estimated from a previous study (Sig-1 and CI-1), or from our estimating equation

(Sig-2 and CI-2); and secondly whether the calculation was based on significance testing
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(Sig-1 and Sig-2) or CI width (CI-1 and CI-2). There is a further factor of interest: whether

the test statistic is based on a difference in D, or on the value of D itself. In this work we

developed the calculations so that Sig-1 is based on a difference in D, while Sig-2, CI-1

and CI-2 are based on the value of D itself, but this could be changed to give an additional

four calculations. Finally, Sig-1 and Sig-2 are presented as calculations for non-inferiority

studies here, but by changing the α to two-sided rather than one-sided the study can be

powered for superiority instead.

10.1.4 Application of sample size calculations

When testing all four of these calculations with parameters from 10 real datasets, with a

difference in D of δ = 0.1 (calculation CI-1) or a 95% confidence interval of total width

0.2 for D (Sig-2 and CI-2), we found that none gave a sample size of fewer than 500

events and most were much higher. Calculation Sig-1 has an implicit restriction on the

minimum difference in D that can be detected, and sometimes this minimum can be

rather high. Sample sizes output from Sig-1 approach ∞ as δ approaches its minimum,

and so generally this calculation also outputs a rather high required number of events.

The large sample sizes output by all four calculations lead us to believe that under-

powering of prognostic studies is common, as perusal of the literature reveals many pub-

lications with sample size of less than 100 events. Relaxing the δ to be detected, or the

precision in the estimate of D, will of course reduce the sample size required. We found

that the CI based calculations CI-1 and CI-2 performed similarly, while Sig-1 always out-

put a higher sample size than Sig-2 with the same parameters.

We also considered the precision that a given sample size will ‘buy’ under each of the

four calculations. We found that for most of the scenarios we considered, with 200 events

the CI based calculations (CI-1 and CI-2) provided a CI with half-width w of around 0.25;

while 500 events gave w of around 0.16 and 1000 events a w of around 0.11. For small

first studies or higher estimated D, the w available was slightly higher. Increasing the

number of events by a factor of k leads to an increase in precision from calculations CI-1

and CI-2 by a factor of
p

k. This relationship between events and precision also holds for

the significance based calculation Sig-2, where 500 events gave a detectable difference in

D of between 0.22 and 0.37, and with 1000 events, between 0.15 and 0.26. Calculation

Sig-1, however, behaved differently because of its implicit restriction on δ. The precision
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available from a fixed number of events using Sig-1 was always higher than that from

Sig-2, and the relationship between number of events and precision more complex.

Finally, we considered the desired precision in calculations CI-1 and CI-2 as a pro-

portion of the value of D. We found that this could be a useful way to avoid the loss of

precision experienced when D is higher than anticipated in a study, and also to sidestep

the large sample sizes typically required by the calculations when D is high. Further,

using a composite sample size consisting of both a fixed value of δ or w and a percentage

of D means additionally that the expected precision will be obtained whatever the value

of D in the new study. This somewhat mitigates the worry about whether an obtained

estimate of D is accurate enough, and we feel it is quite a practical solution for the situ-

ation where researchers planning a study are not very sure about the target value of the

parameter to be estimated.

10.1.5 Improving utility of sample size calculations

To aid researchers in estimating D and thus improve the usability of the calculations Sig-2

and CI-2 for the second scenario, in the last part of this thesis a detailed literature search

of papers reporting D from models developed in real studies was conducted. This re-

sulted in 34 papers which presented estimates of D for either predicting various diseases

in healthy patients (risk models), or for predicting disease events in patients with a par-

ticular disease. We wished to expand this collection further, and to do this developed an

empirical-based method to convert values of Harrell’s c-index to D. A literature search

of papers reporting c resulted in estimates of D from a further 77 papers. The final D

Library consisting of all estimates of D found during the literature searches is presented

in Appendix E and it was summarised in Chapter 9.

We found that on average, risk models had slightly higher D values than true prog-

nostic models, which may be due to the more heterogenous healthy patient populations

used in the former. We also found that the same model could output quite different val-

ues of D in different datasets, which may have an impact on prognostic study planning.

It is unlikely that researchers seeking an appropriate D value for use with our calcula-

tions will find a perfect match in the literature, and differences in study size, the models

used, and case mix of the population deserve careful scrutiny.
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10.2 Recommendations

10.2.1 Sample size recommendations

If researchers wish to develop a new or altered multivariable prognostic model, or val-

idate an existing one, they must consider various questions to determine which sample

size calculation to use. A suggested decision tree is given in Figure 10.1.

At this point, we primarily recommend calculations Sig-2 and CI-2 over Sig-1 and

CI-1, regardless of whether an estimate of SE(D) is available from a previous study. This

is in part due to the restrictions on δ implicit in calculation Sig-1, which in many cases

may mean the minimum δ to be detected is to large to be of use. Another issue is the

uncertainty around estimates of SE(D); or more accurately, estimates of λ (the product

of var(D) and number of events in the dataset, which is present in all four calculations).

Our research on the sampling distribution of λ appeared to show that a single value of

λ from a previous similar study is not necessarily going to be a better predictor of λ

in a new study than a λ predicted using our prediction model (equation 4.2). Further

research may shed more light on the prediction error from both methods of estimating λ,

but currently we cannot recommend one method over the other. The flexibility of Sig-2

and CI-2 in terms of the ease with which researchers can use them to generate a range

of sample sizes for various values of D and censoring proportion swings the balance in

favour of these two calculations. This flexibility is especially important as there may not

always be strong evidence to support one single value of D over all others. Calculations

Sig-2 and CI-2 may be made even more flexible by considering the desired precision as a

percentage of D, rather than as a fixed value, as shown in Chapter 8; or by using our idea

of a ‘composite’ sample size.

Working through the decision tree in Figure 10.1, the first consideration is whether

an estimate of D is available from a previous similar study, as this should be the best

possible estimate. If it is, then researchers can proceed to use either calculation Sig-2 and

CI-2 (together with an estimate of study censoring proportion). If no estimate of D is

available from a previous study, it must be sought from another source. There may be a

suitable value of D in our library (or in future publications reporting D), but if not, the

next best option is to search for an appropriate value of c in the literature. If such a value
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is found, it can be approximately converted using our conversion and again calculation

Sig-2 or CI-2 used.

One question that arises here is the errors in our estimate of D caused by (i) a source

study or publication not being similar in all respects to the planned study and (ii) the

conversion from c to D. For example, if both options were available: is it better to use

an estimate of D from a study found in the literature which is dissimilar in one or two

important respects, or to use an estimate of c from a very similar study, converted to D?

Currently we do not have an answer to this and it would be rather difficult to investigate.

In Figure 10.1 an estimate of D is given priority.

If no suitable estimate of c can be found, then our recommendation – following the

work in Chapters 8 and 9 – is to use D = 1.4 (which is equivalent to R2
D = 32%) as this

was the approximate mean (and median) value of D from the prognostic studies found

in the literature search. Calculation Sig-2 or CI-2 can then be used.

In any situation where researchers are not very certain about their target or ‘best’

estimate of D, they may wish to consider our idea of a composite sample size and choose

both a fixed limit for precision (δ or w), and an acceptable percentage of D. The maximum

sample size output across all possible values of D will result in a study with the desired

precision, regardless of the value of D observed.

Alongside the issue of estimating a suitable value for D, is the issue of what is a suit-

able value to choose for either δ or w. While the interpretation of D may be reasonably

straightforward for researchers who already have a grasp of survival analysis, the inter-

pretation of a difference in D may be more difficult. One possible way to illustrate the

meaning of such a difference may be to express it in terms of R2
D; however it is impor-

tant to note that the difference in explained variation will vary depending on the value

of D. More work on this problem would be useful if the calculations are to be used and

understood; researchers must have a grasp of what difference in D they are excluding or

accepting with their study, and how it relates to the performance of their model.

Where researchers wish to detect the additional value of a single new factor on top of

previously known factors, they have an additional option. They can use the calculations

developed by Hsieh and Lavori (2000) to determine sample size for a planned study or

to calculate the power available from the data they have; although technically these cal-

culations are not based on prognostic ability of the factor but the size of its log hazard
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Is a good estimate of D
available from a previous

study?

Use Sig­2 or
CI­2 with

estimate of D

Is there an estimate of
D in our library that

will work for this
situation?

Is there a value of c
available in the

literature that will work
for this situation?

Use conversion to
obtain estimate of D

Use Sig­2 or
CI­2 with D=1.4

yes no

yes no

noyes

Figure 10.1: Flowchart to aid decision making about which sample size to use

ratio β in the Cox model. Note that in order to use Hsieh and Lavori’s (2000) calculation,

researchers must estimate the R2 for predicting the new variable of interest with the ex-

isting factors, which will usually require a suitable existing dataset. If it is desired to test

the additional prognostic value of a single new factor in terms of D, then the flowchart in

Figure 10.1 and sample sizes calculations Sig-2 or CI-2 can still be used.

10.2.2 Obtaining estimates of D in the model validation context

In the model-validation context, if individual patient data from a suitable previous study

is available to estimate D from, additional steps may be taken to estimate an optimism-
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adjusted estimate of D in the original study, if it is suspected that the model in the study

was overfitted. In Chapter 3 we used Harrell et al.’s (1996) enhanced bootstrap method to

estimate optimism, however we did not validate this method in our data. Harrell (2001)

describes some other methods for estimation of optimism, while Royston and Sauerbrei

(2004) developed an adjusted D quantity called Dadj. Dadj accounts for the portion of

optimism which is a result of parameter uncertainty, but not that which is due to data-

driven model selection techniques.

