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Abstract

Supramolecular architectures represent an increasingly interesting playground both in the chemistry
and physics field. In fact, they give us the possibility to tailor the physica and chemica properties of
conjugated systems, opening the doors to new applications.

In this dissertation | will present my findings regarding different types of supramolecular structures.

The first part is dedicated to the study of the optical properties of conjugated polyrotaxanes:
conjugated polymers such as poly(4,4'-diphenylene vinylene) threaded through cyclodextrin macrocycles
rings, that sterically impose increased intermolecular distances, leading to preserved single-molecule
excitonic photophysics even in high concentration regimes, due to reduced n—m stacking of the
chromophores. In particular, | will show how it is possible to tune their photoluminescence properties for
different applications like polarized emission and optically pumped lasers.

The incorporation of polyrotaxanes and their unthreaded analogue in a stretch-oriented polyvinyl
alcohol matrix gives rise to a strongly polarized photoluminescence parallel to the stretching direction which
| studied using steady-state and time-resolved optical techniques. Furthermore, by exploiting the water-
solubility of polyrotaxanes is possible to embed them in three-dimensional photonic crystal and tune their
radiative rate to achieve low-threshold optically pumped lasers.

In the second part, | will present the application of supramolecular structures in light-emitting
diodes. In fact, self-assembled monolayers represent an interesting system to tune the work function of
commonly used electrodes in the plastic eectronics field, therefore changing the injection barriers for holes
at the interface between the organic semiconductor and the metallic electrode. Furthermore, | will show how
supramolecular architectures are used to obtain efficient near-infrared photoluminescence and
electroluminescence introducing a three-dimensional = conjugation. Moreover, by adding a pyridine
derivative it is possible to suppress the efficient self-quenching in this class of porphyrin based molecular

assembly increasing further their applicability in light-emitting diodes.
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1.1 (a) In the sp? hybridisation 4 o bonds are formed, therefore it possess a tetrahedral structure with an angle
109.5° between the bonding orbitals. (b) The sp® hybridisation shows a trigonal -planar geometry with an
angle of 120° between the 3 o bonds. (c) The sp hybridisation has only 2 o bonds, hence a planar

geometry with an angle of 180° between the bonding orbitals.

1.2 Chemical structure of trans-polyacetylene

1.3 Scheme of the energy splitting of 2p orbitals into 2 different molecular orbitals. a bonding n-orbital and
an anti-bonding = -orbital. Adding other CH, units (increasing the conjugation length) leads to an
increase in the degeneration of energy levels, thus forming two different energy quasi-bands, namely the
highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).

1.4 (@) an undimerised polyacetylene chain (complete delocalisation of the eectron wavefunction). (b)
Peierls dimerisation of polyacetylene

1.5 Positive and negative polarons and bipolarons in poly(para-phenylene). Spins and charges are indicated
on the conjugated chain and the corresponding energy diagram is represented on the right.

1.6 (Top) Schematic representation of a Wannier-Mott exciton (@), Frenkel exciton (b) and a charge-transfer
exciton (c¢). (Bottom) Scheme of the energy levels of the three different types of excitons

1.7 Jablonski diagram illustrating the different electronic and vibrational levels in an organic molecule and,
the different optical transitions (with their rates K): fluorescence (Kge)), phosphorescence (Kgen), non
radiative decay (Kngr), internal conversion (K,c), vibrationa relaxation (Kyg) and intersystem crossing
(Kisc)-

1.8 Schematic representation of the energy transfer process between a donor and an acceptor molecule.

1.9 (@) Anode and Cathode work functions (@, and @ respectively) and Fermi’s energies (E;) before
contact with the polymer layer. (b) After contact, the chemical potentia is equilibrated through the
heterojunction via el ectron transfer from the cathode to the anode, creating a potential in the polymer
layer (built-in potential, V). (c) in forward bias electrons and holes are injected into the polymer film
through an energy barrier. When a hole and electron are in close proximity they form an exciton that can

radiatively decay.

2.1 (Top) Chemica structures of the cyclodextrin-threaded conjugated polyrotaxanes with poly(4,4 -
diphenylene vinylene) (PDV.Li), poly( para-phenylene) (PPP.Li) and poly(fluorene) (PF.Li) cores with
naphthalene stoppers, average degree of polymerization: n = 10. (b) Energy minimized structure of a 2-
repeat-unit PPP.Lic  -CD oligorotaxane. (Reproduced from ref. 1)

2.2 Steady-state PL spectra of poly(4,40- diphenylene vinylene) (PDV.Li) polyrotaxane solution at 5x107
mg/mL (opencircles) 1x10* mg/mL (open triangles) and of all the solutions of the unthreaded polymer

(labeled with their respective concentrations). The spectrum of the polyrotaxane solution is virtualy



coincident with that of the most diluted solution of the unthreaded polymer. (Reproduced and adapted
fromref. 2

2.3 Time-dependent decays of solutions of PDV.Li (top panel) a 2.61 eV, and of the threaded polymer at
2.73 eV (bottom panel). The rdative fits are a'so shown for the PDV.Li_p-CD decays, which have been
fitted by a simple exponential function.

3.1 Molecular structures of PDV.LicB-CD (PDV .Li posses the same structure but without cyclodextrins) and
PVA.

3.2 Electronics scheme for TCSPC (Principle of Fluorescence Spectroscopy, J. R. Lakowicz, Springer)

3.3 Emission intensities for a radiating dipole in a polar coordinate system. The red shape represents the
dipole.
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PDV.Li and 2.68 €V for PDV.LicB-CD. (b) Spectra dependence of the PL anisotropy obtained by the
steady-state spectrain Fig. 3.6 for both stretch-oriented and un-stretched films. The coding is the samein
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3.11 PL spectra of stretch-oriented PV A films containing (a) PDV.LicB-CD and (b) PDV.Li excited by non-
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respective calculated spectral anisotropy is reported as a green curve. Inset: Pictures of the stretch-
oriented films excited by the LEDs array in the two different orientations (parallel and perpendicular to
the stretching direction).

4.1 Schematic of one-dimensional (left), two-dimensional (centre) and three-dimensional (right) photonic

crystals (Photonic crystals: molding the flow of the light, J.D. Joannopulos, Princeton University Press)
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4.5 Photonic band structure of a synthetic polystyrene opal. The PBG is present along the LT direction Inset:
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4.8 Schematic of the vertical deposition technique used to prepare the synthetic polystyrene opals used in this
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4.9 SEM micrographs of a polystyrene opa made with 260 nm diameter nanospheres before (a, b) and after
(c, d) the thermal annealing at 75 °C for 5 minutesin air.

4.10 Top: Chemica structure of PDV.Licp-CD, threading ratio = 2, with an average number of repeat units
n = 10. Bottom: Reflectance (R, solid line) and transmittance (T, dashed line) spectra of a polystyrene
opal film infiltrated with PDV.Lic-CD (sphere diameter a= 200 nm, refractive index, nPS = 1.59). The
full-width-half-maximum of the PBG is not affected by the incorporation process.

4.11 (a) PL spectra of an opal film infiltrated with PDV.LicB-CD before (solid line) and after (dashed line)
the thermal treatment at 75 °C at different incidence angle of the exciting beam, (b) ratio between the two
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4.12 Temporal evolution of the PDV.LicB-CD PL measured at the short-wavelength edge (a, 437 nm) and
inside (b, 460 nm) the PBG before (solid line) and after (dashed line) the thermal treatment at 75°C for 5
minutes. All measurements were carried out in air and at room temperature.

4.13 Radiative decay for PDV.LicB-CD incorporated into the PhC (solid line) and in the reference sample
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5.1 Scheme of the trans- cis- transition of the AZO-SAM. (Reproduced from ref. 10)

5.2 (8) Scanning tunnelling microscope images of the cis- and trans- configurations of the AZO-SAM. (b)
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5.3 Chemical structures of the two self-assembled monolayers studied and poly(9,9’-dioctylfluorene-alt-
benzothiadiazole) (F8BT) used as active layer in light-emitting diodes. Bottom: structure of the light-
emitting diodes studied.

5.4 (a) Scheme of the electroabsorption set-up used in this study. (b) Scheme of an LED and how it is driven.

5.5 EA signal as function of the applied voltage for AZO-SAM 1 (filled circles) and AZO-SAM 2 (open
circles). The Vnull values are reported as inset

5.6 Current density-voltage (a) and (semi-logarithmic) luminance-voltage (b) plots for all OLEDs. Color
code is the same in both panels.

5.7 Steady-state PL (a) and EL (b) spectra of all devices investigated (from top to bottom, ITO, Au, AZO-
SAM 1 and AZO-SAM 2, curves have been offset for clarity). All measurements were conducted at room
temperature, and the PL was excited by a pulsed diode |laser (Eex = 3.3 eV, pulse width ~ 40 ps).

5.8 Temporal evolution of the PL collected at 2.24 €V for dl OLEDSs (from top to bottom, ITO, Au, AZO-
SAM 1 and AZO-SAM 2, curves have been offset for clarity). A single exponential decay of the type: I(t)
= lgtlexp(-t/t) is used to fit the decay of al the samples (values of t are reported in figure). All
measurements were conducted at room temperature.

6.1 Scheme of energy levels alignment for ITO/PPV/CN-PPV/cathode OLEDSs. (Reproduced from ref. 2)

6.2 Chemical structure of Poly(9,9 -dioctylfluorene-alt-N-(4-butylphenyl) -diphenylamine) (TFB, top) and
poly(9,9’-dioctylfluorene-alt-benzothiadiazole) (F8BT, bottom)

6.3 Current density-voltage (logJ-V) and luminance-voltage (logL-V) curves for ITO/TFB(t;)/F8BT(120
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6.4 Energy bands diagram of OLEDs components before contact is created. ITO and Ca work function
values and TFB and F8BT polaronic levels (conduction band and valence band). The energy barrier at the
TFB/F8BT for electrons injected trough the Ca/Al cathode increases the charge carrier balance in the
device.

6.5 (@) PL and (b) EL spectra for OLEDs with different initial TFB layer thickness. PL spectra were
collected at room temperature in air, using the TCSPC system described in chapter 4. As excitation source
apulsed laser diode was used (E = 3.3 eV, ~40 ps)

6.6 Normalised PL time-resolved measurements collected at 2.28 eV, comparing the time decay of the
samples with different initial TFB thicknesses. A single exponential decay is used to fit the decay of the
reference sample, whereas a triple exponential is used for al others. The presence of exciplexes is
confirmed by the longer decay time for the samples with TFB.

6.7 Energy level scheme for excitons in F8BT, charge-separated states and exciplexes at the TFB/F8BT
interface. (Reproduced and adapted fromref. 27)

7.1 (a) Chemical structures of the porphyrin hexamers used and the complex of the linear hexamer, P6, with
4-benzyl pyridine, BP. (Ar = 3,5-bis(octyloxy)phenyl in P6 and 3,5-bis(tert-butyl)phenyl in ¢ P6T.) (b)
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Optical absorption (solid lines) and phaotoluminescence (dashed lines) spectra of pure F8BT and blended
films. Insets show the overlap of the absorption and emission of the hexamer component of the spectrum.
(c) Excitation-emission spectrum for an F8BT : c-P6T blend for a collection wavelength of 1090 nm,
plotted alongside the absorption intensity. (Reproduced fromref. 3)

7.2 (8) Energy levels of electrodes, F8BT and the porphyrin hexamers, P6 and c-P6T. OLEDs were
fabricated with the structure ITO\PEDO:PSS(85 nm)\active layer(70 nm)\Ca(45 nm)\Al (150 nm). The
device areawas 3.5 mm2. (b) Electroluminescence spectrum of an F8BT:c-P6T OLED measured at 15.5
V. (c) Current density and radiance plotted against driving voltage for atypical F8BT:c-P6T device. The
inset shows the external quantum efficiency (EQE) as a function of current density, where the EQE has
been calculated for the full spectrum including 6 % of the emission that originates from the F8BT.
(Reproduced fromref. 3)

7.3 Current density and light emission plotted against driving voltage for typical F8BT blended devices with
P6 and P6-BP. b Electroluminescence spectra for the FS8BT:P6 and F8BT:P6BP devices recorded at 16 V
and 14 V respectively. The difference in spectral shape of the NIR component is ascribed to the insulating
behavior of the BP around the P6 hexamer. ¢ Externa quantum efficiency (EQE) plotted as afunction of
current density for the same devices as a. The EQE is calculated for the full range of wavelengths
(including residual F8BT emission), though for P6BP, > 99% of the emission is from the hexamer.
Devices were fabricated with the structure ITO\PEDOT:PSS (85 nm)\active layer (70 nm)\Ca (45 nm)\Al
(150 nm), where the active layer was a blend of P6 or P6BP in F8BT (10% P6) spin-coated from a 2%

solution in xylene. The device areawas 3.5 mm2. (Reproduced fromref. 3)
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INTRODUCTION

Conjugated polymers are interesting materials as they possess both, the electronic properties of
semiconductors and the processing advantages and mechanical properties of plastic materials. Since the
discovery of their electrical conductivity in 1977, and their electroluminescence in 1990,*¥ they have
attracted increasing attention due to interesting optoelectronics properties and processing advantages for the
realization of low cost light emitting diodes,? light emitting electrochemical cells,®” photovoltaic devices®
% and field-effect transistors.** ™

Conducting polymers soluble in either water or in organic solvents have been synthesized, enabling
processing of films, fibres and blends. Thanks to solution-based processing (i.e. drop-casting, spin-casting,
layer-by-layer deposition, ink-jet printing ...) organic devices can be produced at very low costs, on very
large area and on flexible substrates. From a more fundamental point of view, conjugated polymers offer
many scientific challenges. These materials lie on the edge of organic chemistry and condensed matter
physics, thus revealing new properties that can be understood only within the joint framework of these
disciplines.

An important aspect in the field of conjugated polymers is the control of electronics interactions
taking place between conjugated chains, namely interchain interactions.

Interchain interactions profoundly change the chemical, biological and physical properties of a huge

[13] [14]

variety of systems.™@ They influence phenomena as protein folding,™ cellular organization™ as well asthe
photophysics of organic semiconductors.™>* This phenomenon has been brought under increasing attention
for polymer based devices and its control is needed for the optimal development and exploitation of
conjugated systems.

Such a control can be achieved by using supramolecular architectures like, for example, conjugated
polyrotaxanes,"®?” which are conjugated oligomers threaded through o or B-cyclodextrin rings.!** ? They
are a model system for studying the influence of interchain interactions on the electronic dynamics of

organic semiconductors.” ! Cyclodextrin insulation suppresses intermolecular interactions that control

their photophysics, in particular regarding the tendency to form excimers (excited states del ocalised on more
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than one molecule)® 2 which can red-shift and quench the luminescence®” and are detrimental for colour
purity %

Another interesting aspect of supramolecular architectures is the possibility to use these structures to
modify the surface properties of various materials. An example of this functionalization is self-assembled
monolayers chemisorbed on specific metallic surfaces.® ¥ In fact, self-assembled monolayers are of

technological interest as they can be incorporated in devices like sensors™”

and organic thin-film
transistors® to modify the metal/organic semiconductor interface properties, hence devices performance.
Among various functions of self-assembled monolayers, in this dissertation | will show how they can be used
to introduce an interfacial dipole at the metal/semiconductor interfaces to tune the work function of metallic
contacts, thus optimizing the charge injection in light-emitting diodes, achieving a better balance between

electrons and holesin the organic active layer, hence moving the recombination zone of charge carries.***

This dissertationis divided in 7 different chapters:

In chapter 1 and 2 | will briefly introduce the general properties of conjugated polymers and
supramolecular architectures, their applications in light-emitting diodes and photovoltaic cells.

In chapter 3, the optical properties of stretch-aligned film embedding polyrotaxanes are discussed. In
particular, | will discuss how the supramolecular architecture can influence the mechanical properties, i.e. the
possibility of aign the conjugated chains, of polyrotaxanes with respect to the unthreaded oligomers.

In chapter 4, the properties of polyrotaxanes self-assembled with a three dimensional photonic
crystals are shown. The high photoluminescence quantum yield granted by the cyclodextrin insulation and
the water solubility of polyrotaxanes can be exploited to obtain low lasing-threshold optically pumped lasers
based on synthetic polystyrene opals.

In chapter 5 1 will present how it is possible to improve the efficiency of polymeric light-emitting
diodes using azo-benzene based self-assembled monolayers to lower the injection barrier at electrode/active
layer interfaces.

In chapter 6, a low-temperature treatment of electron blocking layers shows how it is possible to
obtain multilayer polymeric structures for light-emitting diodes without using a high-temperatures annealing

step in the processing.
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Finally, in chapter 7 | will show the properties of two types of porphyrin based systems: one linear
and one cyclic. In particular, 1 will show how it is possible to increase their photoluminescence quantum
yield by creating a supramolecular architecture of the linear hexamer and 4-benzyl pyridine, thus increasing

the overall efficiency of near-infrared light-emitting diodes based on this class of materials.
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1.  Conjugated polymers

1.1.  Electronic properties

As | briefly described in the introduction, after the discovery of the electrical conductivity of doped
polyacetylene in 1977 by MacDiarmid, Shirakawa and Heeger,™ ? conjugated systems have attracted an
increasing attention from both the scientific community and industry.

The electrical properties of conjugated polymers are directly connected to the electronic
configuration of the carbon atom: 1s? 2* 2p“¥ From this electronic configuration only 2 electronsin the p
orbital (2p?) can be used to form bonds with another atom. Nevertheless, carbon atoms have four valence
electrons. This can be explained by taking in consideration the hybridisation between atomic orbitals. In fact,
this process leads to more stable chemica bonds which better match the spatial geometry of carbon based

molecules.* # Three different types of hybridisation are possible: sp?, sp? and sp* (Fig. 1.1).

Figure 1.1 (@) In the sp* hybridisation 4 o bonds are formed, therefore it possesses a tetrahedral structure with an angle of
109.5° between the bonding orbitals. (b) The sp? hybridisation shows a trigonal-planar geometry with an angle of 120°
between the 3 6 bonds. (c) The sp hybridisation has only 2 ¢ bonds, hence a planar geometry with an angle of 180° between
the bonding or bitals.

In saturated polymers, the four valence eectrons of the carbon atoms are sp® hybridised and every
carbon is bonded to four neighbouring atoms, therefore molecular orbitals are fully saturated. The classical
example is poly(ethylene), in which each carbon atom is ¢-bonded to two neighbouring carbons and two
hydrogen atoms. Saturated polymers are insulators because to promote an electron from a bonding c-orbital

to an anti-bonding o* -orbital requires an energy E = 8 eV or more. Furthermore, excitation of electrons into
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the o*-anti bonding-orbital usually destroy the polymer chain since c-orbitals are essentials for holding the
carbon atoms together.

Conjugated polymers differ from saturated polymers in the sp? hybridisation; each carbon is bonded
to only three other atoms. The simplest conjugated polymer is the polyacetylene, i.e. a linear chain of CH

units bonded by single (c) and double (o and r) covalent bonds (Fig. 1.2).

Figure 1.2 Chemical structure of trans-polyacetylene

This alternation creates delocalised states along the chain due to the hybridisation of the sp?
molecular orbital. Only three electrons of each carbon atom reside in the three o-bonding molecular orbital,
forming covalent bonds with other atoms. The remaining unpaired valence electron resides in the delocalised
2p, orbital with its charge density lobes perpendicular to the plane defined by the o-bonds (Fig. 1.1b). For a
simple C,H, molecule, the p, orbitals of neighbouring carbons overlap to form new and extended orbitals
with an energy splitting, namely n-bonds and =*-anti-bonds (Fig. 1.3). The energy splitting between these
new orbitals depends on the energy and overlap of the original orbitals, in generd, stronger is the overlap,
larger is the splitting.!* ® The bonding n—orbital is occupied (in the ground state, highest occupied molecular
orbital, HOMO), instead the anti-bonding =*-orbital is unoccupied (lowest unoccupied molecular orbital,
LUMO).

By adding more CH, units to the C,H, molecule more bonding and anti-bonding orbitals are added
causing a degeneration of the energy levels. If the number of carbon atoms is infinite we create two different
energy bands. For rea polymers, the number of carbon atomsis clearly not infinite, therefore is more correct
to refer to the LUMO and HOMO as quasi-continuous energy bands.!* ® More interestingly, to promote an
electron from the n-orbital (HOMO) to the n*-orbital only 2-3 eV are necessary and this process does not

compromise the integrity of the polymer chain.!
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Figure 1.3 Scheme of the energy splitting of 2p orbitalsinto 2 different molecular orbitals: a bonding r-orbital and an anti-
bonding =" -or bital. Adding other CH,, units (increasing the conjugation length) leads to an increase in the degener ation of
energy levels, thusforming two different energy quasi-bands, namely the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUM O).

