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ABSTRACT  

In a typical urban environment, a mixture of multipath-
free, multipath-contaminated and non-line-of-sight 
(NLOS) propagated GNSS signals are received. The 
errors caused by multipath-contaminated and NLOS 
reception are the dominant source of reduced consumer-
grade positioning accuracy in the urban environment. 
Many conventional receiver-based and antenna-based 
techniques have been developed to mitigate either 
multipath or NLOS reception with mixed success. 
Nevertheless, the positioning accuracy can be maximised 
based on the simple principle of selecting only those 
signals least contaminated by multipath and NLOS 
propagation to form the navigation solution. The advent 
of multi-constellation GNSS provides the opportunity to 
realise this technique that is potentially low-cost and 
effective for consumer-grade devices. It may also be 
implemented as an augmentation to other multipath 
mitigation techniques. 

The focus of this paper is signal selection by consistency 
checking, whereby measurements from different satellites 
are compared with each other to identify the NLOS and 
most multipath-contaminated signals. The principle of 
consistency checking is that multipath-contaminated and 
NLOS measurements produce a less consistent navigation 
solution than multipath-free measurements. RAIM-based 
fault detection operates on the same principle. 

Three consistency-checking schemes based on single-
epoch least-squares residuals are assessed: single sweep, 
recursive checking and a hybrid version of the first two.  
Two types of weighting schemes are also considered: 
satellite elevation-based and signal C/N0-based weighting. 
The paper also discussed the different observables that 
may be used by a consistency-checking algorithm for 
different applications and their effect on detection 
sensitivity. 

Test results for the proposed algorithms are presented 
using data from both static positioning and stand-alone 
dynamic positioning experiments. The static data was 
collected using a pair of survey-grade multi-constellation 
GNSS receivers using both GPS and GLONASS signals 
at open sky and urban canyon locations, while the 
dynamic data was collected using a consumer-grade 
GPS/GLONASS receiver on a car in a mixed urban 
environment. Significant improvements in position 
domain are demonstrated using the weighted recursive 
methods in the open environments. However in the urban 
environments, there are insufficient directly received 
signals for the conventional RAIM-based signal selection 
to be effective all the time. Both positioning 
improvements and risky outliers are demonstrated. More 
advanced techniques have been identified for 
investigation in future research. 

1. INTRODUCTION  

Conventional multipath mitigation methods [1, 2] are 
mostly based on the assumption that only a single GNSS 
constellation is used. However, multi-constellation GNSS 
provides access to many more signals. Accuracy can thus 
be maximised by selecting only those signals least 
contaminated by multipath and NLOS propagation to 
form the navigation solution and discarding the rest. With 
single-constellation GNSS, there is limited scope to do 
this without compromising the availability of a position 
solution with adequate geometry, particularly in 
challenging environments, such as city centres. 

For consumer-grade positioning applications in cities, 
single frequency receivers are mostly used and the 
positioning solutions are commonly produced from the 
code-based pseudorange measurements. Although the 
multipath effect affects both code- and carrier-phase 
observations, code-phase multipath is on a much larger 
scale and is usually the dominant error source for urban 
positioning situations. Diffracted and reflected signals can 
easily result in ten-meter-order positioning errors when 
only basic single-epoch positioning algorithms are 
applied. In extreme but not uncommon cases, where 
NLOS signals are tracked, hundreds of meters of 
positioning error can be present without further checking 
mechanisms. 

The advent of multi-constellation GNSS thus provides the 
opportunity for a new approach to multipath mitigation, 
applicable to most environments. Both single-epoch least-
squares-based and multiple-epoch Kalman filter-based 
positioning algorithms can benefit from the application of 
signal selection. A number of different techniques, 
including dual-polarization antennas [3], may be used for 
detecting multipath-contaminated and/or NLOS signals. 
However, no single method is effective at identifying all 
of these signals.   

The focus of this paper is signal selection by consistency 
checking, whereby measurements from different satellites 
are compared with each other to identify the NLOS and 
multipath-contaminated signals. Consistency checking 
does not require additional equipment or a database and 
does not make the assumption of a single specular 
reflector. It can operate using only one measurement per 
satellite, though sensitivity is improved by using multiple 
measurements. It may thus be used either as a low-cost 
alternative to the other methods or as an augmentation to 
improve overall robustness. 

The principle of consistency checking is that multipath-
contaminated and NLOS measurements produce a less 
consistent navigation solution than multipath-free 
measurements. In other words, if position solutions are 
computed using combinations of signals from different 
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satellites, those obtained using only the multipath-free 
signals should be in greater agreement than those that 
include multipath-contaminated and NLOS 
measurements. Thus these measurements may be 
identified through various consistency-checking based 
approaches, such as residual outlier detection from an all-
satellite least-squares solution. By eliminating these 
contaminated measurements, a more accurate position 
solution can be produced. The same principle is used for 
fault detection in receiver autonomous integrity 
monitoring (RAIM) [4, 5]. The difference is that, in 
RAIM, the object is to detect and exclude faulty data and 
to calculate protection levels, whereas here, the aim is to 
identify the set of measurements least affected by 
multipath and NLOS propagation.  

