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Abstract

Discrete data, often known as frequency or count data, comprises of observations

which can only take certain separate values, resulting in a more restricted numerical

measurement than those provided by continuous data and are common in the clinical

sciences and epidemiology. The Poisson distribution is the simplest and most common

probability model for discrete data with observations assumed to have a constant rate

of occurrence amongst individual units with the property of equal mean and variance.

However, in many applications the variance is greater than the mean and overdispersion

is said to be present. The application of the Poisson distribution to data exhibiting

overdispersion can lead to incorrect inferences and/or inefficient analyses.

The most commonly used extension of the Poisson distribution is the negative

binomial distribution which allows for unequal mean and variance, but may still be

inadequate to model datasets with long tails and/or value-inflation. Further extensions

such as Delaporte, Sichel, Gegenbauer and Hermite distributions, give greater flexibility

than the negative binomial distribution. These models have received less interest than

the Poisson and negative binomial distributions within the statistical literature and

many have not been implemented in current statistical software. Also, diagnostics

and goodness-of-fit statistics are seldom considered when analysing such datasets.

The aim of this thesis is to develop software for analysing discrete data which do

not follow the Poisson or negative binomial distributions including component-mix

and parameter-mix distributions, value-inflated models, as well as modifications for

truncated distributions. The project’s main goals are to create three libraries within the

framework of the R project for statistical computing. They are:

1. altmann: to fit and compare a wide range of univariate discrete models

2. discrete.diag: to provide goodness-of-fit and outlier detection diagnostics

for these models
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3. discrete.reg: to fit regression models to discrete response variables within

the gamlss framework

These libraries will be freely available to the clinical and scientific community to

facilitate discrete data interpretation.

4



Acknowledgements

I would like to thank my supervisors Mario Cortina-Borja and Angie Wade for their

support, guidance and invaluable advice over the term of my PhD study. I would like

to thank my colleagues at the MRC Centre of Epidemiology for Child Health, UCL

Institute of Child Health, in particular the past and present occupants of Room 5.09 for

their support and advice.

I am grateful to the many clinicians and researchers who have provided data for this

thesis: Professor Adrian Woolf, Dr Shun-Kai Chan, and Dr David long at the Centre

of Nephro-eurpology, ICH; Dr Pablo Mateos and Dr James Cheshire from the UCL

Department of Geography; Professor Fenella Kirkham at the Neurosciences Unit, ICH;

Professor Tony Charman and Dr Greg Pasco, at the Institute of Education, Professor

Pat Howlin and Dr Kate Gordon from King’s College London. This project was made

possible by a capacity building studentship funded by the Medical Research Council.

Finally, I would also like to thank my family for their support and understanding.

Especially my parents, who are my biggest champions, Danny, Nicola and Hannah,

and also to Kim, Christine and not forgetting Louie. My biggest thanks go to Michael,

who has been at my side throughout this journey and whose encouragement has meant

the world to me.

5



Contents

Abstract 2

Acknowledgements 5

Contents 6

List of Figures 12

List of Tables 18

List of Listings 20

Acronyms and abbreviations 21

1 Introduction 23

1.1 Discrete data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1 UK Surnames distributions . . . . . . . . . . . . . . . . . . 25

1.2.2 Cysts in steroid treated fetal mouse kidneys . . . . . . . . . . 29

1.2.3 Electroencephalographic seizures in paediatric coma patients 31

1.2.4 Picture Exchange Communication System (PECS) training in

teachers of autistic children . . . . . . . . . . . . . . . . . . 34

1.3 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Discrete Probability Distributions 39

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6



2.1.1 Overdispersion . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.2 Value-inflation . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.3 Long tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.4 Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.6 Special Functions . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 Basic Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2.1 Bernoulli (p) . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.2 Binomial (p, n) . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.2.3 Geometric (p) . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.4 Hypergeometric (m,n, k) . . . . . . . . . . . . . . . . . . . 62

2.2.5 Poisson (µ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3 Parameter-Mix Distributions . . . . . . . . . . . . . . . . . . . . . . 68

2.3.1 Negative Binomial . . . . . . . . . . . . . . . . . . . . . . . 69

2.3.2 Holla (α, θ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.3.3 Sichel (α, θ, γ) . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.3.4 Delaporte (α, β, γ) . . . . . . . . . . . . . . . . . . . . . . . 80

2.3.5 Yule (λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.3.6 Waring (b, n) . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.3.7 Beta-Binomial (a, b, n) . . . . . . . . . . . . . . . . . . . . . 88

2.4 Component-Mix Distributions . . . . . . . . . . . . . . . . . . . . . 93

2.4.1 Zero-inflated Poisson (ω, µ) . . . . . . . . . . . . . . . . . . 94

2.4.2 Zero-inflated Negative Binomial (ω, p, r) . . . . . . . . . . . 96

2.4.3 Zero-inflated Sichel (ω, α, θ, γ) . . . . . . . . . . . . . . . . 99

2.4.4 2-component Poisson Mixture (ω, µ, λ) . . . . . . . . . . . . 101

2.4.5 2-component Poisson-Negative Binomial Mixture (ω, µ, r, p) . 105

2.5 Truncated Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.5.1 Positive Poisson (µ) . . . . . . . . . . . . . . . . . . . . . . 109

2.5.2 Positive Geometric (p) . . . . . . . . . . . . . . . . . . . . . 111

7



2.5.3 Positive Negative Binomial (r, p) . . . . . . . . . . . . . . . 113

2.5.4 Positive Holla (α, θ) . . . . . . . . . . . . . . . . . . . . . . 115

2.5.5 Positive Sichel (α, θ, γ) . . . . . . . . . . . . . . . . . . . . . 117

2.5.6 Positive Yule (λ) . . . . . . . . . . . . . . . . . . . . . . . . 121

2.6 Lerch Family Distributions . . . . . . . . . . . . . . . . . . . . . . . 123

2.6.1 Lerch (p, a, c) . . . . . . . . . . . . . . . . . . . . . . . . . . 124

2.6.2 Zipf (a, c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

2.6.3 Good (p, c) . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

2.6.4 Zeta (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

2.7 Generalized Poisson Distributions . . . . . . . . . . . . . . . . . . . 135

2.7.1 Neyman Type A (µ, φ) . . . . . . . . . . . . . . . . . . . . . 136

2.7.2 Hermite (a, b) . . . . . . . . . . . . . . . . . . . . . . . . . . 138

2.7.3 Generalized Hermite (a, b,m) . . . . . . . . . . . . . . . . . 141

2.7.4 Gegenbauer (a, b, k) . . . . . . . . . . . . . . . . . . . . . . 145

2.7.5 Generalized Gegenbauer (a,m, α, β) . . . . . . . . . . . . . . 148

3 Fitting the models 153

3.1 Estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.1.1 Rapid Estimation . . . . . . . . . . . . . . . . . . . . . . . . 153

3.1.2 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . 158

3.1.3 Expectation-Maximization (EM) algorithm . . . . . . . . . . 162

3.2 Frameworks for model fitting . . . . . . . . . . . . . . . . . . . . . . 165

3.2.1 Generalized Linear Models (GLM) . . . . . . . . . . . . . . 165

3.2.2 Generalized Additive Models (GAM) . . . . . . . . . . . . . 168

3.2.3 Generalized Additive Models for Location, Scale and Shape

(GAMLSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

3.3 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

3.3.1 Goodness-of-fit . . . . . . . . . . . . . . . . . . . . . . . . . 175

3.3.2 Model Comparisons . . . . . . . . . . . . . . . . . . . . . . 184

3.3.3 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . 193

8



4 Software for fitting discrete probability models 198

4.1 Current Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4.1.1 PASW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4.1.2 Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

4.1.3 SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

4.1.4 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4.1.5 MATHEMATICA . . . . . . . . . . . . . . . . . . . . . . . . 208

4.1.6 Altmann Fitter . . . . . . . . . . . . . . . . . . . . . . . . . 208

4.2 Gaps in methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 209

4.3 Outline of software . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5 Altmann Library 215

5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.2 Summary of discrete datasets . . . . . . . . . . . . . . . . . . . . . . 218

5.3 pdqr for distributions . . . . . . . . . . . . . . . . . . . . . . . . . 221

5.3.1 Probability density function d . . . . . . . . . . . . . . . . . 221

5.3.2 Cumulative density function p . . . . . . . . . . . . . . . . . 223

5.3.3 Quantile function q . . . . . . . . . . . . . . . . . . . . . . . 226

5.3.4 Random generating function r . . . . . . . . . . . . . . . . . 227

5.4 Maximum likelihood estimation functions . . . . . . . . . . . . . . . 229

5.4.1 Estimation of starting values . . . . . . . . . . . . . . . . . . 233

5.4.2 Maximum likelihood estimation using mle . . . . . . . . . . 236

5.4.3 Goodness-of-fit statistics and Output . . . . . . . . . . . . . 237

5.5 Plotting mle objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

5.6 Model comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

5.7 Validation of the functions . . . . . . . . . . . . . . . . . . . . . . . 249

5.8 Further Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

5.8.1 Automobile accidents claims for drivers in Belgium, 1978 . . 252

5.8.2 Numbers of births occurring to HIV-infected women . . . . . 258

5.9 Application to UK surnames distribution . . . . . . . . . . . . . . . . 261

9



6 discrete.diag Library 269

6.1 Goodness-of-fit Methods . . . . . . . . . . . . . . . . . . . . . . . . 270

6.1.1 Chi-squared Goodness-of-fit Test . . . . . . . . . . . . . . . 270

6.1.2 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

6.2 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.2.1 AIC and BIC . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.2.2 EPGF plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

6.3 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

6.3.1 EPGF Outliers plot . . . . . . . . . . . . . . . . . . . . . . . 281

6.3.2 Surprise Index plot . . . . . . . . . . . . . . . . . . . . . . . 285

6.4 Validation of the functions . . . . . . . . . . . . . . . . . . . . . . . 289

6.5 Application to counts of cysts in steroid treated foetal mouse kidneys . 290

6.5.1 Outlier Detection using the EPGF . . . . . . . . . . . . . . . 291

6.5.2 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 292

6.5.3 Outlier detection using Surprise Index . . . . . . . . . . . . . 294

7 discrete.reg library 299

7.1 Geometric Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 299

7.2 Yule Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

7.3 Waring Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

7.4 Validation of the functions . . . . . . . . . . . . . . . . . . . . . . . 314

7.5 Application to Electroencephalographic Seizures in coma patients . . 315

8 Discussion 327

8.1 Contributions to software . . . . . . . . . . . . . . . . . . . . . . . . 327

8.1.1 Altmann library . . . . . . . . . . . . . . . . . . . . . . . . 327

8.1.2 discrete.diag library . . . . . . . . . . . . . . . . . . . 328

8.1.3 discrete.reg library . . . . . . . . . . . . . . . . . . . . 328

8.2 Implications for data analysis . . . . . . . . . . . . . . . . . . . . . . 328

8.3 Limitations of libraries . . . . . . . . . . . . . . . . . . . . . . . . . 330

10



8.4 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

References 334

Appendices 348

A Distribution Moments 349

B Publications and posters arising from this research 374

B.1 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

B.2 List of Posters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

11



List of Figures

1.1 UK Surnames frequencies. . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Histograms of counts of cysts in steroid treated and control foetal

mouse kidneys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Number of ES in paediatric coma patients. . . . . . . . . . . . . . . . 32

1.4 Rate of ES in coma patients. . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Outcome measure (frequency of initiations, PECS use and speech) as

frequencies by treatment group by time period. . . . . . . . . . . . . 35

2.1 Binomial pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 log(SI)’s for Binomial distributions . . . . . . . . . . . . . . . . . . 60

2.3 Geometric pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 log(SI) for the Geometric distribution . . . . . . . . . . . . . . . . . 62

2.5 Hypergeometric pdf . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6 log(SI)’s for Hypergeometric distributions. . . . . . . . . . . . . . . 65

2.7 Poisson pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.8 log(SI)’s for Poisson distribution . . . . . . . . . . . . . . . . . . . . 68

2.9 Negative Binomial pdf . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.10 log(SI)’s for negative binomial distributions . . . . . . . . . . . . . . 71

2.11 Holla pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.12 log(SI)’s for Holla probability distributions . . . . . . . . . . . . . . 76

2.13 Sichel pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.14 log(SI’s for Sichel distribution . . . . . . . . . . . . . . . . . . . . . 79

2.15 Delaporte pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

12



2.16 Yule pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.17 SI’s for the Yule distribution . . . . . . . . . . . . . . . . . . . . . . 85

2.18 Waring pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.19 log(SI)’s for Waring distributions . . . . . . . . . . . . . . . . . . . 88

2.20 Beta-Binomial pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.21 log(SI)’s for the Beta-Binomial distributions . . . . . . . . . . . . . 92

2.22 Zero-inflated Poisson pdf . . . . . . . . . . . . . . . . . . . . . . . . 95

2.23 log(SI)’s for Zero-inflated Poisson distributions . . . . . . . . . . . . 96

2.24 Zero-inflated Negative Binomial pdf . . . . . . . . . . . . . . . . . . 97

2.25 Zero-inflated Sichel pdf . . . . . . . . . . . . . . . . . . . . . . . . 100

2.26 Poisson-Poisson mix pdf . . . . . . . . . . . . . . . . . . . . . . . . 102

2.27 log(SI)’s for 2-component Poisson mixture distributions . . . . . . . 104

2.28 Poisson-Negative Binomial mix pdf . . . . . . . . . . . . . . . . . . 105

2.29 log(SI)’s for 2-component Poisson-Negative Binomial distributions . 107

2.30 Positive Poisson probability pdf . . . . . . . . . . . . . . . . . . . . 109

2.31 log(SI)’s for the Positive Poisson distribution . . . . . . . . . . . . . 110

2.32 Positive Geometric pdf . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.33 log(SI)’s for Positive Geometric distributions . . . . . . . . . . . . . 112

2.34 Positive Negative Binomial pdf . . . . . . . . . . . . . . . . . . . . 113

2.35 log(SI)’s for Positive Negative Binomial distributions . . . . . . . . . 114

2.36 Positive Holla pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.37 log(SI)’s for Positive Holla distributions . . . . . . . . . . . . . . . . 116

2.38 Positive Sichel pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

2.39 log(SI)’s for Positive Sichel distributions . . . . . . . . . . . . . . . 119

2.40 Positive Yule pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

2.41 log(SI)’s for Positive Yule distributions . . . . . . . . . . . . . . . . 122

2.42 Lerch pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

2.43 log(SI)’s for Lerch distributions . . . . . . . . . . . . . . . . . . . . 126

2.44 Estoup and Lotka pdf’s . . . . . . . . . . . . . . . . . . . . . . . . . 127

13



2.45 Zipf pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

2.46 log(SI)’s for Zipf distributions . . . . . . . . . . . . . . . . . . . . . 130

2.47 Good pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

2.48 log(SI)’s for Good distributions . . . . . . . . . . . . . . . . . . . . 132

2.49 Zeta pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2.50 log(SI) for the Zeta distribution . . . . . . . . . . . . . . . . . . . . 134

2.51 Neyman Type A pdf . . . . . . . . . . . . . . . . . . . . . . . . . . 137

2.52 log(SI)’s for Neyman Type A distributions . . . . . . . . . . . . . . . 138

2.53 Hermite pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

2.54 log(SI)’s for Hermite distributions . . . . . . . . . . . . . . . . . . . 141

2.55 Generalized Hermite pdf . . . . . . . . . . . . . . . . . . . . . . . . 142

2.56 log(SI)’s for Generalized Hermite distributions . . . . . . . . . . . . 144

2.57 Gegenbauer pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

2.58 log(SI)’s for Gegenbauer distributions . . . . . . . . . . . . . . . . . 147

2.59 Generalized Gegenbauer pdf . . . . . . . . . . . . . . . . . . . . . . 149

2.60 log(SI)’s for Generalized Gegenbauer distributions . . . . . . . . . . 151

3.1 Minus log-likelihood curve of Poisson model for counts of cysts in

steroid treated kidneys . . . . . . . . . . . . . . . . . . . . . . . . . 160

3.2 Maximum likelihood curve of negative binomial model for counts of

cysts in steroid treated kidneys . . . . . . . . . . . . . . . . . . . . . 161

3.3 Residual analysis using Randomized Quantile Residuals for a Poisson

model for counts of cysts in steroid treated kidneys . . . . . . . . . . 182

3.4 Residual analysis using Randomized Quantile residuals for a negative

binomial model for counts of seizures in steroid treated kidneys . . . 183

3.5 Plot of the log of pgf’s for a Poisson distribution with µ = 8, Binomial

with n = 5 and p = 0.7, negative binomial with r = 8 and p = 0.3

and a truncated Poisson distributions with µ = 8. . . . . . . . . . . . 190

3.6 Plots of the epgf for a) counts of yearly deaths by horse kicks and b)

counts of earthquakes in Mexico. . . . . . . . . . . . . . . . . . . . 191

14



3.7 EPGF plot of counts of cysts in embryonic mouse kidneys with fitted it

pgf’s for the Poisson, negative binomial, zero-inflated Poisson, zero-inflated

negative binomial and Holla distributions. . . . . . . . . . . . . . . . 192

3.8 EPGF analysis to detect outliers for frequencies of incidents of international

terrorism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

3.9 Plots of SI for counts of cysts in steroid treated embryonic mouse

kidneys for a) a Poisson distribution and b) a negative binomial distribution.

196

5.1 Plots of (a) the pdf, (b) cdf, (c) quantile and (d) a histogram of a random

sample of the negative binomial distribution with parameters r= 2 and

p= 0.6, created from the dNB, pNB, qNB and rNB functions. . . . . 224

5.2 Plots likelihood profiles of parameters r and p for the number of stillbirths

in litters of New Zealand white rabbits for the negative binomial distribution

using the function mle.NB. . . . . . . . . . . . . . . . . . . . . . . 238

5.3 Plots of observed and expected frequencies of stillbirths for the negative

binomial distribution using the function plot.mle. . . . . . . . . . 243

5.4 Profile likelihood plots for Holla model for number of automobile

accidents claims for drivers in Belgium, 1978 . . . . . . . . . . . . . 255

5.5 Profile likelihood plots for Sichel model for number of automobile

accidents claims for drivers in Belgium, 1978 . . . . . . . . . . . . . 256

5.6 Profile likelihood plots for Poisson-negative binomial mixture model

for number of automobile accidents claims for drivers in Belgium,

1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

5.7 Profile likelihood plots for a positive negative binomial model fitted

to numbers of births occurring in the UK and Ireland to HIV-infected

women . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

5.8 UK Surname distribution. . . . . . . . . . . . . . . . . . . . . . . . 262

15



5.9 Observed and fitted values of Zipf model for surname frequencies of

Manchester. Observed values are black points and the fitted model is

shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

5.10 Observed and fitted values of Zipf model for surname frequencies of

Hackney. Observed values are black points and the fitted model is

shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

5.11 Observed and fitted values of Zipf model for surname frequencies of

Carlisle. Observed values are black points and the fitted model is

shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

6.1 Residual plots for the number of stillbirths in litters of New Zealand

White Rabbits under a negative binomial model. . . . . . . . . . . . 274

6.2 EPGF plots for the number of stillbirths in New Zealand white rabbits

with a) Poisson, Geometric and Yule distributions, b) negative binomial,

zero-inflated Poisson, Neyman type A and Waring distributions and c)

hypergeometric, zero-inflated negative binomial and Poisson-Poisson

mixture distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 279

6.3 EPGF outliers plot of the rabbits data, . . . . . . . . . . . . . . . . . 284

6.4 EPGF outliers plot of the rabbits data, . . . . . . . . . . . . . . . . . 285

6.5 SI’s for the number of stillbirths in New Zealand White rabbits under

Poisson and Negative Binomial distributions. . . . . . . . . . . . . . 288

6.6 EPGF outlier plots of counts of cysts in steroid treated foetal mouse

kidneys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

6.7 EPGF outlier plots of counts of cysts in steroid treated foetal mouse

kidneys without observation of 19 cysts. . . . . . . . . . . . . . . . . 292

6.8 SI plots of counts of cysts in steroid treated foetal mouse kidneys for

models 1) a Poisson distribution and 2) a Poisson distribution excluding

the kidney with 19 cysts. . . . . . . . . . . . . . . . . . . . . . . . . 295

16



6.9 SI plots of counts of cysts in steroid treated foetal mouse kidneys for

models 1) a negative binomial distribution and 2) a negative binomial

distribution excluding the kidney with 19 cysts. . . . . . . . . . . . . 296

7.1 Numbers of stillbirths in New Zealand White rabbits with fitted a)

Geometric b) Yule and c) Waring distributions respectively . . . . . . 305

7.2 Residual plot from the fitted negative binomial model . . . . . . . . . 321

7.3 Worm plot from the fitted negative binomial model . . . . . . . . . . 322

7.4 Predictions from the fitted negative binomial model across three centres

by the presence of seizures . . . . . . . . . . . . . . . . . . . . . . . 324

17



List of Tables

1.1 Top surnames by country. Figures in parentheses are percentages. . . 28

1.2 Summary statistics for counts of cysts in kidneys for steroid treated

and control groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 The effectiveness of PECS training: Study Design . . . . . . . . . . . 34

1.4 Medians of frequencies of initiations, PECS use and speech by treatment

group by time period. IQR is given in bold and 25% and 75% quantiles

are given in parenthesis. . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 Weaver (1948)’s interpretation of SI values. . . . . . . . . . . . . . . 48

3.1 Observed (o) and Expected (e) frequencies of cysts in steroid treated

mouse kidneys for a Poisson model. . . . . . . . . . . . . . . . . . . 176

3.2 Observed (o) and Expected (e) frequencies of cysts in steroid treated

mouse kidneys for a negative binomial model. . . . . . . . . . . . . . 176

3.3 Frequencies of incidents of international terrorism in the United States

between 1968-1974 . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

4.1 Discrete distributions available as pdf’s, cdf’s and random generations

using PASW. Function names are in parenthesis. . . . . . . . . . . . 199

4.2 Probability distributions available in the base library of the R language 203

4.3 Discrete distributions implemented within the gamlss.dist library

(Stasinopoulos and Rigby, 2007). . . . . . . . . . . . . . . . . . . . 205

4.4 Discrete probability distributions available in VGAM library of R . . . 207

5.1 Frequency of stillbirths in litters of New Zealand white rabbits . . . . 216

18



5.2 Counts of morpheme length in lakota language . . . . . . . . . . . . 216

5.3 Counts of yeast cells . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.4 household size from Housing Allowance Demand Experiment . . . . 217

5.5 Frquency of surnames across eight non-overlappping districts . . . . 218

5.6 Probability distributions available in the Altmann library . . . . . . . 222

5.7 Fitted values for a Gegenbauer distribution fitted to 400 haemocytometer

counts of yeast cells. . . . . . . . . . . . . . . . . . . . . . . . . . . 251

5.8 Number of automobile accidents claims for drivers in Belgium, 1978 . 253

6.1 Counts of Cysts in steroid treated kidneys . . . . . . . . . . . . . . . 290

6.2 Counts of Cysts in control kidneys . . . . . . . . . . . . . . . . . . . 290

6.3 Table of SI’s for the four models. . . . . . . . . . . . . . . . . . . . . 294

7.1 Summary of discrete regression models resulting from stepwise model

selection fitted to incidence of ES dataset. . . . . . . . . . . . . . . . 318

19



Listings

5.1 Summary function for discrete datasets . . . . . . . . . . . . . . . . . 218

5.2 Probability density function d . . . . . . . . . . . . . . . . . . . . . 223

5.3 Cumulative density function p . . . . . . . . . . . . . . . . . . . . . 225

5.4 Quantile function q . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.5 Random generating function r . . . . . . . . . . . . . . . . . . . . . 227

5.6 Maximum likelihood estimation function for the negative binomial

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

5.7 Plot function for class ‘mle’ . . . . . . . . . . . . . . . . . . . . . . 240

5.8 Altmann Fitter Model Comparison Function . . . . . . . . . . . . . 245

6.1 Chi-squared Goodness-of-fit Test . . . . . . . . . . . . . . . . . . . . 270

6.2 Residual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

6.3 AIC function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.4 EPGF Plot function . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

6.5 EPGF outliers plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

6.6 Surprise Index function . . . . . . . . . . . . . . . . . . . . . . . . . 286

7.1 Geometric GAMLSS family distribution function. . . . . . . . . . . . 300

7.2 Yule Family distribution function. . . . . . . . . . . . . . . . . . . . 306

7.3 Waring family distribution function. . . . . . . . . . . . . . . . . . . 310

20



Acronyms and abbreviations

ACS – Adelaide Coma Scale

ADOS-g - Autism Diagnosis Observation Schedule- Generic Module One

AIC – Akaikes information criterion

ASD - Autism Spectrum Disorder

BIC - Bayesian Information Criterion

cdf - cumulative density function

CRAN – Comprehensive R Archive Network (CRAN)

ECM – Expectation/Conditional Maximisation

EEG – Electroencephalographic monitoring

EM - Expectation Maximisation

EPGF – Empirical Probability Generating Function

ES – Electroencephalographic Seizures

GAM - Generalized Additive Model

GAMLSS - Generalized Additive Model for Location, Scale and Shape

GLM - Generalized Linear Model

IQR – interquartile range

mgf moment generating function

MLE - Maximum Likelihood Estimate

NB – negative binomial

NBI – negative binomial type I

NB II – negative binomial type II

NVDQ - Non-verbal Developmental Quotient

OD - Overdispersion Index

PASW – Predictive Analytics SoftWare

pdf - probability density function

PECS - Picture Exchange Communication System

pgf - probability generating function

21



PIM - Paediatric Index of Mortality

SAS – Statistical Analysis Systems

SCQ - Social Communication Questionnaire

SD – standard deviation

SI - Surprise Index

SPSS – Statistical Package for the Social Sciences

ZI - Zero-inflation Index

ZINB - Zero-inflated negative binomial

ZIP - Zero-inflated Poisson

ZISI - Zero-inflated Sichel

22



Chapter 1

Introduction

1.1 Discrete data

Data is either categorical or numeric, with numeric variables further classified as continuous

or discrete. Continuous variables are measured on a scale such that between any two

values it is always possible to find another. Discrete variables can only take a (usually)

limited number of separate values such that there are no possible realizations of the

variable between any two of its consecutive values. Discrete variables are often of

interest in clinical and epidemiological studies.

A discrete random variable, Y , is a function from a sample space Ω (the set of

all possible outcomes of a random experiment) to a (finitely or infinitely) countable

set, RY , known as the range of Y . Discrete data, i.e. observed values of Y , are also

known as frequency or count data. Count variables are defined by Dobson (2002, pg.

151) as ’the number of times an event occurs’ and the number of occurrences can

originate from a finite or infinite range. An example of an infinite range is the number

of complete days a patient stays in a paediatric intensive care unit, which may take

integer values {0, 1, 2, ... } (Brown et al., 2003) and has no higher bound. In a finite

range there is an upper limit to the number of times an event can occur, for example the

number of correct responses in a test consisting of 10 questions may take values in {0,

1, 2, ..., 9, 10}. Another example are quality of life measures, which assume discrete

values from a finite, ordered numeric scale and are often found in health research. For
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example, quality of life or overall health can be rated as an integer in the range 1 to

10, where 1 indicates a low and 10 a high quality of life or overall health (Testa and

Simonson, 1996). Similarly, the Social Communication Questionnaire (SCQ) (Rutter

et al., 2003) a screening tool for Autism Spectrum Disorders (ASD) takes one of the 40

discrete integer values in the range 0 to 39, where a score of less than 8 is considered a

low score, 8-14 moderately low, 15-21 moderately high and greater than 22 represents

a high score (Baird et al., 2006).

Note that RY may not contain 0. For example, consider the number of times a

surname appears in a population, which can be used to study its genetic structure

(Voracek and Sonneck, 2007), and the frequency of words in a text or in discourse

(Monaco et al., 2007). In both cases the minimum value of Y is necessarily 1.

Rates are an instance of discrete observations which are expressed per measure

of time (e.g. hours, minutes or seconds) in which the events occur. For example,

in epidemiology annual incidence of a condition, and mortality rates per year or per

100 person years of follow up are often used (Kirkwood and Sterne, 2003, pg. 229).

Where events are rare, rates may be multiplied by 1,000 (or even 10,000 or 100,000)

and expressed per 1,000 (or 10,000 or 100,000) subjects per unit of time. Rates allow

counts to be adjusted for variations in time periods where necessary. For example, the

number of epileptic seizures observed in children during a specific hospital episode can

be considered as a rate where the length of hospital stay will differ between patients.

In clinical and epidemiological studies data collection is crucially constrained by

both ethical and financial considerations attached to the recruitment of each additional

respondent. Hence it is very important that any data collected is analysed using the

most appropriate methods and processed in a way that will extract the maximum

information. This is a key issue for discrete variables which are often skewed and

may have irregular features in their distribution (McElduff et al., 2010). Models for

continuous data such as linear regression and Analysis of Variance (ANOVA) should

not be directly applied to discrete response variables due to the underlying distributional

assumptions required by these models for their correct application (Afifi et al., 2007).
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Another approach is to separate the rates or frequencies into ordered categories and

use ordinal logistic regression. For example, the categorisation of the SCQ described

above into low, moderately low, moderately high and high score groups. However,

information is lost and hence this approach is an inefficient use of the available data.

1.2 Examples

In this section four discrete datasets from the fields of epidemiology and child health

are presented; these will be used to illustrate the statistical methods shown in this

thesis.

1.2.1 UK Surnames distributions

Surnames have been used since the 19th century to understand the relationships between

population subgroups (Darwin, 1875) at regional or national levels (Colantonio et al.,

2003; Lasker, 1985). An established relationship exists between surname frequencies,

geographic distributions and the ethnic and genetic structures in a population (Piazza

et al., 1987). Surnames are used in the field of child health as indicators of ethnicity

in probabilistic record linkage (Cook et al., 1972), for example in studies of childhood

cancer (Rankin et al., 2008; Duncore et al., 2008). Surnames are often patrilinearly

inherited so they correlate well with Y-chromosomes (Jobling, 2001) and can be used

to identify genetic factors in certain diseases/conditions. For example, a study of

incidence of suicide in Austria used surname frequencies to represent the genetic

structure of the general population and found that differences in regional suicide rates

correspond to patterns of surname distributions (Voracek and Sonneck, 2007).

The data on surnames used in this thesis is from a study on the quantitative properties

of the geographic and statistical distributions of surnames in the UK (McElduff et al.,

2008). The data is taken from the 2001 UK electoral register, which is a public

register containing the names and addresses of all adults (over the age of 16) that

are registered to vote in any type of UK elections; this includes nationals of the UK,
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Commonwealth countries and the European Union. In addition to registered voters,

the companies which distribute the electoral register supplement it with additional

residents not registered to vote which they source from commercial surveys and credit

scoring databases. The resulting database is known as the ’enhanced electoral register’,

and the version used here was purchased by University College London (UCL) Department

of Geography for research purposes. The 2001 UK surnames distribution is the last

version of this dataset before opting out of the electoral register was made possible by

the data protection act and is therefore the most complete data source of names and

locations publicly available in recent years.

Within the UK enhanced electoral register there are 434 districts, each of which is

an administrative subdivision corresponding to a Local Authority or their equivalent.

These districts can be grouped into 13 regions according to the official Government

Office Regions which are used by the Office for National Statistics (ONS)

(http://www.statistics.gov.uk/geography/gor.asp): nine English: North East, North West,

Yorkshire and Humberside, East Midlands, West Midlands, the East of England, London,

South East and South West; Wales; Scotland; Northern Ireland and the Channel Islands.

The dataset contains one record per person detailing their surname and location, both

as a district and a region of the UK. Hence this dataset can be used to view the national

distribution of surname frequencies across the UK.

There were a total of 45,690,258 people comprising the enhanced electoral register

of residents in the UK in 2001 with a total of 828,130 different surnames. Figure 1.1

shows the distribution of the UK surnames frequencies on a log-log scale. The y-axis

shows the number of different surnames in the UK and the x-axis their frequency in

the population. For instance, of the total number of different surnames, 431,554 were

unique (i.e. total frequency of one), representing 52.11% of the total surnames but

only 0.94% of the population. The percentage of the population with surnames that

occur only twice is 0.26%. The very long right-hand tail corresponds to surnames

shared by a large number of people, for instance, the most frequent surname in the

UK, Smith, is shared by 555,982 people. On average, a surname is bourne by 183.95
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Figure 1.1: UK Surnames frequencies.

27



persons (median =1), though the extreme skewness of this distribution (SD=6767.775,

(Q0.25,Q0.75)=(1,4), IQR=3) makes this figure rather meaningless. The skewness coefficient1

value of 58.94 highlights the very large positive skew in the distribution and the kurtosis

coefficient2 value of 3691.12 reflects the peakedness due to the high frequency of

unique surnames in the distribution.

England Northern Ireland Scotland Wales
1 Smith (1.26) Wilson (0.75) Smith (1.28) Jones (5.75)
2 Jones (0.75) Campbell (0.75) Brown (0.94) Williams (3.72)
3 Taylor (0.59) Kelly (0.74) Wilson (0.89) Davies (3.72)
4 Brown (0.56) Johnston (0.69) Robertson (0.78) Evans (2.47)
5 Williams (0.39) Moore (0.62) Thompson (0.78) Thomas (2.43)
6 Wilson (0.39) Thompson (0.61) Campbell (0.77) Roberts (1.53)
7 Johnson (0.37) Smyth (0.60) Stewart (0.73) Lewis (1.53)
8 Davies (0.34) Brown (0.59) Anderson (0.70) Hughes (1.23)
9 Robinson (0.32) O’Neill (0.57) Scott (0.55) Morgan (1.16)
10 Wright (0.32) Doherty (0.54) Murray (0.53) Griffiths (0.96)
11 Thompson (0.31) Stewart (0.54) MacDonald (0.52) Edwards (0.93)
12 Evans (0.30) Quinn (0.51) Reid (0.52) Smith (0.85)
13 Walker (0.30) Robinson (0.50) Taylor (0.49) James (0.82)
14 White (0.30) Murphy (0.49) Clark (0.47) Rees (0.81)
15 Roberts (0.28) Graham (0.48) Ross (0.43) Jenkins (0.69)
16 Green (0.28) Martin (0.45) Young (0.42) Owen (0.67)
17 Hall (0.28) McLaughlin (0.45) Mitchell (0.41) Price (0.67)
18 Wood (0.27) Hamilton (0.44) Watson (0.41) Phillips (0.65)
19 Jackson (0.27) Murray (0.43) Paterson (0.40) Morris (0.63)
20 Clarke (0.26) Hughes (0.41) Morrison (0.40) Richards (0.55)

Table 1.1: Top surnames by country. Figures in parentheses are percentages.

Table 1.1 gives the percentages of the population with the top 20 ranked surnames

for each country in the UK. Wales has the highest cumulative percentage for these

20 surnames (31.6%) followed by Scotland, Northern Ireland and England (12.40%,

11.51% and 8.30%, respectively.) These figures highlight the much lower diversity

1The skewness coefficient is given by the standardized third central moment of a distribution and is
a measure of symmetry (Groeneveld and Meeden, 1984). A positive skewness coefficient indicates a
distribution with a long right tail, whilst a negative skewness indicates a distribution with a long left tail;
zero corresponds to symmetric distributions.

2Similarly, the kurtosis coefficient is the standardized fourth central moment of a distribution
(Groeneveld and Meeden, 1984). The kurtosis is a measure of whether the data are peaked or flat
relative to a normal distribution, i.e. datasets with high kurtosis (leptokurtic) tend to have a distinct peak
near the mean and have heavy tails. Datasets with low kurtosis (platykurtic) tend to have a flat top near
the mean rather than a sharp peak. This coefficient is often expressed with respect to 3, which is its
value for the (mesokurtic) Normal distribution.
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of surnames in Wales. Examination of the 20 most common surnames reveals that

all of them originate from the British Isles. For example Jones, Williams and Evans

are considered to be of Welsh origin, whereas the names Robertson, Thomson and

Campbell are considered to be of Scottish derivation. Similarly, Irish surnames (e.g.

Kelly, ONeill and Doherty) and Scottish surnames (e.g. Campbell, Johnston and

Thompson) rank highly in the top surnames in Northern Ireland. English origin surnames,

however, occur in all four UK countries: Smith (or its variant Smyth) and Brown

arise in the top 20 surnames for all countries. Some surnames of Scottish or Welsh

origin also appear in the top 20 surnames of England and, more markedly, of Northern

Ireland.

1.2.2 Cysts in steroid treated fetal mouse kidneys

A pregnant woman’s diet may affect kidney development of her unborn child and

may lead to the infant developing kidney problems. It has been shown that when a

pregnant mother eats a low protein diet, cell survival and gene expression are altered

during kidney development (Welham et al., 2002, 2005). Other studies indicate that

a low protein diet causes a higher proportion of the mother’s corticosteroids to be

exposed to the foetus (Langley-Evans et al., 1996) and it is thought that this increase

of corticosteroid exposure may directly influence fetal kidney development.

In a study by Chan et al. (2010), developing embryonic mouse kidneys were cultured

in different steroids to help understand how a mother’s diet could lead to the offspring

developing kidney problems in later life. Cultured embryonic mouse kidneys were

subjected to steroids and the number of cysts counted after six days, a high number

of cysts indicating abnormal kidney growth. The analysis compared counts of cysts

from n = 111 steroid treated kidneys and n = 103 untreated (control) kidneys. Figure

1.2 gives the distribution of the number of cysts in kidneys in the steroid-treated and

control groups.
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Figure 1.2: Histograms of counts of cysts in steroid treated and control foetal mouse
kidneys.

Steroid Control
Mean 1.55 0.15
(SD) (2.98) (0.51)
Median 0 0
Interquartile range 2 0
(lower quartile, upper quartile) (0,2) (0,0)
Minimum, Maximum 0, 19 0, 3
Percentage of zeroes 58.56 91.26

Table 1.2: Summary statistics for counts of cysts in kidneys for steroid treated and
control groups. 30



Summary statistics for the steroid treated and control kidney groups are shown in

Table 1.2. The mean number of cysts was 0.15 for controls and 1.55 for treated mice

kidneys, although the medians are both equal with values of 0. Summary statistics for

the dispersion in the steroid treated group (SD=2.98, (Q0.25,Q0.75)=(0,2), IQR=2) are

much higher than that of the control group (SD=0.51, (Q0.25,Q0.75)=(0,0), IQR=0). In

each group, the majority of kidneys had no cysts (58.56% in the steroid groups and

91.26% in the control), although there were a few kidneys in the steroid-treated group

with large cysts counts. In the steroid-treated group, one kidney had a value of 19 cysts

which was much higher than the maximum number of cysts found in the control group

kidneys (maximum=3).

1.2.3 Electroencephalographic seizures in paediatric coma patients

Around 0.5% of patients admitted to paediatric intensive care units are recognised to

have clinical seizures (Valencia et al., 2006). There are few studies on the incidence of

clinical or electroencephalographic seizures (ES) or status epilepticus (a condition in

which the brain is in a state of persistent seizure) in acute paediatric encephalopathies

(a dysfunction in the central nervous system). Mortality and morbidity for status

epilepticus in children is known to be related to aetiology (Raspall-Chaure et al.,

2006). The availability of electroencephalographic (EEG) monitoring has enabled

the detection of ES in comatose patients. The dataset presented in this section forms

part of a study using continuous EEG monitoring to document the incidence of ES in

unconscious children.

Data from 184 patients was collected from three centres. There were 141 children

who were treated in two UK paediatric intensive care units between 1982 and 1990

(comprising 15 neonates with cardiac disease plus 126 children recruited for a study on

hypoxic-ischemic encephalopathy), together with 43 patients entering a high dependency

hospital unit in Kenya in 1990. Children were monitored continuously using EEG

machines and the number of ES was recorded until movement was detected or their
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condition became fatal. The duration of monitoring was recorded for each patient.

There are nine explanatory variables associated with the number of ES included

in the dataset: The Paediatric Index of Mortality (PIM) (mean=45.47, SD=26.95);

Adelaide Coma Scale scores (mean=5.43, SD=2.54); temperature on admission (mean=37.31,

SD=1.92); centre (UK=126, UK neonates=15, Kenya=43); aetiology (Encephalitis=9,

Head Injury=11, Hypoxic-ischaemic=108, Malaria=42, Meningitis=4, Reyes=3, Other=7);

EEG classification (Burst suppression=15, Diffuse slowing=29, diffuse slowing with

some fast activity=68, Isoelectric=7, Low amplitude=30, Normal=35); presence of

clinical seizures (yes=86, no=98); the use of the drugs benzodiazepine (yes=27, no=157)

or phenytoin/phenobarbitone (yes=19, no=165) to terminate seizures before EEG monitoring

occurred.

Number of ES

F
re

qu
en

cy

0 100 200 300 400 500 600

0
50

10
0

15
0

Figure 1.3: Number of ES in paediatric coma patients.

Figure 1.3 shows a histogram of the distribution of the number of ES in the complete

dataset. The mean average number of ES is 16.58 (SD=59.87) with median 0 ((Q0.25,Q0.75)=(0,3),

IQR=3) and a large right skew in the distribution. The skew is due to a small number

of severely ill patients who have a very high number of ES. Most of the counts of

ES range between 0 and 218, with two extreme observations at 458 and 531. There
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is a high proportion of zeros present in the data (63.2%) and 87.5% of patients have

numbers of ES between 0 and 20. Both the skewness and kurtosis coefficients for the

number of ES are very high at 6.22 and 47.71. The duration of monitoring (hours)

(mean=61.65, SD=76.23) ranges between 2 and 630. The number of ES provides an

example of a discrete variable that can be modelled as rates by dividing the number

of ES by the duration of monitoring so that analyses can be adjusted for the variable

durations of monitoring.
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Figure 1.4: Rate of ES in coma patients.

Figure 1.4 gives a histogram of the rates of ES in coma patients. Rates of ES

vary between 0 and 3.82 ES per hour with the median rate of ES is 0 ES per hour

((Q0.25,Q0.75)=(0,0.08), IQR=0.08). The rates of ES are again highly skewed, with a

high number of patients having low rates of ES per hour. A high proportion of the rates

are zero (63.2%) due to the highly skew distribution of the counts of ES. Note the loss

of information when analysing this dataset as rates, since a zero count translates to a

zero rate irrespective of length of monitoring, yet zero events in 1 hour, for example, is

clearly different to zero events in 100 hours. Hence the preferable way of adjusting for

length of observation is to model the counts with a fixed-coefficient variable to adjust
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for the rate of duration (known as an offset) (Hilbe, 2007, P.45).

1.2.4 Picture Exchange Communication System (PECS) training

in teachers of autistic children

The prevalence of autism spectrum disorder (ASD) is around 1% of the childhood

population aged 9-10 in the South Thames area of the UK which comprises of inner

and outer South London, Kent, East and West Sussex and Surrey (Baird et al., 2006).

Around 25% of individuals with ASD are without functional speech (Volkmar et al.,

2004). The Picture Exchange Communication System (PECS) aims to teach spontaneous

social communication skills by means of symbols or pictures. Teaching relies on

behavioural principles, particularly reinforcement techniques. A study on the effectiveness

of PECS training for teachers of children with autism (Howlin et al., 2007) measured

the frequency of initiations, speech, and pictures/symbols use in a longitudinal study of

84 children (average age 6.8 years) identified from specialist education schools located

in Greater London and South East England. Teachers and parents of the children from

the 18 participating classes received formal training in the use of PECS. The study

consisted of three groups of children, assessed over 3 time periods (Table 1.3) with

each group having a different treatment schedule. Observations are clustered within

individuals (i.e. measurements were taken for each child at time periods 1, 2 and 3)

which are clustered within class groups within three treatment arms.

Time 1 Time 2 Time 3
(Baseline) (Treatment Period One) (Treatment Period Two)

Immediate
No treatment Treatment No treatmentTreatment

Group
Delayed

No treatment No treatment TreatmentTreatment
Group
No

No treatmen No treatment No treatmentTreatment
Group

Table 1.3: The effectiveness of PECS training: Study Design

34



05101520

N
um

be
r 

of
 in

iti
at

io
ns

Frequency

0
3

5
8

10
13

33

T
im

e 
1

T
im

e 
2

T
im

e 
3

In
iti

at
io

ns
: I

m
m

ed
ia

te
 T

re
at

m
en

t G
ro

up

05101520

N
um

be
r 

of
 in

iti
at

io
ns

Frequency

0
3

5
7

13
16

29
39

T
im

e 
1

T
im

e 
2

T
im

e 
3

P
E

C
S

: I
m

m
ed

ia
te

 T
re

at
m

en
t G

ro
up

05101520

N
um

be
r 

of
 in

iti
at

io
ns

Frequency

0
2

4
6

9
13

27
31

34
40

43

T
im

e 
1

T
im

e 
2

T
im

e 
3

S
pe

ec
h:

 Im
m

ed
ia

te
 T

re
at

m
en

t G
ro

up

05101520

N
um

be
r 

of
 in

iti
at

io
ns

Frequency

0
1

2
3

4
5

6
10

16

T
im

e 
1

T
im

e 
2

T
im

e 
3

In
iti

at
io

ns
: D

el
ay

ed
 T

re
at

m
en

t G
ro

up

05101520

N
um

be
r 

of
 in

iti
at

io
ns

Frequency

0
1

2
3

4
5

6
9

10
13

15
17

T
im

e 
1

T
im

e 
2

T
im

e 
3

P
E

C
S

: D
el

ay
ed

 T
re

at
m

en
t G

ro
up

05101520

N
um

be
r 

of
 in

iti
at

io
ns

Frequency

0
1

2
4

5
6

10
12

21

T
im

e 
1

T
im

e 
2

T
im

e 
3

S
pe

ec
h:

 D
el

ay
ed

 T
re

at
m

en
t G

ro
up

05101520

N
um

be
r 

of
 in

iti
at

io
ns

Frequency

0
1

2
3

4
5

6
9

12
18

21

T
im

e 
1

T
im

e 
2

T
im

e 
3

In
iti

at
io

ns
: N

o 
Tr

ea
tm

en
t G

ro
up

05101520

N
um

be
r 

of
 in

iti
at

io
ns

Frequency

0
2

4
7

12
19

24
30

T
im

e 
1

T
im

e 
2

T
im

e 
3

P
E

C
S

: N
o 

Tr
ea

tm
en

t G
ro

up

05101520

N
um

be
r 

of
 in

iti
at

io
ns

Frequency

0
1

3
4

5
7

8
9

13
15

20

T
im

e 
1

T
im

e 
2

T
im

e 
3

S
pe

ec
h:

 N
o 

Tr
ea

tm
en

t G
ro

up

Figure 1.5: Outcome measure (frequency of initiations, PECS use and speech) as
frequencies by treatment group by time period.
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Time Period 1 Time Period 2 Time Period 3
Frequency of initiations
Immediate Treatment Group

4 5 3
8.25 (1.75,10) 10.5 (3, 13.5) 6 (2,8)

Delayed Treatment Group
1 2 5.5

3 (0,3) 3 (0, 3) 6.5 (2.25, 8.75)
No Treatment Group

3.5 4 4
3 (0,3) 4.5 (1.75, 6.25) 5.5 (2, 7.5)

Frequency of PECS use
Immediate Treatment Group

4.5 6.5 3
11.25 (0.25,11.5) 8 (2, 10) 6 (2, 8)

Delayed Treatment Group
3 0.5 9

4 (1,5) 4 (0, 4) 11 (4, 15)
No Treatment Group

2 4.5 3.5
3.5 (0.75,4.25) 5.25 (2, 7.25) 7.25 (0, 7.25)

Frequency of speech
Immediate Treatment Group

3 5 4
12 (0, 12) 13.25 (0, 13.25) 9 (1, 10)

Delayed Treatment Group
0 0 0

2 (0, 2) 2 (0, 2) 3.75 (0, 3.75)
No Treatment Group

3 5 4.5
8.25 (0, 8.25) 8.25 (0, 8.25) 9.25 (0.75, 10)

Table 1.4: Medians of frequencies of initiations, PECS use and speech by treatment
group by time period. IQR is given in bold and 25% and 75% quantiles are given in
parenthesis.
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The outcome measures recorded included the frequency of initiations, pictures/symbols

use and speech during snack time (mean length=11.1 mins, sd=3.4 mins). Baseline

measures were also recorded for each child: the ADOS-g language rating on the

Autism Diagnosis Observation Schedule-Generic Module One (Lord et al., 1999) was

used as an index of expressive ability, the Visual Reception and Fine Motor sub-scales

of the Mullen scales of Early Learning (Mullen, 1999) provides a measure of non-verbal

developmental quotient (NVDQ) and also age at baseline (time period one).

Figure 1.5 plots the frequencies of initiations, pictures/symbols use and speech

(columns) for the three treatment schedules: immediate, delayed and no treatment

groups (rows). For each outcome measure and treatment schedule, the frequencies are

plotted for the three time periods in black, blue and red, respectively. The distributions

of the frequencies of initiations, use of PECS and speech across all treatment groups

and time periods are skewed, i.e. there are high proportions of students achieving low

counts and low probabilities of those with high counts. The medians, 25% and 75%

quantiles and the IQR of the frequencies (Table 1.4) show variations in the distributions

across treatment schedules across time periods.

Frequencies were transformed into rates by dividing the frequencies by length

of snack break time. For the initial published analyses, the rates were divided into

four ordered categories (zero, 0.01 to 0.5 per minute, 0.5 to 1 per minute and >1 per

minute.) and analysed using multilevel ordinal logistic regression (Howlin et al., 2007)

to allow for within-child and within-class correlations to be accounted for in the model.

Such categorisation obviously reduces the information and the three discrete variables

could be directly modelled as rates to provide a better description of the data.