In general, the electronic structure of conjugated polymers has been theoretically studied using many
different models, the most frequently used is the Tight-binding model (Linear combination of atomic
orbitals, LCAQ).l>"

Both ¢ and n are directional intramolecular covalent bonds. In the solid state different polymeric
chains interact through Van der Waals forces resulting in disordered solids in which molecules have no long
range order. Furthermore, the intermolecular wavefunction overlaps are very small. Therefore, as stated
previoudy, the electronic behaviour of conjugated polymers can be described approximately by considering

their molecular energy levels.®
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1.1.1. Semiconducting behaviour

In the very first theoretical studies, conjugated polymers were expected to show a metallic behaviour
instead of a semiconducting one. In fact, if we consider once more the polyacetylene chain, we can expect
that a complete delocalisation of the electron wavefunction on the entire polymer would lead to a
minimisation of the molecular energy (like for Benzene). This would generate a constant distance between
carbon atoms (Fig. 1.4a). Therefore, we can consider this chain as a crystal of N atoms with a periodicity a.
Since the volume of 1 electronic state in the k-space isV = 2n/Na, and we can accommodate 2N electronsin
the volume of the Brillouin zone (Vgz = 2r/a), by calculating the ratio Vgz/V = 2(2n/a)/(2n/Na) = 2N, we
can expect an half-filled band (only N electrons are available), i.e. ametallic behaviour.

However, distortion originating from alternating nuclel displacement (Peierls distortion or
dimerisation) produces short (double) and long (single) bonds lowering the symmetry of the system (Fig.
4b). Thanks to this distortion, the molecular energy of polyacetylene is decreased further with respect to the
compl ete del ocalization. By increasing the periodicity to 2awe obtain: Vg/V = 2(n/a)/(2n/Na) = N, hence, a
fully occupied band. the Pelerls distortion has a similar effect to a scattering potential inducing a separation

of the bands at the edge of the Brillouin zone, |eading to a semiconducting behavior.”

Figure 1.4 (a) an undimerised polyacetylene chain (complete delocalisation of the electron wavefunction). (b) Peierls
dimerisation of polyacetylene

The dimerisation of polyacetylene can take place with two different conjugations, i.e. it is possible to
interchange single and double bonds. Both dimers possess the same energy; hence the ground state is
degenerate.l” * % This phenomenon does not take place for conjugated polymers having benzene rings since

one of the two possible “configurations’ has lower energy than the other one.
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1.1.2. Polarons
Photoexcitations in conjugated polymers do not create free-charges. Instead, the structura relaxation
of the conjugated system after photoexcitation cause the self-localization of them.®™ ® These non-linear

excitations are: solitons, polarons and bipolarons (Fig. 1.5)

Ground state LUMO

OO~

[ HOMO
Positive polaron (p*)
e LUMO

O f + O ——
=== HOMO
Negative polaron (p-)

: LUMO
OO0 ==
i [ —
HOMO
Positive bipolaron (bp2*)
| MO
EE——— HOMO
Negative bipolaron (bp?-)

OO0 ——

Figure 1.5 Positive and negative polar ons and bipolaronsin poly(para-phenylene). Spins and charges areindicated on the
conjugated chain and the corresponding energy diagram is represented on theright.

LUMO

HOMO

Solitons are present only in degenerate systems like polyacetylene, while polarons and bipolarons are
common in non-degenerate systems (for example poly(para-phenylene), Fig. 1.5). They are Fermion quasi-
particles consisting of a charge and a polarization field. This field changes the local nuclear geometry
creating as a potential well, thus causing the self-localization of the charge carrier. This phenomenon is one
of the main limiting factor of charge carriers mobility in organic semiconductors, and causes the appearance
of sub-gap energy levels.

Polarons possess a charge Q = + e and spin s = ¥2while bipolarons have Q = £ 2e and spin s= 0.
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1.1.3. Excitons

When an excited state is created on a conjugated chain, we must consider two different phenomena:

. The formation of excited species leads to structural modifications of the conjugated chain (polarons
and bipolarons).

. Conjugated polymers possess a low dielectric constant (er ~1.8 - 6), therefore electrons-holes,

electrons-electrons and holes-holes Coulombic interactions must contribute to the final properties of

the excited state.
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Figure 1.6 (Top) Schematic representation of a Wannier-M ott exciton (a), Frenkel exciton (b) and a charge-transfer exciton
(c). (Bottom) Scheme of the energy levels of the three different types of excitons

The binding energy of an exciton (Fig. 1.6, Eg) is defined as the difference between the energy gap

(Eg) and the exciton energy (Eg). Excitons can be classified in three different types:

. Wannier-Mott excitons (Fig. 1.6a): named after Gregory Wannier and Nevill Francis Mott, they
possess a radius (i.e. distance between eectrons and holes) bigger than the lattice parameter. Their
binding energy is <0.1 eV, therefore their energy is lying near to the excited state energy
(conductivity band). They are usually found in inorganic semiconductors where the large dielectric

constant provides an efficient electric field screening.
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. Frenkel excitons (Fig. 1.6b): named after Yakov Frenkel, their radius is comparable to the lattice
parameter. Their binding energy is around 0.2-1 eV, i. e. Their energy lies inside the energy gap.
They are usualy found in insulating materials or in organic semiconductors™ where the dielectric
constant is small; hence electric field screening is small.
. Charge-transfer excitons (Fig. 1.6¢): they represent an intermediate condition between the Wannier-
Mott and the Frenkel excitons. They can be found in organic semiconductors as well.[*?
In general, excitons are neutral, but if the electron and holes are separated they are able to move
freely and independently obtaining two free charge carriers. Furthermore, the total quantum spin number S
(S = 2st+1) differentiate between singlet (S = 1) and triplet (S = 3) excitons. In conjugated polymers triplet
and singlet states coexist/compete determining the fluorescence and phosphorescence properties of the

material.
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1.2. Optical properties

1.2.1. Photoluminescence properties

Thanks to the versatility of organic chemistry, during the last 20 years many different conjugated
polymers photoluminescent in the visible (390 nm > Ays < 750 nm) or in the near- infrared range (800 nm >

ApL > 1000 nm) have being synthesised.

Photoluminescence is the emission of light occurring from the decay of an electronically excited
state (due to absorption of light) to the ground state. It can be divided in two different processes:
fluorescence (emission from singlet excited states) and phosphorescence (emission from triplet excited
states).™® For fluorescence, the electron in the excited state has its spin paired (opposite) to the second
electron in the ground state, therefore the recombination is spin-allowed causing a short fluorescence life

time (from tens of pico-seconds to tens of nano-second).
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Figure 1.7 Jablonski diagram illustrating the different electronic and vibrational levels in an organic molecule and, the
different optical transitions (with their rates K): fluorescence (Kge)), phosphorescence (Kgen)), non radiative decay (Kg),
internal conversion (K,¢), vibrational relaxation (Kyg) and intersystem crossing (K sc)-

Instead, for phosphorescence both electrons possess the same spin orientation making the transition

to the ground state forbidden, so that phosphorescence life time is tipically in the range of milliseconds.
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During this long life time, the exciton is able to diffuse to trap states or bimolecular reactions with other
singlet excitons, triplet excitons or charge carriers, preventing the observation of phosphorescence at room
temperature, therefore making fluorescence more common in conjugated polymers.® *¥

The different energy levels of a molecule and their transitions can be described by the Jablonski
diagram (Fig. 1.7).”*® Fluorescence and phosphorescence are both radiative transitions which must compete
with non-radiative ones. In fact, many non-radiative transitions decrease the overal efficiency of the light
€mi ssion process.

Vibrational relaxation (Fig. 1.7, Kyg) causes a dissipation of energy from the molecule to its
surrounding environment and possess a high rate (Kyg ~ 10* s%and therefore a high yield® As a
consequence of this, the emission of photons takes place from the lowest excited state of a given multiplicity
(Kasha'srule, named after Michael Kasha).*"

Internal conversion (Fig. 1.7, K,¢) is a non-radiative process similar to vibrationa relaxation. It
occurs when avibrational level of an electronic excited state couples to a iso-energetic vibrational level of a
lower electronic state of the same mulltiplicity.™

Intersystem crossing (Fig. 1.7, K sc) is a spin conversion process to the triplet excited state. Thisis
usually the only way to populate the triplet excited state and to increase the yield of ISC a large spin-orbit
coupling must be introduced in the molecule by inserting heavy atoms like bromine and iodine.™™?

Electronic transitions are instantaneous when compared to the time scale of nuclear motions (Born-
Oppenheimer approximation).!¥ Therefore, electronic transitions between vibrational levels corresponding to
minimal change in the nuclear coordinates are favoured. This principle is known as the Frank-Condom
principle and is applied to both the absorption and emission of photons. As a consequence, the emission

spectrum is red-shifted with respect to the absorption one (Stoke shift).!* %

1.2.2. Photoluminescence quenching and aggr egates

The environment surrounding a chromophore is of primary importance, since it can create other
decay channels inducing a decrease of the photoluminescence intensity (i.e. the photoluminescence quantum
yield). This phenomenon is generally called photoluminescence quenching, and it can be caused by a variety

of different processes.
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Two general types of quenching are collisional (dynamic), and static quenching. They can be caused,
for example, by impurities left by the synthesis of the conjugated system. In both cases, the chromophore
must come into contact with the quencher.

Coallisional guenching takes place when a chromophore in the excited state comes into contact with a
guencher. This process needs the quencher to diffuse toward the chromophore while the latter is till in its
excited state. Asan example, we can use molecular oxygen. In fact, O, isone of the most well known and
studied quencher, and the most likely mechanism is that the oxygen causes intersystem crossing in the
chromophare diminishing the fluorescence quantum yield inducing phosphorescence, which is usually absent
a room temperature, decreasing the overall photoluminescence.!™® For this very reason most of the
photol uminescence quantum yield measurements are performed in N, atmosphere.

Static quenching involves instead the formation of non-radiative complexes in the ground state
between the chromophore and the quencher. In this case, the quenching is not dynamic and it doesn’t depend
on the life time of the excited state as for callisiona quenching. Therefore, we can imagine the quencher as a
chemical compound added directly to the chromophore solution and so, the quenching intensity depends
directly from the amount of quencher in the environment surrounding the chromophore.

Both static and dynamic quenching requires the diffusion of the quencher toward the chromophore,
i.e. they are common in solutions or liquid phases. In solid state, both these types of quenching are still
present but the diffusion range is much lower than in a solution. Nevertheless, the effect of molecular
aggregation (i.e. concentration quenching) is usually much stronger than in solution.

Molecular aggregation is caused by intermolecular Van Der Waas-like forces between the
molecules and they exhibit distinct changes in the absorption and emission spectrum with respect to the
monomer. This process can lead to the formation of different aggregates depending on the relative
orientation of the monomers and their transition moment. It is possible to distinguish between two cases. co-
facial aggregation of monomers leading to the formation of H-aggregates, and head-to-tail aggregation
leading to the formation of J-aggregates.

H-aggregates are much more common than J- ones, since the latter is present ailmost exclusively in
cyanines based molecules and dyes.™ H-aggregates are extremely detrimental for the photoluminescence

guantum yield since they lead to unfavourable level splitting. Furthermore, their oscillator strength resides
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mainly at the top of the exciton band, causing a blue-shift of the optical absorption and intraband relaxation
of the excited state results in low or absent photoluminescence.™ On the contrary, J-aggregates present a
red-shift of the optical absorption and high photoluminescence quantum yield.

H-aggregates are commonly found in conjugated polymer thin-films, causing an overall decrease of
the photoluminescence quantum yield and the introduction of a new de-excitation pathway usualy
characterised by alonger life time than that o the singlet exciton. As | will discussin the following chapters a
possible way to avoid the formation of this aggregates is to prevent the close-packing of the chromophore,

like, for example, in conjugated polyrotaxanes.
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Resonance energy transfer (RET, Fig 1.8) is an interaction that occurs over longer distances than

static or collisional quenching. RET can be classified as a quenching process since it decreases the

photoluminescence intensity of a donor and transfer the energy to an acceptor.!*?

Donor Acceptor Donor Acceptor

417
417

— Y
Y S —

Figure 1.8 Schematic representation of the energy transfer process between a donor and an acceptor molecule.

There are three different types of RET:
. Trivial transfer: the donor molecule emits a photon that is absorbed by the acceptor:

D'=2D+hv,;hy,+ ADAA>A+hy,

This energy transfer process can be extremely long range and its rate mainly depend on spectral

overlap between the photoluminescence of the donor the optical absorption of the acceptor, their

photoluminescence quantum yield and extinction coefficient respectively and their concentration.

Forster transfer: only for spin-allowed transitions (singlets), this energy transfer process can be

modelled as the interaction between two point dipoles. Once again, its efficiency mainly depends on

the spectral overlap between the donor and acceptor, and the distance (R) between them (~1/R°).

Typicaly, in conjugated polymers the range of the Forster transfer (Foster radius) is of the order of

10 nmor less.

Dexter transfer: it is an electron exchange interaction. The electron in the excited state from the

donor is exchanged for a ground-state electron from the acceptor. Dexter transfer is in independent

from the spin of the electrons involved in the interaction; therefore it occurs both for triplets and

singlets. Due to its electron exchange nature, Dexter transfer is strongly dependant on the distance

between the donor and acceptor and compare to the Forster transfer (tunnelling process VS antenna

effect).
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1.3. Optoelectronics conjugated polymers devices

In this paragraph | will briefly described the main applications of conjugated polymersin the

optoelectronic field.

1.3.1. Light-emitting diodes

Polymer light-emitting diodes (PLEDSs) have been widely studied and investigated during the last 30
years both in academia and industry. Thetypical PLED consist of athin-film of polymer sandwiched
between a cathode and a transparent anode."5%

The cost of fabrication of such PLEDs (as well as photovoltaic cells and transistors) can be much
lower than inorganic ones, and processing over large areas for lighting applications has captured the interest
of many companies. For PLEDs to be viable for displays and lighting sources, device lifetimes of many
10,000s of hours must be achieved. This target has been reached for red and green emitting PLEDs, whilst
blue-emitting polymers are still the focus of much research.

The fabrication process of a PLEDs starts with the deposition on a substrate of athin-film of Indium-
Tin-Oxide (ITO).** Afterward, the ITO is usualy treated with O, plasma to increase its work function and
clean it from impurities ' On top of the ITO film a layer based of poly(34-ethylene
dioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) is spin-coated.’® %2 PEDOT:PSS is used as a
hole-injection layer, due to the doping level and reatively high work function, and still being relatively
transparent in visible light. The ITO and PEDOT:PSS form the anode of the PLED.

On top of the anode, the active materia is spin-coated. Many different types of materias have been
investigated, but recently research has focused on polyfluorene based polymers,***¥ due to their high
photoluminescence quantum yield, electron mobility and ease of injection, and finaly for their chemical
stability. The active (light emitting) part of a PLED usually is not made by a single layer/material but more
complex structures such multilayers™” 3* *! or blends®® 31 have been developed. Of particular interest are
multilayer PLEDs, in fact by depositing different layersit is possible to tune the number of holes or electrons
in the active layer,’® ® therefore moving where the recombination between holes and electrons take place

(recombination zone, See Chapter 6).
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Figure 1.9 (a) Anode and Cathode work functions (@,, and @, respectively) and Fermi’s ener gies (E;) before contact with
the polymer layer. (b) After contact, the chemical potential isequilibrated through the heter ojunction via electron transfer
from the cathode to the anode, creating a potential in the polymer layer (built-in potential, Vg,). (c) in forward bias electrons
and holesareinjected into the polymer film through an energy barrier. When a hole and electron arein close proximity they
form an exciton that can radiatively decay.

The top electrode (cathode) is usualy a thermally evaporated metallic thin-film. As a requirement,
the metal use must possess a low work function.””® ** ¥ Metal as Ba or Ca are commonly used, but due to
their high chemical reactivity (in particular with O,) a conductive/protective layer is necessary. Therefore, a
thick Al filmis evaporated on top of them.

The operation of a PLED deviceis shown in Figure 1.9. Electrons and holes must be injected into the
polymeric layer from the cathode and anode respectively. To achieve this, a bias is applied in the direction
that allows bipolar injection, i.e. aforward bias in contrast to a reverse one that applies a negative (positive)
potential to the anode (cathode). The injected charges (polarons) must then migrate through the device under
the applied bias until they get close to a polaron possessing an opposite charge, .i.e. forming an exciton . At
this point, the exciton may then decay either radiatively or non-radiatively.

In general, the light emission process can be divided in 4 different parts: injection of charges,
diffusion of charges towards the opposite electrode, exciton formation, Radiative decay of the exciton.

The efficiency of PLEDs is determined by several factors (Eq. 1.1):

External quantum ef ficiency = YPprTstNext (1.2
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y represent the exciton formation efficiency per charge injected, ®p_ is the photoluminescence
guantum yield, ry is the ratio between singlet and triplet excitons formed in the device (i.e. the amount of
excitons that can radiatively decay), and ne is the optical outcoupling of the emitted light (i.e. the amount of
light able to exit the device). In general for a standard device:™®

e 50% <y < 100%,
o 250 <rsy < 90%,
o 20% < Neq < 40%
Therefore, the external quantum efficiency of PLEDs ranges from ~ 2% to ~ 30% of the ®p_ of the

light-emitting polymer.

1.3.2. Photovoltaic cells

The first working photovoltaic cell (PV) based on conjugated polymers was presented by Tang et a
in 1986.1Y In this first experiment, a bi-layer structure was used achieving an efficiency of 1%.

Photovoltaic cdls (PVs) are prepared in the same way as PLEDs. The main difference resides in the
active layer which is usually a blend of a donor and acceptor polymer (type Il heterojunction). PVs, as
PLEDs, have attracted much attention for the low cost of fabrication and high optical absorption coefficients
of conjugated polymers compared to inorganic materials used in commercially available PVs.

In genera, PVs operate in the reverse mode of an LED. Firstly an incident photon is absorbed
exciting an electron from the ground state to the excited state, forming an exciton. The exciton must be split
under the influence of a reverse bias and the positively and negatively charged polarons transported to the
anode and cathode respectively. By comparison to inorganic materials, exciton binding energies are much
higher in conjugated polymers (see Chapter 1.1.3) and a large internd field is often required to effectively
split the charges. To solve this issue many different structures have been developed, like bilayer,!*?
multilayers®*? and bulk heterojunctions,[*® so that the exciton can be separated by the built in field caused
by the energy level offset between the donor and the acceptor.

Bulk heterojunction PV's have shown the best power conversion efficiencies.***® in the polymer
layer, excitons can only diffuse a certain distance before decaying (exciton diffusion range), this implies that

the mean distance that the exciton must travel to a heterojunction in order to dissociate must be shorter than
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the exciton diffusion range. Using a bulk heterojunction, small domains are created while maintaining a good
optical absorption, increasing the surface of the heterojunction interface as well.

Of the 3 different types of heterojunction, type Il heterojunction has given the best results so far,
since the hole of an exciton generated in the donor does not travel to the electron acceptor, therefore favoring

the splitting of the exciton under the applied reverse bias.
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2. Supramolecular architectures

In this chapter | will present a short summary of the properties of two different types of

supramolecular architectures: conjugated polyrotaxanes and self-assembled monolayers.

2.1. Conjugated polyrotaxanes

Conjugated polyrotaxanes™® are organic semiconductors consisting of a conjugated moiety threaded
through cyclodextrin macrocycles (Fig 2.1) which act like a non-conjugated “ spacer” between the conjugated
chains providing control over the interchain interactions.® ™ Thanks to this property, they represent a model
compounds to study fundamental physical properties of conjugated semiconductors, since their electronic
and optical properties, are controlled both by molecular structure of the conjugated backbone, and by
supramolecular interactions. During the last 10 years they have been successfully used in white-light-
emitting diodes and electrochemical cells®® and optically pumped laser.[* ™!