Where individual patient data is not available, if it is suspected that a model provid-

ing an estimate of D may be overfitted (for example, due to automatic variable selection

procedures, non-validation of the model or a small dataset or EPV), the possible opti-

mism in the estimate should be borne in mind. An unrealistically high D will result in

higher sample size and thus a less efficient study. Due to lack of individual patient data,

researchers will only be able to guess at the magnitude of the problem.

10.2.3 Post-study recommendations

Calculation of SE(D)

Regardless of the method used to calculate sample size, at the end of the study we rec-

ommend that the bootstrap estimate of SE(D) is obtained as described in Chapter 3. 500

bootstraps should be sufficient to estimate SE(D) to within 10% of its value as long as

the study included 150 or more events. If the dataset is smaller than this accuracy may

decrease to �15%; 1000 bootstraps may be used if more accuracy is desired.

Bootstrapping SE(D) is particularly important if D � 1.0, but as it is a quick proce-

dure we recommend it is done regardless of the value of D. Note that the str2d command

in Stata does provide a bootstrap standard error option.

Optimism

In the model development context, we recommend that an optimism-adjusted estimate

of D is calculated, especially if the variables in the final model were selected using an

automatic selection procedure (in which case, the selection process must be included in

the optimism estimation).
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10.3 Remarks on D

During this work we have had the opportunity to reflect on D and its use and present

some of our thoughts here.

When reviewing values of D from a literature search, it is important to consider that

the absolute value of D can be changed simply by changing the case mix of the patients in

the dataset. The more heterogenous the dataset, the more variables there are available to

differentiate between patients in a model and thus the higher D becomes. This is common

to all measures of prognostic value, not just D.

This effect means that it is important to give careful thought to what is a suitable

population for developing a model on, especially if a prospective study is planned. Often

a prognostic model is developed in order to help determine a treatment or course of

action for a particular subgroup of patients. For example, the aim of the model may be to

divide patients into risk groups in order to identify the highest risk patients who are most

likely to benefit from an aggressive treatment. In this case, the model would likely be

developed on a population of patients who currently receive the same or similar course

of treatment, the aim being to learn whether we should in fact be treating these patients

differently.

If the best model developed on such a group of patients still has a low D, then as-

suming no important available factors have been omitted, this tells us that currently we

can’t differentiate much further between patients within this group. If additionally these

patients have a variety of different disease outcomes, or perhaps show the same outcome

but over a wide range of time, then this is likely a sign that there is potentially more to

learn about these patients. Thus, in a sense, D tells us how much we know about the

disease in this homogenous group: the larger D is, the more we know.

D can also tell us more generally how much we know about a disease, or the causes

of a disease, if it is calculated from a model developed on a wide variety of patients with

the disease or at risk of the disease. For example, we found that risk models seeking to

predict occurrence of diabetes generally had higher values of D than models predicting

cardiovascular disease; in particular this was true for the models developed on very large

general practice datasets. This implies that we know more about the causes of diabetes

than we do about the causes of cardiovascular disease.
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10.4 Further research

Various parts of this thesis would benefit from further research; either due to limitations

in the work, lack of time to expand areas as far we would like, or interesting results which

are not related to the main theme of the thesis but deserve further exploration.

Relationship between D and EPV

Our conclusions related to EPV were not as strong or generalisable as they could be, being

based only on a selection of six real datasets. For a more systematic consideration of the

EPV issue multivariable data with different covariate structures could be simulated, for

example using the drawnorm function in Stata or more sophisticated methodology based

on the covariate structure of existing datasets. This should enable further insight into

aspects of D’s relationship with EPV.

Optimism in D

In Chapter 3 we showed that unvalidated estimates of D can contain optimism when

models are not pre-selected (and even when they are, due to parameter uncertainty).

However, in the work done with real datasets in the remainder of the thesis, the optimism

in D was not calculated, since Harrell et al.’s (1996) bootstrap method would have been

too time-consuming in this situation, especially as we were also estimating SE(D) with

bootstrapping. Further research into the best method to adjust for optimism in D would

be prudent as part of general efforts to improve the quality of prognostic studies and

temper the hopes raised when a new prognostic model is reported which appears to be

highly predictive. Any method must be efficient and reasonably easy to implement; it

is not yet clear whether Harrell et al.’s (1996) bootstrap method fulfils this criteria when

used with D. As part of this work, we feel further work on Royston and Sauerbrei’s Dadj

would be worthwhile.

Sampling distribution of λ

We defined and described λ in Chapter 4 and looked at its mean value in different

datasets, but did not deeply consider its sampling distribution due to time limitations.

More work would be beneficial here as the sampling distribution of λ was key in our
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decision to recommend sample size calculations Sig-2 and CI-2 over Sig-1 and CI-1, even

when an estimate of SE(D) is available.

Prediction of λ

We developed an equation for predicting λ from D and the censoring proportion which

seemed to work reasonably well in simulated data with random and administrative cen-

soring, but was less accurate in real data. Further research to quantify the errors in the

prediction of λ and potentially refine the prediction model would be valuable in order to

improve calculations Sig-2 and CI-2. This work may also help determine more conclu-

sively whether the Sig-2 and CI-2 calculations are indeed preferable when an estimate of

SE(D) is available.

Testing sample size calculations

Like all the simulated datasets produced for this thesis, simulated model PI data with ran-

dom censoring were used to test the four sample size calculations developed in Chapters

5 and 6 for correct power and type I error (or coverage in the case of the CI based calcula-

tions). Repeating this testing with simulated multivariable data and data with different

censoring patterns should strengthen our conclusions and may highlight situations in

which the calculations do not result in the required power, type I error or coverage.

Effect of censoring on Harrell’s c

Work done in Chapter 8 on a transformation from Harrell’s c to D suggests that only

administrative censoring affects the value of Harrell’s c index, while random censoring

does not seem have an effect. This distinction does not appear to have been made before,

so it may be worthwhile looking further at this issue with more simulation study.

Other approaches to sample size

In this thesis we concentrate mainly on just one approach to sample size; a ‘traditional’

calculation based on significance or confidence intervals, based on one single measure

of model performance. There are other ways we could have explored the problem; for

example, considering the unknown ‘true’ model for a particular dataset and how to find

a model which is ‘almost as good as’ this, or considering calibration of a model in terms
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of accuracy of survival predictions. We could also have used different measures of model

performance such as Harrell’s C, or one of the other measures with suitable properties

which were mentioned in Chapter 2.

10.5 Final conclusions

In this thesis we have worked to develop sample size calculations for development or

validation of prognostic multivariable models, based on the D statistic, and also tried

to ensure that they are practical for use in clinical research. Although the sample sizes

output by the calculations tend to be large, we have given suggestions on how study size

can be managed, for example by considering precision as a proportion of the measure

of interest, rather than as a fixed value. We have also explored the D statistic further,

investigating some of its properties and reviewing its value in different disease areas.

We hope that these calculations, the guidance provided for their use, and our work

on D will help improve the quality of prognostic research. As well as the calculations

being used to provide sample sizes for prospective studies, they can also be used for ret-

rospective research, either to give the required sample size before suitable data is sought,

or to calculate the resulting precision when a dataset has already been chosen. At the

very least we hope that the existence of these calculations – the first formal sample size

calculations developed for prognostic research – will encourage researchers to consider

the issue of sample size as a matter of course when developing or validating prognostic

multivariable models.
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Appendix A

Datasets used in the thesis

This appendix describes the datasets used in this thesis.

A.1 Datasets used in Chapters 3, 4, 7, and 8

26 datasets are variously used throughout this thesis. In Chapter 3 a selection is used to

illustrate the behaviour of D with changing sample size, and in Chapter 4 to investigate

λ. In Chapter 7, ten of the datasets are used as starting points to give examples of the

sample size calculations developed in Chapters 5 and 6. Finally, they are all used in

Chapter 8 to contribute datapoints to the development of the model used to transform

values of Royston and Sauerbrei’s D to Harrell’s c.

The 26 datasets are summarised in Table A.1 below and given an acronym for brevity.

Most of the datasets chosen originated from clinical trials or cohort studies and have

previously been used to illustrate modelling techniques or prognostic analyses. Some

further information including the endpoint used and a reference for more detail is given

below for each dataset. Note that in Table A.1, the variables column refers to the number

of potential variables included in the mfp input string for that dataset; usually this was

all variables available.
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Dataset Disease Patients Events Variables
APC Prostate cancer 475 338 14
FBC Breast cancer 686 299 8
FOL Follicular lymphoma 767 573 18
GLI Malignant glioma 411 274 13
HOS Cardiovascular disease 500 215 14
KCA Kidney cancer 347 322 9
LEG Leg ulcer 200 97 9
LVA Lung cancer 137 128 5
MYE Myeloma 1057 856 11
OVA Ovarian cancer 474 402 8
PBC Primary biliary cirrhosis 312 125 20
PBC2 " 216 105 5
RBC Breast cancer 2982 1518 9

RBC5 " 2982 1518 14
RBC10 " 2982 1518 19
RBC15 " 2982 1518 24

SEER Breast cancer
SEER AT " 3666 235 14
SEER CT " 4009 386 14
SEER DE " 4422 400 14
SEER HI " 6923 731 14
SEER IA " 11339 1084 14
SEER NM " 12028 1269 14
SEER SE " 13533 1540 14
SEER SF " 13671 1184 14
SEER UT " 14213 1270 14

STE Cardiovascular disease 3873 460 24
WHI2 " 12017 1628 7
WHI3 " 2712 515 7
WHI4 " 1583 331 7

Table A.1: Datasets used throughout thesis

APC

From a trial in patients with advanced prostate cancer and is described and analysed

more fully in Byar and Green (1980).

