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a  b  s  t  r  a  c  t

Crohn’s  disease  is  a chronic  inflammatory  condition  largely  affecting  the  terminal  ileum and  large  bowel.
A contributing  cause  is the  failure  of  an adequate  acute  inflammatory  response  as  a result  of  impaired
secretion  of  pro-inflammatory  cytokines  by  macrophages.  This  defective  secretion  arises  from  aberrant
vesicle  trafficking,  misdirecting  the  cytokines  to lysosomal  degradation.  Aberrant  intestinal  permeabil-
ity  is  also  well-established  in Crohn’s  disease.  Both  the  disordered  vesicle  trafficking  and  increased
bowel  permeability  could  result  from  abnormal  lipid  composition.  We  thus measured  the sphingo-
and  phospholipid  composition  of  macrophages,  using  mass  spectrometry  and  stable  isotope  labelling
approaches.  Stimulation  of  macrophages  with  heat-killed  Escherichia  coli resulted  in three  main  changes;
a  significant  reduction  in  the  amount  of  individual  ceramide  species,  an  altered  composition  of  phos-
eramide
phingolipid
hospholipid

phatidylcholine,  and  an increased  rate  of  phosphatidylcholine  synthesis  in macrophages.  These  changes
were  observed  in macrophages  from  both  healthy  control  individuals  and  patients  with  Crohn’s  disease.
The  only  difference  detected  between  control  and  Crohn’s  disease  macrophages  was a  reduced  propor-
tion of newly-synthesised  phosphatidylinositol  16:0/18:1  over a defined  time  period.  Shotgun  lipidomics
analysis  of  macroscopically  non-inflamed  ileal  biopsies  showed  a significant  decrease  in this  same  lipid

ervati
species  with  overall  pres

. Introduction

A  number of physiological processes have been shown to be
isturbed in Crohn’s disease (CD). A recently described manifes-
ation is the failure of acute inflammation, resulting in impaired

learance of bacteria from the tissues. This is due to mistarget-
ng of pro-inflammatory mediators to lysosomal degradation in

acrophages as a result of aberrant vesicle trafficking (Smith et al.,

Abbreviations: CCT, Phosphocholine cytidylyltransferase; CD, Crohn’s disease;
WAS, Genome-wide association study; HC, Healthy control; HkEc, Heat-killed
scherichia coli; PA, Phosphatidic acid; PC, Phosphatidylcholine; PI, Phosphatidyli-
ositol; PS, Phosphatidylserine; TNF, Tumor necrosis factor.
∗ Corresponding author at: Division of Medicine, UCL, 5 University Street, London
C1E6JJ, United Kingdom. Tel.: +44 02076796175.

E-mail address: t.segal@ucl.ac.uk (A.W. Segal).

357-2725/$ – see front matter. Crown Copyright ©  2012 Published by Elsevier Ltd. All ri
ttp://dx.doi.org/10.1016/j.biocel.2012.06.016
on  of  sphingolipid,  phospholipid  and  cholesterol  composition.
Crown Copyright ©  2012 Published by Elsevier Ltd. All rights reserved.

2009). Autophagy (Cooney et al., 2010) and apoptosis (Palmer et al.,
2009) have also been shown to be abnormal in CD, and intestinal
permeability is increased in this condition (Hollander et al., 1986).

Sphingolipids and phospholipids play key roles in the modula-
tion of inflammation and immunity (El et al., 2006). Ceramide and
ceramide-1-phosphate act to reduce tumor necrosis factor (TNF)
release (Jozefowski et al., 2010), most likely via post-translational
regulation of TNF and modulation of TNF converting enzyme activ-
ity (Rozenova et al., 2010). Furthermore, ceramides have important
roles in the control of autophagy, a process strongly implicated in
the pathogenesis of CD (Barrett et al., 2008). Addition of exoge-
nous ceramide induces autophagy (Scarlatti et al., 2004), which may

relate to effects on signalling networks or changes in the biophys-
ical membrane properties (Zheng et al., 2006).