In the last two decades, the attention has been focused on tailoring/control of “intramolecular
functionality” ( @ -conjugation). Control at the intermolecular level is more difficult to achieve, but equally
important in determining the properties of conjugated materias. In fact, intermolecular interactions can lead
to formation of interchain species (aggregates and/or excimers), detrimental for the photophysics of such
polymer-based devices!*>*

Conjugated polyrotaxanes are amodel system for studying the influence of interchain interactions on
the electronic dynamics of organic semiconductors. In fact, cyclodextrin insulation suppresses intermol ecul ar
interactions, showing photoluminescence decay dynamics which are mono-exponential and independent of
concentration, despite the incomplete shielding of the conjugated cores by the cyclodextrins.™™

Furthermore, by increasing the degree of threading (quantified by the “threading ratio,” TR),™ the
progressive encapsulation preserves the intrinsic spectroscopic properties of the isolated chains without
suppressing charge transport in solid films, thus yielding enhanced and blue-shifted electroluminescence
with respect to unthreaded conjugated polymers. Incorporation of luminescent polymers into cyclodextrin

macrocycles also reduces energy transport rates and exciton diffusion to quench sites.?
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Figure 2.1 (Top) Chemical structures of the cyclodextrin-threaded conjugated polyrotaxanes with poly(4,4’-diphenylene
vinylene) (PDV.Li), poly( para-phenylene) (PPP.Li) and poly(fluorene) (PF.Li) coreswith naphthalene stoppers, average
degree of polymerization: n = 10. (b) Energy minimized structure of a 2-repeat-unit PPP.Lic B -CD oligorotaxane.
(Reproduced from ref. 1)

Comparison of threaded and unthreaded conjugated chains provides important information on the
effect of threading on the formation and decay of interchain and intrachain species.!? For unthreaded and
threaded chains trough B-Cyclodextrin cycles (B-CD) of poly(4,40-diphenylenevinylene) (PDV .Li), steady-
state photolumienescence (PL) measurements show the independence of the PL spectra of the polyrotaxanes
from solution concentration. On the contrary, the PL spectrum of unthreaded polymer solutions evolves from
the polyrotaxane PL spectrum (in the most diluted case) to progressive red-shifted and broadened ones with
increasing concentration (Fig 2.1).

Time-resolved PL measurements show a long-lived non-exponential decay strongly dependent on
concentration and a red-shifted emission spectrum (fingerprint of interchain species, Fig. 2.3, similar results
for derivatives of poly(fluorene) (PF.Li), poly(paraphenylene) (PPP.Li)). In contrast, conjugated

polyrotaxanes show dynamics independent of solution concentration over more than two decades.™
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Figure 2.2 Steady-state PL spectra of poly(4,40- diphenylene vinylene) (PDV.Li) polyrotaxane solution at 5x10 mg/mL
(opencircles) 1x10™* mg/mL (open triangles) and of all the solutions of the unthreaded polymer (labeled with their respective
concentrations). The spectrum of the polyrotaxane solution isvirtually coincident with that of the most diluted solution of the
unthreaded polymer. (Reproduced and adapted from ref. 2)
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Figure 2.3 Time-dependent decays of solutions of PDV.Li (top panel) at 2.61 eV, and of thethreaded polymer at 2.73 eV
(bottom panel). The relative fits are also shown for the PDV.Li_p-CD decays, which have been fitted by a ssimple exponential
function.
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2.2. Azo-benzene based self-assembled monolayers

Self-assembled monolayers (SAMSs) are currently a key component of many electronic devices such
as organic thin-film transistors, light-emitting diodes, photovoltaic cells, and memory cells.*? A particular
application of SAMs is the chemical functionalisation of metallic surfaces which allows tuning of the metal
work function and simultaneously modifying the surface wettability. Combination of both these effects offer
a major flexibility advantage in the design of devices.™® This modification at the metal/active material
interface has great impact on the injection/extraction of electrons and/or holes, as well as on the molecular
order (degree of cristallinity) of the semiconductors deposited on top of the SAMS, which can completely
alter the transport pathways through the material and thus, the overall performance of devices.

It has been demonstrated that small changes in the chemical structure of the molecules forming the
SAMs can dramatically change the resulting properties of the device. This chemical tunability, can be
induced from single-component SAMs as well as mixed SAMs in which the ratio of each component aters
significantly the resulting properties of the metal .1*® .,

In Chapter 5, | will show how a photoactive fluorinated thiol derivative containing an azobenzene
unit chemisorbed on an Au substrate leads to a large work function shift. This shift is comparable to other
fluorinated SAMs on Au such as the pentafluorobenzene thiol (PFBT).”? Nevertheless, due to the
azobenzene group the work function can be later tuned by irradiating the SAM at a specific wavelength, thus
widening the functionality of the SAM. Azobenzene derivatives are one of the families of photochromic
molecules extensively used due to their accessible and reversible isomerization process that occurs between
the trans and cis states under UV light for the trans to cis conversion and under visible light or by

temperature for the cis to trans.*" %
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3. Oriented filmsincor porating water -soluble conjugated polyr otaxane

3.1. Introduction

Despite the various solution-processing available for conjugated polymers, optoel ectronics devices
are typically produced using thin-films by spin-coating or drop-casting of a solution. These techniques hinder
the intrinsic anisotropy of eectronic states due to delocalization of ©t electrons along the conjugated polymer
backbone. During the last 30 years many techniques have been developed to orientate conjugated polymers
in order to study their photophysica and electrical properties. In particular, mechanical techniques have been
widely used due to their low cost and simple but effective approach. A first examples is the tensile drawing
of polymer,'¥ which has been used for poly(p-phenylene vinylene) (PPV) to study its infrared-spectrum,
polarised e ectroluminescence” and its anisotropic photol uminescence properties.'® ©

A different approach to mechanicaly align filmsis that of rubbing a conjugated polymer film, for
example with a cloth mounted on a rotating drum. This technique has been widely applied to prepare
alignment layers for liquid crystals (LCs).["® Good alignment requires high “rubbing strengths’'¥ and under
this conditions films are aligned throughout their thickness, not just in athin surface layer.™

Other non-mechanica techniques have been developed based for example on “Langmuir-Blodgett”

[ photo-alignment of functionalised polyimide films,*? nanoimprinting of

films for preparation of LEDs,
poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) in liquid crystalline phase!™  alignment of
poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) nanowires™ and “zone-casting” of different polymers.!*®*"

In view of the increased rigidity of the chains upon rotaxination, the question arises as to whether it
might be possible to align the molecules so as to achieve polarised emission. In this chapter, | will show
results on the alignment of conjugated polyrotaxanes by stretching a water-soluble matrix of polyvinyl
alcohol. Polarization-resolved steady-state and time-resolved photoluminescence experiments reveal that
over 95% of the emitted light is polarized aong the orientation direction. A hybrid organic-inorganic light-
emitting diode was built to investigate the possibility of using these films as polarizing filters for solid-state

(18]

lighting and display technology.

The film preparation and tensile drawing was carried out at the “Center of Molecular and

Macromolecular studies, Polish Academy of Studies’ in collaboration with Mr. Platon Korniychuck and
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Prof. Adam Tracz. The conjugated polymers were synthesised at the “Chemistry Research Laboratory,
Department of Chemistry, University of Oxford” by Dr. Shane O. McDonnd and Prof. Harry L. Anderson.
This study was carried out within the Marie Curie research training network THREADMILL (MRTN-CT-
2006-036040). Both experimental methods and optical properties here reported are extracted from my Mphil
to PhD transfer report submitted September 2010 and the publication: F. Di Stasio, et a., Adv. Mater., 23,

1855-1858 (2011).

3.2. Experimental methods

3.21. Film Preparation and Tensile Drawing

Films were prepared by drop-casting onto a glass substrate a 20% by weight water solution of
polyvinyl acohol (PVA, M,, = 72000 g/moal, Fig. 3.1) and poly(4,4 -diphenylene vinylene) (PDV.Li, M,, =
6050 g/mol, PVA:PDV .Li = 99.5:0.5 by weight, Fig. 3.3.1), a polyelectrolytic derivative of poly-para-

phenylene (PPP) where sulfonated sidegroups balanced by Li* ions assure the solubility in polar solvents.

PDV.Licp-CD
n=10
threading ratio=2

PVA

n
OH

Figure 3.1 Molecular structuresof PDV.Licg-CD (PDV.Li posses the same structure but without cyclodextrins) and PVA.

To investigate the effect of rotaxination on the molecular orientation and polarisation anisotropy we
used both unthreaded PDV.Li and the same polymer threaded into 3-cyclodextrin macrocycles (PDV.Licp-

CD, threading rati 0:2)_[19' 20]
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After water evaporation a ~30 um thick film was obtained and then “peeled-off” the substrate
obtaining a free-standing film. The film was then stretched at room temperature in an environment with
100% relative humidity.®” The stretching process was carried out using a home-made set-up based on a
micrometer-screw. Water being a solvent of PVA, increasing the concentration of it decreases the glass
transition temperature (T,) of PVA from 85 °C to below room temperature.”” This phenomenon can be used
to induce a drop in the Y oung Modulus of the material, allowing the aignment of the polymer while in its
“rubbery state” where the material exhibits large elongations under relatively low load. Films were stretched
5 times the original length (AL/L¢=5) and at the end of the process they were dried in an elongated condition

in Nitrogen gas and then removed from the stretching-rig.

3.22. Timecorrelated single photon counting (TCSPC)

The TCSPC system is a photon counting technique based on the assumption that for
low-level, high-repetition-rate signals, the light intensity is so low that the probability of detecting one
photon in one excitation pulse is less than 1. In fact, the detection rate is typically 1 photon per 100
excitation pulses. The system measures the time delay of each photon against the excitation pulse, and build
up an histogram of the photon-times, after many photons (more than 10000) the distribution of the detection
times, i.e. the waveform of the optical pulse, builds up in the system memory./#

A typical example of a TCSPC electronic schematic®” is reported in Fig. 3.2. The experiment starts
with the excitation pulse (LASER) that excites the sample (S) and sends a signal to the electronics. This
signal is passed through a constant fraction discriminator (CFD), which accurately measures the arrival time
of the pulse. Afterward, the same signal is passed to a time-to-amplitude converter (TAC), which generates a
voltage ramp that increases linearly with time. In parallel, a second channel detects the pulse from the single
photon emitted from the sample. The arrival time of the pulse is accurately measured using the CFD, which
sends a signal to stop the voltage ramp. The TAC now contains a voltage proportional to the time delay

between the excitation and the emission signals. In the end, the voltage is amplified by a programmable gain

amplifier (PGA) and converted to a numerical value by the analog-to-digital converter (ADC).
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Figure 3.2 Electronics scheme for TCSPC (Principle of Fluorescence Spectroscopy, J. R. Lakowicz, Springer)

To minimize false readings the signal is restricted to a given range of voltages. If the signal is not
within this range the event is suppressed by a window discriminator (WD). The voltage is converted to a
digital valuethat is stored as a single event with the measured time delay.

Although this principle looks complicated at first glance, TCSPC records light signals with high
time-resolution (~ 150 ps).

The time-resolution of a TCSPC system is characterised by its instrument response function (IRF).
The IRF not only contains the width of the excitation pulse, but the temporal dispersion in the optical path
and the uncertainty in the timing of the light signal (timing jitter) as well, decreasing the time-resolution of
the system.

In our case, we used an Edinburg Instruments F900-red TCSPC (time resolution ~150 ps), as
excitation light a laser-diode (E= 3.3 €V) with a pulse width of ~ 40 ps and a cooled photomultiplier tube

coupled with a monochromator as detector.

3.23. Photoluminescence quantum yield measur ements

The photoluminescence quantum yield (®g ) of chromophores is defined as the ratio of the number

of photons emitted to the number of photons absorbed.
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Solution photol uminescence quantum yields (Pp) have been measured relative to a quinine sulphate
dehydrate in 0.5M H,S0O, solution (~1O'5M, ®p. = 0.546+5%, NIST standard reference material SRM# 93643,

WWW.hist.gov/srm).

A general technique used to measure ®p_ for solid-state films is using an integrating sphere.'®
Unfortunately it was impossible to use this simple technique with our films due to the large thickness and
scattering from the rough surface of films. Therefore, we calculated the ®p by extrapolating the
photoluminescence (PL) lifetime (t) from the PL-kinetics. In fact, ®p_depends on the emissive rate (Kg) and
the rate of non-radiative decay (Kyr), as the fraction of chromophores that decay though emission, and hence

®p, isgiven by:

p, = —RB (3.1)

In complete absence of non-radiative channels the ®p is equal to 1 and in this case the lifetime of

the chromophoresis caled theintrinsic or natura lifetime, and is given by:
Ty = —, (3.2

The natural lifetime 1, isrelated to the measured PL-lifetime (t) and ®p:
T, = ®L”, (3.3
If T, isaconstant in all different samples, i.e. no changes in the excited-state geometry and emission

wavelength® but only in the PL-quenching which affects K yg, we calculated the ®p of our films using the

7 and ®p. values measured for the each solution:

_ Trim | _ Tsol.
q)PL film — T q)PL sol. — %a (3-4)
Obtaining:
Psol. _ Prum (3.5)
Tsol. Tfilm ’ )

Assuming that the natural lifetime does not change is feasiblein this case, since all the effects on the
PL -lifetime here observed are connected to a reduction in the polymer aggregation and PL-quenching which

are only modifying the rate of non-radiative decay (Kyg)-
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3.2.4. Photoluminescence anisotropy

Anisotropy measurements are commonly used in biochemical applications to study the size and
shape of proteins or the rigidity of various molecules.

In this case, we have used time-resolved and steady-state anisotropy measurements to study and
guantify the alignment of the conjugated chainsin stretch-oriented films.

Anisotropy measurements are based on the photoselectivity of the excitation of chromophores by
polarised light. Chromophores preferentially absorb photons whose electrical field vectors are aligned
paralel to their transition moment. The transition moment has a defined orientation with respect to the
molecular axis and its orientation depends on the chromophores structure.

All measurements were carried out using the TCSPC system previously described, a
Glan-Taylor polarising prism was used to choose between the photol uminescence polarisations. All spectra
presented here have been corrected for the overal system response for all different polarisations. The
photoluminescence measurements were collected with the polarizer oriented parallel (||) or perpendicular

(J-) to the stretching direction (for oriented films) or an arbitrary direction (for un-stretched films).

HS09

X sind
— siascentle

i . 2
[;=sin"0 sin“d Y
Figure 3.3 Emission intensitiesfor a radiating dipolein a polar coordinate system. Thered shaperepresentsthe dipole.

The photoluminescence anisotropy is defined as.

(3.6)
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The anisotropy (y) is a dimensionless quantity that is independent on the concentration of
chromophores and it is normalized on the total intensity of the emitted light Iy = I} + 211

The theory for photoluminescence anisotropy can be simplified and explained considering a single
molecule (i.e. a single radiating dipole), assuming that the absorption and emission moments are parallel
(collinear) and rotational diffusion of the polarisation (depolarisation) is absent. This single molecule will be
oriented at an angle 0 relative to the z-axis (Fig. 3.3) and ¢ relative to the y-axis, in an isotropic system (for
example, a diluted solution) the ground-state of our molecule will be randomly oriented. If the excitation is
polarised parald to the z-axis then there will be a preferential orientation of the excited-state population
along this axis, due to the photoselectivity of the dipole. Fig. 3.3 shows || and I being proportional to the
projection of the transition moment (i.e. the electric field generated by the dipole) onto the axes, if the dipole

is oriented along the z-axis, hence is oriented aong the excitation axis, the electric field can be described by:

E@6,¢) = k2% (3.7)

)
r

Where k is a constant, r is the distance from the chromophore and 8 is a unit vector along the 6

coordinate. From (3.7) we can calculate the intensity of the emitted light:

Iy(6,9) = k25204, (3.9)

r2

In this case, T is the unit vector in the direction of the propagation. From these considerations, we can
calculate the parallel (1) and perpendicular (1) intensities for a dipole with an arbitrary orientation:

1)(6,¢)= Iycos? 0, (3.9)

1.(6, ) = Iysin? 8 sin? ¢, (3.10)

For excitation polarised paralel to the z-axis, al molecules at an angle ¢ from the y-axis are excited with

equal probability; i. e. the population of excited chromophores is symmetrically distributed around the z-axis

and oriented with 0 < ¢ <2n. Hence, we can substitute the ¢ dependence from equation 3.10 with the

average value of sin? ¢:

2 . o
o st pdg 1
(sin® ¢) _—foznd¢ = (3.11)

Obtaining:

1)(6)= Iycos? 8, (3.12)
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1.(8) = 3 Ipsin? 6, (3.13)
In general, a collection of chromophores is studied and not a single one, if we assume that this group

of chromophores is oriented relative to the z-axis with a probability f(0), the measured photoluminescence

intensities are:
I =1Io JZf(6) cos? 6 df = aly(cos? 6), (3.14)
L =21y [2 £(8) sin? 0df = % Io(sin? §), (3.15)

Where f(0) do is the probability that a chromophore is oriented between 6 and 6 + d6, and a is an

instrumental constant. Using eg. 3.6 we find that:

_3(cos? 0)-1
= > ,

(3.16)

The anisotropy is determined by the average value of cos? 8, where 0 is the angle of the emission
dipole relatives to the z-axis. This expression is only correct for samples that display z-axis symmetry. A
different expression is needed to describe the anisotropy of a chromophore with specific 6 and ¢. For a
single chromophore oriented along the z-axis (6 = 0) with collinear transitions, eq. 4.16 shows y = 1.
However, it is not possible to have such a perfectly oriented excited-state population since the electric dipole
of the chromophore does not need to be precisely aligned with the z-axis to absorb light polarised aong this
axis. Hence the anisotropy is always less than 1.

For a group of molecule with no preferential orientation, collinear emission and absorption dipoles
the probability of absorption is proportional to cos? 8, where 0 is the angle between the absorption dipole
and the z-axis and is the same angle as for the emission dipole (Fig. 3.3). For the random ground-state
distribution which must exist in an isotropic system, the number of molecules a an angle 6 and 6 + db is
proportional tosin 8 d6. This quantity is proportional to the surface area on a sphere within angles 6 and
0 + db. Hence, the distribution of molecules excited by vertically (parallel to the z-axis) polarised light, g(8),
isgiven by:

g(8) df = cos?Hsin0dé, (3.17)



The probability digtribution given by eg. (3.17) determines the maximum
photo-selection that can be obtained using one-photon excitation of an isotropic system. The value of

(cos? @) isgiven by:

Z
(cos? g) = 0" 090)%0 (3.18)

2 g(6)as
Substitution of eq. 3.17 into eq. 3.18 yields {(cos? 8) = 3/5 and amaximum of anisotropy of 0.4 for
an isotropic system. This value is observed when absorption and emission dipoles are collinear and when
depolarisation is absent. Under these conditions the excited-state population is preferentially oriented along
the z-axis and |= 3l.. This vaue is considerably smaller than that possible for a single chromophore
oriented along the z-axis.

To study the polarised photoluminescence properties of stretch-oriented films in all conditions we
have changed the excitation laser polarisation using a A/4 wave-plate and a polarising filter, therefore
introducing another parameter due to the different excitation polarisation.

To quantify the polarisation resulting from the alignment of the polymeric chains we calculated the
PL polarisation ratio (R) for al different excitation/detection configurations (Fig. 3.4). In what follows, we
will indicate these with the genera notation Rywyxy=PLx/PLy, Rxwyy=PLx/PLy, Where the first index
represents the polarisation of the excitation and the second one represents the polarisation of the PL (parallel
|| or perpendicular L to the stretching direction for stretch-oriented films and an arbitrary direction for un-

stretched films).

A1 PL L, PL
XS4 exc.

11 PL LWI/IPL
(=) (of exe

Figure 3.4 Scheme representing the four different configurations used to study the polarised photoluminescence of the PVA
films. Thered arrow representsthe stretching direction for the oriented filmsand the arbitrary direction for un-stretched
films.
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These definitions alow us to use a uniform notation for both oriented and un-stretched films,
although the rotational symmetry of the un-stretched films considerably reduced the number of independent
ratios.

There are 12 ratios of this type overall, but 6 of them are the inverse of the other 6 (e.g. R =
VRuy) and so on). R L provides information on the number of chromophores oriented along the
stretching direction and maintaining the initial polarisation, in respect to those oriented at 90° to the
stretching direction. R thus characterises the success of the alignment process via tensile drawing. The
expected value for a perfect aignment of the chromophores and no exciton migration to perpendicular
chromophores is tending to infinite, meaning that all chromophores are aligned along one direction and all of
them are emitting photons from excited states maintaining the initial polarisation.