1.3 Overview of Thesis

The examples given in Section 1.2 illustrate the type of discrete datasets that occur

in epidemiological and child health research. A wide range of probability models

for discrete data exist; however many are not readily available in statistical software

packages. The aim of this thesis is to develop software to analyse count data; this will
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provide a tool kit of methods for clinicians and statisticians in order to facilitate data

interpretation.

Chapter 2 explores discrete probability models, including commonly found features

of discrete data, modifications to discrete probability distributions and families of

distributions. A selection of discrete probability distributions is then presented. Estimation

methods and frameworks for fitting these models are described in the first two sections

of Chapter 3, followed by a discussion on diagnostic methods for goodness-of-fit,

model comparisons and outlier detection. A review of methods currently available for

discrete models in statistical software packages are detailed in the first part of chapter

4. The aim of the second part of that chapter is to identify gaps in the software currently

provided for discrete models.

The project’s main goals are to create three libraries within the framework of the

R project for statistical computing. Chapter 5 presents the first of these libraries,

called the Altmann library (named after Gabriel Altmann one of the authors of the

Thesaurus of Discrete Probability Distributions (Wimmer and Altmann, 1999)), which

fits and compares a wide range of univariate discrete models. The second library

developed in this thesis is the discrete.diag library which provides goodness-of-fit

and outlier detection diagnostics for these models and is described in chapter 6. The

final library discrete.reg given in chapter 7, fits regression models to discrete

response variables following the Generalized Additive Models for Location, Scale and

Shape framework (Stasinopoulos and Rigby, 2007) and is available as the gamlss

add-on package in R (Stasinopoulos and Rigby, 2008). Applications of the tools

provided by the R libraries are presented in the final sections of chapters 5-7 for the

discrete datasets given as examples in Section 1.2. Chapter 8 has a discussion of the

libraries and statistical methods presented, and concludes by outlining the scope for

further work in this area.
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Chapter 2

Discrete Probability Distributions

This chapter provides an overview of discrete probability models. In the first section,

common features of discrete data are described, including overdispersion, value-inflation,

long tails and truncation. Notation and special mathematical functions used throughout

this thesis are then presented. In the following sections, a selection of discrete probability

distributions is given together with descriptions of modifications to discrete probability

distributions and details of families. For each model, the distribution is defined and

properties are specified. Raw and central moments for the distributions are additionally

presented in Appendix A. The reader may omit Sections 2.1.6-2.7 without any loss of

continuity and use these sections as a reference for the following chapters, if desired.

2.1 Definitions

In this section, several common features of skew discrete random variables are defined

including overdispersion, value-inflation, long tails and truncation. The notation used

throughout this thesis is detailed and the basis of statistical concepts of probability

distributions and measures used to characterise discrete models are explained.

2.1.1 Overdispersion

Overdispersion occurs where there is greater variability in a dataset than expected

under a simple statistical model (normally Poisson), i.e. the variance in a dataset is
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greater than the mean (Cox, 1986; Dobson, 2002). The presence of overdispersion

(also known as extra-variation) in discrete data causes summary statistics resulting

from a simple statistical model to be larger than anticipated and can lead to incorrect

inferences under such a simple hypothesis. For example, a covariate may seem to be

a significant predictor in an analysis when it is not (Hilbe, 2007). There are many

causes of overdispersion in data; Hilbe (2007) identifies two approaches to dealing

with overdispersion, where causes may be categorized as either apparent or real.

Apparent overdispersion occurs where the source of extra-variation results from

the data’s structure, sampling or methods of analysis used (Hilbe, 2007). Such cases

of overdispersion can be removed by adjusting the model’s structure to account for the

extra-variation in the dataset. Multilevel experiments often yield repeated measurements

which are highly correlated and may lead to overdispersion (Hilbe, 2007). For example,

the study of Picture Exchange Communication System (PECS) training in Autistic

children in Section 1.2.4 in Chapter 1 presents a multilevel experiment which yields

repeated outcome measures across three treatments schedules, over three time periods.

The frequency of initiations, PECS use and speech each have overall mean frequencies

of 5.39, 6.27 and 6.26, with variances 39.73, 69.62 and 108.88, indicating a large

amount of overdispersion. In this example, children are clustered within classes and

within treatment schedules. Overdispersion present in the outcome variables of multilevel

datasets may be accounted for by incorporating random effects terms into the model.

Other cases which may cause overdispersion to be apparent in the data, include outlying

observations, incorrectly specified models such as incorrect parametrizations in analyses

(omitting important explanatory variables or interaction terms), or erroneously specifying

the relationship between the observed counts and explanatory variables (Hilbe, 2007).

Real causes of overdispersion occur where extra-variation in an explanatory variable

exists but cannot be accounted for in the structure of the model. Such causes of

overdispersion are due to the underlying data-generating mechanism and therefore

cannot be accounted for solely by adjusting the model structure but through the use

of models specifically designed for overdispersed count data. For instance, the mean
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number of counts of cysts in foetal mouse kidneys (Section 1.2) in the group of kidneys

subjected to steroids is 1.55, with variance 8.88. Since no covariates have been recorded

or multilevel structure observed for this dataset, this example illustrates a discrete

variable where the overdispsersion present cannot be accounted for in the experiment’s

design.

2.1.2 Value-inflation

Many epidemiological or clinical datasets exhibit value-inflation i.e. an excess number

of observations of a particular value. Value-inflation occurs when a population actually

consists of two latent sub populations, with observations from one population only

taking a certain value whereas observations from the other population can take any

value on a discrete scale. This leads to a distribution with an excess of observations at

one value, which is not easily analysed using standard models. An example of extreme

value-inflation can be seen in the UK surnames frequencies (Section 1.1) (McElduff

et al., 2008). In this distribution, most surnames occur relatively few times with the

majority of surnames occurring only once (52.11%) resulting in a distribution that is

value-inflated at one.

The most common type of value inflation is zero-inflation in which there is a sub

population in the dataset that always take the value zero, whilst the remainder of the

dataset can take any integer value from zero upwards. Zero-inflated datasets are often

heavily weighted to zero and lower values with an upper tail. The distribution of the

number of cysts in steroid treated and control embryonic mouse kidneys is shown in

Section 1.2 of Chapter 1 (Chan et al., 2010; McElduff et al., 2010). In this dataset, an

excess number of kidneys were recorded with zero cysts (74.3%) , suggesting two sub

populations of mice: those with kidneys which can/do produce cysts and those which

cannot and therefore always have zero cysts. Zero-inflated datasets are commonly

found in epidemiology and child health.

The inherent data-generating mechanism underlying the populations behind the

distribution of a dataset may not always be obvious. In the cysts example, it is clear
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that two sub populations exist (kidneys that sometimes produce cysts and kidneys that

cannot), however in the case of the surname frequencies there are not any obvious

mechanisms motivating potential sub populations to generate the value-inflation exhibited

apart from the excess of unique surnames. Although the sub populations within the

surnames distribution may not be obvious they do exist resulting from, for example,

immigration or social mobility. However, since the value-inflation occurs due to surname

diversity, it is very difficult to characterise this in terms of sub populations.

2.1.3 Long tails

Data with long tails may also be a feature of many epidemiological and clinical datasets.

Long-tailed distributions occur in discrete datasets where the majority of the population

take values around the average whilst a few large, often sparsely distributed values

occur. Although relatively few, these observations may be crucial in analyses and may

provide valuable information. However, such datasets cannot be easily modelled using

standard discrete distributions.

An example of a distribution with a long tail is the counts of electroencephalographic

seizures (ES) in coma patients as described in Section 1.3. The distribution of counts

of ES provides an example where there is a large amount of variation due to a small

number of severely ill patients which admit a higher number of ES than the majority

of patients. This results in the highly skew distribution with a long tail seen in Figure

1.3, where most of the counts of ES ranges between 0 and 218, with two extreme

observations with frequencies of ES of 458 and 531. This dataset is also zero-inflated

due to the high proportion of zeros present (63.2%).

2.1.4 Truncation

A distribution is truncated if the range of possible values that observations can take is

bounded, due to either being impossible to observe or to those values being ignored

(Johnson et al., 2005). Distributions can be truncated from below, resulting in left-truncation

where observations cannot occur below a certain value or truncated above, known as
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right-truncation, where above a certain range values are not present (Rose and Smith,

2002). Doubly-truncated distributions occur where the range of observations are both

left and right truncated.

An example of a truncated data set is the numbers of births occurring in the UK and

Ireland to HIV-infected women reported to the National Study of HIV in Pregnancy and

Childhood, between 2000 and 2010 (French, 2011). In this dataset we only observe

data from women who have given birth in the UK and this is a design condition which

truncates the distribution of number of children born to HIV infected women to values

of above 0.

2.1.5 Notation

Random variables are denoted by capital letters and their observed values by lower

case letters. A random variable Y is said to be discrete if its realizations come from

a finite sample space or are countable in an infinite sample space (Horgan, 2009, p.

133). A discrete random variable can be defined as a function,

Y : Ω 7−→ RY , (2.1)

whereRY ⊂ Zt gives the range of the values of Y and Ω denotes the sample space. An

example of a discrete variable in a infinite sample space is the length of stay of patients

(in whole days) in hospital which may take values in the rangeRY = {0, 1, . . .}. On the

other hand, the number of correct responses on a test consisting of 10 questions is an

example of a discrete variable with a finite sample space, where Ry = {0, 1, . . . , 10}.

The probability density function (pdf) also frequently known as the probability

mass function (pmf) of a discrete random variable Y is a function fY : RY 7→ [0, 1]

defined as:

fY (y; θ) = P(Y = y) = py , (2.2)

where θ is the set of parameters for the model and
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∑
y∈RY

P (Y = y) = 1 (Zelterman, 2004).

The cumulative distribution function (cdf) or the cumulative mass function (cmf)

for a discrete variable Y is defined by:

FY (y) = P(Y ≤ y) =

y∑
j=0

pj , (2.3)

(Horgan, 2009; Zelterman, 2004).

The mean of a discrete random variable, Y , is defined as the weighted average

across all possible values,

µ = E(Y ) =
∑
y∈RY

y P(Y = y) (2.4)

(Rose and Smith, 2002). In general, the expected-value, denoted by E(), of a function

g(Y ), of a random variable Y is the weighted sum of its values,

E(g(Y )) =
∑
y∈RY

g(y) P(Y = y) (2.5)

(Horgan, 2009).

The probability generating function (pgf) gives an alternative representation of the

pdf and provides a smooth transformation of the probabilities. The pgf, denoted by

GY (t), is:

GY (t) = E[tY ] =
∑
y∈RY

ty P(Y = y) , (2.6)

The pgf is a useful tool for analysing discrete distributions, as it is often easier to

manipulate than the pdf for many models.

A moment provides a quantitative measure of the shape of pdf. The jth order raw

moments of a random variable Y with pdf fY , given by µ′j is:

µ′j = E[Y j] =
∑
y∈RY

yj P(Y = y) , (2.7)

and is also known as the jth moment or the jth moment about zero (Zelterman, 2004).
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Distributions can be characterized by a number of statistics such as the mean, variance

or skewness, and the central moments of Y denoted by µj define them. Central

moments or moments about the mean are:

µj = E
[
(Y − E (Y ))j

]
. (2.8)

The first-order moment (i.e. j = 1) gives the mean or expected-value of Y ,

µ = E[Y ] =
∑
y∈RY

y P(Y = y) . (2.9)

The variance of Y is defined as:

Var[Y ] = E[(Y − µ)2] = E[Y 2]− µ2 = µ′2 − µ2 = µ2 , (2.10)

i.e. the second moment about µ. The skewness coefficient γ1 can be calculated from

the standardized third central moment as follows,

γ1 = E

[(
Y − µ
σ

)3
]

=
E[(Y − µ)3]

Var[Y ]
3
2

=
µ3

σ3
, (2.11)

where µ3 is the third moment about µ and σ is the standard deviation. The standardized

fourth central moment can be used to calculate the kurtosis coefficient, γ2, given by,

γ2 = E

[(
Y − µ
σ

)4
]

=
E[(Y − µ)4]

Var[Y ]2
=
µ4

σ4
, (2.12)

where µ4 is the fourth moment about µ and σ again is the standard deviation.

The moment generating function (mgf) provides an alternative definition of a distribution’s

pgf. The general form for the mgf MY (t) for a discrete random variable is,

MY (t) = E[etY ] =
∑
y∈RY

ety P(Y = y) . (2.13)

The jth raw moment of a distribution can be found by differentiating the mgf and
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solving it at zero, as follows

E
[
Y j
]

= M
(j)
Y (0) =

∂jMY (t)

∂tj

∣∣∣∣
t=0

. (2.14)

The mgf and pgf are related as follows,

MY (t) = GY (et) . (2.15)

Indices for discrete distributions

This section details measures which describe discrete distributions: the overdispersion,

zero-inflation, third central moment inflation indices, Gini’s coefficient and the surprise

index.

Overdispersion Index

A useful quantity to characterize dispersion in a distribution is the index of dispersion,

or overdispersion index given by,

OD =
σ2

µ
, (2.16)

(Nikoloulopoulos and Karlis, 2008a). When OD = 1 the mean and variance are equal,

and there is therefore no overdispersion. Values of OD > 1 indicate overdispersion is

present in the model, whilst where OD < 1 the model is underdispersed. The index

is widely used in the field of ecology as a measure of clustering (overdispersion) or

repulsion (underdispersion) (Johnson et al., 2005).

Zero-inflation Index

The zero-inflation index introduced by Puig (2003) concerns the shape of the head of

the distribution relative to its mean and is defined as,

ZI = 1 +
log(p0)

µ
. (2.17)

46



where p0 is the probability of a value of zero. When Y follows a Poisson distribution

thenZI = 0 and if the distribution is zero-inflated the index isZI > 1 (Nikoloulopoulos

and Karlis, 2008a).

Third central moment inflation index

The third central moment inflation index was introduced by Puig and Valero (2006)

and provides another measure of skewness in the data. Denoted by κ3 the index is

given by

κ3 =
µ3

µ
− 1 (2.18)

(Nikoloulopoulos and Karlis, 2008b). For the Poisson distribution κ3 equals 0, larger

values indicates a higher skew in the distribution.

Gini’s coefficient

Gini’s coefficient measures how large differences between observations are and therefore

provides a measure of variability. The coefficient is given by,

gini(y) = 1−
∑∞

t=0 Sy(t)
2

E(Y )
, (2.19)

where Sty(t) = P (Y > t) is the survival distribution of a discrete random variable Y

(Nikoloulopoulos and Karlis, 2008b). Values of Gini’s coefficient are between 0 and

1, with large values of Gini’s coefficient indicating shorter tails.

Surprise Index

The Surprise Index (SI) is an empirical measure of how unexpected a value of a

random variable is. An event with low probability is considered to be ‘rare’; but

Weaver questioned whether a rare event is always surprising. For example, winning

the lottery (an interesting event) involves choosing the correct combination of a small

set of numbers out of larger set of possible numbers. Whilst winning the lottery is

certainly a rare event, it is not ‘surprising’ that somebody wins the lottery as each

47



combination has an equal probability of occurring. Another well-known experiment,

tossing a coin, may result in three possible outcomes heads, tails and edge and these

occur with probabilities
{

1−ε
2
, 1−ε

2
, ε
}

, where ε, the probability a coin lands on its edge,

is very small. A coin landing on its edge would thus be both a ‘rare’ and ‘surprising’

event as the probability of this occurring is very small compared with the other possible

alternatives.

Let Vn, be a random variable representing the result of an experiment resulting in

one of n possible outcomes, with probabilities of occurrence p1, p2, . . . , pn. Supposing

the event Vi with probability pi actually occurred, Weaver (1948) defined an index to

measure how surprising the event Vi is as:

SIi =
E(p)

pi
=
p2

1 + p2
2 + . . .+ p2

n

pi
. (2.20)

The SI compares the probability of Vi occurring with the expected value of the model’s

probability. Thus a SIi = k means that the probability of Ei is k times smaller than

the probability of all outcomes that the model refers to. If the SI is large then it can

be considered as ‘surprising’ and therefore the SI measures whether the probability pi

is small compared with its expected probability E(p). Weaver (1948) suggested the

somewhat arbitrary categories shown in Table 2.1 to determine if a value of SI may be

considered as ‘large’ enough to correspond to a surprising event.

< 5 Not surprising
10 Begins to be surprising

1,000 Definitely surprising
1,000,000 Very surprising

1012 Miracle!

Table 2.1: Weaver (1948)’s interpretation of SI values.

The SI can be used to assess whether a particular observation can be considered

surprising assuming that the data come from a particular discrete probability model

(Weaver, 1948; Redheffer, 1951). We can calculate the SI for a discrete distribution
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with pdf fY (y; θ), as follows,

SIi =
E (fY (y; θ))

fY (y; θ)
=

∑
Y fY (y; θ) fY (y; θ)

fY (y; θ)
(2.21)

where θ denotes the model’s parameters. So far, for discrete distributions, analytical

expressions of Surprise Indices have only been published for the Binomial and Poisson

distributions, obtained by Redheffer (1951).

2.1.6 Special Functions

A large number of formulas and results are featured in this thesis, many of which

contain special functions, which are defined in this section.

Binomial coefficient
(
n
m

)
The binomial coefficient

(
n
m

)
gives the number of different possible combinations of

m items from n different items:

(
n

m

)
= nCm =

n!

m!(n−m)!
=

Γ(n+ 1)

Γ(m+ 1) Γ(n−m+ 1)
(2.22)

(Zelterman, 2004; Wimmer and Altmann, 1999; Johnson et al., 2005).

Binomial expansion ((a+ b)n)

The binomial theorem describes the algebraic expansion of powers of a binomial (a+

b)n for a positive integer n as follows,

(a+ b)n =
n∑
j=0

(
n

j

)
an−j bj (2.23)

(Johnson et al., 2005).
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Polylogarithm (Lis(z))

The polylogarithm (also known as Jonqui’s function) is a special function Lis(z) that

is defined by the infinite sum or power series,

Lis(z) =
∞∑
k=1

zk

ks
(2.24)

(Wimmer and Altmann, 1999).

Unit step function (Ux)

The Unit step function, also called the Heaviside step function is denoted by Ux, given

by,

Ux =

 0, x < 0

1, x ≥ 0
(2.25)

The function is equal to 0 when x < 0 and 1 when x ≥ 0.

Floor and Ceiling functions, (bxc) and (dxe)

Floor and ceiling functions map a real number to the largest previous or the smallest

following integer, respectively. The floor function, bxc, is the largest integer not greater

than x and the ceiling function, dxe is the smallest integer not less than x. For example,

b5.7c = 5 and the ceiling d5.7e = 6.

Bell polynomials (Bln(x))

The Bell number of order n, Bln, is the number of ways to partition a set of n objects

and can be calculated using the recursion formula,

Bln+1 =
n∑
k=0

(
n

k

)
Blk (2.26)
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where Bl0 = Bl1 = 1 (Johnson et al., 2005). The Bell polynomial of order n , Bln(x),

satisfies the following the generating function relation,

e(et−1)x =
∞∑
n=0

Bln(x)tn

n!
(2.27)

which enables the Bell polynomial to be calculated (Johnson et al., 2005).

Pochammer Symbol ((a)j)

Pochammer’s Symbol, (a)j is used to denote ascending (or rising) factorials as follows,

(a)j = a(a+ 1) . . . (a+ j − 1) (2.28)

(Johnson et al., 2005).

Hermite polynomial (Hy(n))

The Hermite polynomial, Hy(n), is given by,

Hy(n) =

dn/2e∑
j=0

n!yn−2j

(n− 2j)!j!2j
(2.29)

(Johnson et al., 2005).

Gamma and Beta functions

Gamma function (Γ(x))

The Gamma function is given by,

Γ(x) =

∫ ∞
0

tx−1 e−t dt (2.30)

for x > 0 (Johnson et al., 2005).
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Beta function (B(a, b))

The Beta function B(a, b) is as follows,

B(a, b) =
∫ 1

0
ta−1 (1− t)b−1 dt

= Γ(a)Γ(b)
Γ(a+b)

(2.31)

where a, b > 0 (Wimmer and Altmann, 1999, pg. XXII).

Digamma (ψ(x))

The derivatives of the logarithm of Γ(x) are often required when calculating log-likelihoods

of distributions. The digamma function, ψ(x), is given by

ψ(x) =
d

dx
[logΓ(x)] =

Γ′(x)

Γ(x)
(2.32)

(Johnson et al., 2005).

Trigamma (φ′(x))

The trigamma function gives the second derivative of the logarithm of Γ(x),

ψ′ =
d

dx
[logΓ(x)] =

d2

dx2
[logΓ(x)] (2.33)

(Johnson et al., 2005).

Hypergeometric Functions

Generalized Hypergeometric functions (pFq)

The Generalized Hypergeometric function, pFq, has p numerator parameters and q

denominator parameters and is defined as,

pFq [a1, . . . ap; b1, . . . , bq] =p Fq

[
a1,...ap;x

b1, . . . , bq

]
=
∑∞

j=0
(a1)j ...(ap)j x

j

(b1)j ...(bq) j!

(2.34)
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where bi 6= 0,−1,−2, . . ., i = 1, . . . , q

Gaussian Hypergeometric function (2F1(a, b; c;x))

The Gaussian Hypergeometric function, or often more simply known as the Hypergeometric

function is denoted by 2F1 is a special case of the Generalized hypergeometric function

where p = 2 and q = 1 and has the form,

2F1(a, b; c;x) = 1 + a b
c 1!

+ a(a+1)b(b+1)
c(c+1)2!

x2 + · · ·

=
∑∞

j=0
(a)j (b)j x

j

(c)j j!
, c 6= 0,−1,−2, . . . ,

(2.35)

where (a)j is Pochammer’s symbol.

Confluent Hypergeometric function of the first kind (1F1(a; b;x))

The confluent hypergeometric function of the first kind, denoted by 1F1(a; b;x) is a

special case of the Generalized Hypergeometric function where p = 1 and q = 1. It

can be written as a series as follows,

1F1(a; b;x) = 1 + a
b 1!
x+ a(a+1)

b(b+1) 2!
x2 + . . .

=
∑∞

j=0
(a)jx

j

(b)jj!
, c 6= 0,−1,−2, . . . ,

(2.36)

where (a)j is Pochammer’s symbol (Johnson et al., 2005; Wimmer and Altmann,

1999).

Confluent hypergeometric function of the second kind (U(a, b, x))

The confluent hypergeometric function of the second kind, U(a, b, x) is given as,

U(a, b, x) =
1

Γ(a)

∫ ∞
0

e−xtta−1(1 + t)b−a−1dt (2.37)

for a > 0 and x > 0 (Johnson et al., 2005; Wimmer and Altmann, 1999).
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Bessel functions

Bessel function of the first kind (Jν(x))

The Bessel function of the first kind, Jν(x) is,

Jν(x) =
(x

2

)ν ∞∑
j=0

(−x2/4)
j

j! Γ(ν + j + 1)
(2.38)

where ν is the order of the function (Johnson et al., 2005).

Modified Bessel function of the first kind (Iν(x))

The modified Bessel function of the first kind is given by,

Iν(x) = (−i)νJν(ix) =
∞∑
j=0

x2

4

j

j!Γ(ν + j + 1)
, (2.39)

where i2 = −1 (Johnson et al., 2005).

Bessel function third kind (Kν(x))

The modified Bessel function of the third kind, Kν(·), is defined as,

Kν(x) =
π

2

I−ν(x)− Iν(x)

sin(νπ)
, (2.40)

when ν is not an integer or zero (Johnson et al., 2005; Wimmer and Altmann, 1999).

Lerch functions

Lerch function (Φ(p, a, c))

The Lerch function also known as the Hurwitz Zeta function is,

Φ(p, a, c) =
∞∑
y=1

py

(a+ y)c
, p > 0, a > 0 . (2.41)
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Riemann zeta function, (ζ(x)) and (ζ(x, a))

The Riemann zeta function, ζ(x), is as follows,

ζ(x) =
∞∑
j=1

j−x , (2.42)

for x > 1 (Johnson et al., 2005). A generalized form of the Riemann zeta function,

ζ(x, a), is defined as,

ζ(x, a) =
∞∑
j=1

(j + a)−x , (2.43)

for x > 1 and a > 0 (Johnson et al., 2005).

2.2 Basic Distributions

Several discrete distributions which have been well established in the statistical literature

are described in this section. Two important classes of pdf’s are the exponential family

and distributions generated by Urn models. Both are described in the following sections.

Exponential Family

The exponential family is a class of probability distributions which includes all distributions

(both discrete and continuous) where the pdf can be expressed in the form,

f(yi; θi) = exp [d(θi) e(yi) + g(θi) + h(yi)] , (2.44)

where d, e, g and h are known functions with the same form for all yi (Dobson, 2002).

Alternatively, this can be parametrized to include an additional dispersion parameter,

φ, that is constant for all yi and d(θ1) = θ and e(yi) = yi are replaced. Called the

“natural form” (McCullagh and Nelder, 1983), this can be written as

fY (y, θ; a, b, c, d) = exp

[
θi yi − b(θi)

a(φ)
+ c(yi, φ)

]
, (2.45)
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where a, b, c are all known to have the same form for yi. The parameter θi is known as

the canonical parameter, b(θi) is the cumulant, a(φ) is the scale parameter, equal to 1

in discrete models and c(yi, φ) is a normalization term, guaranteeing that the pdf sums

to one. In the exponential family form of the pdf the first and second derivatives of the

cumulant with respect to θ give the mean and variance:

µ = b′(θi) and σ2 = b′′(θi) . (2.46)

The exponential family of distributions provides a framework for selecting a parametrization

of the distribution via natural parameters and can be used to define sample statistics

(McCullagh and Nelder, 1983). Many well-known distributions can be expressed in an

exponential family form, including the Normal, exponential, gamma, chi-square, beta,

Bernoulli, binomial, Poisson, negative binomial and many others.

Urn Models

The concept of urn models have a very long history in probability and has been widely

applied in many fields such as genetics, capture-recapture sampling of animal populations,

learning processes and filing systems (Johnson et al., 2005) In the basic model, an

urn contains n white and m black balls. A ball is drawn randomly from the urn and

its colour observed; it is then placed back in the urn, and the selection process is

repeated. A variation is that the balls may be drawn without replacement. We are

interested in modelling, for example, the distribution of the number of white balls

after a fixed number of trials, the outcome of a fixed number of selections or the

discrete waiting time until a specified set of conditions are fulfilled. A wide variety

of well-known discrete distributions can be obtained in terms of urn models e.g. the

Hypergeometric, Binomial, Geometric, negative binomial, beta-binomial and Poisson

distributions. Pdf’s in the generalized hypergeometric family e.g. the Hermite and

Generalized Gegenbauer distributions can be generated in terms of urn outcomes.

This section presents a series of frequently applied discrete distributions that have
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been well established within the statistical literature: the Bernoulli, Binomial, Geometric,

Hypergeometric and Poisson distributions. These distributions can be modified and

form the basis of more complex discrete probability models.

2.2.1 Bernoulli (p)

The simplest example of a discrete random variable are Bernoulli random variables,

named after Jacob Bernoulli (1654-1705) (Hald, 1998)). Bernoulli random variables

have outcomesRY = {0, 1} referred to as successes and failures respectively (Zelterman,

2004). The Bernoulli distribution has one parameter p representing the probability of

success, where:

P (Y = 1) = p

P (Y = 0) = 1− p
, (2.47)

where 0 ≤ p ≤ 1 (Zelterman, 2004). The Bernoulli distribution is generated from an

urn model where a single ball is sampled from an urn containing black and white balls.

For a Bernoulli distributed random variable, Y , the pdf is given by,

fY (y; p) = P (Y = y) = py(1− p)1−y , (2.48)

where y ∈ {0, 1} and 0 < p < 1 (Wimmer and Altmann, 1999; Rose and Smith,

2002). The Bernoulli distribution plays a key role in many statistical models and is a

member of the exponential family. The pgf of the Bernoulli distribution is,

G(t) = (1− p) + p t , (2.49)

and the distribution has mgf,

M(t) = 1 +
(
et − 1

)
p . (2.50)

The mean of the Bernoulli distribution is p and the variance p(1−p). The overdispersion

index of the Bernoulli distribution is (1 − p) and since the parameter 0 < p < 1, the
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OD index indicates that the Bernoulli distribution will always be underdispersed. The

zero-inflation index is given by 1+ log(1−p)
1−p . For small values of p the ZI index indicates

large amounts of zero-inflation in the Bernoulli distribution and as p approaches 1, the

ZI index tends to 0. The SI of the Bernoulli distribution is given by,

SIy = (1− p)y−1p−y(1 + 2(p− 1)p) . (2.51)

Since, p models the probability of success, where p is small the SI is larger where

Y = 1 than 0 and where p is large this is reversed, i.e. the SI is larger for Y = 0.

2.2.2 Binomial (p, n)

A Binomial random variable, represents the number of successes in n trials, where each

trial is an independent and identically distributed Bernoulli random variable with two

possible outcomes: success with probability p and failure with probability q = 1 − p

(Horgan, 2009; Rose and Smith, 2002). The Binomial distribution is an example of an

urn model where balls are sampled with replacement from an urn containing p black

and 1− p white balls until n balls are drawn. It can also be calculated as the sum of n

Bernoulli random variables, with pdf modelling the probability that exactly y successes

in n trials will occur,

fY (y; p, n) = P (Y = y) =

(
n

y

)
py(1− p)n−y , (2.52)

for y = 0, 1, . . . where
(
n
m

)
is the binomial coefficient. The valid parameter values

are 0 ≤ p ≤ 1 and n = 1, 2, . . .. The Binomial distribution can be derived from the

binomial expansion (p + q)n (Rose and Smith, 2002). Figure 2.1 shows the binomial

pdf for two samples sizes, n, of 20 and 40 and values of p of 0.2, 0.5 and 0.7. As the

parameter n tends to infinity the Binomial distribution is approximated by a Normal

distribution with mean n p and variance n p (1− p).
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Figure 2.1: Binomial pdf

The pgf of the Binomial distribution is given by,

G(t) = (1 + p(t− 1))n , (2.53)

and the mgf,

M(t) =
(
1 +

(
et − 1

)
p
)n

. (2.54)

The Binomial distribution has mean n p and variance n p (1−p) and its overdispersion

index is OD = n (1− p). Where p is small the dispersion in the Binomial distribution

is large, as p increases the OD index decreases. For larger values of n the OD also

increases. The zero-inflation index is given by ZI =
1 + log((1− p)n)

n p
.
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Figure 2.2: log(SI)’s for Binomial distributions

The SI of the Binomial distribution is,

SIy =
(1− p)y−n(p− 1)2np−y 2F1

(
−n,−n; 1; p2

(p−1)2

)
(
n
y

) . (2.55)

A range of SI’s are plotted for the Binomial distribution in Figure 2.2. In the first plot

n is fixed at 20 with p in the range 0.2, 0.5 and 0.7. For smaller values of p the SI is

skewed being more surprising for high Y values but as p increases the skew reverses

and low values of Y are more surprising. The second plot plots SI’s where n = 40

and p = 0.2, 0.5 and 0.7 and also illustrates this same pattern.

2.2.3 Geometric (p)

The Geometric distribution also arises from a series of Bernoulli trials. If p denotes the

probability of success in repeated independent Bernoulli trials, then we are interested

in the probability that the first success occurs on the yth trial (Rose and Smith, 2002).

This distribution is an urn model where balls are sampled with replacement from an

urn containing p white and 1 − p black balls, until a white ball is drawn. The pdf is

then given by,

fY (y; p) = P (Y = y) = p (1− p)y , (2.56)
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where y = 0, 1, 2, . . . and 0 < p < 1 (Wimmer and Altmann, 1999). The probability

distribution is shown in Figure 2.3 for values of p of 0.2, 0.4, 0.6 and 0.8. As the value

of p increases we can see the probability of a low value of y increases.
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Figure 2.3: Geometric pdf

The Geometric distribution has pgf,

G(t) =
p

1 + (p− 1)t
, (2.57)

and the mgf is given by,

M(t) =
p

1 + et(p− 1)
, (2.58)

The mean and variance of this distribution are given by
1− p
p

and
1− p
p2

, respectively

and the overdispersion index of the Geometric distribution is
1

p
, with small values of p

resulting in an overdispersed distribution, and which as p approaches 1 the dispersion

decreases. The zero-inflation index 1 +
p log(p)

1− p
indicates that as p increases the

amount of zero-inflation in the distribution decreases.
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Figure 2.4: log(SI) for the Geometric distribution

The SI for the Geometric distribution is,

SIy =
(1− p)−y

2− p
. (2.59)

Figure 2.4 plots log(SI) for the Geometric distribution with values of p of 0.2, 0.3, 0.4

and 0.5. As p increases, the SI increases for large values of y.

2.2.4 Hypergeometric (m,n, k)

Classical urn models in which balls are repeatedly drawn without replacement lead to

the Hypergeometric distribution, in contrast to sampling without replacement which

produces a Binomial distribution (Rose and Smith, 2002). A hypergeometric random

variable Y counts the number of successes in a sample of size k drawn without replacement

from a population of size m+ n where m is the number of successes in the population

and n is the number of failures. The pdf gives the probability of getting exactly y
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successes when drawing k elements without replacement from m+ n and it is:

fY (y;m,n, k) = P (y = y) =

(
m
y

) (
n

k−y

)(
m+n
k

) (2.60)

for y = 0, 1, . . . ,min(m, k) (Wimmer and Altmann, 1999; Johnson et al., 2005; Horgan,

2009). The hypergeometric distribution can be formulated as an urn model where Y is

the number of white balls drawn in a sample of k balls from an urn with m white balls

and n black balls.
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Figure 2.5: Hypergeometric pdf

Figure 2.5 plots several hypergeometric pdf. The plot shows the distribution for

values of m of 5, 10, 20, 30 and 50 where n = 10 and k = 10. As the value of m

increases (i.e. the number of successes in the population) the peak of the distribution

i.e. the mean number of successes, increases. Similarly, if the the values ofm = 10 and

k = 10 and n (the number of failures) varies by 5, 10, 20, 30 and 50, as the number of

failures increases, the mean number of successes decreases, i.e. the distributions peak

shifts to the left in a mirror image of Figure 2.5.

The Hypergeometric distribution gets its name from the fact that the Gaussian
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hypergeometric function features in the pgf (Rose and Smith, 2002),

G(t) =2 F1(−k,−m;−(n+m); 1− t) . (2.61)

where 2F1(a, b, c;x) is the Gaussian hypergeometric function, with a, b, c and x real

numbers. The mgf is,

M(t) =

(
n
k

)(
m+n
k

) 2F1(−k,−m;n− k + 1; et) . (2.62)

The Hypergeometric distribution has mean and variance,

µ =
km

m+ n
and σ =

kmn(m+ n− k)

(m+ n− 1)(m+ n)2
, (2.63)

The overdispersion index is,

OD =
n(m+ n− k)

(m+ n− 1)(m+ n)
, (2.64)

For larger values ofm or k, theOD index increases however when n increases theOD

index decreases. The zero-inflation index is,

ZI = 1 +

(m+ n) log

(
(nk)

(m+n
k )

)
km

. (2.65)

and the SI is,

SIy =

(
n
k

)
2

4F3(−k,−k,−m,−m; 1, 1− k + n, 1− k + n; 1)(
m
y

) (
n

k−y

) (
m+n
k

) , (2.66)

where 4F3(a1, . . . , aP ; b1, . . . , bQ;x) is the generalized hypergeometric function with

P = 4 and Q = 3.
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Figure 2.6: log(SI)’s for Hypergeometric distributions.

SI’s for the Hypergeometric distribution are plotted in Figure 2.6 for values of m of 5,

10, 20, 30 and 50 with n = 10 and k = 10. As m increases the SI’s for low values of

Y increases and similarly as n increases the SI’s for high values of Y increases.
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2.2.5 Poisson (µ)

The most commonly used model for discrete data is the Poisson distribution. It was

first discussed by Siméon-Denis Poisson (1781-1840) in 1838 (Hald, 1998). For the

random variable Y representing discrete observations the Poisson probability distribution

function is,

fY (y;µ) = P (Y = y) =
µye−µ

y!
, (2.67)

where y = 0, 1, 2, . . . are discrete counts and µ is the mean of the Poisson distribution

(Johnson et al., 2005; Wimmer and Altmann, 1999). It is considered an urn model

where sampling is from an infinite number of urns each with an infinite number of

white and black balls, where Y is the number of black balls drawn.

The Poisson probability distribution can also model rates with pdf,

fY (y, t;µ) = P (Y = y) =
(µt)ye−(µt)

y!
(2.68)

where t is the length of time during which events occur (Hilbe, 2007). The rate

variable, t, can be entered into regression models using its natural logarithm as a known

offset in the model, ln(µ) = Y β + ln(t) where β is the matrix of covariates and µ the

parameter of the Poisson distribution is the mean number of events (Hilbe, 2007). An

offset is used to describe the time period in rates, and in this model the number of

events y is proportional to the time period t.

Figure 2.7 illustrates the pdf of the Poisson distribution for increasing values of the

mean, µ of 2, 5, 10 and 20. This graph illustrates the extent of skewness of the Poisson

distribution, particularly for small values of µ and shows how the Poisson distribution

approaches the Normal distribution as µ tends to infinity.

The Poisson distribution has pgf,

G(t) = e(t−1)µ , (2.69)
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Figure 2.7: Poisson pdf

and mgf,

M(t) = e(et−1)µ . (2.70)

A property of the Poisson distribution is that the mean and variance are equal i.e.

E[Y ] = V ar[Y ] = µ or for rates E[Y ] = Var[Y ] = µt and therefore the Poisson

distribution cannot model overdispersion (Cox, 1986). The overdispersion index for

the Poisson distribution is OD =
µ

µ
= 1 indicating no overdispersion is present under

a Poisson model and the zero inflation index ZI = 0, there is no zero-inflation present

in the Poisson distribution. The SI for this distribution is,

SIy = e−µ µ−y I0 (2µ) y! . (2.71)
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Figure 2.8: log(SI)’s for Poisson distribution

The logarithm of the SI for the Poisson distribution is shown for µ = 1, 2, 5, 10 in

Figure 2.8. As the value of µ increases the SI becomes less skew for higher values of

y and as µ becomes large the SI is higher for low y values.

In a Poisson model the variance is µ and this means the dispersion in the data is

fixed at 1. Quasi-Poisson models allow us to deal with overdispersion in a Poisson

model by not restricting the the dispersion parameter to 1 but by estimating it from

the data (Zeileis et al., 2008). This model has the same parameter estimates as the

standard Poisson model but inference is adjusted for over-dispersion. However the

Quasi-Poisson model does not have a fully specified likelihood.

2.3 Parameter-Mix Distributions

Distributions with long tails or multi-modality can be formed by the method of mixing

distributions. Discrete distributions formulated through parameter mixtures of distributions

are described in this section. A parameter-mix distribution is defined by the pdf of a

random variable Y being dependent on the parameters θ1, θ2, . . . , θm where some (or
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all) of those parameters are random variables varying according to other continuous

distributions. The new distribution then has the pdf,

fY (y | θ1, . . . , θm) , (2.72)

(Johnson et al., 2005; Rose and Smith, 2002; Willmot, 1986).

If only one parameter θ varies, the following notation can be used to denote a

parameter mixture,

fA
∧
Θ

fB (2.73)

where fA represents the original distribution and fB represents the distribution of the

random variable corresponding to the parameter θ known as the mixing distribution

with parameter space Θ (Johnson et al., 2005).

Parameter mixtures of Poisson distributions allow for overdispersion by adapting

the mean parameter to vary according to another distribution, for example as a frailty

model or by incorporating random effects (Johnson et al., 2005). The Negative Binomial,

Holla, Sichel and Delaporte distributions are all parameter mixtures of Poisson distributions

and are presented in this section. Other distributions included are the Yule, and Waring

distributions which are formed as mixtures of Geometric distributions and the Beta-Binomial

distribution which is a mixture of a binomial distribution.

2.3.1 Negative Binomial

There are three different ways the negative binomial distribution is commonly parameterized.

These are the negative binomial with parameters r and p and the negative binomial

types I and II with parameters α and µ.

Negative Binomial (p, r)

The negative binomial distribution can be defined using an expansion of the negative

binomial series (1− p)−r =
∞∑
k=0

(
k + r − 1

r − 1

)
pk. For count data, y, the (y + 1)th

term gives the pdf, and produces the probability, p, of observing y failures before the
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rth success in a series of Bernoulli trials,

fY (y; p, r) = P (Y = y) =

(
y + r − 1

r − 1

)
pr(1− p)y , (2.74)

for discrete observations y = 0, 1, 2, . . ., 0 < p < 1 and r > 0 (Johnson et al., 2005).

The geometric distribution is also a special case of the negative binomial distribution

when r = 1 in Equation 2.74.
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Figure 2.9: Negative Binomial pdf

Figure 2.9 shows the negative binomial distribution for increasing values of r of 1,

2, 5 and 10 when p is fixed at 0.5 (first plot) and for values of p of 0.25, 0.5, 0.75 and

0.9 when r is fixed at 2 (second plot). As r increases the distribution tends to a normal

distribution. The parameter p adjusts the height of the probability distribution for low

counts of y with high values of p closer to 1 resulting in a large skew at low y values

and values of p close to 0 result in a low probability at low values of y. The pgf for the

negative binomial distribution is,

G(t) = pr(1 + (p− 1)t)−r , (2.75)

with mgf,

M(t) =
(
1 + et(p− 1)

)−r
pr . (2.76)
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Figure 2.10: log(SI)’s for negative binomial distributions

The mean of the NB distribution is
r (1− p)

p
and the variance

r (1− p)
p2

. The overdispersion

index is therefore given byOD =
1

p
and is the sameOD as the Geometric distribution.

TheOD index indicates that as the value of the parameter p approaches 0, the dispersion

in the NB distribution increases, i.e. as you have to wait longer to complete r successes.

The zero-inflation index is ZI = 1 +
p log(p)

(1− p)
and for values of p around 0, the ZI

index is close to 1, indicating zero-inflation is present. As p increases the ZI index

approaches 0.

The SI for the NB distribution is,

SIy =
(1− p)−y pr 2F1 (r, r, 1, (p− 1)2)(

y+r−1
r−1

) , (2.77)

and is plotted in Figure 2.10. In the first plot, the parameter p is fixed at 0.5, where r

is in the range 1, 2, 5 and 10, and demonstrates that when r is small the SI is large for

large values of r, but becomes less skew as r increases. In the second plot r is fixed

at 2 and the parameter p takes values 0.3, 0.4 and 0.5. The SI is again large for large

values of y when p approaches 1.

It is often more convenient to form the negative binomial distribution in terms of

the mean and a dispersion parameter, as opposed to the parameters r and p used in
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Equation 2.74. Converting Equation 2.74 to the natural form of exponential family

(defined in Section 2.2) gives:

f (y; p, r) = P (Y = y) = exp

{
y ln(p) + r(ln(p)) + ln

(
y + r − 1

r − 1

)}
(2.78)

Hilbe (2007) and from this the cumulant b(θi) can be recognized as−r log(p) and thus

the mean is µ =
r(1− p)

p
and the variance σ2 =

r(1− p)
p2

. We can then re-parametrize

Equation 2.78 in terms of the mean µ and a dispersion parameter α =
1

r
giving a

negative binomial pdf,

fY (y;µ, α) = P (Y = y) =

(
y + α− 1

α− 1

) (
1

1 + µ
α

)α( µ
α

1 + µ
α

)y
, (2.79)

where y = 0, 1, 2, . . ., the mean, µ, lies in the range µ > 0, and α > 0 is the

overdispersion parameter. Alternatively the negative binomial distribution can be generated

through a Poisson-Gamma parameter-mix distribution, where the Gamma distribution

is given by Γ(a, b) = ya−1 e−
y
b

ba Γ(a)
for y ≥ 0 and a, b > 0 where Γ(x) is the Gamma

function (Johnson et al., 2005). If the discrete observations, y, follow a Poisson

distribution with mean µ, the mean can then be assumed to vary across individuals

according to a Gamma distribution with shape and scale parameters a and b. The result

is a negative binomial distribution with parameters a and b:

fY (y; a, b) = P (Y = y) =

(
y + a− 1

a− 1

) (
b

b+ 1

)y (
1

b+ 1

)a
(2.80)

The shape and scale parameters determine either a negative binomial type I or type

II distribution as follows (Booth et al., 2003).

Negative Binomial Type I (NBI)

The first form of the negative binomial distribution can be derived directly from the pdf

or can be derived using a Poisson-Gamma parameter-mix distribution, where observations

y are assumed to follow a Poisson distribution with mean µ and µ is assumed to vary
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according to a Gamma distribution, with shape and scale parameters α and
α

µ
i.e.

NB(Y ;α,
α

µ
) = Po (µ)

∧
µ

Γ

(
α,
α

µ

)
(Booth et al., 2003). This gives the following

pdf:

fY (y;α, µ) = P (Y = y) =

(
α + y − 1

α− 1

) ( α
µ

α
µ

+ 1

)y(
1

α
µ

+ 1

)α

, (2.81)

where α > 1 is the overdispersion parameter and µ is the mean (Anscombe, 1950;

McCullagh and Nelder, 1983, p. 194).

The variance of this form of the negative binomial distribution is µ+
µ2

α
(Booth

et al., 2003). This form uses the canonical link for the negative binomial distribution,

η = log

(
µ

µ+ α

)
(Hilbe, 2007).

Negative Binomial II (NBII)

A second version of the negative binomial distribution can again be formulated from

a Poisson-Gamma parameter-mix where αµ and α are the shape and scale parameters

respectively, i.e. NB(Y ;αµ, µ, α) = Po (µ)
∧
µ

Γ (αµ, α) with pdf,

fY (y;α, µ) = P (Y = y) =

(
αµ+ y − 1

αµ

) (
α

α + 1

)y (
1

α + 1

)αµ
, (2.82)

again for y = 0, 1, 2, . . ., α > 0 and µ > 0 (McCullagh and Nelder, 1983, p.132) and

(Johnson et al., 2005, p.200). The mean of this distribution is again µ, however the

variance is now µ+
µ

α
(Booth et al., 2003). This second type of the negative binomial

distribution uses a logarithmic link η = ln(µ) (Hilbe, 2007). For both versions of the

distribution, as α, the overdispersion parameter, tends to infinity the negative binomial

distribution becomes the Poisson distribution.

Both the type I and type II forms of the negative binomial distribution can as

considered as members of the exponential family of distributions. The type I distribution

uses the canonical link and the type II distribution uses a logarithmic link, which allows
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for comparison of estimates to the Poisson distribution.

2.3.2 Holla (α, θ)

This distribution was initially proposed by Holla (1966) as a parameter mix of a

Poisson and an Inverse-Gaussian distribution (IG) (a two parameter continuous probability

distribution for µ > 0). The Holla distribution can be written as, Holla(α, θ)=Poisson(µ)∧
µ

IG(θ, α) where the pdf of the Inverse-Gaussian distribution with parameters α and

θ is as follows,

fM (µ;α, θ) =
(1− θ)− 1

4

[
2

(αθ)

]− 1
2
µ−

3
2

2K 1
2
(α
√

1− θ)
exp

[(
1− 1

θ

)
µ− α2θ

4µ

]
, (2.83)

for µ > 0 , α > 0, and 0 < θ < 1 (Johnson et al., 2005). This gives rise to a Holla

distribution with parameters θ and α,

fY (y; θ, α) = P (Y = y) =

√
2α

π

exp(α
√

(1− θ)(αθ
2

))y

y!
Ky− 1

2
(α) , (2.84)

for y = 0, 1, 2, . . ., α > 0, and 0 < θ < 1 (Johnson et al., 2005).
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Figure 2.11: Holla pdf

Figure 2.11 gives two plots of the Holla density. The first gives a range of values of
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α = 1, 2, 5 and 10 where θ is fixed at 0.5 and shows that as α increases the distribution

becomes less skew and tends to a normal distribution. In the second plot α is fixed at

2 and θ ranges in 0.25, 0.50, 0.75 and 0.90. As the value of θ decreases the probability

of a lower y value increases.

The pgf of the Holla distribution is given by,

G(t) = exp

{
α

θ
− α

θ

√
1 +

2θ2

α
(1− t)

}
, (2.85)

The mgf is,

M(t) = exp

{
α

θ
− α

θ

√
1 +

2θ2

α
(1− et)

}
, (2.86)

The mean of the Holla distribution is θ and the variance θ +
θ3

α
. The variance of the

Holla distribution increases if θ increases or if α decreases. The Holla distribution

has overdispersion index OD =
α + θ2

θ
. As both α and θ increase the OD index also

increases, indicating more dispersion in the distribution and will increase faster with

respect to θ. The zero-inflation index is given by ZI = 1− α

θ
. As α increases the ZI

index approaches −∞ and as θ approaches 0 from 1, the ZI index decreases. The SI

is given by,

SIy =

(
e

1
2
α2
√

1−θθ
)−y√

π
2
y!
∑∞

y=0

2

(
e
1
2α

2√1−θθ
)2y

αK
y− 1

2
(α)2

π(y!)2√
αKy− 1

2
(α)

. (2.87)
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Figure 2.12: log(SI)’s for Holla probability distributions

SI’s for the Holla distribution are plotted in Figure 2.12 where in the first plot θ is

fixed a 0.5 and α has values 1, 2, 5 and 10 and in the second plot α is fixed at 2 and

θ = 0.25, 0.50, 0.75 and 0.90. As α increases the SI’s become less surprising, whilst

as θ decreases from 1 to 0 the SI increases.

