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Abstract

Exoplanets, and in particular hot ones such as hot Jupiters, require a very sig-

nificant quantities of molecular spectroscopic data to model radiative trans-

port in their atmospheres or to interpret their spectra. This data is commonly

provided in the form of very extensive transition line lists. The size of these

line lists is such that constructing a single model may require the considera-

tion of several billion lines. We present a procedure to simplify this process

based on the use of cross sections. Line lists for water, H+
3 , HCN /HNC

and ammonia have been turned into cross sections on a fine enough grid to

preserve their spectroscopic features. Cross sections are provided at a fixed

range of temperatures and an interpolation procedure which can be used to

generate cross sections at arbitrary temperatures is described. A web-based

interface (www.exomol.com/xsec) has been developed to allow astronomers

to download cross sections at specified temperatures and spectral resolution.

Specific examples are presented for the key water molecule.
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1. Introduction

With the growing realization that many, probably most, stars support

exoplanets, developing the means to systematically characterize the atmo-

spheres of these planets has become a major scientific priority (Tinetti et al.,

2012). Given the likely complex chemistry of these atmospheres and the el-

evated temperature that is found in the most observable planets, there is a

significant demand for spectroscopic data on the probable exoplanet atmo-

spheric constituents.

Recently we have launched a new project, called ExoMol (see www.exomol.com),

with the aim of providing molecular transition data appropriate for exoplanet

models which is reliable over a wide range of temperatures (Tennyson and

Yurchenko, 2012). The ExoMol project involves constructing line lists of

spectroscopic transitions for key molecules which are valid over the entire

temperature and wavelength domain that is likely to be astrophysically im-

portant for these species. Especially for polyatomic molecules, these line

lists can become very large with hundreds of millions (Harris et al., 2006;

Barber et al., 2006; Voronin et al., 2010; Tashkun and Perevalov, 2011) or

even billions (Yurchenko et al., 2011) of individual transitions needing to

characterized and stored. A complete linelist for methane, for which so far

only a preliminary version is available (Warmbier et al., 2009), can be ex-

pected to be even larger. Indeed potential line lists for larger species, such as

higher hydrocarbons, for which spectroscopic data is needed for exoplanetary

research, are likely to be so large as to potentially make their use impractical.

Molecular line lists are being actively used to model the spectra of exo-

planets (eg Beaulieu et al. (2011)) and cool brown dwarfs with similar tem-
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peratures (eg Lucas et al. (2010); Cushing et al. (2011)). However, sampling

billions of individual transitions to model relatively low resolution astronomi-

cal spectra is probably not necessary in many cases. An alternative approach

is to represent the molecular absorptions as cross sections generated at an

appropriate resolution and temperature. The advantage of this approach is

that the data handling issues related to dealing with large data sets largely

disappear. The disadvantage is that cross sections are inflexible - a par-

ticular cross section set is only valid for a single state of temperature and

pressure. Cross sections are therefore often regarded a second choice com-

pared to maintaining a full line list (Rothman et al., 2009).

In this paper we develop a strategy whereby cross sections are provided for

the user in a flexible fashion without loss of accuracy or the specificity of using

a complete line list. To this end we have provided a web application which,

starting from very high resolution cross sections generated for each molecule

at a range of temperatures, can provide cross sections at a temperature and

resolution specified by the user. Of course this approach is based on the

implicit assumption of local thermodynamic equilibrium (LTE) and any non-

LTE treatment will continue to have to rely on the explicit use of transition

line lists. So far, these cross sections do not consider collisional broadening

effects and are therefore, at their highest resolution, appropriate for the zero

pressure limit only.