R||/|+ provides instead information on the proportion of chromophores oriented along the stretching
direction that, once excited, maintain the initial polarisation with respect to those that over their lifetime are
able to reach (and decay from) chromophores oriented 90° to the stretching direction. The value of Rjjj/+
expected for a perfect aignment of the chromophores, and no exciton migration to perpendicular
chromophoresis also tending to infinite. However, the alignment is never found to be perfect, and even when
the excitation is paralel to the stretching direction, “orthogona chromophores’ (i.e. oriented perpendicular
to the stretching direction) can be excited viaboth intra- and inter-chain energy transfer. Thisratio thus gives
information especially on exciton migration processes.

In all these different ratios, the expected value for a film with isotropic aignment and exciton
migration is 1, since no differences in orientation can be observed and the emission of photons take place
from excited states randomly oriented which are not maintaining the initial polarisation.

We can easily derive the anisotropy y from these ratios using the equation:
_ Rexyxy—1
y - R_xx/xy+21 (3.19)

[5, 14]

As we will discuss later, y is usualy not a constant, instead it depends on the spectral position

(v(E)).
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3.25. Other techniques

Optical absorption measurements were carried out at room temperature, in air using an Agilent 8453
UV-Visible spectrometer and the polarisation of incidence light was selected using a polarising filter.

For the hybrid device, a GaN LEDs array (Epex = 3.3V, maximum light output = 1150mW) was
used to excite the film with non-polarised light and spectra were collected with a spectrometer (Andor
Shamrock 163i) coupled with a CCD camera (Andor Newton CCD, cooled at -50°C) and a polarising filter

was use to select between the polarisation directions.



3.3.  Optical properties

3.3.1. Optical absorption spectra
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In Fig. 3.5 the optical absorption spectra of stretch-oriented (a, c) films embedding PDV.Li or

PDV.LicB-CD are presented. The optical absorption spectra of un-stretched films are shown in Fig. 3.5 b

and d for direct comparison.
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Figure 3.5 Optical absorption spectrafor stretch-oriented films (a, ¢) and un-stretched films (b, d) embedding PDV.Li (a, b)
or PDV.LicB-CD (c, d).
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According to previous reports, the absorption spectrum of the polyrotaxane is blue-shifted with
respect to the unthreaded chain (AbSyax.eov.Licgco ~ 3.10 €V, AbSyaxrovii ~ 2.98 eV).*® From the
absorption spectra with incident light polarised paralel (A ||) or perpendicular (AL) to the stretching axis,
dichroic ratios are: D = Al/A* ~ 5 for PDV .LicpB-CD and D ~ 11 for PDV .Li respectively. The absorption
spectrum of PDV.LicB-CD measured with incident light polarised perpendicular to the stretching direction
(Fig. 3.5¢), is blue-shifted by 80 meV with respect to the one measured with incident light polarised parallel.
Such a high dichroic ratio for films doped with PDV.Li suggests that a higher degree of orientation is
obtained for the latter than for PDV.Licf-CD.

Thedichroic ratio for both un-stretched filmsis equal to 1, as expected due to the random orientation

of the conjugated moietiesinside the PVA matrix.*> 4

3.3.2. Photoluminescence spectra

In Fig. 3.6 all photoluminescence (PL) spectra for the 4 different configurations (see scheme in Fig.
3.4) are presented. The PL spectra present peaks at 2.54 eV and 2.68 €V for PDV.Licp-CD and at 2.51 eV
and 2.66 eV for PDV.Li.

The PL does not show any detectable variation in spectral shapes upon stretching and, the relative
ratio between the different vibronic peaks is maintained to better than 1%. However, a significant
enhancement of the 0-0 transition for the rotaxanes compared to the unthreaded analogues is observed.
Furthermore, a small red-shift for the PDV.Li PL with respect to PDV.LicB-CD is still present despite the
PV A matrix. This can be ascribed to residual interchain interactions in PDV .Li that are further removed in
the polyrotaxane due to 3-cyclodextrin encapsul ation.

As previoudly discussed, it is possible to calculate the different polarisation ratios (R) for al
different configurations. Ry is ~51 for PDV.Licp-CD and 111 for PDV.Li (Fig. 3.6 ac), which is
comparable with the best values reported in literature for tensile-drawing of poly(p-phenylene vinylene),”®
photoalignment of polyimide ™3 and nanoconfinement of poly(9,9-dioctylfluorene-co-benzothiadiazole) in
liquid crystalline phase!™® This clearly demonstrates the remarkable level of chain alignment obtainable

using a stretchabl e polymeric matrix such as PVA.
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Interestingly, these results also show that the presence of the CDs partially hinders the alignment
process, probably by reducing the aspect ratio (i.e. ratio of molecular length to width) by increasing the
thickness of the polymer strands and by changing the non-covalent interactions between the conjugated
polymer and the PV A matrix.

For the ratio Ry, Rjj+~ 22 for PDV.LicB-CD and R+ ~ 33 for PDV.Li. Less significant
migration is expected for the rotaxanes compared to the unthreaded analogues, but it is obvioudy to be
connected to the better alignment obtained for the unthreaded molecules compared to the rotaxanes, clearly
signalled by the difference in Rj ... and in dichroic ratios. Indeed, Ry |+ for unrotaxinated and rotaxinated
polymers show that the ratio reduces to 1.5, i.e. smaller than the ratios of Ry ~2.2, and in line with the
expectation of suppressed exciton migration in the threaded molecular wires.

For al these different ratios, the expected value for afilm with isotropic alignment or rapid exciton
migration is one, since no differences in orientation can be observed and the emission of photons typically
takes place from excited states not maintaining the initial polarization. Therefore, Ry, j+ = R+ = Ryt =
Ruu1y, which can be simplified in R. to indicatethe ratio of the luminescence from chromophores oriented
paralel to the exciting laser and the PL from chromophores oriented perpendicular to the laser polarisation.
Similarly, Rjjj4r = Ry =R ~ 1. The results (reported in Table 3.1) show that R. ~ 1.75 for PDV.Licp-
CD and R.~ 1.60 for PDV.Li, higher values than expected (1, owing to the discussed lack of any intentiona
orientation which can be connected to the slow depolarization of the PL). The dightly higher value for the
polyrotaxane film is not surprising, due to the additional encapsulation provided by the cyclodextrins with
respect to the unthreaded chai ns.?" Both Ry, and the dichroic ratio D_(Fig.5b, d), have avalue of 1 however,

as expected for random chromophores orientation.™ 24 1]
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Figure 3.6 PL spectrafor stretch-oriented films (a, ¢) and un-stretched films (b, d) embedding PDV.Li (a, b) or PDV.Licf-
CD (c, d). All spectra have been corrected for the overall system response and they were collected using a 3.3 eV laser diode
as excitation sour ce.

Interestingly, the results show that the presence of the CDs partialy hinders the alignment process.
This can be explained by considering that the PV A strands act as the “mediator” of the tensile alignment, and
therefore by relating results to the more or less intimate interaction of rotaxanes or analogues with the PVA.
For example, the larger cross-section of the rotaxanes should lead to alower ratio of polymer to PVA strands
per unit volume, therefore weakening the effectiveness of PVA as an alignment agent in comparison to the
unthreaded materid. In addition, the presence of the CDs should partialy screen the interaction of PVA with
the polar groups, which is conceivably stronger than with the rest of the molecule (rotaxanes or analogues),
owing to the polar character of PVA. Furthermore, CDs might also offer preferential interaction

points/groups, compared to the polar chains, so that the during the tensile drawing, the straightening of the
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PVA strands results in a shuttling of the CDs along the molecular shaft instead of a straightening of the

rotaxanes cores.

Ryt Ry Ry Raje Roys Rovu D
PDV.LicB-CD
Stretch-oriented 51 4.40 22 5 0.40 0.08 5
Non-stretch-oriented 1 1.70 1.75 1 1.75 1.75 1
PDV.Li
Stretch-oriented 111 4.40 33 7.40 0.30 0.03 11
Non-stretch-oriented 1 1.60 1.60 1 1.60 1.70 1

Table 3.1 Polarisation and dichroic ratios for films embedding PDV.Li or PDV.Licf-CD.

3.3.3. Spectral anisotropy and depolarization

To investigate further the effect of stretching the PL anisotropy y(E) = (R-1)/(R+2) was studied, (Fig.

3.7a, where R(E) is the polarization ratio calculated at energy E), which represents the ratio of the polarised

component to the total emitted light, and the time-resolved PL anisotropy (Fig. 3.7b) measurements, y(t) at

the PL peak value (~ 2.6 eV) for the configuration || || /|- are reported.
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Figure 3.7 (a) PL depolarisation dynamics measured for stretch-oriented and un-stretched films at 2.66 eV for PDV.Li and
2.68 eV for PDV.LicB-CD. (b) Spectral dependence of the PL anisotr opy obtained by the steady-state spectrain Fig. 3.6 for
both stretch-oriented and un-stretched films. The coding isthe samein both (a) and (b).



62

Un-stretched films show y(t = 0) ~0.36 and y(t = 0) ~0.39 for PDV.Li and PDV.LicS-CD
respectively. The estimated error on the measurement is 5%, hence both values are near to the maximum
theoretical value of y(t = 0) = 0.4 for randomly oriented chromophores. This value correspondsto a rotation
of the transition moment 3 = 0° hence, the absorption and emission moments of the conjugated chains are
collinear.® Such level of emission anisotropy is expected for randomly oriented non-interacting
chromosphores,'*” as for the polymers dispersed in the PVA matrix investigated here.

Values of y(t = 0) ~ 0.4 have been observed before for PDV.Li blends with polyethylene oxide
(PEO).?" 8 ~(t) decreases after about 3 ns and stabilizes at a value of ~ 0.17 and ~ 0.22 for PDV.Li and
PDV.LicB-CD respectively, in good agreement with the y(E) values at the PL peak for both films (~ 0.18
and ~ 0.23 for PDV.Li and PDV.LicS-CD).

The y(E) curves (Fig. 3.7b) show a small increase of the anisotropy between 2 and 2.7 eV and a
sharp change at 2.7 €V probably induced by the high self-absorption in this spectral range. A higher value of
anisotropy is reported for PDV.LicB-CD aong the whole spectral range, suggesting that rotaxination

contributes to the suppression of residual interchain interactions.
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Figure 3.8 PL depolarisation dynamicsfor un-stretched PVA films (dashed line) and neat films (solid line) of (&) PDV.Licg-
CD and (b) PDV.Li.

For stretched films, it was found instead y(t) ~ 0.87 (Fig.7b) and y(t) ~ 0.93 for PDV.LicS-CD and
PDV.Li respectively. For both systems, y(t)is constant with time over more than 6 ns, which is
approximately one order of magnitude longer than the intrachain exciton lifetime (t ~ 870 ps). Thisindicates

negligible depolarisation over this time regime. Thus, the data again imply that a remarkable degree of
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orientation is obtained in both cases, but orientation is slightly better with PDV.Li than with PDV.LicS-CD,
possibly for the reason discussed earlier.

The spectrally-resolved anisotropy, y(E) slowly increases from a value of 0.80 (0.90) at 2 eV to the
highest value of 0.88 (0.94) at 2.5 eV for PDV.LicS-CD (PDV.Li) due to small changes in the PL peaks
spectral position between the two configurations.

By comparing the depolarisation dynamics of un-stretched PVA films with those of neat PDV .Li
and PDV .Lic-CD (Fig. 3.8), a magjor increase in the depolarisation time after the introduction of PVA can
be observed. In particular this effect is more pronounced for unthreaded PDV.Li (y(t = 0) ~0.12 for the
pristine PDV.Li film, Fig. 3.8b) where interchain interactions are only suppressed by adding PVA, on the
contrary this effect is less intense for PDV.LicB-CD (y(t = 0) ~ 0.30 for the pristine PDV.LicS-CD film,

Fig. 3.88) where interchain interactions are aready reduced by the 3-cyclodextrin encapsul ation.

3.3.4. Photoluminescence quantum yield and dynamics

The data presented so far indicates that the conjugated polymers are oriented along the stretching
direction and PV A strongly suppressesinterchain interactions resulting in longer PL depolarisation times and
a PL blue-shift. Both these considerations suggest that PV A may form supramolecular complexes with both
PDV.Li and PDV.LicB-CD similarly to what has been observed for polyethylene oxide (PEO).*"* While
these experiments have been carried out on Li-rotaxanes and anal ogues, significant changes in the alignment
behaviour upon substitution of Li with larger ions are not expected: the only effect likely to occur is a dlight
reduction of intermolecular interactions brought by larger cations, as discussed in ref.””. To investigate this
futher, steady-state and time-resolved PL measurements on diluted water solutions of both polymers, in the
presence and in the absence of PV A were performed.

For aqueous solutions without PVA, ®p = 0.17 for PDV.Li and ®p = 0.35 for PDV.LicB-CD at the
concentration of 10 mg/ml.™ Importantly, the addition of 9x10°mg/ml of PVA significantly increases the
quantum yield of both polymers: ®p =0.73 for PDV.Li and ®p =0.65 for PDV.LicS-CD. This high
guantum yield is maintained in the films: ®p = 0.70 for PDV.Li and ®p = 0.60 for PDV.LicB-CD. For

unthreaded PDV .Li, the increase of PL quantum yield is accompanied by a drastic change in the PL decay



dynamics (Fig. 3.9). The PL decay kinetics of PDV.Li in the absence of PVA can be fitted with an

expression:
1) = Ite™"Tm + 12e~"T, (3.20)

With ; = 860 ps (intrachain exciton) and t,= 2.6 ns (long-lived interchain species).®® The addition
of PVA strongly suppresses the long-lived component, thus leading to a PL-dynamic:

1(t) = I,er, (3.21)
In this case, a single exponential decay with t =870 ps (intrachain exciton), typica of isolated
chromosphores in diluted solutions is observed.™™ *

As expected, only small changes in the PL-dynamics are observed for PDV.Licf-CD, since
intermolecular interactions are strongly inhibited by the cyclodextrins, especialy for polyrotaxanes with high
threading ratio (t = 880 ps).*®

Interestingly, ®p_ for the polyrotaxane increases by a factor of 1.8 upon addition of PVA to the

solution.

Normalized PL Intensity

Figure 3.9 PL time decays for water solutions (10 mg/ml, squares) of (a) PDV.LicB-CD and (b) PDV.Li in the presence and
in the absence of PVA (9x10° mg/ml, reversed triangles) and for PVA films (circles). The best fits are reported as solid curves
apart from the PDV.Li water solution (dashed curve).

This effect is ascribed to a combination of further reduction of intermolecular aggregation and to the
potential sequestering of Li cations (by the PVA matrix) away from the conjugated cores, thus reducing the

el ectrostatic quenching, as observed in the case of PEO.!
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1 (ps) 72 (PS) ©rL (%)
PDV.Licp-CD
Water solution (10°mg/ml) 880 £ 40 / 35+3
Water solution + PVA (9*10° mg/ml) 880 + 40 / 65+ 6
Film 880 + 40 / 60+ 6
PDV.Li
Water solution (10°mg/ml) 860 * 40 2600 + 130 17+2
Water solution + PVA (9*10° mg/ml) 870 + 40 / 737
Film 870 + 40 / 707

Table 3.2 Lifetime values (t1 and 12) used in the fit-curves and the ®@p, value for solutions and films.

It is also very interesting to look at the evolution of the average energy, as a function of time, as
reported in Fig. 3.10. This clearly shows that the exciton diffusion process is slowed down by addition of
PVA to both conjugated moieties, and implies that the emission of photons is mainly from intrachain
exciton, in line with previous literature showing that intrachain exciton diffusion is far slower than interchain

one.*Y
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Figure 3.10 Aver age ener gy of the emitted photonsfor PVA and spin-coated films for both conjugated moieties. Data has
been calculated from Time-Resolved Emission Spectra (TRES).
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3.3.5. Excitation with non-polarised light (hybrid device)
To study the possibility of using these films in actual devices as polarising filters, a hybrid device

based on non-polarised inorganic LEDs array as excitation source for our oriented films was fabricated (Fig.

Black mask
and aligned film

3.11).

UV-LEDs
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Figure 3.11 PL spectra of stretch-oriented PVA films containing (a) PDV.LicB-CD and (b) PDV.Li excited by non-polarised
light from an GaN LEDs array (Epex = 3.3eV, maximum light output = 1150mW). The r espective calculated spectral
anisotropy isreported asagreen curve. Inset: Pictures of the stretch-oriented films excited by the LEDs array in thetwo
different orientations (parallel and perpendicular to the stretching direction).

Rj~=21 for PDV.LicB-CD and Rj..=27 for PDV.Li. The spectral anisotropy undergoes a sharp

decrease from its highest values of 0.88 (0.90) at 2.6 eV to alower 0.68 (0.72) for PDV.LicS-CD (PDV.Li).

3.4. Conclusions

I have shown a new type of highly oriented film prepared using a stretchable polymeric matrix
(PVA) embedding conjugated polymers. The remarkable polarisation ratio obtained (Rjj.= 111 for
PDV .Li) indicate that a high degree of orientation is achieved.

The effect of intermolecular interaction on the emission anisotropy has been investigated using
supramol ecularly encapsulated polymers. Suppressed interchain interactions in polyrotaxanes combined with
the PVA matrix result in slower depolarisation of the emitted light which contributes to the overall PL
anisotropy. PVA interacts with the conjugated moieties by sequestering Li* cations, thus reducing the
electrostatic quenching and increasing the PL quantum yield.

A hybrid organic/inorganic device has been fabricated to show that oriented PVA films have

significant applicative potential as polarising filters with average polarisation yields of about 80%.
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4. Radiative-rate modificationsin photonic crystals self-assembled with

conjugated polyrotaxanes

4.1. Introduction

Photonic crystals (PhC) are materials possessing a regular modulation of the dielectric constant (e;)
in one, two or three dimensions (Fig. 4.1).!Y The study of PhC started in 1987 with two independent
publications from Y ablonovitch!? and John!® on the inhibition of spontaneous emission and light localisation

respectively.

periodic in periodic in periodic in
one direction two directions three directions

Figure 4.1 Schematic of one-dimensional (Ieft), two-dimensional (centre) and three-dimensional (right) photonic crystals
(Photonic crystals: molding the flow of the light, J.D. Joannopul os, Princeton University Press)

Typicaly, PhC are composite materials made of two different mediums (one is usualy air or
vacuum), of particular interest are PhC with a g, periodicity on the scale of visible light or near-infrared due
to their technologica applications. The behaviour of photons inside a PhC is analogue to charge carriers
inside a periodic potentia in fact; the e, modulation creates a photonic band structure as the electric potential
inside a crystalline material, causing forbidden and allowed bands (energies, Fig. 4.2). The optical properties
of PhCs can be described using a set of wave equations deriving directly from the Maxwell’ s equations, an

accurate description and analysis can be found in ref. [,
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Figure 4.2 Dispersion relations for free electronsand inside a periodic potential (top) and for photonsin vacuum and inside a
periodic dielectric (bottom) (Photonic crystals: molding the flow of the light, J.D. Joannopulos, Princeton University Press)

The formation of forbidden (photonic band gap) and allowed bands in PhCs is caused by interference of
diffraction phenomena due to the modulation of .. A simple model to describe it is by considering the PhC
as a one-dimensional planar structure.”® In this way we can apply the Bragg's law for incidence light (Fig.

4.3).

Figure 4.3 Scheme of the diffraction process of two incident beamsin a one-dimensional crystal
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If we consider the interference between the diffracted beam 1 and 2, their difference in phase (optical
path) can be calculated from the sum of the two segments AO+A’ O'=Dcos6. When the difference in optical
path is equa to a multiple of the wavelength, the condition of constructive interference is fulfil:

mA = 2D cos 6, 4.1

With A the wavelength and 6 the angle of the incidence light, D is the spacing between planes.