2.3.3 Sichel (α, θ, γ)

A more general form of the Holla distribution is the Sichel distribution which was

first defined by Sichel (1975) to model word count data. The Sichel distribution can be

thought of as a parameter-mixture distribution where Sichel(α, θ, γ) = Poisson(µ)
∧
µ

GIG(α, θ, γ)

and is also known as the Poisson-Generalized Inverse Gaussian (GIG) distribution,

with parameters pdf ,

fΛ(λ) =
(1− θ) γ2

(
2
α θ

)γ
λγ−1

2Kγ(α
√

1− θ)
exp

[(
1− 1

θ

)
λ− α2θ

aλ

]
, (2.88)

for λ > 0. The Sichel distribution therefore has pdf,

fY (y;α, θ, γ) = P (Y = y) =
(1− θ) γ2

(
αθ
2

)y
y!Kγ

(
α(1− θ) 1

2

)Ky+γ(α) , (2.89)

76



for y = 0, 1, 2, . . ., 0 < θ < 0, −∞ < γ < ∞, and α > 0, where Kv(·) is a modified

Bessel function of the third kind (Johnson et al., 2005; Wimmer and Altmann, 1999).

When γ = −1

2
the Sichel distribution is equal to the Holla distribution.
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Figure 2.13: Sichel pdf
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Figure 2.13 shows examples of Sichel pdf’s. The first plot shows varying α of 0.5,

1, 2, 5, and 10 for fixed θ = 0.5 and γ = −0.5, where α characterises the probability of

low values of Y . The second plot shows the distribution for θ = 0.10, 0.25, 0.50, 0.75

and 0.90 where α = 2 and γ = −0.5, illustrating how θ influences the tail of the

distribution. In the final plot α is fixed at 2 and θ = 0.5 and γ = −1,−0.5, 0, 1 and 2

which parametrizes the overall shape of the distribution.

The Sichel distribution has pgf,

G(t) =

(
1−θ
1−tθ

)γ/2
Kγ(α

√
1− tθ)

Kγ(α
√

1− θ)
, (2.90)

and the mgf is,

M(t) =

(
1−θ

1−etθ

)γ/2
Kγ(α

√
1− etθ)

Kγ(α
√

1− θ)
, (2.91)

The mean of the Sichel distribution is,

µ =
αθKγ+1(α

√
1− θ)

2
√

1− θKγ(α
√

1− θ)
, (2.92)

and the variance,

σ2 = 1
4(θ−1)2

θ ( 4γ + 4γ2θ − α2(θ − 1)θ

+ ( α ( 2
√

1− θ(1 + γθ)Kγ−1(α
√

1− θ)Kγ(α
√

1− θ)

+α(θ − 1)θKγ+1(α
√

1− θ)2 ) ) /Kγ(α
√

1− θ)2 )

. (2.93)

The overdispersion index is

OD =
1

2

(
−2(1 + γ θ)

θ − 1
+
α θ
(
Kγ(α

√
1− θ)2 −Kγ+1(α

√
1− θ)2

)
√

1− θKγ(α
√

1− θ)Kγ+1(α
√

1− θ)

)
, (2.94)

If θ is 0, the OD index is equal to one and as θ increases the dispersion in the

distribution increases. For large negative values of γ, the OD index approaches 1
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and as γ increases the dispersion in the data increases. The zero-inflation index is,

ZI = 1 +

2
√

1− θKγ(α
√

1− θ)log

(
(1−θ)

γ
2Kγ(α)

Kγ(α
√

1−θ)

)
αθKγ+1(α

√
1− θ)

. (2.95)

The ZI is less than 1 across all parameter values, indicating that no zero-inflation is

present under this distribution. The SI of the Sichel distribution is,

SIy =

2y(1− θ)−γ/2(αθ)−yK
(
γ, α
√

1− θ
)

y!
∑∞

y=0
4−y(1−θ)γ(αθ)2yK(y+γ,α)2

K(γ,α
√

1−θ)
2
(y!)2

K(y + γ, α)
,

(2.96)
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Figure 2.14: log(SI’s for Sichel distribution
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The logarithm of the SI is plotted for various values of α, θ and γ in Figure 2.14. The

first plot has varying values of α = 0.5, 1, 2, 5 and 10 where θ and γ are fixed at 0.5

and -0.5 and as α becomes large, the log of the SI increases. In the second plot, α = 2

and γ = −0/5, where θ is in the range 0.75, 0.80 and 0.90, and indicated that as θ

approaches 1 larger values of y become more surprising. Finally, the third plot shows

the logarithm of the SI , with α fixed at 2, θ fixed at 0.5 and γ = 1, 0.5, 0, 1 and 2. As

γ increases values of the SI become less surprising.

2.3.4 Delaporte (α, β, γ)

The Delaporte distribution was introduced by Delaporte (1959) for the number of

claims in a motor insurance portfolio (Ruohonen, 1988; Willmot, 1989). The number

of claims in time Y , can be thought of as the sum of two components, NY = N1Y +

N2Y , where N1Y has a Poisson distribution with expected value γY and N2Y follows

a Negative Binomial distribution with parameters r and p. The Delaporte distribution

can also be constructed as a parameter mix model of a Poisson and a three-parameter

Gamma distribution, with pdf given by,

fM(µ;α, β, γ) = P (M = µ) =
βα(µ− γ)α−1e−β(µ−γ)

Γ(α)
, (2.97)

where µ > γ, α ≥ 0 and α, β > 0 (Wimmer and Altmann, 1999; Ruohonen, 1988).

The resulting parameter mix distribution can be written in this notation as

Delaporte(α, β, γ) = Poisson(µ)
∧
µ

Gamma(α, β, γ) and has pdf,

fY (y;α, β, γ) = P (Y = y) =
n∑
j=0

Γ(j + α)

Γ(α)j!

(
β

y + β

)α(
y

y + β

)j
(γy)n−je−γy

(n− j)!
,

(2.98)

for y = 0, 1, 2, . . . (Ruohonen, 1988; Willmot, 1989) and is also known as a Poisson-Negative

Binomial convolution distribution as it is also a Poisson distribution generalized by a

negative binomial distribution (see Section 2.7) (Wimmer and Altmann, 1999). Stasinopoulos

and Rigby (2008) parametrize the Delaporte distribution in terms of the location µ,
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scale σ and skewness ν parameters,

fY (y;µ, σ, ν) = P (Y = y) =
e−µν

Γ( 1
σ
)
(1 + µσ(1− ν))

−1
σ S , (2.99)

where,

S =

y∑
j=0

(
y

j

)
µyνy−j

y!

[
µ+

1

σ(1− ν)

]−j
Γ

(
1

σ
+ j

)
(2.100)

for y = 0, 1, 2 . . . where µ > 0, σ > 0 and 0 < ν < 1.

Figure 2.15 shows the Delaporte probability distribution for values of µ=1, 2, 5,

10, σ=1, 5 and ν=0.1, 0.5, 0.9. The mean µ changes the skew of the distribution: as it

increases the distribution tends to a normal distribution. The parameter σ characterizes

the probabilities of low values of Y with higher values of σ resulting in higher low

probabilities and ν affects the overall shape of the distribution: as ν increases the

distribution approximates a normal distribution.

This distribution in Equation 2.98 has pgf,

G(t) = e(t−1)α(1− t(1− γ))−βγβ , (2.101)

with mgf,

M(t) = e(et−1)α (et(γ − 1) + 1
)−β

γβ . (2.102)

The Delaporte distribution has mean,

µ =
γ (α− β) + β

γ
, (2.103)

and variance,

σ2 =
γ (α γ − β) + β

γ2
. (2.104)

The overdispersion index is,

OD =
α γ − β + β

γ

α γ + β − β γ
, (2.105)
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Figure 2.15: Delaporte pdf

As α becomes large, the OD index approaches 1 .i.e. the distribution becomes less

overdispersed. However, as β and γ increase the OD index also increases. The
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zero-inflation index is given by

ZI = 1 +
αβ γ log(γ)

β + αγ − βγ
. (2.106)

where γ is large the ZI index is greater than 1 and for β approaching 0 the ZI index

tends to 1. The SI of this distribution is,

SIy = 1
U(−n,1−n−α,(y+β)γ)

( eyγy−n
(

β
y+β

)−α
(y + β)nn!∑∞

y=0
1

n!Γ(1+n)
e−2yγyn

(
β
y+β

)α
(y + β)−n(yγ)n(βγ)α

U(−n, 1− n− α, (y + β)γ)U(α, 1 + n+ α, (y + β)γ) ) .

(2.107)

where U(a, b, x) is the confluent hypergeometric function.

2.3.5 Yule (λ)

The Yule distribution was originally developed by G.U. Yule (1925) as the limiting

case of a distribution in mathematical genetics and was used by Simon (1955) to model

word frequencies. This distribution can be constructed as a parameter mix distribution

in two ways:

1. Yule(λ) = Geometric(1− p)
∧
p

Beta(λ, 1)

2. Yule(λ) =Geometric(1− e−a)
∧
a

exponential( 1
λ
)

The Yule distribution is generated as a Geometric-mixture i.e. for each individual the

number of failures are counted until the first success with a frailty distribution (Beta or

exponential) for p (Wimmer and Altmann, 1999). The pdf of the Yule distribution is

given by,

fY (y;λ) = P (Y = y) =
λ

y + 1

(
λ+ y + 1

λ+ 1

)
−1 =

λ y!

(λ+ 1)(y+1)
, (2.108)
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for λ > 0 and y = 0, 1, 2, . . . (Wimmer and Altmann, 1999). Alternatively, the pdf can

be written as,

fY (y;λ) = P (Y = y) =
B(λ+ 1, y + 1)

B(λ, 1)
, (2.109)

where B is the beta function. The Yule pdf is highly skewed, as shown in Figure 2.16.

As the value of λ increases the probability of a value of zero increases, however this

difference decreases as the value of y increases.
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Figure 2.16: Yule pdf

The Yule distribution has pgf,

G(t) = λΓ(1 + λ) 2F1(1, 1; 2 + λ, t) , (2.110)

and mgf,

M(t) = λΓ(1 + λ) 2F1(1, 1; 2 + λ; et) , (2.111)

The mean and variance of the Yule distribution are,

µ = 1
λ−1

and σ2 = − 1
(λ−1)2

+ λB(1 + λ, 2)3F2(2, 2, 2; 1, 3 + λ; 1) . (2.112)
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The overdispersion index is given by,

OD =
1

1− λ
+ (λ− 1)λB(λ+ 1, 2) 3F2(2, 2, 2; 1, 3 + λ; 1) (2.113)

For small values of λ, the OD index is large, however as λ increases the dispersion in

the distribution is reduced. The zero-inflation index for the Yule distribution is,

ZI = 1 + (λ− 1)log

(
λ

λ+ 1

)
. (2.114)

Where λ = 1 theZI index is 1, indicating that zero-inflation is present in the distribution

and as λ increases the ZI index decreases. The SI of the Yule distribution is,

SIy =
λ4B(λ, 1)Γ(λ)2

3F2(1, 1, 1; 2 + λ, 2 + λ; 1)

B(1 + λ, 1 + y)
. (2.115)

The logarithm of the SI for the Yule distribution with values of λ of 1, 2, 5 and 10 is

shown in Figure 2.17. As λ increases, values of Y become more surprising.
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Figure 2.17: SI’s for the Yule distribution
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2.3.6 Waring (b, n)

The Waring distribution was developed by Irwin (1963) to describe biological distributions

with very long tails. The Waring distribution can be generated as a parameter mixture

of Geometric or negative binomial distributions with beta or exponential mixing distributions

as follows,

1. Waring(b, n) =Geometric(p)
∧
p

Beta(b, n)

2. Waring(b, n) =negative binomial (n, p)
∧
p

Beta (b, 1)

3. Waring(b, n) =negative binomial (n, e−p)
∧
p

exponential (1/b)

The distribution has pdf,

fY (y; b, n) = P (Y = y) =
B(n+ y, b+ 1)

B(n, b)
, (2.116)

for y = 0, 1, 2, . . . where b > 0 and n ≥ 0 (Wimmer and Altmann, 1999, P. 643). The

Waring distribution is equal to a Yule distribution when n→ 1.
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Figure 2.18: Waring pdf

Figure 2.18 shows the pdf of the Waring distribution for values of n of 1,2,5 and

10 when b is fixed at 1 and also values of b of 1,2,5 and 10 when n is fixed at 2. As
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n increases the probability of low values of y decreases and the resulting distribution

becomes flatter. As b increases the probability of a low value of y decreases and the

distribution becomes les J-shaped.

The pgf of the Waring distribution is,

G(t) = bΓ(b+ n)2F1(1, n; b+ n+ 1; t) . (2.117)

and the mgf,

M(t) = bΓ(b+ n) 2F1(1, n; b+ n+ 1; et) , (2.118)

The Waring distribution has mean,

µ =
n

b− 1
, (2.119)

and variance,

σ2 =
B(1 + n, 1 + b)3F2(2, 2, 1 + n; 1, 2 + b+ n; 1)

B(n, b)
− n2

(b− 1)2
. (2.120)

The overdispersion index is given by,

OD =
(b− 1) b (b+ 2n) Γ(b+ n) 2F1(2, 1 + n; 2 + b+ n; 1)

b− 2
− n

b− 1
, (2.121)

where b and n are small the OD index is large and as b and n decrease, the dispersion

in the distribution decreases. The zero-inflation index is,

ZI = 1 +
(b− 1)log

(
b

b+n

)
n

. (2.122)

The ZI index is equal to 1 when b = 1 and as b increases the ZI index decreases. For

the parameter n, as n increases the ZI index also increases. The SI of this distribution

is,

SIy =
b2B(n, b) 3F2(1, n, n; b+ n+ 1, b+ n+ 1; 1)

(b+ n)2B(n+ y, b+ 1)
. (2.123)
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Figure 2.19: log(SI)’s for Waring distributions

Figure 2.19 plots the logarithm of SI for the Waring distribution. In the first plot, b

is fixed at 1, and n is in the range 1, 2, 5 and 10, with larger values of n resulting in

higher SI’s for large values of Y . In the second plot, n is fixed at 2, with b values of 1,

2, 5 and 10. For higher values of b the SI is smaller.

2.3.7 Beta-Binomial (a, b, n)

The Beta-Binomial distribution is also known as a contagious binomial, hyperbinomial,

hypergeometric waiting time or inverse hypergeometric distribution. The distribution

is used to model variation in the number of defective items per lot in inspection sampling

(Johnson et al., 2005). Examples of the distribution’s application are also found in

biology where it is used to estimate population sizes.

There are two different ways of obtaining this distribution. The first is as an urn

model and the second is through a parameter mixture of distributions.

The Beta-Binomial distribution can be considered an Urn Model arising from random

draws from an urn containing a white balls and b black balls. It can be defined by

drawing a random ball; if it is a white ball then two white balls are returned to the urn,

if a black ball is drawn two black balls are returned to the urn. This is repeated n times

and the probability of observing y white balls lies in the range RY = {0, 1, . . . , n} and
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follows a beta-binomial distribution with parameters a > 0, b > 0 and n > 0 (Johnson

et al., 2005).

Alternatively, the Beta-Binomial distribution can be constructed as a parameter-mix

of a Beta and a Binomial distribution, where in a Binomial distribution with parameters

n and p, the latter varies according to a Beta distribution with parameters a and b, i.e.

Beta-Binomial(a, b, n) =Binomial(n, p)
∧
p

Beta(a, b), resulting in the following pdf,

fY (y; a, b, n) = P (Y = y) =

(
n
y

)
Γ(b+ n− y)Γ(a+ y)

B(a, b)Γ(a+ b+ n)
(2.124)

where a > 0, b > 0 and n > 0 (Johnson et al., 2005; Wimmer and Altmann, 1999).

When n is 1 the distribution is a Bernoulli distribution and for large values of both a

and b tends to a normal distribution. The Beta-Binomial distribution appears often in

Bayesian statistics as the predictive distribution of a Binomial with a Beta prior on the

success probability.
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Figure 2.20: Beta-Binomial pdf

Figure 2.20 plots the probability density of the Beta binomial distribution where n

is fixed at 15. In the first plot the distribution is ‘U’-shaped where a and b are both

equal have small values i.e. 0.1, 0.2 and 0.5. In the second plot, b is fixed at 0.5 and

a has values 3, 5 and 10. These densities are highly right skewed and as a increases

the probabilities of y values near n = 15 increase. Similarly, the third plot shows the

densities for three values of b of 3, 5 and 10 when a is fixed at 0.5. These densities are

left skewed and as b increases the probability of a low y value increases. When a and
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b are both equal and have large values e.g. 3,4 or 5 the distribution tends to a normal

distribution.

The pgf for the Beta-Binomial distribution is,

G(t) =2 F1(−n, a; a+ b; t) , (2.125)

and the mgf,

M(t) =2 F1(−n, a; a+ b; et) . (2.126)

The mean and variance of the distribution are therefore given by

µ =
a n

a+ b
, (2.127)

and

σ2 =
a b n(a+ b+ n)

(a+ b)2(1 + a+ b)
, (2.128)

with overdispersion index

OD =
b(a+ b+ n)

(a+ b)(a+ b+ 1)
. (2.129)

For small values of a or b the OD index is 0, but as either of these parameters become

large the OD index increases. As the parameter n tends to infinity, the overdispersion

index also approaches infinity, as σ2 → ∞ faster than µ → ∞. The zero-inflation

index is given by,

ZI = 1 +
(a+ b)log

(
Γ(a)Γ(b+n)

B(a,b)Γ(a+b+n)

)
a n

. (2.130)

The ZI index is close to 1 for small values of both a and b, but decreases as either

parameter a or b become larger. Again, as n increases the ZI also increases but is

always lower than 1 indicating no zero-inflation is present in the distribution. The SI

of the Beta-Binomial distribution is,

SIy =
Γ(a)2Γ(b+ n)2

4F3(a, a,−n,−n; 1, 1− b− n, 1− b− n; 1)

B(a, b)
(
n
y

)
Γ(a+ b+ n)Γ(b+ n− y)Γ(a+ y)

. (2.131)
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Figure 2.21: log(SI)’s for the Beta-Binomial distributions

The log(SI) is plotted in Figure 2.21 for various values of a and b. Where a and b are

both small (first plot) for smaller parameter values very low and very high values of

y are less surprising. In the second and third plots as a and b increase, high and low

values of y become more surprising, respectively. Finally, the last plot indicates where

the parameter values are both equally large, low or high values of y become surprising.
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2.4 Component-Mix Distributions

The concept of a component mix of distributions has a long history (Pearson, 1915).

This method forms distributions from linear combinations of other distributions (Rose

and Smith, 2002; Johnson et al., 2005). For k different component distributions with

pdf’s f1(y), f2(y), . . . , fk(y) and mixing weights ω1, ω2, . . . , ωk where ωj > 0 and∑k
j=1 ωj = 1, a k-component mixing distribution is defined by taking the weighted

average of the fj’s,

fY (y) =
k∑
j=1

ωjfj(y) , (2.132)

(Johnson et al., 2005; Rose and Smith, 2002). This relationship can be written symbolically

as fA ∗ fB for a component mixture between two distributions fA and fB.

Zero-inflated distributions can be formed from a component mix of two distributions

and are a special case of Equation 2.132. They allow for zero-inflated data and involve

a mix of two distributions where the zeros are modelled separately from the counts,

fY (y; θ, ω) =

 P (Y = 0) = ω + (1− ω) p0

P (Y = j) = (1− ω) pj for j > 0
, (2.133)

where ω represents the mixing probability, θ is the vector of parameters of the mixing

distribution, p0 is the probability distribution for the zero counts, and pj is the probability

distribution for the non-zero counts of observations where j ≥ 1 (Johnson et al., 2005).

This type of component mixture is also known as a zero-modified distribution or a

distribution with an excess of zeros.

A Poisson component mixture arises through the weighted average of k Poisson

distributions, resulting in the pdf,

fY (y;µ1, . . . , µj, ω1, . . . , ωj) = P (Y = y) =
k∑
j=1

ωj
e−µj(µj)

y

y!
, (2.134)

where y = 0, 1, 2, . . . for k components, ωj 6= 0,
∑
ωj = 1 and j = 1, 2, . . . , k

(Johnson et al., 2005; Karlis and Xekalaki, 1999). This mixture of distributions was
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studied initially by Feller (1943).

Bimodal distributions can be created through mixtures of two distributions. This

section presents three zero-inflated distributions: zero-inflated Poisson, zero-inflated

Negative Binomial and zero-inflated Sichel distributions and two bimodal distributions:

a two component Poisson-mix and a Poisson-Negative Binomial mix.

2.4.1 Zero-inflated Poisson (ω, µ)

The simplest component mixture distribution is that of a two-component Binomial-Poisson

mixture, where the probability of an observation with value zero follows a Binomial

distribution and counts of observations greater than or equal to zero follow a Poisson

distribution i.e. ZIP(ω, µ) =Bernoulli(ω) * Poisson(µ). The zero-inflated Poisson

distribution is the most common zero-inflated distribution within the statistical literature

and has the following pdf,

fY (y;ω, µ) = P (Y = y) =


P (Y = 0) = ω + (1− ω)e−µ

P (Y = j) = (1− ω)
e−µµy

y!
for j > 0

,

(2.135)

for y = 0, 1, 2, . . ., where j > 1 are the non-zero counts, µ is the mean of the

Poisson distribution and 0 ≤ ω ≤ 1 is the mixing probability (Ridout et al., 2001;

Rose and Smith, 2002; Wimmer and Altmann, 1999; Morgan et al., 2007). This

distribution is also sometimes known as the Poisson-with-zeroes or zero-modified

Poisson distribution.
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Figure 2.22: Zero-inflated Poisson pdf

Figure 2.22 shows how the mixing probability ω affects the probability of y for a

zero-inflation Poisson distribution with a mean of 2. As ω increases the probability of

a y value of zero increases.

The ZIP distribution has pgf,

G(t) = e(t−1)µ(1− ω) + ω , (2.136)

and mgf,

M(t) = e(et−1)µ(1− ω) + ω . (2.137)

The mean of the ZIP is,

µ = µ(1− ω) , (2.138)

and the variance,

σ2 = µ(1− ω)(1 + µω) . (2.139)

The overdispersion index is given by OD = 1 + µω. As ω tends to 0 the OD index

becomes close to 1 and as µ increases the OD index also increases. The zero-inflation
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index for the zero-inflated Poisson distribution is ZI = 1 and is therefore always

zero-inflated. The ZIP distribution has SI ,

SIy =
e−2µ (eµω (2 + (−2 + eµ)ω) + (ω − 1)2I0(2µ))

e−µµy(1−ω)
y!

+ ωU−y
(2.140)

where Uy is the unitstep function and I0 is the Bessel function of the first kind.
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Figure 2.23: log(SI)’s for Zero-inflated Poisson distributions

Figure 2.23 plots the SI for the ZIP distribution where µ = 2 and ω is in the range

0, 0.2, 0.5, 0.7 and 0.9. As ω increases to 1, large values of Y become increasingly

more surprising, however zero values have low SI values.

2.4.2 Zero-inflated Negative Binomial (ω, p, r)

This distribution is generated as a two-component mixture of a Binomial and Negative

Binomial distribution, i.e. ZINB(ω, p, r) =Bernoulli(ω) * NB(p, r). The zero-inflated
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negative binomial distribution (ZINB) has pdf

fY (y; p, r, ω) = P (Y = y) =

 P (Y = 0) = ω + (1− ω)pr

P (Y = j) = (1− ω)
(
y+r−1,y

p

)
r(1− p)y

,

(2.141)

where y = 0, 1, 2, . . ., j > 1, r > 0, 0 < p < 1 and 0 ≤ ω ≤ 1 (Johnson et al., 2005;

Wimmer and Altmann, 1999; Yau et al., 2003).
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Figure 2.24: Zero-inflated Negative Binomial pdf

Figure 2.24 show the pgf for values of ω = 0, 0.2, 0.5, 0.7, 0.9 with fixed values
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of r of 2 and 5 (rows) and p of 0.5 and 0.8 (columns). Again, as ω the zero-inflation

parameter index increases, P (Y = 0) increases.

The pgf of the ZINB distribution is,

G(t) = −pr(1 + (p− 1)t)−r(ω − 1) + ω . (2.142)

The mgf is given by,

M(t) = −
(
1 + et(p− 1)

)−r
pr(ω − 1) + ω , (2.143)

The mean and variance of the ZINB distribution are given by,

µ =
r

p
(1− p)(1− ω) and σ2 =

r

p2
(1− p)(1− ω)(1− (1− p)rω) . (2.144)

The overdispersion index is,

OD =
1 + r ω − p r ω)

p
, (2.145)

As p increases from 0 to 1 the OD approaches 1, indicating overdispersion is present

and as either r or ω increase the OD index increases. Under a ZINB distribution

the zero-inflation index is again always greater than or equal to 1 demonstrating the

zero-inflation present under this distribution. This distribution has SI,

SIy =
ω (−2pr(ω − 1) + ω) + p2r(ω − 1)2

2F1(r, r; 1; (p− 1)2)

(1− p)ypr(1− ω)
(
y+r−1
r−1

)
+ ωU−y

. (2.146)

An alternative parameterization of the ZINB distribution is given by Ridout et al.

(2001) for both types of the negative binomial distribution, with parameters µ the mean
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and α the dispersion parameter, with the pdf as follows,

fY (y;µ, α, c, ω) = P (Y = y) =



P (Y = 0) = ω + (1− ω)(1 + αµc)−µ
1−c
α

P (Y = j) = (1− ω)
Γ

(
y+µ1−c

α

)
y!Γ
(
µ1−c
α

)
(1 + αµc)−µ

1−c
α

(
1+µ−c

α

)y
,

(2.147)

for µ > 0, α ≥ 0 and 0 ≤ ω ≤ 1 for y = 0, 1, 2, . . . (Ridout et al., 2001). The index c

denotes the particular form of the negative binomial distribution: when c = 1 a NB I

distribution is derived and when c = 0 a NB II distribution is formed.

2.4.3 Zero-inflated Sichel (ω, α, θ, γ)

A two-component mix of a Binomial and Sichel distribution results in a zero-inflated

Sichel (ZISI) distribution and can be written as ZISI(ω, α, θ, γ) =Binomial(n, p) *

Sichel(α, θ, γ). This distribution has pdf,

fY (y;ω, α, θ, γ) = P (Y = y) =


P (Y = 0) = ω + (1− ω) (1−θ)

γ
2Kγ(α)

Kγ(α
√

1−θ)

P (Y = j) = (1− ω)
(1−θ)

γ
2 (αθ2 )

y

y!Kγ(α(1−θ)
1
2 )
Ky+γ(α)

,

(2.148)

for y = 0, 1, 2, . . ., 0 < θ < 1, −∞ < γ < ∞, α > 0, and j > 0 are the non-zero

counts.
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Figure 2.25: Zero-inflated Sichel pdf

Figure 2.25 shows the ZISI distribution where the parameters of the Sichel distribution

are fixed at α = 5, θ = 0.8 and γ = −1 and ω the zero-inflation parameter ranges in

0.2, 0.5, 0.7 and 0.9. As ω increases the probability of a y value of zero increases.

The pgf is given by,

G(t) = ω −
(
θ−1
tθ−1

) γ
2 (ω − 1)Kγ(α

√
1− tθ)

Kγ(α
√

1− θ)
, (2.149)

The mgf is given by,

M(t) = ω −
(
θ−1

etθ−1

) γ
2 (ω − 1)Kγ(α

√
1− etθ)

Kγ(α
√

1− θ)
. (2.150)

The ZI Sichel distribution has mean,

µ =
αθ(ω − 1)Kγ−1(α

√
1− θ)

2
√

1− θKγ(α
√

1− θ)
, (2.151)
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and variance,

σ2 = 1
4(θ−1)2

θ(ω − 1) ( − 4γ − 4γ2θ + α2(θ − 1)θ

+ 1
Kγ(α

√
1−θ)2α

(
−2
√

1− θ(1 + γθ)Kγ−1(α
√

1− θ)Kγ(α
√

1− θ)
)

) .

(2.152)

The overdispersion index is,

OD =
1

2

(
αθ
(
Kγ(α

√
1− θ)2 + (ω − 1)Kγ+1(α

√
1− θ)2

)
√

1− θKγ(α
√

1− θ)Kγ+1(α
√

1− θ)
− 2(γθ + 1)

θ − 1

)
,

(2.153)

As any of the parameters α, θ, γ or ω increase from 0 the OD index becomes large.

The zero-inflation index is given by,

ZI = 1−
2
√

1− θKγ(α
√

1− θ)log
(
ω + (1−θ)γ/2(1−ω)Kγ(α)

Kγ(α
√

1−θ)

)
αθ(ω − 1)Kγ+1(α

√
1− θ)

. (2.154)

The ZI Sichel distribution has SI,

SIy =

∑∞
y=0

4−y
(
αθy(1−θ)

γ
2 (ω−1)Ky+γ(α)−2yωKγ(α

√
1−θ)y!U−y

)2
Kγ(α

√
1−θ)2(y!)2

2−yαθy(1−θ)
γ
2 (1−ω)Ky+γ(α)

Kγ(α
√

1−θ)y!
+ ωU−y

. (2.155)

2.4.4 2-component Poisson Mixture (ω, µ, λ)

A two-component Poisson mixture of two Poisson distributions, ie. 2PO(ω, µ, λ) =Poisson(µ)

* Poisson(λ), has pdf,

fY (y;µ, λ, ω) = P (Y = y) = ω
e−µµy

y!
+ (1− ω)

e−λλy

y!
, (2.156)

for y = 0, 1, 2, . . ., where µ, λ > 0 are the means of the two Poisson distributions and

0 < ω < 1 is the weighting parameter (Rose and Smith, 2002).

Figure 2.26 shows the Poisson-Poisson mix distribution for values of µ of 1 and

2 (rows) and values of λ of 5 and 10 (columns), whilst in each plot the weighting

parameter ω varies by 0.2, 0.5 and 0.8. These graphs indicates that for some parameter

values the density is bi-modal i.e. where one value of µ or λ is small and the other
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Figure 2.26: Poisson-Poisson mix pdf

large. The parameter ω adjusts the weighting between the two Poisson distributions.

The pgf of this distribution is,

G(t) = −e(t−1)λ(ω − 1) + e(t−1)µω , (2.157)

and the mgf is

M(t) = −e(et−1)λ(ω − 1) + e(et−1)µω . (2.158)
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This distribution has mean and variance

µ = λ− λω + µω and σ2 = λ+ (λ− µ− 1)(λ− µ)ω − (λ− µ)2ω2 ,

(2.159)

The overdispersion index is

OD = 1 + µ+ λω − µω − λµ

λ− λω + µω
. (2.160)

Where µ and λ are equal the OD index is equal to 1. As either µ or λ increases from

0 the OD index also increases, but is always greater than 1 indicating overdispersion

is present in the distribution. The OD index is close to 1 where ω is 0, increases until

ω = 0.5 and then decreases to 1 as ω approaches 1. The zero-inflation index is,

ZI = 1 +
log(e−λ(ω − 1) + e−µω)

λ− λω + µω
. (2.161)

Again, where µ and λ are equal the ZI index is equal to 0. For values of µ is less than

λ the ZI index decreases, and where λ is greater than µ the ZI index increases. The

SI for this distribution is,

SIy = −
e−λ−µy!

(
e2µ(ω − 1)2 I0(2λ) + eλω

(
eλ ωI0(2µ)− 2eµ(ω − 1) 0F1(; 1;λµ)

))
eµλy(ω − 1)− eλµyω

.

(2.162)

Figure 2.27 plots SI’s of the two-component Poisson mixture for values of µ = 1, 2,

λ = 1, 10 and ω = 0.2, 0.5 and 0.8. All the plots show that for larger values of ω the

SI is larger for high values of y. Where λ is greater than µ, higher values of y are more

surprising.
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Figure 2.27: log(SI)’s for 2-component Poisson mixture distributions
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2.4.5 2-component Poisson-Negative Binomial Mixture (ω, µ, r, p)

A component mix of Poisson and Negative Binomial distribution, i.e.

2PNB(ω, µ, r, p) =Poisson(µ) * NB(r, p) results in the following pdf,

fY (y;µ, r, p, ω) = P (Y = y) = ω
e−µµy

y!
+ (1− ω)

(
y + r − 1

r − 1

)
pr(1− p)y (2.163)

for y = 0, 1, 2, . . ., for the parameters µ > 0, r > 0, 0 < p < 1 and 0 < ω < 1.
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Figure 2.28: Poisson-Negative Binomial mix pdf

Figure 2.28 shows the density of the Poisson-Negative Binomial distribution for

µ = 10 and 2 (columns) , r = 2 and 10 (columns) and p = 0.5 and 0.7 (rows) for

varying w = 0.2, 0.5 and 0.8. As in the Poisson-Poisson mixture distribution, this
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mixture results in a bi-modal distribution where ω controls the weighting between the

two distributions.

The pgf of this distribution is given by,

G(t) = −pr(1 + (p− 1)t)−r(ω − 1) + e(t−1)µω , (2.164)

with mgf,

M(t) = −
(
1 + et(p− 1)

)−r
pr(ω − 1) + e(et−1)µω . (2.165)

The mean of this distribution is,

µ =
(1− p)r(1− ω) + pµω

p
, (2.166)

and the variance,

σ2 =
(p− 1)2r2(1− ω)ω + p2µω(µ− µω + 1) + (1− p)r(1− ω)(1 + 2p µω)

p2
.

(2.167)

The overdispersion index is,

OD =
(1− p)2r2(1− ω)ω + p2µω(1 + µ− µω) + (1− p)r(1− ω)(2pµω − 1)

p((p− 1)r(ω − 1) + pµω)
.

(2.168)

When ω equals 0,OD = 1
p

which is theOD index for the negative binomial distribution.

As ω equals 1, OD = 1 i.e. the value of the OD index for the Poisson distribution. The

zero-inflation index is,

ZI = 1 +
p log (−pr(ω − 1) + e−µω)

(p− 1)r(ω − 1) + p µω
. (2.169)

The ZI index is equal to the ZI of the negative binomial distribution 1 − p log(pr)

(p− 1)r

when ω is 0 and where ω is 1 the OD is equal to 0, as for the Poisson distribution. The

106



two-component Poisson-negative binomial distribution has SI,

SIy = ( re−µy! ( − ω2I0(2µ) + eµpr(ω − 1) ( 2ω 1F1(r; 1;µ− pµ)−

eµpr(ω − 1) 2F1(r, r; 1; (p− 1)2) ) ) ) /
(

eµ(1−p)ypr(ω−1)Γ(r+y)
Γ(r)

− µyω
)

(2.170)
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Figure 2.29: log(SI)’s for 2-component Poisson-Negative Binomial distributions

The four plots in Figure 2.29 show SI’s for the 2-component Poisson-Negative Binomial

distributions for values of µ = 2, 20, r = 2, 10, p = 0.5, 0.7 and ω = 0.2, 0.5, 0.8.

Increasing the parameter ω results in a larger surprise index.
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2.5 Truncated Distributions

Truncated distributions can be created through the conditional modification of parent

distributions (Rose and Smith, 2002; Johnson et al., 2005). Let a single random

variable, Y , have pdf f(y) and cdf FY (y) = P (Y ≤ y). Further, there is a finite

interval T with truncation points a and b inside the range of values taken by Y . If T

consists of all values greater than a, then this results in a distribution that is truncated

below or left truncated:

fY (y |Y > a) =
fY (y)

1− FY (a)
(2.171)

Similarly, if T consists of values less than b the distribution is said to be truncated

above or right truncated:

f(y |Y ≤ b) =
fY (y)

FY (b)
(2.172)

A distribution can also be doubly truncated, that is truncated from both below (left)

and above (right) where values of T are restricted within the truncation points a and b:

fY (y | a < Y ≤ b) =
fY (y)

FY (b)− FY (a)
(2.173)

In each case the conditional density is expressed in terms of the parent pdf which

is scaled by a constant in the denominator to ensure the density still integrates to one

(Rose and Smith, 2002).

The commonest form of truncated distribution is the omission of the zero class

resulting in zero-truncated also called positive distributions. All these distributions

have pdf’s of the form,

fY (y |Y > 0) =
fY (y)

1− FY (0)
. (2.174)

This section presents the positive forms of the Poisson, Geometric, Negative Binomial,

Holla, Sichel and Yule distributions.
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2.5.1 Positive Poisson (µ)

A common zero-truncated distribution is the zero-truncated or positive Poisson distribution

with pdf,

fY (y;µ) = P (Y = y) =
e−µµy

y!(1− e−µ)
, (2.175)

for µ > 0 and y = 1, 2, 3, . . . (Johnson et al., 2005; Wimmer and Altmann, 1999,

P.544). This distribution is also known as the conditional Poisson distribution (Cohen,

1960). The Truncated Poisson probability distribution is illustrated in Figure 2.30 for

values of µ of 2, 5, 10 and 20. As the parameter µ becomes large the distribution tends

to a normal distribution. For small values of µ i.e. a rare event with small mean, the

distribution is skew.
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Figure 2.30: Positive Poisson probability pdf

The pgf for the Positive Poisson distribution is,

G(t) =
etµ − 1

eµ − 1
, (2.176)

and the mgf,

M(t) =
eetµ − 1

eµ − 1
. (2.177)
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The mean and variance of the distribution are,

µ =

(
eµ

eµ − 1

)
µ and σ2 =

eµ (eµ − µ− 1)µ

(eµ − 1)2 , (2.178)

respectively. The overdispersion index is,

OD = 1− µ

eµ − 1
. (2.179)

When µ is small, the OD index is 0 and as µ increases the OD approaches 1. The SI

of the positive Poisson distribution is,

SIy =
eµ (1− e−µ)µ−y(I0(2µ)− 1)y!

(eµ − 1)2 . (2.180)
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Figure 2.31: log(SI)’s for the Positive Poisson distribution

Figure 2.31 plots log(SI)’s for various Positive Poisson distributions where µ = 2, 5, 10

and 20. For small values of µ the SI is large for high values of Y and as µ increases

the SI becomes increasingly large for low values of Y .
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2.5.2 Positive Geometric (p)

The zero-truncated Geometric distribution has pdf,

fY (y; r, p) = P (Y = y) = (1− p)y−1p , (2.181)

for y = 1, 2, 3 . . . and 0 < p < 1 (Johnson et al., 2005). The Positive Geometric

density function is plotted in Figure 2.32 for values of p of 0.2, 0.4, 0.6 and 0.8. For

increasing values of p which tend to one, the distribution becomes more skew with a

shorter tail and a higher probability of lower values of y.
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Figure 2.32: Positive Geometric pdf

The pgf is,

G(t) =
pt

1 + (p− 1)t
, (2.182)

and the mgf,

M(t) =
etp

1 + et(p− 1)
. (2.183)
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The mean and variance of the positive geometric distribution are,

µ =
1

p
and σ2 =

1− p
p2

, (2.184)

The overdispersion index is,

OD =
1− p
p

. (2.185)

When p ≤ 0.5, the OD index is greater than 1 indicating overdispersion is present in

the distribution and as p→ 1 the OD approaches 0. The SI is given by,

SIy =
(1− p)1−y

2− p
. (2.186)
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Figure 2.33: log(SI)’s for Positive Geometric distributions

As p increases, the SI increases for large Y values, shown in Figure 2.33 which plots

SI’s for the Positive Geometric distribuion for values of p of 0.2, 0.4, 0.6 and 0.8.
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2.5.3 Positive Negative Binomial (r, p)

Also known as the zero-truncated negative binomial, the positive negative binomial

distribution has pdf,

fY (y; r, p) = P (Y = y) =

(
y+r−1
y

)
pr(1− p)y

1− pr
, (2.187)

for y = 1, 2, 3 . . . r ≥ 0 and 0 < p < 1 (Wimmer and Altmann, 1999, P.540). This

distribution is equivalent to a positive geometric distribution when r = 1. The first plot

in Figure 2.34 shows the effect of varying r at 1,2,5 and 10 when p is fixed at 0.5. For

small values of r the distribution is skew and as r increases the distribution becomes

flat. In the second plot r is fixed at 2 and p ranges between 0.25, 0.50, 0.75 and 0.9.

For values of p near 1 (as p increases ) the probability of low values increases.

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

P
ro

ba
bi

lit
y

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

●

●
● ●

●
●

●
●

●
● ● ● ● ● ●● ●

●
●

●
●

● ● ● ● ● ●
●

● ●

p=0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

●

●

●

●

r=1
r=2
r=5
r=10

●
● ● ●

●
●

●
● ● ● ● ● ● ● ●

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

P
ro

ba
bi

lit
y

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

r=2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

●

●

●

●

p=0.25
p=0.5
p=0.75
p=0.9

Figure 2.34: Positive Negative Binomial pdf

This distribution has pgf

G(t) = −p
r (1− (1 + (p− 1)t)−r)

1− pr
, (2.188)

and mgf

M(t) =

(
1− (1 + et(p− 1))

−r)
pr

pr − 1
. (2.189)
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The mean and variance of the distribution are,

µ =
(p− 1)r

p (pr − 1)
and σ2 =

(1− p)r (1 + pr((p− 1)r − 1))

p2 (pr − 1)2 , (2.190)

respectively. The overdispersion index is given by,

OD =
pr(1 + r − pr)− 1

p (pr − 1)
(2.191)

For large values of r, the OD index increases and as p tends to 1 the OD index

decreases. The SI is given by,

SIy =
(1− p)−ypr (1− pr) ( 2F1(r, r; 1; (p− 1)2)− 1)

(pr − 1)2 ( y+r−1
r−1

) . (2.192)

Figure 2.35 plots log(SI) for the Positive Negative Binomial distribution with parameters

of r = 1, 2, 5, 10 where p = 0.5 and in the second plot p = 0.25, 0.5, 0.75, 0.9 with

r = 2. As r increases the SI becomes smaller and less skew towards high Y values

and as p approaches 1, the SI also decreases for high values of Y .
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Figure 2.35: log(SI)’s for Positive Negative Binomial distributions

114



2.5.4 Positive Holla (α, θ)

The Holla and Sichel distributions have been widely used to analyse word frequency

and species abundance frequency data in the fields of linguistics or ecology, where

distributions for counts of species or lengths of words take values in the range Ry =

{1, 2, . . .} (Sichel, 1975; Puig et al., 2009; Ginebra and Puig, 2010). The zero-truncated

or positive Holla or Poisson-Inverse Gaussian distribution has pdf

fY (y;α, θ) = P (Y = y) =

(
2α
π

) 1
2 eα(

e
α
(

1−(1−θ)
1
2

)
− 1

) (αθ2 )y
y!

Ky− 1
2

(α) , (2.193)

for y = 1, 2, 3, . . . where α ≥ 0, 0 < θ ≤ 1 and 0 ≤ α
θ
< 1 (Wimmer and Altmann,

1999, P.547). The Positive Holla distribution is plotted in Figure 2.36 where θ is first

fixed at 0.5 and α is in the range 1,2,5 and 10, (first plot) and then α is fixed at 2 and

θ has values 0.25, 0.50, 0.75 and 0.90. As α increases the distribution becomes less

skewed and as θ decreases the probability of a low y value increases.
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Figure 2.36: Positive Holla pdf

The pgf is given by,

G(t) =

√
1− θ −

√
1− θt

1−
√

1− θ
1F1(1; 2;α

√
1− θ − α

√
1− θt)

1F1(1; 2;α
√

1− θ − α)
, (2.194)
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and the mgf

M(t) =
eα
(

eα(
√

1−θ−
√

1−etθ) − 1
)

eα − eα
√

1−θ
. (2.195)

The mean is

µ =
eααθ(

2eα − 2eα
√

1−θ
)√

1− θ
, (2.196)

and the variance

σ2 =
eααθ

(
eα(θ − 2) + eα

√
1−θ (2 +

(
α
√

1− θ − 1
)
θ
))

4
(
eα − eα

√
1−θ
)2

(1− θ)3/2
. (2.197)

and the overdispersion index is therefore,

OD =
eα(θ − 2) + eα

√
1−θ (2 +

(
α
√

1− θ − 1
)
θ
)

2
(
eα − eα

√
1−θ
)

(θ − 1)
. (2.198)
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Figure 2.37: log(SI)’s for Positive Holla distributions

As either α or θ increase the OD index increases, and for large values of both α and θ

the OD > 1. The SI of the positive Holla distribution is,

SIy =

(
e

1
2
α2
√

1−θθ
)−y

(1− e−α)
√

π
2
y!
∞∑
y=1

2e2α
(
e

1
2
α2
√

1−θθ
)2y

αKy− 1
2

(α)2

(−1 + eα)2 π(y!)2

√
αKy− 1

2
(α)

,

(2.199)
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The first plot in Figure 2.37 illustrate the SI’s for α = 1, 2, 5 and 10, where θ = 0.5

and as α increases values of Y become less surprising. In the second plot α = 2 and θ

is in the range 0.25, 0.50, 0.75 and 0.90, with larger values of θ resulting in lower SI’s.

2.5.5 Positive Sichel (α, θ, γ)

The pdf of the zero-truncated Sichel distribution is given by:

fY (y;α, θ, γ) = P (Y = y) =
1

(1− θ)− γ2Kγ(α(1− θ) 1
2 )−Kγ(α)

(
αθ
2

)y
y!

Ky+γ(α) ,

(2.200)

for y = 1, 2, 3, . . .where α > 0, 0 < θ < 1, γ ∈ R (Puig et al., 2009; Ginebra and Puig,

2010; Wimmer and Altmann, 1999, P.548). This distribution is also sometimes known

as a truncated Generalized Inverse Gaussian-Poisson or positive Sichel distribution. It

is also equal to a truncated Holla distribution when γ = −1

2
(Wimmer and Altmann,

1999). Figure 2.38 shows the Positive Sichel distribution for values of α = 0.5, 1, 2, 5, 10

(first plot), θ = 0.10, 0.25, 0.50, 0.75, 0.90 (second plot) and γ = 1.0,−0.5, 0, 1, 2

(third plot) where the remaining two parameters are fixed at α = 2, θ = 0.5 and

γ = −0.5. As in the non-truncated version of the Sichel distribution the parameter α

characterizes the low counts of y, θ influences the tail of distribution and γ parametrizes

the overall shape of the distribution.

The pgf for the Positive Sichel distribution is

G(t) =

(
1− θ
1− θt

) γ
2 Kγ(α

√
1− θt)− (1− θt) γ2Kγ(α)

Kγ(α
√

1− θ)− (1− θ) γ2Kγ(α)
, (2.201)

with mgf

M(t) =

(
1− θ

1− θet

) γ
2 Kγ(α

√
1− θet)− (1− θet) γ2Kγ(α)

Kγ(α
√

1− θ)− (1− θ) γ2Kγ(α)
. (2.202)

The mean is given by,

µ = αθKγ+1(α
√

1−θ)
√

1−θ
(

2(1−θ)
γ
2Kγ(α)−2Kγ(α

√
1−θ)

) , (2.203)
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Figure 2.38: Positive Sichel pdf
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Figure 2.39: log(SI)’s for Positive Sichel distributions
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and the variance,

σ2 = 1
4
θ ( (

(−4γ − 4γ2θ + α2(θ − 1)θ)Kγ−2(α
√

1− θ)
(θ − 1)2

+

2 (−4(γ − 1)γ(γθ + 1) + α2(θ − 1)(1 + (2γ − 1)θ))Kγ−1(α
√

1− θ)
α(1− θ)5/2

) /(
(1− θ) γ2Kγ(α)−Kγ(α

√
1− θ)

)
+

α2θKγ+1(α
√

1− θ)2

(θ − 1)
(
−(1− θ) γ2Kγ(α) +Kγ(α

√
1− θ)

)2 )

.

.

(2.204)

and the overdispersion index is,

OD = − 1

4αKγ+1(α
√

1− θ)
√

1− θ
(

2(1− θ)
γ
2Kγ(α)− 2Kγ(α

√
1− θ)

)
( (

(−4γ − 4γ2θ + α2(θ − 1)θ)Kγ−2(α
√

1− θ)
(θ − 1)2

+

2 (−4(γ − 1)γ(γθ + 1) + α2(θ − 1)(1 + (2γ − 1)θ))Kγ−1(α
√

1− θ)
α(1− θ) 5

2

) /(
(1− θ) γ2Kγ(α)−Kγ(α

√
1− θ)

)
)

+
α2θKγ+1(α

√
1− θ)2

(θ − 1)
(
−(1− θ) γ2Kγ(α) +Kγ(α

√
1− θ)

)2

.

(2.205)

As the values of α, θ and γ increase the dispersion in the distribution increases. The

SI is,

.

SIy =
1

Ky+γ(α)
2y(αθ)−y

(
−Kγ(α) + (1− θ)−γ/2Kγ(α

√
1− θ)

)
y!×

∞∑
y=1

4−y(αθ)2yKy+γ(α)2(
Kγ(α)− (1− θ)−γ/2Kγ(α

√
1− θ)

)2
(y!)2

,

(2.206)

Plots of the SI’s (Figure 2.39) indicate that larger values of Y are more surprising. For

larger values of α or θ the SI decreases but as γ increases the SI decreases.
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2.5.6 Positive Yule (λ)

The zero-truncated Yule distribution has been used to model word frequencies in texts

by (Simon, 1955) and also the distribution of under-reporting in incomes by Krishnaji

(1970). This distribution has pdf

fY (y;λ) = P (Y = y) =
λΓ(y)Γ(λ+ 1)

Γ(λ+ y + 1)
, (2.207)

for y = 1, 2, 3 . . . and λ > 0 (Wimmer and Altmann, 1999; Rose and Smith, 2002,

P.107). This distribution can also be generated from a parameter mixture where

Yule(λ)=Geometric(e−W )
∧
W

Exponential( 1
λ
) (Wimmer and Altmann, 1999, P.549).

