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Abstract

Optimisation and related techniques are well suited to clearly defined problems involving
systems that can be accurately simulated, but not to tasks in which the phenomena in question
are highly complex or the problem ill-defined. These latter are typical of architecture and
particularly creative design tasks, which therefore currently lack viable computational tools. It is
argued that as design teams and construction projects of unprecedented scale are increasingly
frequent, this is just where such optimisation and communication tools are most needed. This
research develops a method by which to address complex design problems, by using inductive
machine learning from example precedents either to approximate the behaviour of a complex
system or to define objectives for its optimisation.

Two design domains are explored. A structural problem of the optimisation of stiffness
and mass of fine scale, modular space frames has relatively clearly defined goals, but a highly
complex geometry of many interconnected members. A spatial problem of the layout of desks in
the workplace addresses the social relationships supported by the pattern of their arrangement,
and presents a design situation in which even the problem objectives are not known. These
problems are chosen to represent a range of scales, types and sources of complexity against
which the methods can be tested.

The research tests two hypotheses in the context of these domains, relating to the
simulation of a system and to communication between the designer and the machine. The first
hypothesis is that the underlying structure and causes of a system’s behaviour must be
understood to effectively predict or simulate its behaviour. This hypothesis is typical of
modelling approaches in engineering. It is falsified by demonstrating that a function can be
learned that models the system in question—either optimising of structural stiffness or
determining desirable spatial patterns—without recourse to a bottom up simulation of that
system. The second hypothesis is that communication of the behaviour of these systems to the
machine requires explicit, a priori definitions and agreed upon conventions of meaning. This is
typical of classical, symbolic approaches in artificial intelligence and still implicitly underlies
computer aided design tools. It is falsified by a test equivalent to a test of linguistic competence,
showing that the computer can form a concept of, and satisfy, a particular requirement that is
implied only by ostensive communication by examples.

Complex, ill-defined problems are handled in practice by hermeneutic, reflective
processes, criticism and discussion. Both hypotheses involve discerning patterns caused by the
complex structure from the higher level behaviour only, forming a predictive approximation of
this, and using it to produce new designs. It is argued that as these abilities are the input and

output requirements for a human designer to engage in the reflective design process, the



machine can thus be provided with the appropriate interface to do so, resulting in a novel means
of interaction with the computer in a design context. It is demonstrated that the designs output
by the computer display both novelty and utility, and are therefore a potentially valuable

contribution to collective creativity.
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Chapter 1: Introduction

1.1 Research objectives

1.1.1 COPING WITH COMPLEXITY—IMPORTANCE OF THE INTERFACE

Complex systems are characterised by the organisation and interaction of their many parts
(Weaver 1947; Kauffman 1995; Simon 1996; Arthur et al. 1997; Auyang 1998; Cilliers 1998;
Johnson 2006) so they are highly resistant to reductionism—the attempt to analyse these parts
individually. Design problems involving complex systems are difficult because of the lack of
knowledge we can gain of the various parts and their interaction at all levels of resolution, but
thankfully, many systems exhibit a high level robustness indicated by two long established
principles in complexity, cybernetics and dynamical systems research (Pask 1961; Ashby 1956).
The first is that the system’s high level, emergent behaviour may be understood as qualitatively
distinct from the parts—individual cells, animals and ecosystems, for example, can have very
different kinds of explanation. Much of science is based on this, when it deals with complex
systems by making an approximate model of the behaviour of the system based on high-level
observations. The second is that while a system’s parts cannot be understood in isolation, an
approximation of a part’s behaviour can yield the same result as long as the interaction structure

between parts remains (Arthur et al. 1997; Cilliers 1998; Colander 2000).

Simon (1996) follows these principles to argue for a hierarchy of parts in social, biological and
physical cases in which complex systems are ‘nearly decomposable’—they have relatively
simple interfaces between highly complex subsystems. He proposes a ‘partly formalisable’
theory of design that deals with complexity by allowing the possibility of accurate top-down
approximations of a system at various levels, and gives the example of a watchmaker making a
more easily constructed and robust machine by grouping elements into subassemblies (p.188). If
a system is nearly decomposable it becomes a straightforward matter both to specify a clear
external design goal for a subsystem and to realise a specific internal behaviour for it. This view
has been criticised (Haugeland, 1998) as oversimplifying the interface between ‘inner’ and
‘outer environments’. In another illustrative example, Simon considers the complex path of an
ant on a beach to be a result almost entirely of the external complexity of the environment,
which can be removed from consideration of the ant itself. This is meant to argue the possibility
of designing something like the simple ant, but the flaw in decomposability becomes more acute
as the same logic is used then to separate a thinking person from a [bodily] person (Simon 1996,
p.53), thought processes from memory (p.99), and finally argue that thought itself is simple—all

else is just environment.
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The tradition of classical artificial intelligence (Al) and cognitive science from which this view
originates (Haugeland (1998) has called this Good Old Fashioned Al, or GOFALI) assumes that
as humans, our process of acting in the world involves making models (mentally or otherwise)
that correspond to observed phenomena, and we use these to reason. An opposing view is
advocated by ‘embodied’, ‘Heideggerian’ (Brooks 1991; Dreyfus 1992, 2007; Wheeler 1996,
2005) and dynamical systems approaches (Van Gelder and Port 1995) in which direct action
with the environment eliminates the extra step of representation. Skilful coping in the world
here becomes the goal rather than accurate modelling. Where the opposing views agree is on the
utility of top-down estimations based on high-level observations, as these are frequently
necessary when fine level data are unavailable. Whether estimations take the form of an explicit
model or a more direct adaptation capable of anticipating the behaviour of an observed system,
in both cases the underlying reality of the world is often more complex than we are able to fully
appreciate. An important difference between the views is in the interface with the
environment—it is simplified for classical Al. Simon’s aim in formalising the design process is
the clarity of the physical symbol systems hypothesis (Newell and Simon 1976), which reduced
intelligence to the formal manipulation of atomic tokens. Once set, they are rigid", and this
ultimately reduces too much. In considering intelligence in an environment or the interactions
between subsystems in a design, the embodied approaches indicate the importance of allowing

for complexity at the interface

1.1.2 SPECIFYING DESIGN PROCESS—INSTRUCTIVE, ELECTIVE AND REFLECTIVE

That design problems are ill-defined and not easily specified is evident in Rittel and Webber’s
(1984) description of planning problems as “wicked”—they characteristically resist a definitive
formulation and are essentially unique. Rather than consisting of clear subsystems, wicked
problems have no natural hierarchy as each is “considered to be a symptom of another problem”
(Rittel and Webber 1984). Moreover, many aspects, including emergent consequences, lack of
conventional criteria and the cost of implementation, make the clear testing of their solutions

impossible.

Human designers succeed nevertheless. One possibility is that our most complex artefacts, such

as cities and vernacular architecture, have evolved over extended time periods in a process of

“ The same has been said about other formal design methods with an atomic structure, such as
Alexander’s ‘pattern language’ (Alexander et al., 1977). The background of Alexander’s method is
discussed in the next section.
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‘unselfconscious design’ (Alexander 1964) of gradually changing tradition, but this limits the
scope of what the ‘self-conscious’ designer can achieve in limited time. Alexander proposes a
method by which one can proceed by first analysing the problem to decompose a set of
interconnected situations, then synthesising a solution by applying rules to each. It is more
sensitive to the highly interlinked nature of ‘wicked’ problems designers face in the real world,
but this analysis-synthesis method has been criticised (Hillier 2006) both for reductionism and
for its resemblance to untenable theories of knowledge based on pure induction. While
Alexander intends the designer’s mind to be unbiased with respect to the design situation as it
presents itself, Hillier (1972, 1996) points out that prejudice is impossible to avoid, and the rules
themselves require prior experience to be applied to any real design. The design system is
missing its most crucial element. Hillier suggests instead that the main strategy in design instead
follows Popper’s (1959) theory of scientific knowledge as ‘hypothetico-deductive’, in that
individual designs are put forward as hypotheses and are then tested against the complex
conditions of the real world. A crucial contrast between the two theories is that where inductive
inference and Alexander’s synthesis can be said (after Lederberg 1958; Medawar 1960) to be
instructive, the hypothetico-deductive method is elective. Both in design (Steadman 2008) and
scientific discovery (Popper 1979 p.144), the two approaches have been likened to opposing
views of evolution—those of Lamarck and Darwin—in that Lamarck considered an animal’s
acquired characteristics to directly inform the features of its offspring while Darwin’s theory is
based on testing and selection of arbitrary variety. The accepted evolutionary theory and
scientific method thus reinforce what appears to be a greater descriptive value of the elective

theory.

But while elective processes unquestionably operate in knowledge and design at a certain level,
elective theories also typically lack a crucial element. They unfortunately avoid the question of
how hypotheses are generated in the first place—a question that is highly contentious as it
seems to address the root of human creativity itself. Popper (1959, 8§2) explicitly rules it out of
the discussion of scientific discovery up front’, and Kuhn (1962) considers it potentially
insoluble because it is the result of an individual mind, therefore inscrutable and private (Kuhn
1962, p90)'. Perhaps due to the analogy with Darwinian selection, the most popular explanation,
when one is given, is that this too is a selective process on potential hypotheses generated
exhaustively or at random. Poincaré (see Koestler 1964) and Popper (1979 Chapter 6)

considered creative insight as a selection from innumerable trials in the unconscious mind,

“ Schon (1963, p. 92) also notes this: that Popper (1959) and N. R. Hanson (in Patterns of Discovery)
misuse the word ‘discovery’, and consider only “validation after the fact”.
"It is also often ignored or dismissed in works dealing specifically with induction (e.g. Kemeny 1953)
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approaches to generative grammar propose a similar ‘random generator’ to form syntactically
correct sentences (Seuren 2004), and stochastic ‘generate and test’ processes (Liu 2000;
Saunders and Gero 2001) are the basis of numerous design algorithms, including genetic
algorithms (Holland 1975). In Hillier’s (1972) description, a number of constraints serve to
reduce the infinite variety of possible conjectures to a finite set of hypotheses to be tested. Some
external constraints (cost, structural efficiency, etc.) are quite explicit and straightforward—they
are the objectives already used in engineering optimisation—but others, such as accepted norms
of appearance, and the designer’s cognitive map, again appear contingent, creative, wicked.” As
Schon (1963 p.15) notes, explanations that rely on the screening of generated ideas neglect the
emergence of new screening concepts. If random generation is the case, then the contentious
question simply moves up a level to where these constraints come from and how they are

implemented.