Figure 4.4 Scheme of the diffraction model of one-dimensional photonic crystal

This equation is valid until A < D and if the incidence light is specularly reflected. Since a PhCs
possess a periodicity similar or smaller than the wavelength of the incidence light (A ~ D), we have to
consider the refractive index (n) of the PhC, applying the Snell’slaw (Fig. 4.4):

n; sin@; = n; sin 6, (4.2)

Where 6 and 6, are the incidence and refraction angles respectively, and n; and n, are the refractive
index of the two mediums. As discussed before, PhCs possess a periodica ¢, (hence n, sincen = +/e,u,.). To
evaluate the refractive index of the PhC we can define an effective refractive index (ng) using this

equation:!®”

Eeff—Eo — f81_50 + (1 _ f) €2—&o (43)

Eeff+eg £1+¢ £y+8p’
Where s« is the effective dielectric constant, &, is the dielectric constant of vacuum (8.8* 102 F*m™)
and f isthe volume fraction of medium 1 (f = 0.74 for aface-centred-cubic structure).

From Eq. 5.2 and 5.3, if n; = 1 (air), we obtain:
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sin@ = nes sin Gy, (4.9
From Fig. 4.3 we can calcul ate the optical path once more:

We can calculate both BO' and EO from geometrical considerations from Fig. 4.4, obtaining:

D __ __ Dner

BO' = = , (4.6)
cos 6 /néff—sinz 2
in2
EO = BOsin6 = (BO'sin ) sin 0 = —2509 (47)

/néff—sinz ]

Substitution of eg. 4.6 and 4.7 in eq. 4.5, we obtain the Bragg-Snell law:

D2 g
ml=2 Terf ___Dsinf = 2D /ngff —sin? 0, (4.8)
\/ngff—sinze \/ngff—sinze

The energy of the photonic band gap (PBG) can be obtained from the diffraction wavelength

calculated from the Bragg-Snell law. Furthermore, the position of the PBG depends on the angle of incidence
light. Aswe will seein the following chapters this simple model describes quite well the synthetic opals here

studied.

4.1.1. Optical propertiesof synthetic opals

Among PhCs, self-assembled structures have been studied in details due to their low fabrication cost
and ease of preparation, with artificial opals'> *® ¥ being especialy popular. Synthetic opals are in fact a
versatile system that can be infiltrated by vapour phases!'® or solutions!® and therefore enable the
investigation of a variety of photonic effects and especially the fine-tuning of optical properties,™ including
the modification of the emission spectra and radiative rates™ *¥ optica switching™ and Fano
resonances.!” Different active materials such as metal nanoparticles,™ semiconductor nanocrystals™ or
conjugated molecules,!” can be effectively incorporated into the opals viainfiltration.

Synthetic opals are face-centred-cubic (FCC, Fig. 4.5 inset) structure of nanospheres, materials used
for opa assembly range from polymers (mainly polystyrene or poly(methyl methacrylate)) to oxides,

chalcogenides and metals. Many different deposition methods have been developed during these years, al of
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them starting from a suspension of nanospheres in water or other solvents. For an overview on materials and
deposition techniques used to obtain synthetic opals see the review from C. Lopez et al. in ref. [,

The dielectric contrast in artificia opals is given by air (¢, = 1) and the material used for the
nanospheres (in our case polystyrene ¢, = 2.4-2.7).[7 Polystyrene opals are usualy classified as “low-
didlectric contrast” PhC possessing a complex photonic band structure but a photonic band gap only along
the crystallographic direction (111) (perpendicular to the growth direction, Fig. 4.5), i.e. a pseudo-photonic

band gap (p-PBG).

wif(2nc)

[y N—
i hmmmm—————

K

Figure 4.5 Photonic band structure of a synthetic polystyrene opal. The PBG ispresent along the LT direction Inset: FCC
lattice structure. (Calculated using the MIT photonic bands software,
http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands)

By tuning the material and the size of the nanospheres, it is possible to change the width of the p-

PBG and its spectra position respectively (Fig. 4.4).
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Figure 4.6 Normal incidence r eflectance spectra (left) for synthetic opalswith different nanospher es size and transmittance
spectra at different incidence angle of light (right)
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All synthetic opals investigated here were prepared using polystyrene nanospheres. Nevertheless,
different diameters were studied to find the suitable nanospheres size. By tuning the size of the nanospheres,

it is possible to modify the parameter D in eg. 4.8 (interplanar spacing). In fact, D depends on the diameter of

the nanospheres through this simple relation: D = a./2/3 where a is the nanospheres diameter. Furthermore,
Fig. 4.6 shows a transmittance spectra at different incidence angle of light for a polystyrene opal, as
discussed previoudly the spectral position of the p-PBG depends on the angle of incidence light (6, eqg. 5.8)

following the Bragg-Snell law Lattice direction LU in Fig. 4.5).

4.1.2. Photonic density of states

Controlling the density of states (DOS) of embedded emitters in a PhC is one of the main goalsin
order to use PhCs in actual applications. In fact, the radiative rate of an emitter depends on the density of
states (Fermi’s golden rule) and by tuning it, is possible to control the emission properties of an emitter
inside a PhC. In particular, reducing down the DOS would lead to low-threshold lasing action since the
undesi rable spontaneous emission can be suppressed and population inversion can be obtained easily.

Spontaneous emission spectra in the surroundings of a p-PBG not only show dips connected to
forbidden energies, but usually show enhancements too,” ** ' due to angular redistribution of the emitted
photons. Recently Barth et al.™@ have shown that the angular and spectral redistribution of emitted photons
from an embedded organic emitter can be explained by considering a redistribution of the DOS along
specific directions and positions inside a polystyrene synthetic opal. In particular, by defining the fractiona
local density of states (FLDOS), i.e. aloca density of the states calculated along specific directions, they
were able to demonstrate that the photoluminescence (PL) enhancement at the p-PBG edge and the PL
suppression inside the p-PBG observed in the steady-state spectra were due to the FLDOS of the synthetic

opal (Fig. 4.6).
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Figure 4.7 Mean value of the FLDOS (solid line) averaged over the whole sphere surface. The dashed lineindicates the
corresponding behaviour of an effective homogeneous medium. The LDOS (dash-dotted line) is also shown for comparison.
(Taken from M. Barth, A. Gruber, F. Chicos, Physical Review B 2005, 72, 10)

At thisis point is quite clear that the PL enhancement/suppression effects induced by the PhC DOS
can be observed on the steady-state PL spectra. A more accurate way to study the effect of the DOS on
emitters would be study their PL-dynamics. In fact, as discussed before, the radiative rate (Kr) depends on

the DOS (Fermi’ s golden rule):
Kp(@) = 2 p(r, ), (49)

Furthermore, the cross-section for stimulated emission (osg(1)) is directly dependant to the radiative

rate of the optical transition (eg. 4.10):

*f(DKg
8mnZc

osg(A) = , (4.10)

Where f().) isthe normalized PL spectral distribution, n isthe refractive index, cis the speed of light.
Therefore, by increasing the radiative rate we directly increase csg(A) i.e. the probability of population
inversion.*”

Petrov et a."® in 1998 claimed a modification of the decay rate of an organic emitter inside a
SiO,/polymer opal. Their results became quickly a matter of controversy™™ % and ill now, many
publications report either an increase in the PL-lifetime > *> 2 2 due to a decrease in the DOS at the PBG,
no modifications® and a shortening effectof the PL-lifetime®®” due to the DOS.

Considering all the different results in this field, we decided to study the effect of p-PBG of a
synthetic polystyrene opal on the emission properties of conjugated polyrotaxanes. Processability of emissive

materials is obviously crucial to their incorporation into PhCs and, interestingly, water-soluble conjugated
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polymers with high PL efficiency provide an intriguing opportunity for use in combination with synthetic
opals, athough only afew attempts have been reported so far.[=%)

With the p-PBG overlapping the PL of the incorporated polyrotaxanes, a suppression of the PL
correspondent to the p-PBG and an enhancement in correspondence of its high-energy edge was observed.
Furthermore, time-resolved measurements revealed a wavel ength-dependent modification of the emission
lifetime which is shortened at the high-energy edge, but longer inside the stop-band. Both effects are
assigned to the modification of the density of photonic states upon tuning the opal stop-band over the PL

spectrum of the polyrotaxane.

PhCs preparation was carried out at the “Dept. of Chemistry and Industrial Chemistry, University of
Genoa’ in collaboration with Mr. Luca Berti and Prof. Davide Comoretto. The conjugated polymers were
synthesised at the “Chemistry Research Laboratory, Department of Chemistry, University of Oxford” by Dr.
Shane O. McDonnel and Prof. Harry L. Anderson. This study was carried out within the Marie Curie RTN-
THREADMILL (MRTN-CT-2006-036040), ITN-SUPERIOR (PTN-CT-2009-238177), the EC FP7 ONE-P
large-scale project N. 212311. Work in Genoa is partially supported by the PHOENICS project (CARIPLO
FOUNDATION). A manuscript regarding this topic is currently in preparation: “F. Di Stasio, L. Berti, S. O.

McDonnel, H. L. Anderson, D. Comoretto, F. Caciali, in preparation”
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4.2. Experimental methods

4.2.1. Synthetic opals preparation

Artificial opals are grown by spontaneous assembly of nanospheres into stable and well-defined
structures on glass substrates (Fig. 4.8).°% For the deposition, commercially available polystyrene
monodisperse nanospheres water suspension (Duke Scientific, 10% in volume, diameter a = 200, 222 and
260 nm; standard deviation < 5%; refractive index, nps= 1.59), diluted with de-ionized water as necessary to
obtain the desired crystal thickness upon complete evaporation of the water were used (d ~ 5 um).'* 7 Even
though different sphere diameters have been used, the main results discussed here concern spheres with a =
200 nm since these ensure an optimal spectral overlap of the polyrotaxane PL spectrum and the opal stop-

band.
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Nanospheres layer
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Figure 4.8 Schematic of the vertical deposition technique used to preparethe synthetic polystyrene opals used in this study.

As luminescent semiconductor -CD threaded PDV was used, a polyelectrolytic derivative of poly-
para-phenylene where sulfonated sidegroups balanced by Li* ions afford solubility in polar solvents
(PDV.LicB-CD, threading ratio = 2, molecular structure in Fig. 4.10). The incorporation of the
polyrotaxane takes place during the vertical deposition of the PhC and to make sure that the presence of the

polyrotaxane does not hinder or negatively affects the growth of the PhC, a range of concentration for the
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polyrotaxane water solutions was investigated. A PDV .Lic-CD concentration of 8x10° mg/ml yielded
homogeneously infiltrated opals without giving rise to the deposition of a polymer layer on its surface
(which could affected the intrinsic PhC spectral properties). Furthermore, partial infiltration of voids
preserves a reasonable dielectric contrast within the structure, as inferred from lack of spectral shifts and

narrowing (broadening) of the stop-band.

4.2.2. Referencesample preparation

As a reference sample to study PL modifications induced by the PhC, the very same opal was used
but thermally annealed at 75 °C for 5 minutes. Thermal annealing at 75 °C (Fig. 4.9) is enough to destroy
any photonic property of the structure”® (as proven by the PL spectrum in Fig. 4.11) without changing the
PL properties of the conjugated polyrotaxane, due to the higher thermal stability of this class of

supramol ecular systems.

Figure 4.9 SEM micrographs of a polystyrene opal made with 260 nm diameter nanospheres before (a, b) and after (c, d) the
thermal annealing at 75 °C for 5 minutesin air.

A modification of the PL properties upon annealing at 75 °C is instead observed for the un-threaded
analogue PDV .Li. To be able to compare the different properties, both measurements were carried out in the
same area of the sample before and after the thermal process and the PL spectra were normalized at A = 550

nm, far away from the photonic stop-band (Fig. 4.11).™
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4.2.3. Optical measurements

Steady-state PL spectra at different incidence angle of the exciting beam were carried out using a
pulsed laser diode (Ao = 371 nm, pulse width ~ 40 ps), a spectrometer (Andor Shamrock 163i) coupled with
a CCD camera (Andor Newton CCD, cooled at -50°C) and arotating stage (M-060.DG, Physik Instrumente,
resolution ~ 0.0001°). Time-resolved PL measurements were carried out using a time-correlated single
photon counting unit (Edinburgh instruments, F900, time response ~150 ps) and the previous pulsed laser
diode as the excitation source. All transmittance (T) and normal incidence reflectance (R) spectra were

collected with a setup described in ref. & 7.
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4.3. Optical properties

4.3.1. Reflectance and transmittance spectra

Fig. 4.10 shows R and T spectra of a typical synthetic opal made with polystyrene beads with
diameter a = 200 nm. As expected, the peak of reflectance at 455 nm (Ez = 2.74 eV) corresponds to a
minimum in the transmittance spectrum. Importantly, no significant changes in the optical properties of the
stop-band of the PhC were observed, upon incorporation of the rotaxanes, namely the spectral position of the
stop-band and its full width at half-maximum (4AEg = 0.16 V), are unchanged compared to a bare opal ./ ™
This proves that the incorporation process does not completely fill the interstices between the spheres and

then does not significantly change the dielectric contrast of the PhC as well as the lattice periodicity.™™* 34
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Figure4.10 Top: Chemical structure of PDV.LicB-CD, threading ratio = 2, with an average number of repeat unitsn = 10.
Bottom: Reflectance (R, solid line) and transmittance (T, dashed line) spectra of a polystyrene opal film infiltrated with
PDV.LicB-CD (spherediameter a =200 nm, refractive index, nps= 1.59). The full-width-half-maximum of the PBG is not
affected by the incor poration process.
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4.3.2. Photoluminescence spectra

In Fig. 4.11, PL spectra at different incidence angle of excitation light for the PhCs incorporating
PDV.LicB-CD and the reference sample are shown. First of all, a 50 nm blue-shift of the PL peak and a
small increase of the PL quantum yield (®p ) to 38 £ 3% (for reference samples) compared to a neat spin-
coated film of PDV.LicfB-CD is observed.®> * Such a blue-shift and ®p, might be explained by the
electrostatic interactions of the Li cations with the negatively charged surface of the polystyrene nanospheres
thus changing the polymer structure and then the electronic structure of semiconducting chains close to the

surface.
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Figure 4.11 (a) PL spectra of an opal film infiltrated with PDV.LicB-CD before (solid line) and after (dashed line) the
thermal treatment at 75 °C at different incidence angle of the exciting beam,? (b) ratio between the two PL spectra before
and after the ther mal process. All spectra were collected in air and at room temper ature.

It must be remembered that the conjugated polymer is introduced in the PhC during the opal growth
process, which is mainly driven by capillary forces™ that would also act on the polyrotaxanes and are likely

to impose geometrical constraints. These forces might induce an additional interaction of Li cations with the
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negatively charged surface of the polystyrene nanospheres™ thus giving a modification of the polymer
supramolecular structure affecting the PL dynamics of the polyrotaxane compared to a neat-polymer film or
solution.® An additional support to this interpretation comes to the similar situation observed in solution of
poly(phenylene-ethynylene) polyelectrolytes neat and grafted to silica microspheres, for which a spectral
blue shift is observed in agreement with this data.*®

The PL spectrum of PDV.Licp-CD (Fig. 4.2 (a) solid line) is strongly modified by the PBG: in
particular, the PBG acts as afilter and partialy suppresses the light propagation between 448 nm and 482 nm
(at 0°). Not only does the filtering effect of the PhC modify the shape of the PL spectrum but, it aso induces
adecrease (increase) of 33% (measured with respect to our reference system) of the PL intensity in the PBG
spectral region (short-wavelength edge of the PBG). Both enhancement and suppression depend on the
incidence angle of the excitation light as the PBG suggesting that both effects are connected to a directional
redistribution of the photonic density of states.”*?

The enhancement/suppression effects driven by the PhC are even clearer if we calculate the ratio
between the two PL spectra (Fig. 4.11 (b)). Note that within the PBG the ratio is lower than 1, instead the

ratio is above 1 for the short-wavelength edge of the PBG.[": 13 15 %€

4.3.3. Timeresolved photoluminescence measurements

To gain further insight into the underlying photophysics of these photonic structures time-resolved
PL measurements at the relevant wavelengths were carried out, i.e. at 437 nm, where an enhancement of the
PL spectrum is observed, and at 460 nm within the photonic stop-band, where the emission is suppressed
(Fig 12). In previous studies, the PL decay dynamics of polyrotaxane films have been fitted with a double
exponential expression and assigned to the intramolecular singlet exciton and inter-molecular aggregate

states.™™ Surprisingly, for these photonic structure a triple exponential expression had to be used: I(t) =

t

Io + Le &

t
+ Le &) + Lze

t
T3

) (

) whose parameters are reported in Table 4.1. The longer decays, namely

1, and T3, are assigned to the ones previously reported for this type of polyrotaxane (Tecciion ~ 850 PS, Taggregate
saes ~ 2600 ps).*¥ This suggests that the (fast) additional decay mechanism could be related to a new
emissive specie arising from the interaction of the polyrotaxane with the nanospheres surfaces inside the

PhC. Such interaction is also likely to induce the observed blue-shift of the PL and the increase in ®g,. This
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hypothesis is further supported by the observation of a three-exponential decay in the annealed reference
sample too, thus indicating that such complicated de-excitation pathway is observed only in the presence of
polyrotaxane/colloid interaction. Furthermore, this interpretation is in agreement with the relative intensities
of al processes which are substantially the same for the PhC and the reference at both wavelengths.

Turning to the analysis of the PL-decays and radiative rates, the long decay in the ns domain is not
affected by the opal having amost the same value in the reference film (2650 ps at 437 nm and 2750 ps at

460 nm) aswell asin neat spin-coated films.

- ——PhC (@3
————— Reference

Normalized PL Intensity

Time (ns)

Figure 4.12 Temporal evolution of the PDV.LicB-CD PL measured at the short-wavelength edge (a, 437 nm) and inside (b,
460 nm) the PBG before (solid line) and after (dashed line) the thermal treatment at 75°C for 5 minutes. All measurements
werecarried out in air and at room temperature.

At the short-wavelength edge of the stop-band (437 nm) the decay for the infiltrated opal is shorter
than for the reference (~ 11%, estimated from the weighted mean of t; and t,) whereas within the stop-band
(460 nm) the reverse situation occurs (~ 13%). Expectedly, Both these effects are smaller than those
observed for PhC with higher dielectric contrast,!* but it is remarkable to observe such modifications at

such alow-dielectric contrast as that achieved with the polystyrene opals investigated here.* > ¢!



71, PS (11) T2, PS(I2) T3, PS (I3)
437 nm (high energy PBG edge)
PhC 300+15(0.33) 790+40(0.56) 2720+ 140 (0.11)
Reference 370+20(0.33) 860+40(0.57) 2650+ 130 (0.10)
460 nm (PBG)
PhC 430+20(0.32) 950+50(0.55) 2850+ 140 (0.13)
Reference 365+20(0.34) 860+40(0.53) 2750 + 140 (0.13)

Table 4.1 Lifetime values (11, 15, T3) used in the fit-curves the temporal evolution of the PL (the relative
contribute of each time constant is included in parentheses). We estimated an error of 5% on the measured

value

Indeed, a sizable effect on the radiative lifetime (Purcell effect)®™ can only be observed in photonic
crystals for which the photonic density of states is strongly modified in the whole k-space. In this case the
PBG is present only along the [111] (I'L) crystallographic direction and it is spectraly narrow when
compared to the width of the PL spectrum, thus reducing the observable effect.*¥ Furthermore, ®p of
PDV.LicB-CD inthe reference sampleis ~ 38 + 4%, meaning that the radiative rate (Kg) is smaller than the
non-radiative rate (Knr, Kr < Knr) and so, any modification caused by a redistribution of the photonic
density of the states will have a small effect on the PL lifetime.

Interestingly, the PL lifetime modification here observed is wavelength dependent with a precise
overlap with the PBG spectrum. According to this observation and previously reported experiments” *¥ this

effect can be assigned to the modification of the density of photonic states along the 'L direction, even

though alternative explanations cannot be ruled out.!®
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4.3.4. Radiativerateanalysis

As afirst order approximation, the modification of the PL lifetime can be considered as only induced
by the redistribution of the photonic density of states. If we consider ®p_ as the sum of contributions of the 3
emissive species, we obtain:

Dp. = 11Dp 1 + 1,Pp o + 13Dp 3, (4.12)

Where |, is the relative contribution to the total PL intensity (as obtained from the PL-decays) of all
emissive species. As previously discussed, 1, and 13 are similar to previously measured values; we can
assume that 1, corresponds to a ®p of ~ 35% being its PL-lifetime is similar to the one measured in
PDV.Licp-CD diluted water solutions (where the emission is mainly due to intrachain exciton).®" Instead,
we can assume t3 corresponds to a ®p. of ~ 3% since its PL-lifetime is similar to the one measured for
PDV.Li films (where the emission is mainly due to aggregate states).® From these two considerations, we
can calculate a ®p_ for the “blue-emitting speci€”’ (t;) of ~52 + 5 %.