The performance of the consistency-checking algorithm 
depends on the type of ranging observable used. Here, a 
ranging observable is defined as any combination of 
GNSS pseudo-range, pseudo-range rate and/or carrier 
phase measurement from single or multiple epochs, single 
or multiple frequencies, single or multiple satellites and 
single or multiple receivers. An optimal observable would 
combine signals such that nuisance elements, such as 
atmospheric effects and satellite clock errors, are 
excluded, while sensitivity to multipath and NLOS errors 
is maximised. Section 2 discusses the suitability of 
different observables for use in different applications and 
their likely sensitivity. Factors to consider include the 
receiver design, whether the application is static or 
dynamic, and the positioning mode (differential or stand-
alone). Further observables that enable the consistency 
checking to be weighted are also discussed. 

Section 3 describes three consistency-checking algorithms 
based on least-squares residual outlier detection. The first 
method detects outliers in a single sweep method, where 
all measurement residuals are compared against a 
threshold and the all residuals that exceed the threshold 
are removed. The second approach is based on recursive 
RAIM. A recursive RAIM-like statistical test is carried 
out on the set of normalised residuals. The largest 
normalised residual is eliminated and a new least-square 
solution computed with the remaining measurements until 
the statistical test is passed. The third method is a hybrid 
of the other two.  

Section 4 presents the test results using three sets of data 
include two static scenarios and a car navigation scenario. 
The data used covers environments from open sky to 
severe urban canyon situations. Significant positioning 
improvements are demonstrated with the open sky data 
set using the weighted recursive method. Improvements 
are also demonstrated in the urban area, but some 
environments were shown to be too challenging for the 
current version of the consistency checking techniques. 

Finally Section 5 summarises the conclusions and 
presents plans for future works.  

2. OBSERVABLES FOR CONSISTENCY 
CHECKING BASED MULTIPATH MITGIATION 

The performance of a consistency-checking algorithm 
depends on the type of observables used, i.e. the data that 
is input to the algorithm. Two categories of observable are 
considered here: ranging observables and weighting 
observables. For each satellite whose measurements are 
considered for inclusion in the navigation solution, there 
is one ranging observable. However there may be more 
than one weighting observable or none. 

The ranging observables are what the algorithm compares 
with each other in order to determine their consistency. 
These may be any combination of GNSS pseudo-range, 
pseudo-range rate and/or carrier phase measurement from 
single or multiple epochs, single or multiple frequencies, 
single or multiple satellites and single or multiple 
receivers. It can also include corrections from an 
ionospheric and/or tropospheric model. The ranging 
observable used for consistency checking doesn’t have to 
be the same as the one used to calculate the navigation 
solution. 

The weighting observables provide a prior indication of 
the likelihood that measurements from a given satellite 
are multipath-contaminated and/or NLOS. They may be 
used to bias the consistency-checking algorithm by 
applying different weightings to the ranging observables 
that are compared with each other. Weighting observables 
should be constructed using different information from 
the ranging observables. 

An optimal observable of either type would combine 
signals such that nuisance elements, such as atmospheric 
effects and satellite clock errors, are minimised, while 
sensitivity to multipath and NLOS errors is maximised. 
Ranging observables will also depend on the geometric 
range from satellite(s) to receiver(s) and on the receiver 
clock error(s); weighting observables will not. The 
information available to construct such observables 
depends on the application. The ranging observable is 
considered first. 

The worst case is single-frequency stand-alone static 
GNSS user equipment. Here, the residual ionosphere and 
troposphere propagation errors are of a similar size to 
typical code multipath errors, potentially greater in some 
cases. Furthermore, the medium-delay multipath, which 
tends to produce the largest pseudo-range errors, varies 
relatively slowly. For applications, such as many location-
based services, where a quick fix is required, the pseudo-
range may be the only viable ranging observable. In this 
case, consistency checking may only highlight the NLOS 
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errors, which are typically much larger than multipath 
errors. 

Sensitivity to multipath and NLOS errors is significantly 
enhanced where better calibration of the ionosphere error, 
typically the largest bias-like error, is achievable, either 
using a dual-frequency receiver or differential GNSS. 
Dual-frequency operation typically removes more of the 
ionosphere error. However differential GNSS can also 
reduce the ephemeris and satellite clock errors and, in 
local area implementations, the troposphere error, further 
improving the sensitivity to multipath of consistency 
checking. 

For applications where dual user equipment in close 
proximity may be installed, differencing the two sets of 
measurements will essentially eliminate the ionosphere, 
troposphere, satellite clock and ephemeris errors 
completely, leaving a ranging observable that depends 
only on multipath and NLOS errors, tracking errors, and 
the difference in geometric range and receiver clock. This 
observable will be highly sensitive to multipath, 
significantly enhancing the effectiveness of consistency 
checking. However, the hardware costs will be doubled 
unless relative positioning is required anyway. 