FBC

From a cohort study performed by the German Breast Cancer Study Group in women

with primary node-positive breast cancer Sauerbrei and Royston (1999). The endpoint is

recurrence-free survival.
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FOL

Pooled data from various British National Lymphoma Investigation trials.

GLI

From a randomised trial of three chemotherapy regimes which recruited 447 patients,

however in this analysis only the 411 patients with complete data are considered. The

dataset is described fully in Sauerbrei and Schumacher (1992). An endpoint of overall

survival (OS) is used.

HOS

From the Worcester Heart Attack Study (WHAS), a cohort study looking at factors asso-

ciated with long-term survival after acute myocardial infarction. The original study in-

cluded over 11,000 patients; this random subset of 500 is described in and used through-

out Hosmer et al.’s (2008) book as an example dataset, with the endpoint of OS.

KCA

From the MRC RE01 randomised trial, this dataset is as used in Royston and Sauerbrei’s

(2008) book, with some missing covariate values imputed and OS as endpoint.

LEG

From a randomised clinical trial of a dressing in patients with venous leg ulcer Smith

et al. (1992a). The endpoint for this data is time to complete healing of the ulcer.

LVA

Veterans Administration lung cancer trial presented in Appendix 1 of Kalbfleisch and

Prentice (1980), with an endpoint of OS. In this trial, males with advanced inoperable

lung cancer were randomized to a standard therapy and a test chemotherapy.
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MYE

The dataset originally contained 1087 patients, however only the 1057 with complete

covariate data were retained for this investigation (MacLennan et al., 1988). The endpoint

is OS.

OVA

From a randomised trial of patients with advanced ovarian cancer, conducted in Italy by

Valsecchi et al. (1996); the endpoint used is OS.

PBC

From a randomised trial of a drug in patients with primary biliary cirrhosis (PBC). This

data is presented in Fleming and Harrington (1991), appendix D1. The endpoint is OS.

PBC2

From a randomised trial of 248 patients with PBC (Christensen et al., 1985); only the 216

patients with complete data are included in this dataset. OS is used as the endpoint.

RBC

This breast cancer dataset is as used in Royston and Sauerbrei’s (2008) book, with missing

values imputed and the endpoint recurrence-free survival. As one of the larger datasets,

this one was chosen to investigate the effect of additional noise variables in Chapter 3.

To this end, 5, 10 and 15 uniform(0.1,1.1) distributed random variables were simulated

and added to the RBC dataset to make three new datasets used in the same way as the

original dataset (RBC5, RBC10, RBC15).

SEER breast cancer

This dataset was originally from the Surveillance, Epidemiology and End Results (SEER)

program (SEER, 2000); specifically the breast cancer portion of SEER 9, and patients diag-

nosed 1988-1997 inclusive. SEER 9 consists of cancer registries from 9 geographical areas

of the USA (listed in Table A.1) and the investigation was carried out in each of the 9 reg-

istries separately. The endpoint is OS. The final datasets used in the thesis were cut-down
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versions of the original SEER dataset, with only factors known to be prognostic kept in

the dataset. Some of the prognostic factors have been imputed where missing.

STE

From the SMART (Second Manifestations of ARTerial disease) cohort study designed to

identify predictors of future cardiovascular events in patients with clinical symptoms of

cardiovascular disease. This study is described extensively in Steyerberg (2008).

WHI

The Whitehall I Study was a large cohort study conducted amongst male UK civil ser-

vants; with 18,000 recruited between 1967-1977. We split the dataset into three parts by

job grade, and used an endpoint of cardiovascular death, as described in Marmot et al.

(1978).

SEER datasets used in Chapter 8

In Chapter 8, various SEER datasets were used to obtain additional datapoints for build-

ing the empirical D to c transformation model (SEER, 2000). A large amount of data

manipulation and recoding of variables was performed on the raw downloaded SEER

datasets, as in their original form each disease area dataset is rather heterogeneous, com-

prising a number of cancer types in the same organ or part of the body. Additionally,

although all SEER data uses a common dataset, the list of available variables is extensive;

the small subset of variables which may actually be useful predictors was determined by

inspection for each disease site individually. All Stata programming done on the datasets

is available from the author if required.
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Appendix B

Models fitted to real datasets

This Appendix describes the model fitting procedures used with the real datasets in

Chapters 3, 4, 8 and 9. The same lines of code were used regardless of the changing p

values inserted into �p�. The datasets are described in Appendix A.

B.1 Datasets used in Chapters 3, 4, 7, and 8

Some of these datasets are used in several chapters. The same mfp command line is used

every time the dataset is mentioned.

APC

. stset survtime, fail(cens)

. xi: mfp stcox age wt sbp dbp sz ap hg sg pf hx bm i.stage ekg rx, select(`p')

> alpha(`p')

FBC

. stset rectime, fail(censrec)

. xi: mfp stcox i.hormon x1 i.x2 x3 x4a x4b x5 x6 x7, select(`p') alpha(`p')

FOL

. stset stime, fail(status)

. xi: mfp stcox grade2 grade3 grade4 iblast iinerrt ifgrade hist2 hist3 stage2

> stage3 stage4 age sex iesr ilymph ialbumin extra bulk, select(`p') alpha(`p')

193



GLI

. stset survtime, fail(cens)

. xi: mfp stcox sex tsymp gradd1 gradd2 age karno surgd1 surgd2 convul cort epi

> amnesia ops aph trt, select(`p') alpha(`p')

HOS

. stset lenfol, fail(fstat)

. xi: mfp stcox age gender hr sysbp diasbp bmi cvd afb sho chf av3 miord mitype

> i.year, select(`p') alpha(`p')

KCA

. stset survtime, fail(cens)

. xi: mfp stcox age sex whod1 whod2 t_dt t_mt rem mets haem wcc trt, select(`p')

> alpha(`p')

LEG

. stset ttevent, fail(censored)

. xi: mfp stcox i.treatmnt weight diastbp ankpres ulcarea age mthson height

> deepppg, select(`p') alpha(`p')

LVA

. stset t, fail(cens)

. xi: mfp stcox kps diagtime age prior treat squamous small adeno, select(`p')

> alpha(`p')

MYE

. drop if cens==1 & time==0

. stset time, fail(cens)

. xi: mfp stcox age hb creat indexd1 indexd2 sb2 calcium igm albumin treat3

> treat4, select(`p') alpha(`p')

OVA

. stset survtime, fail(surv)

. xi: mfp stcox c1 c2 rt1 rt2 g1 g2 serous k1, select(`p') alpha(`p')
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PBC

. stset survtime, fail(cens)

. xi: mfp stcox i.trt age sex asc hep spider edemad1 edemad2 bil chol alb cu ap

> sgot trig plt pro staged1 staged2 staged3, select(`p') alpha(`p')

PBC2

. stset time, fail(cens)

. xi: mfp stcox i.treat age bilir albumin cirrh central, select(`p') alpha(`p')

RBC

. stset reltime, fail(cens)

. xi: mfp stcox age meno sized1 sized2 i.grade nodes pgr er hormon chemo,

> select(`p') alpha(`p')

SEER breast cancer

. stset futime, fail(event)

. xi: mfp stcox age npos nex er pr eodsize raceblck spanish histduct bcs rt

> married i.lateral g2 g3 g4, select(`p') alpha(`p')

STE

. stset tevent, fail( event)

. xi:mfp stcox sex age diabetes cerebral cardiac aaa periph stenosis systbp

> diastbp lengtho weighto cholo hdlo ldlo trigo homoco gluto creato imto

> i.albumin i.smoking i.alcohol packyrs, select(`p') alpha(`p')

WHI datasets

. stset pyar, fail(chd)

. xi: mfp stcox cigs sysbp diasbp age ht wt chol, select(`p') alpha(`p')

B.2 SEER datasets used in Chapter 8

For the SEER datasets used in Chapter 8, a p value of 0.05 was generally used in the mfp

command line; however sometimes a higher value was used if it resulted in a markedly

higher D value. The mfp command lines used for each disease site are given below. Note

that each disease site dataset was divided into the nine registry datasets (HI, UT, NM,
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AT, CT, SE, IA, SF, DE) unless otherwise specified. A dataset was not divided into the

nine registry datasets if it was small (less than about 100 events), or if upon dividing it

up some of the resulting registry datasets were found to contain less than 100 events; in

the latter situation the smallest registries were combined in groups of two or three.

All these SEER datasets were identified as survival data using the Stata code

. stset surv, fail(event)

Colorectal

Colon

. xi: mfp stcox marital spanish agedx rxrad rxsurgprim nodepos nodesexa raceblack

> tumoursize tstage1 tstage2 tstage3 tstage4 nstage1 nstage2 mstage grade2 grade3

> grade4 numprim i.histtype_main i.subtype, select(0.05) alpha(0.05)

Rectum

. xi: mfp stcox marital spanish agedx rxrad nodepos nodesexa raceblack tumoursize

> tstage1 tstage2 tstage3 tstage4 nstage1 nstage2 mstage grade2 grade3 grade4

> numprim i.histtype_main i.subtype , select(0.05) alpha(0.05)

Female genital

Vulva

Registries HI and UT combined, registries NM and AT combined; all other registries kept

separate.

. xi: mfp stcox marital spanish agedx rxrad raceblack nodesexa tumoursize tstage2

> tstage3 tstage4 nstage1 nstage2 mstage numprim i.histtype_main, select(0.05)

> alpha(0.05)

Vagina

Not divided into registries; kept as one single dataset.