The Yule probability density is plotted for values of λ of 1, 2, 5 and 10 in Figure 2.40.

As λ increases the distribution becomes more skew with a higher probability of low

counts of y and a reduction in the tail of the distribution.
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Figure 2.40: Positive Yule pdf

The distribution has pgf

G(t) = t λΓ(λ+ 1)
2F1(1, 2; 3 + λ; t)

Γ(λ+ 2)
, (2.208)
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and mgf

M(t) = etλΓ(λ+ 1)
2F1(1, 2; 3 + λ; et)

Γ(λ+ 2)
, (2.209)

The positive Yule distribution therefore has mean

µ =
λ

λ− 1
, (2.210)

and variance,

σ2 =
λ2

(λ− 2)(λ− 1)2
. (2.211)

The overdispersion index is,

OD =
λ

λ2 − 3λ+ 2
. (2.212)

For small values of λ theOD index is large and as λ increases theOD index decreases.
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Figure 2.41: log(SI)’s for Positive Yule distributions

The SI for the positive Yule distribution is,

SIy =
1

Γ(y)Γ(λ+ 1)
λ3 Γ(λ)2 Γ(y + λ+ 1)3F2(1, 1, 1;λ+ 2, λ+ 2; 1) . (2.213)
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The SI is larger for higher values of λ, shown in Figure 2.41 which plots the SI’s for

the Positive Yule distribution with values of λ = 1, 2, 5 and 10.

2.6 Lerch Family Distributions

The Lerch family of distributions (Kulasekera and Tonkyn, 1992; Kemp, 1995; Zörnig

and Altmann, 1995; Doray and Luong, 1997) is formed of distributions based on the

Lerch Zeta function (Wimmer and Altmann, 1999, pg. XXIV) defined as,

Φ(p, a, c) =
∞∑
y=1

py

(a+ y)c
, (2.214)

where p > 0 and a > 0. The special case where p = 1, a = 1 and c > 1 is the

Reimann Zeta function ζ(c) and where p = 1, a 6= 0,−1,−2, . . . and c > 1 is the

Hurwitz Zeta function ζ(c, a) (Johnson et al., 2005, pg. 527). The general form of the

Lerch distribution utilizes the Lerch Zeta function and distributions within the Lerch

family have pgf’s of the form,

G(t) =
Φ (p t, a, c)

Φ (p, a, c)
(2.215)

where p > 0 and a > 0 for G(t) to be a valid pgf with non-negative probabilities and

range 0, 1, 2, . . . (Johnson et al., 2005).

The Lerch family of distributions have applications in many fields for example,

modelling word frequencies in linguistics (Zipf, 1949), surname distributions (Fox and

Lasker, 1983), counts of insurance policies (Seal, 1947), species distributions (Yule,

1925) and ranking size of cities (Brakman et al., 1999). The Estoup, Lotka, Zeta, Zipf

and Good distributions can be considered as special cases of the more general Lerch

distribution (Zörnig and Altmann, 1995) and are presented in this section.
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2.6.1 Lerch (p, a, c)

The pdf of the general form of the Lerch distribution is given by,

fY (y; p, a, c) = P (Y = y) =
py

T ×, (a+ y)c
, (2.216)

for y = 1, 2, 3, . . . where a > 0, c ≥ 0 and 0 ≤ p < 1 (Zörnig and Altmann, 1995;

Wimmer and Altmann, 1999) where T = Φ(p, a, c) is the Lerch Zeta function (see

equation 2.214 in Section 2.6).
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Figure 2.42: Lerch pdf

Figure 2.42 shows the Lerch probability density for p = 0.25, 0.5, 0.75, 0.9 where
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a = 2 and c = 2 (first plot), a = 0, 2, 5, 10 where p = 0.5 and c = 2 (second plot) and

c = 0.5, 1, 2, 5 where is p = 0.5 and a = 2. The parameter p controls the low counts

of y and as p decreases the probability of a low y count increases. The parameter, a

controls the overall skew of the distribution and as a becomes larger the skew increases

in the distribution. The tail of the distribution is characterized by c and as c increases

the tail becomes larger.

The pgf of the Lerch distribution is given by

G(t) =
tΦ(pt, c, a+ 1)

Φ(p, c, a+ 1)
, (2.217)

with mgf

M(t) =
etΦ(etp, c, a+ 1)

Φ(p, c, a+ 1)
, (2.218)

The mean of the Lerch distribution is

µ =
Φ(p, c− 1, a+ 1)− aΦ(p, c, a+ 1)

Φ(p, c, a+ 1)
, (2.219)

and the variance,

σ2 =
Φ(p, c− 2, a+ 1)− (Φ(p, c− 1, a+ 1)− aΦ(p, c, a+ 1))2

Φ(p, c, a+ 1)2
. (2.220)

with overdispersion index,

OD =
Φ(p, c− 2, a+ 1)− aΦ(p, c− 1, a+ 1)

Φ(p, c− 1, a+ 1)− aΦ(p, c, a+ 1)
+

aΦ(p, c, a+ 1)− Φ(p, c− 1, a+ 1)

Φ(p, c, a+ 1)
− a .

(2.221)

As either p or a increase the OD index becomes large. When c = 0 the index is equal

to 1 and decreases as c becomes large. The SI of the Lerch distribution is,

SIy =
p1−y(a+ y)c Φ(p, c, a+ 1) Φ(p2, 2c, a+ 1)

Φ(p, c, a+ 1)2
, (2.222)
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Figure 2.43: log(SI)’s for Lerch distributions

Figure 2.43 shows three plots of the logarithm of SI’s for the Lerch distribution where

p = 0.25, 0.5, 0.75, 0.9 with a = 2 and c = 2, a = 0, 2, 5, 10, when p = 0.5 and

c = 2 and finally c = 0.5, 1, 2, 5 where p = 0.5 and a = 2. As p approaches 0 the SI

increases for high Y values, and decreases for low Y values. Lower values of a result

in an increase in the SI , whilst higher values of c increase the SI .

Several special cases of the Lerch distribution can be found by fixing the parameters

of the Lerch distribution. Two examples where all three parameters in the Lerch

distribution are fixed are the Estoup and Lotka distributions, presented in the following

sections.
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Estoup

This distribution was established by Estoup (1916) and is a special case of the Lerch

distribution where p = 1, a = 0 and c = 1. It is sometimes known as the Estoup-Zipf

law within the linguistics literature (Wimmer and Altmann, 1995, 1999). For the

Estoup distribution, the Lerch distribution pdf reduces to

fY (y) = P (Y = y) =
1

S × y
, (2.223)

where S =
n∑
y=1

1

y
, for y = 1, 2, . . . , n. (Zörnig and Altmann, 1995; Wimmer and

Altmann, 1999, P.145).
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Figure 2.44: Estoup and Lotka pdf’s

Lotka

The Lotka distribution is another special case of the Lerch distribution where p = 1,

a = 0 and c = 2 (Johnson et al., 2005). Also known as Lotka’s Law after Lotka

(1926) published his distribution for the frequency of scientific production based on
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the inverse square law. The pdf of this distribution is

fY (y) = P (Y = y) =
1

T × y2
, (2.224)

for y = 1, 2, . . . , n. and where the corresponding Zeta function is T = Φ(1, 0, 2) =

1
6
π2 (Zörnig and Altmann, 1995; Wimmer and Altmann, 1999, P. 394).

Figure 2.44 plots the Estoup (shown in black) and Lotka (shown in red) densities

for values of y of 1 to 15. Since these distributions have no parameters the densities are

fixed. The Lotka distribution is more skewed than the Estoup, with a higher proportion

of values of y of one. The Lotka distribution also has a smaller tail compared to the

Estoup density.

2.6.2 Zipf (a, c)

This distribution is also often known as the Zipf-Mandelbrot distribution or, less frequently,

as the Hurwitz distribution (Wimmer and Altmann, 1999). It has been applied to

ranking problems in linguistics and in the analysis of publications citation frequencies

(Zipf, 1949; Mandlebrot, 1959).This is a special case of the Lerch distribution, where

p is a constant at one and a > 0 and c > 1,

fY (y; a, c) = P (Y = y) =
1

Φ(1, a, c) (a+ y)c
, (2.225)

for observations in the range y = 1, 2, . . ., where Φ(p, a, c) is the the Zeta function

(Wimmer and Altmann, 1999; Zörnig and Altmann, 1995, P.666).
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Figure 2.45: Zipf pdf

In Figure 2.45 the Zipf probability distribution is shown for values of c of 2,5,7,and

10 with a fixed at one and and a of 2,5,7,and 10 with c = 1. The parameter c controls

the probability of the distribution where y equals one, whilst a controls the skewness

of the distribution.

The pgf of this distribution is

G(t) =
tΦ(t, c, a+ 1)

ζ(c, a+ 1)
, (2.226)

and the mgf is

M(t) =
et Φ(et, c, a+ 1)

ζ(c, a+ 1)
, (2.227)

The mean is

µ =
Φ(1, c− 1, a+ 1)− aΦ(1, c, a+ 1)

ζ(c, a+ 1)
, (2.228)

and variance is given by

σ2 = 1
ζ(c,a+1)2

( − (Φ(1, c− 1, a+ 1)− aΦ(1, c, a+ 1))2 + (Φ(1, c− 2, a+ 1)

+a(−2Φ(1, c− 1, a+ 1) + aΦ(1, c, a+ 1)))ζ(c, a+ 1) )
.

(2.229)
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Figure 2.46: log(SI)’s for Zipf distributions

The overdispersion index is

OD =
Φ(1, c− 2, a+ 1)− aΦ(1, c− 1, a+ 1)

Φ(1, c− 1, a+ 1)− aΦ(1, c, a+ 1)
+
−Φ(1, c− 1, a+ 1) + aΦ(1, c, a+ 1)

ζ(c, a+ 1)
−a .

(2.230)

Increasing values of a result in an increase in the OD index, however as c increases

the OD index decreases. The SI of the Zipf distribution is,

SIy =
(a+ y)cζ(c, a+ 1)ζ(2c, a+ 1)

ζ(c, a+ 1)2
. (2.231)

2.6.3 Good (p, c)

This distribution has been used in linguistics to model the distribution of word frequencies

(Good, 1953), the size of business farms (Ijiri and Simon, 1977) and numbers of

species per genus (Yule, 1925). The Good distribution arises where 0 < p < 1, a = 0

and c ∈ R in the Lerch distribution with the resulting pdf

fY (y; p, c) = P (Y = y) =
py

Φ(p, 0, c) yc
, (2.232)
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Figure 2.47: Good pdf

for y = 1, 2, . . . (Zörnig and Altmann, 1995; Wimmer and Altmann, 1999, pg. 219).

The Good distribution is shown in Figure 2.47 for c = 0.5, 1, 2, 5 where p = 0.5 in

the first plot, and p = 0.2, 0.5, 0.7, 0.9 where c = 1 in the second plot. As c increases

the probability of a low value of y increases. The parameter p controls the tail of the

distribution, with values of p closer to one having longer tails.

The Good distribution has pgf

G(t) =
p−cLic(pt)

ζ(c)
, (2.233)

where Lis(z) is the polylogarithm given by Lis(z) =
∑∞

k=1
zk

ks
(Wimmer and Altmann,

1999). The mgf is,

M(t) =
p−cLic(e

tp)

ζ(c)
. (2.234)

The mean of the Good distribution is

µ =
p−cLic−1(p)

ζ(c)
, (2.235)

with variance

σ2 =
p−2c (−Lic−1(p)2 + pcLic−2(p)ζ(c))

ζ(c)2
. (2.236)
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Figure 2.48: log(SI)’s for Good distributions

The overdispersion index is given by

OD =
Lic−2(p)

Lic−1(p)
− p−cLic−1(p)

ζ(c)
. (2.237)

The OD increases as p approaches 1, but decreases as the value of c increases. The SI

is

SIy = pc−yyc

(
∞∑
i=1

p2i−cy−c(pi)−c

ζ(c)2

)
ζ(c) . (2.238)

Figure 2.48 plots the log of the SI’s for Good distributions with c = 0.5, 1, 2, 5 where

p = 0.5 (first plot) and p = 0.2, 0.5, 0.7, 0.9 where c = 1 (second plot). As c increases

the SI becomes more surprising across all values of Y plotted. Decreasing p reduces

the SI for high values of Y .

2.6.4 Zeta (c)

The Zeta distribution is also known as the Reimann Zeta distribution or the discrete

Pareto distribution and has been applied to the number of insurance policies by Seal
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Figure 2.49: Zeta pdf

(1947). The pdf of the Zeta distribution is given by

fY (y; c) = P (Y = y) =
1

T yc
, (2.239)

for y = 1, 2, . . ., where T = Φ(1, 0, c) (Zörnig and Altmann, 1995; Wimmer and

Altmann, 1999, P. 664) and again, this distribution is a special case of the Lerch

distribution where p = 1, a = 0 and c > 1. The Zeta distribution is also sometimes

known as the discrete Pareto distribution, the Joos model, or the Riemann zeta distribution.

The zeta distribution is shown in Figure 2.49 for values of c of 1,2,5 and 10. As c

increases the Zeta distribution becomes more J-shaped and the probability of a y value

of one increases.

The pgf is given by

G(t) =
Lic(t)

ζ(c)
, (2.240)

and the mgf is

M(t) =
Lic(e

t)

ζ(c)
. (2.241)
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The mean and variance of the Zeta distribution are therefore

µ =
ζ(c− 1)

ζ(c)
and σ= ζ(c− 2)ζ(c)− ζ(c− 1)2

ζ(c)2
. (2.242)

The overdispersion index is

OD =
ζ(c− 2)

ζ(c− 1)
− ζ(c− 1)

ζ(c)
. (2.243)

The SI of the Zeta distribution is

SIy =
ycζ(2c)

ζ(c)
, (2.244)
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Figure 2.50: log(SI) for the Zeta distribution

Logarithms of the SI for the Zeta distribution with c values of 1, 2, 5 and 10, are

plotted in Figure 2.50. Larger values of c result in larger SI’s for high values of Y .
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2.7 Generalized Poisson Distributions

The term Generalized distribution was coined by Feller (1943) to describe the combination

of two independently distributed variables. Consider a random variable S that can be

represented as a sum,

S = Y1 + Y2 + . . .+ YN , (2.245)

where N and Y1, Y2, . . . are random variables, and the distribution of N has pdf fN

with pgf GN(t) and
∑

i Yi with pdf fY and pgf GY (t). The variable S then has pgf

GN(GY (t)) and is called an fN distribution generalized by fY (Gupta and Jain, 1974;

Karlis and Xekalaki, 2005). This is represented using the symbolic notation developed

by Feller (1943):

fS = fN
∨

fY . (2.246)

The model for this process can be interpreted as the sum of observations from fY ,

where the number of observations to be added is determined by an observation from

the distribution fN i.e. the sum from fY observations is stopped by the value of the fN

observation (Johnson et al., 2005, P.381). These distributions are also known by many

other names in the statistical literature: compound, composed, stuttering, power series

and stopped-sum distributions (Wimmer and Altmann, 1996).

Generalized Poisson distributions are a special case of generalized distributions

and have been defined by Gupta and Jain (1974) and more recently by Wimmer and

Altmann (1996) as a family of distributions with pgf’s of the form,

G(t) = exp {µ[G(t)− 1]}

= exp {a1(t− 1) + a2(t2 − 1) + . . .+ am(sm − 1) + . . .}
, (2.247)

where G(t) is also a pgf and
∑
ai = µ (Gupta and Jain, 1974). This is a called the

Generalized Poisson family of distributions due to the occurrence of the Poisson pgf

G(t) = eµ(t−1) which is generalized as a compound distribution. For all distributions

belonging to the Generalized Poisson family the pgf tends to the Poisson distribution as

m becomes large (Gupta and Jain, 1974). The negative binomial distribution belongs to
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this family, where µ = −ln(p) and G(t) =
ln(1− (1− p)t)
ln(1− (1− p))

(Wimmer and Altmann,

1999).

This section presents five distributions from the Generalized Poisson family including

the Neyman Type A, Hermite, Generalized Hermite, Gegenbauer and Generalized

Gegenbauer distributions.

2.7.1 Neyman Type A (µ, φ)

First established by Jerzgi Neyman (1939) to describe numbers of larvae in a unit

of a given area, the use of this model originates in the description of plant and insect

distributions, especially when reproduction of the species produces clusters of offspring

e.g. by seeds falling near the parent plant (David and Moore, 1954). The Neyman

type A distribution can be generated as a generalized distribution, where a Poisson

distribution is generalized by another Poisson distribution, i.e. Neyman type A(φ, µ)

= Poisson(µ)
∨

Poisson(φ). For example, the number of plants follows a Po(µ)

distribution and the number of offspring from each plant has a Po(φ) distribution. The

Neyman Type A distribution is a member of the generalized Poisson family and its

pgf has parameter µ. This distribution can also be constructed as a parameter mixture

of a Poisson distribution with mean φj , where j varies across individuals according

to a Poisson distribution with mean µ, i.e. Neyman type A(φ, µ) = Poisson(φj)
∧
j

Poisson(µ). The pdf of this distribution has no closed form and can be written as:

fY (y;µ, φ) = P (Y = y) =
e−µφy

y!

∞∑
j=0

(µe−φ)jjy

j!
, (2.248)

for y = 0, 1, 2, . . ., where µ ≥ 0 and φ ≥ 0 (Johnson et al., 2005; Wimmer and

Altmann, 1999, P. 468). The pdf of the Neyman Type A distribution can be seen in

Figure 2.51. In the first plot φ is fixed at 2 and µ is in the range 1, 2, 5 and 10. As µ

increases the distribution becomes almost flat and for small values of µ the distribution

is highly skew. The second plot shows φ in 1, 2, 5 and 10, where µ is fixed at 2. The

parameter φ adjusts the shape of the distribution with lower values of φ having higher
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Figure 2.51: Neyman Type A pdf

probabilities of low y values.

The pgf is,

G(t) = eµ(e(φ(t−1))−1), (2.249)

and mgf,

M(t) = ee(φ(t−1)−1)µ . (2.250)

The Neyman Type A distribution therefore has mean

µ = µφ , (2.251)

and variance

σ2 = µφ(1 + φ) . (2.252)

The overdispersion index is therefore

OD = 1 + φ , (2.253)

and is independent of µ, taking values greater than 1 and indicating that overdispersion
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can be accounted for by a Neyman Type A distribution. The zero-inflation index is,

ZI = 1− e−φ − 1

φ
. (2.254)

Again, the ZI index is independent of µ and as φ increases the ZI index approaches

1. The SI for the Neyman Type A distribution is,

SIy =
eµ−e−φµφ−yy!

∑∞
y=0

e
2(e−φ−1)µφ2yBly(e−φµ)2

(y!)2

Bly(e−φµ)
(2.255)

where Bly is the Bell polynomial.
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Figure 2.52: log(SI)’s for Neyman Type A distributions

The logarithm of the SI is plotted in Figure 2.52 for µ = 1, 2, 5 and 10 where φ is

fixed at 2 (first plot) and φ = 1, 2, 5 and 10 with µ = 2 (second plot). For increasingly

large values of φ or µ the SI is larger for high values of Y .

2.7.2 Hermite (a, b)

The Hermite distribution was first derived by McKendrick (1926) as the sum of two

correlated Poisson random variables and applied to counts of bacteria in leucocytes.

Let the bivariate Poisson distribution equal (Y1, Y2) = (U+V, U+W ) where U , V and
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W are three independent Poisson variables with parameters b, a1 and a2 respectively

(Ahmed, 1961). Taking the sum Y1 + Y2 results in a Hermite pdf with parameters

a = a1 + a2 and b,

fY (y; a, b) = P (Y = y) = e−(a+b)

d y2e∑
j=0

a(y−2j) bj

(y − 2j)!j!
, (2.256)

where dxe is a Ceiling function giving the smallest integer greater than or equal to x,

valid for y = 0, 1, 2, . . . a ≥ 0 and b ≥ 0 (Johnson et al., 2005; Wimmer and Altmann,

1999, P.254).

This distribution gets its name from the appearance of the Hermite polynomial in

the pdf, setting a = αβ and b = α2

2
in Equation 2.256 gives,

P (Y = 0) = e−αβ−
α2

2

P (Y = y) =
αyHy(β)

y!
P (Y = 0) , y = 1, 2, . . .

(2.257)

where Hy(β) is the Hermite polynomial (Johnson et al., 2005).

This is a generalized Poisson distribution where a Poisson distribution with mean

a+ b is generalized by a zero-truncated Bernoulli distribution with probability b
a+b

, i.e

Hermite(a, b) = Poisson(a + b)
∨

Zero-truncated Bernoulli
(

b
a+b

)
and is a member

of the generalized Poisson family where the parameter of the generalized Poisson

distribution family pgf is µ = a + b (Wimmer and Altmann, 1999, P.254). This

distribution is also known as a two-parameter Poisson distribution. The Hermite distribution

can also be generated as a component mix of a Poisson distribution and Poisson doublet,

where in a Poisson doublet distribution pairs (rather than individuals) follow a Poisson

distribution with sample space 0, 2, 4, . . ., i.e. Hermite(a, b) =Poisson(a)*Poisson

doublet(b) (Johnson et al., 2005). It is also a Binomial-Poisson parameter mix where

Hermite(a, b) =Binomial
(

2j, 2b
(a+2b)

) ∧
j

Poisson
(

(a+2b)2

4b

)
(Wimmer and Altmann,

1999).

The Hermite probability density function is plotted in Figure 2.53 firstly for values

of a of 1, 2, 5 and 10 where b = 2 and in the second plot b of 1, 2, 5 and 10 where
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Figure 2.53: Hermite pdf

a = 2. As the values of a and b become larger the distribution tends to a normal curve.

The pgf of this distribution is

G(t) = ea(t−1)+b(t2−1) , (2.258)

and the mgf,

M(t) = e(et−1)(a+b+bet) . (2.259)

The mean and variance are given by

µ = a+ 2b and σ2 = a+ 4b . (2.260)

The overdispersion index for the Hermite distribution is

OD =
a+ 4b

a+ 2b
, (2.261)

and where b = 0 and a > 0 the OD is equal to 1. As a increases the OD index

increases but when b increases the index slowly decreases. The zero-inflation index is

ZI = 1− (a+ b)

a+ 2b
. (2.262)
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Figure 2.54: log(SI)’s for Hermite distributions

Large values of a result in smaller values of the ZI index, i.e. less zero-inflation in

the dataset, whilst large values of b increase the ZI index. The SI of the Hermite

distribution is,

SIy = 1

U
(

1−y
2
, 3
2
,−a2

4b

) ( 21−ya−y
(
−a2

b

)− 1
2

+ y
2

ea+by!
∞∑
i=0

(
1

(i!)2

)
22i−yay

(
−a

2

b

) 1
2
− y

2

b
y
2 e−2(a+b)U

(
1−y

2
, 3

2
,−a2

4b

)
U
(
−y

2
, 1

2
,−a2

4b

)
) ,

(2.263)

where U(a, b, x) is the confluent hypergeometric function of the second kind. The SI

is plotted in Figure 2.54. The first plot illustrates the SI’s of the Hermite distrbution

where a = 1, 2, 5, 10 and b = 2. Where a is small the log(SI) is skew with high values

of y having large SI’s and as a increases there is a reduction in log(SI), with low y

values eventually having the highest SI values. In the second plot, a = 2 and b is in

the range 1, 2, 5 and 10. Again, where b is small, the SI is skew, with high y values

having large SI’s and as b increases the SI is less skew with low values becoming

more surprising.

2.7.3 Generalized Hermite (a, b,m)

Gupta and Jain (1974) extended the Hermite distribution to form the Generalized
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Hermite (GH) distribution with Y = Y1 +mY2, where Y1 = U + V and Y2 = U +W

and U , V and W are independent Poisson random variables (Johnson et al., 2005,

P.399). This distribution has been applied to the frequency of bacteria in leucoytes and

frequency of larvae in corn plants by Cortina-Borja (2006). The pdf is,

fY (y; a, b,m) = P (Y = y) =


e−(a+b) y = 0

e−(a+b)

d yme∑
j=0

bj

j!

ay−mj

(y −mj)!
y = 1, 2, 3, . . .

(2.264)

for a ≥ 0, b ≥ 0 and m ∈ N (Wimmer and Altmann, 1999, P.229). The distribution is

also known as the Gupta-Jain-Hermite distribution after Gupta and Jain (1974).
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Figure 2.55: Generalized Hermite pdf
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In the Generalized Hermite distribution m controls the number of modes in the

density. Figure 2.55 plots the pdf of the Generalized Hermite distribution for values of

m of 2, 3, 4 and 5, where a is fixed at 2 and b at 1. In the first plot m = 2 results in a

uni-modal density, whilst a value of m = 3 results in the bimodal density displayed in

the second plot. Examples of densities with 3 (m = 4) and 4 (m = 4) modes can be

seen in the third and fourth plots.

This distribution is again a member of the generalized Poisson family where µ =

a+ b in the pgf

G(t) = e−(a+b)e−at+bt
m

, (2.265)

and the mgf is

M(t) = e−a(1+t)−b(1−tm) . (2.266)

The mean and variance are

µ = a+mb and σ2 = a+m2 b , (2.267)

respectively. The overdispersion index can be calculated as

OD =
a+ bm2

a+mb
, (2.268)

when b = 0, the index OD = 0 and where a = 0 the OD index is equal to m. The OD

index is greater than 1 for all parameter values of a, b and m. As b increases the OD

increases however when a increases the OD index decreases. The zero-inflation index

is given by

ZI =
b(m− 1)

a+mb
. (2.269)

Increasing a results in a decrease in the ZI index, where as increasing b increases the

amount of zero-inflation in the distribution. Larger values of m also result in a higher
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ZI index. The SI is given by

SIy =

∑∞
y=0 e−2(a+b)

(
ea+b

(∑b ymc
j=0

ay−jmbj

j!(y−jm)!

)
(U−y − 1)− 1

)
2

e−(a+b) +

(∑b ymc
j=0

ay−jmbj

j!(y−jm)!

)
(1− U−y)

. (2.270)
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Figure 2.56: log(SI)’s for Generalized Hermite distributions

Figure 2.56 plots log(SI)’s for the Generalized Hermite distribution where a = 2 and

b = 1 for values of m of 2, 3, 4 and 5. The SI’s indicate that higher values of y are

more surprising. Asm increases the SI decreases with heavier tails and becomes more

variable due to the multi-modal nature of the distribution.
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2.7.4 Gegenbauer (a, b, k)

A parameter mixture of a Hermite and Gamma distributions results in a Gegenbauer

distribution where Gegenbauer(a, b, k) = Hermite(θ, θa
b

)
∧
θ

Gamma( a
(1−a−b) , k) (Wimmer

and Altmann, 1999, P.176). The pdf of the Gegenbauer distribution is,

fY (y; a, b, k) = P (Y = y) =


(1− a− b)k y = 0

(1− a− b)k
∑[x

2
]

j=0

bjk
(y−j)ay−2j

j!Γ(y − 2j + 1)
y = 1, 2, . . .

,

(2.271)

for a ≥ 0, b ≥ 0, 0 ≤ a + b < 1 and k ≥ 0 (Plunkett and Jain, 1975; Johnson et al.,

2005, P.500). This distribution is a member of the generalized Poisson family with

µ = −k ln(1− a− b).
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Figure 2.57: Gegenbauer pdf

The pdf of the Gegenbauer distribution is shown in Figure 2.57. In the first plot k
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has values in the range 0.2, 0.5, 0.7 and 1 where a = 0.4 and b = 0.5 and it illustrates

that for smaller values of k the probability of a y value of zero increases. In the second

plot k = 0.5 and b is fixed at 0.1 whilst a ranges in 0.2, 0.5, 0.7 and 0.9 and in the

third plot a is fixed at 0.1 whilst b ranges in 0.2, 0.5, 0.7 and 0.9. In each plot, as a or

b decreases the distribution becomes more skew.

The pgf of this distribution is

G(t) = (1− a− b)k (1− at− bt2)(−k) , (2.272)

and mgf

M(t) = (1− a− b)k (1− at− btet)−k . (2.273)

The mean of this distribution is

µ = −k(a+ 2b)

a+ b− 1
, (2.274)

and the variance

σ2 =
k(a− (a− 4)b)

(a+ b− 1)2
. (2.275)

The overdispersion index is

OD =
a− 2

a+ b− 1
− a

a+ 2b
. (2.276)

where either a and b are large the OD index is also large. The zero-inflation index is

ZI = 1− (a+ b− 1)log((1− a− b)k)
(a+ 2b)k

. (2.277)

The parameters a, b and k all increase the ZI index which approaches a value of 1 as
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these values are large. The SI of this distribution is

SIy = − ( (1− α− β)−a
∞∑
y=0

(1− α− β)2a

−b
y
2c∑
j=0

[
ay−2αy−2jβj(U−y − 1)

j!Γ(1− 2j + y)

]
+ U−y

−b
y
2c∑
j=0

[
(aα)y−2j(aβ)j(U−y − 1)

Γ(j + 1)Γ(1− 2j + y)

]
+ U−y

 ) /

b
y
2c∑
j=0

[
ay−jαy−2jβj

j!Γ(1− 2j + y)

]
(U−y − 1)− U−y

 ,

(2.278)
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Figure 2.58: log(SI)’s for Gegenbauer distributions

Logarithm of SI’s are plotted for the Gegenbauer distribuion in Figure 2.58. In the first
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plot a = 0.4, b = 0.5 and k is in the range 0.2, 0.5, 0.7 and 1.0, with larger values of

k resulting in a higher SI . In the second plot a = 0.9, 0.7, 0.6, 0.2 where b = 0.1 and

in the final plot b = 0.9, 0.7, 0.6, 0.2 where a = 0.1, with k fixed at 0.5. For smaller

values of a or b in these plots the SI is higher for low values of Y .

2.7.5 Generalized Gegenbauer (a,m, α, β)

A generalization of the Gegenbauer distribution by Medhi and Borah (1984) has four

parameters with pdf,

fY (y; a,m, α, β) = P (Y = y) =



(1− α− β)a y = 0

(1− α− β)a
[ y
m

]∑
j=0

a(y−(m−1)j)βjαy−mj

j!Γ(y −mj + 1)
y = 1, 2, 3, . . .

,

(2.279)

for a > 0, α ≥ 0, β ≥ 0, 0 ≤ α + β < 1 and m ∈ N (Wimmer and Altmann,

1995, 1999, P.407). The density of the Generalized Gegenbauer distribution is plotted

in Figure 2.59 for values α = 0.4, β = 0.5 and a = 0.5, for four different values of m

of 2, 3, 4 and 5. As m increases the number of modes in the distribution also increases

and they become more pronounced for higher values of m.

This distribution is also known as the Medhi-Borah distribution and can be obtained

by mixing a generalized Hermite distribution with a Gamma distribution (Wimmer

and Altmann, 1999) and is a member of the generalized Poisson family where the

parameter µ = −a ln(1− α− β) in the pgf:

G(t) = (1− α− β)a(1− αt− βtm)(−a) (2.280)

mgf:

M(t) = (1− α− β)a(1− αet − βet
m

)(−a) (2.281)
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Figure 2.59: Generalized Gegenbauer pdf
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and the mean and variance are,

µ = −a(α +mβ)

α + β − 1
and σ2 =

a (α + β (−α(m− 1)2 +m2))

(α + β − 1)2
. (2.282)

the overdispersion index is,

OD = −a(α + (m2 − (m− 1)2α)β)

(α + β − 1)2
, (2.283)

Where α and β are close to 0 the OD index is near 1. As the values of α, β and

m increase the OD index increases, indicating that the distribution becomes more

dispersed. The zero-inflation index is

ZI =
a(α +mβ)− (α + β − 1)log((1− α− β)a

a(α +mβ)
. (2.284)

As m and α increase the ZI index increases, whilst larger values of a and β decreases

the ZI index.

The SI is given by

SIy = (
∑∞

y=0(1− α− β)2a

(
−
∑b ymc

j=0
a−j(m−1)+yαy−jmβj

j!Γ(1−jm+y)
(U−y − 1) + U−y

)
(
−
∑b ymc

j=0
(aα)y−jm(aβ)j

Γ(j+1)Γ(1−jm+y)
(U−y − 1) + U−y

)
) /(

(1− α− β)a
(∑b ymc

j=0
a−j(m−1)+yαy−jmβj

j!Γ(1−jm+y)

)
(1− U−y) + (1− α− β)aU−y

)
,

(2.285)

Figure 2.60 plots four SI’s for the Generalized Gegenbauer distribution with parameter

values fixed at α = 0.4, β = 0.5, a = 0.5 and where m is in the range 2, 3, 4 and

5. The number of modes in the distribution also is determined by m resulting in a

variating SI and as m increases the size of the SI also increases. The Generalized

Gegenbauer also has heavy tails in contrast with other pdf’s illustrated by the values of

SI’s in Figure 2.60 which are all less than 4 i.e. not surprising.
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Figure 2.60: log(SI)’s for Generalized Gegenbauer distributions
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Summary

The purpose of this chapter is to provide a basis for model fitting and introduces the

distributions which will be referred to in forthcoming chapters. Common distributions

for discrete data presented include the binomial, geometric, hypergeometric, Poisson,

and negative binomial distributions, followed by alternatives to these distributions

such as parameter-mixtures, component-mixtures and truncation to model highly skew,

zero-inflated and/or long-tailed distributions. The Lerch family is a special class of

distributions useful for modelling populations and word frequencies. The generalized

Poisson family includes the generalized Hermite and generalized Gegenbauer distributions

which allow fitting of multi-modal models.

Although many of these distributions have been previously covered in the statistical

literature, by bringing this information together we hope to gain an overall understanding

of discrete distributions, provide comparisons between distributions and identify suitable

instances for their implementation in practice. An outline of each discrete distribution

featured in this thesis has been given, including the pgf, mgf, mean and variance.

Application of the surprise, overdispersion and zero-inflation provide new insights into

the characteristics of these distributions.
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Chapter 3

Fitting the models

This chapter describes estimation methods for fitting the discrete models detailed in

the previous chapter. This is followed by a section on model diagnostics.

3.1 Estimation methods

The parameters of a discrete distribution can be estimated in a variety of ways. The

methods of rapid estimation, maximum likelihood and the Estimation-Maximization

(EM) algorithm are presented in this section. These methods are illustrated using the

example of counts of cysts in steroid treated embryonic mouse kidneys presented in

Section 1.2.2.

3.1.1 Rapid Estimation

Many methods of model fitting, for example maximum likelihood estimation (see

Section 3.1), can be made easier if good initial estimators are obtained. Rapid estimation

techniques, presented for discrete distributions by Kemp and Kemp (1988) provide an

estimation method which can be used as initial estimates for iterative procedures (e.g.

the Newton-Raphson method). These methods do not require iteration and are suitable

where quick estimates of a model’s parameters are needed.

Let Y be a discrete random variable with pdf fY and parameters θ = {θ1, θ2, . . . , θn}

and denote the mean µ ≡ µ(θ), variance σ2 ≡ σ2(θ), skewness γ1 ≡ γ1(θ) and kurtosis
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γ2 ≡ γ2(θ). The process of rapid estimation works by equating functions of the sample

observations to their expectations, producing equations that can solved simultaneously

for the estimators θ∗. Three methods of rapid estimation are presented in the following

sections; they use different estimating equations to generate parameter estimates.

Method of moments

The simplest example of this technique is the method of moments where the sample

moments are equated to expressions of the moments for the distribution, giving the

equations

ȳ = µ(θ∗)

s2 = σ2(θ∗)

γ1 = γ1(θ∗)

...

, (3.1)

where ȳ, s2, and γ1, are the sample mean, variance and skewness of the observed count

data y and µ(θ∗), σ2(θ∗) and γ1(θ∗) give expressions for the moments of the discrete

distribution. Solving these equations results in expressions for the moment estimators

θ∗.

The Poisson distribution presented in Section 2.2.5 illustrates this method using a

simple one-parameter distribution. For the method of moments the mean of the Poisson

distribution is simply equated to the sample mean of the observations. In the case of

the Poisson distribution, the mean is equal to µ. The moment estimator µ∗ is therefore

given by the sample mean ȳ of the data.

The parameters of a zero-inflated Poisson distribution ω and µ (see Section 2.4.1)

can also be estimated using the method of moments. The sample mean ȳ and variance

s2 of the discrete data y is set equal to the expressions for the mean and variance of the

distribution given in Equations 2.138 and 2.139 of Section 2.4.1 as follows,

ȳ = µ− µω

s2 = µ(1− ω)(1 + µω)
. (3.2)
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These are solved simultaneously to give moment estimators ω∗ and µ∗ for the parameters

ω and µ, as follows

µ∗ =
ȳ2 − ȳ + s2

ȳ

ω∗ =
s2 − ȳ

ȳ2 − ȳ + s2

. (3.3)

where ȳ and s2 are the sample mean and variance of the y data, respectively.

Method of mean and zero frequency

The method of mean and zero frequency is another simple procedure, where the first

estimating equation is the sample probability for the distribution at y = 0 denoted by

f0 which is equated to the pdf of the distribution at P (Y = 0). Estimating equations

for the remainder of the parameters in θ∗ are estimated using the moment equations,

f0 = P0(θ∗)

ȳ = µ(θ∗)

σ2 = σ2(θ∗)

...

. (3.4)

For the Poisson distribution, the pdf at P (Y = 0) is e−µ. The estimating equation

can be constructed by equalling this to the probability of zero in the data as follows,

f0 = e−µ , (3.5)

where f0 is the probability of a zero value in the data y. This can be solved to give an

estimate µ∗,

µ∗ = −log(f0) (3.6)

as the rapid estimate for the parameter µ .

The zero-inflated Poisson distribution has pdf at P (Y = 0) given by e−µ(1−ω)+ω.

Estimating equations for the method of mean and zero frequency for the zero-inflated
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Poisson distribution are therefore

f0 = e−µ(1− ω) + ω

ȳ = µ− µω
. (3.7)

However there is not a closed form from which to estimate µ∗ and ω∗ due to the

inability to invert the e−µ term.

Empirical Probability Generating Function (EPGF) method

The previous two pairs of estimating equations are both special cases of a rapid estimation

approach based upon the EPGF. The EPGF for a set of discrete data {Y1, Y2, . . . , Yn}

is,

Gn (t) =
1

n

n∑
i=1

tYi , (3.8)

for −1 ≤ t ≤ 1. The method of EPGF estimation equates the EPGF to the pgf at

selected values of t, resulting in a set of simultaneous equations for θ∗,

Gn(ti) = G(ti) , i = 1, 2, . . . , p (3.9)

where p is the number of parameters and the choice of ti is restricted to −1 ≤ ti ≤ 1

(Kemp and Kemp, 1988). As t1 → 1 ∀ p and t2 → 1∀ p the equations are equal to

the estimating equations for the method of moments. Similarly, for p = 2, as t1 → 1

and t2 = 0, the equations become equivalent to those of the mean-and-zero-frequency

method.

Placing the pgf of the Poisson distribution (Equation 2.69 of Section 2.2.5) with

t = 0 equal to the EPGF gives the following equation,

Gn(0) = e−2µ (3.10)

This equation can be solved to give the rapid estimate µ∗,

µ∗ = −log (Gn (0)) (3.11)
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However, when t = −1 the estimating equation becomes

Gn(−1) = e−2µ (3.12)

which is solved to estimate µ∗ as

µ∗ = −1

2
log(Gn(−1)) (3.13)

For a zero-inflated Poisson distribution the pgf (Equation 2.136 of Section 2.4.1)is

given by,

G(t) = −e(t−1)µ(ω − 1) + ω (3.14)

when t is set to 0, 1 and -1 these give three possible estimating equations,

Gn(0) = −e−µ(ω − 1) + ω

Gn(1) = 1

Gn(−1) = −e−2µ(ω − 1) + ω

. (3.15)

The first two equations in 3.15 cannot be used to estimate the parameters µ∗ and ω∗,

however using the first and third equations gives solutions,

µ∗ = log

(
1−Gn(0)

Gn(0)−Gn(−1)

)
ω∗ =

Gn(0)2 −Gn(−1)

2Gn(0)−Gn(−1)− 1

. (3.16)

We can apply the example of the estimation of the parameter µ of the Poisson

distribution using the example of counts of cysts in steroid treated embryonic mouse

kidneys in Section 1.2. For the method of moments, the estimate is simply the mean,

therefore µ∗ = 1.55. Using the method of mean and zero frequency, the probability of

a zero count is f0 = 0.59 giving an estimate of µ∗ = 0.54 using Equation 3.6. Finally,

the EPGF at t = 0 is Gn(0) = 0.59 for this dataset and the formula in 3.13 results in

an estimate of µ∗ = 0.54.

Under a zero-inflated Poisson distribution, moment estimators can be generated
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for counts of cysts in steroid treated embryonic mouse kidneys using Equation 3.3

where the mean number of cysts is 1.55 and the variance is 8.85, resulting in estimates

µ∗ = 4.66 and ω∗ = 0.67. The EPGF method requires the EPGF where t = 0 and

t = −1, i.e. Gn(0) = 0.59 and Gn(−1) = 0.50 and the estimates calculated using

Equation 3.16 to give parameter estimates µ∗ = 1.53 and ω∗ = 0.47.

The advantage of this method is that it often provides quick estimates of a model’s

parameters. However, Kemp and Kemp (1988) provide examples of distributions

where rapid estimation methods do not always have explicit solutions (particular cases

are the negative binomial, Hermite, zero-inflated Poisson and zero-truncated Poisson

distributions) and clearly illustrate that no single method of rapid estimation can be

applied to all distributions. The example of a Poisson distribution fitted to the number

of cysts in steroid treated kidneys shows how different methods of rapid estimation

result in varying estimates. Standard errors of parameter estimates also cannot be

calculated using rapid estimation methods.

3.1.2 Maximum Likelihood

The method of maximum likelihood is commonly used for estimating a model’s parameters.

If the observed values of the random variables Y1, Y2, . . . , Yn are y1, y2, . . . , yn, their

likelihood is given by

L (θ|y1, y2, . . . , yn) = P

[
n⋂
j=1

Yj = yj|θ1, θ2, . . . , θn

]
, (3.17)

for discrete distributions, where θ1, θ2, . . . , θn are the model’s parameters (Rose and

Smith, 2002; Johnson et al., 2005, P. 68). If Y1, Y2, . . . , Yn are mutually independent

and have identical distributions, then the joint pdf is,

L (θ|y1, . . . , yn) = f1,...,n(y1, . . . , yn; θ) =
n∏
j=1

f(yi; θ) . (3.18)
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In practice it is often more convenient to work with the logarithm of the likelihood, the

log-likelihood,

` = log L (θ|y1, . . . , yn) =
n∑
j=1

logf(y1|θ) . (3.19)

The method of maximum likelihood estimates θ̂ by finding a value of θ that maximizes

ˆ̀(θ|y). The values θ̂1, θ̂2, . . . , θ̂n that maximize the likelihood are called maximum

likelihood estimators (MLE’s). Maximizing the likelihood can be achieved by solving

the equations,
∂L (y1, y2, . . . , yn|θ1, θ2, . . . , θp)

∂θp
= 0 , (3.20)

called maximum likelihood equations. In practice, maximizing the likelihood is equivalent

to minimizing the negative likelihood. For many models, a maximum likelihood

estimator can be found as an explicit function of the observed data y1, . . . , yn. However,

often the solutions to these equations are intractable and require iterative procedures

(e.g. the Newton-Raphson algorithm) to reach a solution.

Again, the Poisson distribution can be used to illustrate this method of parameter

estimation. The log-likelihood of the Poisson distribution is calculated using Equation

3.19, resulting in,

`(µ|y1, . . . , yn) = −nµ−
n∑
i=1

log (yi!) + log(µ)
n∑
i=1

yi . (3.21)

Differentiating the log-likelihood with respect to the parameter µ gives,

∂`(µ|y1, . . . , yn)

∂µ
= −n+

∑n
i=1 yi
µ

, (3.22)

and setting this derivative equal to zero and solving for µ results in the MLE,

µ̂ =

∑n
i=1 yi
n

(3.23)

which is equal to the mean and is the same as the estimate from the method of moments

in Section 3.1.1.
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Figure 3.1: Minus log-likelihood curve of Poisson model for counts of cysts in steroid
treated kidneys

For the example of counts of cysts in steroid treated embryonic mouse kidneys,

Figure 3.1 plots the negative observed log-likelihood (shown in black) of the Poisson

distribution for µ in the range 0 to 3. The log-likelihood is minimized at a value

of -279.70 (shown by the red line), which corresponds to an estimated µ̂ of 1.55. The

curvature of `(θ) gives an indication of θ̂’s precision. If `(θ̂) is flat then a lot of possible

values are feasible, however if the curve is concentrated around `(θ̂) then θ̂ is well

defined i.e. a precise estimate. The negative log-likelihood curve for the Poisson

model gives similar values of `(µ) around µ̂.

A negative binomial distribution can also be fitted to counts of cysts in steroid

treated embryonic mouse kidneys. The negative observed log-likelihood for the negative

binomial distribution is plotted as a contour in Figure 3.2 for values of both r and p
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Figure 3.2: Maximum likelihood curve of negative binomial model for counts of cysts
in steroid treated kidneys

between 0 and 1. The minimum of this function is indicated on the plot, having a

negative log-likelihood of 174.81 resulting in values of r̂ = 0.30 and p̂ = 0.16. The

negative binomial contour plot of `(θ̂) is flat for values around r̂ and p̂ indicating that

a range of possible values are feasible.

The advantage of the maximum likelihood method of estimation is that it provides a

consistent approach to parameter estimation and therefore MLE’s can be developed for

a variety of models. Asymptotically, maximum likelihood estimates are unbiased have

approximate normal distributions and their approximate sample variance can be used to

generate confidence intervals and hypotheses tests (Johnson et al., 2005). Approximate
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standard errors for θ̂ can be calculated using the inverse of Fisher’s Information matrix,

V (θ̂) = [I(θ)]−1, where the information matrix is the negative of the expected value

of the Hessian I(θ) = −E
[
∂`(θ)

∂θ∂θ′

]
(Rose and Smith, 2002). These methods are also

widely available across statistical software packages (Johnson et al., 2005).

A disadvantage of maximum likelihood estimation is that likelihood equations

often need to be numerically optimized, for example using the Newton-Raphson algorithm,

where analytically expressions for estimates are not available and this may be difficult

(Rose and Smith, 2002). Maximum likelihood estimates may be sensitive to the starting

values used in the numerical optimization; poor starting values may result in non-convergence

or incorrectly optimising to a local mimimum/maximum instead of the global minimum/maximum.

3.1.3 Expectation-Maximization (EM) algorithm

The Expectation-Maximization (EM) algorithm provides a method for finding maximum

likelihood estimates in models which depend on unobserved latent variables i.e. variables

that are inferred from other observed variables (Karlis, 2001). The term EM Algorithm

was first coined by Dempster et al. (1977) since each iteration of the algorithm requires

an Expectation step followed by a Maximization step.

Let the observed data be denoted by y realized from the pdf g(y|θ) with corresponding

log likelihood `(θ) = log g(y|θ). The aim is to estimate the vector parameter θ by the

maximum likelihood estimate (MLE) θ̂ i.e. that value maximizing `(θ). The complete

data representation of the problem involves regarding y = y(x) as a statistic calculated

from a hypothetical data vector x drawn from a density f(x|θ), where

g(y|θ) =
w

x|y(x)=y

f(x|θ) dx , (3.24)

The general form of the EM algorithm involves maximizing f(x|θ) over values

of θ, the M-step. Since x is unobservable we replace log f(x|θ) by its conditional

expectation given y and the current fit, θ, known as the E-step. This is then continued

until convergence is achieved.
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The two steps of an iteration of the algorithm (Wu, 1983; Green, 1992) can be

written as follows:

Let θ(j) denote the current value of θ after j cycles of the algorithm.

E-step: Using the current estimates θ(j) taken from the jth iteration, estimate the

complete-data sufficient statistics logf(x|θ) using,

Q(θ|θ(j)) = E(log f(x|θ)|y, θ(j)) . (3.25)

M-step: Determine θ(j+1) as the value of θ which maximizes the likelihood equations,

E(logf(x|θ)|θ) = log f(x|θ(j)) . (3.26)

The EM algorithm is a powerful tool for maximum likelihood estimation for data

which contain missing values or can be considered as containing missing values e.g.

with latent information (Dempster et al., 1977). This formulation is particularly applicable

to discrete models which are generated as a mixture of distributions, where the mixing

operation can be considered as producing missing data (Karlis, 2001). In this case, the

missing data are realizations θi of the unobserved mixing parameter for each data point

yi.

The negative binomial distribution can be used as an example of the use of the

EM algorithm for maximum likelihood estimation. Suppose y is a vector of observed

values from a Poisson distribution with parameter µ, where µ follows a Gamma distribution,

denoted here by h(µ|r, p) with parameters r and p, called the hyperparameters. The

parameters of the resultant negative binomial model can be estimated using the EM

algorithm with an incomplete data formation for the mixing density.

The MLE of the negative binomial distribution can be estimated through an EM

algorithm by computing the maximum likelihood estimates of r and p from the marginal
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density of the data, g(y|r, p),

g(y|r, p) =

∫
Θr×Θp

`(y|µ)h(µ|r, p) dµ (3.27)

where Θr and Θp are the parameter spaces for r and p, respectively. To implement the

EM algorithm we need to obtain E(µ|y) and E(log µ|y). For the current estimates, r(j)

and p(j), the EM scheme is as follows

E-step: Calculate the pseudo-values ti and si,

ti = E(µi|yi) =
yi + r(j)

1 + p(j)
and si = Ψ(r(j) + yi)− log(p(j) + 1) , (3.28)

for i = 1, . . . , n where Ψ(·) is the digamma function (See Section 2.1.6 of Chapter 2).