Phosphatidylcholine (PC) is an important structural component
of all cell membranes, including intracellular vesicles (Howe and

ghts reserved.

dx.doi.org/10.1016/j.biocel.2012.06.016
http://www.sciencedirect.com/science/journal/13572725
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Table 1
Demographics of patients. Demographics of patients and healthy controls (HC)
included in (A) sphingolipid study, (B) phospholipid studies and (C) shotgun
lipidomics study.

A

Unstimulated HkEc stimulated

HC CD HC CD

Number 7 8 7 12
M:F 5:2 4:4 5:2 6:6
Mean age 44.1 36.2 44.1 39.7
Age  standard deviation 15.6 12.9 15.6 14.8
Age  range 23–63 19–63 23–63 19–65
Smokers 0 0 0 1
Treatment
No  medication 2 4
5-ASA 6 8

B

Unstimulated HkEc stimulated

HC CD HC CD

Number 10 13 7 8
M:F  5:5 6:7 5:2 4:4
Mean age 33.5 36.5 34.8 35.1
Age standard deviation 9.2 13.7 10.4 11.6
Age range 22–55 23–70 22–55 23–61
Smokers 1 1 0 1
Treatment
No  medication 6 3
5-ASA 7 5
Mean BMI 23.7 23.3 23.3 23.3
BMI  standard deviation 3.5 3.0 3.8 3.7
BMI  range 17.8–30.5 19.4–29.4 17.8–30.5 19.4–29.4

C

HC CD

Number 5 5
M:F 1:4 3:2
Mean age 40.0 33.1
Age  standard deviation 17.8 10.1
Age  range 21–54 20–46
Smokers 0 0
Treatment
No  medication 3
5-ASA 1
Methotrexate 1
Previous resection 2
Active disease 2
840 G.W. Sewell et al. / The International Journal of

cMaster, 2001). In macrophages, the generation of PC may  play
 role in differentiation (Ecker et al., 2010) and pro-inflammatory
ytokine release (Tian et al., 2008). Murine macrophages deficient
n phosphocholine cytidylyltransferase (CCT-�) secrete reduced
evels of TNF and IL-6 in response to lipopolysaccharide (LPS) stim-
lation, as a result of abnormal post-translational processing and
etention of these molecules in the Golgi apparatus, similar to the
ituation observed in CD macrophages.

Phosphatidylinositol (PI) is an important structural phospho-
ipid, and also a substrate for lipid kinases and phosphatases,

hich can generate phosphoinositide derivatives (PIPs). PIPs are
ritical second messenger molecules in pathways involved in the
ontrol of cytoskeletal re-organisation and membrane trafficking
Odorizzi et al., 2000). PI 3-kinase, an enzyme that converts PI
pecies to phosphatidylinositol-3,4,5-trisphosphate, is important
or TNF trafficking from the Golgi apparatus to the plasma mem-
rane in macrophages (Low et al., 2010).

Various studies have suggested alterations in lipid metabolism
n CD. Positive correlations exist between dietary fat consump-
ion and the development of CD (Amre et al., 2007; Shoda et al.,
996). Genome-wide association studies (GWAS) have identi-
ed CD-associated variants in loci containing genes related to

ipid metabolism. Specifically, a locus containing the ORMDL3
ene confers susceptibility to CD (Barrett et al., 2008). ORM
enes are involved in sphingolipid homeostasis; the ORM proteins
ncoded by these genes act as negative regulators of sphingolipid
etabolism (Breslow et al., 2010). Furthermore, the recent GWAS
eta-analysis identified a CD-associated SNP in close proximity to

ADS1 (Franke et al., 2010), which encodes the fatty acid desat-
rase 1 enzyme. Genetic variation in this gene is associated with
lterations in the fatty acid composition in serum phospholipids
Schaeffer et al., 2006).