. xi: mfp stcox marital spanish agedx rxrad raceblack nodesexa tumoursize tstage2

> tstage3 tstage4 nstage1 nstage2 mstage numprim i.histtype_main, select(0.05)

> alpha(0.05)
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Cervix uteri

. xi: mfp stcox marital spanish agedx rxrad rxsurgprim raceblack tumoursize

> tstage2 tstage3 tstage4 nstage1 mstage grade2 grade3 grade4 numprim

> i.histtype_main i.subtype, select(0.05) alpha(0.05)

Corpus uteri

. xi: mfp stcox marital spanish agedx rxrad raceblack tumoursize tstage2 tstage3

> tstage4 nstage1 mstage grade2 grade3 grade4 numprim i.histtype_main, select(0.5)

> alpha(0.05)

Ovary

. xi: mfp stcox marital spanish agedx rxrad raceblack tumoursize tstage2 tstage3

> nstage1 mstage grade2 grade3 grade4 numprim i.histtype_main, select(0.5)

> alpha(0.05)

Blood cancers

Hodgkin’s lymphoma

Not divided into registries; kept as one single dataset.

. xi: mfp stcox marital spanish sex agedx rxsurgprim rxrad raceblack cssite2

> numprim ext2 ext3 ext4 i.lymphrec, select(0.05) alpha(0.05)

Acute lymphoid leukaemia

. xi: mfp stcox marital spanish sex agedx rxrad raceblack numprim i.lymphrec,

> select(0.05) alpha(0.05)

Chronic lymphoid leukaemia

. xi: mfp stcox marital spanish sex agedx rxrad raceblack numprim, select(0.05)

> alpha(0.05)

Lymphosarcoma and reticulosarcoma

. xi: mfp stcox marital spanish sex agedx rxrad raceblack numprim ext2 ext3 ext4

> i.subtype i.lymphrec, select(0.05) alpha(0.05)
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Monocytic leukaemia

Not divided into registries; kept as one single dataset.

. xi: mfp stcox marital spanish sex agedx rxrad raceblack numprim, select(0.05)

> alpha(0.05)

Multiple myeloma

. xi: mfp stcox marital spanish sex agedx rxrad raceblack numprim, select(0.05)

> alpha(0.05)

Acute myeloid leukaemia

. xi: mfp stcox marital spanish sex agedx rxrad raceblack numprim i.histtype_main,

> select(0.05) alpha(0.05)

Chronic myeloid leukaemia

. xi: mfp stcox marital spanish sex agedx rxrad raceblack numprim i.histtype_main,

> select(0.05) alpha(0.05)

Nodular lymphoma

. xi: mfp stcox marital spanish sex agedx rxsurgprim rxrad raceblack numprim

> cssite2 ext2 ext3 ext4, select(0.05) alpha(0.05)

Urinary

Bladder

. xi: mfp stcox subtype marital spanish sex agedx nodesexa cssize ajcct1 ajcct2

> ajcct3 ajcct4 ajccn1 ajccn2 i.ajccm rxsurgprim rxrad raceblack numprim,

> select(0.05) alpha(0.05)

Renal cell carcinoma

. xi: mfp stcox marital spanish sex agedx laterality nodesexa cssize ajcct2

> ajcct3 ajcct4 ajccn1 ajccn2 ajccm rxsurgprim rxrad raceblack numprim,

> select(0.05) alpha(0.05)

198



Renal pelvis and ureter

Registries IA and NM combined; registries HI, AT and UT combined. All others kept

separate.

. xi: mfp stcox marital spanish sex agedx laterality nodesexa cssize i.ajcct

> i.ajccn i.ajccm rxsurgprim rxrad raceblack numprim, select(0.05) alpha(0.05)

Urethra

Not divided into registries; kept as one single dataset.

. xi: mfp stcox marital spanish sex agedx nodesexa tumoursize tstage2 tstage3

> tstage4 nstage1 nstage2 mstage rxrad raceblack numprim, select(0.05)

> alpha(0.05)

‘Poor’ models

To add points to the lower ranges of the D vs c graph (Figure 8.6), intentionally poor

models were built for some of the SEER datasets by using a severely limited pool of

candidate predictors. The mfp program lines used for this are outlined below.

Renal cell carcinoma

. xi: mfp stcox spanish nodesexa raceblack, select(1) alpha(0.05)

Rectum

. xi: mfp stcox marital nodesexa, select(1) alpha(0.05)

Cervix uteri

. xi: mfp stcox marital raceblack numprim, select(1) alpha(0.05)

Multiple myeloma

. xi: mfp stcox marital spanish sex, select(1) alpha(0.05)
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Appendix C

Stata code for bootstrap procedure

This Stata code written by Patrick Royston (unpublished) implements the method used

for estimating the optimism in D. This method was described by Harrell et al. (1996) and

is based on Efron’s (1983) refined bootstrap method.

*! version 1.0.01 PR 20feb2009
program define bootdval, rclass
version 10
// "Validate" (in the Harrell sense) the D-measure for a prognostic survival model
// selected using mfp.
syntax varlist(min=1 numeric) [if] [in], REPs(int) SAVing(string) ///
[replace seed(int 0) SELect(real 1) ALPha(real 0.05) *]

if `reps' < 1 {
di as error "reps() must be a positive integer"
exit 2001

}

// Check whether output file already exists
if "`replace'" == "" confirm new file `"`saving'"'

// Create the output file
tempname handle
postfile `handle' d1 r2d1 r2pm1 d2 r2d2 r2pm2 d_orig d_origse nevent ///

using `"`saving'"', replace

// Mark the estimation sample
marksample touse

// Run mfp on the original data and report/store results of D analysis
tempvar xb
di as txt _n "Running mfp on the original sample..."
quietly mfp stcox `varlist' if `touse', select(`select') alpha(`alpha') `options'
mfp
predict `xb' if `touse', xb
str2d stcox `xb'
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return scalar D = r(D)
return scalar r2 = r(r2)
return scalar r2pm = r(r2pm)

loc d_orig `r(D)'
loc d_origse `r(sD)'
loc nevent `r(events)'

drop `xb'

// Set the random number seed
if `seed' > 0 set seed `seed'

// Keep track of failed model-fitting attempts
local failed 0

tempname mfpmodel selectedmodel

// Do model selection on a boot sample, predict on original sample, get D stats
local i 1
quietly while `i' <= `reps' {

preserve
// bsample drops observations that are filtered out by if, in or missing
// covariate values
bsample if `touse'
capture mfp stcox `varlist', select(`select') alpha(`alpha') `options'
if c(rc) > 0 {

// mfp failed, for some reason - omit this bootstrap sample
local ++failed
restore

}
else {

if "`e(fp_fvl)'" == "" {
// no variables selected by mfp
local d1 0
local r2d1 0
local r2pm1 0
local d2 0
local r2d2 0
local r2pm2 0
restore

}
else {

// Estimate D and R2 stats on bootstrap and original samples
predict `xb', xb
genmfpvars
local model `r(vl)'
_estimates hold `mfpmodel'
// Refit the selected model (to be used for prediction on
//original data)
stcox `model'
_estimates hold `selectedmodel'
str2d stcox `xb'
local d1 = r(D)
local r2d1 = r(r2)
local r2pm1 = r(r2pm)
restore
_estimates unhold `mfpmodel'
genmfpvars
_estimates unhold `selectedmodel'
predict `xb' if `touse', xb
str2d stcox `xb'
local d2 = r(D)
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local r2d2 = r(r2)
local r2pm2 = r(r2pm)
drop `xb'

}
local ++i
post `handle' (`d1') (`r2d1') (`r2pm1') (`d2') (`r2d2') (`r2pm2') ///

(`d_orig') (`d_origse') (`nevent')
}
if mod(`i', 10) == 0 noi di as txt `i', _c

}
di
postclose `handle'
preserve
use `"`saving'"', replace
lab var d1 "D on bootstrap samples"
lab var r2d1 "R2(D) on bootstrap samples"
lab var r2pm1 "R2(PM) on bootstrap samples"
lab var d2 "D predicted on original sample"
lab var r2d2 "R2(D) predicted on original sample"
lab var r2pm2 "R2(PM) predicted on original sample"
qui sum d1
local md1 = r(mean)
qui sum d2
local md2 = r(mean)
local opt = `md1' - `md2'
di as txt _n "D(original sample) = " %8.4f as res return(D) ///
as txt " optimism = " %6.4f as res `opt' ///
as txt " corrected D = " %8.4f as res return(D) - `opt'
save `"`saving'"', replace
restore
if `failed' > 0 di as txt _n "[mfp failed in `failed' bootstrap replicate(s)]"
return scalar failed = `failed'
return scalar Dcorr = return(D) - `opt'
return scalar opt = `opt'
end

program define genmfpvars, rclass
version 10
// Generates variables from the most recent fit of MFP
local nxvar `e(fp_nx)'
local vl ""
forvalues i = 1 / `nxvar' {

local pwrs `e(fp_k`i')'
if "`pwrs'" != "." {

local x `e(fp_x`i')'
fracgen `x' `pwrs', replace
local vl `vl' `r(names)'

}
}
return local vl `vl'
end
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Appendix D

Sample size: further examples

This Appendix contains tables of sample size required for the four sample sizes devel-

oped in Chapters 5 and 6, for ten of the real datasets described in Appendix B and various

values of w and δ. See Chapter 7 for full details.

Each table includes four sub-tables for the four calculations: Sig-1 (significance based)

and CI-1 (confidence interval (CI) based) which were for the situation where a previous

estimate of D is to be validated and an estimate of SE(D) is available; and Sig-2 (signif-

icance based) and CI-2 (CI based) for use where an estimate of SE(D) is not available.