M-step: Maximize the likelihood of the posterior distribution using ti and si. Using the

Expectation/Conditional Maximimization (ECM) algorithm (Meng and Rubin, 1993),

update

p(j+1) =
r(j)

t̄
, (3.29)

and,

r(j+1) = r(j) − Ψ(r(j)) + log(p(j+1))− s̄
Ψ3(r(j))

, (3.30)

until convergence is achieved, where t̄ and s̄ are the expected values of ti and si,

respectively and Ψ3(·) denotes the trigamma function (see 2.1.6 of Chapter 2) .

An advantage of the EM algorithm is that it allows fitting complex models by

including both observed data and unobserved or missing data and parameter constraints

are often dealt with implicitly within the model. When using an EM algorithm the

likelihood is guaranteed to increase at each iteration and does not require derivatives

for the estimation. The algorithm is also fast where analytical expressions for the

M-step are available.

However, the EM algorithm can be computationally intensive and convergence

may be slow, due to the dependence on the unobserved information that needs to be

estimated at the E-step (Karlis, 2001). Convergence may also be slow where analytical
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expressions for the M-step are not available since numerical optimization must be

applied.

3.2 Frameworks for model fitting

This section introduces three frameworks for model fitting. The Generalized Linear

Models (GLM), Generalized Additive Models (GAM) and Generalized Additive Models

for Location, Scale and Shape (GAMLSS) classes all provide frameworks for regression

models and incorporate discrete distributions as special cases.

3.2.1 Generalized Linear Models (GLM)

Generalized Linear Models (GLM) are an extension of classical linear models and

were first formulated by Nelder and Wedderburn (1972). First consider a linear model,

for a set of observations y1, y2, . . . , yn assumed to be realizations of random variables

Y1, Y2, . . . , Yn. LetX1, . . . , Xn be a set of d-dimensional covariates and µ (Xi) indicate

the mean of Yi. Allowing the mean response to depend on covariates X, a linear model

is then given by

µ(Xi) = α +

p∑
j=1

βjXij , (3.31)

where βj is a vector of unknown parameters to be estimated from the data, p is the

number of covariates and random variables are assumed to be independently distributed

with constant variance of errors. GLM’s require that the probability distribution fy is

a member of the exponential class of families (see Section 2.2).

This linear model (3.31) can be extended to a GLM by using a linear predictor η,

which is a function of the mean µi

ηi = g{µ(Xi)} = α +

p∑
j=1

βjXij , (3.32)

where g(·) is a link function (Nelder and Wedderburn, 1972; McCullagh and Nelder,

1983). The classical linear model in Equation 3.31 has a normal distribution and an
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identity link function, η = µ, whereas GLM’s allow for the distribution of the Yi’s to

follow an exponential family distribution (see Equation 2.45 in Section 2.2)(McCullagh

and Nelder, 1983). In practice, GLM’s are written as consisting of three elements:

1. A probability distribution from the exponential family

2. A linear predictor η

3. A link function g

and are defined in terms of µ and η = g(µ), where exponential family distributions can

be written in the form fY (y, µ, φ). In a GLM the link function may be any monotonic

differentiable function for a given pdf (McCullagh and Nelder, 1983). The canonical

link function is the function that expresses θi in terms of µ i.e. θi = b(µ) (Hilbe,

2007). A commonly used link function is the identity link, for which η = θ, where

θ is a parameter of the exponential family (Hastie and Tibshirani, 1986). Other link

functions include the log link, η = log(µ), the logit link η = log

(
µ

1− µ

)
and the

inverse link η =
1

µ
.

The maximum likelihood estimate of the parameters β̂ = {β̂0, β̂1, . . . , β̂d} for

a given GLM with link function g and n observations can be found using a Fisher

scoring procedure (Hastie and Tibshirani, 1986). Given a current estimate of the linear

predictor η̂ with corresponding fitted value µ̂, the adjusted dependent variable is given

by:

Z = η̂ + (y − µ̂)

(
dη

dµ

)
, (3.33)

(Hastie and Tibshirani, 1986). A new estimate of β̂ can be obtained by regressing Z

on X1, . . . , Xd, with weights W , given by

(W )−1 =

(
dη

dµ

)2

V , (3.34)

where V is the variance of Y at µ = µ̂. Using this estimate of β̂ a new µ̂ and η̂ can

be computed. A new value of Z can then be calculated with these estimates and the
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algorithm continues until the change in the deviance,

dev(y, µ̂) = 2[`(y)− `(µ̂)] , (3.35)

is sufficiently small, where `(µ) is the log-likelihood
∑n

i=1 log fY (yi, µi, φ) (Hastie

and Tibshirani, 1986).

Alternatively, an iteratively re-weighted least squares algorithm can be used to

estimate β̂ by solving the quasi-likelihood equations,

∂Q

∂β
=
∂η

∂β

∂Q

∂η
= 0 , (3.36)

where Q is the log quasi-likelihood defined as any function of η satisfying,

∂Q

∂η
= V −(η)(y − η) , (3.37)

where V −(η) is a generalized inverse of η (Green, 1984).

The GLM framework can be illustrated for a Poisson model with pdf,

fY (y;µ) =
e−µµy

y!
, (3.38)

giving a log likelihood of,

`(µ; y) =
∑
{ylog(µ)− µ− log(y!)} , (3.39)

and link, log(µ), resulting in the inverse link, µ = exp(X ′β) where X ′β is a linear

predictor, with X being a matrix with length equal to the number of observations in

the dataset and columns equal to the number of covariates plus a column of value ones

if a constant is specified in the model and β is a vector of coefficients for each of the

covariates specified for each column of X (Hilbe, 2007). Substituting the inverse link
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into (3.39) gives,

`(β; y) =
∑
{y(X ′β)− exp(X ′β)− log(y!)} , (3.40)

which can alternatively be written as,

`(β; y) =
∑
{y(xβ)− exp(xβ)− log(y!)} , (3.41)

The first derivative with respect to β of the Poisson log-likelihood is,

∂`

∂β
=
∑
{yx− x exp(xβ)} . (3.42)

The parameter estimates, β̂, can be obtained by setting (3.42) equal to 0 and solving

using one of the Fisher Scoring Procedure or the iteratively re-weighted least squares

algorithm.

The main advantage of the GLM framework is that it provides a consistent way of

linking together systematic and random elements in a model (Nelder and Wedderburn,

1972). A single algorithm can be used to fit any of the models in a GLM framework

and the calculation of the Hessian within the algorithm allows standard errors also to

be estimated. However, distributions used for modelling are restricted to only those

within the exponential family, which for discrete models is limited to the Bernoulli,

Binomial, Poisson, Geometric and NB distributions. The GLM framework is therefore

not suitable for models which can account for overdispersion, value-inflation and truncation.

3.2.2 Generalized Additive Models (GAM)

Proposed by Hastie and Tibshirani (1986), the Generalized Additive Models (GAM)

class provides a flexible framework for modelling. It is a regression technique that

combines the properties of GLM’s with an additive component i.e. where the linear

function,
d∑
j=1

βjXij , is replaced by an additive function,
d∑
j=1

sj(Xij), and hence each

covariate is modelled as an unspecified smooth function rather than as a parametric
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function (Thurston et al., 2000).

The generalized additive class of models extends the GLM class seen in Equation

3.32 by allowing non-linearity between the link η and the covariates Xij . A GAM

model is then given by,

ηi = g{µ(Xi)} = α +
d∑
j=1

sj(Xij) , (3.43)

where each sj is a smooth function standardized so that Esj(Xj) = 0 (Hastie and

Tibshirani, 1986; Thurston et al., 2000).

Hastie and Tibshirani (1986) present two algorithms known as backfitting and

local-scoring to fit GAM’s. The estimating procedure for fitting GAM’s consists of

two loops. Inside each step of the local scoring algorithm (outer loop), a weighted

backfitting algorithm (inner loop) is used until convergence. Then, based on the estimates

from this weighted backfitting algorithm, a new set of weights is calculated and the next

iteration of the scoring algorithm starts. The local scoring and backfitting algorithms

are as follows:

Local Scoring Algorithm:

For starting values sj = g(E(y)) and s0
1 = s0

2 = . . . = s0
p = 0, given a current estimate

of the linear predictor, η̂, with corresponding fitted value µ̂, the adjusted dependent

variable is given by,

Z = η̂ + (Y − µ̂)
∂η

∂µ
.

The weights W are then formed as,

(W )−1 =

(
∂µ

∂η

)2

V

where V is the variance of Y at µ = µ̂. An additive model is fitted to Z using the

backfitting algorithm (below) with weights W to obtain estimates of the functions

smj (·). The scoring algorithm stops when the deviance of the estimates ceases to
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decrease.

Backfitting algorithm:

For initial estimates α = E(Y ), s1 = s2 = . . . = sp = 0 and m = 0. Calculate at each

iteration m = m+ 1 the jth set of the partial residuals,

Rj = Y − α−
j−1∑
k=1

s
(m)
k (Xk)−

p∑
k=j+1

s
(m+1)
k (Xk) ,

where s(m)
j = E(Rj|Xj). The iterations continue until,

RSS = E

[
Y − α−

p∑
j=1

s
(m)
j (Xj)

]2

,

fails to decrease or satisfies the convergence criterion.

Thurston et al. (2000) presents an algorithm, called the alternating profile likelihood

algorithm, to fit a negative binomial additive model using the local scoring and backfitting

algorithms. The alternating profile likelihood algorithm fits the two parameters of the

negative binomial distribution by iterating between the two algorithms. For a negative

binomial distribution with parameters µ the mean and α the dispersion parameter

specified in Section 2.3.1 of Chapter 2, the structure of the alternating profile likelihood

algorithm is as follows:

1. Iterate the alternating profile likelihood algorithm Each iteration requires

implementation of the local scoring algorithm.

2. Iterate the local scoring algorithm Each iteration requires implementation of

the backfitting algorithm for a weighted additive model. For this the link function,

η = log

(
µ

µ+ α

)
and the inverse link µ =

α

e−η − 1
are needed. The weights

are given by,

W = µ+
µ2

α
= µ

(
µ+ α

α

)
=

α eη

(eη − 1)2
.
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3. Iterate the backfitting algorithm Each iteration involves a weighted local polynomial

smooth, for each predictor Xd.

The GAM framework is a very flexible method for fitting models in the exponential

family and other likelihood-based regression models. However, the disadvantage of an

increase in flexibility is the potential to over-fit the data by applying overly complex

models. Currently GAM models only allow for exponential family likelihoods, which

is limited where overdispersion and/or value-inflation is present (Thurston et al., 2000).

One disadvantage of GAM’s is that they are not as easy to interpret in comparison to

GLM’s, in particular when they involve complex additive effects.

3.2.3 Generalized Additive Models for Location, Scale and Shape

(GAMLSS)

The class of Generalized Additive Models for Location, Scale and Shape (GAMLSS)

was developed by Rigby and Stasinopoulos (2005). It allows fitting more complex

models in which both the systematic and the random parts of the model are highly

flexible. Both the GLM and GAM classes (see Sections 3.2.1 and 3.2.2) assume

that the response variable follows an exponential family distribution, in which the

models variance, skewness and kurtosis are modelled through their dependence on

µ, as opposed to being modelled explicitly in terms of the explanatory variables. In

the GAMLSS class the exponential family assumption is relaxed and replaced by a

more general family of distributions. This new class allows all the parameters of

the distribution of Y to be modelled as parametric and/or additive non-parametric

functions of the explanatory variables and/or random effect terms (Rigby and Stasinopoulos,

2005).

A model in this class assumes independent observations, yi for i = 1, 2, . . . , n

with pdf f(yi|θ(i)) conditional on a vector of four distribution parameters θ(i) =

(θ1i, θ2i, θ3i, θ4i) = (µi, σi, νi, τi), which can be functions of the explanatory variables.

The first two parameters µi and σi characterize location and scale, whilst the remaining

parameters (if any) characterize shape, often (but not always) skewness and kurtosis.
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Let yT = y1, y2, . . . , yn denote the vector of response observations. Also, for

k = 1, 2, . . . let gk(·) be a known monotonic link function relating θk to explanatory

variables and random effects through an additive model given by

gk(θk) = ηk = Xkβk +

Jk∑
j=1

Zjkγjk , (3.44)

i.e.

g1(µ) = η1 = X1β1 +

J1∑
j=1

Zj1γj1

g2(σ) = η2 = X2β2 +

J2∑
j=1

Zj2γj2

g3(ν) = η3 = X3β3 +

J3∑
j=1

Zj3γj3

g4(τ ) = η4 = X4β4 +

J4∑
j=1

Zj4γj4

(3.45)

where θk and ηk are vectors of length n, βTk = (β1k, β2k, . . . , βJ ′kk) is a parameter

vector of length J ′k, Xk is a design matrix of order n × J ′k, Zjk is a design matrix

n× qjk and γjk is a qjk-dimensional random variable (Rigby and Stasinopoulos, 2005;

Stasinopoulos and Rigby, 2007).

The parameter vectors βk and the random effect parameters γjk, for j = 1, 2, . . . , Jk

and k = 1, 2, 3, 4 can be estimated by maximizing a penalized likelihood function

given by,

`p = `− 1

2

p∑
k=1

Jk∑
j=1

λjkγ
′
jkGjkγjk , (3.46)

for fixed values of the smoothing hyper-parameters λjk’s, where ` =
n∑
i=1

log f(yi|θ(i))

is the log likelihood function (Stasinopoulos and Rigby, 2007). The penalized likelihood

given in Equation 3.46 can be maximized using either the Cole-Green (CG) algorithm

(Cole and Green, 1992) which uses the first and second and cross derivatives of the

likelihood function with respect to the distribution parameters θ = (µ, σ, ν τ) (Stasinopoulos

and Rigby, 2007). Or alternatively, the Rigby-Stasinopoulos (RS) algorithm, a simpler

algorithm used for fitting mean and dispersion additive models (MADAM) which does
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not use cross derivatives (Rigby and Stasinopoulos, 1996).

The negative binomial type I distribution can be re parametrized in the GAMLSS

framework with µ (the mean) a location parameter and σ the scale parameter, where

α =
1

σ
in the pdf of the distribution given in 2.3.1 of Chapter 2. The GAMLSS NBI

distribution has pdf,

fY (y;µ, σ) =
Γ
(
y + 1

σ

)
Γ
(

1
σ

)
Γ (y + 1)

(
σµ

1 + σµ

)y (
1

1 + σµ

) 1
σ

(3.47)

for y = 0, 1, 2, . . ., where µ > 0 and σ > 0 with E(Y ) = µ and Var(Y ) = µ + σµ2.

The log-likelihood of this distribution is,

` = log
(
Γ
(
y + 1

σ

))
− log

(
Γ
(

1
σ

))
− log (Γ (y + 1))

+y log (σµ)− y log (1 + σµ)− 1
σ
log (1 + σµ)

(3.48)

For the CG algorithm the first and expected second and cross derivatives of the likelihood

function with respect to the distribution parameters µ and σ are required. The first

derivatives of the likelihood with respect to µ and σ are given as

∂`

∂µ
=

y − µ
µ(1 + µσ)

∂`

∂σ
= −

(
1

σ

)2(
ψ

(
y +

1

σ

)
− ψ

(
1

σ

)
− log (1 + µσ)− (y − µ)σ

(1 + µσ)

)
,

The expected second derivatives are given as

E

[
∂2`

∂µ2

]
= − 1

µ(1 + µσ)
,

E

[
∂2`

∂σ2

]
= −

∑∞
y=0

((
1

1+µσ

) 1
σ
(

µσ
1+µσ

)y
Γ
(
y + 1

σ

)
((y − µ)σ + (1 + µσ) log(1 + µσ)

− (1 + µσ)ψ
(
y + 1

σ

)
+ (1 + µσ)ψ

(
1
σ

))2
)
/(

σ4(1 + µσ)2 Γ(y + 1) Γ
(

1
σ

))
,

(3.49)
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and

E

[
∂2`

∂µσ

]
= 0 ,

where ψ(x) is the digamma function (see Section 2.1.6 in Chapter 2). The expected

second derivatives can be replaced in some cases by the negative squared first derivatives,

where the expected second derivatives are not analytically tractable (Stasinopoulos and

Rigby, 2008).

The main advantage of the GAMLSS framework in comparison to the the GLM

and GAM frameworks of models is that distributions do not need to belong to the

Exponential family for this class of models. A large number of GAMLSS distributions

are available which can account for location, scale, skewness and kurtosis parameters.

The GAMLSS framework has the potential to allow for (almost) any probability density

to be used when modelling. A benefit of GAMLSS models is that all parameters

of the conditional distribution of y can be modelled as parametric and/or additive

non-parametric (smooth) functions of explanatory variables and/or random effects terms.

The fitting algorithm is also fast enough to fit very large and complex data sets. Software

for implementing GAMLSS models is freely available via the R language for statistical

computing (R Development Core Team, 2009) in the gamlss libraries (Stasinopoulos

and Rigby, 2008).

Whilst the GAMLSS framework allows for more realistic assumptions when modelling

datasets, model selection is more difficult due to the increase in available models to

select from. A disadvantage of the framework is that estimation is based upon the first

and expected second derivatives of the likelihood with respect to the parameters, which

for some distributions can be complex. A numerical algorithm is however available

within the gamlss libraries which approximates the derivatives.

3.3 Diagnostics

There are three aspects of methods for diagnostic analysis of models: goodness-of-fit

methods, model comparison and outlier detection. The Chi-squared goodness-of-fit

174



test and residual analysis are two methods for assessing a model’s fit, which assess

whether a particular model provides a good fit to a dataset. The fit of a range of

distributions to a dataset can also be compared using the Akaike or Bayesian Information

Criteria or using a graphical method which plots the EPGF of a dataset. Finally,

potential outliers in discrete distributions can be investigated using two methods for

outlier detection: the EPGF plot and the surprise index.

3.3.1 Goodness-of-fit

The Chi-squared goodness-of-fit test assesses whether a dataset follows a specified

distribution. Residual analysis uses graphical plots of the residuals of a model to

determine the quality of fit and detect possible problems with the fit of a model to

the dataset.

Chi-squared Goodness-of-fit Test

The success of the fit of a model to a dataset can be determined using a Chi-Squared test

of goodness-of-fit (Chernoff and Lehmann, 1954) by comparing the fitted (or expected)

data, e, and the observed data, o with the χ2 statistic is as follows,

χ2 =
∑ (o− e)2

e
(3.50)

This can be compared to the χ2 distribution with (n − p − 1) degrees of freedom,

where n is the number of independent observations and p the number of parameters

fitted (McCullagh and Nelder, 1983). For the Chi-square approximation to be valid the

expected frequencies should all be at least 5. In the case of discrete datasets, expected

frequencies are often 0 or very small values and several frequencies may be required

to be pooled to ensure the expected frequencies are greater than 5.

For the Poisson model fitted in Section 3.1.2, the χ2 goodness-of-fit test can be

performed using the observed counts of cysts in steroid treated embryonic mouse

kidneys (o) and the expected values (e) calculated be substituting the maximum likelihood
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estimate for µ in the Poisson distribution and scaling by the sample size (n = 111):

values are presented in Table 3.3.1.

0 1 2 3 4 or more
Observed (o) 65 14 10 6 15
Expected (e) 24 37 28 15 8

Table 3.1: Observed (o) and Expected (e) frequencies of cysts in steroid treated mouse
kidneys for a Poisson model.

The null, H0, and alternative, Ha, hypotheses of the χ2 goodness-of-fit test are,

H0 : The data follow a specified distribution

Ha : The data do not follow the specified distribution.

The test statistic for the Poisson model with observed and expected frequencies given

in Table 3.3.1 is χ2 = 107.44. Comparing this to a χ2
3 distribution, where the degrees

of freedom are df = 5 − 1 − 1 = 3, gives a p < 0.005, indicating that a Poisson

distribution is not a suitable model for this dataset. Alternatively, we can fit a negative

binomial model to this dataset using maximum likelihood as described in section 3.1.2.

This model has parameter estimates r̂ = 0.30 and p̂ = 0.16 with log-likelihood ` =

−174.81. The pooled observed and expected frequencies for the number of cysts in

kidneys is given in Table 3.2.1 for a negative binomial model.

0 1 2 3 or more
Observed (o) 65 14 10 6
Expected (e) 65 16 9 10

Table 3.2: Observed (o) and Expected (e) frequencies of cysts in steroid treated mouse
kidneys for a negative binomial model.

The χ2 goodness-of-fit test statistic for the negative binomial model is χ2 = 1.96.

The degrees of freedom for this test are df = 4 − 2 − 1 = 1, giving a p-value of

0.375 (3sf) when the χ2 test statistic is compared to a χ2
1 distribution. This p-value is

not significant therefore the null hypothesis H0 cannot be rejected suggesting that the

negative binomial distribution is suitable for this dataset.
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Residuals

Residuals are widely used to assess the fit of models (Cox and Snell, 1968). Regression

models such as the GLM’s presented in Equation 3.31 assume that the response variables,

Yi, are independent and normally distributed having equal variance σ2 and are linear

i.e. the relationship between E(Y ) and explanatory variables Xij is a straight line.

Rather than checking these assumptions on the response variables directly, it is convenient

to re-express the assumptions in terms of the random errors.

The random errors or raw residuals R are the difference between the observed

responses y and the predicted or fitted responses ŷ and are given by,

R = y − ŷ , R = y − µ or R = y − E (y) (3.51)

The following four assumptions of the residuals are equivalent to the assumptions

on the response variable,

i. The residuals R are independent.

ii. The residuals R are normally distributed.

iii. The residuals R have constant variance σ2
R.

iv. The residuals R have zero mean.

A benefit of the raw residuals is they are relatively easy to calculate, however they

do not have a constant variance and are therefore not suitable to test the assumption that

the underlying errors have a constant variance. The raw residuals can be standardized

by subtracting the mean and dividing by the standard deviation to overcome the problem

of non-constant variance. Since the mean of the Residuals R is 0, this gives the

standardized residuals, RS

RS =
R

s
√

1− hii
(3.52)

where s is an appropriate estimate of the standard deviation σ and hii is the ith diagonal
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element of the hat-matrix, H, given by

H =



h11 h12 · · · h1n

h21 h22
...

... . . . ...

hn1 · · · · · · hnn


= X

(
XTX

)−1
XT

, (3.53)

where X is the design matrix

X =



1 x1,1 x1,2 · · · x1,k

1 x2,1 x2,2 · · · x2,k

...
...

...
...

1 xn,1 xn,2 · · · xn,k


. (3.54)

The standardized residuals will follow a standard normal distribution i.e. they will be

normally distributed with mean zero and variance one.

Other forms of standardized residuals are used in the analysis of count response

models. The next two sections present Pearson residuals, which are commonly used

in residual analysis for GLM’s and Anscombe residuals, another standardized residual

for discrete models.

Pearson residuals

The Pearson residual is the raw residual, R, scaled by the estimated standard deviation

of y (McCullagh and Nelder, 1983):

Rp =
y − µ√
V (µ)

(3.55)

which have mean 0 and variance φ the dispersion parameter of the exponential family

of distributions, which is equal to 1 for count response models.
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Anscombe residuals

Anscombe residuals attempt to normalize the residuals so that heterogeneity and outliers

in the data can be easily identified (Hilbe, 2007). Anscombe (1953) defines a function

A(·) which is chosen to ensure the distribution ofA(y) is as normal as possible. This is

done by utilizing the model variance functions and replacing y withA(y). The function

A(y) is given by

A (·) =

∫ µ

−∞
V (µ)−

1
3 dµ (3.56)

where V (µ) is the variance function (Hilbe, 2007). The general formula for Anscombe

residuals is

RA =
A (y)− A (µ)

A′ (µ)
√
V (µ)

, (3.57)

where A′(µ) is the derivative of A(µ).

Hilbe (2007) gives three special cases of Anscombe residuals for the Poisson,

geometric and negative binomial type II distributions. For the Poisson distribution

the Anscombe residuals are given by

RA =
3
(
y

2
3 − µ 2

3

)
2µ

1
6

, (3.58)

where V = µ and for the Geometric distribution

RA =

(
3 (1 + y)

2
3 − (1− µ)

2
3

)
+ 3

(
y

2
3 − µ 2

3

)
2 (µ2 + µ)

1
6

(3.59)

where V = µ (1 + µ). Finally, the Anscombe residuals for the Negative Binomial

Type II distribution are as follows,

RA =

(
3
α

(
(1 + αy)

2
3 − (1 + αµ)

2
3

)
+ 3

(
y

2
3 − µ 2

3

))
2 (αµ2 + µ)

1
6

, (3.60)

where V = µ + αµ2 or V = µ (1 + αµ). Anscombe residuals for other discrete

distribution have not been established.
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Several reasons for departures from the fitted model can be investigated using

residuals, such as: outliers, further covariates omitted from the model, correlation

between residuals, non-constant variance and non-normality (Cox, 1986). The underlying

statistical assumptions about the residuals (i-iv) can be assessed using different types

of residual plots to check the validity of these assumptions and provide information on

how to improve the model.

Residuals vs. fitted values The assumptions that the residuals have constant variation

(iii) and zero mean (iv) can be checked by plotting the Residuals against the fitted

values. If assumptions (iii) and (iv) are satisfied the residuals are expected to vary

randomly around zero and the spread of the residuals to be constant throughout

the plot.

Residuals against Index The residuals vs. the index of the data can be used to check

the assumption that the errors are independent (i). If the residuals are randomly

distributed around zero there will be no drift or patterns in the process.

Normality The assumption that the residuals are normally distributed (ii) is important

in the context of discrete data where residuals also take integer values and can

be tested in two ways. Firstly, a histogram or plot of the density estimate shows

the distribution of the residuals. A symmetric bell-shaped histogram, evenly

distributed around 0 indicates the normality assumption is valid. Alternatively, a

normal Q-Q plot of the residuals indicates whether the normality assumption of

the residuals is appropriate.

A Quantile-Quantile (Q-Q) plot is a scatter plot comparing the fitted quantiles

and empirical quantiles of a dataset (McCullagh and Nelder, 1983). It is a graphical

technique for determining if a data set come from a distribution. An advantage of

Q-Q plots is that they allow for shifts in location, shifts in scale, changes in symmetry,

and the presence of outliers can to be detected. If the two sets of quantiles being

compared are similar, the points in the Q-Q plot will approximately lie on the line
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y = x. A normal Q-Q plot can be used in residual analysis to compare the quantiles of

the residuals (vertical axis) to a standard normal population (horizontal axis).

The particular problem with discrete datasets is that the response variable takes

a small number of distinct values (Dunn and Smyth, 1996). Residuals from discrete

responses result in parallel curves corresponding to distinct response values and distract

from any information that may be contained in the residual plot. Dunn and Smyth

(1996) present randomized quantile residuals which produces continuous residuals for

discrete response variables by inverting the fitted distribution function at each response

value and finding the equivalent standard normile quantile. This approach includes

randomization to achieve continuous residuals for discrete response variables which

allows for easier interpretation of the residuals.

Randomized Quantile residuals

Randomized Quantile residuals (Dunn and Smyth, 1996) are given by

RQ = Φ−1(ui) (3.61)

where Φ−1 is the inverse cdf of a standard normal distribution with mean 0 and standard

deviation 1 and ui is a random value from the uniform distribution in the interval[
F
(

(yi − 1) |θ̂i
)
, F
(
yi|θ̂i

)]
when yi is discrete, where F (y|θ) is the cdf.

Randomized quantile residuals retain the useful diagnostic properties of ordinary

residuals, but lack their detracting features. The true residuals RQ follow a standard

normal distribution if the model is correct.

The randomization strategy employed prevents masses of overlapping points which

occur in plots due to repeated integer values of discrete responses. Dunn and Smyth

(1996) implement a process simlar to the strategy of ’jittering’ by applying a uniform

random component on the cumulative probability scale for each point. It has also been

noted that when randomization is used, several randomized sets of residuals should be

studied before a deciding upon the the adequacy of a model (Rigby and Stasinopoulos,

2005).
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Figure 3.3: Residual analysis using Randomized Quantile Residuals for a Poisson
model for counts of cysts in steroid treated kidneys

182



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●●●
●
●

●

●

● ●●●●●● ●●●● ●●● ●● ●● ● ● ● ●

0 2 4 6 8 10

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Against Fitted Values

Fitted Values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Against Index

Index

R
es

id
ua

ls

Histogram

Residuals

F
re

qu
en

cy

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
5

10
15

20
25

30
35

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●●●●

●

●

●

● ●●● ●● ●●● ●●●●● ●● ● ● ● ● ● ●

−2 −1 0 1 2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

R
es

id
ua

ls

Figure 3.4: Residual analysis using Randomized Quantile residuals for a negative
binomial model for counts of seizures in steroid treated kidneys

183



The fit of the Poisson maximum likelihood model to counts of cysts in steroid

treated embryonic mouse kidneys in Section 3.1.2 can be checked by examining various

plots of the residuals. The Randomized Quantile Residuals have been calculated for

a Poisson model fitted to counts of cysts in steroid treated embryonic mouse kidneys

and residual analysis plots are shown in Figure 3.3. The plot of the residuals against

the fitted values clearly still indicate the variance is not constant and increases for large

fitted values. The histogram of the residuals is also highly skew, with a large positive

residual of approximately 8, which can also be seen in the Normal Q-Q plot. Since

the assumptions of normality and constant variance of the residuals is shown to be

violated, this suggests that this models does not provide a good fit to the data.

A negative binomial model can also be fitted to the counts of cysts using maximum

likelihood, as in Section 3.1.2. The Randomized Quantile Residuals for this model are

plotted in the usual residual plots in Figure 3.4. The residuals for this model show

less variation and the histogram indicates that the distribution is not skew - all of

the residuals lie in the range ±3. The normal QQ plot indicates that the residuals of

this model better approximate a normal distribution than those of the Poisson model,

suggesting a better fit, although there are still some important deviations from the

normal assumption.

3.3.2 Model Comparisons

Choosing the correct model is an important aspect of data analysis. The model makes

assumptions about the implicit data generating mechanism present in the dataset and

the correct distribution must be chosen to ensure the maximum amount of information

is extracted from the data. It is therefore helpful to fit and compare a range of models to

a dataset. The Akaike’s information criterion (AIC) and Bayesian information criterion

(BIC) and EGPF plots provide methods for comparing the fit of multiple discrete

distributions to a dataset. AIC and BIC are types of penalized selection criteria which

are based upon the deviance of a model and can compare the fit of distributions to a

dataset numerically. The EPGF plots assess the fit of several distributions graphically
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by plotting the EPGF of a dataset and comparing to a range of pgf’s for fitted distributions.

Deviance

Measures of discrepancy between data values and a fitted model may be formed in

many ways – one such way can be formed from the logarithm of a ratio of likelihoods,

known as the deviance. Given a sample of n observations, the simplest model that can

fitted to the data, known as the null model, has one parameter representing a common

mean, µ, for all observations y. At the other end of the spectrum, the full model has

n parameters (one for each observation) and fits the data exactly, providing a baseline

for measuring the discrepancy of a model with p parameters.

Let l (θ̂p) be the log likelihood maximised for the model with p parameters and

l (θ̂n) be the maximum log likelihood in the full model with n parameters. The deviance

(McCullagh and Nelder, 1983) is then given by twice the difference between the two

maximum likelihoods:

D (y) = 2[l (θ̂p)− l (θ̂n)] (3.62)

Here the full model is a model with a parameter for every observation so that

the data are fitted exactly. In general, the deviance can be expressed for any two

nested models, M1 and M2, where M1 contains the parameters in M2, and k additional

parameters, with log-likelihoods L1 and L2, respectively. This results in the following

deviance,

D (y) = 2 (L1 − L2) (3.63)

The benefit of the deviance is that it is additive for nested sets of models and can

be used to compare two models in the likelihood ratio test.
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Likelihood ratio Test

The likelihood ratio test is used to compare the fit of two competing models where one

model (often called the alternative model) is a special case of other (the full model).

The likelihood of the data under the alternative model is compared to the likelihood of

the model under the full model, under the following hypotheses:

H0 : The null model provides the best fit to the data

Ha : The alternative model provides the best fit to the data.

The test statistic for this test is based on the likelihood ratio of the null model, M1 with

n1 parameters and the alternative model L2 with n2 parameters. Denoted by D, the

deviance, the test statistic is written as:

D = −2[L1 − L2] (3.64)

where L1 and L2 are the log-likelihoods for the models, M1 and M2, respectively.

Under the assumption that the null hypothesis H0 is true, this test statistic will follow

a Chi-squared distribution on n1 − n2 degrees of freedom, where n1 is the number

of parameters in the null model and n2 is the number of parameters in the alternative

model (McCullagh and Nelder, 1983).

When the test statistic, D, is large M2 the alternative model fits poorly compared

with M1. Large tests statistics and small p-values suggest the model M2 fits more

poorly than M1.

AIC and BIC

Penalized model selection criteria provide a class of goodness-of-fit statistics which

allow for comparisons of non-nested models i.e. models for which one model is not a

sub model of the other. For example, a model with a covariate X1 is nested within a

model with covariates X1 and X2. However, a model with covariates X1 and X3 is not

nested within the model with covariates X1 and X2, as the third covariate X3 does not

appear in the first model. Comparisons are made between pairs of candidate models,
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M1 and M2, with parameter vectors θ1 and θ2, respectively, and are of the form:

IC = 2[`(θ̂2)− `(θ̂1)]− a(p2 − p1) (3.65)

where `(θ̂2) and `(θ̂1) are the log likelihood for modelsM1 andM2 respectively, p1 and

p2 are their degrees of freedom and a is a positive quantity. It is not necessary for the

two models M1 and M2 to be nested. For the special case of nested models, where M1

is nested within M2, the first term becomes equal to the likelihood ratio test statistic

(Kuha, 2004).

Statistics of this kind are known as penalized likelihood criteria due to their formation

as sums of two terms. The first term in Equation 3.65 is the deviance and reflects the fit

of the two models to the observed data. The second term can be regarded as a penalty

for the increased complexity of M2 over M1 in terms of the numbers of parameters

in the model. These two terms express a trade-off between fit and model complexity,

favouring a more parsimonious model unless the more complex model provides an

improvement in fit.

The advantages of penalized likelihood criteria are that they allow for comparisons

of non-nested as well as nested models. The penalty for a large model with many

parameters offsets the large-sample behaviour of significance tests where simple models

are increasingly likely to be rejected for large datasets. They are also based on explicit

theoretical considerations despite their simplicity.

Many versions of penalized criteria have been proposed in the statistical literature

using various theoretical starting points. The first was Akaike’s information criterion

(AIC) (Akaike, 1974), defined as:

AIC = 2[`(θ̂2)− `(θ̂1)]− 2(p2 − p1) (3.66)

i.e. a = 2. Another widely used penalized criterion is the Bayesian information

criterion (BIC) also known as Schwarz’s information criterion (SIC or SBIC, (Schwarz,
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1978)):

BIC = 2[`(θ̂2)− `(θ̂1)]− log(n) (p2 − p1) (3.67)

where n is the number of independent observations in the dataset. Lower AIC or BIC

values indicate a better fitting model and allow us to compare competing models.

The Akaike and Bayesian information criteria are based on two different model

selection approaches. The AIC is aimed at finding the best approximating model to the

unknown data generating process, whilst BIC is designed to identify the true model

(de Graft Acquah, 2010). The AIC does not depend directly on sample size. Although

BIC takes a similar form to the AIC, it is derived within a Bayesian framework and

reflects the sample size of the model. BIC values are always higher than those of the

AIC as the BIC applies a larger penalty than the AIC, thus it tends to select simpler

models than the AIC.

For the Poisson model applied to the cysts data with one parameter the AIC and

BIC can be calculated from the log-likelihood,

AIC = −(2×−279.7035) + (2× 1) = 561.4071

BIC = −(2×−279.7035) + (1× log(111)) = 564.1166
(3.68)

and for a negative binomial distribution with 2 parameters,

AIC = −(2×−174.8132) + (2× 2) = 353.6263

BIC = −(2×−174.8132) + (2× log(111)) = 359.0454
(3.69)

The negative binomial model provides a better fit to the counts of cysts in steroid

treated kidneys, resulting in lower values for both the AIC and BIC when compared to

the Poisson distribution.

Increasing the complexity of the model improves the goodness-of-fit but has the

added cost of requiring more independent parameters to be correctly estimated. The

BIC is more conservative against over-fitting in comparison to the AIC. Whilst the AIC

and BIC are the most often used in practice, a variety of other penalized criteria exist
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based upon modifications or generalizations of the AIC or BIC (Kuha, 2004). The

BIC will be used in this thesis as it accounts for the differing number of parameters

in model’s when making comparisons and is therefore more conservative against over

fitting than the AIC.

EPGF plots

Nakamura and Pérez-Abreu (1993b) present a graphical method of comparing the

goodness-of-fit of discrete models based on the empirical probability generating function

(EPGF) that provides a method of exploratory analysis of distributions for counts. The

EPGF for count data Y1, Y2, . . . , Yn is,

Gn (t) =
1

n

n∑
i=1

tYi , (3.70)

for −1 ≤ t ≤ 1 and provides a statistical transformation to enable inferences about

discrete distributions (Nakamura and Pérez-Abreu, 1993b; Rueda and O’Reilly, 1999).

The EPGF can be compared to discrete distributions by plotting the log of the theoretical

pgf of various candidate models and Gn(t). Let Y1, . . . , Yn be a random sample from a

discrete distribution, then Y (t) = log (G(t)) and Yn(t) = log (Gn(t)). A graphical plot

Yn(t) against t enables exploratory analysis of the fit discrete distributions (Nakamura

and Pérez-Abreu, 1993b).

Nakamura and Pérez-Abreu (1993b) plot the log of the pgf, Y (t) against values

of t between 0 and 1 for the Poisson, Binomial, negative binomial and zero-truncated

(Positive) Poisson distributions for fixed parameter values, shown in Figure 3.5. For

the Poisson distribution, the log of the pgf is given by Y (t) = µ(t − 1) and is a

straight line with an intercept at −µ and is zero at t = 1. The log of the pgf for a

Binomial distribution yields a concave function, whilst for a negative binomial or other

mixtures of Poisson distributions the shape of Y (t) is always convex (Nakamura and

Pérez-Abreu, 1993b). For truncated distributions Y (t) diverges to −∞ as t converges

to 0. For a truncated Poisson distribution, as t→ 0 the pgf Y (t)→ −∞ and as t→ 1

the log of the pgf behaves as a straight line.
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Figure 3.5: Plot of the log of pgf’s for a Poisson distribution with µ = 8, Binomial
with n = 5 and p = 0.7, negative binomial with r = 8 and p = 0.3 and a truncated
Poisson distributions with µ = 8.
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Figure 3.6: Plots of the epgf for a) counts of yearly deaths by horse kicks and b) counts
of earthquakes in Mexico.

Plots of the log of the EPGF and pgf’s provide useful tools in preliminary analysis

of count data and allow the comparison of distributions. Nakamura and Pérez-Abreu

(1993a) present two examples of the use of the EPGF using previously analysed datasets.

The first graph of Figure 3.6 plots the EPGF of the counts of yearly deaths by horse

kicks in the Prussian army over a twenty year period between 1875 and 1894 (n = 20,

min=3, max=18) (Bortkiewicz, 1898). The mean number of deaths by horse kicks is

10.3 (SD=4.51) with median 10.50 (IQR=7.5). The pgf for a zero-truncated Poisson

distribution is also plotted in the first plot of Figure 3.6 (shown in red) with parameter

λ = 10.70. As t tends to 0, Yn(t) tends to infinity and suggests the data is from

a truncated Poisson distribution. The second graph analyses counts of characteristic

subduction earthquakes on Mexico’s Pacific coast over periods of ten years between

1806 and 1985 (n = 18, min=0, max=7) (Jara and Rosenblueth, 1988). The mean

number of earthquakes is 2.33 (SD=2.086) and has median 2 (IQR=2). The second

EPGF plot in Figure 3.6 also plots the pgf of the Poisson distribution with µ = 2.33.

The convex relationship between t and the EPGF Yn(t) suggests that this dataset is

not from a Poisson distribution but displays a mixture of a Poisson or overdispersed

behaviour.

This methodology can be extended to compare the EPGF of a dataset with pgf’s
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calculated using parameter estimates of distributions estimated from the dataset. Plotting

both the EPGF and pgf(’s) on the same graph allows us to compare the fit of a number

of discrete distributions using only one plot. The log of the EPGF of the counts of

cysts in steroid treated mouse kidneys is plotted in Figure 3.7. The EPGF is shown as

a solid black line, whilst a series of distributions fitted to the data are plotted in broken

coloured lines. The pgf for a Poisson distribution is clearly shown as a straight line

(red), as is the Holla distribution (green) which has a smaller gradient. The pgf’s for

the zero-inflated Poisson (dark blue), zero-inflated negative binomial (light blue) and

negative binomial (pink) distributions all are convex and have close fits to the EPGF,

with the negative binomial distribution being obscured by the zero-inflated negative

binomial which is due to the parameter ω being very close 0. Out of these three

distributions, the zero-inflated Poisson does not appear to fit the EPGF as well at the

center of the range of t. The EPGF plot therefore indicates that a negative binomial or

zero-inflated negative binomial distribution may provide a very good fit to the dataset.

The benefit of the EPGF plot compared with, for example, a histogram of the vector

of discrete observations is that it is a continuous plot instead of a function which has

jumps at observed data points and is not affected by the occurrence of ties in the data

(Nakamura and Pérez-Abreu, 1993b). It also allows the comparison of a range of

discrete distributions to an observed dataset.

3.3.3 Outlier Detection

The detection of outliers is especially problematic for discrete distributions where long

tails make it difficult to detect outliers. In this section we propose two graphical

methods to explore possible outliers in a dataset. The EPGF method graphically detects

possible outlying observations by plotting the EPGF using a leave-one-out method and

makes no assumptions about the distribution of the dataset. The SI method utilizes the

SI by plotting for a fitted distribution over the range of y values to detect outliers.
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EPGF Outlier plot

Plotting the EPGF can be useful in detecting possible outlying observations in discrete

distributions (Nakamura and Pérez-Abreu, 1993b). If an observation yi is large in

comparison to the other observations, its contribution of tY in Gn(t) is small when

t is in the range 0 < t < 1 (Nakamura and Pérez-Abreu, 1993b). Large outlying

observations can be examined by evaluating the effect of each observation on Yn(t) by

a ‘leave-one-out’ procedure, i.e. leave out yi, use the remaining observations (n − 1)

to calculate Y (−i)
n−1 (t) and plot the resulting n curves on a single plot (Nakamura and

Pérez-Abreu, 1993b).

Nakamura and Pérez-Abreu (1993a) utilize a dataset containing frequencies of

incidents of international terrorism in the United States between 1968-1974 as an

example of the use of the EPGF in detecting outliers (Table 3.3). Figure 3.8 plots n =

Incidents 0 1 2 3 4 12
Frequencies 38 26 8 2 1 1

Table 3.3: Frequencies of incidents of international terrorism in the United States
between 1968-1974

76 EPGF curves, where each EPGF is calculated from 75 observations by removing an

observation systematically. For most of the curves (full black line) the EPGF increases

rapidly for values of t between 1 and 2. However when the observation of 12 incidents

is omitted and the EPGF calculated (plotted in a black dashed line) the EPGF curve

becomes a straight line. This indicates that this observation has a large effect on the

shape of the EPGF when it is removed and hence it can be considered as an outlier

with respect to the remainder of the dataset.

Surprise Index

Determining whether or not an observation is an outlier may be problematic for discrete

distributions. Weaver (1948)’s SI defined in Section 2.1.5 can be used to assess

whether a particular observation can be considered an outlier with respect to the dataset,

assuming that the data come from a particular discrete probability model. The SI for
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Figure 3.8: EPGF analysis to detect outliers for frequencies of incidents of
international terrorism.

the normal case in terms of the standard deviation is presented by (Weaver, 1948).

This was extended by Redheffer (1951) to two discrete distributions- the Poisson

and binomial cases and are the only examples in the statistical literature. The SI

for the distributions presented in Chapter Two of this thesis have all been calculated

analytically and the example of counts of cysts in steroid treated embryonic mouse

kidneys illustrates the use of the SI in detecting outliers.

The first plot in Figure 3.9 gives the logarithm of the SI for the Poisson distribution

calculated using the maximum likelihood estimate of the Poisson distribution for this

dataset, µ̂ = 1.55. The solid black line plots the logarithm of the SI of the Poisson

distribution and the red dashed line indicates values of the SI over 1,000. The plot

indicates that counts of cysts greater than 7 are surprising, as their SI is greater than

1,000 and can be considered as outlying observations. A negative binomial distribution

is also fitted to the data using maximum likelihood parameter estimates of p̂ = 0.16

and r̂ = 0.30 and the SI is plotted in the second graph of Figure 3.9. The dark solid
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Figure 3.9: Plots of SI for counts of cysts in steroid treated embryonic mouse kidneys
for a) a Poisson distribution and b) a negative binomial distribution.

line plots the SI, which is clearly less than 1,000. Therefore, under a negative binomial

distribution none of the frequencies of counts of cysts are considered to be surprising.

Summary

This chapter provides a background to estimation methods and frameworks for

fitting discrete models described in Chapter 2. Rapid estimation methods give quick

estimates of parameters, their main advantage being their use as starting values in

maximum likelihood estimation. The method of maximum likelihood provides a consistent

approach to parameter estimation, whilst the EM algorithm allows fitting of complex

models. The GLM and GAM frameworks offer flexible methods for modelling, however

both are limited in their range of distributions which is restricted to those within the

exponential family. Distributions in the GAMLSS framework models do not need to

belong to the exponential family for this class of models. The GAMLSS framework

also allows for location, scale, skewness and kurtosis parameters and has the potential

to allow for (almost) any probability density to be used when modelling.

Diagnostic methods for goodness-of-fit, model comparisons and outlier detection
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for discrete models have also been discussed. The Chi-squared goodness-of-fit test and

randomized quantile residuals both provide methods to test the fit of a distribution to

a dataset. The AIC and BIC allows comparisons between the fit of distributions and

the EPGF can plotted alongside pgf’s of distributions to give graphical comparisons.

Finally, two different methods for the detection of outliers in discrete distributions have

been presented. The EPGF outliers plot is non-parametric, whereas the SI assumes a

distribution for the data and requires estimation of the parameters. Software available

in statistical environments for the distributions and methods presented in Chapters 2

and 3 will be reviewed in the following chapter.
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Chapter 4

Software for fitting discrete

probability models

The aim of this thesis is to produce software using the R programming language and

software environment for statistical computing to analyse models for discrete data.

This will provide both statisticians, and clinical and public health scientists with better

tools for fitting discrete models. In the next sections we review some software currently

available for discrete models and identify potential areas where additional software is

required thus highlighting aspects that may benefit from our development.

4.1 Current Software

Statistical software environments differ in their approaches to handling data analysis

with some programs allowing command line input, as well as use of graphical user

interfaces (GUI). SAS, Stata and PASW (previously known as SPSS) are commonly

used examples of statistical packages which provide both command-line and GUI-based

analyses. Another approach to statistical software is followed by environments centered

on a programming language such as the R language and software environment for

statistical computing and graphics. The main difference between statistical packages

such as SAS, Stata and PASW and languages such as R is that this language is object-orientated,

meaning that data and methods alike can be stored as ’objects’. We have chosen
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R, SAS, Stata and PASW as our primary interest because they are well known and

are most frequently used by statisticians or clinicians for scientific research. Two

specialized environments, Mathematica (for symbolic computation) and the Altmann

fitter (for fitting univariate discrete models), are also chosen as they provide useful

computational tools. Many environments have add-on software programs or packages,

which provide specialized software routines.

The following sections review software functions available for discrete models

within these computational environments. Functions refer to routines for statistical

analysis or data manipulation. In particular, functions that fit discrete probability

densities to single distributions, regression models to identify associations between a

discrete outcome and various predictors and goodness–of–fit diagnostics are evaluated.

4.1.1 PASW

Predictive Analytics SoftWare (PASW) previously known as SPSS (Statistical Package

for the Social Sciences) (SPSS Inc, 2011) was originally developed in the 1960s as a

programming language for conducting statistical analysis and uses both a graphical and

a syntactical interface. It provides a range of functions for managing, analysing, and

presenting data. The pdf’s, (Pdf.-) cdf’s, (Cdf.-) and random generating (rv.-) functions

for several discrete distributions can be calculated, as shown in Table 4.1.

pdf cdf Random generation
Bernoulli (Bernoulli) Bernoulli (Bernoulli) Bernoulli (Bernoulli)
Binomial (Binom) Binomial (Binom) Binomial (Binom)
Poisson (Poisson) Geometric (Geom) Geometric (Geom)

Hypergeometric (Hyper) Hypergeometric (Hyper)
Poisson (Poisson) Poisson (Poisson)

Table 4.1: Discrete distributions available as pdf’s, cdf’s and random generations using
PASW. Function names are in parenthesis.

Poisson and negative binomial regression models can be fitted within a GLM framework

using the GENLIN command. There is a range of optional output statistics for diagnostic

analysis: the Chi-squared goodness–of–fit test statistic and p-value, log- likelihood,

deviance, AIC and BIC. Residuals plots can also be optionally constructed for the
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fitted model using standardized residuals.

4.1.2 Stata

Stata (StataCorp, 2009) is a software package for statistical analysis and provides a

wide range of statistical tools and graphical displays. Its glm function fits generalized

linear models using either maximum likelihood or iteratively re weighted least squares.

Models from the exponential family can be fitted, which for discrete response variables

are: the Bernoulli or Binomial (binomial), Poisson (poisson) and negative binomial

(nbinomial) distributions.