Studies conducted on biological samples have demonstrated
ecreased membrane fluidity in erythrocytes from CD patients,
ith concomitant increases in sphingomyelin and reductions in
hosphatidylcholine and polyunsaturated acyl chains of phospho-

ipid (Aozaki, 1989). Increased concentrations of lactosylceramide
ave been reported in bowel biopsies from CD patients (Stevens
t al., 1988), although it is possible that these changes were sec-
ndary to inflammation. There is somewhat conflicting evidence
escribing fatty acid abnormalities in CD, including in plasma phos-
holipids (Esteve-Comas et al., 1992, 1993; Geerling et al., 1999)
nd PBMCs (Trebble et al., 2004). Lipids from adipose and lym-
hoid tissues contain more saturated but fewer polyunsaturated
atty acids, with preferential depletion of n-6 polyunsaturates in
ymphoid tissue (Westcott et al., 2005).

Macrophage phospholipid and sphingolipid composition have
ot been previously investigated in CD. Given the possibility
hat macrophage sphingolipid or phospholipid composition could
nderlie the defective cytokine secretion from macrophages that

s observed in CD, these molecules were quantified using high
erformance liquid chromatography tandem mass spectrometry
HPLC-MS). Phospholipid composition and dynamics were inves-
igated using stable isotope labelling and electrospray ionisation

ass spectrometry (ESI-MS).

. Materials and methods

.1. Subject recruitment and selection

Patients from University College London Hospitals Foundation

HS Trust fulfilled criteria for the diagnosis of CD (Lennard-Jones,
989). All patients in the macrophage studies were between 18
nd 75 years of age and had quiescent disease, as determined
y the Harvey-Bradshaw disease activity index of <3 (Harvey and
Bradshaw, 1980), and were receiving either no treatment or a sta-
ble dose (for the preceding 3 months) of 5-aminosalicylates (5-ASA)
alone. Healthy volunteers were between 18 and 75 years of age and
were not receiving immunosuppressant medication. Demograph-
ics of patients included in these studies are shown (Table 1).

For shotgun lipidomics investigations, ileal biopsies were
obtained from CD patients (n = 5) and control individuals (n = 5).
Two of the patients had macroscopic and microscopic evidence of
active disease; the remaining patients had macroscopic and his-
tologic features consistent with quiescent disease. Three patients
were receiving no treatment, one was receiving 5-aminosalicylates
and one was receiving methotrexate. Two  patients had previous
ileal resections; in these cases biopsies from the neoterminal ileum
were obtained. In all cases biopsies were taken from macroscopi-
cally non-inflamed bowel.

Ethical approval was  obtained from the Joint UCL/UCLH Com-
mittees on the Ethics of Human Research (project number 02/0324).

No subject was  studied more than once in each of the different sets
of experiments.
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.2. Primary macrophage isolation, culture and stimulation

Peripheral blood mononuclear cells were isolated from venous
lood samples as previously described (Smith et al., 2009). After

 days of culture, cells were harvested, resuspended in X-Vivo-15
edium (Cambrex, MD,  USA) and plated into BD FalconTM culture

lates.

.3. Sphingolipid analysis of cultured macrophages

Monocyte-derived macrophages were stimulated for 4 h with
eat-killed Escherichia coli (HkEc), as previously described (Smith
t al., 2009). Cells were harvested in PBS, resuspended in 200 �l PBS
nd sonicated. 10 �l aliquots were obtained for protein determina-
ion.

The ceramide content of the solution remaining was  determined
sing HPLC-MS by established methods (Bielawski et al., 2009).
amples were quantified by HPLC-MS on a Thermo Finnigan TSQ
000 triple quadrupole mass spectrometer operating in a Mul-
iple Reaction Monitoring positive ionisation mode. Sphingolipid
oncentrations were normalised in relation to total protein con-
entrations.

.4. BCA assay

The protein content of samples was determined using the bicin-
honinic acid (BCA) assay (Thermo Fisher Scientific Inc) with bovine
erum albumin as standard.

.5. Preparation of samples for phospholipid analysis and stable
sotope incubation

After overnight incubation, medium was removed and replaced
ith X-vivo-15 (Cambrex) supplemented with deuterated choline

methyl-D9-choline, 100 �g/ml, Sigma Aldrich), deuterated inositol
myo-D6-inositol, 100 �g/ml, C/D/N isotopes, Quebec) and deuter-
ted serine (serine-D3, 100 �g/ml C/D/N isotopes), in the presence
r absence of HkEc (2.5:1).