For applications, such as surveying, where data may be 
collected for several minutes at one location, a multipath-
sensitive ranging observable may be constructed by 
applying frequency-dependent filtering. Low-pass 
filtering will reduce the impact of ionosphere, 
troposphere, ephemeris and satellite clock errors, while 
high-pass filtering and/or carrier-smoothing of the 
pseudo-ranges, will significantly reduce the tracking 
errors. The multipath and NLOS errors will typically vary 
at an intermediate frequency. 

For dynamic applications, the multipath and NLOS errors 
vary rapidly with time as the path delay of the reflected 
signals changes. This renders the multipath errors much 
easier to distinguish from the slower varying errors. 
Consequently, a multipath- and NLOS-sensitive ranging 
observable may be constructed by time-differencing the 
pseudo-range measurements. 

A comparison of these different types of ranging 
observable and the optimisation of the relevant tuning 
parameters is a subject for future research. The results 
presented here are derived using conventional single-
frequency pseudo-range-based observables. Carrier 
smoothing is applied in the static scenarios, but not the 
dynamic scenario. In both cases, the broadcast satellite 
clock corrections, Klobuchar ionosphere model and 
MOPS troposphere model [7] are used. 

Moving on to the weighting observables, it is common 
practice to apply higher weighting to signals from high-

elevation satellites on the principle that these typically 
exhibit lower multipath errors. However, they also exhibit 
lower ionosphere and troposphere errors. 

The carrier-power-to-noise density, C/N0, may also be 
used as a weighting observable as NLOS signals are 
typically attenuated on reflection. A more sophisticated 
observable may be constructed by comparing the left-
hand and right-hand circularly polarised C/N0
measurements from a dual-polarisation antenna [3]. 

A further observable may be constructed for road and rail 
applications by comparing the azimuth of the satellite 
signal with the host vehicle trajectory. This is because 
there are typically fewer buildings and other obstructions 
along the direction of travel than perpendicular to it. 

A highly multipath-sensitive weighting observable for 
dynamic applications may be constructed from the 
receiver’s correlator outputs, or Is and Qs. Because the 
reflected signals always arrive after the direct signals, 
they will particularly distort the late correlator 
measurements with little effect on the early correlators. 
This distortion can be positive or negative, depending on 
whether the reflected signals are in-phase or anti-phase 
with the direct signal. This results in a highly variable 
amplitude for the late correlator, while the early correlator 
is much less affected. However looking at the late 
correlator alone is not sufficient, as similar variations will 
occur due to variable attenuation, as in passing trees etc. 
These variations will affect both early and late amplitudes 
simultaneously. Consequently, a multipath-sensitive 
observable may be constructed by maintaining a 
normalised variance of the amplitude over (short) time 
periods for the early, and separately, the late correlators, 
and comparing these [6]. 

The results presented here consider the use of elevation 
and C/N0 as weighting observables. 

3. CONSISTENCY CHECKING ALGORITHMS 
FOR MULTIPATH MITIGATION

A fault detection and exclusion algorithm such as RAIM 
is designed based on the principle that a faulty signal 
would be less consistent to normal signals, either in the 
measurement or the solution domain. The underlying 
assumptions of RAIM consistency checking are:   

Measurement errors follow a zero-mean Gaussian 
distribution; 
Faulty signals are the minority amongst the received 
signals; and
The errors on different signals are independent of 
each other. 

Based on these assumptions the RAIM consistency 
checking tries to answer two hypothesis-testing questions: 
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does a failure exist? and, if so, which is the failed 
satellite? [8]

Multipath-contaminated and NLOS signals tend to be 
inconsistent with “clean” signals. This inconsistency, 
however, differs depending on the degree of the 
contamination. The scale of multipath and NLOS error 
introduced on the code-phase pseudorange measurement 
in an urban environment implies a more severe 
inconsistency than in an open field. While RAIM is 
designed to identify inconsistency caused by faults in the 
received signals, the consistency checking methods can be 
applied to identify contaminated signals. 

Various schemes have been developed to implement 
RAIM. The differences among different schemes are 
mainly focused on different ways to separate the faulty 
signals [1] and whether the consistency checking is 
carried out on a single-epoch snapshot basis [4] or by a 
filtering approach [8].  

The snapshot-based approach attributes not only a faster 
response to sudden inconsistencies, but also the advantage 
of avoiding questionable assumptions about how a system 
arrives at its current state [4]. Hence the snapshot-based 
approach is more prevalent than the filtering approach. 
The consistency-checking algorithm developed in this 
research is on a snapshot basis. 

Two very important parameters involved in the 
consistency-checking process are the testing statistics and 
the decision threshold. Common methods to calculate the 
testing statistics include range comparison, least-squares 
residuals and parity methods. Since all three methods are 
conceptually the same and produce similar results, the 
least-squares-residuals method is chosen for this work 
because of the simplicity of implementation. The decision 
threshold, on the other hand, respects the basic 
assumptions of consistency checking about the 
measurement error distribution, and follows a chi-square 
distribution. 

A RAIM-type consistency-checking algorithm is firstly 
introduced in Section 3.1. Three different implementation 
schemes are explained in Section 3.2. Two weighting 
scheme, based on satellite elevation and signal C/N0, are 
described last in Section 3.3. The treatment for a 
combined GPS/GLONASS least-squares solutions is 
presented in Section 3.4. 