Of course this question of the origin of theories on one hand or the application of design rules
on the other is only contentious at the level of systematic explanation—we know human beings
themselves can learn from their experience. Without denying the importance of either analysis
or hypothesis testing in science, Hacking (1983) points out the importance of experiment in
‘creating the phenomenon’ which is then interpreted to form a new theory. This potential cycle
is readily acknowledged in the activity of designers—Schon’s (1983) ‘reflection-in-action’ is an
iterative process of alternating proposal and reflection, and the hermeneutical circle identified
by Snodgrass and Coyne (1997) is a cycle of interpretation that involves (after Gadamer, 1975)
constant projecting and revising. The hermeneutical approach identifies reason not just with
logic, but with norms of community, accepted practices, style of presentation and analogy
(Coyne 1999)—the constraints identified above as problematic—and asserts that tacit, social,
‘human practices’ precede the narrow rationality implied by ‘wickedness’ (Coyne 2004). It
recognises the ‘one-off” nature of design problems in that their solutions may be contingent on
the situation. This does not mean they are subjective, but grounded in hermeneutical community

of “those who share tacit understanding” (Snodgrass & Coyne 2006 p 122).

These explanations are consistent with the elective methods of Popper (in science) and Hillier
(in design). Both admit the impossibility of the absolute certainty of knowledge. Popper’s
insistence on ‘intersubjective tests’ (1959) and “critical discussion’ (1979) in corroborating

theories can both be identified with the testing of projections in practical application (Gadamer

“ This is not to say that norms of practice are guaranteed to provide the best solution to wicked problems
any more than explicit objectives guarantee the best solution in optimisation, just that the processes used
by unselfconscious designers are similarly ill-defined and complex.
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1975)" by a hermeneutical community and the assessment of scientific models by consensus
(Snodgrass and Coyne 1992) or with accounts of our knowledge of truth as based on consensus
and ‘intersubjective communication’ (Habermas 1974). While these apply to scientific
knowledge, they are particularly relevant in the arts and social sciences (Wilson 2010, p. 10),
where definitive experiment is impossible and ‘wicked’ problems dominate. Popper (1979
p.162) explicitly acknowledges the discovery of knowledge as a hermeneutical process in both
science and the humanities, but casts this as only in terms of what he terms the ‘third world’ of
abstract knowledge (theories, reported facts, statements) and its affordance of new problems for
our consideration. However, the reflective explanations also go further in contributing a possible
instructive element. In hypothetico-deduction, observed phenomena in the world (Popper’s “first
world’) are valuable only in falsifying a theory by contradicting prior predictions, and there
their use ends. Hacking’s phenomena, along with the reflective and hermeneutical approaches,
differ from this view of ‘generate and test’ in that rather than answering only a simple true or
false, experience of the world can alter the content of the hypothesis (Snodgrass and Coyne
1997).

These approaches suggest that not only the “third world” of abstract ideas but also the “first
world’ of real, physical phenomena serve as the source material for creative insight. Here again,
embodied views of cognition are relevant, in that they accept the two can never be considered in
isolation. The third world is typically described in terms of abstract, often formal and logical
concepts in the manner of classical Al, but an embodied mind can only understand these in
terms of metaphors of physical experiences of the first world (e.g. Lakoff and Johnson 1999)".
In the case of design this is even more pertinent, as the results of design are physical objects—
buildings, drawings, etc. Similarly, we understand events of the first world always in context of
the third—there is always a cultural context, an evaluation with respect to a ‘theoretical
framework’ (Popper 1979) or an appreciation of something as ‘ready-to-hand’ (Heidegger
1962). Whatever we reflect on in the process of design has an element simultaneously in both

worlds.

From the above we may simply say that humans are intuitive, tacit, learning machines, but this

still falls short of a satisfactory explanation. This research aims to provide one by demonstrating

“ Gadamer (1975, p. 269) and Popper (1979, p.345) both also share the term ‘horizon’ for the limit of our
observations in the world, and for the frame of reference through which we interpret them. In both cases
the ‘horizon’ gives events their meaning—for Popper only events in the ‘first world’. Popper’s earlier
(1959) emphasis is on logic but shifts in (1979) to ‘critical discussion’.

" Non-Euclidean spaces, for example, are typically described as curved surfaces in more familiar
Euclidean space. Lakoff and Nufiez (2000) describe an extensive list of plausible metaphors for other
mathematical abstractions, including infinite and complex numbers.
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how this tacit understanding might be replicated by a machine. From a technical point of view,
the simultaneous observation of real phenomena with abstract context occurs in supervised
machine learning. From a practical point of view, to the extent that design is hermeneutical and
dialogical, the computer can contribute far more if it can participate in this process. Whether the
design task at hand is accomplished by elective or instructive means, the crucial step lacking in
algorithmic explanations and emphasised in reflective ones is that of interpretation. It is this
ability to interpret observations that will be the focus of the work.

1.1.3 RESEARCH HYPOTHESES

Design as described above demands addressing both the complex system itself, and the
communication required for participation in the reflective process. As this work is motivated by
the prospect of using computational algorithms in complex design situations, two corresponding
hypotheses, frequently assumed in contemporary engineering and computation, will be
investigated. The attempt will be made here to falsify both™:

o Hypothesis A: The first is that to effectively predict or design for the behaviour of a
complex system we must understand and simulate its underlying structure and causes of
its behaviour. This may be thought of as the modern engineering approach;
unfortunately such models run into problems when for many complex systems not all
details are known. Falsifying this hypothesis will involve building a higher-level
approximation of a system’s behaviour based only on observations, without knowing
underlying causes, and using this in design optimisation. ldeally this should perform
nearly as well as bottom up simulation in full detail, but have advantages of speed and
(more importantly) the capacity to deal with unknown details. Inductive machine
learning will be used to form the approximation based on prior observations or
precedents.

e Hypothesis B: The second hypothesis is that communication with the machine that runs
this approximation must be explicit, using a priori definitions and agreed upon
conventions of meaning. This is implied in classic artificial intelligence approaches
based on symbolic logic, and typical readings of the ‘Physical Symbol System’

hypothesis (Newell and Simon 1976) and classical Al". An important variant also

“ Cases will be shown in which the hypotheses do not hold, demonstrating that they are not always true,
but not that they are always false. The argument is thus not against full understanding of systems or
explicit communication in all cases, but proposes that there are other important factors in design, which
should be acknowledged and supported.

" Major Al projects such as naive physics (Hayes 1979) and CYC (Lenat and Guha 1990) attempted to
build a priori ontologies by which the computer could understand our world. It was assumed “there must
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appears in many apparently opposed, embodied, ‘Heideggerian’ arguments for or
against artificial intelligence (Lakoff and Johnson 1999; Dreyfus 1992) that suggests we
human beings understand one another only to the extent we share similar bodies and
senses—here the body is a priori, but the hypothesis is similar. It will be falsified by
demonstrating systems that produce output satisfying a particular requirement that is
communicated only by ostensive communication by examples. If alternative means of
communication are possible, they may be particularly useful in creative design by
providing a method by which to incorporate intuition and experience into optimisation
scenarios. If the human mind designs effectively based on mental responses to the
behaviour of complex systems which by their nature are resistant to full description,
these mental responses may be communicated to a computer implicitly.

Central to both hypothesis will be the machine’s capacity for learning from examples—its
capacity for induction. This learning will be a matter not only of selecting between alternatives,
but an interpretation of structure that can be considered inherent in the data. In the first
hypothesis this is the structure of a particular physical system under consideration, which can
then be used within a design optimisation scenario when dealing with systems too complex to
state explicitly. The intended practical result will be a learned approximation of the behaviour of
a system that is accurate and robust enough to determine viable complex objectives, and
algorithms to produce a well suited design via a computationally tractable method. In the second
hypothesis, concepts in the mind of the designer are to be learned by induction, addressing the
communication of ideas among groups of designers and the mechanisms of creativity itself.
Because of the importance of induction in both cases, and the variety of approaches to it, it is

outlined briefly in the following section.

1.2 On induction

Induction, or inference from prior observations, has been questionable as a method of acquiring
knowledge since Hume (1740), and especially so since Popper (1959). It nevertheless describes
the research presented here (for two reasons, each related to one of the two Hypotheses A and
B), so some clarification is needed. Hume’s ‘problem of induction’ is that observations

appearing to validate inductive reasoning do not imply it is always valid, yet it appears

be a common representational framework within which the meaning-content of any piece of
representation can be related to any other” (Hayes 1979). This was considered essential for
communication: “It takes common sense to understand each other” and “you need to have quite a bit of
‘common sense’ before you can learn to talk” (Lenat 1996). The CYC project is still ongoing, now the
basis of Cycorp Inc.
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necessary for practical reasoning about the world. Popper resolved this by showing that
validation is impossible and replacing induction with the falsification of hypotheses, refuting
induction as a valid route to knowledge. But the use of the term here differs from what Popper
calls “genuine induction by repetition” (Popper 1979, p.98), and two reasons for its present use

are described in this section.