Within each sub table the number of events (e2) and the number of patients (pts) is given

for various values of either δ (the difference in D to be detected for calculations Sig-1 and

Sig-2) or w (the half-width of the desired CI, for calculations CI-1 and CI-2).

For Sig-1 and Sig-2, α = 0.05 and power=90%.

For CI-1 and CI-2, the confidence intervals are always 95%.

APC

Sig-1 CI-1 Sig-2 CI-2
δ e2 pts w e2 pts δ e2 pts w e2 pts

0.3 2056 2890 0.05 4688 6589 0.05 11420 16049 0.05 5123 7200
0.35 578 813 0.1 1172 1648 0.1 2855 4013 0.1 1281 1801
0.4 316 445 0.15 521 733 0.15 1269 1754 0.15 570 802
0.45 209 294 0.2 293 412 0.2 714 1004 0.2 321 452
0.5 152 214 0.3 131 185 0.3 318 447 0.3 143 201
0.6 93 131 0.4 74 104 0.4 179 252 0.4 81 114

Table D.1: Sample size calculations based on APC study
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GLI

Sig-1 CI-1 Sig-2 CI-2
δ e2 pts w e2 pts δ e2 pts w e2 pts

0.38 1598 2406 0.05 6041 9095 0.05 13119 19751 0.05 5885 8860
0.4 918 1383 0.1 1511 2275 0.1 3280 4939 0.1 1472 2217
0.43 547 824 0.15 672 1012 0.15 1458 2196 0.15 654 985
0.45 426 642 0.2 378 570 0.2 820 1235 0.2 368 555
0.5 266 401 0.3 168 253 0.3 365 550 0.3 164 247
0.6 143 216 0.4 95 144 0.4 205 309 0.4 92 139

Table D.2: Sample size calculations based on GLI study

LEG

Sig-1 CI-1 Sig-2 CI-2
δ e2 pts w e2 pts δ e2 pts w e2 pts

0.79 4357 8984 0.05 10626 21910 0.05 19181 39549 0.05 8604 17741
0.8 2008 4141 0.1 2657 5479 0.1 4796 9889 0.1 2151 4436
0.85 529 1091 0.15 1181 2436 0.15 2132 4396 0.15 956 1972
0.9 297 613 0.2 665 1372 0.2 1199 2473 0.2 538 1110
0.95 203 419 0.3 296 611 0.3 533 1099 0.3 239 493
1 153 316 0.4 167 345 0.4 300 619 0.4 135 279

Table D.3: Sample size calculations based on LEG study

LVA

Sig-1 CI-1 Sig-2 CI-2
δ e2 pts w e2 pts δ e2 pts w e2 pts

0.7 1772 1897 0.05 10496 11234 0.05 17871 19128 0.05 8016 8580
0.75 555 595 0.1 2624 2809 0.1 4468 4783 0.1 2004 2145
0.8 320 343 0.15 1167 1250 0.15 1986 2126 0.15 891 954
0.85 221 237 0.2 656 703 0.2 1117 1196 0.2 501 537
0.9 166 178 0.3 292 313 0.3 497 532 0.3 223 239
1 108 116 0.4 164 176 0.4 280 300 0.4 126 135

Table D.4: Sample size calculations based on LVA study
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MYE

Sig-1 CI-1 Sig-2 CI-2
δ e2 pts w e2 pts δ e2 pts w e2 pts

0.22 5581 6892 0.05 6446 7960 0.05 11391 14066 0.05 5110 6310
0.25 1750 2161 0.1 1612 1991 0.1 2848 3517 0.1 1278 1579
0.3 748 924 0.15 717 886 0.15 1266 1564 0.15 568 702
0.35 447 552 0.2 403 498 0.2 712 880 0.2 320 396
0.4 305 377 0.3 180 223 0.3 317 391 0.3 142 176
0.5 173 214 0.4 101 125 0.4 178 220 0.4 80 99

Table D.5: Sample size calculations based on MYE study

PBC

Sig-1 CI-1 Sig-2 CI-2
δ e2 pts w e2 pts δ e2 pts w e2 pts

0.8 3087 7706 0.05 13796 34435 0.05 24627 61469 0.05 11047 27574
0.85 716 1788 0.1 3449 8609 0.1 6157 15368 0.1 2762 6894
0.9 395 986 0.15 1533 3827 0.15 2737 6832 0.15 1228 3066
0.95 268 669 0.2 863 2155 0.2 1540 3844 0.2 691 1725
1 200 500 0.3 384 959 0.3 685 1710 0.3 307 767
1.05 158 398 0.4 216 540 0.4 356 961 0.4 173 432

Table D.6: Sample size calculations based on PBC study

RBC

Sig-1 CI-1 Sig-2 CI-2
δ e2 pts w e2 pts δ e2 pts w e2 pts

0.18 4377 8599 0.05 6553 12873 0.05 11446 22485 0.05 5134 10086
0.2 2291 4501 0.1 1639 3220 0.1 2862 5623 0.1 1284 2523
0.23 1267 2489 0.15 729 1433 0.15 1272 2499 0.15 571 1122
0.25 950 1867 0.2 410 806 0.2 716 1407 0.2 321 631
0.3 554 1089 0.3 183 360 0.3 318 625 0.3 143 281
0.35 371 729 0.4 103 203 0.4 179 352 0.4 81 160

Table D.7: Sample size calculations based on RBC study
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SEER DE

Sig-1 CI-1 Sig-2 CI-2
δ e2 pts w e2 pts δ e2 pts w e2 pts

0.18 2399 21082 0.05 5453 47920 0.05 10095 88712 0.05 4529 39800
0.2 1500 13182 0.1 1364 11987 0.1 2524 22181 0.1 1133 9957
0.23 917 8059 0.15 606 5326 0.15 1122 9860 0.15 504 4429
0.25 711 6249 0.2 341 2997 0.2 631 5546 0.2 284 2496
0.3 433 3806 0.3 152 1336 0.3 281 2470 0.3 126 1108
0.35 296 2602 0.4 86 756 0.4 158 1389 0.4 71 624

Table D.8: Sample size calculations based on SEER DE study

SEER NM

Sig-1 CI-1 Sig-2 CI-2
δ e2 pts w e2 pts δ e2 pts w e2 pts

0.25 11657 47946 0.05 4337 47946 0.05 9005 99551 0.05 4040 44663
0.28 1345 11995 0.1 1085 11995 0.1 2252 24896 0.1 1010 11166
0.3 818 5329 0.15 452 5329 0.15 1001 11067 0.15 449 4964
0.35 390 3007 0.2 272 3007 0.2 563 6224 0.2 253 2797
0.4 243 1338 0.3 121 1338 0.3 251 2775 0.3 113 1250
0.5 128 752 0.4 68 752 0.4 141 1559 0.4 64 708

Table D.9: Sample size calculations based on SEER NM study

STE

Sig-1 CI-1 Sig-2 CI-2
δ e2 pts w e2 pts δ e2 pts w e2 pts

0.28 1547 11479 0.05 4988 37009 0.05 8283 61457 0.05 3716 27572
0.3 940 6975 0.1 1247 9253 0.1 2071 15366 0.1 929 6893
0.35 448 3324 0.15 555 4118 0.15 921 6834 0.15 413 3065
0.4 280 2078 0.2 312 2315 0.2 518 3844 0.2 233 1729
0.5 147 1091 0.3 139 1032 0.3 231 1714 0.3 104 772
0.6 93 691 0.4 78 579 0.4 130 965 0.4 59 438

Table D.10: Sample size calculations based on STE study
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Appendix E

D library

In the Chapter 8 we outlined the methods used to perform two literature searches for

values of Harrell’s c and Royston & Sauerbrei’s D, and to develop a model to predict

D from c. This appendix presents the results of these searches, refined and presented

narratively as a library of D values for a selection of disease areas.

Only the highest value of D from a paper is included, however if more than one

endpoint is considered, or multiple independent datasets, then more than one value of

D may be reported. Multiple values may also be given where the dataset is divided by

an exclusive subgroup such as gender, along with a result for the whole dataset.

In this appendix we present first the results from risk models predicting first disease

events in healthy patients, and then the results from ‘true’ prognostic models predicting

death or disease progression events in patients who already have a particular disease.

Within these two main categories each different disease or diagnosis area is discussed

separately, and within these subcategories different endpoints are separated if necessary.

Only D values are referred to and we do not differentiate between D values which

were originally reported in the paper and values which were derived from Harrell’s c

using the transformation developed in Chapter 8. Many papers predicting events in

healthy patients gave separate values of D for females and males; additionally for some

diseases such as breast cancer and prostate cancer, studies were performed in single sex

groups. For brevity, we use the notation DF to indicate a D value for a female-only group

and DM for male-only.

For full references for all papers, see the D Library bibliography at the end of the

thesis.
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E.1 Risk models in healthy subjects

These models are developed to predict onset or incidence of some disease or condition in

apparently healthy subjects.

E.1.1 Incidence of cardiovascular events

The majority of papers predicting onset of disease concerned the prediction of cardio-

vascular (CV) events. These papers have been grouped by the outcome being predicted

and so the subsection headings refer to the endpoint of the study. Some papers sought

to predict different outcomes using the same model, so some papers have results in more

than one of the subsections below. Two papers predicting CV outcomes in hypertensive

patients are presented separately.

Cardiovascular disease

Many papers considered the endpoint of cardiovascular disease (CVD), generally defined

as coronary heart disease (CHD) plus cerebrovascular disease; that is: myocardial in-

farction, coronary heart disease, stroke, and transient ischaemic attacks. Most presented

separate results for women and men; most used established risk prediction equations or

based their models on such models, and as a result most reported D values were reason-

ably similar in magnitude.