Macrophages were incubated with the stable isotope-labelled
ompounds for 3 h at 37 ◦C in an atmosphere of 5% (v/v) CO2. Subse-
uently, medium was removed and cells were washed with Hanks
alanced Salt Solution (Invitrogen). The cells were lysed in 1 ml

ce-cold methanol for lipid extractions.

.6. Phospholipid extraction and analysis by electrospray
onisation mass spectrometry

Total lipid was extracted from macrophages using chloroform
nd methanol as described previously (Bligh and Dyer, 1959).
amples were reconstituted in 30 �l of a solution containing 20%
utanol, 60% methanol, 16% water and 4% concentrated aqueous
H3 and introduced by direct infusion into a triple quadrupole
ass spectrometer (Quattro Ultima, Micromass, UK) equipped with

 nanoflow electrospray ionisation interface.
Phospholipid and neutral lipid species, both endogenous and

ith incorporated stable isotope-labelled substrates, were selec-
ively detected and quantified from a variety of precursor (P) and
eutral loss (NL) scans. Phosphatidylcholine (PC) was analysed in
ositive ionisation as P184+ and P193+ scans for endogenous and
ewly synthesised (D9) PC. Phosphatidylinositol (PI) and phos-
hatidylserine (PS) were analysed in negative ionisation, as P241-
nd P247- scans for endogenous PI and newly synthesised (D6) PI

espectively, and NL87- and NL90- for endogenous PS and newly
ynthesised (D3) PS respectively. Data were processed using Mass-
ynx software (Waters) and analysed using a custom-designed
acro (Postle et al., 2011). Correction for the 13C isotope was
mistry & Cell Biology 44 (2012) 1839– 1846 1841

performed prior to calculation of percentage composition and
incorporation of labelled phospholipid head groups. The fractional
incorporations of methyl-D9-choline, myo-D6-inositol and serine-
D3 into PC, PI and PS species respectively were calculated relative
to the total abundance. Only species of PC, PI and PS that consti-
tuted >2% of the total molar percentage of PC, PI or PS respectively
were considered quantifiable.

2.7. Shotgun lipidomics analysis of ileal biopsies

Shotgun lipidomics analysis was  performed as described
previously (Han et al., 2004). Briefly, samples were
homogenised in 1 ml  ice-cold 50 mmol/l LiCl. Protein con-
tent was determined using the BCA assay. Internal standards,
including dimyristoylphosphatidylcholine (15 nmol/mg
protein), dimyristoylphosphatidylserine (1 nmol/mg pro-
tein), 1,2-dipentadecanoyl-sn-glycero-3-phosphoglycerol
(4.2  nmol/mg protein), 1,2-dipentadecanoyl-sn-glycero-3-
phosphoethanolamine (18.75 nmol/mg protein), 17C18 ceramide
(40 pmol/mg protein) and triheptadecenoylglycerol (10 nmol/mg
protein) were added and lipid extraction performed with a mod-
ified Bligh and Dyer procedure. ESI-MS was performed using
a triple-quadrupole mass spectrometer (ThermoElectron TSQ
Quantum Ultra, San Jose, CA, USA) (Han et al., 2004).

2.8. Statistical analysis

Statistical analysis was  determined using a paired or unpaired
student t-test in Microsoft Excel as appropriate. A p-value of p < 0.05
was considered statistically significant. For shotgun lipidomics
experiments, a threshold p-value of p < 0.01 was used.

3. Results

3.1. Sphingolipid composition of macrophages is altered after
stimulation with E. coli but does not differ between HC and CD
macrophages

The predominant ceramide species in both healthy control (HC)
and CD macrophages were the C16:0, C24:0 and C24:1 ceramides
(Fig. 1A and B). There were no significant differences in the mean
amounts of any ceramide species, dihydroceramide or sphingoid
base (Fig. 1C and D) or total ceramide (Fig. 1E) between HC (n = 7)
and CD (n = 8) macrophages in the unstimulated state.