1.2.1 USE OF THE TERM: WHY ‘INDUCTION’?

The distinction may be made (Wilson 2010, p.12) between mathematical methods as used in aid
of hypothetico-deduction, and statictical methods that make an inference from data, which are
therefore inductive. Machine learning as applied in this research essentially does the latter. It is
typically connectionist, in which neural networks are joined together by weighted connections
that determine their function. These weights are initially random, but modified by a learning
rule when exposed to example inputs. Neurons themselves are simple: when presented with an
input value they compute a corresponding output based on connection weights. The Perceptron
update rule provides an illustration of learning for a single neuron on a classification problem: if
the neuron’s output matches the class of the given example it does nothing, otherwise it
modifies the weights to better classify the example. Learning is thus based entirely on errors
between predicted observation and the actual data

Induction, as used here, is not quite what Popper refers to as the “bucket theory of mind”
(Popper 1979, p.61), in which the mind is considered a theory-less receptacle for knowledge
received directly via the senses. The starting weights through which information from the world
is interpreted might be considered a kind of ‘theory’, but although they are required, their
particular values are of less importance and may be arbitrary (Chapter 8 will demonstrate that
this doesn’t matter for individuals, and Chapter 10 among different communicating agents). The
‘bucket’ theory admits the mind may not be a tabula rasa, however, and a more important
difference is in learning itself. In induction Popper describes this as simply a restructuring of
knowledge taken in directly, whereas it should be a modification of an organism’s dispositions
to react, specifically a correction of expectations due to a disappointed expectation (pp.343-4).
The fact that neurons update their theory based on errors between prediction and observed data

in this sense actually resembles hypothetico-deduction rather than induction.
But this is not exactly hypothetico-deduction either, both because of the type of process and

because of the nature of the data. As Popper describes it, the reconstruction of the frame of

reference required of a false expectation appears to be either an active process without a specific
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mechanism (p.345) or an explicit selection between competing theories. In the case of the
learning algorithm, on the other hand, for each single observation (and corresponding
hypothesis), the neural update itself follows a simple gradient descent rule determined entirely
by the data, so it is an instructive rather than a selective method. Furthermore, the data, in most
cases, is already selected—as defined in induction, it is a set of prior observations. The
hypothetico-deductive method spans past and future by formulating hypotheses first and then
designing future tests specifically to falsify them. Popper (p.346) calls this the ‘searchlight
theory’ rather than the ‘bucket theory’ because of the role hypotheses play in telling us where to
look. In training the learning algorithm, by contrast, because the set of observations is given
before the first learning trials it cannot be designed to refute a theory or to select between
competing theories. Given this reliance on prior observations for learning, induction is a wholly

appropriate term.

The second reason for referring to induction is due to the ‘basic statements’ that are meant to
correspond to the observations by which hypotheses are tested in the hypothetico-deductive
method. The concepts comprising these are to be defined explicitly using universal names
(Popper 1959, §17) by which it is thereby assumed that their meaning is guaranteed to be certain
and invariable. This atomistic approach to language that denies polysemy is difficult to justify
after Wittgenstein (1958) and denied by a hermeneutical perspective in which interpretation is
crucial (Snodgrass and Coyne 1997)". Popper (1959, §20) does explicitly require
‘intersubjective verification” of these statements, but this is to avoid errors of the senses, and
does not address the possibility that meaning of statements may not be identical for every
subject. This is not to say that in the case of theories stated with the explicit precision that
Popper considers in science there is enough variation in interpretation to cast doubt on the
objective knowledge produced by hypothetico-deduction, but when dealing with more complex,
‘wicked’ problems that aren’t so clearly defined there is a potential problem of
miscommunication. In addressing the second hypothesis of this research, and particularly in
Chapter 10, it will be shown that communication of a complex concept is still possible, but this
will be done by sharing example observations. Agreed meaning will be shown as due not to
shared symbolic convention or perceptual structure but to shared data. The state learned by an
agent is in this sense determined almost entirely by this data, so again induction seems

appropriate.

“ When Popper discusses hermeneutics (e.g. Popper 1979, Chapter 4) interpretation of the third world is
in terms of which theories we take as relevant to frame new problems, not the meaning of third world
statements themselves.
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In the consideration of the design process in this work, inductive learning is in any case relevant
not to the verification of proposals but to their formation. It deals with the point of inspiration,
and interpretation. In its broader sense, induction forms the basis of Bayesian probability (Yates
and Estin 1998; Duda et al. 2001), and inductive learning much of machine learning (Russell
and Norvig 1995, p 529), including embodied approaches (Brooks 1991; Beer 1995; Wheeler
1996, 2005) that negotiate directly with an observed environment. In spite of the differences
from hypothetico-deduction, the use of induction in this sense to guide action can be entirely

consistent with Popper’s views.

1.2.2 WHY ACTING ON INDUCTION IS CONSISTENT WITH POPPER

Popper’s main concern is the logical testing of theories to build objective knowledge; design is
concerned with two other things. The first, mentioned above, is how ideas come to be generated
in the first place. The second is practical action. While a theory can never be logically validated,
design requires we must propose solutions, and actually build on the basis of one or the other.
Hume was forced to concede that we rely on induction out of pragmatic necessity. Popper
refined this in stating from a rational point of view, we have no justification to rely on any
theory, but as a basis for action, we should prefer the best-tested theory (1979, p.22), and in this
he is in agreement with inductive methods.

Hume’s logical problem of induction can be interpreted in two different ways. Popper states it
as “reasoning from [repeated] instances of which we have experience to other instances
[conclusions] of which we have no experience?” (1979 p.4). The first interpretation refers to the
potential for a radical difference between past and future: i.e. the theory which might have been
true for all events before time t might be false after time t. This is the problem referred to by
Kripke’s (1982) ‘quus’ (meaning ‘plus’ only for values less than 57) and Goodman’s (1955)
‘grue’ (green before time t and blue after), a problem that cannot be avoided even if we have
complete knowledge of the past. Popper acknowledges this as possible (our world may
disintegrate in the next second) but takes a pragmatic stance surprisingly like Hume’s reluctant
acceptance, in that such possibilities are not worth consideration because we can’t do anything
about them (Popper 1979 p.22). This pragmatic dismissal is unnecessary however, as they also
suppose a singular, improbable arbitrary event to coincide exactly with time t, so can never be

the “best tested’ theory.” As our knowledge is always incomplete, the second (and more general)

“ In addition to the fact that, by definition, ‘best-tested” is based only on prior tests, there are two separate
reasons for this, pragmatic and probabilistic: the futility of predicting an arbitrary future event without
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interpretation of problem of induction is: given any finite set of observations, what is the best
tested theory for reasoning to unobserved events, whether past or future? Theories contradicting
observations are clearly false, but if several competing theories remain unfalsified, one must be

selected.

In this case the better tested theory is the better testable—the one that requires fewer singular
statements (observations) to falsify it. This solution is not only pragmatic; Popper (1979 pp.47—
53) also considers the better testable theory to have greater empirical truth content, or
verisimilitude, and therefore nearer to objective truth even prior to any tests. This is a point on
which Popper repeatedly stresses a strong opposition to probabilistic theories of induction—
induction claims such theories are more probable while Popper claims they are less—but this is
a difference in definition that vanishes in practice. The more highly falsifiable is defined as less
probable because it requires the truth of a larger number of basic statements (observations) and
it is assumed that each of these is a priori of equal probability. This is illustrated with a ‘pie-
slice’ model (Popper 1959 pp.112) in which basic statements are points on the circumference
and the probability is proportional to the area of the segment containing them. This is purely the
a priori probability of theories. In induction, however, some observations always precede the
theory, and even under this model, the highly falsifiable theory quickly becomes the most
probable given subsequent observations.” In agreement with theories of induction (Kemeny
1953; Jeffreys 1957), Popper (1959) defines these preferred theories by their simplicity’. Based
on past observations, both methods require that we should prefer as the basis for action the most

highly falsifiable unfalsified theory.

grounds is also related to Goodman’s (1955) pragmatic idea of projectibility; the extreme unlikeliness of
its occurrence is related to probability and Popper’s (1959) discussion of simplicity.
“ This can be illustrated by two competing hypotheses equally corroborated by existing observations: e.g.
a line (Hine) and a higher order curve (Hgyne) through two existing points. Both may be tested by deriving
a prediction of a third point, at a particular location on the horizontal axis. In the case of the line only one
value is possible, but many possibilities exist for the curve. Given bounds and a degree of precision of
measurement this number is large but finite c, so if the prior probability of each theory is estimated by the
number of basic statements it will accept the curve is ¢ times more probable P(Hcyre)/P(Hjine) = C. A
specific third point (E) exists that does not falsify either theory, but the probability of predicting it for
each differs: P(E|H,ine) = 1 and P(E|Hcune) = 1/c. By Bayes’ rule the relative probabilities of the theories
after this point is observed become equal P(H,ine|E)/P(Heure|E) = 1. Another observation falsifying neither
makes P(Hine) C times greater, and so on.

This says nothing about the absolute probability of the theory being true (Popper 1979 p.101 explains
the reasons for this), but only its truth relative to another theory.
¥ Accounts of induction prior to Popper also rely on simplicity or uniformity. E.g. Mill justifies induction
by assuming nature is uniform, and Occam’s razor has been justified (Sober 2000) by the fact that nature
is simple, but these still beg the question of why uniformity or simplicity should be preferred. The
probabilistic explanation in Popper (1959) shows why the simple is the most likely hypothesis given the
data, so that simplicity is not a prior assumption about nature, but one is just highly unlikely to encounter
complicated data that looks simple just by chance.
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In design practice, therefore, a method consistent with Popper must meet two criteria: it must
test theories rigorously and select the simplest among the corroborated. In scientific testing,
Popper demands that hypotheses come before observations, but the use of prior data may be
necessary in design because of the nature of wicked problems. Several features of these (their
solutions are not true-or-false; hypotheses can be refuted in more ways than in science;
experiments are unrepeatable; see Rittel and Webber, 1984) rule out the opportunity to seek the
most appropriate future observations in design, but if we cannot literally meet this demand we
can meet its intended content—that all tests must make unexpected predictions and be
sufficiently severe (Popper1979 p.353-4). Even though many predictions in the data will be
expected, the algorithm is trained only on its (unexpected) errors, so the requirement for these
becomes a matter of preselecting data that will contain the necessary unexpected observations.
Kemeny (1953) showed that this is a matter of the size of the set—even with an allowed level of
deviation in measurements, we have an increasing chance of selecting the true theory as the
number of observations increases. The demand for severity is related to a theory’s degree of
precision, which can actually work against the second criterion of simplicity. Because of
inaccuracies in observation, most highly falsifiable theories (even if true) will be judged
falsified by inaccurate measurements (Kemeny 1953), but this is overcome in practice by
allowing an acceptable level of tolerance. The appropriate balance between precision and
simplicity has been quantified by Akeike (1973) to measure the a priori predictive accuracy of
set of curves, but in practice this may be handled by a number of error estimation methods
(Reich and Barai 1999). The purpose of these is to balance accuracy with simplicity in avoiding
ovefitting of the hypothesis to the data; even though all data is given in advance, they take a

Popperian approach in withholding a set purely as a test of a prior hypothesis.