Hippisley-Cox et al. (2007) derived and validated the QRISK score (on two cohorts

obtained by splitting the same general practice dataset), and found DF = 1.55 and DM =

1.45. Two papers (Collins and Altman, 2009; Hippisley-Cox et al., 2008a) externally val-

idated QRISK, both using the same validation dataset, unsurprisingly they obtained the

same results: DF = 1.56 and DM = 1.39.

Hippisley-Cox et al. (2008b) derived a successor to QRISK, QRISK2, splitting a large

dataset into development and validation cohorts. In the validation cohort QRISK2 gave

DF = 1.80 and DM = 1.62. Another paper externally validated QRISK2, finding DF =

1.66 and DM = 1.45 (Collins and Altman, 2010).

Yet another QRISK score, this time based on lifetime risk of CVD, was developed by

the same group, finding DF = 1.93 and DM = 1.79 (Hippisley-Cox et al., 2010).
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Other papers reported DF = 2.01 (Wood and Greenland, 2009), DF = 1.95 (Cook

et al., 2006), DF = 1.58 (de la Iglesia et al., 2011), DF = 2.34 (Bozorgmanesh et al., 2010),

DF = 1.62 (Rutten et al., 2010), DF = 1.90 (Paynter et al., 2010); and DM = 1.35 (de la

Iglesia et al., 2011), DM = 1.81 (Bozorgmanesh et al., 2010), DM = 1.14 (Rutten et al.,

2010) and DM = 1.25 (Araujo et al., 2010).

A few papers reported quite different values for D. Rubinshtein et al. (2010) consid-

ered the value of imaging in predicting cardiovascular events (adjusted for Framingham

Risk Score) and found D = 0.50. Paolo et al. (2010) used a slightly modified endpoint, ex-

cluding stroke and transient ischaemic attack from the definition of cardiovascular event,

and found D = 0.85.

Cardiac / cardiovascular death

Two papers used the endpoint CVD mortality which is death from cardiovascular dis-

ease; that is, from coronary heart disease (CHD) or cerebrovascular disease. The best

model in Weiss et al. (2010) reported D = 2.17. Sehestedt et al. (2010) looked at whether

adding markers of subclinical organ damage to the SCORE model improved risk predic-

tion, finding a best model with D = 2.10. Hurley et al. (2010) considered different ethnic

groups and found D = 2.04 for non-hispanic whites, D = 1.81 for non-hispanic blacks,

and D = 1.67 for Mexican-Americans.

Heart failure

Two papers looked at this endpoint and both used the Health ABC model. Butler et al.

(2008) reported DF = 1.80 and DM = 1.54, while Kalogeropoulos et al. (2010) reported

DF = 1.49, DM = 1.28, and D = 1.39 for both sexes.

The other paper in this category (Rutten et al., 2010) used a model of traditional risk

factors and biomarkers and found DF = 2.02 and DM = 1.74.

Coronary heart disease (CHD) events

These events generally included definite or probable myocardial infarction (MI), silent

MI indicated by electrocardiograms, definite CHD death, or coronary revascularisation

procedures.
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Selvin et al. (2010) included traditional risk factors only and found D = 1.48. Several

papers sought to increase prognostic ability by adding new factors to traditional risk

factors. Wood and Greenland (2009) and Polonsky et al. (2010) both added coronary

calcium scores and found D = 2.10 and D = 2.01 respectively. Nambi et al. (2010)

included measures of arterial thickness and found DF = 1.69, DM = 1.14, and D = 1.57

for all sexes. Rutten et al. (2010) added protein biomarkers and found DF = 1.62 and

DM = 1.12. Rodondi et al. (2010) added a different selection of biomarkers and found

D = 0.76.

CHD death

Thesis datasets WHI2, WHI3, and WHI4 all sought models predicting CHD death in male

civil servants at three different job grades. They found D = 1.36, D = 1.21 and D = 0.77

respectively.

Stroke

Two papers attempted to predict occurrence of stroke. One used traditional risk factors

and found D = 1.63 (Selvin et al., 2010); the other added protein biomarkers and found

DF = 1.42 and DM = 1.28 (Rutten et al., 2010).

Patients with hypertension

Two papers reported models for hypertensive patients without other pre-existing CV

conditions. Nelson et al. (2010) were concerned with predicting various outcomes for a

mixed sex group of elderly patients with hypertension. For most outcomes the Fram-

ingham Risk Score produced the highest D (although values of D reported were very

low): D = 0.06 for stroke; D = 0.44 for myocardial infarction; D = 0.17 for CHD death;

D = 0.39 for CHD events; and D = 0.62 for CV disease. For cardiac / CVD death the

Pocock Algorithm was the best model, with D = 0.44.

Weiss et al. (2010) also considered a group of hypertensive patients of both genders

and found D = 1.86 for predicting cardiac death.
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E.1.2 Incidence of diabetes

There were three papers in this category, looking at the risk of diabetes in apparently

healthy subjects. One prospectively derived and validated the QDScore, a new diabetes

risk algorithm for estimating the 10 year risk of acquiring type 2 diabetes (Hippisley-

Cox et al., 2009). The model was developed using a very large general practice dataset

which was split into development and validation datasets. The paper reported DF =

2.11 and DM = 1.97. The second paper externally validated the QDScore in a different

general practice dataset and found DF = 1.83 and DM = 1.76 (Collins and Altman, 2011).

Additionally, Selvin et al. (2010) reported a variety of endpoints including 6- and 15- year

incident diabetes (D = 2.56 and D = 1.62 respectively).

E.1.3 Incidence of bone fracture

Four papers considered models for incidence of fracture. Two looked at both hip and

all osteoporotic fractures; one only looked at hip fracture, and one just at any fracture

(excluding skull, fingers & toes). The first hip fracture paper reported DF = 2.73 and

DM = 2.68 (Hippisley-Cox and Coupland, 2009), the second reported D = 1.77 (Moayy-

eri et al., 2009). The latter paper also looked at how well the model predicted osteoporotic

fracture of the vertebrae, radius or hip; for this endpoint DF = 1.85 and DM = 1.34.

Collins et al. (2011) externally validated the results of Hippisley-Cox and Coupland

(2009) and found similar results: for hip fracture DF = 2.66 and DM = 2.53. For any

osteoporotic fracture, they found DF = 2.02 and DM = 1.60.

The single paper looking at any fracture reported D = 1.81 (Kaptoge et al., 2008).

E.1.4 Chronic kidney disease

Hippisley-Cox and Coupland (2010b) used large general practice datasets to develop and

validate a risk prediction model for chronic kidney disease. Their final model showed

DF = 2.32 and DM = 2.38.

E.1.5 Predicting side effects of statins

One paper sought to develop a model to predict the side effects of statins which users

were likely to experience, from a large general practice dataset. Hippisley-Cox and Cou-
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pland (2010a) developed different models for various side effects separately for men and

women and their best models for predicting each were: acute renal failure, DF = 2.49,

DM = 2.49; cataracts, DF = 2.46, DM = 2.48; myopathy, DF = 1.75, DM = 1.53; liver

dysfunction, DF = 0.89, DM = 0.71.

E.1.6 Colorectal / colon cancer

Ma et al. (2010) sought to develop and validate a model to predict 10 year risk of col-

orectal, colon only and rectal only cancer in Japanese men. Their best models showed

D = 1.20 for colorectal cancer, D = 1.25 for colon cancer and D = 1.17 for rectal cancer.

E.1.7 Dental caries

One paper looked at prediction of dental caries in adolescents undergoing orthodontic

treatment. They found a best model with D = 1.32 Chaussain et al. (2010).

E.2 Prognostic models

This section covers papers which developed and / or validated models in patients with

a disease, and attempt to predict some disease-related event, or death – these are ‘true’

prognostic models. In these sections the subsection headings refer to the condition or

disease which the patients had. The endpoint for each study is described in the text.

E.2.1 Cardiac patients

13 papers were found which considered survival models in patients after cardiovascular

(CV) disease or intervention of some description.

Heart failure

Five papers in total analysed datasets of patients with varying degrees of heart failure.

Guazzi et al. (2010) included patients with ‘stable heart failure’, and aimed to develop

a cardiopulmonary exercise prognostic score to predict cardiac death. Their model did

not better the current best prognostic model, which showed D = 1.54 in this group.
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Advanced heart failure Two papers included patients with advanced heart failure.

The first sought to establish the additional value of echocardiography over the Seattle

Heart Failure Model (SHFM), which predicts death, urgent cardiac transplantation or

left ventricular assist device (LVAD) support (Agha et al., 2009). The authors found that

adding echocardiography improved prognostic ability of the model, with D = 2.65 in this

dataset. The second paper used the same endpoints, and aimed to validate the SHFM in

patients with advanced heart failure, estimating D = 1.38 (Kalogeropoulos et al., 2009).

They also looked at the value of the model in predicting death alone, which had D = 1.39.

Acute heart failure The first of two papers considering patients with acute heart failure

looked at the additional prognostic value of uric acid for predicting all-cause mortality

and found D = 1.81 (Alimonda et al., 2009). The second considered the value of carbo-

hydrate antigen and used the same endpoint; D = 2.07 (Núñez et al., 2007).

Chronic heart failure One publication involved patients with chronic heart failure, us-

ing an endpoint of cardiac death. They considered the value of serial vs one-time imaging

and found D = 1.73 (Kasama et al., 2010).