The line lists for water (Barber et al., 2006; Voronin et al., 2010), H+
3

(Neale et al., 1996; Sochi and Tennyson, 2010), HCN /HNC (Harris et al.,

2002, 2006, 2008) and ammonia (Yurchenko et al., 2011) were used to gen-

erate cross sections for these species. For concreteness, this work uses the
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main water isotopologue, H2
16O, as its working example. Water is known to

be a key species in exoplanetary atmospheres and the BT2 line list has been

used in studies of exoplanets (Tinetti et al., 2007; Swain et al., 2009; Tinetti

et al., 2010a; Baraffe et al., 2010; Tinetti et al., 2010b; Shabram et al., 2011;

Barman et al., 2011; Tessenyi et al., 2012) as well in a large variety of plane-

tary (Bykov et al., 2008; Chesnokova et al., 2009; Bailey, 2009), astrophysical

(Warren et al., 2007; Dello Russo et al., 2004, 2005; Burgasser et al., 2008;

Barber et al., 2009; Lyubchik et al., 2007; Banerjee et al., 2005) and, indeed,

engineering (Kranendonk et al., 2007; Lindermeir and Beier, 2012) studies

which generally focus on the radiative transport by hot water. The BT2

line list was used as part of the recently updated HITEMP database (Roth-

man et al., 2010). In that work the size of the line list was reduced using a

technique based upon importance sampling at a range of key temperatures.

In practice the number of water lines in HITEMP remains large, over 100

million.

The calculation of opacities and other spectral properties due to water

vapour at these elevated temperatures can therefore become onerous, and

so we present here pre-calculated absorption cross sections for a range of

temperatures between 296 K and 3000 K, binned to different resolutions.

The highest resolution cross sections are suitable for modelling low-density

environments where only Doppler broadening contributes to the line width

whereas by binning to a wavenumber grid spacing significantly larger than the

pressure-broadened half-width, higher-density environments are described

well by the calculated cross sections. However, no attempt is made to in-

clude contributions to the opacity from the water vapour continuum or water
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dimer absorption.

2. Method

The high-resolution cross section is calculated on an evenly-spaced wavenum-

ber grid, ν̃i, defining bins of width ∆ν̃. Only Doppler broadening is consid-

ered so each absorption line has a Gaussian shape:

fG(ν̃; ν̃0;j, αj) =

√
ln 2

π

1

αj
exp

(
−(ν̃ − ν̃0;j)

2 ln 2

α2
j

)
(1)

where the line centre position is ν̃0;j and the Doppler half-width at half-

maximum,

αj =

√
2kBT ln 2

m

ν̃0;j

c
, (2)

at temperature T for a molecule of mass m.

The contribution to the cross section within each bin is a sum over con-

tributions from individual lines:

σi =
∑
j

σij (3)

where

σij =
Sj
∆ν̃

∫ ν̃i+∆ν̃/2

ν̃i−∆ν̃/2

fG(ν̃; ν̃0;j, αj) dν̃ (4)

=
Sj

2∆ν̃

[
erf(x+

ij)− erf(x−ij)
]
, (5)

where erf is the error function and

x±ij =

√
ln 2

αj

[
ν̃i ±

∆ν̃

2
− ν̃0;j

]
(6)

5



Figure 1: The calculation of the absorption cross section in a wavenumber bin centered

on ν̃i due to a single line. The integrated line intensity within the shaded region, of width

∆ν̃, contributes to σij .

are the scaled limits of the wavenumber bin centred on ν̃i relative to the line

centre, ν̃0;j, and the line intensity in units of cm−1/(molecule cm−2) is

Sj =
Aj
8πc

g′je
−c2Ej

′′/T

ν̃2
0;jQ(T )

(
1− e−c2ν̃0;j/T

)
. (7)

Here, g′j and Ej
′′ are the upper-state degeneracy and lower-state energy re-

spectively, Aj is the Einstein A coefficient for the transition and c2 ≡ hc/kB

is the second radiation constant. For H2
16O, the molecular partition func-
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Table 1: Temperatures at which calculated H2
16O cross sections are provided.

296 K 400 K 500 K 600 K

700 K 800 K 900 K 1000 K

1200 K 1300 K 1400 K 1600 K

1800 K 2000 K 2200 K 2400 K

2600 K 2800 K 3000 K

tion, Q(T ), was obtained from the tabulated values of Vidler and Tennyson

(2000).

Note that in the limit of ∆ν̃ � αj, eqn (4) reduces to

σij ≈
Sj
∆ν̃

∫ +∞

−∞
fG(ν̃; ν̃0;j, αj) dν̃ =

Sj
∆ν̃

, (8)

whereas for ∆ν̃ � αj,

σij ≈ SjfG(ν̃i; ν̃0;j, αj). (9)

However, the exact expression in all calculations of the cross sections pre-

sented in this work.