1.3 Two design domains: overview

Complexity in design can arise in two distinct ways. In many cases, the system itself that one is
designing may consist of a vast number of interacting parts or subsystems, such that its
behaviour is too complex for a designer to anticipate, even if the desired outcome is known. So
long as the complexity of the system does not exceed what can be realistically simulated, this is
the typical profile of an optimisation problem. The other possibility is that it is the context in
which the design is to function that is complex, such that even the desired behaviour of the
design is difficult to state. Such problems are common in design, are characterised by not being

fully specified by a brief, and are considered to require creativity.
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The work will investigate two different design domains, selected for this major difference in the
source of their complexity. The first is a structural problem, in which the physics and desired
objective is well understood and easily quantified, but the size of the system renders it complex.
The second is a spatial problem, in which the layout of office spaces operates within a social
context. This social behaviour is not well understood but methods have been developed to
produce realistic models based on abstractions. Both of these problems are problems of
complexity, not easily addressed by traditional engineering approaches, and they have been
chosen as representative of the kinds of problems architects must solve.

In the case of the structural problem, that of space frame optimisation, there are well established
methods. A structure under load can be approximated using a simple model and evaluated by
the Finite Element Method (FEM) (Turner et al. 1956; Argyris and Kelsey 1960) to yield a
prediction of its behaviour. The design is then improved over successive iterations to approach a
desired goal that is typically simple to define explicitly: a stiffness to weight ratio, for example.
Two aspects of the particular problem chosen in this work make it both complex and not suited
to this established technique. First, as the number of members in the structure increases, so does
the number of interactions between them. The problem becomes more complex and
computation time for optimisation increases exponentially. Second, the model provided by the
FEM is an abstraction that by definition differs slightly from the behaviour of the real structure:
a strut is represented in the model as a single linear member with constant material properties
and section, whereas real structures can only be built to a set degree of tolerance. If the structure
is to be built at a very small scale, the effects of the manufacturing process on the material
properties and geometry become more pronounced, and control the behaviour of the structure to
a greater degree. Learning algorithms will be used in the first case to improve the tractability of
the structural optimisation problem with many members and in the second to develop a method
in which these manufacturing imperfections do not have to be modelled explicitly, but are

learned.

The spatial problem is also a social problem, and so is less amenable to explicit explanation
because the units are people with their own personal complexities and idiosyncrasies. The space
of the workplace consists of the arrangement of desks and office spaces to reflect a given set of
social relationships that exist in an organisation. While these cannot be directly quantified in the
same manner as the FEM, a number of methods for quantifying spatial measures based
primarily on visual relationships have been developed in space syntax research (Hillier and
Hanson 1984; Hillier 1996), and these have been shown to correlate highly with social aspects

of space use, such as movement (Desyllas and Duxbury 2001; Turner et al., 2001; Peponis et al.
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1989; Hillier et al. 1993), crime (Hillier and Shu 2001), and interaction within office
environments (Spiliopoulou and Penn 1999). With such a design problem however, even the
objective cannot be explicitly stated. In interviews with practicing designers conducted in the
course of this research (chapter 6), most stated goals were broad compositional devices such as
minimum clearances and increased density, which have little to do with the details of interaction
and use. Individuals specifying their own preferences for seating speak easily of simple material
and environmental conditions such as proximity to windows, but the specific interaction they
want with colleagues is far less clear.” Furthermore, even the comparatively efficient models
provided by existing spatial analysis tools (e.g. Depthmap, Turner 2001) take significant time
for computation when run for the number of iterations required for optimisation. Machine
learning will be used in this domain both to contend with a model of spaces that runs faster and
to induce an objective function implicitly from provided examples.

The problems provide a test in two domains of a general method, in which machine learning
will be used to derive solutions based on existing precedents. Because of this similarity, the
more readily quantified structural problem serves as a test case for many of the techniques and

algorithms used again in the spatial domain.

They differ in the source of their complexity however—in the first, the model of the structural
system is too complex to simulate explicitly in its entirety, whereas the second, the optimisation
goals are unknown. They therefore exemplify contrasting strategies for the use of machine
learning, in that the learning step may be applied at two distinctly different stages in the design
process. Figure 1 illustrates both alternatives as a progression from top to bottom, with the

learning phase represented by a diagrammatic neural network.

e Strategy A begins with optimisation (Figure 1.1, al). Because the entire system is too
complex to model whole, a limited series of small structural modules are optimised
individually to a pre-determined fitness criterion (e.g. stiffness). A range of local loads
are considered, ignoring context, although complexities of the material and fabrication
process are incorporated into the simulation or measured directly from real samples.

e Training of the learning algorithm follows (Figure 1.1, a2). The local loads and

corresponding structural modules found by optimisation are used as input and output

“ This is not to say that people are not unconsciously or intuitively aware of the qualities that contribute to
a good workplace. One of the uses of machine learning will be to allow these intuitions to be quantified
via examples that embody them.
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sets for a supervised learning algorithm. The resulting function of this algorithm thus
maps any local force to its ideal structure automatically.

e The final step uses this function as an instructive method to generate new designs
(Figure 1.1, a3). Global analysis of a loaded, complex form reveals a distribution of
stresses varying over each point in its volume. This vector field is sampled at a fine
resolution, each local load now becoming the context for a single module of structure
and input to the trained learning algorithm. The combined output for each point is a

high resolution, optimised microstructure.

e Strategy B, applied to workplace interiors, inverts the above order of operations.
Because the goals of optimisation are initially unknown, learning is applied before the
optimisation step to derive these from an initial set of examples, ideally real-world
precedents. The first step here is simply the selection of these examples and their
evaluation based on their known suitability, ideally over an extended time period
(Figure 1.1, b1).

e The learning algorithm is trained next, to define the objective implicitly (Figure 1.1,
b2). The samples and corresponding evaluations are used to define a subspace of the
samples’ full feature space in which any new plan may also be evaluated. This should
capture aspects of the initial evaluation (b1) that may not be easily explained, but may
include the complexity of varied social factors.

e In this strategy, optimisation is the final step—designs are produced by an elective
method. Traditional optimization (by genetic algorithm, gradient descent, etc.) may now
be performed by using the trained learning algorithm to evaluate fitness. Constraints of
the project (floor plate shape, etc.) are input as context and finished plans are produced

by the optimisation loop.
The two strategies are not mutually exclusive, as the learning phase could conceivably be used

at both stages of the design process. The two problems chosen illustrate the strategies more

clearly however, thereby providing a firmer basis for evaluation of the methods.
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Figure 1.1. Diagrammatic representation of a learning algorithm incorporated into the process of the two
design problems.

1.4 Outline of chapters

The main body of the research will develop and test the methods for making design decisions

based on inductive models, in the context of the two design domains—first the structural and

then the spatial. This is followed in the final chapters by a discussion that places these methods

in the context of collaborative design and creativity, and shows how they might be used. The
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following is a summary of each chapter.

2. Design in practice
This chapter gives background reasons for the research—why is it being done? Science
progresses as empirical, tacit knowledge becomes codified and explicit. Engineering
deals with the latter, but most real problems involve a significant amount of the former
as well. Suitable tools of computation exist for easily quantifiable search and
optimisation, but not to aid our intuition on problems with too many variables or to aid
our communication of tacit understanding among teams with many members. As design
problems and design teams are growing ever more complex, there is a need for such
tools to enable better solutions. There is also a normative, social drive—particularly in
the case of strong ‘signature’ architects, there is a need to reinforce established identity
and to understand types appropriate to a given problem. Methods to aid in quantifying
and communicating typological traits are therefore desirable.

3. Literature review
This chapter gives the technical and methodological background required to address the
hypotheses—how will it be done? Optimisation methods typically require high accuracy
and precision in modelling the problem. Alternative means are introduced from
cybernetics, complexity and dynamical systems theories to show how high level,
emergent behaviour may be approximated, then the embodied approach to cognition is
also reviewed, in which internal representations are replaced with more direct
adaptations to make sense of the world. In both cases it is more appropriate to speak of
an ‘approximation’ rather than a ‘model’. Methods of machine learning are presented
by which these approximations may be derived as interpretations of existing examples,
and thereby offer an opportunity for the machine to engage in the processes of reflective
design and phenomena creation that are central to this work. In order to evaluate the

research hypotheses, linguistic competence is proposed as a test.

4. Structural optimisation for stiffness
To prepare for the first evidence against Hypothesis A, optimisation is introduced on a
readily quantified structural problem of space frame design, an example of a complex
structural system in which the interacting elements are interconnected physical
members. To replace part of a complex system with an approximation, it is vital to
ensure the interface between these is adequate. The structures used here are complex

and not ‘nearly decomposable’ as Simon (1996) assumed, but they can be broken down
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into simpler modules by standardising the interface between them, while
acknowledging this interface is just as complex as anywhere else in the structure. In
doing so, optimisation for high stiffness to weight is made computationally tractable for
any size structure, as are other design goals such as anisotropic deformation and
variable Poisson’s ratio. With a standard interface, it becomes possible to replace a
modular volume of an object with an optimised module different in structural detail,

preparing for these to be learned from examples in the next chapter.