After CABG

Two papers considered the utility of various cardiac biomarkers in predicting all cause

mortality in patients following coronary artery bypass graft (CABG). The first considered

a fatty acid protein and found the best model to be D = 1.71 (Muehlschlegel et al., 2010b).

The second found that adding a chromosome variant to the model improved prediction,

D = 1.78 (Muehlschlegel et al., 2010a).

Pulmonary arterial hypertension

Benza et al. (2010) included patients with pulmonary arterial hypertension with endpoint

all-cause mortality, finding the best model had D = 1.49.

After percutaneous coronary intervention

Two papers looked at all cause mortality in patients after a percutaneous coronary inter-

vention procedure. Damman et al. (2011) looked exclusively at post-MI patients under-
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going the procedure and found D = 2.01 when additional biomarkers were used. Singh

et al. (2010) looked more generally at patients having this procedure (39% had previously

had an MI) and found D = 1.82. Additionally this paper considered another endpoint of

all-cause mortality plus MI and found D = 1.37.

Coronary heart disease

Benderly et al. (2010) included patients with CHD and looked at the endpoint of all-cause

mortality, finding the best model had D = 1.05.

Ischaemic stroke

One paper tried to predict the time to recurrent stroke in patients who had a first is-

chaemic stroke. Their best model was based on clinical and imaging parameters and in

the validation dataset showed D = 1.61 (Ay et al., 2010).

MI

The thesis dataset HOS included post-MI patients and predicted overall survival, with a

D = 1.98 (model found using MFP with p = 0.05).

Atherosclerosis

One of the thesis datasets (STE, the SMART study), recruited patients with clinical man-

ifestations of atherosclerosis and developed a model for predicting fatal and non-fatal

vascular events ((non-)fatal ischaemic stroke, (non-)fatal MI, vascular death). The best

model found using MFP with p = 0.05 had D = 1.30.

E.2.2 Cancer

Most of the papers in our literature search were in cancer; 99 in total. We divide dis-

cussion by cancer site, and sometimes further by early and advanced disease or other

characteristics where appropriate.
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Breast Cancer

Mixed group of breast cancer Two papers looked at a wide group of breast cancer

patients. Naderi et al. (2006) sought to develop a gene-expression signature to predict

OS in breast cancer patients; their best model showed DF = 0.92 and DF = 0.59 in two

independent validation datasets. Haibe-Kains et al. (2010) used a fuzzy gene expression-

based computational approach to develop a new prognostic model for breast cancer, and

the resulting model (GENIUS) predicted distant metastasis or relapse free survival with

DF = 2.10 in a group of patients with all types & stages of breast cancer.

Several thesis datasets were breast cancer datasets. The 9 SEER datasets included

patients with any type of breast cancer, and the best models for predicting OS found DF

values ranging from 1.59� 2.07. The FBC and RBC datasets used the outcome PFS and

the best models found DF = 1.26 and DF = 1.09 respectively.

Early breast cancer Three papers in the breast cancer category considered early dis-

ease only. The first one sought to predict RFS in ER+ patients and found a best model

with DF = 1.32 (externally validated) (Campbell et al., 2010). The second used the end-

point of locoregional recurrence and found a model with DF = 0.82 amongst all patients,

DF = 0.86 amongst mastectomy patients and DF = 0.62 amongst patients who had

breast-conserving surgery (van Nes et al., 2010). The third searched for a gene-expression

score to predict distant metastasis-free survival and their best model showed DF = 2.01

(Sánchez-Navarro et al., 2010).

Hormone-receptor specific breast cancer Two papers concentrated solely on patients

with oestrogen receptor positive (ER+) breast cancer. In the first, the authors compared

many models, separately in patients with N0 and N+ disease (Nielsen et al., 2010). Amongst

N0 disease the best model showed DF = 0.98 for an endpoint of RFS, and DF = 1.11

for cancer-specific survival (CSS). Amongst N+ patients the Adjuvant!Online model per-

formed best with DF = 0.62 for RFS and DF = 0.74 for CSS. In the second paper, the

patients were all ER+ and had been treated with tamoxifen. The authors developed a

biomarker model to predict RFS (DF = 1.85) and RFS while still on tamoxifen treatment

(DF = 1.77) (Baneshi et al., 2010). Additionally, the GENIUS model developed by Haibe-
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Kains et al. (2010) showed DF = 2.01 amongst ER+/HER2- patients (endpoint distant

metastasis or relapse free survival).

The GENIUS model also showed DF = 1.61 amongst ER-/HER2- patients, and DF =

1.93 amongst HER2+ patients (endpoint distant metastasis or relapse free survival) (Haibe-

Kains et al., 2010).

Prostate Cancer

The eight papers reporting on prostate cancer patients fell into various subcategories.

Post - radical prostatectomy Most of the papers concerned patients with organ-confined

disease, who had been treated with radical prostatectomy (RP). All the models in these

papers sought to predict biochemical recurrence.

The first paper only considered patients with cancer confined to the central zone of

the prostate. They found DM = 1.91 when the location of the tumour was taken into

account along with other predictors (Cohen et al., 2008). The second aimed to look at

the prognostic value of microvessel density and found DM = 1.87 (Erbersdobler et al.,

2010). Ahyai et al. (2010) found DM = 2.09, including a term for surgical margin. Cao

et al. (2010) looked at whether the Gleason score of the tumour margin was more useful

for predicting biochemical recurrence than the Gleason score of the main tumour and

found that it was, with DM = 1.38 for all patients and DM = 1.20 for patients with a

Gleason score of 7. The next paper looked at biomarkers (chromosome deletions) but

found that these did not improve the prognostic ability of their base model (DM = 1.98 )

(El Gammal et al., 2010). The final paper performed a head-to-head comparison of the

three most commonly used preoperative models after RP and found the same model

performed best for both 3 and 5 years biochemical recurrence-free survival (DM = 1.55

and DM = 1.43 respectively) (Lughezzani et al., 2010a).

Radiation therapy Williams et al. (2006) included patients who had external-beam radi-

ation as their only treatment. As well as developing a new model to predict biochemical

recurrence using recursive partitioning, the authors also sought to evaluate an existing

model on two independent datasets, with 864 and 271 events respectively. The model

showed DM = 1.50 (R2
D = 35%) in the smaller dataset and DM = 1.02 (20%) in the larger,
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showing that a validated model can produce quite different estimates of D when applied

to different datasets. The new model showed DM = 1.15 in the Australian data and

DM = 1.57 in the Canadian.

One paper included patients treated with permanent prostate brachytherapy (radio-

therapy implants). They developed a postoperative nomogram predicting the 9-year

probability of prostate cancer recurrence and found DM = 1.25 (Potters et al., 2010).

Advanced prostate cancer The thesis dataset APC reported on patients with advanced

prostate cancer, with the endpoint OS. The best model found using MFP with p = 0.05

had DM = 0.85.

Renal Cancer

The papers in this section can be divided by disease stage and/or pathology of the pa-

tients involved.

All pathology types These papers included all pathology types and also a mix of dis-

ease stages (including 80–85% non-metastatic patients). Isbarn et al. (2010) used disease-

specific survival (DSS) as endpoint and found D = 2.48 for its best model (this was

repeated for clear cell patients only; see below). Bigot et al. (2010) also used DSS and

found D = 2.34 for its best model.

Metastatic One paper reported purely on patients with metastatic disease but with all

pathology types, and with the endpoint of OS found D = 0.72 for the best model found

(Royston et al., 2006).

Thesis paper KCA included patients with metastatic renal cancer and found D = 1.2

in a model predicting OS, selected by MFP with p = 0.05.

Clear cell pathology Tan et al. (2010) included non-metastatic clear cell patients. They

looked at three endpoints and for the best model reported D = 0.98 for OS, D = 1.46

for DSS and D = 1.18 for DFS. Another paper also looked at clear cell patients only, to

externally validate a previously published model. In this report a mix of patients were

used but only 5% were metastatic; the endpoint was DSS and the authors found D = 2.13
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(Zigeuner et al., 2010a). Isbarn et al. (2010) repeated their analyses for clear cell patients

only and found D = 2.36 (endpoint DSS).

Papillary pathology Klatte et al. (2010) reported exclusively on patients with papillary

renal cell carcinoma but included all stages of disease. The model they found for DSS

gave D = 3.34 in the validation cohort. This seems very high and the estimate may

include optimism due to a small number of events in the dataset.

Upper Urinary Tract Cancers

All these papers concern patients treated with radical nephro-ureterectomy. The first

paper looked at the endpoint of DSS and found a best model with D = 1.57 (Jeldres et al.,

2010). The next paper looked at RFS and DSS and found best models with D = 1.90

and D = 1.96 respectively (Raman et al., 2010). This paper also considered the same

models in the subgroup of patients with T2 or worse disease and found both endpoints

had D = 1.39. The final paper in this category again looked at RFS and DSS and found

best models with D = 2.00 and D = 2.05 respectively (Zigeuner et al., 2010b).

One paper looked at OS and DSS, however instead of multivariate models this paper

considered only the predictive power of age, and so cannot really be compared with the

other models in this category. Prediction was consequently worse, with D = 0.51 for OS

and D = 0.33 for DSS (Shariat et al., 2010c).

Bladder Cancers

The papers concerned with bladder cancer fall into two broad camps; those in non-

muscle invasive cancer (tumour stage TIS or T1a), and those in patients with higher grade

tumours (T1 or worse).

Non-muscle invasive cancer The first paper in this category used the same model to

predict recurrence-free survival (RFS) (D = 0.92), PFS (D = 1.85) and DSS (D = 2.56)

(Pan et al., 2010). The second paper found their model had poor performance in RFS

(D = 0.39) but was better at predicting PFS (D = 0.98) (Yamada et al., 2010).