From ®p_ and T we can calculate K and Kyr using this simple equation:

CDPL = f (412)

Since we do not know @ for PDV.LicS-CD after the photons redistribution takes place in the PhC,
we can only calculate Kg and Ky for the reference sample. Nevertheless, the variation of the photonic
density of states only affects Ky leaving Kyg unchanged (Fermi’s golden rule, Kz (w) = 2%p(r, ), where p

is the photonic density of states). Knowing Kygr from the reference sample we can calculate Kr fromt =

1
KR+KNR.




86

Blue-emitting Intrachain Aggregate states
specie (t1) exciton (1) e?‘tg)

437 nm (high energy PBG edge)

Kreno S* (x10%) 19.8+2 51+05 0.10+ 0.01
Kr(reterencg S~ (x10°%) 135+ 2 41+04 0.10+0.01
460 nm (PBG)

Kreng S* (x10%) 9.5+09 30+03 0.10+ 0.01

K r(reterency S - (x10°%) 13.6+2 41+04 0.10+0.01
KnrSt (x10%) 13.7+2 75+0.7 35+0.3

Table 4.2 Radiative (Kg) and non-radiative (Kygr) rates for PDV.LicB-CD incorporated inside the PhC and in
the reference sample. All rates were calculated using the model proposed in the text. We include an error of
10% on the calculated value.

From this model we are able to calculate an increase of Kr of 46 and 24% at the high-energy PBG
edge (437 nm), and a decrease of 31 and 27% inside the PBG (460 nm) for t; and t, respectively. 15 seems
completely unaffected by the redistribution of the photonic density of states; a possible explanation of thisis
once again the large Kyr that is not modified by the presence of the PhC leaving the modification of the Kg

too small to be estimated or measured (Table 4.2).

1§ ——— PhC (a)
—— — Reference

Normalized Intensity

hp =460 nm

0 5 10 15 20 25 30
Time (ns)

Figure 4.1013 Radiative decay for PDV.LicB-CD incorporated into the PhC (solid line) and in the reference sample (dashed
line) at 437 nm (a, high energy PBG edge) and at 460 nm (b, inside the PBG).
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By plotting the radiative decay I(t) = Iy + lie Krit + e Kr2t + [Le~Krst (Fig. 4.13), the
modification in dynamics between PDV.LicS-CD incorporated into the PhC and in the reference sample is

even clearer, showing a sizeable effect of the PhC on the radiative lifetime of PDV.Licf-CD.

44. Conclusions

In conclusion, an al-plastic water solution processable photonic crystal functionalized with a novel
class of supramolecular conjugated polymer grown in a single step process was investigated. The
photoluminescent PhC exhibits an enhancement and suppression (both 33%) of the steady-state PL intensity
of the embedded polyrotaxane. Furthermore, a wavelength dependent modification of the PL lifetime is
observed correspondent to the enhancement/suppression spectral regions. Using a simple model to analyse
the various rates an increase in the radiative of 46% and 24% at the high-energy PBG edge (437 nm), and a
decrease of 31 and 27% inside the PBG (460 nm) for t; and t, respectively is observed. All effects can be
connected to a modification of the photonic density of states occurring at the photonic band gap and at its
short-wavelength edge which modify the radiative rate of the incorporated conjugated polymer even though

alternative explanations cannot be ruled out.
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5. Organic light-emitting diodes with self-assembled monolayers

functionalized anodes

5.1. I ntroduction

Achieving high efficiency organic light-emitting diodes (OLED) is a crucial step to guarantee the
exploitation of this class of devices in modern technology. Two main roads have been followed so far, the
synthesis of conjugated polymers with high photoluminescence efficiency and the engineering of device
structures.™ 3 Modification of electrodes using self-assembled monolayers (SAMS) is a promising technique
for organic emitting diodes (LEDs) and thin-film transistors (TFTs). In fact, SAMs can be used to tune the
work function (WF) of electrodes,*” changing charge-injection barriers at the metal/organic film interface.

The most common materials used as anode is indium tin oxide (ITO), mainly because of its
distinctive property of being conductive and transparent to visible light. However, the WF of as-deposited
ITO (4.7 eV) till remains lower than the HOMO level of conjugated polymers (usually between 5.7 and 6.3
€V) hindering the injection of holes into the active layer. Multiple transport/injection interlayers can be used
to provide an energy stepping profile for holes to be injected into the emissive polymer.!” On the other hand,
adirect change of the WF of the anode would reduce the cost of multiple polymer layers deposition and the
risk of polymer intermixing. As an example, recently Helander et a.!® have demonstrated that, by directly
functionalising the ITO anode with Cl, the ITO WF increases up to 6.1 €V, thus enhancing the efficiency of
the OLED as a consequence of the lower hole injection barrier at the anode.

SAMs are highly ordered supramolecular arrays of molecules chemisorbed on metal substrates'®
and the design of their molecular structure is crucial to confer specific functions to the resulting surface.™
In general, the presence of an interfacial dipole associated to a SAM is responsible for changing the WF
(Fermi level, Ef) of metalic contacts™™. Among the vast family of SAMs, azobenzenes are known to
undergo a well-defined isomerisation from -trans to —cis conformation (Fig. 5.1) around the N=N bond, in
response of an external stimulus such as UV-light."**® The two conformations show different properties™”

'8 and when in a SAM they show different wettability,"™® conductanceé® and dipole moment.”” The UV-
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induced change in conformation (and properties) of the azobenzenes SAMs (AZO-SAMS) here investigated

has been studied in ref.!?,

. { . i
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Figure 5.1 Scheme of thetrans- cis- transition of the AZO-SAM. (Reproduced from ref. 10)

In this work, SAMs based on two different conjugated azobenzene derivatives and their influence
on the gold work function (WF,,) was studied. In particular, these SAMs ahow an increase in the external
guantum efficiency (EQE) of polyfluorene base light-emitting diodes (LEDs) connected with an increase in
the anode WF. Photoluminescence (PL) and electroluminescence (EL) measurements showed that AZO-
SAMs did not modify the emission properties of the active layer. Instead, AZO-SAMs enhanced the EQE of
LEDs from 0.018% to 0.18% and decreased the turn-on voltage from 7.9 V to 6.2 V by reducing the
injection barrier at the anode thus providing a better balance between holes and electrons in the active layer.

This phenomenon was studied experimentally using el ectroabsorption spectroscopy.

AZO-SAMs preparation was carried out by Dr. Nuria Crivillers and Prof. Paolo Samori at “1SI-
CNRS, University of Strasbourg”. This work was supported by the EC Marie-Curie IEF-OPTSUFET (PIEF-
GA-2009-235967), ITN-SUPERIOR (PITN-GA-2009-238177) and RTN-THREADMILL (MRTN-CT-
2006-036040), the EC FP7 ONE-P large-scale project no. 212311, the NanoSci-E+ project SENSORS and
the International Center for Frontier Research in Chemistry (FRC, Strasbourg). The results in experimental
methods, optical and electronic properties and conclusions are published in: “N. Crivillers, A. Liscio, F. Di
Stasio, C. Van Dyck, S. Osella, D. Cornil, S. Mian, G. M. Lazzerini, O. Fenwick, E. Orgiu, F. Reinders, S.
Braun, M. Fahlman, M. Mayor, J. Cornil, V. Palermo, F. Caciali, P. Samori, Physical Chemistry Chemical
Physics 2011, 13, 14302,”. Other two publications regarding this topic are currently in preparation: “G. M.

Lazzerini, S. Mian, F. Di Stasio, N. Crivillers, P. Samori, F. Cacidli, in preparation” and “N. Crivillers, A.
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Liscio, G.M. Lazzerini, C. Van Dyck S. Osdlla, D. Cornil, S. Mian, F. Di Stasio, O. Fenwick E. Orgiu, F.

Reinders, S. Braun, M. Fahiman, M. Mayor, J. Cornil, V. Palermo, F. Cacidli, P. Samori, in preparation”

5.2 Experimental Methods

5.2.1. Self-assembled monolayer s preparation

Azobenzene based self-assembled monolayers (AZO-SAMs, Fig. 5.2) were prepared by immersion
of the Au substrates in a 0.1 mM solution of the azobenzene derivative in chloroform for 48h. Afterward
samples were rinsed and finaly dried with nitrogen gas. As a substrate, an Au film of 5 nm thickness
deposited onto indium-tin-oxide (ITO) treated with oxygen plasma (15 min at 10.2 W)#?% was used
obtaining a homogeneous Au grains size™ * # Thermal deposition of the Au adhesion layer was

performed at 450 °C, deposition rate 0.01 nm*s™ and pressure 1* 10° mbar.
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Figure 5.2 (a) Scanning tunnelling micr oscope images of the cis- and trans- configurations of the AZO-SAM. (b) Optimized
geometries of the unit cell for the cis- (left) and trans- (right) configurations, arrows show the opening dir ection of the cis-
form to comparewith the STM image; (c) optimized geometry of the cis- configuration in a gas phase (left) and of the two

independent moleculesin the unit cell on the Au surface (right). (Reproduced from ref. 10 and ref. 16)
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5.2.2. Devices preparation
Devices (Fig. 5.3) were prepared using the SAM/AU/ITO-coated glass substrates previously

described.

—{ . . N AZO-SAM 1

F8BT

Au
ITO

AZO-SAM x —

Figure 5.3 Chemical structures of the two self-assembled monolayers studied and poly(9,9’-dioctylfluorene-alt-
benzothiadiazole) (F8BT) used as active layer in light-emitting diodes. Bottom: structure of the light-emitting diodes studied.

The steps following oxygen plasma treatment and Au functionalization were then carried out inside
a N, dglovebox (M-Braun) and consisted in spincoating (1.8 krpm) a 120 nm thick
poly(9,9’-dioctylfluorene-alt-benzothiadiazole) (F8BT, American Dye Source, Mw = 73000, 2% w/w in
toluene, Chemical structure in Fig. 5.3) emissive layer on top of the AZO-SAM x/AuU/ITO anode and the
thermal evaporation of a Ca (30 nm) cathode with a 150 nm Al protective layer (for LEDs used in the
electroabsorption study only Al was used). In addition to the functionalized Au, two types of reference
samples were aso prepared: ITO/F8BT/Ca-Al (ITO samples, F8BT spin-coated directly on oxygen-plasma-
treated ITO) and ITO/AU/F8BT/Ca-Al (Au samples, with no AZO-SAMs on the Au anode). AZO-SAMs
were exposed to air prior the spin-coating of the active layer. The set-ups used for EL and PL characterization
of devices and films is reported in ref.[?" 2,
Electrica characterisation was carried out measuring the device current and light output as a

function of the applied voltage. The current was measured by a Keithley 2400 source meter, which aso

supplied the voltage. The luminous output was measured with a cdibrated silicon photodiode. The
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€l ectroluminescence spectrum was collected with an Andor Newton EMCCD camera coupled with an Andor

SHAMROCK 163 spectrograph.

5.2.3. Electroabsor ption measurements

Electroabsorption spectroscopy (Fig. 5.4) is a technique that studies the optical absorption of a
sample under the influence of a modulated electric field. The optical absorption change is due to the Stark
effect affecting excitonsin the conjugated polymer (named after J. Stark, who discovered it in 1903). 233

In genera, the intensity of transmitted light (1) depends on the absorption coefficient o, and can be
written as.*#34

I =1y(1—R)?e %4, (5.1

Where g is the intensity of incidence light, R is the reflection coefficient and d is the thickness of

the sample. The application of an electric field (E) induces a change in R and o (the modification of R is

usually neglected for high absorption):*% 4

o _ _ -ad 92
3F dlye 35 (5.2)

If wedivide eg. 5.2 for theinitial intensity (E=0) we obtain:

% = —da, (5.3)

As written before, the change in the optical absorption is due to the Stark effect, i.e. splitting of
energy levels. In particular the Stark effect can de described with two different components. one linear
(linear Stark effect) and a second one quadratic to the applied electric field (quadratic Stark effect).

The linear Stark effect is induced by permanent dipoles in the eectronic states, this effect can be
described by:

AeW = —Am % E, (5.4)

Where Am is the dipole moment variation between two states. Conjugated polymers do not possess
a permanent dielectric dipole. However, disorder and defects in the structure allows the formation of

permanent dipoles, i.e. alinear Stark effect.3*
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The quadratic Stark effect is caused by the interaction between the electric field and the field
induced dipole. In general, it can be expressed in terms of difference in the polarizability of the ground and

the excited state (Ap):1**
Ae® = —~ApE?, (5.5)
Finally, if we combine the two effects the complete shift (Ag) can be written as:
Ae = —m * E -~ ApE?, (5.6)

The linear effect induces usualy bigger shifts (177 peV) than the quadratic ones (33 peV, as
reported by Harrison et al.).® Interestingly, for the linear component the optical absorption follows the line
shape of the second derivative, while for the quadratic one it follows the first derivative.!*

Changes in the absorption coefficient (Aa = a(E) -a(0)) can be connected to Ae via a Taylor

expansion of o(E+AE) until the second power of AE:[234 %37

L 12 pp2
Aa = (C2AE) + 2 (S AE?), (5.7)
If weinsert eq. 6.7 in eq. 6.3 we obtain:!*2
Al o, 0a %a
Y= —dr? (b2 +c23), (5.8)

From eq. 6.8 we can see as the electroabsorption signal (Al/l) depends on E% This can be used to
probe the internal field of organic light-emitting diodes. Experimentally, the electroabsorption signal is small
and a modulation technique based on lock-in amplifiers is necessary to measure it thus using an applied

voltage V containing a DC component (V) and an AC one (V accos(wt)) obtaining:!*?

% < y (VAZC H%(Zwt) + 2V, .V, cos(wt) + Voz), (5.9)
Where y is the optical susceptibility(AI/I ~xE?). Using lock-in amplifiers is possible to select
either the first harmonic (wt) or the second one (2wt):

%(a)) o< x(Vu.Vo cos(wt)), (5.10)

Al wt)
= w) o« y (vz 2D, (5.11)
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Considering that Vo=Vpc + Vg, (Ve is the built-in potential of the device), if
A1/1 =0 = Vpc = Vg, thisalows us to directly evaluate the built-in potential (i.e. the difference in work
functions of electrodes) using the electroabsorption technique.*

A scheme of the electroabsorption set-up used in this study is shown in Fig. 5.4. The set-up was

build and optimized during the last 10 years by three PhD student: Thomas Brown,™ Vladimir Bodrozic!*

and Gustaf Winroth.?

€)
Xe lamp |— monochromator
Voltmeter
Lock-in amplifier
Iy ||Al®) ref.
1 Photodiodell4Z LED
(b) V=V +V _sin(ot
=Vot\a Csm(m)
| | Active Layer
= ITO (anode)

Figure 5.4 (a) Scheme of the electroabsor ption set-up used in this study. (b) Scheme of an LED and how it isdriven.

The electroabsorption set-up consists of three different parts: a monochromatic light source (ozone-
free Xenon lamp coupled with a monochromator, working range 300-900 nm), a lock-in amplifier (Stanford
Research Systems SRS830, driving the device with aDC and AC voltage, Fig. 5.4b) and a detection system,
i.e. a photodiode connected to the same lock-in amplifier, and a voltmeter to so as to detect the AC and DC
components corresponding to the change in transmission (Al) and the intensity of the light beam (lg)
respectively.l*”

As described before, an second lock-in amplifier can be used to detect the second harmonic of the

output signa (1(2m)). The entire user interface was developed by Thomas Brown and Vladimir Bodrozic

using LabView software.
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5.3. Optical and electronic properties

5.3.1 Electroabsor ption measurements (built-in voltage)

As previously described, the linear dependence of the electroabsorption (EA) signal on the applied
voltage can be used to determine the built-in voltage of light-emitting diodes (LEDs).***¥ All measurements
were carried out a room temperature at the EA signa peak, by irradiating at A = 505 nm, while applying a
sinusoidal voltage Vac= 0.5V at frequency f= 2 kHz, and with the optical probe entering the device through
the semitransparent electrode (AW/ITO). The wavelength used to probe the device (A = 505 nm) will not
induce a trans- to cis- isomerisation since this phenomenon takes place only when the sample is irradiated
with UV light."? The zero crossing voltages were obtained from an average of 10 measurements over 2
different pixels.

In Fig. 5.5 the EA signals as afunction of the applied voltage is shown for LEDs embedding AZO-
SAM 1 and AZO-SAM 2. In the ideal condition of negligible charge building up in the active layer (F8BT)
the EA signal is null (V1) when the applied voltage is equal and opposite to the built-in voltage (Vg) of the
LED (i.e. generated by the equalisation of the Fermi energies through the LED and so equal to the WF

difference between cathode and anode).® *!

20||||
[ ITO/Au(5nm)/AZOx/F8BT(100nm)/Al
16 } 505 nm,V, =05V, RT |
1l V. iazon = 1-39V £0.03V ]
DIE ipgzon = 2:20V £ 0.08V
=2, 8il i
® % %, AZO-SAM2 |
[ AZO-SAM 1 \\M’M
sk ! s . .
2 A 0 1 2 3
Vnc (V)

Figure 5.5 EA signal asfunction of the applied voltage for AZO-SAM 1 (filled circles) and AZO-SAM 2 (open circles). The
Vi Values arereported asinset
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Vo Values of 1.39 V and 2.20 V for AZO-SAM 1 and AZO-SAM 2 respectively were measured.
In order to estimate the WF of the self-assemble monolayer, it is necessary to know the WF of the anode (Al)
and the lowest unoccupied molecular orbital (LUMO) energy of the active layer (F8BT, only in case of
cathodic pinning of the Fermi energy to the FBBT LUMO). The F8BT LUMO energy lies between 3.2 and
3.5 eV, instead the Al WF decreases below 3.5 eV only upon exposure to oxygen during evaporation. >+
Our Al electrodes give an average WF of 3.7-3.8 eV.[* Considering this cathodic pinning can be ruled out

and it is possible to calculate the anode WF using eq. (5.12):1*Y

Vn _ (WFgnode—WF cathode) (512)

ull — e y

Where e is the elementary charge. Using this equation,values of 5.2 and 5.9 eV for AZO-SAM 1
and AZO-SAM 2 respectively were calculated. Both AZO-SAMs induce an increase of the WF of the anode

from~ 5.1 eV for Au.[*
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5.3.2. Current density-Voltage-L uminance curves

In Fig. 5.6 the current density (J, Fig. 5.6a) and luminance (L, Fig. 5.6b) vs applied bias (V) for the
ITO, Au, AZO-SAM 1 and AZO-SAM 2 LEDs are reported. For a given voltage (15.5 V), Jdrastically drops
from 95 mA/cm? (ITO samples) to 7 mA/cm? for Au samples and then increases again to 62 mA/cm? and 110
mA/cm?® for AZO-SAM 1 and AZO-SAM 2 samples respectively. Similarly, the luminance L at J = 120
mA/cm? decreases from 54 cd/m? for the ITO sample to 13 cd/m? for AZO-SAM 1 and then increases one
order of magnitude up to 650 cd/m? for AZO-SAM 2. For the Au sample, only amaximum L = 5 cd/m? at 20
V with J = 34 mA/cn? is reached. The external quantum efficiencies (EQES) are 0.018 % for the ITO sample,
0.006 % for the Au sample, 0.004 % for AZO-SAM 1 and 0.18 % for AZO-SAM 2. Findly, the light turn-on
voltage, Vn, increases from 7.9 V for the ITO sample to 13.1 V for the Au sample and then reduces
progressively to 8.1V and 6.2V for AZO-SAM 1 and AZO-SAM 2 respectively.

Although the insertion of the 5 nm Au layer causes an increase of V,, from 7.9V to 13.1 V, as well
as adragtic reduction of the conductivity and EQE from 0.018 % to 0.006 %, the insertion of the AZO-SAM
2 compensates for this detrimental effect.