Inductive machine learning of optimal structures

Machine learning is introduced into the structural optimisation and the results of the
combined method presented as evidence against Hypotheses A and B. Against
Hypothesis A the full replacement is made not only of structural cubes with
approximations, but the entire model/simulation/optimisation process is replaced by
output from a learning algorithm. It is shown that this can operate without knowledge of
the system’s causal details—Ilevels of resolution, material properties, etc. that are not
modelled. The production of appropriate designs does not involve explicit simulation,
but resembles much more an embodied direct coping with environmental requirements.
This is as effective as and many times faster than standard modelling and optimisation.
As evidence against Hypothesis B, this output is based on high level observations of
prior example structures. While in this case the clear goals of stiffhess and mass would
be easily specified, the algorithm in fact has no knowledge of them, a fact that will be

more relevant in the spatial problems where objectives are less clear.

Initial planning tool

The office space planning problem is introduced, and the space planning tool developed
for Foster + Partners in year one is presented as an initial approach to the problem. This
incorporates basic optimisation and no learning algorithms, but outlines the
expectations and working method of the design team, and provides a graphical interface
for a top-down parametric design tool. A discussion of its limitations in actual design
outlines requirements for the next three chapters—the lack of flexibility due to
predetermined patterns and the simplification of goals to dialogue box statistics make
the same sort of reduction as Alexander’s ‘patterns’ or Simon’s ‘ant’. The interface
therefore also becomes important for Hypothesis B, in allowing designers, or agents, to
communicate adequately. Chapters 7, 8 and 9 will apply the same machine learning

methods to this space planning problem to represent and communicate goals that are
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difficult to define explicitly.

Flexible representation of plans by graph spectra

Falsifying Hypothesis A will require the approximation of high level system features
with a learned approximation; as a prerequisite for learning, this chapter looks at
quantifiably representing the structure of a plan so this can be done. The geometrical
placement of desks in a plan will be replaced with an approximation created via the
spectra of topological graphs. These quantify the plan without the simplification of the
tool in Chapter 6, as is demonstrated by the use of the representation first in a
classification exercise, then in generating close matching plans in optimisation. It is
found that, rather than simple resolution, adding several diverse types of graphs
improves the method considerably. The result is a single feature vector for a plan that
may be used as its approximation in high-bandwidth communication with the computer.

Design through learning and mimicking archetypes

Falsifying Hypothesis B requires the ostensive communication of a complex concept—
in this case a design objective—through examples of existing designs. The general
notion of a simplified approximation of a system in representing design examples in
Chapters 4 and 7 is here specifically identified with dimensionality reduction. A method
is proposed to derive the objective from selected precedents by using machine learning
to automatically determine which features are relevant. In so doing, a feature space (®)
of reduced dimensionality is extracted in which to measure plans such that only these
features appear. The point in this space that best defines this set of plans is also found
by the method and together with the feature space is termed the archetype. This is used
as the objective in generating plans in a scenario of building by aggregation. A detailed
internal model is not used to do so, but rather an adaptation allowing the designing
system to function: the algorithm is an elective design process that selects affordances
offered up by the evolving design. This method makes communication possible in a
manner not dependent either on shared conventions or on a predetermined perceptual or

bodily structure, but because of induction on the shared data.

Optimisation of plans

This offers a full demonstration of the above methods in a genetic algorithm (GA)
optimisation to generate office desk plans. As a GA, it is an elective process analogous
to ‘generate and test’ or ‘hypothetico-deduction’, except design objectives are learned

as archetypes from real example plans rather than set explicitly or via a simulation. The
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10.

11.

algorithm produces plans with a particular form (e.g. desk cluster size or shape) without
being given geometric information (only topology is encoded) or a model plan (the final
form is not present in the example set), and thus falsifies Hypothesis A. The fact that all
communication of the archetype is ostensive (through the examples) falsifies

Hypothesis B.

Discussion

This chapter suggests that not only does Hypothesis B not hold, but we should not
predefine communication in creative dialogue. It discusses how technical work of the
previous chapters fit into the context of the larger creative process as a whole,
suggesting ostensive communication with the computer resembles tacit communication
within design teams. As before, it is crucial to ensure the appropriate interface, here
between communicating parties. An outline is given of a software tool to aid real design
teams in their communication. The algorithm’s ability to make sense of and produce
new drawings and plans allows it to participate to some degree in the creative process,
as communication between user and machine can take a more natural form resembling
human communication by intersubjective interpretation of designs. Creativity is
discussed as a collaborative process, and the essential creative act of reinterpretation is
explained with reference to Kuhn’s ‘paradigm shift’. The most important requirement
for a creative agent is argued to be this ability to interpret examples in the world, which
machine learning enables. An agent model implementing the creative feedback loop in a

social context is presented to demonstrate this.

Conclusions

Approximations will have been made of the behaviour of complex systems; these can
be based on existing precedents, and used to guide a design search. These design
methods can be learned by a machine just as by a human designer, and in doing so the
computer can give form to complex design problems. Design combines elements of
instructive (e.g. traditional, habitual) and elective (e.g. critical, hypothetico-deductive)
methods, but each of these explanations leaves out the essential point of creative
insight. But this is not completely inscrutable, and it is likely that a reflective (e.g. the
hermeneutical, Hacking’s ‘phenomena creation’ or Schon’s ‘reflection-in-action”)
interpretation provides the necessary framework. The manner in which the computer
can take in and make sense of high level observations of the world such as structures
and plans (Hypothesis A) and communicate naturally with human designers

(Hypothesis B) offers both a potential explanation and aid to design of complexity.
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Chapter 2: Design in practice

Summary: This chapter gives background reasons for the motivation behind this research.
The distinction is made between explicit scientific knowledge and the tacit knowledge
useful in design, the case is made that the use of the latter in the contemporary design
firm, which deals with unprecedented complexity, requires new working methods and
tools.

This work was undertaken with the industrial sponsorship of architects Foster + Partners, with
whom the general design problems to be addressed were determined. The practical motivations
behind the research parallel the dual hypotheses made in the introduction. On one hand the
issues arising from complexity in a design problem must be dealt with, and steps to understand
these are to the benefit of both designer and client. On the other hand, design is a collaborative
process, and a means to improve the necessary communication and collaboration among

designers themselves is equally desirable.

This chapter outlines the importance to the contemporary designer both of adequate methods for
engineering in complex situations (related to Hypothesis A) and of alternate means of
communication in the context of practice (related to Hypothesis B). The current state of
engineering and practical collaboration are first described, followed by a discussion on how the
research will be applied to aid option generation for problems with many variables or to aid our

communication of tacit understanding among teams with many members.

2.1 Task issues: complexity in engineering

In advocating reflective practice, Schon (1983) opposes the limited model of engineering as one
of “Technical Rationality”, an essentially Positivist view in which problems are well defined
and ends are agreed a priori. His clearest example of the limitations of this view is Simon’s
(1996) proposal of a science of design—where Simon criticises the apparently intuitive and
“cookbooky” nature of design teaching and practice, he places too much faith in principles of
optimisation. Simon casts even traditionally elective systems such as diet as optimisation
problems by listing as variables the possible foods prepared, their costs, the required minimum

needs for vitamins and nutrients, etc., and proposing then that if well formed, the problem of
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optimal diet can be solved. As Schén and others” are quick to point out, such interventions are
susceptible to failure because the situation is often not clearly understood. This explicit
formulation of problems and methods in engineering practice has historically brought both
benefits and disadvantages. On one hand it is a powerful analytical approach, and on the other it
runs contrary to many design tasks in seeking to reduce a problem that in fact is irreducibly

complex.

Reduction in the practice of engineering has evolved with the technical and institutional
frameworks of modern practice. It occurs in two forms: in generalising a situation that is
particular and unique to one that is universal and abstract; and in decomposing the situation and

isolating component parts from one another.

2.1.1 ABSTRACTION

Technical Rationality is the result of a development over the past several centuries, in which
scientific knowledge derived from pure research has come to be seen as a distinct and prior
basis on which decisions of practice can be made (Schén 1983). In the field of design, the
increasingly effective methods of abstraction yielded by science are reflected in the
simultaneous development of engineering. In a pre-scientific, craft-based, traditional or
‘unselfconscious’ (Alexander 1964) context, innovation is predominantly a result of small
changes in the copying of existing precedents. These changes may be conscious or unconscious,
but are modifications within a type. The benefit of the abstraction that science and engineering
provide is that it allows innovative leaps by theory. The type may be irrelevant, as design may

be explicitly directed by a specific problem.

Late medieval cathedrals represent some of the most complex examples of the former process.
Structurally, each is a highly complex and elegant system, but one evolved incrementally from
previous precedents rather than understood theoretically. By retaining tested features of
established practice, each new building could be considered relatively immune to disastrous
failure, and where modelling was performed to confirm the viability of innovations, common
practice was to scale test the actual structural form as a complete system rather than an abstract
concept (Addis 2007). This was possible due to the scale invariance of masonry behaviour, and

was in fact a true physical test of the particular design. Innovation could be quite rapid, as seen

“ Pollan (2008) gives numerous examples of the complexity of diet. The history of baby formula (pp. 20—
22) as a series of incremental additions of newly discovered nutrients shows our clearly incomplete
understanding at any given time, and nutritionists themselves admit (p. 62) the failure of “nutritionism” in
isolating individual components for study.
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in the almost monotonic growth of French cathedrals in a short period from 1175 (Laon, 23m in
height) to 1225 (Beauvais, 50m in height), but the overall form remained relatively constant.

These cathedrals represent the limit of what is possible with compressive masonry, but reached
their most advanced form immediately prior to the emergence of engineering as a science in the

Renaissance .

The birth of ‘design’ (in the sense of the word’s 16™ century etymology: ‘to mark out’) and
engineering as a distinct task in construction required the use of the drawing and mathematics as
a means to calculate the structural behaviour of a projected project, rather than rely on physical
testing. Descartes introduced both the idea of reductionism (Descartes 1637) and began the
geometric analysis of algebra that has formed the basis for modern reasoning and representing
of space and engineering (Booker 1963).