3.1 CONSISTENCY CHECKING ALGORITHM 

The basic measurement and solution relationship can be 
described by an over-determined system of linear 
equations in the form of (assuming n  measurements are 
available, m  unknowns need to be determined, and 
n m)

y Gx e     (1) 

where y  is a n 1  measurement vector accommodating 
the differences between the actual measured pseudorange 
and the predicted ranges based on the nominal user 
position; x  is a m 1 state vector containing the solution 
needed; G  is a n m  measurement matrix describing the 
linear connection between the measurement vector y  and 
the state vector x ; And e  is the measurement error vector 
( n 1)  which is a combination of all ranging errors such 
as residual satellite orbit and clock, residual atmospheric 
effects and multipath etc.  

The well-known least-squares solution of the problems 
stated in Equation (1) can be written as [8] 

x̂ (GTG) 1GT y      (2) 

where x̂  is the least-squares solution. A n 1 residual 
vector w  can be calculated using a predicted 
measurement vector ŷ , which can be calculated with  

ŷ Gx̂       (3) 

Hence the residual vector w  is obtained by  

w y ŷ [I G(GTG) 1GT ]y    (4) 

The test statistic used for the testing is based on the sum 
of the squared errors (SSE), which is defined as [8] 

SSE wT w      (5) 

and the test statistic is  

)-(SSE/=statistictest mn     (6) 

The determination of the test threshold T  requires a 
normalised chi-squared distribution threshold Tchi

, which 
can be calculated using a suitable confidence level and the 
degrees of freedom (DOF). The DOF is the dependence of 
the estimated parameters on the available measurements. 
In this case there are n m  DOF. The test threshold can 
then be decided using 

T Tchi / (n m)     (7) 

where is an assumed standard deviation of the 
measurement error  depending on the positioning 
environment. 

The decision process of the consistency checking can be 
presented by a hypothesis-testing problem: 
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The null hypothesis H0 – No inconsistency occurred 
among measurements. 
The alternative hypothesis H1 – inconsistency 
occurred among measurement. 

and is implemented by comparing the test statistics 
against the threshold, if: 

test statistics T , H0 is accepted. 
test statistics T , H1 is accepted. 

The measurements used in this process can be any of the 
ranging observables as discussed in Section 2.  

3.2 IMPLEMENTATION SCHEMES 

Three different testing schemes are proposed here to 
implement the consistency checking as described.  The 
main difference among the three schemes is whether the 
least-squares solution is recalculated at intermediate 
stages. Different testing thresholds could be applied to 
accommodate individual testing schemes. 

With all methods, there is a risk of eliminating too many 
measurements, resulting in inadequate position solution 
geometry. Therefore, for applications where solution 
availability is most important, measurement elimination 
should cease at the stage where best accuracy is predicted. 
Conversely, where accuracy and/or integrity are more 
important, the position solution should be rejected where 
they are not achievable.  

Single Sweep  

A brief illustration of the single sweep process is shown 
in Figure 1. The least-squares solution is firstly computed 
when the checking begins, and the normalised 
measurement residuals are used to compute the test 
statistics. If the test is passed, i.e. no inconsistency is 
found under the test criteria, all measurements are kept. 
Otherwise the measurement with the largest normalised 
residual is eliminated. New test statistics and threshold 
are then calculated to continue the test. A new solution is 
calculated with the remaining measurements once the test 
is passed or the minimum number of measurements 
remain. 

Figure 1: The single sweep scheme 

Recursive Checking 

A brief illustration of the recursive checking process is 
shown in Figure 2. The least-squares solution is firstly 
computed as the starting point of the checking. A test 
statistic is calculated using the measurement residuals. 
The result of the comparison between the test statistics 
and the threshold indicates whether an inconsistency is 
identified among the available measurements. A failed 
test result will lead to the elimination of the measurement 
with the largest normalised residual. Unlike the single 
sweep scheme, a new least-squares solution is recomputed 
after each elimination, hence producing a new set of 
residuals. The test statistics and the threshold are all 
recomputed with the new residuals. This recursive 
procedure carries on until the test is passed, or insufficient 
measurements remain. 

Figure 2: The recursive-checking scheme 

Hybrid Scheme 

A hybrid scheme is a combination of the single sweep and 
recursive-checking schemes. The checking process at 
each epoch is performed in two stages, and different 
thresholds are set up for different stages. The single 
sweep is firstly carried out with a higher threshold. The 
remaining measurements from the first stage are then 
checked under a lower threshold using the recursive 
method. This is more computationally efficient that 
recursive checking but less so than the single-sweep 
method. 

3.3 WEIGHTING SCHEMES 

As discussed in Section 3.2, different weighting scheme 
could be applied to the measurements during the least-
squares calculation. Two weighting methods, respectively 
based on satellite elevation angles and signal C/N0, are 
considered in this paper. 

When applying the weight matrix W ( n n ), the 
estimated state vector in Equation (2) becomes: 

x̂ (GTWG) 1GT Wy     (8) 
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W  is defined as  

W diag( 1
2, , j

2, , n
2 ) 1   (9) 

where 
j
 is the modelled standard deviation of each 

measurement. The difference between the two weighting 
schemes lies in the modelling of 

j
.