3. Results

The absorption cross section of H2
16O was calculated between 10 cm−1

and 30000 cm−1 across the temperature range 296 K – 3000 K (Table 1),

using the wavenumber grid-spacing given in Table 2.

For comparison with experimental spectra, low-resolution cross sections

were produced by binning the high-resolution cross sections to the following
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Table 2: Summary of the grid spacings, ∆ν̃ for the cross sections calculated in different

wavenumber regions

wavenumber range /cm−1 ∆ν̃/cm−1

10 – 100 10−5

100 – 1000 10−4

1000 – 10000 10−3

10000 – 30000 10−2

fixed grid spacing across the entire wavenumber range: ∆ν̃ = 0.01, 0.1, 1,

10, 100 cm−1. At these resolutions, the structure due to individual lines is

lost and direct comparison can be made with, for example, the experimental

water vapour cross sections of the PNNL database (Sharpe et al., 2004). Such

a comparison for the ∆ν̃ = 10 cm−1 resolution spectra is shown in Figure 2.

4. Interpolation of cross sections between temperatures

For use in the web-based application described below, cross sections for

the molecules given in Table 5 have been calculated using a wavenumber

grid spacing of 0.01 cm−1 at a range of temperatures in 100 K intervals

below 1000 K and 200 K intervals above 1000 K. A cross section at some

intermediate temperature between the values at which the stored cross sec-

tions have been calculated may be obtained by interpolation. Suppose that

σi(T1) and σi(T2) are calculated cross sections at temperatures which bracket

the temperature of the desired cross section: T1 < T < T2 (we consider in-

terpolation using only σi calculated at the two temperatures closest to T ).
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One possible interpolation strategy is the linear interpolation

σi(T ) = σi(T1) +m(T − T1), where m =
σi(T2)− σi(T1)

T2 − T1

. (10)

However, we find a more accurate approach is to estimate the temperature

dependence to be of the form

σi(T ) = aie
−bi/T , (11)

where the coefficients ai and bi at each wavenumber bin may be calculated

from

bi =

(
1

T2

− 1

T1

)−1

ln
σi(T1)

σi(T2)
and ai = σi(T1)ebi/T1 . (12)

The largest values of the interpolation residual error in the region 1000 -

20000 cm−1, calculated as δσi = σi,calc − σi,interp, are found to be associated

with the ν2 band - as an illustration, this is plotted in Figure 3 at 350 K.

The maximum value of the interpolation residual across this wavenumber

region at a range of temperatures and wavenumber binning intervals is given

in Table 3, expressed as a percentage of the corresponding absorption cross

section:

δσ%
max = max

(
|σi,calc − σi,interp|

σi,calc

)
× 100. (13)

In all cases, δσ%
max is found to be less than the estimated uncertainty in

the ab initio line intensities that the cross section calculation is based on.

Interpolation is performed on the 0.01 cm−1 grid before binning to a coarser

wavenumber grid, if required.

Finally we note that Hargreaves et al. (2012) recently presented an ex-

perimental ammonia spectrum recorded at a range of temperatures at 100 K
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Table 3: Maximum interpolation errors in the H2
16O cross section as a function of wave

number grid spacing and temperature

∆ν̃ 0.01 cm−1 0.1 cm−1 1.cm−1 10. cm−1

350 K 1.64 % 1.34 % 1.07 % 1.10 %

1100 K 1.00 % 0.50 % 0.49 % 0.46 %

2500 K 0.66 % 0.40 % 0.37 % 0.36 %

intervals. We suggest that our proposed interpolation scheme would also be

appropriate for interpolating their data.

5. Web based application

Calculated absorption cross sections can be obtained from the interface at

the url http://www.exomol.com/xsecs. The user of this web-based interface

can select a wavenumber range, temperature and wavenumber grid spacing;

using these parameters the interface software first obtains a high-resolution

cross section at the desired temperature by the interpolation procedure de-

scribed in the previous section on the pre-calculated spectra, and then bins

this interpolated cross section to the requested wavenumber grid.