There is also a range of regression models for discrete outcomes: the poisson

function for fitting for Poisson regression models, nbreg for negative binomial regression

models or gnbreg() for a generalized negative binomial models. Zero-inflated models

can be fitted using the zip command for zero-inflated Poisson regression and zinb

for zero-inflated negative binomial regression, where the inflate() argument determines

the variable list for the zero probability part of the model. Truncated regression models

can also be fitted using the commands tpoisson and tnbreg for zero-truncated

Poisson and Negative binomial distributions, respectively. The standard output table

for regression models fitted in Stata includes the log-likelihood, deviance and both the

AIC and BIC. The predict function can calculate raw and standardized Anscombe

and Pearson residuals. Stata users can also write their own functions using Stata code.

4.1.3 SAS

The Statistical Analysis Systems (SAS) software package has been developed by the

SAS Institute since 1976, initially as a project to analyse agricultural research data SAS

Institute Inc (2011). It provides a wide range of tools including data management and

data mining, report writing and graphics, statistical analysis, alongside many business

solution tools such as business planning and forecasting, operations research, project

management, data archiving, data storage, web reporting, optimization and quality

control.
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The PROC GENMOD procedure fits GLM in the SAS software program and can

analyse models relating one or several continuous dependent variables to one or several

independent variables. This function fits regression models from the exponential family:

the binomial, Poisson, geometric and negative binomial distributions. Zero–inflated

Poisson regression models can also be fitted using the PROC GENMOD function although

it is not strictly a GLM model. The output gives the deviance and Pearson Chi-squared

goodness-of-fit tests, log-likelihood, AIC and BIC. Raw Pearson and standardized

residuals can also be calculated.

The COUNTREG procedure analyses regression models in which the dependent

variable takes count values. The Poisson, negative binomial types I and II , zero-inflated

Poisson and zero-inflated negative binomial distributions can be fitted as regression

models using maximum likelihood estimation. The output gives the log-likelihood,

AIC and BIC, well as parameters estimates and their standard errors.

4.1.4 R

The R language was first developed by Ihaka and Gentleman (1996) as an environment

for statistical computing and graphics based on the S-PLUS language (Chambers and

Hastie, 1991). A command-driven programming language, R can be used to store

and view data, supports many mathematical and statistical functions and provides

advanced tools for data analysis and graphical display (Horton et al., 2004). The R

project (R Development Core Team, 2009) has been developed since the late 1990s.

The software is freely distributed and can be downloaded via the Comprehensive R

Archive Network (CRAN) website (CRAN, 2010). The CRAN website features a

large amount of background information, documentation and other resources. The R

language allows users to write their own functions and one of the main advantage of R

is the many packages, also known as libraries, which have been contributed by authors;

this allows fitting a wide range of statistical methods beyond the more commonly used

functions available in all statistical software packages.
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R has two object systems, known informally as S3 and S4 (Chambers, 2008).

These systems use object-orientated programming to define the ’class’ of an object and

then ’method’ functions can be associated with a particular type of object. An object in

the S3 class is an R object with an additional class attribute, a character vector giving

the names of the classes attached to that object. Generic functions can be defined for

objects of a certain class. For instance, print is a generic function with alternative

definitions for different class types. If a fitted model of class glm is assigned to the

object mod, then the command print(mod) will refer to print.glm, the print

function for objects of class glm. The S4 class provides an alternative method of

attaching classes to objects and can be created using the methods library. A member

of the S4 class requires the type of all its components to ensure consistency. In

comparison to S3, S4 objects are more rigorous, having a more formal structure.

The R language contains many well-known discrete distributions and provides

functions to calculate the pdf, cdf, quantile and random generating functions for a

large range of probability models, with a general notational form adopted to provide

a consistent naming scheme. The pdf of a distributions name or a shortened version

is prefixed by the letter ‘d’. Similarly, the cdf is prefixed by ‘p’ and the quantile

function ‘q’. Functions for random realizations of probability distributions are labelled

by prefixing the distribution name with the letter ‘r’. Table 4.2 provides a list of

discrete distributions available in the base library (part of the core R instillation) of the

R language. For example, the first distribution in the table is the Binomial distribution

with parameters size and prob which has pdf function dbinom, cdf function

pbinom, quantile function qbinom and random generating function rbinom. Other

discrete probability distributions available in add-on libraries are detailed below.

Generalized linear models can be implemented in R using the glm() function,

which can fit distributions from binomial, Poisson, geometric, quasi-Binomial and

quasi-Poisson distributions using a GLM framework. The glm function returns objects

of class glm for which there is a number of generic functions. The summary()

function returns summary statistics of a model, including covariate parameter estimates
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Distribution Name Functions Parameters
Binomial binom() (pdqr) size, prob
Poisson ppois() (pdqr) lambda
Geometric geom() (pdqr) prob
Negative Binomial nbinom() (pdqr) size, prob, mu
Hypergeometric hyper() (pdqr) m, n, k

Table 4.2: Probability distributions available in the base library of the R language

with corresponding Wald tests, the log-likelihood, deviance, AIC and BIC. Raw, Pearson

and standardized residuals can be calculated for fitted models using residual().

The function predict generates predictions from the results of various model fitting

functions and plot is a generic function for plotting of R objects.

A number of models for discrete data are available in R through add-on libraries.

Libraries in R are developed independently by R users and therefore there is some

overlap in their contents. Several R libraries are presented in the following sections

which include functions for the analysis of discrete data.

stats4 library

The stats4 library is available as part of the R language environment and provides

S4-class statistical functions. The mle function estimates parameters by maximum

likelihood using R’s general purpose optimization function, optim. This function has

usage mle(minuslogl, ...), where minuslogl is a function of the negative

log-likelihood; the arguments indicated as ’...’ refer to additional ones passed to

subsidiary functions in the mle call. Objects resulting from this function have class

mle-classwith general methods including: logLikwhich extracts the log-likelihood,

vcoc which extracts the variance–covariance matrix, profile generates the profile

likelihoods of the models parameters and summary gives a summary of the maximum

likelihood estimation including the parameter estimates and model deviance which is

minus two times the log-likelihood.
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MASS library

The MASS library contains functions and datasets supporting the classic text Modern

Applied Statistics with S-PLUS by Venables and Ripley (2002). Particularly important

is that it allows fitting regression models for the negative binomial distribution within

the GLM framework using the glm.nb() function. Objects resulting from glm.nb

function inherit the glm class.

pscl library

The pscl package was developed by Jackman (2010) and contains the zeroinfl()

function which can be used for maximum likelihood estimation of zero-inflated models.

This function fits regression models using the Poisson, Geometric and Negative Binomial

models and allows for zero-inflation to be accounted for in the model either as a

constant or including covariates (Zeileis et al., 2008). The function uses maximized

likelihood estimation but can also generate parameter estimates using the EM algorithm

by setting EM=T. The returned fitted model object is of class zeroinf and is similar to

fitted glm objects, the output therefore provides the standard summary and goodness-of-fit

statistics.

zicounts library

The zicounts package provides an alternative implementation of classical and zero-inflated

count data regression models (Mwalili, 2007). The function zicounts() allows for

Poisson, zero-inflated Poisson, negative binomial and zero-inflated negative binomial

models, with estimates generated using maximum likelihood. There are also functions

for regression models for censored count data, zicensor, for the Poisson, zero-inflated

Poisson, negative binomial and zero-inflated negative binomial models, where the

upper bound response variable is known. This library provides similar models to

those in the pscl library, however the interfaces of the zicounts and zicensor

functions are less standard, having no class attributed to the output and no generic

functions associated with these models (Zeileis et al., 2008).
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gamlss family of libraries

The original gamlss package (Stasinopoulos and Rigby, 2008, 2007) was developed

to support the generalized additive models for location, scale and shape (GAMLSS)

framework of regression models (Rigby and Stasinopoulos, 2005) (see Section 3.2.3);

the family of gamlss libraries consists of number of packages related to this framework.

The gamlss.dist library contains the p, d, q, r and gamlss family functions for

a large range of continuous and discrete probability distributions. The gamlss.cens

library provides procedures for fitting censored response variables, whilst gamlss.mx

contains algorithms for fitting finite mixture models and the gamlss.tr library can

fit truncated models. The gamlss.cens, gamlss.mx and gamlss.tr all fit

models using the distributions supplied in gamlss.dist. All available gamlss

packages are installed when loading the original gamlss package into an R session.

Distribution Function No. of Parameters
Beta Binomial BB() 2
Binomial BI() 1
Delaporte DEL() 3
Negative Binomial I NBI() 2
Negative Binomial II NBII() 2
Poisson PO() 1
Holla (Poisson-Inverse Gaussian) PIG() 2
Sichel SI() 3
Sichel (µ the mean) SICHEL() 3
Zero-altered beta binomial ZABB() 3
Zero-altered Binomial ZABI() 1
Zero-altered negative binomial ZANBI() 2
Zero-inflated beta binomial ZIBB() 3
Zero-inflated Binomial ZIBI() 2
Zero-inflated negative binomial ZINBI() 3
Zero-inflated Poisson ZIP() 2
Zero-inflated Poisson (µ the mean) ZIP2() 2
Zero-inflated Holla (ZI Poisson-Inverse Gaussian) ZIPIG() 3

Table 4.3: Discrete distributions implemented within the gamlss.dist library
(Stasinopoulos and Rigby, 2007).

Table 4.3 lists the discrete distributions that can be implemented within the gamlss

package. All the distributions in Table 4.3 have p, d, q, and r functions giving the pdf,
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cdf, quantiles and random generating functions, respectively. Each distribution also

has a GAMLSS family fitting function which provides link functions, first and second

derivatives, starting values etc. needed for the fitting procedure in the gamlss()

function (Stasinopoulos and Rigby, 2007). The arguments of the fitting functions

specify the link functions for each of the distribution parameters. The negative binomial

type II distribution specified in Section 2.3.1 of Chapter 2 has parameters µ and α,

whilst in the gamlss library the NBII distribution has parameters µ and σ =
1

α
. The

fitting function for the negative binomial type II distribution is NBII() and has two

parameters mu and sigma, both with default log link functions.

The gamlss() function in the gamlss library estimates the parameters of regression

models using the GAMLSS framework using the methods described in Section 3.2.3.

Objects from gamlss() fitting have class gamlss which have an associated set of

generic functions. The summary() function returns a standard summary of various

statistics of a model, including parameter estimates, log-likelihood, deviance, AIC and

BIC (known as the SBC) as part of their output. Randomized quantile residuals can be

calculated for fitted models residual() and worm plots wp() provides a diagnostic

tool for checking the residuals within different ranges of the explanatory variables.

VGAM library

The Vector Generalized Additive Models (VGAM) package implements regression

models which use vector generalized linear and additive models (Yee, 2008). The

vglm() function can be used to fit generalized linear models for the Binomial,

binomialff(), Poisson poissonff() and quasi-Poisson quasipoissonff()

distributions. Vector generalized additive models can be fitted using the vgam()

function for distributions by specifying the family argument as a VGAM family function.

A range of discrete distributions available as family functions are specified in Table 4.4.

Distributions with pdqr functions available are given in parenthesis. Expressions for

Lerch’s Phi Φ(s, z, v), lerch(), and Reimann’s Zeta function ζ(x), zeta() are

also available.
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Distribution Function
Beta-Binomial betabinomial() (dpr)
Beta-Binomial betabin.ab() (dpr)
Generalized Poisson genpoisson()
Geometric geometric()
Negative Binomial negbinomial()
Poisson poissonff()
Poisson-Poisson mix mix2poisson()
Positive negative binomial posnegbinomial() (dpqr)
Postive Poisson pospoisson() (dpqr)
Zeta zetaff()
Zero-altered Negative Binomial zanegbinomial() (dpqr)
Zero-altered Poisson zapoisson() (dpqr)
Zero-inflated Binomial zibinomial() (dpqr)
Zero-inflated Negative Binomial zinegbinomial() (dpqr)
Zero-inflated Poisson zipoisson() (dpqr)
Zero-inflated Poisson yip88()
Zipf zipf() (dp)

Table 4.4: Discrete probability distributions available in VGAM library of R

The vgam() function returns objects with class vgam, with generic functions

including:summary() producing a table of summary statistics including the parameter

estimates, log-likelihood and deviance, residuals() which gives the residuals.

zipfR library

The zipfR library provides tools for the analysis of word frequency distributions,

including frequency estimation for rare events and functions for plotting word frequency

data and vocabulary growth curves (Evert and Baroni, 2008). Zipf models have been

applied to many different areas aside from linguistics, e.g. genetics, human geography.

More information on the zipfR package is available on the zipfR website (zipfR,

2010).

Models for word frequency distributions belong to a family of large number of rare

events (LNRE) models and can be implemented in zipfR using lnre(). Currently

the Zipf-Mandelbrot (ZM), finite Zipf-Mandlebrot (fZM) and Generalized Inverse Gauss-Poisson

(GIGP) (Sichel) models have been programmed. The probability density functions for

these distributions can be defined using dlnre(), the distribution function plnre(),
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the quantile function qlnre and random sample generation rlnre().

The R language provides software for a good number of discrete distributions

across a number of add-on libraries. There are less software routines for the estimation

of parameters for discrete regression models. One disadvantage of user-contributed

add-on libraries is the resulting overlap of many procedures in the R language. The

advantage of the R language environment is that the S3 and S4 classes system provides

generic functions which can give summaries and residuals of models.

4.1.5 MATHEMATICA

MATHEMATICA (Inc, 2009) is a command-based application comprised of a symbolic

programing language which allows performing complicated algebraic tasks and to

create graphics. One package available as an add-on to MATHEMATICA is MATHSTATICA

(Rose and Smith, 2002) which uses the MATHEMATICA interface to provide a toolset

for mathematical statistics. MATHSTATICA provides the pdf’s for the following discrete

distributions: Bernoulli, Beta-Binomial, Binomial, Discrete uniform, Geometric,

Hypergeometric, Logarithmic, negative binomial, Poisson, Riemann Zeta, Waring,

Yule and ZIP. Maximum likelihood estimates can be derived analytically by maximizing

the log likelihood of the distributions (Rose and Smith, 2000; Currie, 1995).

4.1.6 Altmann Fitter

The Altmann-fitter (Altmann, 1997) was developed by Gabriel Altmann and fits univariate

discrete probability distributions to frequency data. There are 200 discrete distributions

currently implemented in this program with applications ranging from the fields of

biology and ecology, to economy and linguistics. Wimmer and Altmann (1999) developed

a Thesaurus to detail these distributions and many others, their origins and uses.

Distribution parameters are estimated using rapid estimation, often using an iterative

procedure. Different methods of rapid estimation are compared to find the best parameter

estimates for a particular discrete distribution. Distributions can be fitted singularly,

or the range of 200 distributions compared using the chi-squared goodness-of-fit test

208



p-value. Predicted values of the range of the observed values can also be calculated

and graphics produced plotting observed and fitted values for the models. However,

in general the Altmann Fitter does not provide maximum likelihood estimates nor

standard errors for the estimates.

4.2 Gaps in methodology

There are several aspects of discrete modelling that have been covered in this thesis,

including: discrete probability densities, parameter estimation of univariate models

(containing no covariates), regression modelling and model diagnostics. Currently,

a large variety of discrete models are available in a number of software packages,

although many of the more complex models such as the Hermite or Gegenbauer models,

have received less attention in the literature and are not widely available in statistical

software packages, if at all. The pdf’s or statistical properties of distributions such as

the Yule, Waring, and beta-binomial distributions, and many families of distributions

such as the generalized Poisson family of distributions which includes the Neyman

Type A, Hermite, Generalized Hermite, Gegenbauer and Generalized Gegenbauer or

the Lerch family including the Zipf, Zeta and Good distributions, are not currently

available in any software packages other than the Altmann Fitter. These models allow

for overdispersion, value-inflation and/or long tails which may improve the fit of a

dataset and also provide valuable information about the data generating mechanism

which yields the data. It is therefore important that a range of distributions are available

for modelling to realize the full potential of a dataset. The lack of implementation

of such distributions in statistical software packages limits the user in their choice of

discrete distribution. The Altman Fitter provides rapid estimates for univariate discrete

models, however unlike the object-orientated R language there is no flexibility within

this program for inferences made with the results. There is therefore a need for more

complex discrete models to be made available via open-source software in order that

these distributions may be used by statisticians, researchers and clinicians to facilitate

interpretation of epidemiological and clinical datasets.
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There is even less software available for regression modelling of discrete outcome

random variables with non-standard distributions. The standard Poisson and negative

binomial distributions are widely available as regression models in many statistical

packages. Zero-inflated and censored versions of these distributions are available in

Stata , SAS and the pscl and gamlss libraries in R. Routines for fitting GLM’s

and GAM’s can be used to estimate parameters in the R language, SAS, Stata and

PASW, but these are limited to those of the exponential family. There are a number

of discrete distributions available via the gamlss library (Table 4.3) which can fit

regression models within the GAMLSS framework. These models all include standard

goodness-of-fit statistics such as the log-likelihood and deviance alongside parameter

estimates and many include some of the Chi-squared goodness-of-fit test, the AIC

and BIC. Functions for calculating various types of residuals and plots for residual

analysis for models are standard across all of the statistical environments presented in

this chapter.

Where a range of models are fitted to a dataset deciding upon the optimum fitting

model is an important factor in data analysis, as this ensures that the maximum information

is extracted from the data. Although a large number of distributions can be fitted

in many of the statistical environments discussed in this chapter, there is no simple

way to compare the goodness-of-fit of two or more distributions. For example, when

deciding upon the best distribution to fit a particular dataset, there is no convenient

way to fit the models and extract only the goodness-of-fit statistics such as the AIC,

BIC or Chi-squared test from the output in order to compare the models. Instead,

each distribution would need to be fitted to the dataset separately and the relevant

goodness-of-fit statistics extracted. The Altmann Fitter has an automatic procedure

which estimates the parameters from a large number of distributions and returns the

goodness-of-fit statistics in an ordered table. However, the Altmann Fitter only provides

rapid estimates for the parameters from probability models and does not extend to a

regression setting.

There are therefore three areas of discrete modelling which have been highlighted
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as benefiting from software development:

1. Univariate distributions: parameter estimation and model comparisons

A set of programs are required to calculate the properties of a range of distributions

including the pdf, cdf, quantile and random generating functions and also the

pgf’s, moments and SI. Routines for the estimation of parameters in a univariate

setting will be performed using maximum likelihood, with rapid estimates providing

starting values for the algorithm. The fit of a range of discrete distributions to

a dataset will be compared using the Chi-squared goodness-of-fit tests, AIC and

BIC values.

2. Goodness-of-fit tests and model diagnostics

There are three issues with assessing the fit of discrete distributions: the goodness-of-fit

of a particular distribution to a dataset, model comparisons and outlier detection.

The Chi-squared goodness-of-fit test is frequently included in model output tables

across all of the software packages. The AIC and BIC are commonly used

criteria for model comparisons and will be included in the library. Residual

analysis also plays a key role in determining the fit of a model to a dataset and

there is a need for residuals for discrete observations. Both of these techniques

will be included in the library as methods for the analysis of the fit of distributions

to data. Methods for comparing distributions are needed in order to compare the

fit of multiple models to a dataset. There is also a need for outlier detection

methods particularly suited to discrete data.

3. Discrete regression models

A small range of discrete distribution regression models can be fitted with current

statistical software. There is therefore a need for discrete distributions that are

not already available for fitting as regression models. The gamlss library

provides a limited range of discrete distributions, together with procedures for

parameter estimation and model diagnostics such as goodness-of-fit statistics
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and residual analysis. The GAMLSS framework allows users to create their own

distributions which can then be fitted using the gamlss function and will be

utilized to implement discrete distributions in gamlss.

4.3 Outline of software

The project’s main aim is to provide software to fit and analyse discrete data. The R

program for statistical computing (R Development Core Team, 2009) can be used to

create add-on libraries containing modelling tools for discrete datasets. R has many

advantages as a platform to develop new statistical software. The R language is very

flexible and lends itself particularly well to the development of new functions, with the

S3 and S4 frameworks allowing users to develop generic functions for model classes

e.g. summary, residual, plot, that are common functions for most models

fitted across R libraries. It provides users with the ability to produce and publish

libraries or packages of their own code. These libraries can then be made available

to other R users through the Comprehensive R Archive Network (CRAN) (CRAN,

2010) website cran.r-project.org or sourceforge.net to enable a wide

range of accessibility to the software. Another benefit of the R program is that it is

free to download under the terms of the Free Software Foundation’s GNU General

Public License. R is increasingly widely used in many fields and has developed a

large, worldwide community of users.

The software produced as part of this thesis can be divided into three R libraries,

which will include estimation methods, diagnostic and model selection tools for analysing

discrete data. They will provide clinicians and researchers within the fields of clinical

and population science with tools to fit and interpret complex statistical models with

increased ease which may improve the understanding of clinical aspects of disease.

The following three sections outline the contents of these libraries.
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Altmann Library – Univariate parameter estimation and model comparison

Univariate parameter estimation for a range of discrete distributions will be the main

focus of this library. A number of distributions will be included to allow for more

complex analysis of datasets, such as zero-inflation, truncation, long-tailed distributions

and other families of distributions. These functions will utilize rapid estimation and

maximum likelihood estimation methodologies. Fitted values are obtained for models

fitted and functions to plot the fit of distributions will be included. Comparison tools

will allow for a large number of distributions to be compared simultaneously. The

AIC, BIC and Chi squared goodness-of-fit test p-value will be used to compare the fit

of models.

discrete.diag – Model diagnostics

A Chi squared goodness-of-fit test will be provided to test the fit of a distribution

to a dataset. Residuals plots analyses using randomized Quantile residuals will be

implemented. Two functions to calculate the AIC or BIC and the plot the EPGF as

a graphical tool allowing for model comparisons, are included. For the detection of

outliers in discrete data, the SI and the EPGF methods presented in Sections 3.3.3 and

3.3.3 of Chapter 3 provide plots for identifying potentially outlying observations.

discrete.reg – Regression modelling

The class of generalized additive models for location, scale and shape (GAMLSS)

is a useful framework to develop regression models for the variety of distributions

described above. The gamlss R library can be extended to incorporate further distributions.

The Geometric, Yule, and Waring distributions have been defined as gamlss.family

objects to allow for regression modelling within the GAMLSS framework.

Summary

This review of statistical computing environments has demonstrated the current
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variety of procedures available to analyse discrete data . Areas identified as requiring

development in software include the estimation of parameters of discrete distributions

using maximum likelihood procedures and also methods for performing comparisons

between models. There is also scope to improve the range of discrete distributions

available in the gamlss library within the R language. The next three chapters will

present each of the three R libraries which provide a toolkit of methods for discrete

data: the Altmann, discrete.diag and discrete.reg libraries.
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Chapter 5

Altmann Library

This chapter details the R software library developed for univariate parameter estimation

of discrete distributions and tools for model comparison, called the ‘Altmann library’.

This library gets its title from the Altmann Fitter software package (Altmann, 1997).

The purpose of this add-on R library is to enable parameter estimation for univariate

discrete distributions and facilitates comparisons between the fit of distributions.

The first section of this chapter details several datasets which are included in the

Altmann library. Functions to calculate the probability density, cumulative density,

quantile and random generations for each distribution will then follow. In the third

section, the maximum likelihood estimation functions are explained and in the fourth

section plot functions for maximum likelihood models in the Altmann library are

presented. This is followed by the altmann.fitter function for comparisons of

discrete models. Throughout the first five sections of this chapter the negative binomial

distribution is used as an example of the implementation and frameworks of functions

in the Altmann library. In the final section in this chapter the implementation of the

functions available in the Altmann library is applied to the UK surnames distribution

presented in Section 1.2.1 of Chapter one by fitting univariate Zipf distributions to

surname frequencies across county districts.

The example of the counts of stillbirths in New Zealand white rabbits (Morgan

et al., 2007) illustrates the usage, arguments and outputs of the functions presented in

this library in a practical setting. The number of stillbirths in 402 litters of New Zealand
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white rabbits is shown in Table 5.1. The distribution is seemingly zero-inflated with

78.1% of the litters having no stillbirths and overdispersion is clearly present as the

variance (1.51) is much larger than the mean (0.46).

5.1 Datasets

Several discrete datasets are included in the Altmann library and are used as examples

in the library help files. These datasets can be loaded into R using the data()

function. The five discrete datasets are as follows:

1. rabbits

The rabbits dataset consists of the frequencies of stillbirths in 402 New

Zealand white rabbit litters originally discussed in the context of Score Tests

by Morgan et al. (2007) (Table 5.1).

No. of Stillbirths 0 1 2 3 4 5 6 7 8 9 10 11
Frequency 314 48 20 7 5 2 2 1 2 0 0 1

Table 5.1: Frequency of stillbirths in litters of New Zealand white rabbits

2. lakota

This discourse data come from the Native American language Lakota where

the frequency distribution of linguistic items is defined by their length. The

variable represents the number of phonemes a linguistic item (word) contains

(Pustet and Altmann, 2005) from 1959 words, shown in Table 5.2. Within the

grammatical systems of natural languages, zero morphemes are frequently found

i.e. morphemes which lack phonetic substance and thus have length 0. The

characteristics of Lakota syllable structure automatically lead to a multimodal

distribution having modes at even values with blurring at higher values of Y .

No. of phonemes 0 1 2 3 4 5 6
Frequency 461 57 524 169 370 106 115
No. of phonemes 7 8 9 10 11 12 13
Frequency 41 50 47 12 5 1 1

Table 5.2: Counts of morpheme length in lakota language
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3. yeast

A historic dataset of 400 haemocytometer counts of yeast cells, this has been

analyzed by Neyman (1939) and Plunkett and Jain (1975) in the context of

Generalized Poisson models. The distribution of counts of yeast cells are shown

in Table 5.3 .

Counts of yeast cells 0 1 2 3 4 5
Frequency 213 128 37 18 3 1

Table 5.3: Counts of yeast cells

4. household

Data on household size taken from the Housing Allowance Demand Experiment

is presented in Hoaglin and Tukey (1985) and analyzed using EPGF plots by

Nakamura and Pérez-Abreu (1993b). Table 5.4 gives the distribution of household

size from 1239 households.

Household size 1 2 3 4 5 6 7 8 9 10 11 12
Frequency 210 315 292 176 125 57 38 18 6 1 0 1

Table 5.4: household size from Housing Allowance Demand Experiment

5. surnames

This dataset presents a table of the frequency of surnames across eight non-overlapping

districts, shown in Table 5.5. This data is analyzed by both Zörnig and Altmann

(1995) and and Panaretos (1989) to fit truncated discrete models.
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Frequency District
1 2 3 4 5 6 7 8

1 832 329 292 243 234 281 349 282
2 151 43 28 17 17 23 30 34
3 39 11 6 4 4 9 73 11
4 20 1 2 2 2 1 1 2
5 11 0 0 0 0 0 0 0
6 2 1 0 0 0 0 0 0
7 4 0 1 0 0 0 0 0
8 5 0 0 0 0 1 0 0
9 0 1 0 0 0 0 0 0
10 1 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 2 0 0 0 0 0 0 1

Table 5.5: Frquency of surnames across eight non-overlappping districts

5.2 Summary of discrete datasets

The summary.disc function produces summaries of discrete datasets. This function

is based on the summary function in the base library of the R environment and

gives descriptive summary statistics, moments and various measures for discrete data

including the overdispersion index, zero-inflation index and Gini coefficient. A table

of frequencies and probabilities is also given. The function has usage,

summary.disc(object, ..., digits = max(options()$digits - 3, 3))

where the argument object is a vector of discrete data for which a summary is

desired, ... gives additional arguments affecting the summary produced and digits

is an integer and specifies the number of digits for statistics produced by the function.

This is set to a default value which is greater than or equal to 3. The code for this

function is given in Listing 5.1.

1 summary.disc<-
2 function(object, ..., digits=max(options()$digits-4,2))
3 {
4 require(reldist)
5 if(length(levels(object)))
6 return(summary.factor(object, ...))
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7 else
8 {
9 nas<- is.na(object)

10 object<- object[!nas]
11 n<- length(object)
12 m1<- mean(object); m2<- var(object)
13 x<- unique(object); fx<- table(object)
14 px<- (fx/n)*100; od<- m2/m1
15 p0<- sum(object==0)
16 m3<- sum( fx*(x-m1)^3)/n; m4<- sum( fx*(x-m1)^4)/n
17 sk<- m3/(m2^1.5); ku<- m4/(m2*m2)
18 kappa3<- m3/m1-1; zi<- 1 + log(p0)/m1
19 gini.coeff<- gini(object)
20 qq <- quantile(object)
21
22 if(any(nas)){
23 qq<-signif(c(qq, n, sum(nas)), digits)
24 names(qq) <- c("Min", "1st Q", "Median",
25 "3rd Q", "Max", "n", "NA’s")
26 }
27 else {
28 qq<-signif(c(qq, n), digits)
29 names(qq) <- c("Min", "1st Q", "Median",
30 "3rd Q", "Max", "n")
31 }
32 moms<- signif(c(m1, m2, sqrt(m2), m3, m4, sk, ku),
33 digits)
34 names(moms)<- c(’mean’,’var’,’stddev’,’m3’,
35 ’m4’,’sk’,’ku’)
36 extras<- signif(c(od, kappa3, zi, gini.coeff),
37 digits)
38 names(extras)<-c(’OD’,’kappa3’,’ZI’,’Gini’)
39 tab<- rbind(fx,signif(px,digits))
40 dimnames(tab)<- list(c(’freq’,’\%’),x)
41 value<- list(desc=qq, moms=moms, extras=extras,
42 tab=tab)
43 }
44 value
45 }

Listing 5.1: Summary function for discrete datasets

The first line in summary.dist loads the reldist library if it is not already

available in R, which contains functions to calculate the Gini coefficient. In lines 5-6

if the data object contains levels, i.e. categorical data, then a summary of the data

is returned using the summary function. Otherwise, the function then procedes to
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calculate a range of summary staistics and indicies in Lines 9-20. Four tables of

summary statistics are provided by this function. Firstly, in lines 22-31 a table of

quantile values are calculated for the data vector object, which are the minimum,

25% lower quartile, median, 75% upper quartile, maximum and the number of observations

in the data vector. A table of moment statistics is calculated in lines 32-35 and includes

the mean, variance, standard deviation, third and fourth sample moments, skewness

and kurtosis coefficients. The third table (lines 36-38) contains the overdispersion

index, kappa3, zero-inflation index and Gini’s coefficient which are measures for discrete

data. The final table constructed in lines 39 and 40, gives the observed frequencies and

probabilities for the range of discrete values of object. In lines 41-44 these tables

are then returned as the output of this function.

The application and output of this function can be illustrated using the numbers of

stillbirths in New Zealand white rabbits presented in Table 5.1; R code for this example

is shown below.

> data(rabbits)
> summary.disc(rabbits)
$desc

Min 1st Q Median 3rd Q Max n
0 0 0 0 11 402

$moms
mean var stddev m3 m4 sk ku
0.46 1.51 1.23 8.01 61.10 4.31 26.80

$extras
OD kappa3 ZI Gini

3.283 16.410 13.490 0.865
$tab

0 1 2 3 4 5
freq 314.0 48.0 20.00 7.00 5.00 2.000
prob 78.1 11.9 4.98 1.74 1.24 0.498

6 7 8 11
freq 2.000 1.000 2.000 1.000
prob 0.498 0.249 0.498 0.249

The number of stillbirths is in the range (0,11), with the lower 25% quantile,

median and upper 75% quantile all having value 0. This is due to the large amount

of zeros present in the data (78.11%) and is supported by a very high ZI index of

13.49 (a ZI value of 0 indicates no ZI is present). The mean is 0.46 with variance
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1.51, indicating that the distribution of the number of stillbirths is overdispersed. The

high value of 3.28 for the OD index in the thrid table is greater than 1 again indicating

overdispserion is present in the data. The skewness coefficient gives a measure of

symmetry in the distribution and a positive value of 4.32 indicates a distribution with

a long right tail. Similarly, the kurtosis coefficient is also high and gives a measure of

peakedness. For this dataset the large positive value shows the distribution is ‘leptokurtic’

with a peak near the mean and heavy tails. The κ3 statistic is also high and provides

another measure of skewness in the data. Finally, Gini’s coefficient measures the size

of differences between observations and the small value for this dataset indicates a

long tail.

5.3 pdqr for distributions

This section presents examples of the probability density function, d, the cumulative

density function, p, the quantile or inverse cdf function, q and random generating

function r. The pdqr functions have been created for the range of discrete distributions

described in the literature review in Chapter 2 and are summarized in Table 5.6. The

table shows the shortened name used as a suffix for each distribution, alongside the

parameters of the distribution. For example the first entry, the Bernoulli distribution, is

shortened to BER and hence the pdf, cdf, inverse cdf and random generating functions

are labeled dBER, pBER, qBER and rBER, respectively, and has parameter prob.

The negative binomial distribution will be used in this section to provide an example

of the implementation of these functions. The next four sections introduce the code for

the d, p, q and r functions.

5.3.1 Probability density function d

R code for the pdf of the negative binomial distribution is given in Listing 5.2 and has

the following usage,

dNB(y, r = 2, p = 0.5, log.p = FALSE)
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Name Suffix Parameters
Beroulli BER prob
Binomial BIN prob, n
Poisson POIS mu
Geometric GEO prob
Negative Binomial NB r, p
Hypergeometric HY N, M, n
Holla HO alpha, theta
Sichel SICH alpha, theta, gama
Delaporte DE mu, sigma, nu
Yule YU lambda
Waring WA b, n
Beta-binomial BBI a, b, n
Zero-inflated Poisson ZIPO omega, mu
Zero-inflated Negative Binomial ZINB omega, r, p
Zero-inflated Sichel ZISI omega, alpha, theta, gama
2par Poisson 2PO omega, mu, lambda
Poisson-Negative Binomial mix 2PNB omega, mu, r, p
Zero-truncated Poisson PPO mu
Zero-truncated Geometric PGE prob
Zero-truncated Negative Binomial PNB r, p
Zero-truncated Holla PHO alpha, theta
Zero-truncated Sichel PSI alpha, theta, gama
Zero-truncated Yule PYU lambda
Lerch LE p1, a1, c1
Zeta ZE c1
Zipf ZIPF a1, c1
Good GO p1, c1
Neyman Type A NYA mu, phi
Hermite HE a, b
Generalized Hermite GHE a, b, m
Gegenbauer GE a, b, k
Generalized Gegenbauer GGE a, m, alpha, beta

Table 5.6: Probability distributions available in the Altmann library

with arguments: y the range of discrete values on which probabilities are calculated,

r and p are the parameters of the negative binomial distribution set to default values

of 2 and 0.5, respectively and finally log.p is a logical statement which determines

whether the log of the probabilities should be returned as the output.

Lines 2-7 use if statements to determine any specified values of r, p and y which

are outside the parameter bounds and a stop argument halts the procedure, printing

an error message if this occurs. The input parameters of y, r and p can also be given

in vector form and results in a matrix of probabilities as output. Line 9 determines the
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maximum length of these vectors, ly, and lines 8-11 replicates the parameter estimates

to create vectors. The probability density function is calculated in line 12 and if the

log.p statement is true the log of the pdf is calculated in lines 13-15. In some cases a

recurrent form of the probability density function provides a more efficient method of

calculating a distributions density probabilities.

1 dNB <-function (y, r = 2, p = 0.5, log.p = FALSE){
2 if (any(r <= 0))
3 stop(paste("r must be > 0)","\n",""))
4 if (any(p < 0)|any(p > 1))
5 stop(paste("p must be between 0 and 1)","\n",""))
6 if (any(y < 0))
7 stop(paste("y must be >=0", "\n", ""))
8 ly <- max(length(y), length(r), length(p))
9 y <- rep(y, length = ly)

10 r <- rep(r, length = ly)
11 p <- rep(p, length = ly)
12 fy <- (gamma(y+r)/(gamma(r)*gamma(y+1)))*p^r*(1-p)^y
13 if (log.p==TRUE) fy <- lgamma(y+r)-lgamma(y)
14 -lgamma(y+1)+r*log(p)
15 +y*log(1-p)
16 fy
17 }

Listing 5.2: Probability density function d

An example of the application and output of the dNB function for a negative

binomial distribution with parameters r=2 and p=0.6 is,

> dNB(0:10, r = 2, p = 0.6)
[1] 0.36000000 0.28800000 0.17280000 0.09216000 0.04608000
[6] 0.02211840 0.01032192 0.00471859 0.00212337 0.00094372
[11] 0.00041524

The negative binomial density function, dNB can be used to plot the density. Plot (a)

of Figure 5.1 illustrates the pdf of negative binomial distribution with parameters of

r=2 and p=0.6.

5.3.2 Cumulative density function p

The cumulative density function pNB has usage,

pNB(q, r = 2, p = 0.5, lower.tail = TRUE, log.p = FALSE)
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Figure 5.1: Plots of (a) the pdf, (b) cdf, (c) quantile and (d) a histogram of a random
sample of the negative binomial distribution with parameters r= 2 and p= 0.6, created
from the dNB, pNB, qNB and rNB functions.
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where the argument q represents the vector of quantiles, whilst r and p are the parameters

of the negative binomial distribution, with default values of 2 and 0.5. Two logical

statements lower.tail and log.p determine whether the lower tail or log of the

distribution probabilities are calculated.

1 pNB <- function (q, r = 2, p = 0.5, lower.tail = TRUE,
2 log.p = FALSE){
3 if (any(r <= 0))
4 stop(paste("r must be > 0)","\n",""))
5 if (any(p < 0)|any(p > 1))
6 stop(paste("p must be between 0 and 1)","\n",""))
7 if (any(q < 0))
8 stop(paste("q must be >=0", "\n", ""))
9 ly <- max(length(q), length(r), length(p))

10 q <- rep(q, length = ly)
11 r <- rep(r, length = ly)
12 p <- rep(p, length = ly)
13 cdf <- 1+(1-p)^(floor(q))*(-1+p)*p^r*comb(r+floor(q),
14 -1+r)*hypergeo_2F1(1,1+r+floor(q),2+floor(q),
15 1-p)
16 if (log.p==TRUE) cdf <- log(cdf)
17 cdf
18 }

Listing 5.3: Cumulative density function p

Examining the program code for pNB given in Listing 5.3, the function starts

with three if statements (lines 3-8) which halt the process if any values of q, r and

p supplied to the function are outside of their parameter restrictions. Once again, a

vector parameterization is implemented in lines 9-12 for the two model parameters

and discrete values of q. The cdf is calculated in lines 13-15 using supplementary

functions hypergeo_2F1(a,b,c,z), the hypergeometric function 2F1(a, b; c; z)

and comb(a,b) gives the binomial combination aCb. The cdf or log of the cdf is

printed in lines 16-17. Alternatively, the cdf can be calculated using a cumulative

sum of the pdf by utilizing the dNB function as follows:

s1<- seq(0, max(q))
cdf<- cumsum(dNB(s1, r=r, p=p))
s2<-match(q,s1, nomatch=0)
cdf<- cdf[s2]
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Implementing this function for a negative binomial distribution with quantiles q

between 0 and 20 and parameter values of r=2 and p=0.6 gives the following output:

> pNB(0:10, r = 2, p = 0.6)
[1] 0.53920 0.86752 0.97696 0.99716 0.99973 0.99998 0.99999
[8] 0.99999 1.00000 1.00000 1.00000

This function is plotted graphically in plot (b) of Figure 5.1.

5.3.3 Quantile function q

The arguments of the quantile or inverse cdf function for the negative binomial distribution

are,

qNB(p, r1 = 2, p1 = 0.5, lower.tail = TRUE, log.p = FALSE,
max.value = 10000)

where p is the vector of probabilities, r1 and p1 are the parameters of the negative

binomial distribution and the logical statements lower.tail and log.p have the

same usage as in the cdf function pNB in Section 5.3.2. The max.value argument is

used to generate a sequence of values of q for the cdf function.

1 qNB <- function (p, r1= 2, p1=0.5, lower.tail = TRUE,
2 log.p = FALSE, max.value = 10000)
3 {
4 if (any(p1 < 0) | any(p1 > 1.0001))
5 stop(paste("p1 must be in [0,1]","\n",""))
6 if (any(r1 <= 0))
7 stop(paste("r1 must be > 0)","\n",""))
8 if (any(p < 0)|any(p > 1))
9 stop(paste("p must be between 0 and 1)","\n",""))

10 if (lower.tail) p <- p
11 else p <- 1 - p
12 ly <- max(length(p), length(r1), length(p1))
13 p <- rep(p, length = ly)
14 QQQ <- rep(0, length = ly)
15 r1 <- rep(r1, length = ly)
16 p1 <- rep(p1, length = ly)
17 for (i in seq(along = p)) {
18 cumpro <- 0
19 if (p[i] + 1e-09 >= 1)
20 QQQ[i] <- Inf
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21 else {
22 for (j in seq(from = 0, to = max.value)) {
23 cumpro <- pNB(j, r = r1[i], p=p1[i])
24 QQQ[i] <- j
25 if (p[i] <= cumpro)
26 break
27 }
28 }
29 }
30 QQQ
31 }

Listing 5.4: Quantile function q

The code shown in Listing 5.4 calculates the quantile distribution by summing the

cumulative probabilities. The initial program framework uses stop functions in lines

4-9 to ensure that probabilities and parameters specified in the function are within

the appropriate ranges, whilst a vector parameterization for parameters is once again

implemented in lines 12-16. The probabilities are processed in lines 17-31 where

cumulative probabilities are calculated using the cdf function pNB. For a negative

binomial distribution with parameters r=2 and p=0.6, the quantile function is,

qNB(seq(0,1,length=10), r1=2, p1=0.6)
[1] 0 0 0 0 0 1 1 1 2 Inf

Plot (c) in Figure 5.1 gives a step plot for the inverse of the cdf using this function.

5.3.4 Random generating function r

The random generating function for the negative binomial distribution has usage,

rNB(n, r1 = 2, p1 = 0.5)

with arguments: n the number of random values to be generated from a negative

binomial distribution which has parameters r1 and p1, with default values of 2 and

0.5.

1 rNB <- function(n, r1 = 2, p1 = 0.5)
2 {
3 if (any(p1 < 0) | any(p1 > 1.0001))
4 stop(paste("p1 must be in [0,1]","\n",""))
5 if (any(r1 <= 0))
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6 stop(paste("r1 must be > 0)","\n",""))
7 if (any(n <= 0))
8 stop(paste("n must be a positive integer","\n",""))
9 n <- ceiling(n)

10 p <- runif(n)
11 r <- qNB(p, r1=r1, p1=p1)
12 r
13 }

Listing 5.5: Random generating function r

This function (Listing 5.5) employs the random generating function for the uniform

distribution available in R to randomly generate probabilities between 0 and 1. The

quantile function is then applied to these probabilities to create values of the negative

binomial distribution. The final plot (d) in Figure 5.1 shows a histogram of 1,000

observations generated using rNB.

Functions to calculate the pgf, moments and SI’s have also included in the library

for each distribution. These functions again use the shortened name for the distribution

as suffixes and using the negative binomial distribution example have the following

usage,

pgfNB(r = 2, p = 0.5, tmin = -1, tmax = 1, log.p = FALSE,

n.points = 100)

momentsNB(r = 2, p = 0.5)

siNB(y, r = 2, p = 0.5, log.p = FALSE)

where r and p are the parameters are the negative binomial distribution. In the case

of the pgf function tmin and tmax determine the minimum and maximum values of

the range of t, whilst the argumentlog.p is a logical function which returns the log of

the pgf if true. In the SI function y is a vector giving the range of discrete values and

log.p again specifies whether the log of the SI is returned as the functions output.
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5.4 Maximum likelihood estimation functions

A series of maximum likelihood estimation functions have been developed as part of

the Altmann library to estimate the parameters of discrete distributions. For each

discrete distribution there is a separate MLE function and estimates are produced

initially by rapid estimation and then using a maximum likelihood procedure. Rapid

estimates are calculated using at least one of three methods: moment estimation,

method of mean and zero frequency and an EPGF method, described in Section 3.1.1.

These rapid estimates then provide starting values for parameters in a maximum likelihood

procedure. Maximum likelihood estimation is implemented using the mle function in

the stats4 library in R.

Functions are labeled using the shortened name as a suffix in a similar style to the

distribution functions in Section 5.3. An example of the programming code of the

maximum likelihood function for the negative binomial distribution is given in Listing

5.6. The mle.NB function has the following usage,

mle.NB(ydata, method="moments", init.val=NULL, printit=T,

plot.prof=F)

where ydata is a vector of the observed frequencies. The method argument refers to

which method of rapid estimation used, where ’moments’ is the method of moments,

’zerofreq’ is the method of mean and zero frequency and ’epgf’ is the EPGF

method. A vector of inital values for the maximum likelihood procedure can be

specified in init.val, which by default is undefined. The argument printit is

a logical argument with a default value of TRUE and determines whether a table of

results is included in the printed output. The plot.prof argument is also logical

and if TRUE profile plots of maximum likelihood estimates are produced. At the initial

implementation of any one of these maximum likelihood functions the bbmle library

is loaded into R if it has not already been done, seen in line 6 of the code. An example

of code for the negative binomial distribution maximum likelihood function is shown in

Listing 5.6 . The code for this function can be broken down into three parts: estimation

of starting values, maximum likelihood estimation and goodness-of-fit statistics returned

229



as output. The code for these three parts is explained in Sections 5.4.1-5.4.3.

1 mle.NB <- function(ydata, method="moments", init.val=NULL,
2 printit=TRUE, plot.prof=FALSE){
3 #Negative binomial distribution with parameters r and p
4
5 #Load libraries:
6 require(bbmle)
7
8 ##Rapid estimation of r and p
9

10 if(!is.null(init.val)){
11 r0 <- init.val[1]
12 p0 <- init.val[2]
13 } else{
14
15 #Method of moments
16 if (method=="moments"){
17 ybar <- mean(ydata)
18 m2 <- sum((ydata-ybar)^2)/length(ydata)
19 r0 <- -(ybar^2/(-m2 + ybar))
20 p0 <- ybar/m2
21 }
22
23 #Method of mean-and-zero-frequency
24 if (method=="zerofreq"){
25 f0 <<- sum(ydata==0)/length(ydata)
26 ybar<<-mean(ydata)
27 zerofreq.fun<-deriv3(
28 ∼sqrt((ybar-((r*(1-p))/p))^2+(f0-p^r)^2),
29 c("r", "p"), c("r", "p"))
30 obj.fun<- function(y){
31 r<- y[1]; p<- y[2]
32 return(zerofreq.fun(r,p))
33 }
34 fun.sol<-nlminb(objective=obj.fun, start=c(f0, ybar),
35 hessian=TRUE, lower=c(0,0),
36 upper=c(Inf,1))
37 r0<-fun.sol$par[1]
38 p0<-fun.sol$par[2]
39 }
40
41 #EPGF method
42 if (method=="epgf"){
43 t1 <<- 1/2
44 t2 <<- -1
45 g1<<-sum(t1^ydata)/length(ydata)
46 g2<<-sum(t2^ydata)/length(ydata)
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47 epgf.fun<-deriv3(
48 ∼sqrt( (g1 - p^r*(1-(1-p)*t1)^(-r))^2 +
49 (g2 - p^r*(1-(1-p)*t2)^(-r))^2 ),
50 c("p","r"), c("p","r"))
51 obj.fun<- function(y){
52 r<- y[1]; p<- y[2]
53 return(epgf.fun(r,p))
54 }
55 fun.sol<- nlminb(objective=obj.fun, start=c(g1, g2),
56 hessian=TRUE, lower=c(0,0),
57 upper=c(Inf,1))
58 r0<-fun.sol$par[1]
59 p0<-fun.sol$par[2]
60 }
61 }
62
63 ##Maximum Likelihood Estimation
64 y <- ydata
65 ll.NB<-
66 function(r=r, p=p) if(p>1 | p<0 | r<0) NA else
67 -sum(lgamma(y+r) - lgamma(y+1) -
68 lgamma(r) + y*log(1-p) + r*log(p))
69 fit.dist<- try(mle2(ll.NB, start=list(r=r0, p=p0)),
70 silent = TRUE)
71
72 #Plotting profiles
73 if(plot.prof==TRUE){
74 par(mfrow=c(1,2))
75 plot(profile(fit.dist))
76 }
77
78 ##Estimates table
79
80 #Parameters (names)
81 pars <- c("r", "p")
82 #RE Coefficients
83 re.coef <- c(r0, p0)
84 tab1 <- cbind(re.coef)
85 dimnames(tab1) <- list(pars, "re.coef")
86
87 if (class(fit.dist)!="try-error"){
88
89 #MLE Coefficients #MLE coefficients S.E
90 mle.coef <- c(coef(fit.dist)[[1]], coef(fit.dist)[[2]])
91 mle.se <- c(sqrt(vcov(fit.dist)[1]),
92 sqrt(vcov(fit.dist)[3]))
93 mle.lci <- confint(profile(fit.dist))[1:2]
94 mle.uci <- confint(profile(fit.dist))[3:4]
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95 tab2<-cbind(signif(mle.coef), signif(mle.se),
96 signif(mle.lci), signif(mle.uci))
97 dimnames(tab2) <- list(pars, c("mle.coef", "mle.se",
98 "mle.LCI", "mle.UCI"))
99

100 #Fitted Values
101 yi <- min(ydata):max(ydata)
102 observed <- c(sum(ydata==0), tabulate(ydata))
103 expect <- round(dNB(yi, r=mle.coef[1], p=mle.coef[2])*
104 length(ydata), 2)
105 for (i in 1:length(expect)){
106 if(expect[i]=="NaN") expect[i]<-0}
107 oe.tab <- rbind(observed, expect)
108 dimnames(oe.tab) <- list(c("obs", "exp"),
109 min(ydata):max(ydata))
110
111 #Goodness-of-fit statistics
112 #Chi sq
113 exp <- round(dNB(yi, r=mle.coef[1], p=mle.coef[2])*
114 length(ydata), 2)
115 for (i in 1:length(exp)) if(exp[i]==0) exp[i]<-0.1
116 X2<- chisq.test(observed,p=exp/sum(exp))
117 chisq<- X2$statistic[[1]]
118 df <-X2$param[[1]] - length(pars)
119 p <- 1 - pchisq(chisq, df)
120 print(warning("expected values <5 are pooled"))
121
122 #-Log Likelihood
123 logL <- logLik(fit.dist)[1]
124 #AIC/BIC
125 aic <- -2*logL+2*length(pars)
126 bic <- -2*logL+length(pars)*log(length(ydata))
127 diag.tab <- cbind(chisq, df, p, logL, aic, bic)
128 dimnames(diag.tab) <- list("model", c("chisq", "df",
129 "p", "logL", "AIC", "BIC"))
130 }
131
132 #Print Output
133 if (printit==TRUE){
134
135 if (class(fit.dist)=="try-error"){
136 options(warn=0)
137 warning("Maximum likelihood estimates cannot
138 be calculated")
139 cat("Rapid Estimates", "\n")
140 print(tab1)
141 } else {
142 cat("Rapid Estimates", "\n")
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143 print(tab1)
144 cat("Maximum Likelihood Estimates", "\n")
145 print(tab2)
146 cat("Fitted Values", "\n")
147 print(oe.tab)
148 cat("Diagnostics", "\n")
149 print(diag.tab)
150 }
151 }
152
153 #List of output
154 if (class(fit.dist)=="try-error"){
155 out <- list(dataname=deparse(substitute(ydata)),
156 pars=pars, re.coef=re.coef)
157 out$family <- "NB"
158 out$yrange <- min(ydata):max(ydata)
159 out$npar <- length(pars)
160 class(out) <- "mle"
161 invisible(out)
162 } else {
163 out <- list(dataname=deparse(substitute(ydata)),
164 pars=pars, re.coef=re.coef,
165 mle.coef=mle.coef)
166 out$family <- "NB"
167 out$yrange <- min(ydata):max(ydata)
168 out$npar <- length(pars)
169 out$obs <- observed
170 out$exp <- expect
171 out$aic <- aic
172 out$bic <- bic
173 out$chisq <- chisq
174 out$pchi <- p
175 class(out) <- "mle"
176 invisible(out)
177 }
178 }

Listing 5.6: Maximum likelihood estimation function for the negative binomial
distribution.