Elevation Angles 

The principle of elevation-angle-based weighting is the 
assumption that signals with higher elevation are less 
likely to be affected by errors occurred during the 
propagation. The model used to form 

j
 in this research 

is described by [7]: 

j a b exp( elev j /10)     (10) 

where a  and b  are model parameters. Various models 
could be used to generate the weight. Other popular forms 
include the usage of sin- and cos-based atmospheric delay 
mapping functions. The differences between various 
models are beyond the scope of this paper. 

Signal C/N0

The signal C/N0 is an effective indication of the received 
signal strength, which is normally lower for reflected 
signals. The model used to form 

j
 using measured C/N0

in this research is described by [9]: 

j
2 c 10

C/N0 j
10      (11) 

where c  is the model parameter. Although antenna and 
receiver designs can affect the absolute C/N0 value, the 
relative comparison of C/N0 among received signals can 
still indicate the quality of received signals. 

3.4 COMBINED GPS/GLONASS SOLUTIONS 

The conventional model for a corrected GPS pseudorange 
measurement is described by [10]: 

G r clight tu G
    (12) 

where 
G

is the corrected GPS pseudorange measurement 
after the troposphere and ionosphere corrections have 
been applied to the measured ranges; r is the true 
geometry range between the satellite at the signal 
emission time and the receiver at the signal reception 
time; clight

is the speed of light; tu
is the receiver clock 

bias relative to GPS time at the signal reception time; and 

G
consists of residuals after applying corrections from 

navigation data and other unmodeled errors. Four 
unknowns are present in Equation (12) including the 
receiver coordinates and the receiver clock bias. 

A modelling for a corrected GLONASS pseudorange 
measurement, however, must take into account the time 
frame difference between GPS and GLONASS system 
time. For a dual-constellation solution, where the number 
of measurement available is greatly increased (as shown 
in Section 4), this time frame different can be treated as 
an extra unknown tG R

. Hence Equation (12) for 
GLONASS measurements becomes  

R r clight ( tu tG R ) R
   (13) 

Note that a minimum of 5 GPS and GLONASS 
measurements are needed because of the extra unknown 
parameter.  

Both Equation (12) and (13) are incorporated into the 
linear system described by Equation (1) to solve for the 
receiver position.  

4. TEST RESULTS AND DISCUSSION 

Multiple tests were conducted for the assessment of the 
consistency checking algorithms. Three sets of data were 
used covering both static and dynamic situations. All data 
sets are collected in London representing various typical 
urban positioning environments. In all three scenarios, 
both GPS and GLONASS signals were collected in order 
to explore the full capacity of the algorithm when more 
than one constellation is available. 

The first two data sets were collected using a Leica Viva 
GS15 GNSS receiver, shown in Figure 3. The last data set 
was collected with a prototype GPS/GLONASS receiver 
developed by ST Microelectronics.  

Truth references were provided for each data set to 
compare against the processing results from the new 
algorithm. The truth references for the first two data sets 
are both accurate to cm-level, and the truth references for 
the last data set is a filtered and map-matched solution 
which is accurate to meter-level. A pair of Leica System 
500 receivers and a total station was used in the process 
of setting up the truth reference for the second data set. 

Test results are presented in this section. All solutions 
from all three data sets are determined using a positioning 
algorithm based on single-epoch weighted least squares as 
described in Section 3.1. 
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Figure 3: Leica Viva GS15 GNSS receiver 

4.1 SCENARIO 1: OPEN ROOF 

Data collection 

This set of data is collected on the roof of a UCL building 
in central London. The data collection was carried out on 
20th April 2011. The occupied location is the highest 
point among neighbouring blocks. The site has a clear 
view of the sky and is surrounded only by a few scattered 
obstructions including higher buildings from several 
blocks away and some existing roof structures, as shown 
in Figure 4.  The set up of the experiment is shown in 
Figure 5. The data was collected at a 1Hz rate for 5 hours.  

Figure 4: Site view for Scenario 1 data collection 

Figure 5: Receiver set up for Scenario 1 data collection 

The collected data is post-processed against observations 
from Ordnance Survey reference stations around London 
using Real Time Kinematic (RTK) to provide an averaged 
solution with cm-level accuracy. This solution is used as 
the truth for this test scenario. 

The satellite visibility during the data collection period is 
shown in Figure 6. The average number of satellites 

available is 18, the number of GPS satellites available is 
10 and the number of GLONASS satellites available is 8.  

Figure 6: Satellite visibility during the data collection in 
Scenario 1 

Different Consistency Checking Schemes 

All three proposed consistency-checking schemes were 
tested with the same one-hour data set starting from 
10AM. The L1 carrier-smoothed pseudorange 
measurements were used for all schemes. The weighting 
scheme was based on satellite elevations. All positioning 
errors were computed by comparing against the RTK 
processing results, and the errors for solutions not using 
any checking schemes are also show for reference. 
Comparison results are shown in Figure 7 and Table 1.  