For AZO-SAM 1, the EQE slightly reduces to 0.004 %, however the conductivity increases and the
light turn-on voltage reduces from 13.1 V (Au sample) to 8.1 (AZO-SAM 1), which allows to reduce the
driving voltage of the device and subsequent device degradation. This can be attributed to the reduction of
conductivity and increase of V, upon insertion of the Au layer to a decrease of the WF, thus reducing the

number of holesinjected into the F8BT layer (HOMO = 5.9 eV).
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Figure 5.6 Current density-voltage (a) and (semi-logarithmic) luminance-voltage (b) plotsfor all OLEDSs. Color codeisthe
samein both panels.

Upon functionalization of the Au layer with AZO-SAM 1, the WF of the anode increases!’® of ~
0.1 eV to ~ 5.2 eV, thus providing a lower injection barrier than Au anodes. However, AZO-SAM 1 EQE
does not increase with the conductivity and it is possible that the number of holes injected is till too low
compared to the number of electrons injected in the active layer, thus keeping the recombination-zone near
the FBBT/AZO-SAM 1/Au interface. As a conseguence, the emission can suffer from electrostatic quenching
induced by the AWITO (image charge effect).

Instead, the EQE of the AZO-SAM 2 device is 30 times higher than the EQE of the Au one and
shows a tenfold increase with respect to the ITO one. Furthermore, a reduction of V, to 6.2V is observed
and it can be attributed to the increase in WF. As a consequence the e-h" balance in the F8BT layer

improves, thus leading to an increase of the EQE and reduction of Vg,
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5.3.3. Photoluminescence and electroluminescence spectra

In Fig. 5.7 (&, b) the spectral characteristics of emission, PL and EL, of al LEDs are shown. They
all show 2 main peaks at 2.15 eV and 2.24 eV, which correspond to the emission of F8BT,*® and any further
peak in either PL or EL spectra was observed. In addition, time resolved PL measurements (Fig. 5.8) revea a
mono-exponential decay with time constant T of 1.0 + 0.1 ns for ITO, 0.89 = 0.09 ns for Au, 0.90 = 0.09 ns
for AZO-SAM 1 and 0.95 + 0.1 nsfor AZO-SAM 2 which can be attributed to singlet decay in F8BT. ! The
use of AZO-SAMs does not induce changes in the PL-dynamics at the AZO-SAM/F8BT interface, and

radiative recombination only occursin the F8BT active layer.

Aui

. EL Intensity PL Intensity

— | P AZQ'SAM .25
8 2 22 24 26 28

Energy (eV)

Figure 5.7 Steady-state PL (a) and EL (b) spectra of all devicesinvestigated (from top to bottom, ITO, Au, AZO-SAM 1 and
AZO-SAM 2, curves have been offset for clarity). All measurementswere conducted at room temper ature, and the PL was
excited by a pulsed diode laser (E = 3.3 eV, pulse width ~ 40 ps).

The functionalization of the Au anode with the AZO-SAMs does not affect the spectral emission.
Furthermore, the PL-lifetime (t) of ITO samples is lower (t < 1 ns) that the one reported by Kim et al [
(2.4 ns) with a similar device structure. This might be explained by a higher non-radiative rate of the F8BT
used and a more efficient PL quenching at the interface between F8BT and ITO. Thiswould aso explain the
lower EQE for ITO samples compared to the one reported by Kim et al. As the ITO is coated with 5 nm Au, ©
reduces from 1.0 ns to 0.89 ns and it can be assigned to a further increase of the non-radiative component
caused by electrostatic quenching at the Au/F8BT interface. Interestingly, after the functionalization of Au

with AZO-SAMs, 1 increases to 0.90 ns and 0.95 ns due to AZO-SAMs acting as spacers between the Au and
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the F8BT, thus reducing the PL quenching. However, it is worth noting that t varies < 7 % between Au and
AZO-SAM 2 and so is possible that the small thickness of the AZO layer (~ 5 nm) only limits the PL

guenching, but does not completely prevent it.

PL Intensity

Time (ns)

Figure 5.8 Temporal evolution of the PL collected at 2.24 €V for all OLEDs (from top to bottom, ITO, Au, AZO-SAM 1 and
AZO-SAM 2, curves have been offset for clarity). A single exponential decay of thetype: I(t) = Io+lexp(-t/t) isused to fit the
decay of all the samples (valuesof T arereported in figure). All measur ements were conducted at room temper ature.

5.4. Conclusions

In conclusion, despite the EQE of LEDs with Au anodes reduce in comparison to LEDs with
oxygen-plasma-treated ITO anodes, the functionalization of Au with azobenzene-based SAMs tune the WF
of Au and eventually increase the EQE up to 10 times. Steady-state PL and EL and time-resolved PL
measurements of these devices prove that AZO-SAMs do not modify the emission spectra (EL or PL) of

F8BT and the emission only occurs from decay of singletsin the emissive layer.
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6. L ow-temperatur e treatment of semiconducting interlayersin organic

light-emitting diodes

6.1. I ntroduction

A major issue in organic electronics is the difference in mobility and injection efficiency of holes
and electrons. In fact, most organic light-emitting diodes (OLEDs)™ have one type of carriers (usually holes)
in excess, hindering the formation of excitons and thus emission of photons. Additional layers can be
introduced in OLEDs between the conjugated polymer active-layer and electrodes to obtain a baanced
charge transport. These interlayers can either reduce the majority carriers by introducing an energy barrier at
the heterojunction, or facilitate the injection of minority carriers by coupling the work function of the
electrode and the polaronic levels of the active-layer. An early example on the use of multilayer structureis
the work from N.C. Greenham et a.1?: an OLED prepared using PPV and a cyano-substituted polymer (CN-

PPV) showing high externa quantum efficiency (Fig. 6.1).

we M-~ LA
2

4 eV
zae n\ho/

ITO \-\O‘AO - : AXIP

PPV Polymer 3

Figure 6.1 Scheme of energy levelsalignment for | TO/PPV/CN-PPV/cathode OL EDs. (Reproduced from ref. 2)

The CN-PPV facilitate the injection of electrons providing a “graded barrier” at the cathode while

it confines hole at the interface PPV/CN-PPV.
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During the last 20 years many different types of interlayer have been developed. Nevertheless,
some OLEDs components still require relatively high-temperature (above 150 °C) annealing procedures that
reduce the choice of materials, and potentially the device performance. Achieving low-temperature
processing of OLEDs is an important milestone on the path to all-plastic, printable, and mass-produced
organic displays.

For example, poly(ethylene dioxythiophene):poly(styrene sulphonic acid), PEDOT:PSS*? is a
well known hole injection layer® ™ (or anode itself)!® that grants OLEDs with lower turn-on voltages, higher
efficiency and stability,®*" but it involves an annealing step usually done at temperatures above 150 °C, that
is preferably avoided for certain plastic or substrates.!*?

Poly(9,9' -dioctylfluorene-alt-N-(4-butyl phenyl)-diphenylamine), TFB,*™ as well as poly(p-
phenylene vinylene), PPV, and/or other interlayers have also been used on top of PEDOT:PSS to increase
the efficiency.'” They also require annealing at temperatures in excess of 150-160 °C to prevent re-
solubilization when the emissive layer is spin-coated on top.™¥ However, a degree of mixing between the
polymers may become acceptable as a trade-off to achieve simultaneous |low-temperature (low-T)
processability and high efficiency. In fact, it is possible to forego the high-T annealing of TFB in indium-tin-
oxide(ITO)/TFB/poly(9,9’-dioctylfluorene-alt-benzothiadiazole)(F8BT)/Ca-Al OLEDs, and still achieve a
significant increase of the electroluminescence (EL) efficiency. Using continuous wave (CW) and time-
resolved photoluminescence (PL), the intermixing (presence of exciplexes)!*® is monitored, showing how it

influencesthe overall EL or PL can be tailored by controlling the TFB layer thickness.

A low-temperature treatment of exciton/electron blocking interlayers in light-emitting diodes based
on poly(9,9’-dioctylfluorene-alt-benzothiadiazole) (F8BT) is here presented. Poly(9,9’-dioctylfluorene-alt-N-
(4-butyl phenyl)-diphenylamine (TFB) interlayers processed at temperatures up to 50 °C, i.e. far below the
glass transition temperature of TFB (~156 °C) were used. Continuous wave and time-resolved
photoluminescence studies confirmed the formation of both excitons and exciplex species, as a result of the
F8BT/TFB intermixing. Interestingly, an increase the electroluminescence external quantum efficiency from

0.05% to 0.5% and 1% for progressively thicker TFB films can still be observed.

Cyclic voltammetry measurements were carried out in collaboration with Dr. Daren Caruana, Dept.
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of Chemistry, University College London. This work was supported by the EC Marie Curie RTN-
THREADMILL (MRTN-CT-2006-036040), ITN-SUPERIOR (PTN-CT-2009-238177), the EC FP7 ONE-P
large-scale project N. 212311 and the NanoSci-E+ project SENSORS. A manuscript concerning the results

here shown is currently under revision (G. M. Lazzerini, F. Di Stasio, C. Fléchon, D. Caruana, F. Caciali)

6.2. Experimental methods

6.2.1. Interlayer and devices preparation

Devices were fabricated and tested using TFB (Fig. 6.2, American Dye Source, ADS, molecular
weight, M,, = 68000 g/mol) as electron/exciton/exciplex blocking layer (EBL) and F8BT (ADS, M,, = 46000
g/mol) as the “active” layer. 5 different TFB “initia” (before the F8BT deposition) thicknesses were
investigated. The LEDs were prepared by spin-coating at 3000 rpm TFB solutions of different concentrations

on top of 1TO-coated glass substrates previously treated with oxygen plasma (15 min at 10.2 W).1*2%

TFB

. n

Figure 6.2 Chemical structure of Poly(9,9 -dioctylfluor ene-alt-N-(4-butylphenyl)-diphenylamine) (TFB, top) and poly(9,9'-
dioctylfluorene-alt-benzothiadiazole) (F8BT, bottom)

The initial thickness (t;) of the TFB films, was measured with a Dektak profilometer to bet; =29 +
3nm, 90 £ 6 nm, 395 = 5 nm, 1800 + 160 nm for TFB concentrations of 1%, 2%, 5%, 10% (w/w in toluene),
respectively. After the oxygen plasma all sample handling was conducted within a N, glove-box (M-Braun).
The samples, except the ones with t; = 0 nm, were then held at ~50 °C for 16 h to completely evaporate any

residual solvent prior to the spin coating of the F8BT (Fig. 6.2) layer from a 2% toluene solution.”® ! As
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this temperature is much lower than TFB glass transition temperature, T, =156 °C,!*> * and toluene is a
solvent for TFB, a degree of intermixing and a reduction of the pure TFB layer thickness upon spin-coating
of F8BT is expected. The precise determination of the thickness of the pure TFB layer in these conditionsis
not trivial, but a rough estimate by measuring the film thickness after spin-rinsing a TFB layer with toluene
was obtained: for t; = 1800 nm we measure 270 nm, and similarly 28 nm for t; = 395 nm, and < 8 nmfor t; =
90 nm or 29 nm. Ca (30 nm) and Al (150 nm) thermal evaporation completed the device preparation.

Electrical characterisation of all devices was carried out using the set-up shown in chapter. 6.2 %!

6.3. Optical and Electronic properties

6.3.1. Current density-Voltage-L uminance curves

In Fig. 6.3 the current density (J) and luminance (L) vs. voltage (V) curves of al devices are
shown. Current densities are similar for all samples, especialy for V > 5V (excluding the sample with t; =
1800 nm). Interestingly, the luminance increases progressively with t;: at J = 300 mA/cm?, L increases from
360 cd/m? for t; = 0 nm up to 4000 cd/m? for t; = 395 nm. On the contrary, for t; = 1800 nm, Jis reduced to
1.2 mA/cm?® and L = 2240 cd/m? is reached at 30 V with J = 88 mA/cm?® External quantum efficiencies
(EQEs, the number of photons emitted per electron injected into the device) show values of 0.05 %, 0.23 %,
0.36 %, 0.5 % and 1% for t; = 0, 29, 90, 395 and 1800 nm, respectively. In addition, the light turn-on
voltage, Vo, (defined as the voltage at which the luminance is 0.06 cd/m2 (with the noise level at 0.01 cd/m?
and extracted out of an average of the 8 pixels in each sample) decreases progressively from 4.4+ 0.1V to
2.38+ 0.15V for t; = 0 and 395 nm, respectively, and then increases again to 2.99 + 0.35 V for t; = 1800 nm.
The electric field during EL operation is > 5x105 V/cm, which should result in charge injection across the
heterojunction, and therefore emission from both exciplexes at the TFB/F8BT interface and excitons from

the polymers bulk.
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Figure 6.3 Current density-voltage (logJ-V) and luminance-voltage (logL-V) curvesfor ITO/TFB(ti)/F8BT (120 nm)/Ca-Al
OLEDsfor ti=0, 29, 90, 395 and 1800 nm (pixel area = 0.35 mm?). Luminance progressively incr eases upon insertion of the
TFB layer up ti=395 nm. A drastic reduction of J and L is measured for ti=1800 nm.

The progressive increase of L and the reduction of the light-emission threshold Vo, with t; is mainly
caused by the electron/exciton-blocking effect of TFB and only partially to the fragmentation of the energy
barrier (graded energy barrier) for holes at the anode. The electron/exciton blocking effect moves the
recombination zone from near the ITO to the TFB/F8BT interface, thus reducing the electrostatic quenching
a the ITO/F8BT interface (image charge effect). Furthermore, the hole-barrier fragmentation improves the
electron-hole balance, and consequently the luminance® as the HOMO of TFB (5.4 eV) acts as an
intermediate step to favour hole injection from plasma-treated ITO (work function of 5.2 eV)!* and F8BT

(HOMO = 6.0 eV, as measured by cyclic voltammetry, Fig. 6.4).

21eV

CalAl
3.3eV 29eVv

ITO F8BT

52eVs7ev

6 eV

Figure 6.4 Energy bands diagram of OL EDs components befor e contact is created. | TO and Cawork function valuest?® and
TFB and F8BT?" 2 polaronic levels (conduction band and valence band). The energy barrier at the TFB/F8BT for electrons
injected trough the Ca/Al cathodeincreasesthe charge carrier balancein the device.

All these effects result in an increase of EQES of one order of magnitude from 0.05 % for t; = 0 nm
to 0.5 % for t; = 395 nm. Interestingly, the EQE for t; = 1800 nm is even higher EQE (1%), although high
operating voltage is necessary (30 V for L=2240 cd/m2) due to arelatively thick TFB layer remaining (> 30

nm) after the deposition of F8BT, as aso confirmed by the PL measurements.
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6.3.2. Photoluminescence and eectr oluminescence spectra

Fig. 6.5 reports photoluminescence (PL, @) and el ectroluminescence (EL, measured at vV = 11V for
all the devices except for ti = 1800 nm, for which we applied a 20 V bias, b) spectra for al OLEDs here
studied.

In the PL spectra it is possible to observe three main peaks at 2.16, 2.28™ and 2.85 eV, with the
peak at 2.85 eV (TFB) not observed for t; = 0 nm, as expected. Higher intensities of the peak at 2.85 eV (only
just visible on a linear scale for t; = 1800 nm), as well as higher PL emission at energies below 2.28 eV

(second peak) can be observed for increasing t;.

t= 395 nm{ [

Normalised Emission Intensity

20 24 28 16 20 24 28
Energy (eV) Energy (eV)

Figure 6.5 (a) PL and (b) EL spectrafor OLEDswith different initial TFB layer thickness. PL spectra were collected at room
temperaturein air, using the TCSPC system described in chapter 4. Asexcitation source a pulsed laser diodewas
used (E = 3.3V, ~40 ps)

In agreement with A. C. Morteani et al.,'** *” the increase of the PL emission at energies below
2.28 eV can be connected to the presence of exciplexesin the TFB:F8BT blend (interface). Furthermore, the
TFB peak (2.85 eV) confirms the presence of relatively thick (> 10 nm) domains of pure TFB and the
dependence of the peak intensity with t; confirms that the thicker the initial deposited TFB layer, the larger
the amount of pure TFB left after the deposition of F8BT.

In the EL spectra (Fig. 6.5) there is no emission from TFB, thus confirming EL does not originate
from TFB. For the sample without TFB and the one with t; = 1800 nm, the main EL peaksare at 2.17 €V and
2.28 eV wheress for al other samples the two EL peaks occur at 2.10 eV and 2.33 eV. Furthermore, EL

spectra show increased emission at E < 2.1 eV for al OLEDs with TFB, and a narrowing for t; = 395 nm.
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The EL red-shift for t; = 0 nm and t; = 1800 nm (Fig. 6.3b) can be ascribed to interference effects induced by
the shift of the recombination region.!*> 3/ Some minor spectral variability of the EL peaks among different
pixels of the same device was observed as well, thus suggesting some non-uniformity of the TFB/F8BT
multilayer structure. However, the CIE colour coordinates have a mean and standard deviation value of x =
0.45 £ 0.02 and y = 0.53 £ 0.02,16 respectively, thus confirming that there is an acceptable variation of the

perceived colour. As a comparison, the green phosphorous of RGB displays have to lie within Ax = 0.02 and

Ay = 0.03.

6.3.3.  Timeresolved photoluminescence measurements

PL time-resolved measurements (Fig. 6.6, at the PL peak value of 2.28 eV) reved a single-
exponential dynamics with T =1.4 ns for t; = 0 nm, and a non-mono-exponentia decay for t; # 0, with a long
tail extending over several ns, which strongly suggests an interchain state as an exciplex. The non-mono-
exponential decay at relatively short times (<3 ns) might be indicative of a decay from a distribution of
states, but atriple exponential (1(t) = lpiexp(-t/t1) + lozexp(-t/12) + lozexp(-t/t3)) can be used to fit these decays
over the whole range with good accuracy (y* <1.1 with three exponentials and 1.3-1.7 when fitting with two

exponentials; x> =1.2 for t; =0).

T T T =

A—t;=0nm
é n ti=29 nm
[72]
E O ;=90 nm
£ 01f ~® t,=395nm 7
|
o O-tj=1800 nm
g
@
2
® 0.01}
£
o
=z
0.001 B LT
0 5 10 15 20
Time (ns)

Figure 6.6 Normalised PL time-resolved measurements collected at 2.28 €V, comparing the time decay of the sampleswith
different initial TFB thicknesses. A single exponential decay is used to fit the decay of thereference sample, whereasatriple
exponential isused for all others. The presence of exciplexesis confirmed by the longer decay time for the sampleswith TFB.
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For all the various samples 1,=1.4 ns was used (as for neat F§BT) and 1,;=0.6-0.8 ns and 13 = 8.9-
10.8 ns. In addition, the relative weight of the exponential associated to t3 progressively increases with t;
from 15% for t; = 0 nm to 43% for t; = 1800 nm. This provides strong evidence of TFB/F8BT intermixing, as
the t3 time constant for OLEDs with TFB is > 8.9 ns, i.e. not compatible with the accepted photophysics of
intrachain singlets.

Quantitative analysis of the dynamics for t;>0 is complicated by the fact that the decays are non-
mono-exponential. While previous literature identifies a short and a long-decay constant (readily assigned to
a singlet and an exciplex), a three-exponential function yields the most accurate fitsin our case. This could
result from three different decay pathways, but a similar decay profile for times up to 1-3 ns could also be
justified by a distribution of states (e.g. due to conformational disorder). In either case the extended
temporal range of the overal decay provides strong evidence of TFB:F8BT intermixing.

This PL lifetime is shorter than some of the previously reported for TFB/F8BT exciplexes (27
ns),*¥ but in agreement, with data from J. -S. Kim et a.*¥ Therefore, such a long-lived species is best
assigned to an exciplex but, the possibility that the non-mono-exponential decay in the first few nsis dueto
the aready mentioned distribution of states cannot be ruled out. The difference with A. C. Morteani et a. can
be ascribed to ITO-induced electrostatic quenching (image charge effect). Differences in other
polymer/blends properties (PL efficiency, purity, the degree of mixing) may also play arole. As expected,
also the weight of the exciplexes in the decay dynamics increases with t;, thus confirming an increasing

number of exciplexes formed.