Stimulation of HC macrophages with HkEc for 4 h resulted in
a significant reduction in C16:0 (p < 0.05), C24:0 (p < 0.05) and
C24:1 (p < 0.01) ceramide species, and a significant increase in
dihydrosphingosine (p < 0.01) (Supplementary Fig. 1). Similarly,
stimulation of CD macrophages with HkEc resulted in a significant
reduction in C24:0 (p < 0.05) and C24:1 (p < 0.001) ceramides, with
a concomitant increase in dihydrosphingosine content (p < 0.05)
(Supplementary Fig. 1). There were no significant differences in
the mean amounts of individual ceramide and dihydroceramide
species (Supplementary Fig. 2A), sphingoid bases (Supplemen-
tary Fig. 2B), and total ceramide content (Supplementary Fig. 2C)
between HC and CD macrophages in the HkEc stimulated state.

3.2. Macrophage phosphatidylcholine composition and dynamics
alter following stimulation with E. coli, but are unchanged in
Crohn’s disease

Endogenous and newly synthesised PC species over a 3 h time

period were determined from precursor scans of m/z 184+ and m/z
193+ respectively. Representative PC spectra generated as precur-
sor scans of m/z 184+ and 193+ are shown (Supplementary Fig. 3A
and B). The predominant peaks at m/z 760.8 and 786.8 correspond
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Fig. 1. Ceramide and sphingoid base composition of CD macrophages is unaltered. The amounts of individual ceramide species were quantified in HC (n = 7) and CD (n = 8)
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mount  of ceramide detected. (C) The amounts of individual ceramide species (in pm
dentified between HC and CD. (D) The amounts of sphingosine (Sph) and dihydros
D  macrophages. Results are expressed as mean + SEM.

o endogenous PC 16:0/18:1 and PC 18:0/18:2 (or PC 18:1/18:1)
pecies respectively. PC species newly synthesised over the three
our time period can clearly be distinguished from endogenous
C, using the m/z 193+ precursor scan. The peaks at m/z 769.8 and
/z  795.8 correspond to newly synthesised PC 16:0/18:1 and PC

8:0/18:2 species respectively.
In unstimulated HC (n = 10) and CD (n = 13) macrophages,

he predominant endogenous PC species were PC 16:0/16:0, PC
6:0/18:1 and PC 18:0/18:2 (Fig. 2A). There were no significant dif-
erences in the molar percentage of any endogenous PC species

etween HC and CD macrophages. Stimulation with HkEc caused a
eduction in the molar percentage of endogenous PC 16:0/20:4 in
C (p < 0.05) and CD (p < 0.05) macrophages. No significant differ-
nces were identified between CD and HC macrophages.
g protein) in unstimulated HC and CD macrophages. No significant differences were
sine (dhSph) in HC and CD macrophages. (E) Total amounts of ceramide in HC and

The profile of newly synthesised PC species was similar to
that of the endogenous PC profile of HC and CD macrophages.
PC 16:0/18:1 and PC16:0/18:2 were the predominant newly-
synthesised species in HC and CD macrophages (Fig. 2 B).
Stimulation with HkEc increased the proportion of PC 16:0/18:1
synthesised in HC macrophages, and increased the fraction of
synthesised PC 16:0/16:1 in CD cells. There were no significant dif-
ferences in the molar percentage of any species between HC and CD
macrophages, either in the unstimulated state or after stimulation
with HkEc.
The incorporation of methyl-D9-choline into PC was also deter-
mined over 3 h in HC and CD macrophages, as a measure of the
global rate of synthesis of all PC species (Supplementary Fig. 4).
The mean fractional incorporation of methyl-D9-choline into PC,
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Fig. 3. Composition of endogenous and newly synthesised PS in HC and CD
macrophages, in the presence and absence of HkEc. Composition of (A) endoge-
nous PS and (B) synthesised (D3) PS, in unstimulated (HC n = 7, CD n = 9) and
ynthesised (D9) PC in unstimulated (HC n = 10, CD n = 13) and HkEc-stimulated (HC
 = 7, CD n = 8) macrophages, expressed as a molar percentage of total PC. Results
re mean + SEM. * indicates p < 0.05.

hus rates of PC synthesis, were equivalent between HC and CD
ells. Stimulation with HkEc increased the mean fractional incor-
oration of methyl-D9-choline into PC in HC macrophages (p < 0.01),
nd CD macrophages (p < 0.01) compared to unstimulated cells.
timulation was therefore associated with an increased rate of
C synthesis; although no significant differences were observed
etween HC and CD macrophages.