As can be seen from the RMS errors shown in Table 1, 
the recursive checking scheme provides the most 
performance improvement among all proposed schemes, 
the positioning errors of which improve from 2.56m in 
easting, 5.2m in northing and 4.65m in height to 1.07m in 
easting, 1.03m in northing and 1.06m in height. On the 
other hand, as shown in Figure 7, the single sweep 
scheme fails to provide a stable improvement; it 
sometimes deteriorates the performance.  

During the tested period, the single sweep scheme 
exhibited a highly unstable performance. This indicates 
the checking cannot always correctly identify the 
multipath contaminated signals. This can be explained by 
the fact that there is usually more than one contaminated 
signal and they all have different degrees of 
contamination. The presence of multiple multipath 
contaminated signals causes all measurement residuals to 
be biased. Although the most inconsistent signals can be 
very easily identified and eliminated, any further 
elimination on the remaining signal become risky because 
less contaminated signals are indistinguishable from the 
biased residuals. Furthermore, because only the biased 
residuals are available, the single sweep scheme shows 
greater sensitivity to the checking threshold set-up to 
other schemes, requires a higher threshold to avoid the 
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situation where too many satellites are falsely eliminated 
and the system can only use minimum number of the 
required measurements that are left.  

The recursive-checking scheme, on the other hand, 
minimises the impact of the biased residuals by 
recalculating the solution after each elimination. The new 
residuals are a better representation of the new position 
fix and can show the updated inconsistency information 
among the remaining signals. Hence it is possible for the 
recursive scheme to apply a lower testing threshold than 
the single sweep scheme. During the test period, the 
recursive-checking scheme worked more effectively with 
a lower threshold. As can be seen from Figure 7, the 
systematic biases in the positioning errors presented in the 
solutions without any checking are greatly reduced after 
applying the recursive scheme. Since multipath errors are 
considered the dominant systematic errors, the results 
indicate an effective reduction in the multipath 
contamination. However, a lower threshold could present 
problems when all signals are heavily contaminated by 
multipath and NLOS signals are present, taking the urban 
canyon as an example. A lower threshold could easily let 
the system eliminate too many satellites and lead to a 
performance deterioration.  

Figure 7: Error comparison for all checking schemes in 
Scenario 1 

No 
Checking 

Single 
Sweep Recursive Hybrid 

Easting 2.56 5.48 1.07 0.92 
Northing 5.2 4.97 1.03 2.08 
Height 4.65 13.36 1.06 3.76 

Table 1: RMS error (Meters) for all checking schemes in 
Scenario 1 

Although slightly better performance improvement can be 
achieved in certain directions, such as the 0.92m RMS 
easting errors versus the 1.07m errors from a recursive 
scheme, the hybrid scheme in general shows poorer 
performance than the recursive-checking scheme. The 
superior performance improvement from using a hybrid 
scheme in the easting direction indicates the importance 

of threshold set-up for both checking stages of the 
scheme. When multiple biases are present, the single 
sweep method, although less effective because of the 
biased residuals, can provide a better starting selection of 
signals for the recursive checking. This suggests an 
adaptive mechanism for determining the thresholds could 
be useful, a subject for future research.    

Both the recursive and hybrid schemes show performance 
improvements in a moderate multipath environment such 
as this scenario, whereas the single sweep scheme is 
proved to be too sensitive to the presence of multiple 
contaminated signals. 

Different Weighting Schemes 

Two different weighting schemes, based on elevation and 
C/N0, together with the situation when no weighting was 
applied, were tested with the same one-hour data set 
starting from 12am. The L1 carrier-smoothed 
pseudorange measurements were used for all schemes. 
The recursive consistency checking was applied for all 
weighting schemes. All positioning errors were computed 
by comparing against the RTK processing results. A 
comparison of these positioning errors is shown in Figure 
8 and Table 2. 

Figure 8: Error Comparison for all weighting schemes in 
Scenario 1 

No 
weighting Elevation C/N0

Easting 1.05 0.42 0.57 
Northing 22.49 4.09 3.76 
Height 18.76 4.74 4.32 

Table 2: RMS error (Meters) for all weighting schemes in 
Scenario 1 

As shown in Table 2, the performance is always improved 
when a weighting scheme is applied. However, there is no 
significant difference in the performances of the two 
weighting schemes. 
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From Figure 8, it can be observed that the no-weighting 
solution is more unstable comparing to the other two 
solutions. For the first 15min of the testing period, the no-
weighting solution on both northing and height directions 
actually out-performed the other two solutions. For the 
next 40min period, the error for the no-weighting 
solution, however, increases dramatically, and it is only 
stable in one direction for a certain period.  

This pattern indicates the sensitivity of the consistency-
checking scheme when no weighting information is 
available in a medium multipath environment such as in 
this scenario. The first-15min no-weighting solution 
shows great reduction in the systematic bias, which 
suggests successful selection of consistent signals. The 
variation of the error directions in the following period, 
nevertheless, also suggests unsuccessful selection of 
signals. The inclusion of the different multipath-
contaminated signals could cause this shift of direction in 
the positioning error.  