TFB/FBBT
>
= Charge-separated
g F8BT state
w| exciton  TTTTTTTTT
Exciplex

Figure 6.7 Energy level schemefor excitonsin F8BT, charge-separated states and exciplexes at the TFB/F8BT interface.
(Reproduced and adapted from ref. 27)

The fast decay (t1 < 1 ns) can be explained as due to energy transfer to the exciplex state (Fig. 6.7)

and to the charge separation of the excitons at the interface.!*
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6.4. Conclusions

In conclusion, low-T processing of TFB can be used to increase the EQE of the LEDs. The best
trade-off among EQE, VVon and driving voltage, is offered by the devices with a TFB thickness of 395 nm,
prior to the F8BT deposition, which were found to provide the best performance in terms of EQE and V g
Exciplex formation through EL, PL and time-resolved measurements was also confirmed. An associated
change in the perceived colour is observed, which is within the same tolerance alowed to the green
phosphorous of RGB, and thus confirming that the effect of the intermixing of F8BT and TFB due to the

low-T treatment can be accepted for LED applications.
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1. Supramolecular architecturefor near-infrared emission

7.1. I ntroduction

Infrared light-emitting diodes (NIR-LEDS) are of particular interest in many different applications
like optical communications and remote controls. Many different materials for solution processable NIR-
L EDs have been investigated using semiconducting nanoparticles™? and conjugated molecules.*®

The energy-gap rule” @ predicts a decrease of the photoluminescence quantum yield for molecular
emitters as the energy-gap starts reducing. This is caused by an increase in the vibrational overlap of the
excited and ground states. This intrinsic limitation cause lower external quantum efficiency (EQE, ratio
between the number of injected charges and the number of emitted photons) in organic NIR-LEDs compared
to OLEDs operating in the visible range, inviting to innovative molecular approaches to reach higher EQEs
inthe NIR.?

Among conjugated systems, porphyrins are an interesting class of naturally occurring emitting
molecules consisting of a metal ion complexed by heterocyclic macrocycles. They possess an extended
conjugation length and, as a consequence they usually show intense absorption bands. Furthermore, they are
highly tunable through substitution of different metal ions into the centre of the ring, as well as by covalent
chemistry on the peripheral positions of the ring.”! An example of this class of molecular compounds
versatility is Platinum containing porphyrins showing electrophosphorescence in the NIR.1 %1%

To be able to obtain NIR absorption and emission, an extended n—conjugation is necessary .To
fulfil this requirement porphyrins oligomers with n—conjugation extending on the overall molecule have
been synthesized.™*®! Nevertheless, porphyrins oligomers have a strong tendency to create non-emissive
aggregates but, by using ligands it is possible to create a supramolecular structure able to prevent the
aggregation, hence the suppression of the photoluminescence. On the other hand, curved molecular ©-
systems such as the one investigated in this study represent an alternative approach to reducing aggregation

aswell.
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In this work, organic light-emitting diodes incorporating two hexamers of meso-butadiyne-linked
zinc porphyrin oligomers: alinear P6 and a cyclic one bound to a hexapyridyl template, c-P6T were prepared
and studied. Both hexamers possess red-shifted emission (A, = 873 and 920 nm, respectively) compared to
single porphyrin ring as a consequence of their extended m-conjugation. Photoluminescence and
electroluminescence of blends with poly(9,90-dioctylfluorene-alt-benzothiadiazole) show a high
photoluminescence quantum yield of 7.7% for the linear hexamer when using 4-benzyl pyridine to create
supramolecular structures in order to prevent aggregation and achieving near-infrared electroluminescence.
For dl porphyrin structures studied in this work, emission at room temperature is known to originate from

the singlet excited states.

All porphyrins used in this study were synthesized at the “Chemistry Research Laboratory,
Department of Chemistry, University of Oxford” by Johannes K. Sprafke, Dmitry V. Kondratuk and Prof.
Harry L. Anderson. This study was funded by the EC (Contracts MRTN-CT-2006-036040
(THREADMILL), PITN-GA-2009-238177 (SUPERIOR), and Grant Agreement No. 212311 FP7/2007-2013

(ONE-P)) and the EPSRC.

7.2. Optical and Electronic properties:

7.21. Samplespreparation

Samples for optical studies were spin-coated to a thickness of ~70 nm from a 2wt.% xylene
solution as a blend of poly(9,90-dioctylfluorene-alt-benzothiadiazole) (F8BT, 90 wt. %) with the porphyrin
hexamer (Fig. 7.1a, 10 wt. %). To prevent aggregation (i.e. photoluminescence quenching) of the linear
hexamer, 4-benzyl pyridine (BP) was added to the blend in a quantity of 18 BP molecules per hexamer (87
wt. % F8BT, 10 wt. % P6, 3 wt. % BP).

OLEDs were prepared spin-coating ~80 nm hole injection layer of Poly(3,4-
ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS, Sigma Aldrich 560596) from 2.8 wt. %
dispersion in water onto an oxygen plasmatreated I TO film on a glass substrate.[*”! Devices were then baked

at 200°C for 10 minutes in N, atmosphere. The active layer was spin-coated to a thickness of ~70 nm from a
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2 wt. % solution in xylene, using identical blend compositions as those for the optical experiments. A 45 nm

Ca electrode was evaporated on top of the active layer, then a 150 nm protective layer of Al.

7.2.2. Optical properties

The absorption spectra of blended films are plotted alongside their photoluminescence (PL) spectra
in Fig. 7.1b. The characteristic double-peaked F8BT absorption can be observed in the UV, and peaks
associated with the hexamers in the NIR region (800 - 900 nm). The PL spectrum of the cyclic hexamer (c-
P6T, ApLpe ~ 920 NnM) shows a slight red-shift compared to the linear hexamer (P6, Api.pe ~ 920 NM), a
broader absorption and emission profiles, and a larger Stokes shift."® * Blends with either P6 or c-P6T
spun-coated from xylene show relatively low PL quantum yields (np. <1 %) compared to the neat F8BT

films (48 + 5%).12 2!

F8BT

F8BT : c-PBT
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Figure 7.1 (a) Chemical structures of the por phyrin hexamers used and the complex of thelinear hexamer, P6, with 4-benzyl
pyridine, BP. (Ar = 3,5-bis(octyloxy)phenyl in P6 and 3,5-bis(tert-butyl)phenyl in ¢ P6T.) (b) Optical absor ption (solid lines)
and photoluminescence (dashed lines) spectra of pure F8BT and blended films. I nsets show the overlap of the absor ption and
emission of the hexamer component of the spectrum. (c) Excitation-emission spectrum for an F8BT : c-P6T blend for a
collection wavelength of 1090 nm, plotted alongside the absor ption intensity. (Reproduced from ref. 3)
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By adding 4-benzyl pyridine (BP) to the F8BT : P6 blend, BP is expected to co-ordinate metal ions
with the lone pair of eectrons on its nitrogen atom,!*? and so, decorate the P6 molecules and prevent
aggregation. This method is analogous to other supramolecular insulation methods used to prevent
aggregation and increase np,, Such as in the case of polyrotaxanes (Chapters 4 and 5). % A narrowing of
both absorption and PL spectra can be observed by adding BP to the P6:F8BT blend, suggesting a
suppression of aggregates, supported by a significant increase in mp. t0 11.8+1.2% (or 7.7 % if one
considers just the NIR component of the PL). The NIR np. was measured with direct excitation of F8BT
(Aexc ~ 412 nm), indicating an efficient energy transfer to the P6-BP complex. Furthermore, the value
(7.7 %) is in remarkable agreement with the np measured in toluene solution (8 +1 %) with 1% pyridine,!”
suggesting once again that PL concentration quenching is suppressed in the P6-BP complex. Addition of BP
to F8BT: c-P6T blends did not caused an enhancement of the mp, indicating that the molecule itself hinders
the formation of aggregates due to the steric hindrance arising from its curved n-surface. The solution np_ Of
c-PBT, was however much lower than P6 at 0.1+0.01 %. [*® The efficient PL quenching of F8BT (>98 % for
P6 and c-P6T; 91% for P6BP) suggests a strong energy or charge transfer to both types of porphyrin
hexamer.

To gain further insight, HOMO and LUMO levels from redox potentials were estimated (measured
electrochemically in THF containing Bu,NBF,).> * ¥ 24 For ¢-P6T: -5.00 eV and -3.46 eV, and for P6: -
5.12 eV and -3.34 eV for HOMO and LUMO respectively (Fig. 7.28). The measured LUMO level of P6is
very similar to literature values for the FSBT LUMO!* > % (i e. between 3.3 and 3.5 eV below vacuum)
suggesting that either energy transfer or exciton splitting may occur (the mismatch of the HOMOs being 0.8
+0.2eV). Note that 65 % of the PL in the F8BT:P6-BP blend is from the hexamer despite using direct
excitation of F8BT (Aee = 325 Nm). This suggests that energy transfer does dominate the PL quenching of
F8BT. However, athough the ratio of the emission from the hexamer to F8BT is greater for F8BT: P6-BP
than for F8BT:P6, the np. of P6 (<1%) is significantly lower than that of P6-BP (7.7+ 0.8 %), and a dightly
reduced PL quenching of F8BT in the blend with P6-BP (91 % quenching in P6BP compared to >98 % in
P6) is observed, indicating a small energy barrier for energy transfer processes induced by the BP

complexation.
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For the F8BT:c-P6T blends, the excitation-emission spectrum was used, monitoring emission from
c-P6T whilst scanning the excitation wavelength (7.1c). The ratio of emission to absorption in the F8BT
absorption band differs by no more than 20% from the ratio in the absorption band of c-P6T, suggesting that

the vast mgjority of excitons on F8BT transfer to c-P6T.1%

7.23. Light-emitting diodes

For OLEDs incorporating both hexamers, the eectroluminescence (EL) show a strong NIR
component and >99 % emission quenching of the F8BT emission. For c-P6T, ~94 % of the EL was in the
NIR region (Fig. 7.2) with Ap e ~ 960 nm and a~ 40 nm red-shift with respect to the PL. Interestingly, the
current turns on at lower voltagesin all hexamer blends devices than for analogue F8BT OLEDSs. This can be

due to the higher-lying HOM Os of hexamers allowing hole injection at low voltages (Table 7.1).
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Figure 7.2 (a) Energy levels of electrodes,?” F8BT!? 2% and the por phyrin hexamers, P6 and c-P6T. OL EDs wer e fabricated
with the structure | TO\PEDO: PSS(85 nm)\active layer (70 nm)\Ca(45 nm)\Al (150 nm). The device ar ea was 3.5 mm?. (b)
Electroluminescence spectrum of an F8BT:c-P6T OLED measured at 15.5 V. (c) Current density and radiance plotted
against driving voltage for atypical F8BT:c-P6T device. Theinset showsthe external quantum efficiency (EQE) as a function
of current density, wherethe EQE has been calculated for the full spectrum including 6 % of the emission that originates
from the F8BT. (Reproduced from ref. 3)

Thislower current turn-on in porphyrin hexamer devices also implies that at just 10 % of the cyclic
hexamer, we are aready above the percolation threshold. External quantum efficiencies (EQE) in the

F8BT:c-P6T devices were just 0.024 £ 0.001 %. One can relate this EL EQE to an internal quantum
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efficiency, IQE, by IQE = ¢~1 - EQE, where ¢ is the out-coupling efficiency and 0.5n72 < £ < 0.75n~2 for
isotropic dipoles® 2! or up to 1.2n72 for in plane dipoles®, where n is the refractive index of the active
layer (we measured n = 1.9 for neat F8BT films at 550 nm by spectroscopic ellipsometry on spin-cast films
of F8BT using aLOT Oridl on a VASE dllipsometer). Without knowing the position of the emission zone or
dipole orientation, IQE._pgr = 0.07 to 0.17 % was estimated. This range incorporates the solution np_, SO

we do not expect large improvements by optimizing the device architecture.

V(DB V(L) ™ Maximum Rinax e (%) PLinNIR (%)*" EL in
EQEg. (%) (MW/em) ¥ 3oc=412nm  Aee=325nm NIR® (%)
F8BT only 23+01 28+02  035+0.03 1.1+01 48+5
F8BT:c-P6T 15+03 64+03 0024+0.0019 0.024+0.001 <1 - 94.%
F8BT:c-P6TBP |[05+01 5403 0011+0.0019 0.0200.004 <1
P6 06+01 92+04 0009+0001 0.019+0.001 <1 2% 76 %
P6BP 09+03 33+03 010001 0.10+0.01 11.8+12 65 % 99 %

Table 7.1 Table of key optical parametersfor the blends, and perfor mance parameter s of devices. [a] Defined asthe voltage
at which the current density reaches 5 x 10-5 mA/cm2 [b] Defined asthe voltage at which light output reaches 5 x 10-5
mW/cm2 (=5 times the noise level) [¢] EQE has been adjusted to account for an estimated 25% that is missed through lack of
sensitivity of our detector in the region beyond 1100 nm. [d] Maximum radiance at current densities < 160 mA/cm2. [e]
Defined asthe % of emission at wavelengths longer than 750 nm. [f] Peak emission in PL wasat 920 nm for ¢c-P6T, 873 nm
for P6 and 882 nm for P6BP. [g] Peak EL emission wasat 960 nm for ¢c-P6T, 883 nm for P6 and 883 nm for P6BP.
(Reproduced from ref. 3)

The F8BT:P6 devices (Fig. 7.3) showed a similar behaviour: a~ 10 nm EL red-shift with respect to
the PL, and an even lower EQE of 0.009 £ 0.001 %. However, being above the percolation threshold for P6
in devices (and the PL measurements), aggregation effects are expected, even at these modest concentrations
of the hexamer in the blend (10 % by weight).

Addition of BP to the blend increased the efficiency by an order of magnitude to give the best
performing devices, measuring an externa quantum efficiency, EQEpggp = 0.10 £ 0.01%, corresponding to
an interna efficiency IQEpggp = 0.3 to 0.7% . This is somewhat lower than the np, even accounting for
spin dtatistics, suggesting that there may be some possibility for further optimization of the device
architecture by, for example, adjusting the components and ratio of the blend or by incorporating electron- or

hole-blocking layers.
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Figure 7.3 Current density and light emission plotted against driving voltage for typical F8BT blended devices with P6 and

P6-BP. b Electroluminescence spectrafor the F8BT:P6 and F8BT:PEBP devicesrecorded at 16 V and 14 V respectively. The

differencein spectral shape of the NIR component is ascribed to the insulating behavior of the BP around the P6 hexamer. ¢

External quantum efficiency (EQE) plotted as a function of current density for the same devicesasa. The EQE is calculated
for thefull range of wavelengths (including residual F8BT emission), though for P6BP, > 99% of the emission isfrom the

hexamer. Devices wer e fabricated with the structure I TO\PEDOT : PSS (85 nm)\active layer (70 nm)\Ca (45 nm)\Al (150 nm),
wher e the active layer was a blend of P6 or P6BP in F8BT (10% P6) spin-coated from a 2% solution in xylene. The device

areawas 3.5 mm>.

7.3. Conclusions

In summary, a conjugated porphyrin hexamers can be efficient an NIR-emitters, with longer
wavelength electroluminescence than existing examples of porphyrin dimers and trimers.*? The
photoluminescence quantum yield of the P6 linear hexamer complexed with BP to reduce aggregation, was
shown to be 7.7% (ApL-peac = 882 NM) when blended with F8BT in solid state. The nanoring complex c-P6T
shows significantly red-shifted emission (960 nm in EL) compared to the linear hexamer (883 nm in EL).
Although less efficient than the linear hexamer as an emitter, the c-P6T nanoring represents an innovative
approach to taking emission from organic molecules further into the NIR, and demonstrates the use of a
curved m-surface to reduce aggregation. NIR emitting OLEDSs incorporating both linear, P6, P6-BP, and
cyclic, c-P6T, porphyrin hexamers in an F8BT charge transport matrix were fabricated and tested. By
themselves, both hexamers showed low quantum yields in electroluminescence (EQE 0.024% and 0.009%
for c-P6T and P6 respectively), but addition of BP to decorate the linear hexamer and provide steric

hindrance for aggregation gave an order of magnitude increase in quantum efficiency to achieve 0.10% in
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electroluminescence (0.3 to 0.7% internal quantum efficiency) at 883 nm. It is remarkable that the presence
of 3% by weight BP can suppress the aggregation of P6 in athin film at high concentration (10% by weight).
This work shows that porphyrin oligomers are promising candidates as NIR emitters in organic LEDs, with

emission that can be color-tuned synthetically through control of the conjugation length.™
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8. Conclusions and outlook

Supramolecular architectures represent a powerful tool to both investigate fundamental properties of

conjugated polymers, and for optoel ectronic applications.

In this thesis | have shown how conjugated polyrotaxane have a potential for applications in two
different fields: polarized emission and optically pumped lasers.

In Chapter 3, oriented film prepared using a stretchable polymeric matrix embedding conjugated
polymers show a remarkable polarisation ratio indicating that a high degree of orientation can be achieved
even for rigid supramolecular structures like conjugated polyrotaxanes. Furthermore, the suppression of
interchain interactions in polyrotaxanes combined with the PVA matrix result in a slower depolarisation of
the emitted light, contributing to the overall polarised photoluminescence.

In Chapter 4, an al-plastic photonic crystal functionalized with conjugated polyrotaxanes shows an
enhancement (and suppression) of the photoluminescence intensity. The modification of the optical density
of states by the photonic crystal causes a wavelength dependent modification of the photoluminescence
lifetime correspondent to the enhancement/suppression spectral regions. The photoluminescence
enhancement can potentially lead to a decrease of the lasing threshold of the conjugated polyrotaxanes.

In both this studies, the use of conjugated polyrotaxanes opened the possibility of using water-
soluble materias (poly vinyl alcohal in the first case and polystyrene nanospheres in the second one) which
would have been otherwise impossible using other types of conjugated polymers, usually soluble in non-
polar organic solvents. Polyrotaxanes have a further advantage on other water-soluble conjugated polymers
since they possess a higher photoluminescence quantum yield, thanks to the cyclodextrin encapsulation

which is able to hinder the formation of aggregates and other photoluminescence quenching processes.

In the second part of this thesis | have shown how it is possible to implement self-assembled

monolayers into light-emitting diodes.

In Chapter 5, by including an azo-benzene based self-assembled monolayer in the anode, the external
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guantum efficiency of a polymeric light-emitting diode increases 10 times. Unfortunately, the thin layer of
Au necessary to the formation of the self-assembled monolayer causes a reduction of the external quantum
efficiency in comparison to light-emitting diodes with oxygen-plasma-treated ITO anodes. The increase in
external quantum efficiency is caused by an increase in the work function of the anode, thus decreasing the

injection barrier for holesinto the active layer of the device.

In Chapter 6, a novel low temperature processing of electron blocking layersis shown. By using a
lower temperature than previously reported, an overall increase in device performance is observed thanks to

a better bal ance between the number of holes and electronsin the active layer.

Finally, In Chapter 7 a supramolecular architecture between a porphyrin hexamers and benzyl
pyridine is shown for near-infrared applications. The inclusion of benzyl pyridine reduces aggregation thus
leading to an increase in the photoluminescence quantum yield of the linear hexamer. Although less efficient
than the linear hexamer as an emitter, the porhyrin nanoring represents an innovative approach to taking
emission from organic molecules further into the NIR, and demonstrates the use of a curved m-surface to
reduce aggregation.

Near-infrared emitting polymeric light emitting diodes incorporating both the linear and the cyclic
porphyrin hexamers showed low external quantum efficiencies but, addition of BP provide steric hindrance

for aggregation giving an order of magnitude increase.

Both projects on polyrotaxanes presented here can be further developed in two ways:

The oriented films used in the study in Chapter 3 have been prepared using a non-conductive
matrix. By switching to a conductive one it should be possible to prepare light emitting diodes using these
oriented films by simply evaporating two electrodes on the stretched films. This would be of particular
interest since it will alow a comparison between the polarization of the eectroluminescence and the

photol uminescence.
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The photonic crystals here studied represent an interesting and cheap way to modify the optical
density of states, thus modifying the photoluminescence properties of embedded polyrotaxanes.
Nevertheless, photonic structures possessing a complete photonic band gap (in all three dimensions) are
available, therefore opening the possibility to a further increase/enhancement of the phenomena here

observed. Furthermore, lasing threshold measurements have still to be carried out.

Self-assembled monolayers are useful tool to modify injection barriers at interfaces. In the study here
reported, the thin layer of Au represents the biggest limitation for devices, since it causes a reduction of the
external quantum efficiency. By using a self-assembled monolayer directly attached to the ITO electrode, a
further improvement of device performance can be expected.

Furthermore, the low thermal stability o f azo-benzene based self-assembled monolayers, prevents
any further thermal annealing of the polymeric light emitting diode which is typically necessary to remove

the solvent | eft after spin-coating.