5.4.1 Estimation of starting values

Lines 10-61 of the mle.NB function code given in Listing 5.6 calculates the starting

values of the negative binomial distribution parameters r and p, denoted by r0 and

p0. In lines 10-13 if starting values are specified in the init.val argument of the
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function usage, then r0 and p0 are set to these values. Otherwise, the function uses

rapid estimation methods to generate starting values. A series of if statements are

used to determine which method of rapid estimation has been specified in the method

argument of the function, the default method being the method of moments. For the

negative binomial distribution, these can be estimated by the three methods as follows:

Method of Moments

The first two central moments of the negative binomial distribution are given by:

µ1 = r

(
1− p
p

)
µ2 = r

(
1− p
p2

) (5.1)

Equating these expressions to the sample moments of the data- the mean, ȳ, and the

variance, s2- these can be solved simultaneously for parameter estimates p̂ and r̂. The

following code can be evaluated in Mathematica to calculate these estimates:

ln[1]:= Solve[{ybar==r((1 - p)/p), m2==r((1 - p)/p^2)}, {r, p}]

which gives solutions,

r̃ = − ȳ2

ȳ − s2

p̃ =
ȳ

s2

. (5.2)

These estimating equations have been implemented in Lines 16-21 of Listing 5.6. In

the example of the negative binomial distribution the solution of the moment estimating

equations is trivial, which my not always be the case.

Method of Mean and Zero Frequency

Using the method of mean and zero frequency, the two parameters can be estimated by

equating the sample mean of the data to the first central moment and the frequency of

observations at zero to the probability density at zero, creating the following simultaneous
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equations,

f0 = pr

ȳ = r(
1− p
p

)
(5.3)

where f0 is the observed frequency of zeros and ȳ is the mean of the data. In the case

of the negative binomial distribution these equations cannot be solved analytically to

estimate the parameters p and r since the solution involves the intractable inversion of

pr. Alternatively, rapid estimates can be calculated by minimizing a root square error

function of the difference between the sample functions of the observed data and their

expectations, √
(f0 − pr)2 +

(
ȳ − r

(
1− p
p

))2

. (5.4)

This equation can be minimized in R using the nlminb function.

This works by formulating the root square error function as a deriv3 object and

passing this as a function of the data into nlminb, shown on lines 27-36. In this

example the deriv3 object function is zerofreq.fun which comprises of the

square root error in Equation 5.4. Initial starting values, alongside lower and upper

bounds for the distribution parameters are also required in the minimizing nlminb

function and the rapid estimates for r0 and p0 can then be extracted in lines 37 and

38.

EPGF Method

Simultaneous equations for rapid estimation can be generated by expressing the pgf

for values of t between −1 ≤ t ≤ 1 for each parameter in the distribution. These

are solved for parameter estimates by equating these expressions to the EPGF for

corresponding values of t. The pgf of the negative binomial distribution (see Equation

2.75 in Chapter 2) is given by,

G(t) = pr(1 + (p− 1) t)−r (5.5)
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For values of t of 1
2

and −1 the negative binomial pgf is:

Gn(1
2
) = pr

(
1 + 1

2
(p− 1)

)−r
Gn(−1) = pr(2− p)−r

(5.6)

Once again these simultaneous equations cannot be solved analytically, due to the

requirement of the inverse of pr and we can therefore estimate p̂ and r̂ by minimizing

the root square error function. The root square error function for the two pgf equations

in Equation 5.6 is,

√√√√(g1 − pr
(

1 +
1

2
(−1 + p)

)−r)2

+ (g2 − pr(2− p)−r)2 (5.7)

where g1 and g2 are the values of the EPGF at t = 1
2

and t = −1, respectively. Lines

43-59 of Listing 5.6 again use the nlminb function to perform this minimization, with

the only difference being the deriv3 objective function in lines 47-54 which is this

time labeled epgf.fun and minimizes Equation 5.7.

5.4.2 Maximum likelihood estimation using mle

The maximum likelihood estimation procedure for the negative binomial distribution

can be seen in lines 64-70 of Listing 5.6. Maximum likelihood estimation requires

a function of the log likelihood, in this example the negative binomial log-likelihood

is labeled ll.NB, shown in lines 65-68. Tables of the observed frequencies and a

sequence of the range of y values are labeled as tab.y and y.tab, respectively.

The log likelihood is then calculate using the pdf function dNB for parameters r >

0 and 0 < p < 1. The mle function from the stats4 library requires the log

likelihood function ll.NB and a list of starting values which are provided by the rapid

estimates r0 and p0, lines 69-70. The try() function is used to evaluate a function

and any warnings resulting from non-convergence are suppressed using the argument

silent=TRUE. If the maximum likelihood does not converge, fit.dist will then

have class "try-error". Profile plots of the parameter estimates are plotted using
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lines 73-76 if the function argument plot.prof is true.

5.4.3 Goodness-of-fit statistics and Output

In the final part of this function a range of outputs and goodness-of-fit statistics are

generated which are returned in tables as output. Firstly, in lines 80 to 85 tables of

coefficients for both the rapid estimates are constructed. In line 87 an if statement

determines whether the model in fit.dist has converged. If the model is not of

the class "try-error" i.e. it has converged, then a table of maximum likelihood

estimates and standard errors is constructed in lines 90- 98.

Where the fit.distmodel converges, fitted values for the distribution are calculated

using the maximum likelihood parameter estimates and a table of these values and the

observed values is also included in the output, shown in lines 100-109. Goodness-of-fit

statistics are calculated in lines 111-130, comprising of a Chi-squared test statistic

and p-value, the log likelihood, the AIC and BIC values. A warning is given for the

chi-squared test, as pooling is needed where expected counts are less than 5. When a

large A further table is created for these values to be printed as part of the output.

Finally in lines 132-150, if the logical argument printit is true then the output

tables are printed. For models where the maximum likelihood estimation procedure

does not converge, i.e. the class of fit.dist is "try-error", a warning is

returned (lines 136-137) and only the table of rapid estimates is returned (lines 138-139).

If the model does converge, i.e. the class of fit.dist is not equal to "try-error",

then tables of the rapid and maximum likelihood estimates, fitted values and model

diagnostics are returned (lines 141-148). There is a list of values (lines 153-176)

for each of the cases where the model does and does not converge in mle, which

are attributed to the class ’mle’ which are not printed but are used in plotting and

comparing distributions in other functions in the Altmann and discrete.diag

libraries.
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Figure 5.2: Plots likelihood profiles of parameters r and p for the number of stillbirths
in litters of New Zealand white rabbits for the negative binomial distribution using the
function mle.NB.

As an example of the usage and output of the maximum likelihood estimation

functions, a negative binomial distribution can be fitted to counts of stillbirths in New

Zealand white rabbits using the mle.NB function:

> library(Altmann)
> data(rabbits)
> mle.NB(rabbits, plot.prof=T)
Rapid Estimates

re.coef
r 0.2022910
p 0.3053495
Maximum Likelihood Estimates

mle.coef mle.se mle.LCI mle.UCI
r 0.214549 0.0387163 0.151199 0.307419
p 0.317970 0.0389246 0.228720 0.416587
Fitted Values

0 1 2 3 4 5 6 7 8 9 10 11
obs 314.00 48 20.00 7.00 5.00 2.00 2.00 1.00 2.00 0.00 0.00 1.00
exp 314.39 46 19.05 9.59 5.26 3.02 1.79 1.08 0.67 0.42 0.26 0.17
Diagnostics

chisq df p logL AIC BIC
model 8.588087 9 0.4761319 -337.1773 678.3545 686.3474

Firstly, we require the Altmann library and rabbits dataset to be loaded into

the R console. The first table of output from the mle.NB function gives the rapid

estimation coefficients, followed by a table of the maximum likelihood coefficients and
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corresponding standard errors for the parameters r and p. Observed and fitted values

and a table of goodness-of-fit statistics are also given. The default method of rapid

estimation is the method of moments and the moment estimates of r=0.20 and p=0.31

shown in the first table are similar to those achieved using a maximum likelihood

estimation procedure of r=0.21 and p=0.32. Figure 5.2 plots the likelihood profiles

of r and p and shows the square root of the deviance difference, |z|, for r between

0.15 and 0.35 (first plot) and p between 0.20 and 0.45 alongside confidence intervals.

The V-shape of the profile likelihoods indicate that the optimization procedure used in

the maximum likelihood estimation has worked well. The fitted values provide a close

fit to the observed data with the frequency of zero observations of stillbirths being

predicted almost exactly. The Chi-squared test statistic given in the goodness-of-fit

statistics table is χ2 = 8.59 with 9 degrees of freedom and p-value=0.48 and is not

significant at the 5% level. Therefore we can conclude that the negative binomial

distribution is a good fit to the data.

5.5 Plotting mle objects

The S3 framework uses classes to define objects and corresponding generic functions

can be created for those objects of a certain class. The plot.mle function uses

objects of the class "mle" which result from the fitting of a maximum likelihood

model function described in Section 5.4. The plot.mle function, shown in Listing

5.7, produces plots of fitted values for a distribution against the observed values. This

function has usage,

plot(mleobject, type="bar", ylog=FALSE, xlog=FALSE)

where mleobject is an object of class mle. The type argument determines the type

of graph plotted, where bar produces a bar plot, l produces a line plot or pl which

plots both points and lines. The argument ylog is logical and determines whether

the frequencies should be plotted on a log scale, whilst xlog (also logical) plots the

discrete values on a log scale.
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1 plot.mle <-
2 function(mleobject, type="bar", ylog=FALSE, xlog=FALSE){
3
4 dname<-mleobject$dataname
5 fname<-mleobject$family
6 obs.data<- mleobject$obs
7 exp.data <- mleobject$exp
8 range.y<-mleobject$yrange
9

10 ###Plot different types of graphs
11 if (type=="l"){
12 ##Line Plot
13 if(ylog==TRUE){
14 limits<-max(log(obs.data), log(exp.data))
15 plot(range.y, log(exp.data), type="l", lwd=2,
16 col="cornflowerblue", ylim=c(0,limits),
17 xlab="Counts", ylab="log(Frequency)")
18 title(main=paste("Plot of", dname, sep=" "))
19 lines(range.y, log(obs.data), type="l", lwd=2,
20 col="midnightblue")
21 legend("topright", lty=1, col=c("midnightblue",
22 "cornflowerblue"), lwd=2,
23 legend=c("Observed", fname))
24 }
25 if (xlog==TRUE){
26 plot(range.y, exp.data, type="l", lwd=2,
27 col="cornflowerblue", xlab="Counts",
28 ylab="Frequency", log=’x’)
29 title(main=paste("Plot of", dname, sep=" "))
30 lines(range.y, obs.data, type="l", lwd=2,
31 col="midnightblue", log=’x’)
32 legend("topright", lty=1, col=c("midnightblue",
33 "cornflowerblue"), lwd=2,
34 legend=c("Observed", fname))
35 }
36 if(ylog==FALSE && xlog==FALSE){
37 limits<-max(obs.data, exp.data)
38 plot(range.y, exp.data, type="l", lwd=2,
39 col="cornflowerblue", ylim=c(0,limits),
40 xlab="Counts", ylab="Frequency")
41 title(main=paste("Plot of", dname, sep=" "))
42 lines(range.y, obs.data, type="l", lwd=2,
43 col="midnightblue")
44 legend("topright", lty=1, col=c("midnightblue",
45 "cornflowerblue"), lwd=2,
46 legend=c("Observed", fname))
47 }
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48 }
49
50 if (type=="pl"){
51 ##Line Plot with points
52 if(ylog==TRUE){
53 limits<-max(log(obs.data), log(exp.data))
54 plot(range.y, log(exp.data), type="b", lwd=2,
55 col="cornflowerblue", ylim=c(0,limits),
56 xlab="Counts", ylab="log(Frequency)")
57 title(main=paste("Plot of", dname, sep=" "))
58 lines(range.y, log(obs.data), type="b", lwd=2,
59 col="midnightblue")
60 legend("topright", lty=1, col=c("midnightblue",
61 "cornflowerblue"), lwd=2,
62 legend=c("Observed", fname))
63 }
64
65 if(xlog==TRUE){
66 plot(range.y, exp.data, type="b", lwd=2,
67 col="cornflowerblue", xlab="Counts",
68 ylab="Frequency", log=’x’)
69 title(main=paste("Plot of", dname, sep=" "))
70 lines(range.y, obs.data, type="b", lwd=2,
71 col="midnightblue", log=’x’)
72 legend("topright", lty=1, col=c("midnightblue",
73 "cornflowerblue"), lwd=2,
74 legend=c("Observed", fname))
75 }
76
77 if(ylog==FALSE && xlog==FALSE){
78 limits<-max(obs.data, exp.data)
79 plot(range.y, exp.data, type="b", lwd=2,
80 col="cornflowerblue", ylim=c(0,limits),
81 xlab="Counts", ylab="Frequency")
82 title(main=paste("Plot of", dname, sep=" "))
83 lines(range.y, obs.data, type="b", lwd=2,
84 col="midnightblue")
85 legend("topright", lty=1, col=c("midnightblue",
86 "cornflowerblue"), lwd=2,
87 legend=c("Observed", fname))
88 }
89 }
90
91 if(type=="bar"){
92 ###Bar Plot
93 if(ylog==TRUE){
94 limits<-max(log(obs.data), log(exp.data))
95 bar.data<-cbind(log(obs.data), log(exp.data))
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96 names<-0:(length(obs.data)-1)
97 barplot(t(bar.data), beside=TRUE,
98 col=rep(c("midnightblue","cornflowerblue"),
99 length(obs.data)),

100 names.arg=names, ylim=c(0,limits),
101 xlab="Counts", ylab="log(Frequency)",
102 legend=c("Observed", fname))
103 title(main=paste("Barplot of", dname, sep=" "))
104 }
105 if(xlog==TRUE){
106 bar.data<-cbind(table(log(rep(range.y, obs.data))),
107 table(log(rep(range.y, obs.data))))
108 names<-dimnames(bar.data)
109 barplot(t(bar.data), beside=TRUE,
110 col=rep(c("midnightblue","cornflowerblue"),
111 dim(bar.data)[1]),
112 names.arg=names[[1]], xlab="Counts",
113 ylab="Frequency",
114 legend=c("Observed", fname))
115 title(main=paste("Barplot of", dname, sep=" "))
116 }
117 if(ylog==FALSE && xlog=FALSE){
118 limits<-max(obs.data, exp.data)
119 bar.data<-cbind(obs.data, exp.data)
120 names<-0:(length(obs.data)-1)
121 barplot(t(bar.data), beside=TRUE,
122 col=rep(c("midnightblue","cornflowerblue"),
123 length(obs.data)), names.arg=names,
124 ylim=c(0,limits), xlab="Counts",
125 ylab="Frequency",
126 legend=c("Observed", fname))
127 title(main=paste("Barplot of", dname, sep=" "))
128 }
129 }
130 }

Listing 5.7: Plot function for class ‘mle’

The initial lines of the function (lines 4-8) extract the dataset and family name,

observed and fitted values from the mle object and set the range of the observed values,

y. Separate plots are specified for each type of graph and combinations of log scales

on the x and y axes using if statements. The plot and barplot functions in R are

used to create the specified graphs.
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Figure 5.3: Plots of observed and expected frequencies of stillbirths for the negative
binomial distribution using the function plot.mle.
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The observed and expected frequencies for the negative binomial model fitted

to frequencies of stillbirths in New Zealand white rabbits can be plotted using the

plot.mle function, as follows:

NB.mod<-mle.NB(rabbits, printit=F)
plot(NB.mod)
plot(NB.mod, type="l")
plot(NB.mod, type="pl")

Figure 5.3 shows a barplot, line plot and line and points plot for the negative

binomial model using the plot.mle function.

5.6 Model comparisons

The altmann.fitter function compares the fit of a range of discrete distributions

to a dataset. It produces a table of goodness-of-fit statistics including a Chi-squared

test statistic and p-value, the BIC and the number of parameters in the model. The

table values can be ordered to determine which distribution best models the data.

This function can fit various groups or families of distributions such as zero-inflated,

truncated and Lerch family distributions. The altmann.fitter function has usage,

altmann.fitter(ydata, family, ord = "BIC", opt.warn = -1)

where ydata is a vector of discrete observations, the family argument determines

which group of distributions are fitted and can either be a string of distribution names,

i.e. c("POIS", "NB", "ZIP") or a group. One family group is "All" and fits

all distributions allowing for zeros in the vector of observations, otherwise specifying

"Trunc" will fit distributions for zero-truncated data. Other family groups include

"Lerch" for the Lerch family, "ZI"which fits zero-inflated distributions and "GPois"

which fits distributions from the generalized Poisson family. The argument ord specifies

the order in which the results table is sorted, the default being "BIC" the Bayesian

information criterion. The table may also be ordered according to "AIC" the Akaike

Information Criterion, "npar" the number of parameters or "pchi" the Chi-squared

goodness-of-fit test p-value. The argument opt.warn determines what warning messages
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are displayed. The default setting is negative and therefore all warnings are ignored,

however if opt.warn is positive they will be printed.

1 altmann.fitter<- function (ydata, family, ord = "BIC",
2 opt.warn=-1){
3 options(warn = opt.warn)
4
5 if (family[1] == "All")
6 family <- c("POIS", "GEO", "NB", "HY", "HO",
7 "SICH", "DE", "YU", "WA", "ZIPO",
8 "ZINB", "ZISI", "2PO", "2PNB", "NYA")
9 if (family[1] == "Trunc")

10 family <- c("PPO", "PGE", "PNB", "PHO", "PSI",
11 "PYU")
12 if (family[1] == "Lerch")
13 family <- c("LE", "ZE", "ZIPF", "GO")
14 if (family[1] == "ZI")
15 family <- c("ZIPO", "ZINB", "ZISI")
16 if (family[1] == "GPois")
17 family <- c("NYA", "HE", "GHE", "GE", "GGE")
18
19 c.npar <- rep(NA, length = length(family))
20 c.bic <- rep(NA, length = length(family))
21 c.aic <- rep(NA, length = length(family))
22 c.chisq <- rep(NA, length = length(family))
23 c.pchi <- rep(NA, length = length(family))
24
25 for (i in 1:length(family)) {
26 if (family[i] == "BER")
27 mod <- mle.BER(ydata, printit = FALSE)
28 if (family[i] == "BIN")
29 mod <- mle.BIN(ydata, printit = FALSE)
30 .
31 .
32 .
33 if (family[i] == "GE")
34 mod <- mle.GE(ydata, printit = FALSE)
35 if (family[i] == "GGE")
36 mod <- mle.GGE(ydata, printit = FALSE)
37
38 if (is.null(mod$mle.coef) == FALSE) {
39 c.npar[i] <- mod$npar
40 c.bic[i] <- mod$bic
41 c.aic[i] <- mod$aic
42 c.chisq[i] <- mod$chisq
43 c.pchi[i] <- round(mod$pchi, 4)
44 } else {
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45 c.npar[i] <- NA
46 c.bic[i] <- NA
47 c.aic[i] <- NA
48 c.chisq[i] <- NA
49 c.pchi[i] <- NA
50 cat(paste("warning: Maximum likelihood
51 estimates cannot be calculated
52 for", family[i], "distribution"),
53 "\n")
54 }
55 }
56
57 options(warn=0)
58 c.df <- length(tabulate(ydata))+any(ydata==0)-c.npar-1
59 data <- data.frame(family, c.npar, c.aic, c.bic,
60 c.chisq, c.df, c.pchi)
61
62 if (ord == "npar") ord2 <- order(data$c.npar)
63 if (ord == ’BIC’) ord2<- order(data$c.bic)
64 if (ord == ’AIC’) ord2<- order(data$c.aic)
65 if (ord == ’pchi’) ord2<- order(data$c.pchi,
66 decreasing=TRUE)
67 result<- data[ord2, ]
68 names(result)<- c(’Distribution’,’n.par’,’AIC’,’BIC’,
69 ’chisq’,’df’,’chisq.p’)
70 print(result)
71 invisible(result)
72 }

Listing 5.8: Altmann Fitter Model Comparison Function

The R code for the Altmann.fitter function is given in Listing 5.8. Firstly,

the handling of printed warnings is determined in line 3. In lines 5-17 a series of if

statements are used to create family groups of distributions. Vectors are constructed

for the storage of goodness-of-fit statistics: the numbers of parameters, BIC, AIC,

Chi-squared test statistics and p-values for each distribution, in lines 19-23. An iterative

sequence locates each distribution specified and fits the model (lines 25-36). In lines

38-43 the goodness-of-fit statistics for each model are extracted and assigned to the

storage vectors using an if statement to determine if maximum likelihood estimates

have been produced. Otherwise, if the maximum likelihood estimation fails and only

rapid estimates are returned as output, then the goodness-of-fit statistics are returned

as NA in lines 44-54, with a warning that the maximum likelihood estimates cannot
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be calculated for that distribution. Lines 68-67 create a table of output values, which

is ordered according to the criteria specified in ord, which is printed in line 70 and

stored as an invisible table in line 71.

The fit of several distributions to the number of stillbirths in litters of New Zealand

white rabbits can be compared using the altmann.fitter function. The following

table compares the number of parameters, AIC and BIC’s, Chi-squared test statistic

and p-values for a range of models:

> altmann.fitter(rabbits, family="All")
Distribution n.par AIC BIC chisq df chisq.p

8 YU 1 679.5224 683.5188 11.927863 10 0.2899
3 NB 2 678.3545 686.3474 8.588087 9 0.4761
5 HO 2 678.4542 686.4471 7.333848 9 0.6024
9 WA 2 678.7231 686.7160 7.206004 9 0.6157
6 SICH 3 679.9299 691.9192 6.938156 8 0.5433
7 DE 3 680.0329 692.0223 7.302000 8 0.5044
11 ZINB 3 680.6871 692.6765 9.717613 8 0.2854
14 2PNB 4 681.6373 697.6231 6.163812 7 0.5208
12 ZISI 4 681.8943 697.8801 6.690988 7 0.4617
13 2PO 3 691.2427 703.2320 62.056267 8 0.0000
15 NYA 2 697.0951 705.0880 131.327759 9 0.0000
10 ZIPO 2 718.3784 726.3713 126.254564 9 0.0000
2 GEO 1 733.6000 737.5965 186.426297 10 0.0000
1 POIS 1 883.6870 887.6834 287.300439 10 0.0000
4 HY 3 963.5239 975.5132 434.068701 8 0.0000

This table is ordered according to the BIC and determines the Yule distribution with

a BIC value of 683.52 to provide the best fit to the data of the models fitted. The model

with the second lowest BIC is the negative binomial distribution, which has a BIC of

686.35 followed by the Holla distribution of 686.45. The BIC is more conservative

against overfitting than the BIC- if we compare the AIC values for the two models the

negative binomial distribution is lower at 678.35 compared to the Yule distribution’s

AIC value of 679.52. Alternatively, we can compare the fit of the distributions using

the Chi-squared goodness-of-fit test statistic as a comparison criteria:

> altmann.fitter(rabbits, family="All", ord="pchi")
Distribution n.par AIC BIC chisq df chisq.p

9 WA 2 678.7231 686.7160 7.206004 9 0.6157
5 HO 2 678.4542 686.4471 7.333848 9 0.6024
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6 SICH 3 679.9299 691.9192 6.938156 8 0.5433
14 2PNB 4 681.6373 697.6231 6.163812 7 0.5208
7 DE 3 680.0329 692.0223 7.302000 8 0.5044
3 NB 2 678.3545 686.3474 8.588087 9 0.4761
12 ZISI 4 681.8943 697.8801 6.690988 7 0.4617
8 YU 1 679.5224 683.5188 11.927863 10 0.2899
11 ZINB 3 680.6871 692.6765 9.717613 8 0.2854
1 POIS 1 883.6870 887.6834 287.300439 10 0.0000
2 GEO 1 733.6000 737.5965 186.426297 10 0.0000
4 HY 3 963.5239 975.5132 434.068701 8 0.0000
10 ZIPO 2 718.3784 726.3713 126.254564 9 0.0000
13 2PO 3 691.2427 703.2320 62.056267 8 0.0000
15 NYA 2 697.0951 705.0880 131.327759 9 0.0000

The Waring distribution has the largest Chi-squared test p-value for the models

fitted of 0.616, followed by a Holla distribution with p-value 0.602 and a Sichel distribution

with p-value 0.543. The Chi-squared goodness-of-fit test statistic p-values for the

negative binomial distribution is much larger than the Yule distribution of 0.290 We

can compare the fit of the Yule and Waring distributions using the maximum likelihood

estimation functions:

> mle.YU(rabbits)
Rapid Estimates

re.coef
lambda 3.172973
Maximum Likelihood Estimates

mle.coef mle.se mle.LCI mle.UCI
lambda 3.19126 0.29514 2.66699 3.83313
Fitted Values

0 1 2 3 4 5 6 7 8 9 10
obs 314.00 48.00 20.00 7.00 5.00 2.00 2.00 1.00 2.00 0.00 0.00
exp 306.09 58.96 19.05 7.95 3.88 2.11 1.24 0.78 0.51 0.35 0.25

11
obs 1.00
exp 0.18
Diagnostics

chisq df p logL AIC BIC
model 11.92786 10 0.2899134 -338.7612 679.5224 683.5188

> mle.WA(rabbits)
Rapid Estimates

re.coef
b 3.609268
n 1.200782
Maximum Likelihood Estimates
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mle.coef mle.se mle.LCI mle.UCI
b 2.46029 0.556232 1.619770 3.98402
n 0.70331 0.197151 0.417895 1.27179
Fitted Values

0 1 2 3 4 5 6 7 8 9 10
obs 314.00 48.00 20.00 7.00 5.00 2.00 2.00 1.00 2.00 0.00 0.00
exp 312.63 52.81 17.42 7.64 3.95 2.28 1.42 0.93 0.64 0.46 0.34

11
obs 1.00
exp 0.26
Diagnostics

chisq df p logL AIC BIC
model 7.206004 9 0.615681 -337.3616 678.7231 686.716

Although the distribution has the lowest of the BIC values in the first model comparison

table this is due to its only having one parameter and the predicted frequencies of

stillbirths are not as good as those from the Waring or negative binomial models,

which is reflected in the lower Chi-squared test p-value. Fitted values for the number

of stillbirths can be compared for the negative binomial and Waring distributions.

The expected frequency of 0 and 1 stillbirths are 314.39 and 46.00 in the negative

binomial model (observed frequency is 48) compared to 312.63 and 52.81 in the

Waring model. Although the Waring model does not fit the distribution as well as the

negative binomial for low numbers of stillbirths, the tail of the distribution is a better

fit. We can conclude, therefore that the Waring distribution provides the best fit to the

numbers of stillbirth in litters of New Zealand white rabbits out of the range of models

fitted. This model has an interesting interpretation as a Geometric-Beta parameter

mixture where the number of stillbirth offspring in every litter can be thought of as

a Geometric-distributed random variable with the probability of a stillbirth varying

according to a Beta distribution perhaps reflecting natural variation in the maternal

susceptibility to produce stillbirth rabbits.

5.7 Validation of the functions

There are five functions for each distribution in the Altmann library: the pdf, d, the

cdf, p, the inverse cdf function q, a random generating function r and a maximum
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likelihood estimation function which begins with the prefix mle. A template for each

of these types of functions was created, which was then replicated and altered for

the correct formulae and parameters for each distribution. This method of creating

the functions ensured the consistency of programs in the library. The d, p, q and

r functions follow the standard format for distribution functions in R. The remaining

functions in the Altmann library (mle fitting, altmann comparison and plot functions)

were built using a trial and error process, with the basic functions expanded to achieve

the desired function output. Final versions of the code were checked using Rs check

function when the libraries were created. This runs a series of checks to test if the

functions in a library work correctly, including testing the functions and helpfiles for

syntax errors and testing the examples in the helpfiles.

The functions in the Altmann library were tested in a variety of ways, using data

randomly generated from discrete distributions and also using real datasets, with existing

parameter estimates and fitted values found in papers and books to use as comparisons.

For each distribution, the d, p, q and r functions were tested for a range of parameter

values. The d functions were tested on a range of y values from 0 to a large number

(say around 1,000) to confirm that the pdf values sum to one. The p and q functions

were also tested to check that for a set of randomly generated values from the selected

distribution, the inverse cdf and cdf functions also sum to one. The tails of the p

functions were also tested to ensure that the cumulative probabilities for the lower and

upper tails added together summed to one. Finally, to test the pdf and cdf functions

match for a series of randomly generated values from the selected distribution, the

sum of probability densities calculated from 0 to the generated value was compared to

the cdf of the value. Plotting the output of the d, p, q and r functions allows a visual

inspection of the values generated, to confirm that the restrictions upon the functions

hold, i.e. to test the pdf sums to one. Any violations of the restrictions placed on the

pdf, cdf and inverse cdf found during this testing process prompted an investigation

for errors in the function code. This process was continued until the pdf, cdf and

inverse cdf functions met the restrictions on the functions.
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Maximum likelihood estimation functions were validated in a number of ways.

One method of verifying the results from the maximum likelihood estimating functions

that was used is to generate a random sample of values from the distribution, with

known parameter estimates. This data can then be used to determine that the function

can correctly estimate the parameters of the distribution.

An alternative method used to test the maximum likelihood estimation functions

was to use published data as a comparison. For a discrete dataset, estimates of the

parameters and fitted values of a distribution were compared to the results for the

same distribution using maximum likelihood estimation in the Altmann library. For

example, (Plunkett and Jain, 1975) present parameter estimates and fitted values for

a Gegenbauer distribution fitted to 400 haemocytometer counts of yeast cells. Table

5.7 gives the fitted values of the Gegenbauer distribution, with parameter estimates

â = 0.198, b̂ = 0.004 and k̂ = 2.898 given by (Plunkett and Jain, 1975). Similar fitted

values for the Gegenbauer distribution are obtained from the maximum likelihood

estimation in the Altmann library to those given by Plunkett and Jain (1975).

No. of yeast cells 0 1 2 3 4 5 6
Observed Freq 213 128 37 18 3 1 0
Gegenbauer
(Plunkett and Jain, 1975)

214.15 123.00 44.88 13.36 3.55 0.86 0.20

Altmann library MLE 214.84 121.3 45.72 13.65 3.49 0.79 0.17
Altmann fitter
(Altmann, 1997)

213.10 122.68 45.54 13.79 3.70 1.19 -

Table 5.7: Fitted values for a Gegenbauer distribution fitted to 400 haemocytometer
counts of yeast cells.

The Altmann fitter program (Altmann, 1997) can also be used to compare the fit

of the Gegenbauer distribution to counts of yeast cells, also shown in Table 5.7. This

model has parameter estimates â = 0.164, b̂ = 0.0002 and k̂ = 3.516. The rapid

estimates calculated by this program do not provide as close a fit to the data as those

from the Altmann library. A benefit of comparing the results from the Altmann fitter

program to those in the Altmann R library, is that goodness-of-fit statistics, such as

the Chi-square test statistic and p-value can also be compared. Counts of yeast cells

provide one illustration of the methods for which the maximum likelihood estimation
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functions have been tested for validity.

These methods of testing the maximum likelihood functions were employed for

each distribution using a variety of datasets from published sources. The Poisson,

negative binomial, hypergeometric, geometric, parameter-mix, zero-inflated and component

mix distributions were tested using counts of stillbirths in New Zealand white rabbits

(Morgan et al., 2007), counts of yearly deaths by horse kicks in the Prussian army

between 1875-1894 and counts of earthquakes on the coast of Mexico (Nakamura

and Pérez-Abreu, 1993a), amongst others. Truncated distributions were compared to

results from models fitted to household size data (Nakamura and Pérez-Abreu, 1993a)

and numbers of births occurring to HIV-infected women, presented in Section 5.8.2.

Lerch family distributions were testing using the frequency of surnames from eight

districts analyzed by Zörnig and Altmann (1995) and Panaretos (1989). Distributions

from the Generalized Poission family including were checked using the lakota dataset

of the number of phonemes of words (Pustet and Altmann, 2005), haemocytometer

counts of yeast cells (Plunkett and Jain, 1975) and counts of the number of European

red mites on apple leaves (Medhi and Borah, 1984). Many of these datasets were also

included in the Altmann library.

5.8 Further Examples

This section presents two further examples of the application of functions available in

the Altmann library: the number of automobile accidents claims for drivers in Belgium,

1978 and numbers of births occurring in the UK and Ireland to HIV-infected women.

5.8.1 Automobile accidents claims for drivers in Belgium, 1978

Table 5.8 presents the number of automobile accidents claims for drivers in Belgium,

1978 (n = 9, 461) by Denuit (1997). This dataset was analysed using generalized

Poisson, negative binomial and Holla models by Nikoloulopoulos and Karlis (2008a)

who concluded that only the Holla model provides an acceptable fit to the number of
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accident claims. Summary statistics for the number of accident claims can be found

using the summary.disc function, shown below.

> summary.disc(belgiandrivers)
$desc

Min 1st Q Median 3rd Q Max n
0 0 0 0 7 9461

$moms
mean var stddev m3 m4 sk ku

0.2144 0.2889 0.5375 0.5407 1.8020 3.4810 21.5900

$extras
OD kappa3 ZI Gini

1.348 1.522 42.830 0.858

$tab
0 1 2 3 4 5

freq 7840.0000 1317.0000 239.00000 42.000000 14.00000 4.0000000
prob 0.8287 0.1392 0.02526 0.004439 0.00148 0.0004228

6 7
freq 4.0000000 1.0000000
prob 0.0004228 0.0001057

Number of claims 0 1 2 3 4 5 6 7
Frequency 7840 1317 239 42 14 4 4 1

Table 5.8: Number of automobile accidents claims for drivers in Belgium, 1978

The mean number of claims is 0.21, with variance 0.29 and the overdispersion

index OD = 1.348 indicates that some overdispersion is present in the data. The

ZI index is very large with a value of 42.83 and reflects the high proportion of zeros

present in this dataset. This is also reflected in the values of the median, 25% lower and

75% upper quartiles which are all skewed with values 0. The skewness and kurtosis

coefficients are also very large indicating the number of claims has a highly positivly

skewed distribution with a peak near the mean and heavy tails.

The fit of a range of distributions to the frequency of accident claims can be

compared using the altmann.fitter:

> altmann.fitter(belgianDrivers1978, family=’All’)
warning: Maximum likelihood estimates cannot be calculated for
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ZINB distribution
warning: Maximum likelihood estimates cannot be calculated for
ZISI distribution

Distribution n.par AIC BIC chisq df chisq.p
5 HO 2 10691.02 10705.33 10.404852 5 0.0645
9 WA 2 10693.40 10707.71 14.002380 5 0.0156
6 SICH 3 10690.71 10712.17 5.163696 4 0.2709
7 DE 3 10692.55 10714.02 8.249035 4 0.0829
3 NB 2 10700.08 10714.39 32.236500 5 0.0000
2 GEO 1 10711.36 10718.52 95.562515 6 0.0000
14 2PNB 4 10690.49 10719.11 2.242583 3 0.5236
13 2PO 3 10701.92 10723.39 24.998198 4 0.0001
15 NYA 2 10721.21 10735.52 152.465797 5 0.0000
10 ZIPO 2 10755.23 10769.54 451.595954 5 0.0000
8 YU 1 10792.82 10799.97 98.526822 6 0.0000
1 POIS 1 10983.56 10990.72 1111.074577 6 0.0000
4 HY 3 11187.79 11209.26 1840.257776 4 0.0000
11 ZINB NA NA NA NA NA NA
12 ZISI NA NA NA NA NA NA

This table shows a Holla distribution provides the best fit to the data if we compare

the BIC values, as found by Nikoloulopoulos and Karlis (2008a). If we instead compare

the distributions according to the Chi-squared goodness-of-fit p-values there are several

models which perform better than the Holla, which has p > 0.05. The Delaporte (p =

0.645), Sichel (p = 0.271) and Poisson-negative binomial mixture (p = 0.524) models

all have p-values suggesting they provide an adequate fit to the data. One parameter

models such as the Poisson, Geometric and Yule distributions are unsurprising not a

good fit to this dataset and it is interesting to note that two of the three zero-inflated

models failed to converge whilst the zero-inflated Poisson model has been placed near

the center of the comparison table.

We can compare the fit of the Holla, Sichel and Poisson-negative binomial distributions,

> mle.HO(belgiandrivers, plot.prof=T)
Rapid Estimates

re.coef
alpha 0.8025763
theta 0.4102219
Maximum Likelihood Estimates

mle.coef mle.se mle.LCI mle.UCI
alpha 0.839766 0.0676676 NA 0.990529
theta 0.396567 NaN NaN 0.446073
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Fitted Values
0 1 2 3 4 5 6 7

obs 7840.00 1317.00 239.00 42.00 14.00 4.00 4.00 1.00
exp 7844.01 1306.12 238.23 53.27 13.75 3.89 1.17 0.37
Diagnostics

chisq df p logL AIC BIC
model 10.40485 5 0.06454375 -5343.511 10691.02 10705.33
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Figure 5.4: Profile likelihood plots for Holla model for number of automobile accidents
claims for drivers in Belgium, 1978

For the number of automobile accidents claims for drivers in Belgium, 1978 the

Holla model has parameter estimates of α̂ = 0.84 and θ̂ = 0.40. Figure 5.4 plots the

profiles for the Holla model. Whilst the profile for theta shows a ’V’-shape indicating

the estimate has converged, this is not true for alpha and standard errors for θ̂ have not

been unable to be calculated. The fitted values for this model indicate a reasonable fit

to the data.

> mle.SICH(belgiandrivers, plot.prof=T)
Rapid Estimates

re.coef
alpha NA
theta NA
gama NA
Maximum Likelihood Estimates

mle.coef mle.se mle.LCI mle.UCI
alpha 1.011630 0.0863524 0.842381 1.180880
theta 0.597967 0.1534120 0.297280 0.898654
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gama -1.335610 0.4832330 -2.282750 -0.388476
Fitted Values

0 1 2 3 4 5 6 7
obs 7840.00 1317.00 239.0 42.00 14.00 4.00 4.00 1.00
exp 7837.82 1325.63 225.5 50.07 14.18 4.75 1.78 0.72
Diagnostics

chisq df p logL AIC BIC
model 5.163696 4 0.2709098 -5342.353 10690.71 10712.17
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Figure 5.5: Profile likelihood plots for Sichel model for number of automobile
accidents claims for drivers in Belgium, 1978

The Sichel model has parameter estimates of α̂ = 1.01, θ̂ = 0.60 and γ̂ =

−1.34. Figure 5.5 plots the profiles for the Sichel model, showing ‘V’ shapes for

each parameter indicating that the model has correctly convereged. Fitted values for

the Sichel model do not fit the observed counts of automobile accidents as closely
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as the Holla model, although this model has a large Chi-squared p-value indicating it

provides a good fit to the data. We can alternatively fit a Poisson-negative binomial

mixture to this dataset,

> mle.2PNB(belgiandrivers, plot.prof=T)
Rapid Estimates

re.coef
omega 0.1931172
mu 0.2841505
r 0.5292820
p 0.7305169
Maximum Likelihood Estimates

mle.coef mle.se mle.LCI mle.UCI
omega 0.489536 0.0590904 0.316242 0.605718
mu 0.297771 0.0467485 0.155788 0.375493
r 0.133017 0.0918020 0.031953 0.543894
p 0.497613 0.0930044 0.313933 0.674960
Fitted Values

0 1 2 3 4 5 6 7
obs 7840.00 1317.00 239.00 42.00 14.00 4.00 4.0 1.00
exp 7840.08 1318.08 236.16 45.03 12.89 4.95 2.1 0.92
Diagnostics

chisq df p logL AIC BIC
model 2.242583 3 0.5236097 -5341.246 10690.49 10719.11
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Figure 5.6: Profile likelihood plots for Poisson-negative binomial mixture model for
number of automobile accidents claims for drivers in Belgium, 1978

Profile plots shown in Figure 5.6 indicate that all the parameters have converged

and we can note that p looks to both a local and global minimum. Although complex

(this model has four parameters) this model provides an excellent fit indicated by the

expected values. We can conclude that the Poisson-negative binomial mixture provides

a good fit to the data, due to the increased complexity in this model. This example

illustrates the trade-off between a a model with a higher goodness-of-fit and a large

number of parameters (Poisson-negative binomial mixture) and a simpler model with

fewer parameters to interpret but a lower goodness-of-fit in comparison.

5.8.2 Numbers of births occurring to HIV-infected women

An example of a truncated dataset is the numbers of births occurring in the UK and

Ireland to HIV-infected women reported to the National Study of HIV in Pregnancy

and Childhood, between 2000 an 2010 (French, 2011). This dataset is truncated as
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mothers could have had more than one birth outside of UK which we do not have

information on.

Number of births 1 2 3 4 5 6 7
Frequency 7655 1895 430 96 19 3 2

A range of positive (also known as zero-truncated) distributions can be fitted to the

numbers of births occurring to HIV-infected women by selecting the "Trunc" family

in the altmann.fitter function:

> altmann.fitter(HIV.births, family="Trunc")
Distribution n.par AIC BIC chisq df chisq.p

2 PGE 1 14524.59 14531.81 6.076759 5 0.2988
3 PNB 2 14521.29 14535.73 1.959864 4 0.7431
4 PHO 2 14521.53 14535.97 1.717276 4 0.7876
5 PSI 3 14523.39 14545.05 1.738426 3 0.6284
1 PPO 1 14602.20 14609.42 165.955166 5 0.0000
6 PYU 1 14932.92 14940.14 338.326865 5 0.0000

The above table of output shows the positive Geometric distribution has the lowest

BIC but the positive negative binomial distribution has lowest AIC. We can again fit

both of these models to compare their fit:

> mle.PGE(HIV.births)
Rapid Estimates

re.coef
prob 0.7624943
Maximum Likelihood Estimates

mle.coef mle.se mle.LCI mle.UCI
prob 0.762494 0.00369754 0.755197 0.76969
Fitted Values

1 2 3 4 5 6 7
obs 7655.00 1895.00 430.00 96.00 19.0 3.00 2.00
exp 7701.19 1829.08 434.42 103.18 24.5 5.82 1.38
Diagnostics

chisq df p logL AIC BIC
model 6.076759 5 0.2988215 -7261.294 14524.59 14531.81

This model shows a good fit with the parameter estimated at p̂ = 0.76, which can

be interpreted as each woman has a probability of 76% of continuing to have children

until she has the number of child she wants. The positive negative binomial model can

be fitted using the mle.PNB function and gives the following output:
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> mle.PNB(HIV.births)
Rapid Estimates

re.coef
p 0.4318472
r 0.6954731
Maximum Likelihood Estimates

mle.coef mle.se mle.LCI mle.UCI
p 0.81179 0.0216737 0.769235 0.853944
r 1.62971 0.3457400 1.076690 2.497320
Fitted Values

1 2 3 4 5 6 7
obs 7655.00 1895.0 430.00 96.00 19.00 3.00 2.00
exp 7655.12 1894.4 431.39 93.97 19.91 4.14 0.85
Diagnostics

chisq df p logL AIC BIC
model 1.959864 4 0.743141 -7258.646 14521.29 14535.73
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Figure 5.7: Profile likelihood plots for a positive negative binomial model fitted to
numbers of births occurring in the UK and Ireland to HIV-infected women

This model is a very good fit, shown by the expected frequencies which closely

model frequencies of numbers of births in HIV-infected women. Figure 5.7 gives the

profile likelihood plots for r̂ and p̂, which display V-shaped curves and indicates the

maximum likelihood has converged correctly. This example illustrates that the BIC

can sometimes over adjust for the number of parameters in a model.
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5.9 Application to UK surnames distribution

The Zipf distribution is applied to data that is ranked by size; for example, occurrences

of words in a sample of speech or writing, or numbers of species per genus in ecology

(Mandlebrot, 1959; Zipf, 1949). Fox and Lasker (1983) applied the Zeta distribution

(a variation of the Zipf distribution where a = 0) to the frequency distributions of

surnames of 4,794 people married within nine districts in England in a 12 month period

in 1972/3. For each district, the frequency distribution is defined to be the number of

people in that district with a given surname.

In this section, we fit the Zipf distribution to frequencies of surnames in the UK,

introduced in Section 1.2.1 of Chapter One. This dataset gives the distribution of

surnames across 436 districts (12 regions) of the UK. We are interested in comparing

the fit of the Zipf distribution to surname frequencies for each district. Estimates of

c and a the parameters of the Zipf distribution are obtained via maximum likelihood

estimation for the surname frequencies at each district using the maximum likelihood

estimation function, mle.ZIPF, in the Altmann library.

Figure 5.8 plots the logarithm of the parameters c (x axis) and a (y axis) of the

Zipf distribution fitted to surname frequencies for each district. A colour key is used to

denote the regions to which each district belongs. The average values of the parameters

is c = 2.24 and a = 1.94, indicated in Figure 5.8 as a white ’x’. There is a clear

relationship between the parameters c and a. Districts that have larger values of log(c),

have larger values of log(a), whilst for lower values of log(c) there is more variation

in the range of log(a).

The plot shows that the majority of districts have values of log(c) and log(a) which

are centered around the mean, i.e. log(a) between 0 and 1 and log(c) between 0.6 and

1. There are some cases where districts are clustered by region. For example, London

districts (black) have higher values of log(c) than the average district and districts

in Northern Ireland (orange) have lower values of log(a) than the average district.

Many cities can be seen as outliers on the plot e.g. Edinburgh, Birmingham, Bristol,

Liverpool, Leeds - all of which have lower values of log(a) and log(c).
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Figure 5.8: UK Surname distribution.
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In chapter 2, it was noted that the parameter c controls the the probability of

the distribution where the frequency equals one, whilst the parameter a controls the

degree of skew of the distribution. This suggests that districts with lower values of

c have a lower probability of a frequency of one, whilst higher values of c are more

one-inflated. Similarly, for smaller values of a the distribution becomes more skew.

Since, many of the cities have lower values of c and a we can infer that the distribution

of surnames for these districts have a lower probability of a frequency of one, i.e.

fewer unique surnames, and have a lower degree of skew than the average fitted Zipf

model. Districts in Northern Ireland, have lower values of c than the average suggesting

lower proportions of unique surnames but average skew, whilst districts in London have

higher values of log(c) i.e. a higher proportion of unique surnames but with a larger

than average amount of skew, suggesting a distribution with high frequency of ones

but a long tail. These results reflect the findings from the study of diversity in the UK

surnames distribution (McElduff et al., 2010), which found that London, the South East

and the East of England have higher surname diversity and Northern Ireland, Scotland,

Wales has a less varying surname distribution.