The performances of both weighting schemes, though 
similar, demonstrates the constraining effect of a 
weighting scheme when applying consistency checking 
on signals. Both satellite elevation and signal C/N0 are 
additional information to the already biased solutions 
residuals, as discussed in Section 2.  

4.2 SCENARIO 2: CITY CANYON 

Data collection 

This set of data was collected near Moorgate underground 
station on 8th April 2011. The location for the data 
collection is within the London City area, where high 
buildings can easily block the majority of the sky and a 
lot of glass-surfaced modern buildings, which are much 
more reflective than brick walls, are situated along the 
road, as shown in Figure 9. This data represents an urban 
canyon where severe multipath and signal blocking 
occurs.

Figure 9: An overview of the data collection location T9 

An overview of the locations is shown in Figure 9. The 
location was occupied for 30 minutes. Figure 10 shows a 
picture of the set-up of the receiver and the surrounding 

environment at the location, T9 (T for previous total 
station occupation points).  

Figure 10: The receiver set-up at the location T9 

The truth reference used for this data set was established 
through traditional surveying methods using total stations 
and traversing techniques. The reference points of the 
traversing were set up at a nearby open square where a 
clear view of the sky is available. GPS data collected with 
a pair of Leica System 500 receiver was processed using 
RTK to provide the coordinates for the reference points. 
The traversing accuracy is 1 in 56000, which is equivalent 
to cm-level. 

The satellite visibility during the data collection period is 
shown in Figure 11 (results at points T2, T3 and T4 are 
not presented here). While the average number of satellite 
available was around 8, it can be seen from Figure 11 that 
the number of satellites for a single constellation could 
easily drop below the minimum required for a least-
squares solution. A reduced number of available satellites 
also reduces the probability of simultaneous access to L1 
and L2 measurements. Hence a smoothed ionosphere 
correction [1] is preferable should iono-free ranging 
observables be tested.  

Figure 11: Satellite visibility during the data collection in 
Scenario 2 

Different Weighting Schemes 
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The effect of applying two weighting schemes without 
using the consistency-checking algorithm is firstly 
discussed. The test was performed with parts of the data 
collected at T9. The L1 carrier-smoothed pseudorange 
observable was used for the test. No consistency-checking 
scheme was applied. The solution was purely based on the 
weighted least-squares process. A comparison of the 
positioning results is presented in Figure 12 and Table 3. 

As can be seen from the test results, while no significant 
performance improvement can be seen after applying the 
elevation-based weighting, a small reduction of the 
positioning error can be observed by applying the C/N0
weighting. 

Figure 12: Error Comparison for all weighting schemes 
without consistency checking in Scenario 2 

No 
weighting Elevation C/N0

Easting 27.49 29.74 28 
Northing 52.2 52.37 49.65 
Height 97.5 99.92 86.97 

Table 3: RMS error (Meters) for all weighting schemes 
without consistency checking in Scenario 2 

Applying Consistency Checking 

Among the three proposed consistency checking schemes, 
because of the high residual level for all available signals 
and the reduced number of satellites available (Figure 11), 
the single sweep and hybrid schemes were fragile at the 
particularly challenging locations in this data set. 
Therefore, no results are presented for them. For city 
environments, the ranging error caused by multipath and 
NLOS signals affects the majority of received signals. 
Due to the existence of a large amount of highly reflective 
objects, the characteristics of these ranging errors also 
varies quickly with time. As a result, the assumption for 
the hypothesis testing on which the consistency checking 
is based breakdown. When only a pre-set fixed threshold 
is available, only the recursive scheme remains robust, 
whereas other schemes can easily been forced to a stop 

because insufficient signals remain. This suggests further 
research on constructing a dynamic threshold. 

The same data from T9 as used in the weighting schemes 
test is used here with the recursive-checking scheme. 
Three sets of results are presented in Figure 13 and Table 
4, for which no weighting, elevation-based weighting and 
C/N0 weighting are respectively applied. 

As can be seen from the results, a performance 
improvement of about a factor of 2 was achieved by the 
combined usage of recursive checking and C/N0
weighting. Figure 14 shows the positioning results and 
truth reference on a map. As pointed out in Section 4.1, 
for the consistency checking to work more effectively, 
additional information is needed. The consistency 
checking by itself can improve the precision of the 
solution. But for city positioning scenarios, where 
precision and accuracy can be quite different, extra 
observables such as the C/N0 of individual signals can 
help to improve the overall accuracy.  

Figure 13: Error Comparison for all weighting schemes 
with consistency checking in Scenario 2 

No 
weighting Elevation C/N0

Easting 27.9 29.45 10.29 
Northing 44.58 46.38 31.32 
Height 104.91 95.39 55.16 

Table 4: RMS error (Meters) for all weighting schemes 
with consistency checking in Scenario 2 

However, it is also necessary to point out the risk of the 
consistency checking approach. As shown in Figures 13 
and 14, even for the most successful method, large 
positioning errors still exist. This suggests the presence of 
multipath contamination in the remaining signals. 
Because of the lack of further correction methods, this 
could lead to very large errors if NLOS signals are not 
completely excluded. Other methods that are more 
effective against NLOS signals are needed such as dual-
polarisation antennas [3]. Further research into more 
advanced consistency checking methods is thus required. 
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Figure 14: Positioning results comparison for different weighting scheme with or without consistency checking in Scenario 2 

4.3 SCENARIO 3: CAR NAVIGATION 

Data collection 

This set of data was collected across the London area in a 
car using a prototype GPS/GLONASS receiver designed 
for car navigation. The date of the data collection was 
30th May 2011. The trajectory is shown in Figure 15. The 
journey started from South West London on the Thames 
riverside and circled through the central London with a 
combination of a moderate city environment and an 
extreme city canyon environment. The London City area, 
where the urban canyons mostly occur, was traversed 
repeatedly. 