.3. Phosphatidylserine composition and dynamics do not differ
etween HC and CD macrophages

Neutral loss scans of m/z 87 and m/z  90 were used to deter-
ine the profile of endogenous and newly synthesised PS species

espectively in HC and CD macrophages. A representative neutral
oss scan of m/z 87- is shown (Supplementary Fig. 5A); the peak
t m/z 788.9 corresponding to the predominant endogenous PS
pecies (18:0/18:1). A representative neutral loss scan of m/z 90-
s also shown (Supplementary Fig. 5B); peaks at m/z 763.8, 789.9,
91.9 and 813.9 correspond to the predominant newly synthesised
pecies PS 16:0/18:1, PS 18:0/18:2, PS 18:0/18:1 and PS 18:0/20:4.
here were no significant differences in the molar percentage of any
S species between unstimulated HC and CD macrophages (Fig. 3A).
here were no alterations in any endogenous PS species after stim-

lation with HkEc, and no significant differences between HC and
D macrophages in the stimulated state.

The predominant newly synthesised PS species over the 3 h
ime period in unstimulated HC and CD macrophages included PS
HkEc-stimulated (HC n = 6, CD n = 5) macrophages. Results are expressed as a molar
percentage of total PS and are mean + SEM. No statistically significant differences
were identified between HC and CD.

16:0/18:1, PS 18:0/18:1, PS 18:0/18:2 and PS 18:0/20:4 species
(Fig. 3B). No significant differences were observed in the molar
percentage composition of any PS species between unstimulated
HC and CD macrophages. The profiles of the newly synthesised
PS species were comparable between unstimulated and HkEc-
stimulated macrophages, and similarly there were no differences
in the molar percentage of any PS species between HC and CD
macrophages. The rates of PS synthesis over 3 h were inferred from
the fractional incorporation of serine-D3 within the total PS (Sup-
plementary Fig. 6). There were no differences between HC and CD
macrophages and, in contrast to PC, no alterations with HkEc stim-
ulation.

3.4. Analysis of PI in HC and CD macrophages

The composition of endogenous and newly synthesised PI
species was  determined by precursor scans of m/z  241- and m/z
247- respectively in HC and CD macrophages (Supplementary
Fig. 7). The predominant endogenous PI species detected was  PI
18:0/20:4, making up 42.9 ± 2.7% and 44.0 ± 1.8% of the total native
PI in HC and CD macrophages respectively. The endogenous PI pro-

files were equivalent between HC and CD macrophages, and the
composition was  unaltered after HkEc stimulation (Fig. 4A).

The profile of newly synthesised PI species was strikingly dif-
ferent to that of endogenous PI, in both HC and CD macrophages
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Fig. 5. Shotgun lipidomics analysis of ileal biopsies. (A) Total phospholipid (PC, PE,
CL,  PG, PA, PS), sphingolipid (sphingomyelin, SM and ceramide, Cer) and cholesterol

revealed abnormalities in this PI species in CD, suggesting that the
kEc-stimulated (HC n = 6, CD n = 5) macrophages. Results are expressed as a molar
ercentage of the total PI and are mean + SEM. * indicates p < 0.05.

Fig. 4B). In contrast to endogenous PI, no single species pre-
ominated; PI 18:0/20:4 accounted for only 12.3 ± 1.1% of the
ewly synthesised PI in HC macrophages and 12.9 ± 1.8% in CD
acrophages. 11 additional species accounted for the remain-

ng newly synthesised PI. The proportion of newly synthesised PI
6:0/18:1 was significantly reduced in CD macrophages compared
o HC in the unstimulated state (p < 0.05) (Fig. 4B).