The subsequent shift in innovation from the particular and concrete to the general and abstract is
evident in the changes to engineering representation through the 17" and 18" centuries, in
which the use of construction drawing can be seen to gradually change from a tool to aid the
craft of building to a means for prior planning. Stereotomy, the representation of a three
dimensional object by several orthographic projections, was initially grounded in the specifics
of craftsmen’s experiences of building. Early descriptions such as by L’Orme (1567) were
collections of rules developed throughout the middle ages and Renaissance for calculating the
angles of complex intersecting masonry, but specifically aimed at a variety of problems at hand.
Durand’s (1643) L Architecture des Voutes furthered this with a much more comprehensive set
of examples dedicated mainly to the complex curves formed at the intersections of vaults, and
Desargues’ (1639) Brouillon-Project attempted to systematise projective geometry by
describing the process of stonecutting as an exact, step-by-step procedure. At this point, an
overall theory within which to understand all geometries began to supersede the specifics of
practice. The leap into abstraction, and thus to a more universal system that underlies modern
engineering drawing has been credited to Monge’s (1795) Géometrie Descriptive (Booker 1963;
Addis 2007). With this systematic, encompassing set of rules, the use of two orthogonal
projections describes any point or set of points in three-dimensional space, and is thus able to

represent any object that can be defined exactly by precise vertices and edges. This is the system

“ The Duomo in Florence provides a counterexample of this kind of incremental change, marking the
transition from medieval to modern forms of innovation. Brunelleschi’s method of brick construction is
celebrated as a quite radical departure from existing practice, which, after over 100 years from the start of
the cathedral, at last made it possible to span its unbuttressed diameter. It is this point in its history that
the cathedral is frequently described as an example of Renaissance architecture, with its more theoretical
understanding of building.
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of our modern architectural and engineering geometry represented by plan and section.
Compared with earlier methods, it bears no relation to material or process, consisting not of

solid volumes but only of lines and transparency.

2.1.2 HIERARCHY AND DECOMPOSABILITY

The adoption of statics in explicit calculation entailed a simplification in structure in the manner
of Simon’s (1996) ‘near decomposability’. This change in practice is particularly evident in the
development of industrial mill construction contemporary with Monge. Bage’s Meadow Lane
mill (1802) was the first in which the web of the beam was ignored to simplify calculations of
strength, and in which beams were simply supported as effective pin joints rather than
continuous across multiple columns. As Addis (2007) notes, this was a design that mirrored the
mathematical model, rather than the other way around, and that model was relatively simple. It
was revolutionary because element interactions (a single span, a beam flange) could be

considered in isolation.

In decomposing the structure into parts, traditional engineering practice also employs a
hierarchy of elements. As inherited from 19" century mills, a primary structural system such as
a column grid, for instance, supports a secondary system of beams, which in turn support floor
plates, curtain walls, etc. This allows each system to be designed in relative isolation as all
levels below it in the hierarchy can be eliminated from consideration, and all levels above may
simply be summed as a combined load. The disadvantage is that in adding additional load to
those supporting them, the hierarchical arrangement of these subsequent systems increases the

overall load of the structure.

2.1.3 ENGINEERING COMPLEX STRUCTURE

In the twentieth century a shift has occurred to allow more complex forms and dynamic
structures to be modelled. A geodesic dome employs what Fuller (1975) terms synergy—it is a
far more efficient structure because all members act together to reinforce one another in tension
or compression as needed. But such systems are more difficult to design precisely because of

these beneficial interactions. Elements cannot be considered in isolation.
The first general methods for designing these were in some sense a return to the physical testing

that predated explicit calculation. The well known hanging chain models by Antoni Gaudi and

the soap film models by Frei Otto were physical systems used to find a complex form that was
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both beyond the available calculation technology and particular to a given design. The change to
digital analysis since the 1970s was made possible with the growth of computing speed, but
effectively implemented a virtual version of the same complex models. Otto collaborated with
John Argyris, one of several key figures in the development of Finite Element Analysis (FEA)
in the 1950s, to implement early versions of this technology in the same design process. FEA
effectively models fluid dynamics, stress in unusually shaped or loaded bodies and fabric
structures by breaking down a continuous, dynamic system into an approximation built of many
simple elements, but not in the manner of the hierarchical decomposition of traditional
engineering—instead, the behaviour of each is intimately linked to every other.

Methods like finite element analysis mark both a technological and conceptual change. Systems
are understood as many individual elements modelled together, the most important properties of
elements being their relationships to other elements. There is a shift from basing the design on
what can be simply modelled (as in Bage’s modular mills) to the use of a complex model based
on a possibly unique design, and thus a move toward addressing problems that are particular and

‘wicked’ again.

Some design problems remain beyond the capacity of these more complex models. The use of
poorly understood composite materials, for example, often requires physical testing and
experiment for several reasons. First, a component of the design might have multiple functions,
satisfying several objectives simultaneously. In Michael Maltzan’s Leona Drive Residence
(Beesley and Hanna 2004), carbon fibre composites are used sometimes for their structural, and
sometimes for their weatherproofing and aesthetic properties, as individual elements of the
building perform dual roles as cladding and structure.” Second, like individual elements, entire
subsystems within composites are also difficult to consider in isolation. Rigidisable, inflatable
structures developed by ILC Dover (Ibid.) are based on a combination of textile-based
reinforcement in a matrix material such as epoxy resin that can be activated after inflation. This
matrix would appear to act in compression, taking the responsibilities of the initial air pressure
while the textile acts in tension, but the reality is more complex: in fact the load passes through
the fibres, and the matrix, which actually has a low compressive capacity, holds the fibres in
place. This relationship is more complex and beneficial than simply substituting air with resin.

Third, as with all complex systems, the interface between subsystems is crucial. In architecture,

“ Masonry construction, developed long before the science of engineering, has no problem combining
cladding and structure, but this is rare for structures incorporating tensile elements. It also makes this
combination in a different way. At its simplest, masonry also follows a very strict hierarchy from the
ground up. At its most complex, e.g. in a gothic cathedral, it evolved through gradual physical testing and
elective processes as described in §2.1.1.
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this is particularly evident in connections between materials with different properties—
expansion and contraction, or flexibility under load. Steel and glass cannot join. Expansion
joints must be left in a steel-framed brick fagade. In Peter Testa’s speculative project for a tower
built of carbon fibre and composite materials a strategy is to eliminate joints and eliminate such
abrupt changes in material, thereby allowing each element to act together with its neighbours
(Testa, personal communication). Although the structure is quite flexible, the largely
compressive, helical shell of the building is woven into the tensile floors in such a way that each
holds the other up when subjected to vertical load under gravity.

These examples share a common emphasis on physical testing and experiment. Because of their
complex nature this is essential in considering how subsystems will perform in their particular
context. As design problems they are relatively unique so pre-existing, general models do not
always apply. Foster + Partners’ projects are frequently complex and of a much larger scale.
The West Kowloon Cultural District covers an entire city neighbourhood; Beijing airport is one
of the world’s largest airports; and the planned project for Moscow’s Crystal Island, at
approximately 2.5 million m? is the largest floor plate of any building in the world. Many of
these large projects employ structural space frames similar to those addressed in this research,
and many have geometrical, environmental or site constraints that demand non-uniform
solutions. While the structures are many times larger than those investigated here, the same

issues raised by irregular loading, geometry and number of members apply at this larger scale.

2.1.4 ENGINEERING COMPLEX INTERACTION IN SPACE (THE WORKPLACE)

While structural behaviour of buildings may be complex, the social behaviour of people within
them is far more so. As a design problem for the architect, this can be affected only indirectly
through the configuration of space. The role of space as an active participant in the shaping of
social behaviour has been shown often in space syntax research (e.g. Hillier 1999; Hillier and
Hanson 1984; Penn 1998). The similarity with the structural examples above is that both are
complex systems based on interaction between parts—structural members or people. The space
syntax approach makes the link between social and spatial via the visual and permeable
connection between points within a space, and the computational methods of axial line or agent

based analysis implement these in a manner that parallels FEA". Technically these also compute

“ Within Space Syntax and FEM analyses, each also has at least two different ways of defining the basic
elements involved. Visibility graph analysis (VGA) and mesh-based finite elements both break up their
domain of analysis into a set of linked elements that are essentially arbitrary in terms of shape, size and
placement, except that their resolution must be fine enough to describe the smallest relevant features.
Axial lines, isovists and units of convex spaces, by contrast, are maximal subdivisions of the domain, are
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a network of connected, simple elements to approximate an overall behaviour for the complex
system, and in practice they are used as a simulation not of structure but of anticipated
behaviour of people. The role of Space Syntax Ltd. with respect to architects/designers is thus

similar to that of consulting engineers.

Many of the large objectives in engineering of better space are understood, both in the urban
context and in the space of work. In the design implications of social interaction in a workplace
setting, (Backhouse and Drew, 1991) the argument is made that patterns of human interaction
within the space of an office are derived from that space. Evidence is given in quantitative
micro-analysis in which the complexity of this is revealed. The model of diversity and
interaction proposed by Jane Jacobs in her Death and Life of Great American Cities (Jacobs,
1961) has also been popularly accepted as exemplifying principles of a healthy workplace
(Gladwell 2000a). The design of modern offices has changed due to an acknowledgement of the
need for interaction and the role of spatial proximity (Allen 1977), evident in the more frequent
adoption of the open plan and a growing preference for deep floor plates of low-rise and refitted

industrial space over the traditional office tower.

The change is partially due to a cultural shift in organisational structure, with dedicated spaces
for social contact and similar principles cemented during the rise of creative industries and
technology boom of the late 1990s (Florida 2002). It is primarily the creative needs that are
acknowledged here, as earlier predictions of the effects of digital networks from a decade
previously often assumed the reverse—that individuals would increasingly work from distant
locations, and in extreme cases that cities themselves were no longer necessary. As Simon
(1996) did with his analogy of the ant, this view again underestimated the complexity of the
interface between people. It is this complex interaction that the creative workplace seeks to

encourage.