Figure 15: An overview of the trajectory for Scenario 3 

The satellite visibility during the data collection period is 
shown in Figure 16. The average number of satellites 
available was about 15, consisting of an almost equal 
number from each constellation. For extreme city canyon 
environments, as shown between the 1st and 2nd hour in 

Figure 16, a reduced number of satellites or even a 
complete loss of signals can be observed.  

Figure 16: Satellite visibility during the data collection in 
Scenario 3 

Applying Consistency Checking 

The test was performed on algorithms both with and 
without consistency checking using 1-hour data from the 
journey covering the central London area. The C/N0-
based weighting scheme was used for both algorithms. 
The truth reference used here is the output from the 
receiver’s Kalman-filter-based positioning algorithm. 
This filtered solution is accurate to within a few meters. 
The comparison of the results here is therefore relative.  A 
comparison of the test results is shown in Figure 17.  

The results in Figure 17 demonstrate both the 
performance improvements and the risks introduced by 
the consistency-checking algorithm. While the 
consistency checking results improves the results in 
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Figure 18: Examples of both failed and successful performance improvements in Scenario 3 

general, as shown by the green dots in the figures, the 
risks of eliminating the wrong satellites can results in 
occasional large outliers in the final position solution.  

Figure 17: Error Comparison for solutions with/without 
consistency checking using C/N0 weighting in Scenario 3 

Figure 18 further demonstrates the positioning 
performance of the algorithm with two examples, both a 
failure and a successful example. As can be seen in the 
failed example, incorrect satellites were removed, 
resulting in large outliers. On the other hand, successful 
removal of the contaminated signals significantly 
improvemes the original noisy position solutions. 

5. CONCLUSIONS AND FUTURE WORK 

This paper explored detection and mitigation of multipath 
and NLOS errors for dual-constellation GNSS positioning 
in severe urban environments using the RAIM-type 
consistency checking. Three types of consistency 
checking schemes, two weighting schemes and different 
ranging observables were proposed and tested. 

The results show that a recursive consistency-checking 
method based on RAIM-type hypothesis testing improves 
the positioning errors under moderate multipath 
conditions. However, the performance is unreliable in 
severe environments, such as urban canyons.  

One of the assumptions that this hypothesis testing 
approach is based on is that the signals heavily 
contaminated due to NLOS reception are the minority 
amongst the received signals. This, however, is not 
always true under extreme multipath and NLOS 
conditions, such as scenario 2 in this paper. When only a 
small part of sky can be seen and a large number of highly 
reflective objects are present at the receiver location, a set 
of received signals maybe found that are consistent 
amongst themselves but still produce an erroneous 
position solution. Without further information on the 
signal or surrounding environment, the consistency-
checking method struggles to work with the biased 
residuals.

Another assumption of the hypothesis testing is that the 
measurement errors follow a zero-mean Gaussian 
distribution; hence the core of the testing is a chi-square 
test examining the normality of the measurement 
residuals.  However, as can be seen from the distribution 
of position solutions in this paper, errors caused by 
extreme multipath and NLOS signals do not become 
white over time. Instead, a more systematic presence is 
usually expected. Therefore, when only consistency 
checking methods are applied, it is often the precision of 
the solution but not the accuracy that is improved. For 
positioning in urban canyons, these two can be very 
different. 

It is also demonstrated from the test results that when a 
suitable weighting scheme is combined with the 
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consistency checking methods, it is possible to improve 
the accuracy and reliability of the solution. Between the 
two proposed weighting schemes, elevation- and C/N0-
based, the C/N0-based scheme is shown as the more 
effective one in the urban canyon. Although C/N0 the 
value of a signal tends be correlated with its elevation in 
an open and moderate multipath environment, this differs 
significantly in an urban canyon. Heavily multipath-
contaminated and NLOS signals usually exhibit a lower 
C/N0 value. The “clean” signals are more likely to come 
from the along track direction and do not necessarily have 
a higher elevation than other signals.  

Based on the conclusions derived from the test results, the 
following ideas will be investigated next: 

New “bottom up” consistency checking methods will 
be developed that generate multiple position 
solutions from different 4- and 5-satellite 
combinations and compare them. 
For dynamic applications, time variation of the 
solutions residuals will be monitored as sudden 
changes could imply a change in multipath conditions 
or the reception of NLOS signals. 
Employing an adjustable test threshold for the 
consistency checking process to improve the 
robustness of the technique will be tested. 
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