Higher grade bladder cancer The first paper in this category looked at DSS only and

found a best model with D = 1.35; they also looked at the model in patients with T2
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or worse disease, and found D = 1.40 (Svatek et al., 2010). Another paper considered

disease recurrence in various sites and found D = 1.08 for predicting recurrence in the

upper urinary tract, and D = 1.30 for predicting recurrence in bone (Umbreit et al., 2010).

Shariat et al. (2010d) looked at 2 models in node negative, node positive or all patients;

for predicting both DFS and DSS. Amongst all patients, the best model for DFS had a

D = 1.40, and the best for DSS had D = 1.74. The node positive patients generally

showed lower D than node negative patients, and the models were better at predicting

DSS than DFS in all cases. Shariat et al. (2010e) considered DFS and DSS, the best models

for predicting these endpoints had D = 1.48 and D = 1.42 respectively. Shariat et al.

(2010a) considered RFS and DSS with the best models having D = 0.96 and D = 1.05

respectively. The last paper again considered RFS and DSS and found best models having

D = 1.17 and D = 1.26 respectively (Shariat et al., 2010b).

Liver Cancer

Two papers considered hepatocellular carcinoma, both in the palliative setting. The first

paper assessed different scoring systems and found the best had D = 1.01 (Collette et al.,

2008). The second paper sought to externally validate the results of the first paper and

interestingly found discrepancies in D for the same scoring systems (Tournoux-Facon

et al., 2011). For example the Okuda model showed D = 1.01 in the first paper and

D = 0.44 in the second; the BCLC model had D = 0.79 and D = 0.53 respectively; while

the CLIP score showed more consistency with D = 0.81 and D = 0.78. The best model

found in Tournoux-Facon et al. (2011) had D = 1.01.

Pancreatic Neuro Endocrine Tumours

Two papers from the search considered this relatively rare cancer. One used SEER data

to develop a staging system to predict OS, and found a D of 1.69 (Martin et al., 2011). The

other attempted to validate a proposed TNM staging system and add extra factors, they

found a best model for predicting DSS which had D = 2.10 (but note low sample size of

e = 85) (Scarpa et al., 2010).
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Gynaecological Cancer

In this category we found three papers each including different diseases in the gynaeco-

logical area. One paper in endometrial cancer considered OS as its endpoint and found a

best model with D = 1.51 (Abu-Rustum et al., 2010). (Zivanovic et al., 2009) considered

patients with uterine leiomyosarcoma and found the AJCC STS staging system provided

the best prediction for OS (D = 0.74) and PFS (D = 0.56). A paper in advanced ovarian

cancer considered only 30 day postoperative morbidity and found D = 1.05 (Gerestein

et al., 2010). Additionally, thesis dataset OVA included patients with advanced ovarian

cancer, and found the best model for OS (using MFP with p = 0.05) had D = 0.91.

Lung Cancer

The first paper in this category aimed to validate previously published pre- and post-

operative models in non-small cell lung cancer (NSCLC) patients (van der Pijl et al., 2010).

The pre-operative models showed D = 1.05, 1.05, 0.92 for 1, 2 and 3 year OS and the

equivalent values for the post-operative model were D = 1.32, 1.61 and 1.68 (this model

included factors relating to type of resection and pathological stage).

The second paper in this category included all types of lung cancer and aimed to ex-

ternally validate the 7th edition TNM system for predicting OS (Strand et al., 2010). They

found D values of 1.05 for all patients and 0.92 for NSCLC patients, which is comparable

to the results of the pre-operative model in the first paper. Additionally, thesis dataset

LVA included patients with any type of lung cancer; the best model for OS found using

MFP with α = 0.05 had D = 1.48.

Finally, Nowak et al. (2010) considered patients with mesothelioma. They developed

models (incorporating PET imaging) for predicting OS in different patient subgroups.

The best models for the various subgroups were: sarcomatoid pathology D = 0.68, non-

sarcomatoid pleurodesis D = 1.25, nonsarcomatoid nonpleurodesis D = 0.98, and finally

a model in all patients showed D = 0.87.

Advanced cancer

Three papers covered advanced cancer with the endpoint of overall survival (OS), but

each included different selections of disease areas, which is probably why the three showed
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quite different results. The best models found in the three papers were respectively

D = 0.75 (Chow et al., 2009), D = 1.27 (Trédan et al., 2011) and D = 2.66 (Martin et al.,

2010).

Stomach cancer

Two papers covered this type of cancer, however they may be of different enough types

that they shouldn’t be considered together. Firstly Woodall et al. (2009) found a predic-

tion model for overall survival in gastro-intestinal stromal tumours (GIST) with D = 1.27.

The second paper (Wang et al., 2009), looking to predict disease-specific survival in pa-

tients with gastric cancer, showed a best model with D = 1.56.

Head and neck cancer

The tumours covered under this broad umbrella category are probably disparate. One

paper (Dorward et al., 2010) looking at pediatric astrocytomas (a brain tumour) found

D = 1.77 for their best model predicting recurrence free survival. Another paper (van der

Schroeff et al., 2010) looking at models to predict overall survival (OS) in salivary gland

carcinoma patients, found D = 1.69 when pre-treatment factors were used, and D = 1.77

with post-treatment factors. Thesis dataset GLI included patients with malignant glioma;

the best model for OS found using MFP with p = 0.05 had D = 1.15.

Leukemia

Three papers reported on outcomes in leukemia.

Acute lymphoblastic leukaemia (ALL) De Lorenzo et al. (2009) found D = 1.04 for

their model predicting event-free survival (EFS).

Chronic lymphocytic leukemia (CLL) One paper (Molica et al., 2010) included patients

with early CLL and looked at the endpoint of time to first treatment, finding D = 2.47.

Chronic myeloid leukemia (CML) Dickinson et al. (2010) included CML patients after

stem cell transplant, with OS as the endpoint. The best model found reported D = 0.98.
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Lymphoma

Two papers and one of the thesis datasets involved lymphoma patients.

Diffuse large B-cell lymphoma Bari et al. (2010) considered the endpoint of OS and

found D = 1.25.

Follicular lymphoma. One paper and one of the thesis datasets concerned follicular

lymphoma. Arcaini et al. (2010) used the endpoint of progression free survival (PFS) and

reported D = 0.80. The best model for OS found with thesis dataset FOL (using MFP

with p = 0.05) had D = 1.23.

Myeloma

The thesis dataset MYE consists of data from two trials in patients with myeloma. The

best model (found using MFP with α = 0.05) had D = 0.77.

IgG and IgA Monoclonal Gammopathies Rossi et al. (2009) used the endpoint PFS,

finding D = 1.37.

Asymptomatic Multiple Myeloma Rossi et al. (2010) included patients with asymp-

tomatic multiple myeloma and attempted to predict time to symptoms. D = 1.61.

Other Cancers

Various other cancers not falling into any of the previously mentioned broad categories

were seen in just one single paper. The best models in these disease areas are given below

for interest.

Melanoma Endpoint OS. D = 0.50 (Ben-Porat et al., 2006)

Germ Cell Tumour Patients with metastatic disease, endpoint PFS. D = 0.93 (Lorch

et al., 2010)

Colorectal Cancer Patients with liver metastases, endpoint OS. D = 0.44 (Nathan et al.,

2010)
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Soft Tissues Sarcoma Primary retroperitoneal sarcoma, endpoint OS. D = 1.61 (Ar-

doino et al., 2010)

Adrenal tumour Adreno-cortical carcinoma, endpoint disease-specific survival (DSS).

D = 2.49 (Lughezzani et al., 2010b)

E.2.3 HIV

Two papers report models in HIV patients; with slightly different endpoints. The first

paper used the endpoint of all cause mortality within the first year of antiretroviral treat-

ment; its best model had D = 1.30 (May et al., 2010). The second paper used the endpoint

of new AIDS event or death (any cause) and reported D = 1.51 (May et al., 2004).

E.2.4 Liver disease

Primary biliary cirrhosis

Two thesis datasets included patients with primary biliary cirrhosis and both used OS as

the endpoint. For the best models found using MFP with p = 0.05, PBC had D = 2.70

and PBC2 had D = 2.55.

Liver transplant

Aloia et al. (2010) include post-liver transplant patients and aimed to develop a model

for prediction of OS. Their best model reported D = 1.46.

Hepatitis B

Yang et al. (2010) aimed to develop a model for predicting hepatocellular carcinoma in

patients with hepatitis B. The best model found had D = 2.32.

E.2.5 Respiratory disease

Moran et al. (2008) included patients with acute lung injury (ALI) and acute respiratory

distress syndrome (ARDS), and developed a model for predicting time to death within

28 days. The best model showed D = 2.24.
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Swallow et al. (2007) considered patients with chronic obstructive pulmonary disor-

der (COPD) and used the outcomes death or lung transplant, finding D = 1.02.

E.2.6 Chagas disease

One paper (Lima-Costa et al., 2010) attempted to develop a model for OS in Chagas dis-

ease; the best model found had D = 1.24.

E.2.7 Raynaud’s phenomenon

Ingegnoli et al. (2010) considered time to systemic sclerosis in patients with this condition.

D = 2.47 was the best model found.

E.2.8 Epilepsy

Patients with early epilepsy were included in one paper, which aimed to predict time to

next seizure. D = 0.77 (Kim et al., 2006)

E.2.9 Leg ulcer

A model predicting time to complete healing was developed on thesis dataset LVA, which

included patients with leg ulcers. The best model had D = 2.07.
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