But beyond the major design moves, engineering space for human interaction is highly
problematic; little is certain about the full nature of the problem. In just the same way as a
structural model is an abstraction of a complex reality, there is also a sense in which the
problem as represented by the data provided by Space Syntax measures is a simplification. The
measures themselves are explicit and scalar, and just as goals (e.g. deflection, strength) are

given prior to the solving of a clear engineering problem, these assume that what is being

defined by the geometry itself, and are therefore intrinsically meaningful in functional terms. When the
finite element method uses single elements that represent real construction elements (beams, columns,
etc.) or maximal divisions of geometry (as will be the case in chapters 4 and 5), it is analogous to these
latter ways of working.
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looked for in a space (e.g. integration, intelligibility) is already clearly determined. New
measures continue to be proposed as new design situations and motivations for analysis arise,
but in the most complex of design problems involving the most complex of spaces, we may not
know enough about what specific measures are most appropriate at the outset. Something
equivalent to the sorts of physical testing required for novel structures, which examines the

whole system in its particular context, may be desirable.

Design goals are also difficult to set. The desire for ‘more creative’ spaces is broad and
unspecific, as the finer details may change over time and between particular organisations.
Looking at the finer scale of how desks themselves are arranged in an open plan, different
typologies may be identified as characteristic to specific occupations for reasons specific to their
job requirements. The desk arrangement at Foster + Partners, which also occurs in a number of
other architectural practices, is of open rows with partial division of desks below eye level, but
with some flexibility in the row and just sufficient space at each station for a computer and an
A0 size drawing. IT professionals may sit in small groups facing outward toward their computer
and a wall or partition, allowing for required periods of intense concentration followed by
optional discussion with colleagues across a shared convex space. Accountants may sit with no
barrier between desks facing one another, allowing documents to be easily passed. Where such
types occur they may have evolved to suit the particular needs of the organisation very well, but
identifying and relying on them as models limits their use as needs or context changes. Here
again they would be simplifications, as the assumption that the entire organisation is a
homogeneous group is usually not valid, different job descriptions are not necessarily covered,

and the effects of the context of a different overall space are unknown.

In practice, design of such spaces involves both analysis and intuition. The hermeneutic process
of critical reflection allows for the generation and subsequent testing of numerous design
proposals. Each of these may be based partly on formal hypotheses derived from previously
established, explicit theories such as Space Syntax, and partly on intuition. Testing may likewise
involve a quantitative evaluation with respect to clear objectives, and where these are absent,

evaluation by other people with independent intuitions.

2.2 Professional issues: design environment

In addition to the complexities of the design problem, those of the design environment itself are
relevant. Foster + Partners comprises over 1,000 employees, so issues of collaboration and

communication are of particular concern. Large projects require large groups focused on a
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single task, and there is a further, higher level need to exchange knowledge between different
projects and to maintain continuity as a single organisation. Communication is required both in

the form of explicit discussion and the transfer of tacit norms.

2.2.1 WORKING ENVIRONMENT AT FOSTER AND PARTNERS

The working method at Foster + Partners, as with most architectural firms, consists of a
collaboration among a number of individual designers over an extended period of time. It is
acknowledged that much of the creativity may be an emergent property of their interaction, and
thus accessible to explanation, as opposed to ‘black-box’ and ‘individual genius’ myths of
creativity. The structure of this collaboration is carefully managed, with rigorous design review
and quality control processes, but individual designers are not tightly constrained as to their role
in projects. Teams are based on projects, rather than disciplines, providing each member with at
least a view of the overall design task.

Design is carried out as a reflective process, primarily via architectural drawings and models. As
a general rule, the efforts of individuals are often focused on the generation of a large number of
architectural options, usually reviewed and discussed in groups, from which the guidelines for
the next set of design possibilities are derived. These options may consist of complete buildings,
individual details, urban impact studies, rough massing models, plans showing brief required
areas or floor treatments, etc., in short, at all scales and at all times in the duration of the project.
There is a hierarchical structure within the design team and office, so the ultimate decision as to
the direction of the design rests more with some of these individuals than with others, but the
generative process is distributed. It is this method of working which allows both for flexibility
during the design process, and the ability to simultaneously address issues at extreme ends of
the scale. The task of designing a building is one of the most complex that can be undertaken
precisely because it must navigate and coordinate small scale variables like expansion joint
widths and placement of furniture or fittings, and large scale variables like gross floor area and
neighbourhood traffic patterns. In some cases these are mutually independent and can be dealt
with completely at a relevant stage in the design, but more often they form complex
dependencies, to be solved only by the iterative collaborative method described above.
Distributing the process among many designers allows diverse problems to be tackled

strategically and in detail, only because each has overall knowledge of the context.

As a design firm, there is a complex and constantly changing set of relationships to external

consultants, as the demands of new projects call for different collaborators. Within the
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architectural office and among the larger design team that includes external consultants, each
member sees the project from the point of view of their own discipline and each works with
domain specific concepts, language and symbolic representations. The multidisciplinarity of
teams is also facilitated by communication through drawings of options. The rich, high
bandwidth communication provided by drawn options allows collaboration when different

domains interact.

This process of individuals generating design options for review in a group context is nearly
ubiquitous in architectural education and practice, and is the basis for the various reflective
(Schon 1963), hermeneutical and systems (Czikszentmihalyi 1988) models of creativity as will
be examined in more detail in chapter 10.

2.2.2 GUIDING THE SEARCH: NORMS AND TYPES AS REPERTOIRE

The description of professional practice (in all disciplines) that Schon (1983) gives for how
designers actually deal with such problems as mentioned in §2.1 draws on past experience by
building up a repertoire of prior solutions and situations to be reused. These are usually referred
to as types.

A number of approaches to typology exist in architecture, many of which implicitly assume or
explicitly state that a type does not change, just as the set symbolic systems of classical Al are
static and a priori. The use of types in this sense may be essentially conservative, to replicate
structures that are known to have worked in the past (Krier 1988)", or it may acknowledge the
changing reinterpretation of different generations (Rossi 1982), but the type itself is permanent.
Rossi (1982) uses type to explain the universal and permanent character of cities. He describes
the actual form of architecture as variations on a theme, but the type that informs this is
permanent, logical and prior to this form (pp. 40-1). The notion that types are unchanging lends
itself to attempts to codify a system of types, as Alexander et al. (1977) explicitly do in their

Pattern Language.

Some typological approaches do stress change however, and allow a more flexible idea of type.

For Colquhoun (1967), ‘types’ are solutions to related past problems, but it is not stated that

“ Krier’s (1988) argument for limiting urban density uncritically assumes e.g. the Manhattan density
regulations of 1935 were inherently bad, primarily because they are unlike previous cities. This leaves
little option to adapt to a radically different modern environment. Similarly, a conservative approach such
as new urbanism is limited to recreating American small towns. Even if these work well, there is no
indication of how to scale up.
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these problems are universal. Thus it would appear that types themselves may be constantly
recreated by “adapting forms derived either from past needs or from past aesthetic ideologies to
the needs of the present” (Colquhoun 1967, p.47) and that different needs may be identified
each time. Colquhoun’s description of the use of types highlights two crucial factors in
contemporary design. The first is the proposal that modernism divides design into two types of
task—the rational, clearly understood problem, and the remaining intuitive tasks. It is the latter,
ill-defined and ‘wicked’, for which recourse to types is necessary. The second factor is that our
age is characterised by change, and so type solutions from the past must be modified to fit
problems “without precedent in any received tradition” (p.49). The first observation suggests
that types are not easily reduced, and the second refutes the notion of an unchanging type. As
these factors make the setting out of an explicit method for creating and applying types more
difficult, Colquhoun does not do this.

The multidisciplinary, distributed nature of the contemporary design environment reinforces this
latter, more flexible notion of type. Discipline and background affect the interpretation of
names, or understanding of components, and it is in the nature of working together that design
teams must simultaneously build their own ontology (Johnson, 2005). This understanding may

develop radically even over the course of a single project.

Schon’s account of design practice does describe the possibility of change, accounting for both
novelty and utility”. First, the application of a scheme from the repertoire does not subsume the
new situation under the old category. It is the means by which the designer sees the new
situation as something familiar, but this ‘seeing as’ produces a new concept—even if the
designer should act in the new situation as in the previous one the new context produces a
different outcome. This is the fundamental mechanism for the origin of novel concepts in
Schoén’s (1963) “displacement of concepts’, and related theories such as Koestler’s (1964)
‘bissociation of matrices’ and Akin’s (1996) ‘frames of reference’. The second difference has to
do with the scheme’s utility, in that the designer selects from a number of possibilities the one
most suited to the particular problem at hand. For complex problems this is not always clearly
defined, but explanations such as Czikszentmihalyi’s (1988) systems model and hermeneutical
approaches identify utility with a design’s relevance with respect to a changing culture—with an

established cultural norm.

“ Novelty and utility are widely acknowledged as the key characteristics of creative ideas (Boden 1990;
Gardner 1993; Cropley 1999; Sosa and Gero 2003).
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In the above accounts, type may be considered somewhere between a logical abstraction and a
real form, but its structure is not clearly defined, and this must be done if it is to be represented
to a computer. Chapter 8 of this thesis will attempt to do this (82.2.3 describes several current
methods). After Schon’s concepts, which can be both conservative and innovative, a mechanism

for typological change over time will also be proposed in Chapters 8 and 10.