Cross sections are returned as a list of floating point numbers in a text file,

separated by the Unix-style newline character, LF (‘\n’, 0x0A). The wavenum-

ber grid can be generated from the linear sequence

ν̃i = ν̃min + i∆ν̃; i = 0, 1, 2, · · · , n− 1 (14)

10

http://www.exomol.com/xsecs


where the total number of points in the requested cross section is

n =
ν̃max − ν̃min

∆ν̃
+ 1. (15)

We also provide an XML file in XSAMS format (Dubernet et al., 2009), com-

patible with the standards of the VAMDC project (Dubernet et al., 2010).

This file may be thought of as a ‘wrapper’ to the cross section data, providing

contextual metadata such as the molecular identity and structure, tempera-

ture of the calculation, and wavenumber limits and grid spacing. An example

of the format is given in Table 4.

Cross section files have been generated for the polyatomic line lists cur-

rently available on the ExoMol website. These are listed in Table 5. The

table also specifies the maximum wavenumber (ν̃max) and maximum temper-

ature (Tmax) for each species; we strongly caution against relying on the cross

sections or indeed the underlying line lists at temperatures greater than those

given. Further cross sections will be provided as line lists for new species as

they become available.

6. Conclusion

High resolution absorption cross sections have been calculated for a num-

ber of molecules likely to be important in the atmospheres of exoplanets. The

online interface provided at the ExoMol website (www.exomol.com) allows

customized cross sections for a given molecular species to be returned at a

specified temperature and resolution. Cross sections are only available for

those species for which extensive line lists exist. New cross sections will be

provided as further species are added to the ExoMol database, see Tennyson

and Yurchenko (2012) for example.
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Table 4: Sample XSAMS format (Dubernet et al., 2009) XML wrapper for a cross

section for H2
16O generated from 1000 to 20000 cm−1 in steps of 1 cm−1 at a tem-

perature of 296 K. In this example, the cross section itself is provided in the file

H2O 1000-20000 296K-10.0.sigma as a column of values, here in cm2, one for each of

901 grid points.

<AbsorptionCrossSection envRef="EEXOMOL-1" id="PEXOMOL-XSC-1">

<Description>

The absorption cross section for H2O at 296.0 K, calculated at

Sun Mar 11 19:50:45 2012, retrieved from www.exomol.com/xsecs

</Description>

<X parameter="nu" units="1/cm">

<LinearSequence count="901" initial="1000." increment="10."/>

</X>

<Y parameter="sigma" units="cm2">

<DataFile>H2O_1000-20000_296K-10.0.sigma</DataFile>

</Y>

<Species>

<SpeciesRef>XEXOMOL-XLYOFNOQVPJJNP-FNDQEIABSA-N</SpeciesRef>

</Species>

</AbsorptionCrossSection>
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Table 5: Summary of species for which are cross sections currently available. Also given

for each species is the maximum wavenumber (ν̃max), the maximum temperature (Tmax)

and the reference to the original line list.

Species ν̃max/cm−1 Tmax/K Reference

H+
3 10 000 4000 Neale et al. (1996)

H2D+ 10 000 4000 Sochi and Tennyson (2010)

H2O 20 000 3000 Barber et al. (2006)

HDO 17 000 3000 Voronin et al. (2010)

HCN / HNC 10 000 4000 Harris et al. (2002, 2006)

H13CN / H13NC 10 000 4000 Harris et al. (2008)

NH3 12 000 1500 Yurchenko et al. (2011)

It is our intention to make the cross section facility in ExoMol fully inter-

operable with other spectroscopic databases as part of the VAMDC (Virtual

Atomic and Molecular Data Centre) project (Dubernet et al., 2010). Work

in this direction will be reported in due course.
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Figure 2: Comparison of the calculated H2
16O cross section presented in this work (blue)

with the experimental cross section of the PNNL database (Sharpe et al., 2004) (green)

in the region of the fundamental ν2 bending mode, at 296 K, both binned to a 10 cm−1

wavenumber grid. Also shown is the difference (this work - PNNL) between the two spectra

(red).
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Figure 3: Calculated absorption cross section (upper pane) and interpolation residual

(lower pane) in the region of the fundamental ν2 bending mode, at 350 K, on a wavenumber

grid spacing of 0.01 cm−1. The interpolation residual error does not exceed 1.34%.
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