The fractional incorporation of myo-D6-inositol into total cellu-
ar PI was calculated as a measure for the global rate of PI synthesis
Supplementary Fig. 8). The mean fractional incorporation of myo-
6-inositol as a percentage of the total PI was 16.1 ± 2.3% in HC and
5.5 ± 1.5% in CD macrophages over 3 h, indicating equivalent over-
ll rates of PI synthesis in HC and CD. In contrast to PC, there was
o alteration in the percentage incorporation after stimulation with
kEc, indicating comparable rates of PI synthesis in unstimulated
nd HkEc-stimulated macrophages.

.5. Shotgun lipidomics analysis of ileal biopsies

Whilst the overall amounts of PC, PS, PG, phosphatidic acid
PA), cardiolipin (CL), sphingolipids and cholesterol in the biopsy
amples did not differ between CD and HC (Fig. 5A), a significant
eduction in PI 16:0/18:1 (as a percentage of total PI) was observed

n CD compared to HC (p < 0.01) (Fig. 5B and C). This is the same
pecies that showed reduced synthesis in CD macrophages com-
ared to HC.
(Chol) content did not differ between HC (n = 5) and CD (n = 5) patients. (B) Molar
percentage composition of phosphatidylinositol (PI) species. (C) Reduced molar per-
centage of PI 16:0/18:1 in CD biopsies compared to HC. ** represents p < 0.01.

4. Discussion

No gross abnormalities were identified in the endogenous
ceramide, dihydroceramide or sphingoid base composition of CD
macrophages, both in the unstimulated state and after stimula-
tion with HkEc. In addition, macrophage PC and PS composition,
and rates of PC and PS and PI synthesis, were unaltered in
CD macrophages; it is therefore unlikely that gross defects in
these lipids underlie the impaired cytokine release observed in
CD. Although previous studies have indicated differences in the
fatty acid profiles of plasma phospholipids (Geerling et al., 1999)
and PBMCs (Trebble et al., 2004) in CD patients, the inclusion
of patients with active disease raises the possibility that the
alterations observed could be a secondary phenomenon; indeed
studies investigating quiescent patients have yielded conflicting
results (Esteve-Comas et al., 1993). Secondly the specific profiles
of macrophage ceramides, PC, PS and PI were determined in this
study, whereas others have addressed fatty acid composition in
terms of the total percentage of fatty acids or phospholipid species.

In CD macrophages, the relative percentage of newly synthe-
sised PI 16:0/18:1 was  reduced compared to HC, although this was
not associated with an alteration in either the overall rates of PI
synthesis or the molar percentage of endogenous PI 16:0/18:1.
Importantly, shotgun lipidomic analysis of ileal biopsy samples also
observed reduction represents a genuine abnormality in CD. The
suggestion of an altered profile of PI synthesis in CD patients is
intriguing as minor variations in PI content and composition can
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xert major effects on the physical properties of membrane systems
Mulet et al., 2008). It is known that the p110� isoform of PI 3-
inase, an enzyme involved in the generation of 3-phosphorylated
hosphatidylinositol derivatives, is important in the TNF secretory
athway (Low et al., 2010). It is therefore possible that altered PI
ynamics could contribute to the impairment in pro-inflammatory
ytokine secretion observed in CD.

We have developed a three-stage model for CD, in which the first
tage is failure of intestinal barrier function followed by impaired
cute inflammation (Sewell et al., 2009). Phospholipids such as PI
re important components of intestinal mucus as well as cellular
omponents of the mucosa, and animal studies indicate a protec-
ive role for phospholipids in barrier function (Fabia et al., 1992).
t is plausible that abnormalities in the mucosal PI profile could
lter membrane or mucus fluidity, facilitating ingress of luminal
ontents into the bowel wall directly; alternatively, such alter-
tions could enhance susceptibility to damaging emulsifiers such
s bile acids. Although alterations in the phospholipid composition
f intestinal mucus have previously been associated with ulcera-
ive colitis rather than CD (Braun et al., 2009), PI composition was
ot determined in this study, which warrants further investigation.