2.2.3 CURRENT TECHNIQUES FOR SPECIFYING TYPE

For a collaborative practice, building up a repertoire of types for application or norms for
evaluation raises the issue of how these can be communicated, both between colleagues and to
the computer. A number of algorithmic approaches have been proposed for the representation of
architectural types; these can be roughly divided into those for the synthesis of new designs and

for analysis of existing ones.

e Generative approaches: Rule systems have been developed to generate new designs of
a particular type, such as Hersey and Freedman’s (1992) computer implementation to
create possible Palladian villas. Shape grammars (Stiny 1976, 1980) are possibly the
most widely studied, and have been successful in providing generative descriptions of
many building types. A descendant of linguistic generative grammars (Chomsky 1957;
Langendoen 1998), they provide an explicit rule-based method for producing final
designs, and have yielded examples in the apparent styles of Palladian villas (Stiny and
Mitchell 1978), Frank Lloyd Wright’s prairie houses (Koning and Eizenberg 1981) and
Mughul garden designs (Stiny & Mitchell, 1980). As an approach to typology, a type or
style is often (e.g. the examples above) encoded with a specific grammar, unlike
linguistic grammars that generate a particular language with any number of possible
styles. A creative human then works with the shape grammar to make a specific design
of the predefined type. As a tool for analysis, the grammar or rule set is constructed by a
human designer, a fully automatic process seen as undesirable or impossible (Knight
1998). In its generative capacity it is then followed by a user choosing which rule to

apply at each stage in the process to create designs comparable to originals.

e Analytical approaches: Analytical methods have been proposed that model similarity or
group designs based on a count of pre-defined features. Chan (1994) uses a list of
material and compositional features to evaluate buildings as to their style, and finds a
correlation with the judgements of test subjects. Experiential qualities of architecture

have also been structured or mapped to rule sets to guide architects (Alexander et al.
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1977; Koile 2004, 1997), and this approach has been implemented by Koile (1997) in
an expert system that is also able to recognise building type as a count of defined design
characteristics. Another approach to typology proposes that it is not defined by clear
and predetermined features or rules, but can be quantified by various measurements
taken from examples of the works. More general analytical techniques using
information theoretic measures have been used to measure distance between individual
plans (Jupp and Gero 2003), and to derive values for measurements such as entropy
(Gero and Kazakov 2001, 2002), morphology and topology (Jupp and Gero 2004) that
can be used to evaluate examples of a style. These have the advantage of quantifying
designs of any style as real values on the same scales, so that variations within or

between styles can be measured uniformly.

In practice, if not in principle, the above examples in both the generative and analytical
categories strive to set the terms of the definition prior to the specific examples. Generative
approaches set the rules first, and then work within them; and analysis is done with
predetermined measures as is the case with space syntax, mentioned above. These are in line
with Popper’s view that scientific hypotheses precede observations. Similarly, in considering
norms in art, Gombrich (1960) suggests that art provides categories by which to sort our
impressions: “without some starting point, some initial schema, we could never get hold of the
flux of experience” (p.88). This echoes Whitehead’s (1941) more general statement that “we
cannot understand the flux which constitutes our human experience unless we realise that it is
raised above the futility of infinitude by various successive types...” (as quoted in Hillier et al.
1976, p.147). In these views a type may be predetermined, usually symbolically, and a general
approach to representing this is rooted in identifying the equivalent of these symbols, either as

generative rules of the work or features to be analysed.

But in fixing either the generative rules or evaluation measures in advance, most
implementations fall short of the creation of new concepts essential to Schon’s ‘seeing as’, and
simply add a further example to an old and unchanging type”. Such use has been criticised in
thereby remaining limited to domains of stylistic uniformity both in detail and overall
composition (van Leusen, 1993), and are often a simplification that will either produce some
designs that would be considered outside the style or fail to produce all possibilities within it

(Hersey and Freedman 1992, chapter 2).

“ Schon (1963) notes that the process of creative innovation is already finished by the time it can be
spelled out.
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To enable the interpretation of examples required by reflective design processes, the goal of
naming a particular class of measures that we can specify in advance to contain the description
of all styles would seem to be misguided as it then allows only one interpretation. A process of
defining type retrospectively is needed, in which relevant features can only be determined in
relation to the works, not beforehand. This is the ultimate aim of many of the computational
methods, if it has not yet been realised. In the case of shape grammars, for example, although
often implemented purely at the level of symbolic representations, the grammar is meant to
operate on emergent shapes embedded in an evolving design; this difference from linguistic
grammars was a primary motivation in their creation (Stiny, personal communication). Recent
approaches have begun to address this by allowing decompositions on finished or existing
designs to generate new rules for design exploration (Prats et al. 2006) and by implementing
recognition of emergent shapes. These aims are instances of induction from examples, to be
addressed in this work.

2.2.4 CURRENT USES OF AUTOMATION IN THE ITERATIVE DESIGN PROCESS

For simple design tasks, automation can have a positive effect on efficiency by improving the
ability to create real options and thereby enabling faster and better reflection on them. A CAD
system that allows the drawing process to be more efficient allows more options to be explored
in the generation phase of the process and a potentially more fruitful discussion to result. There
are many problems that don’t warrant a full review and discussion process, but must
nevertheless be drawn and explored. Determining the number of desks in an office, parking
spaces in a lot, or (sometimes) panels on an elevation are examples which depend on simple
rules, and yield simple results but require some effort to calculate, and for which the next level
of automation is obvious. This level has the effect of producing options automatically for
presentation and review and could in theory tackle much more complex problems. Where goals
can be known and simulation is possible, an optimisation algorithm can use a predetermined
objective function to make some decision on behalf of the designer, thereby encompassing both
halves of the iterative process and optimise certain problems with autonomy, presenting only

those options for discussion which truly require a full review.

The first and most obvious benefit is in terms of speed, where simple and repetitive tasks are
automated and the advantages in efficiency are immediate. A possible improvement of design
quality may follow from the greater number of options in that ideas are generated in the course

of exploration, in sketching or modelling, etc., which would not have been foreseen at the
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outset. These benefits are realised at present by Foster + Partners, in implementations of the

above methods in the office or by external consultants.

Computational automation at more advanced levels—such as optimisation—becomes
problematic. It occurs in other design domains, such as the automotive or aeronautical
industries, but these have a different organisational model. In general, the process from design
through fabrication is more tightly contained in a single organisation, with the resulting
communication protocols and standards. Much more can be controlled and anticipated in
advance about the process of design to fabrication in the case of a car than a building, and so
optimisation of clearly defined parameters may be more readily applied. More expenditure can
be made of time and effort up front in the setting of a parametric model, as the schema of
relationships in that model can be anticipated and the production methods ensure an economy of
scale.

The nature of the architectural design task and the collaborative environment set limits to these
types of automation. Because of the ill-defined nature of the brief and complexity of each
situation, the problem itself is always radically changing from one building to the next. There is
a similar change in the composition of the team, relationship to external consultants and
management from design through construction. Optimisation is used, but rarely and within a

clearly defined domain such as a decomposable structural system.

2.2.5 PARAMETRIC MODELLING AND ITS LIMITS IN PRACTICE

The use of parametric modelling with packages such as Bentley Generative Components is
currently fashionable in architectural practice, and Foster + Partners is among the growing
group of firms using and developing the forefront of these new technologies. The benefits of
this sort of computation are great, but as their principle use is in structuring the logic of a design
model, usually in a symbolic, hierarchical manner, these also have corresponding limitations.
Changes in detail are accommodated with ease (often cited as the main benefit of the method)
but unforeseen changes to the symbolic structure of the model are not. If radical design changes
are required, as they often are in the early stages when such models are used, the model must

usually be reconstructed from the beginning.
These limitations are similar to those associated with the a priori setting of norms and types

above (82.2.2), and so intimately related to the processes of successive reinterpretation and

novelty generation in creative design. It is quite possible that this relatively fixed symbolic

45



structure is the main contributing factor (rather than expense of time or lack of technological
knowledge) in the relatively low frequency of some advanced computational techniques in
practice (from shape grammars to optimisation) and any rift that exists between the
computational technologists and the manual designers. Certainly, the proliferation of recent
parametric packages has contributed to closing this gap, but their use is often similarly
constrained to specific sub-tasks, and often sub-groups of designer-specialists, because of the
need to define relationships in advance.

Alternative approaches are possible, in line with the nature of reflective practice as exploration
rather than optimisation to preset objectives. Rosenman (1997) uses the lack of
predetermination as a definition of creative design, suggesting “the lesser the knowledge about
existing relationships between the requirements and the form to satisfy those requirements, the
more a design problem tends toward creative design” (p.69). Gero (1994) goes further to
suggest “exploration in design can be characterised as a process which creates new design state
spaces” (p.318), changing the framework in which optimisation occurs, and such approaches
have been incorporated in optimisation in the simultaneous evolution of ‘problem’ and
‘solution’ spaces (Maher and Poon 1996), for example. The actual working methods
representing the forefront of advanced computation in architectural practice are also likely less
parameterised and more flexible. While some formal parametric modelling is employed at
Foster + Partners, their specialist modelling group has developed a less structured toolkit of
algorithms and small applications that can be selected from at the appropriate stage in design.
These function as a kind of repertoire—more flexible and amenable to unforeseen changes. To
the extent that these are implemented not in the symbolic structure of a parametric model, but
on standard ‘dumb’ CAD geometry and other raw data, they are more in line with principles of

computational induction.

2.3 Application of the research

The description of contemporary practice above—hboth in the complexity of the design task and
collaborative environment—highlights the problem with Technical Rationality and its resulting
computational approaches. In unambiguously stating and codifying objective knowledge, one of
the effects of science and engineering is to gradually transform tacitly understood knowledge to
explicit knowledge. Empirical, tacit knowledge is handled informally as in Alexander’s (1964)
‘non-selfconscious’ community of traditional designers, but when this community becomes
‘selfconscious’, its scientific, explicit knowledge is handled formally. Most design involving

complex and unique situations (wicked problems) involves a substantial amount of the former,

46



but computational and engineering tools deal only with the latter, quantifiable and codifiable.

Unfortunately there are problems with both.

There are dangers in self-consciously reinventing entirely new forms based on the
aspects of the brief that are clearly understood. The more complex the task becomes,
the more variables the designer is required to understand and the greater is the capacity
for error, and optimisation and similar explicit methods solve less of the problem. The
dangers are particularly heightened when variables and systems interact with one
another. Large housing projects of the