The underlying mechanism of the reduced PI 16:0/18:1
bserved in CD can only be speculated on at this stage. Given that
he overall rate of PI synthesis is unchanged in CD macrophages,
he difference could relate to an altered substrate preference of
I synthase in CD. Alternatively, abnormalities in the fatty acid
etabolism pathway could lead to altered fatty acid availability for

hospholipid synthesis. Notably, the recent GWAS meta-analysis
dentified a CD-associated SNP in a region containing the FADS1
Fatty acid desaturase 1) gene (Franke et al., 2010). This association
dds credence to the hypothesis that fatty acid desaturation may
e relevant in the pathogenesis of CD.

Stimulation of macrophages with HkEc was associated with
lterations in ceramides and phospholipids, further implicating
oles for these lipids in inflammation and innate immunity. LPS,
NF and IL-1� were previously shown to cause a rapid increase
n the levels of ceramide in macrophage cell lines (MacKichan and
eFranco, 1999). In contrast with this previous work, HkEc stimu-

ation in the present study was associated with a reduction in the
16:0, C24:0 and C24:1 ceramides, and a concomitant increase in
ihydrosphingosine content. This difference could relate to differ-
ntial effects of specific Toll-like receptor and HkEc stimulation on
he sphingolipid pathway, or the different time frames investigated
n the two studies.

Alterations in the phospholipid profile of macrophages observed
fter stimulation with HkEc included a reduction in the amount
f endogenous PC 16:0/20:4. Recent application of lipidomic
echnologies to the activation of murine macrophages has demon-
trated rapid generation of a wide range of eicosanoids and other
xylipins following mobilisation of arachidonate from major mem-
rane phospholipids, including PC and PS (Rouzer et al., 2007).
he decreased content of PC 16:0/20:4 in both control and CD
acrophages after E. coli activation is consistent with such arachi-

onate mobilisation. Intriguingly, the fractional synthesis of PC
6:0/20:4 from D9-choline was unchanged in these activated cells,
ven though the rate of total PC synthesis was increased, implying
here was no apparent deficit of arachidonate availability for PC
ynthesis under these conditions.

Comparison of patterns of D9-choline incorporation into PC with
he profile of endogenous PC composition indicated a degree of
o-ordinated acyl remodelling, with enhanced initial synthesis of
ll three 18:2-containing species. Endogenous PC was relatively

nriched in disaturated and ether-linked PC species, which were
resumably all formed subsequently to initial PC synthesis de novo
y a variety of acyl exchange mechanisms. The extent of such acyl
emodelling was even more apparent for PS and PI synthesis. The
mistry & Cell Biology 44 (2012) 1839– 1846 1845

single species PS 18:0/18:1 accounted for over 40% of the total PS,
but contributed less than 20% of PS synthesised from serine-D3.
PS is formed by headgroup exchange from either PC or PE by the
action of PS synthase (Hermansson et al., 2011), but acyl exchange
mechanisms in PS synthesis have not been previously identified.
Similarly, PI 18:0/20:4 was >40% of total PI, but only 12% of PI
synthesis from myo-D6-inositol, substantiating previous sugges-
tions that the high content of arachidonate in macrophage PI is
maintained not by its synthesis de novo from myo-inositol but by
direct acyl incorporation due to sequential activities of PLA2 and
acyltransferases enzymes, proposed from incorporation patterns
of D8-arachidonate (Balgoma et al., 2008).

Overall, in spite of the previous differences in cytokine release
and intestinal barrier function, no major differences in lipid com-
position and synthesis were observed between tissue samples from
CD patients and healthy controls, and their responses to bacte-
rial stimulation. In contrast to studies of elicited bone marrow
or peritoneal macrophages, all samples in our study were from
individual subjects, and inter-subject differences in lipid nutri-
tion could contribute to the variation in observed lipid responses.
Nevertheless, the results question the extent to which lipid mobili-
sation is obligatorily linked to macrophage activation, and suggest a
subtle difference in phosphatidylinositol composition in CD which
could have an important influence on cytokine release and mucosal
barrier function.
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