As an example, the fit of Zipf models to the surname distribution in three districts

can be examined: Manchester, an outlier with low values of c and a, the London district

of Hackney (shown as central of the London district in Figure 5.8) and Carlisle, which

has high values of both c and a. There are 313,241 people recorded in Manchester

in the enhanced electoral register in 2001, with 6.10% of those people having unique

surnames. The most common surname in Manchester is Smith (0.96% of the population),

followed by Jones (0.82% of the population) and Taylor (0.62% of the population). The

results of the maximum likelihood estimation function for the Zipf distribution (fitted

values not shown) for frequencies of surnames in Manchester is:

> mle.ZIPF(sfreq.man)
Rapid Estimates

re.coef
a1 1.147607
c1 1.496989
Maximum Likelihood Estimates
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mle.coef mle.se mle.LCI mle.UCI
a1 0.0151426 0.01657920 -0.0173525 0.0476378
c1 1.7742500 0.00944124 1.7557400 1.7927500
Diagnostics

chisq df p logL AIC BIC
model 12062.97 259 0 -77560.94 155125.9 155142.9

The Zipf model for frequencies of surnames in Manchester has parameter estimates

a = 0.015 and c = 1.77. Although the Chi-squared goodness-of-fit p-value is significant,

the test statistic is very large with a high degree of freedom due to the large sample

size of the dataset. The fitted values for this distribution are plotted as a red solid

line in Figure 5.9 showing the distribution of surnames in Manchester, with black

points indicating observed values. There are a high number of unique surnames and

the distribution is skew with a long tail. The model provides a good fit for unique

surnames, but does not predict the tail of the distribution as well.

The number of persons recorded in the 2001 enhanced electoral register in Hackney

was 132,771 and the proportion of people having unique surnames is 4.55% The most

common surname in Hackney is once again Smith (0.70% of the population), with

Williams (0.61% of the population) in second place and then Brown (0.50% of the

population). The maximum likelihood estimation function for a Zipf model for the

frequencies of surnames in Hackney is:

> mle.ZIPF(sfreq.hack)
Rapid Estimates

re.coef
a1 0.9199753
c1 2.6639170
Maximum Likelihood Estimates

mle.coef mle.se mle.LCI mle.UCI
a1 0.385751 0.0253160 0.336132 0.435371
c1 2.204230 0.0168417 2.171220 2.237240
Diagnostics

chisq df p logL AIC BIC
model 4014.895 119 0 -57988.37 115980.7 115997.6

This Zipf model has parameters a = 0.39 and c = 2.20. Again, we can note

the goodness-of-fit test statistics are all large due the large sample size. Figure 5.10

plots the surname distribution in Hackney, with observed values of the frequencies of
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Distribution of surnames in Manchester

Number of people with surname
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Figure 5.9: Observed and fitted values of Zipf model for surname frequencies of
Manchester. Observed values are black points and the fitted model is shown in red.
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Distribution of surnames in Hackney

Number of people with surname
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Figure 5.10: Observed and fitted values of Zipf model for surname frequencies of
Hackney. Observed values are black points and the fitted model is shown in red.

surnames as black points and fitted values shown as a solid red line. This distribution

has a lower value of c than Manchester and therefore has a lower proportion of unique

surnames and the distribution of surnames is not as skewed with a shorter tail.

The number of people recorded in the 2001 enhanced electoral register in Carlisle

is 81,069 and the percentage of people with unique surnames is 2.90%. The most

popular surname in Carlisle is Graham (0.02% of population), followed by Bell (0.01%

of population) and then Smith (0.01% of population). The Zipf model for surname

frequencies in Carlisle fitted using maximum likelihood estimation is:

> mle.ZIPF(sfreq.carl)
Rapid Estimates

re.coef
a1 -1.595062
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Distribution of surnames in Carlisle

Number of people with surname
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Figure 5.11: Observed and fitted values of Zipf model for surname frequencies of
Carlisle. Observed values are black points and the fitted model is shown in red.

c1 5.566085
Maximum Likelihood Estimates

mle.coef mle.se mle.LCI mle.UCI
a1 1.75857 0.1026070 1.55746 1.95968
c1 2.05386 0.0276999 1.99957 2.10816
Diagnostics

chisq df p logL AIC BIC
model 3919.226 118 0 -21012.05 42028.1 42042.01

This model has parameters a = 1.76 and c = 2.05. Goodness-of-fit statistics

for this model are also large due to the large sample size. The surname distribution for

Carlisle is shown in Figure 5.11 which plots the observed values of surname frequencies

as black points and fitted values as a red solid line. The proportion of unique surnames

is lower in Carlisle than the average and the distribution of surnames frequencies is

less skewed than average with a shorter tail. The Zipf model appears to fit well for low
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frequencies of people with a given surname but underestimates the large frequencies

of people with a given surname.

This example illustrates the application of the Altmann library in the modeling of

Zipf distribution to frequencies of surnames in the UK. Parameter estimates for Zipf

distributions in each district can be used to identify the distribution of surnames and

provide an indication of the diversity and proportion of unique surnames in a district.

Cities have been shown to have a higher surname diversity in comparison to other areas

of the UK.

Summary

The Altmann library fits and compares discrete distributions using maximum

likelihood estimation. Discrete distributions from a range of families have been implemented

and provide increased complexity when modeling, improving the interpretation of

discrete data. The UK surname distribution is an example of the application of this

library.
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Chapter 6

discrete.diag Library

The discrete.diag R library provides diagnostic analysis for univariate discrete

models. Functions in this library fall into one of three categories: goodness-of-fit

methods, model comparisons and techniques for outlier detection. These functions

have been programmed as a supplement to the maximum likelihood estimation functions

provided by the Altmann library. When the discrete.diag library is loaded

into the R environment the Altmann library is automatically installed, if not already

loaded. Functions in the discrete.diag use the Altmann library in one of two

ways: objects of class ’mle’ resulting from maximum likelihood estimation functions

are used with S3 generic functions or alternatively, the maximum likelihood estimation

functions are called directly within the diagnostic function.

In the first section, two functions for determining a distribution’s goodness-of-fit

are presented: the Chi-squared goodness-of-fit test and residual analysis functions.

Model comparison functions to calculate a model’s AIC and BIC and an EPGF plot

function are presented in Section two. The third section, describes methods for the

detection of outliers, these are the EPGF outliers plot and the Surprise Index. The

usage and output of these functions is illustrated using the number of stillbirths in New

Zealand white rabbits, which is used as an example in the previous Chapter. In the final

section the outlier detection methods in the discrete.diag library are applied to a

dataset featuring counts of cysts in steroid treated kidneys presented in Section 1.2 of

Chapter One.
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6.1 Goodness-of-fit Methods

These methods assess the fit of one particular distribution to an observed dataset. The

first goodness-of-fit method is the Chi-squared goodness-of-fit test and the second

calculates and plots randomized quantile residuals of a fitted model.

6.1.1 Chi-squared Goodness-of-fit Test

This function performs a Chi-squared goodness-of-fit test which tests the null hypothesis

that the data follows a certain distribution i.e. the distribution provides a good fit to the

observed data, against the alternative hypothesis that the distribution is not a good fit

to the observed data. This function differs to the chisq.test function available in

R as it adjusts the degrees of freedom for the number of parameters fitted in the model.

The chi.test function has usage,

chi.test(yi, obs, exp, par)

where yi is the range of values of the discrete variable Y , obs and exp are the

observed and expected frequencies of yi under a specified discrete distribution, respectively

and par is the number of parameters estimated in the discrete distribution. The R code

for the chi.test program is shown in Listing 6.1.

1 chi.test <-
2 function(yi, obs, exp, par){
3 # Chi-Squared Goodness of fit test
4
5 for(i in 1:length(exp)) if(exp[i]==0) exp[i]<-0.1
6 X2 <- chisq.test(obs, p=exp/sum(exp))
7 chisq <- X2$statistic[[1]]
8 df <- X2$parameter[[1]]-par
9 p <- 1-pchisq(chisq, df)

10
11 #Output
12 cat("Chi-square Goodness-of-fit test", "\n")
13 tab <- cbind(chisq, df, p)
14 dimnames(tab) <- list("model", c("chisq", "df", "p"))
15 print(tab)
16 }

Listing 6.1: Chi-squared Goodness-of-fit Test
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Line 5 replaces any expected values of 0 by a small value. The Chi-squared test

statistic is calculated in line 6, the degrees of freedom is then adjusted in line 8 and the

corresponding p-value produced in line 9. A table of these values is created in lines

12-15 and is returned as the output of this function.

We continue to use the example of the number of stillbirths in litters of New

Zealand White rabbits presented in Chapter 5 to demonstrate the use of the chi.test

function. This dataset first needs to be loaded into R from the Altmann library.

> library(Altmann)
> data(rabbits)

In Chapter 5, the altmann.fittermodel comparison shows the Waring distribution

provides the best fit to the number of stillbirths. A Waring model can be fitted using

mle.WA and a Chi-squared test performed using the resulting model of class "mle",

> mod<-mle.WA(rabbits, printit=FALSE)
> chi.test(0:11, mod$obs, mod$exp, mod$npar)
Chi-square Goodness-of-fit test

chisq df p
model 7.206004 9 0.615681

The observed values are mod$obs the fitted values for the negative binomial distribution

are mod$exp and mod$npar gives the number of parameters in the fitted model. The

output shows the p-value is not significant at the 5% level and we can conclude that

the data does follow a Waring distribution.

As a further example of the application of the chi.test function, we can also fit

a Poisson distribution to the number of stillbirths,

> mod<-mle.POIS(rabbits, printit=FALSE)
> chi.test(0:11, mod$obs, mod$exp, mod$npar)
Chi-square Goodness-of-fit test

chisq df p
model 287.3004 10 0

The Chi-squared goodness-of-fit p-value is very significant at the 5% level indicating

that a Possion distribution does not provide a good fit to the number of stillbirths in

New Zealand white rabbits.
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6.1.2 Residuals

S3 objects can be utilized in R to construct a generic residuals function which calculates

the randomized Quantile residuals of a model of class "mle" and produces plots for

residual analysis. The residuals function has usage,

residuals(mleobject, family)

where mleobject is a model fitted using the maximum likelihood estimation functions

in the Altmann library and family specifies the distribution fitted. The R code for

this function is shown in Listing 6.2.

1 residuals.mle <- function (mleobject, family)
2 {
3 y <- rep(mleobject$yrange, mleobject$obs)
4 y.hat <- rep(mleobject$yrange, mleobject$exp)
5 diff <- length(y.hat)-length(y)
6 ifelse(diff>0,
7 y.hat <- y.hat[-(1:abs(diff))],
8 y.hat <- c(rep(0, abs(diff)), y.hat))
9 mle.coef<-mleobject$mle.coef

10
11 pfun <- paste("p",family,sep="")
12 a<-rep(NA, length(y))
13 for (i in 1:length(y)){
14 a[i] <- ifelse((y[i]-1)>=0,
15 eval(call(pfun, y[i]-1, mle.coef)),
16 0)}
17 b <- eval(call(pfun, y, mle.coef))
18 u <- runif(n = length(y), min = a, max = b)
19 R <- qnorm(u)
20 par(mfrow = c(2, 2))
21 plot(y.hat, R, main = "Against Fitted Values",
22 xlab = "Fitted Values", ylab = "Residuals")
23 plot(1:length(R), R, main = "Against Index",
24 xlab = "Index", ylab = "Residuals")
25 hist(R, main = "Histogram", xlab = "Residuals")
26 qqnorm(R, main = "Normal Q-Q Plot",
27 ylab = "Sample Residuals")
28 qqline(R, col = "red")
29 invisible(R)
30 }

Listing 6.2: Residual Analysis

The residuals function code has two parts: in the first part the randomized
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quantile residuals are calculated and the second creates plots of the residuals. Lines 3-9

extract vectors of the observed and fitted values and maximum likelihood parameter

estimates from the mleobject. The cumulative probability function for the distribution

in family is specified in line 11. To calculate the residuals, the observed values, y,

are transformed to an interval (a,b) using the cumulative probability density and values

are randomly generated from a uniform distribution between this interval (lines 12-18).

In line 19, resulting uniform probabilities are used to produce randomized quantiles

by using the inverse cumulative distribution function of a standard normal random

variable. The residual R therefore gives the z-score for the specific observation.

The second part of the function uses the calculated residuals to construct a series

of plots for residual analysis. Four plots are produced in lines 20-28:

• the residuals against fitted values

• the residuals against the index

• a Kernel density estimate of the residuals

• QQ normal plot of the residuals

The final command of the function (line 29) attaches an invisible copy of the residuals

to the function. The residuals are therefore not printed as part of the function unless

assigned to an object.

Once again the dataset containing the number of stillbirths in litters of New Zealand

white rabbits illustrates the use of the residuals function. A negative binomial

distribution can be fitted to the data and residual plots created using the following

code,

> data(rabbits)
> mod1<-mle.NB(rabbits)
> residuals(mod1, family="NB")

Figure 6.1 plots the results of the residuals command for a negative binomial

model. The plots show some residuals with high values which can be seen in the

skewed histogram and evidence of non normality in the Q-Q plot.
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Figure 6.1: Residual plots for the number of stillbirths in litters of New Zealand White
Rabbits under a negative binomial model.
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6.2 Model Comparison

In this section two functions are presented to perform comparisons between fitted

models: a function to calculate the AIC or BIC and the epgf.plot function. The

AIC function produces a statistic that allows for a numerical comparison, whereas the

epgf.plot provides a graphical representation of the data and fitted distributions.

6.2.1 AIC and BIC

This function makes use of the S3 object system to create a generic function that

calculates the AIC or BIC. The AIC function has usage,

AIC(mleobject, bic = FALSE)

where mleobject is a model fitted using the maximum likelihood estimation functions

in the Altmann library and bic is a logical argument specifiying whether the BIC

should be returned as output, the default being FALSE. The code for this function is

given in Listing 6.3 and comprises of if statements to determine whether the AIC or

BIC is to be extracted from the mle object in lines 3 or 5. The value of AIC or BIC is

then returned as output.

1 AIC.mle <-function(mleobject, bic=FALSE){
2 if(bic==FALSE){
3 aic<-mleobject$aic}
4 if(bic==TRUE){
5 aic<-mleobject$bic}
6 aic
7 }

Listing 6.3: AIC function

This function can be demonstrated for the frequency of stillbirths in litters of New

Zealand white rabbits by fitting a negative binomial distribution using the mle.NB

function. The AIC function extracts the AIC and BIC from this model:

data(rabbits)
> mod<-mle.NB(rabbits, method="moments", printit=FALSE,
> plot.prof=FALSE)
> AIC(mod)
[1] 678.3545
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> AIC(mod, bic=TRUE)
[1] 686.3474

The higher BIC values compared to the AIC is due to the penalty term of the BIC

which adjusts for the number of parameter in the model.

6.2.2 EPGF plots

The epgf.plot function plots the EPGF for an observed dataset together with the

pgf’s for a range of discrete distributions, allowing for comparisons between the fit of

distributions. This function has usage,

epgf.plot(ydata, family, tmin=-1, tmax=1, npts=100,

printit=FALSE, plotit=TRUE)

where the argument ydata is a vector of discrete observations and family gives

a list of distributions to be fitted. The variables tmin and tmax give the minimum

and maximum values of t for the EPGF and pgf’s, with the condition tmin<tmax.

The argument npts is used to calculate values of t within the range tmin, tmax.

The printit argument is logical and determines whether a matrix of EPGF and

pgf values is printed, with the default being FALSE and plotit is also logical and

determines whether a plot is produced, with default TRUE.

1 epgf.plot <-
2 function(ydata, family, tmin=-1, tmax=1, npts=100,
3 printit=FALSE, plotit=TRUE){
4
5 #Load packages
6 require(hypergeo)
7
8 ###small printing functions
9 print.dist<-function(name1)

10 {
11 print(paste(rep("=",40),sep=""),quote=F)
12 print(paste("Dist", name1, sep=" = "),quote=F)
13 invisible(NULL)
14 }
15
16 #Set up the t’s and range of yi
17 t1<- seq( tmin,tmax, length=npts)
18 yi<-min(ydata):max(ydata)
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19
20 #A loop to work out the epgf
21 phin<-rep(NA,npts)
22 for(i in 1:npts) phin[i]<- log(mean( t1[i]^ydata))
23
24 pgf.current<-matrix(NA, ncol=length(family),
25 nrow=length(t1))
26
27 #A loop to work out epgf for different families
28 for (j in 1:length(family)){
29
30 #BERNOULLI
31 if (family[j]=="BER") {
32 if(printit) print.dist("Bernoulli")
33 mod.BER<- mle.BER(ydata, printit=FALSE,
34 plot.prof=FALSE)
35 prob<-mod.BER$mle.coef
36 pgf<-1+prob*(t1-1)
37 pgf.current[,j]<-pgf
38 }
39 .
40 .
41 .
42 .
43 .
44 #GENERALIZED GEGENBAUER
45 if (family[j]=="GGE") {
46 if(printit) print.dist("GG")
47 mod.GGE<- mle.GGE(ydata, printit=FALSE,
48 plot.prof=FALSE)
49 a<-mod.GGE$mle.coef[1]
50 m<-mod.GGE$mle.coef[2]
51 alpha<-mod.GGE$mle.coef[3]
52 beta1<-mod.GGE$mle.coef[4]
53 pgf <- (1-alpha-beta1)^a*
54 (1-alpha*t1-beta1*t1^m)^(-a)
55 pgf.current[,j]<-pgf
56 }
57
58 }
59
60 if (plotit==TRUE){
61 matplot(t1,cbind(phin, log(pgf.current)),type="l",lwd=2,
62 xlab="t", col=c(1, rainbow(length(family))),
63 ylab="log (PGF)", lty=seq(1,length(family)+1, 1))
64 title(main=paste("EPGF plot of",
65 deparse(substitute(ydata)), sep=" "))
66 leg<-c("epgf", family)
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67 legend(x="bottomright", leg, lwd=2,
68 lty=seq(1,length(family)+1, 1),
69 col=c(1, rainbow(length(family))))
70 }
71 else if (plotit==FALSE){
72 invisible(data.frame(family=family))
73 }
74 }

Listing 6.4: EPGF Plot function

The code for the epgf.plot function is given in Listing 6.4. Line 6 calls in

the required R library hypergeo for the hypergeometric functions. A function is

given in lines 9-14 which prints the name of the distribution as part of the output if the

printit function is specified as TRUE. At the beginning of the function the range

of t values is calculated in line 17, followed by the range of the y observations in line

18. Following this the EPGF is calculated in lines 20-22 using an iterative function.

A storage matrix is provided for the pgf’s in line 24-25 with dimensions t number of

rows and the number of distributions to be fitted as the number of columns.

This function once again uses the maximum likelihood estimating functions in the

Altmann library to provide parameter estimates for distributions. For each distribution,

the parameter estimates are extracted from the model and used to calculate the pgf.

The values for each distribution are stored in the matrix. A series of if statements are

used to select the appropriate distribution from the list given in the family argument

and an iterative sequence performs this technique for each element in the vector of

distributions specified by the family argument.

Following the calculation of the pgf matrix, if the plotit command is specified

as TRUE then a plot of the EPGF and pgf’s is plotted using the commands in lines

60-70. If the plotit argument is FALSE an invisible table of the EPGF and pgf’s is

instead returned.
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Figure 6.2: EPGF plots for the number of stillbirths in New Zealand white rabbits
with a) Poisson, Geometric and Yule distributions, b) negative binomial, zero-inflated
Poisson, Neyman type A and Waring distributions and c) hypergeometric, zero-inflated
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The epgf.plot function can be applied to the numbers of stillbirths in New

Zealand white rabbits as follows,

par(mfrow=c(3,1))
epgf.plot(rabbits, family=c("POIS", "GEO", "YU"))
title(sub="One parameter discrete distributions")
epgf.plot(rabbits, family=c("NB", "ZIPO", "NYA", "WA"))
title(sub="Two parameter discrete distributions")
epgf.plot(rabbits, family=c("HY", "ZINB", "2PO"))
title(sub="Three parameter discrete distributions")

Figure 6.2 shows 3 EPGF plots with a) one b )two and c) three parameter distributions,

respectively. In each plot the EPGF of the number of stillbirths in litters of New

Zealand white rabbits is shown by the solid black line for values of t between -1 and 1.

The first plot shows that the pgf of the Yule distribution provides the closest fit to the

EPGF of the three one parameter distributions. The Negative Binomial distribution pgf,

shown by the red line in the second plot, indicates the negative binomial distribution

is a good fit to the data. The zero-inflated Poisson, Neyman type A and Waring

distributions do not fit the EPGF closely for values of t around -1. The final plot

suggests that the Hypergeometric and Poisson-Poisson mix distributions are not good

fits to the data, whilst the pgf of the zero-inflated negative binomial distribution follows

the EPGF well. We can conclude from these plots that the negative binomial and

zero-inflated negative binomial distribution appear to be the best fit to the data.

Whilst the EPGF plot provides a good visual comparison of the fit of several

discrete distributions to a dataset, there can be some difficulty in deciding the most

appropriate distribution for the data using the plots alone. The use of the AIC and/or

BIC alongside can provide further insight into the fit of these distributions to a dataset.

EPGF plots can be compared to the output from the altmann.fitter function

in Section 5.6, which provides a table of goodness-of-fit statistics including the AIC

and BIC. For the number of stillbirths in New Zealand white rabbits, it has been

identified in Section 5.6 that the Yule distribution, provide the best fit to the data of

the one parameter distributions. The Waring distribution has the highest chi-squared

test p-value, however the EPGF plot perhaps indicates that this model does not fit the
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data as well as other models. It is therefore recommended that the EPGF plots are used

as an exploratory tool, to identify several possible candidate models which can then be

compared using goodness-of-fit statistics, such as those in the altmann.fitter.

6.3 Outlier Detection

In this section two functions for outlier detection are presented: the outliers.plot

a non-parametric graphical method which uses the EPGF and the surprise.plot

a parametric method which plots the SI for a distribution to determine if outliers are

present within a dataset.

6.3.1 EPGF Outliers plot

This function plots the EPGF for a dataset using a leave-one-out procedure to determine

if any outliers are present. The outliers.plot function has usage,

outliers.plot(ydata, tmin = 0, tmax = 2, npts = 100, title0

= NULL)

where ydata is a vector of discrete observations, tmin and tmax give the minimum

and maximum of the range of t, whilst npts calculates values of t within the range

(tmin, tmax). The argument title0 allows the user to specify a title for the plot

produced. R code for this function can be found in Listing 6.5.

1 outliers.plot<- function (ydata, tmin = 0, tmax = 2,
2 npts = 100, title0=NULL)
3 {
4 require(TeachingDemos)
5 t1 <- seq(tmin, tmax, length = npts)
6 epgf <- matrix(NA, nrow = npts, ncol = length(ydata))
7 for (i in 1:length(ydata)) {
8 r.ydata <- ydata[-i]
9 ybar <- mean(r.ydata)

10 phin <- rep(NA, npts)
11 for (j in 1:100) {
12 phin[j] <- log(mean(t1[j]^r.ydata))
13 }
14 epgf[, i] <- phin
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15 }
16 matplot(t1, epgf, type = "l", lwd = 1, lty = 1,
17 col = 1, pch = rep(1, length(ydata)), xlab = "t",
18 ylab = "Log of PGF")
19 title0<- ifelse(is.null(title0), paste("EPGF plot of",
20 deparse(substitute(ydata)), sep = " "), title0)
21 title(main = title0)
22
23 l.epgf <- epgf[npts, ]
24 dist.epgf <- rep(NA, length = length(l.epgf))
25 for (j in 1:length(ydata)) {
26 mean.epgf <- mean(l.epgf[-j])
27 dist.epgf[j] <- abs(mean.epgf - l.epgf[j])
28 }
29 out.box<- boxplot(dist.epgf,plot=FALSE)$out
30 n.out1<- length(out.box)
31 if(n.out1 > 0)
32 {
33 subplot(boxplot(dist.epgf,col=’lightblue’),
34 x=tmin+(tmax-tmin)*0.1, y=max(as.vector(epgf)),
35 vadj=1, hadj=0)
36 epgf.out <- max(out.box)
37 pos <- l.epgf[dist.epgf == epgf.out]
38 out.pos<- (1:length(l.epgf))[l.epgf==unique(pos)]
39 freq.out<- length(out.pos)
40 y.out<- unique(ydata[out.pos])
41 n.diff.val.out<- length( y.out)
42 tab.out<- table(ydata[out.pos])
43 for ( k in 1:n.diff.val.out)
44 {
45 print(paste(paste("A potential outlier of",
46 y.out[k]),
47 paste("with frequency", tab.out[k]),
48 paste("is detected in positions:",
49 paste(out.pos, sep=’’, collapse=’, ’))),
50 quote=F)
51 }
52 for ( j in out.pos) lines(t1, epgf[, j],
53 col = "red", lwd = 1)
54 }
55 else
56 {
57 print ("there are no outliers", quote=F)
58 out.pos<- 0
59 }
60 invisible(out.pos)
61 }
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Listing 6.5: EPGF outliers plot

This function has two parts: the EPGF’s are calculated and plotted using a leave-one-out

procedure and then possible outlying values are identified. Firstly, the TeachingDemo

library is loaded in line 4. To calculate the EPGF’s the values of t are generated in line

5 for values between tmin and tmax. A storage matrix is then constructed in line

6 for the EPGF values. An iterative sequence is used to remove each observation

systematically and the EPGF for the remainder of the dataset is calculated in lines

7-15. The EPGF curves are plotted in lines 16-21.

In the second part of the function the EPGF curves are used to identify the maximum

possible outlying value. In line 23 the EPGF values are extracted at the maximum

value of t, tmax. Lines 24-28 calculate the absolute difference between each curve

at this value of t and the mean of the remaining EPGF values, which are stored in

the vector dist.epgf. An unplotted boxplot of these absolute differences is used

to identify the maximum values of any outliers, i.e. any observations with values, that

differ from the average of the remaining differences. If there are outlying observations

then a boxplot of the data is plotted in the top left hand corner of the plot (lines 31-54).

The function then returns the value of the maximum possible outlying observation

and highlights the EPGF curve for which is calculated excluding this observation. If

no outliers are detected, in lines 55-59 a statement is printed to this affect. Line 60

attaches an invisible table of EPGF values to the function.
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Figure 6.3: EPGF outliers plot of the rabbits data,

The dataset comprising of the number of stillbirths in litters of New Zealand white

rabbits contains an observation of 11 stillbirths which may be an outlier with respect

to the remainder of the dataset. To determine whether this observation is an outlier we

use the epgf.plot function,

> data(rabbits)
> par(mfrow=c(2,1))
> outliers.plot(rabbits)
[1] A potential outlier of 11 with frequency 1
is detected in positions: 402

The EPGF plot shown in Figure 6.3 shows 402 EPGF curves each calculated with

401 observations. The output of the function indicates that the observation with 11

stillbirths is considered an outlier. The EPGF curve calculated without this observation

can clearly be seen (highlighted on the plot in red) and is substantially different to the

other curves. Removing this observation we can again produce a further plot of the
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EPGF curves,

> outliers.plot(rabbits[-402])
[1] A potential outlier of 8 with frequency 2 is

detected in positions: 400, 401
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Figure 6.4: EPGF outliers plot of the rabbits data,

The above output and Figure 6.4 shows that the next possible outlying observations

would have 8 stillbirths in a litter. The EPGF curve for the dataset without this

observation shows no substantial differences to the other curves. We can conclude

that the EPGF plots indicate that the observation of 11 stillbirths can be considered as

an outlier with respect to the remainder of the dataset.

6.3.2 Surprise Index plot

The surprise.plot function calculates and plots the SI for a selected distribution

where any y values with SI’s greater than 1,000 are considered to be outlying observations.
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This function has usage,

surprise.plot(ydata, family = "POIS", ylim = 100,
plot.log = TRUE)

with arguments ydata a vector of discrete observations, the family argument specifies

the discrete distribution fitted to the observations and used to calculate the SI, y.lim

is a constant giving the limit of y sum in the SI and plot.log is a logical argument

with default TRUE determining whether the logarithm of the SI should be plotted. R

code for this function is given in Listing 6.6.

1 surprise.plot <-
2 function(ydata, family="POIS", ylim=100, plot.log=TRUE){
3
4 require(gsl)
5 require(hypergeo)
6
7 yi<-min(ydata):max(ydata)
8
9 #BERNOULLI

10 if (family=="BER") {
11 mod.BER<-mle.BER(ydata, printit=FALSE, plot.prof=FALSE)
12 prob<-mod.BER$mle.coef
13 SI<- -(((1-prob)^(-1+yi)*(-1+prob)^4*prob^(-yi))/
14 (-1+2*prob))
15 }
16 .
17 .
18 .
19 .
20 .
21 #GENERALIZED GEGENBAUER
22 if (family=="GGE") {
23 mod.NB<-mle.GGE(ydata, printit=FALSE, plot.prof=FALSE)
24 a<-mod.GGE$mle.coef[1]
25 m<-mod.GGE$mle.coef[2]
26 alpha<-mod.GGE$mle.coef[3]
27 beta1<-mod.GGE$mle.coef[4]
28 py <- dGGE(yi, a, m, alpha, beta1)
29 SI <- sum(py^2)/py
30 }
31
32 #Plot the graph
33
34 if(plot.log==TRUE){
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35 plot(yi, SI, type="b", lwd=2, log="y",
36 ylab="log(SI)")
37 title(main=paste("Plot of Surprise Index for",
38 deparse(substitute(ydata)), sep=" "))
39 abline(h=log(1000), lty=2, lwd=2, col="red")
40 leg<-c(family, "Surprising")
41 legend("topleft", leg, lwd=2, lty=1:2,
42 col=c("black", "red"))
43 }
44
45 if(plot.log==FALSE){
46 plot(yi, SI, type="b", lwd=2, ylab="SI")
47 title(main=paste("Plot of Surprise Index for",
48 deparse(substitute(ydata)), sep=" "))
49 abline(h=1000, lty=2, lwd=2, col="red")
50 leg<-c(family, "Surprising")
51 legend("topleft", leg, lwd=2, lty=1:2,
52 col=c("black", "red"))
53 }
54 }

Listing 6.6: Surprise Index function

Lines 4 and 5 load in the required libraries into R, whilst line 7 calculates the

range of ydata. For each distribution an if statement locates the family specified

in the family argument. Parameter estimates are extracted from models fitted using

maximum likelihood functions in the Altmann library and then the SI calculated. The

SI is then plotted in lines 34-53 using if statements to determine whether the SI or log

of the SI should be plotted as specified in the plot.log argument.
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Figure 6.5: SI’s for the number of stillbirths in New Zealand White rabbits under
Poisson and Negative Binomial distributions.
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We can again investigate whether the extreme value of 11 stillbirths in litters of

New Zealand white rabbits could be considered an outlier. The surprise.plot

function can be used to calculate the SI under Poisson and negative binomial models,

> data(rabbits)
> par(mfrow=c(2,1))
> surprise.plot(rabbits, family="POIS", plot.log=F)

0 1 2 3 4 5 6 7
1 0.772 1.678 7.291 47.53 413.13 4488.601 58521.65 890161.8

8 9 10 11
1 15474380 302628687 6576039582 157185119082
> surprise.plot(rabbits, family="NB", plot.log=F)

0 1 2 3 4 5 6 7
1 0.803 5.486 13.245 26.308 47.998 83.49 140.853 232.622

8 9 10 11
1 378.206 607.553 966.732 1526.427

The SI’s for the Poisson and negative binomial distributions plotted as output from the

surprise.plot function are given in Figure 6.5. These graphs indicate that under

a Poisson distribution values greater than 4 are considered to be surprising. However,

under a negative binomial distribution a value of 11 stillbirths would be considered

surprising and thus an outlier.

6.4 Validation of the functions

Functions in the discrete.diag library include the chi.test, residuals.mle,

AIC, epgf.plot, outliers.plot and surprise.plot. These were built

using a trial and error process, with the basic functions initially programmed and then

expanded to incorporate other arguments and produce output tables. The chi.test

function was validated using comparisons to the Chi-squared statistics for models

estimated using the Altmann fitter program (Altmann, 1997). This was performed

alongside testing for the maximum likelihood estimation functions. The outputs from

the epgf.plot and outliers.plot methods were also compared to examples

given in Nakamura and Pérez-Abreu (1993b) and Nakamura and Pérez-Abreu (1993a)

(shown in Section 3.3.2). Functions to calculate surprise indices used in the surprise.plot

function were also tested for a range of parameter values for each distribution and
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plotted using various simulated and real test datasets, to confirm that the functions

were performing correctly and resulted in the correct values.

6.5 Application to counts of cysts in steroid treated foetal

mouse kidneys

Section 1.2 in the first chapter presents data from a study on the effect of a low protein

diet in mice on kidney development in their offspring. Data on counts of cysts in

embryonic mouse kidneys which had been subjected to steroids were featured in this

study. This dataset was analysed to compare counts of cysts from n = 111 steroid

treated kidneys and n = 103 untreated (control) kidneys using t-tests, Wilcoxon-Mann-Whitney

tests and discrete regression modelling (McElduff et al., 2010). Cyst counts for the

steroid and untreated kidney groups are given in Tables 6.1 and 6.2. The steroid group

has one kidney with 19 cysts, which is much higher than the maximum number of cysts

found in the control group of kidneys (maximum=3). A high number of cysts indicates

abnormal kidney growth and so we investigate whether the kidney with a count of 19

cysts in the steroid treated group is an outlying observation.

Frequency 0 1 2 3 4 5 6 7 8 9 10 11 19
Cyst Counts 65 14 10 6 4 2 2 2 1 1 1 2 1

Table 6.1: Counts of Cysts in steroid treated kidneys

Frequency 0 1 2 3
Cyst Counts 94 4 4 1

Table 6.2: Counts of Cysts in control kidneys

The analysis in this section is presented in three parts. Firstly, counts of cysts in

steroid treated kidneys are assessed for outliers using the EPGF method. A range of

models are fitted in the second section to determine the distribution which best models

the counts of cysts. In the final section, the presence of outliers in the dataset is tested

for a range of models by plotting the SI.
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6.5.1 Outlier Detection using the EPGF

Two methods for the detection of outliers in discrete distributions can be found in the

discrete.diag library. The EPGF method of detecting outliers is non-parametric

and does not assume the data follows any type of model. We can analyse counts of

cysts in steroid-treated kidneys for outliers using the outlier.plot function as

follows,

> outliers.plot(steroid)
[1] A potential outlier of 19 with frequency 1 is

detected in positions: 3

The result of the above R command is shown in Figure 6.6. The graph plots 111 EPGF

curves each calculated with 110 observations. One EPGF curve (highlighted in red)

differs substantially from the remainder of the curves, with large values of the EPGF

for t between 1 and 2. Removing the observation with 19 cysts which is in position

two of the steroid data vector, the EPGF outliers plot can be refitted to see the affect

that observation has on the output.

> outliers.plot(steroid[-3])
[1] A potential outlier of 11 with frequency 2 is

detected in positions: 12, 31
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The resulting output for this command is featured in Figure 6.7 which plots 110 EPGF

curves each calculated with 109 observations. The curve highlighted in red for the

kidney with 11 cysts does not differ from the other curves. This leads us to conclude

that the kidney with 19 cysts would be considered as an outlier with respect to the

remainder of the dataset.

6.5.2 Model fitting

The second outlier detection method utilizes the SI which is dependent upon the distribution

fitted to the data. Using the altmann.fitter a range of 12 distributions can

be fitted to the counts of cysts in steroid treated kidneys and compared using the

goodness-of-fit values,

> altmann.fitter(steroid, family=c("POIS", "GEO", "NB", "HY",
+ "HO", "YU", "WA", "ZIPO",
+ "ZINB", "2PO", "2PNB", "NYA"))

Distribution n.par AIC BIC chisq df chisq.p
3 NB 2 353.6263 359.0454 14.37728 17 0.6402
6 YU 1 357.2297 359.9393 16.68914 18 0.5446
7 WA 2 356.5583 361.9774 18.88797 17 0.3350
5 HO 2 357.3904 362.8094 20.32699 17 0.2578
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9 ZINB 3 355.3196 363.4482 16.46417 16 0.4211
11 2PNB 4 357.3625 368.2006 17.78310 15 0.2742
12 NYA 2 367.8920 373.3111 29.00046 17 0.0345
2 GEO 1 381.0691 383.7787 50.93147 18 0.0001
10 2PO 3 377.7285 385.8570 28.86159 16 0.0249
8 ZIPO 2 408.6673 414.0863 120.79333 17 0.0000
1 POIS 1 561.4071 564.1166 257.19810 18 0.0000
4 HY 3 659.3490 667.4776 390.84982 16 0.0000

The Negative Binomial distribution is the best fit to the data of the 12 models fitted

to counts of cysts in embryonic mouse kidneys. This model has the smallest BIC

value at 359.05 and the highest χ2 test statistic p-value of 0.64. These results therefore

suggests that the negative binomial distribution provides a good fit to the data.

The data-generating mechanism of the negative binomial model can be used to

explain the distribution of counts of cysts. We assume that the data is generated from a

Poisson-Gamma parameter-mix, with counts of cysts following a Poisson distribution

with one parameter, the mean number of cysts, which varies according to a Gamma

distribution. This interpretation of the negative binomial model suggests the underlying

capacities of the kidneys may or may not be identical. A Poisson model assumes that

they are the same, whereas the negative binomial model allows for variation. Parameter

estimates and goodness-of-fit statistics for the negative binomial model can be fitted

by maximum likelihood estimation using the mle.NB function,

> cysts.NB1<-mle.NB(steroid)
Rapid Estimates

re.coef
r 0.3325390
p 0.1766862
Maximum Likelihood Estimates
mle.coef mle.se mle.LCI mle.UCI

r 0.296159 0.0650951 0.1918850 0.455564
p 0.160460 0.0439025 0.0932997 0.246146
Fitted Values

0 1 2 3 4 5 6 7 8 9
obs 65.00 14.00 10.00 6.00 4.00 2.0 2.00 2.00 1.0 1.00
exp 64.56 16.05 8.73 5.61 3.88 2.8 2.08 1.57 1.2 0.93

10 11 12 13 14 15 16 17 18 19
obs 1.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0
exp 0.72 0.57 0.45 0.36 0.28 0.23 0.18 0.15 0.12 0.1
Diagnostics

chisq df p logL AIC BIC
model 14.37728 17 0.6402388 -174.8132 353.6263 359.0454
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This model estimates the parameters of the negative binomial distribution as r =

0.30 (95% CI: (0.17, 0.42)) and p = 0.16 (95% CI: (0.07, 0.25)). Fitted values estimate

the observed values well at lower values of numbers of cysts.

6.5.3 Outlier detection using Surprise Index

We can fit the SI for the Poisson and negative binomial distributions using the

surprise.plot function. Four models are fitted to the number of cysts in steroid

treated kidneys: 1) a Poisson model, 2) a Poisson model excluding the value of 19

cysts, 3) a negative binomial model and 4) the negative binomial model excluding the

kidney with 19 cysts. Plots of the SI for these four models are shown in Figures 6.8

and 6.9 and values of the SI for the four models can be found in Table 6.3.

Frequency 1. Poisson 2. Poisson 3. NB 4. NB
without outlier without outlier

0 1.12 1.02 0.63 0.64
1 0.73 0.73 2.56 2.47
2 0.94 1.05 4.71 4.59
3 1.81 2.27 7.33 7.31
4 4.68 6.54 10.60 10.84
5 15.10 23.51 14.69 15.44
6 58.43 101.40 19.82 21.43
7 263.96 510.30 26.25 29.22
8 1362.76 2935.04 34.29 39.30
9 7915.12 1.90×104 44.31 52.33

10 5.11×101 1.37×105 56.77 69.12
11 3.64×105 1.08×106 72.24 90.70
12 2.81×106 – 91.41 –
13 2.36×107 – 115.12 –
14 2.13×108 – 144.38 –
15 2.06×109 – 180.44 –
16 2.13×1010 – 224.81 –
17 2.33×1011 – 279.35 –
18 2.71×1012 – 346.28 –
19 3.32×1013 – 428.33 –

Table 6.3: Table of SI’s for the four models.

SI’s for the Poisson distribution in model 1) are given in Table 6.3 and are plotted in

the first plot of Figure 6.8. Any observations with values greater than 7 are considered

to be outliers. The table of model comparisons in the previous section shows this to be
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Figure 6.8: SI plots of counts of cysts in steroid treated foetal mouse kidneys for models
1) a Poisson distribution and 2) a Poisson distribution excluding the kidney with 19
cysts.
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Figure 6.9: SI plots of counts of cysts in steroid treated foetal mouse kidneys for models
1) a negative binomial distribution and 2) a negative binomial distribution excluding
the kidney with 19 cysts.
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the worst of the models fitted to the data. If we fit a Poisson distribution without the

observation of 19 cysts in a kidney (model 2) shown in the second plot of Figure 6.8

there are still surprising values detected and anything greater than 7 is still considered

an outlier.

SI plots for model 3, the negative binomial model, and model 4, the negative

binomial model which excludes the potentially outlying observation of 19, are given

in Figure 6.9. In the first plot, under a negative binomial model there are no values

that are considered to be surprising. If the kidney with 19 cysts is excluded from the

SI calculation, then under the negative binomial model (model 4) there are still no

surprising values and therefore no outliers detected. These results suggests that the

value of 19 cysts is to be considered an outlier under a Poisson model but if we assume

a negative binomial model, which can account for overdispersion in the model, then

this observation is not an outlier. Model 4 which fits a negative binomial distribution

removing the observation of 19 cysts can be fitted using the mle.NB function,

> cysts.NB2<-mle.NB(steroid[-3])
Rapid Estimates

re.coef
r 0.4146782
p 0.2296639
Maximum Likelihood Estimates
mle.coef mle.se mle.LCI mle.UCI

r 0.321606 0.0742157 0.204391 0.507190
p 0.187782 0.0511094 0.109870 0.286349
Fitted Values

0 1 2 3 4 5 6 7 8 9 10 11
obs 65.00 14.00 10.00 6.00 4.00 2.00 2.00 2.00 1.00 1.00 1.0 2.00
exp 64.24 16.78 9.01 5.66 3.82 2.68 1.93 1.42 1.05 0.79 0.6 0.46
Diagnostics

chisq df p logL AIC BIC
model 6.385447 9 0.7008068 -167.5441 339.0881 344.4891

The above model’s parameters values are similar to those of the negative binomial

distribution in model 3 and the BIC is improved only slightly in comparison.

We can conclude that the observation of 19 may be considered an outlier under

the Poisson distribution which does not allow for overdispersion in the model. If we

account for overdispersion by fitting a negative binomial distribution then we do not
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consider this value to be an outlier and we can include it in the model - indeed including

this values does not have a great effect on the outcome of the models parameters. This

example illustrates the importance of the choice of distribution when analysing discrete

data.

Summary

This chapter has demonstrated the use of functions for diagnostic analysis featured

in the discrete.diag R library. Goodness-of-fit, model comparison and outlier

detection methods help inform the choice of distribution in analyses and improves the

understanding of the fitted model. Outlier detection in counts of cysts in embryonic

mouse kidneys provides an example of the application of this library in practice. In

the next chapter, distributions for fitting GAMLSS models are developed within the

gamlss library.
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Chapter 7

discrete.reg library

The discrete.reg library contains functions to fit discrete regression models within

a GAMLSS framework and utilizes the gamlss R library by Stasinopoulos and Rigby

(2008). The GAMLSS framework requires distributions to be parametrized in terms

the location, µ, (often the mean) and scale, σ. The first three sections present alternative

parametrizations of the Geometric, Yule and Waring distributions. For each distribution,

the probability density, cumulative density, quantile and random generating functions

have been re parametrized for the location and (where appropriate) scale parameters as

required for the GAMLSS framework. The gamlss.family object is necessary for

the gamlss() fitting procedure and is also defined. The use of these distributions for

modelling is demonstrated using counts of stillbirths in New Zealand white rabbits,

previously used as an example throughout Chapters 5 and 6. In the final section

discrete regression models using distributions found in the discrete.reg library

are applied to a study on the incidence of ES in paediatric coma patients introduced in

Section 1.2.3 in Chapter One.

7.1 Geometric Distribution

The Geometric distribution presented in Section 2.3 has one parameter p, with mean
1− p
p

. Setting the mean of the Geometric distribution equal to the location parameter
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µ, the pdf can be rearranged to give,

fY (y;µ) = P (Y = y) =

(
µ

µ+ 1

)y (
1

µ+ 1

)
. (7.1)

The probability density, cumulative density, quantile and random generating functions

follow the format given in Section 5.3 and each have the following usage,

dGEOM(x, mu = 2, log = FALSE)
pGEOM(q, mu = 2, lower.tail = TRUE, log.p = FALSE)
qGEOM(p, mu = 2, lower.tail = TRUE, log.p = FALSE,

max.value = 10000)
rGEOM(n, mu = 2)

where x and q are vectors of discrete quantiles, p is a vector of probabilities and

n gives the number of random values to return. The argument mu is a vector of

positive mu values, whilst lower.tail and log.p are both logical arguments. If

the lower.tail argument is set to the default value TRUE probabilities are P [Y ≤

y], otherwise P [Y > y]. For the argument log.p if this is TRUE the probabilities, p,

are given as log(p). A constant argument max.value generates a sequence of values

for the cumulative distribution function.

The probability density, cumulative density, quantile and random generating functions

have the same applications and result in the similar output as those previously described

in Section 5.3. These functions are required as they are utilized in the gamlss.family

object. The GEOM function provides the information required by gamlss for fitting

the Geometric distribution. This function has usage,

GEOM(mu.link = "log")

where mu.link defines the link to be used for the mu parameter, with "log" link

as the default. The code for this function is given in Listing 6.1 and uses functions

provided by the gamlss library as a template on which to base this function.

1 GEOM<-function (mu.link = "log")
2 {
3 mstats <- checklink("mu.link", "Geometric",
4 substitute(mu.link),
5 c("log", "probit", "cloglog",
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6 "cauchit", "log", "own"))
7 structure(list(family = c("GEOM", "Geometric"),
8 parameters = list(mu = TRUE),
9 nopar = 1,

10 type = "Discrete",
11 mu.link = as.character(substitute(mu.link)),
12 mu.linkfun = mstats$linkfun,
13 mu.linkinv = mstats$linkinv,
14 mu.dr = mstats$mu.eta,
15 dldm = function(y, mu){
16 dldm <- (y - mu)/(mu + (mu^2))
17 dldm
18 },
19 d2ldm2 = function(mu){
20 d2ldm2 <- -1/(mu+(mu^2))
21 d2ldm2
22 },
23 G.dev.incr = function(y, mu, ...) -2 *
24 dGEOM(y, mu, log = TRUE),
25 rqres = expression(rqres(pfun = "pGEOM",
26 type = "Discrete",
27 ymin = 0, y = y, mu = mu)),
28 mu.initial = expression(mu <- rep(mean(y),
29 length(y))),
30 mu.valid = function(mu) all(mu > 0) ,
31 y.valid = function(y) all(y >=0)),
32 class = c("gamlss.family", "family"))
33 }

Listing 7.1: Geometric GAMLSS family distribution function.

R code for gamlss.family objects follow a template which provide certain

information required for fitting in gamlss. The gamlss.family distribution functions

have three fields: i) the definition of the link functions, ii) the information needed for

fitting the distributions and iii) the class definition (Stasinopoulos and Rigby, 2008).

The gamlss.family function code for the Geometric distribution in Listing 7.1 can

be explained by these three separate sections.

i) Definition of the link function

The mstats object found in lines 3-6 of the GEOM provides the definition of the link

function for the mu parameter. The which.link argument specifies which parameter

the link is for and the which.dist argument determines the current distribution, in
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this case "Geometric". The link is specified in the link argument and link.List

gives a list of the possible links for the specific parameter. In the case of the Geometric

distribution the parameter mu is limited to values greater than zero and hence a log link

is used to restrict the mu parameter values to positive values.

ii) Fitting information

In this section information needed in the fitting procedure is specified, including the

family name of the distribution, which parameters will be fitted (in this case only the

mu parameter) and the number of parameters. The type argument determines the type

of distribution, i.e. discrete. The mu.link, mu.linkfun, mu.linkinv and

mu.dr objects give details of the mu link detailed in the mstats object.

The key aspect of this function is the specification of the first and expected second

derivatives of the log likelihood function. The log-likelihood, `, of the Geometric

distribution is,

`(µ) = y log

(
µ

µ+ 1

)
+ log

(
1

µ+ 1

)
. (7.2)

Expressions for the derivatives can be calculated analytically using Mathematica.

The first derivative of the likelihood, `, with respect to the location parameter µ is,

∂`

∂µ
=

y − µ
µ+ µ2

.

This derivative is given in lines 15-17 of the code as the object dldm. Also needed is

the expected second derivative of the likelihood with respect to µ,

E

[
∂2`

∂µ2

]
= − 1

µ+ µ2
.

This derivative can be found in lines 19-22 as the d2ldm2 object.

Also found in this list is the global deviance G.dev.incr which utilizes the

dGEOM function in its calculation. Expressions for the initial starting values of the

parameters are given in mu.initial whilst the range of values for the parameters

and the response variable are given in mu.valid and y.valid.
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iii) Class

In the resulting function each family is defined as a gamlss.family object and is

used to define the family in the gamlss() fit.

GAMLSS regression models can be fitted for distributions using the gamlss

fitting procedure. The gamlss function has usage,

gamlss(formula, sigma.formula = ∼1, nu.formula = ∼1,
tau.formula = ∼1, family = NO(), data, ... )

where formula is a formula object with the equation for the model, with the response

and model terms separated using a ’∼’. The arguments sigma.formula, nu.formula

and tau.formula can optionally be used to specify models for the sigma, nu

and tau parameters. The GAMLSS distribution to be fitted is specified in family

which must be a gamlss.family object. The data argument specifies a data

frame containing the variables occurring in the model formula. More details on other

arguments of the the gamlss function and other functions in the gamlss libraries

can be found in the GAMLSS R manual (Stasinopoulos and Rigby, 2008). Fitting of

the Geometric distribution in the GAMLSS framework using the gamlss.family

object, GEOM, to numbers of stillbirths in litters of New Zealand white rabbits can be

illustrated with the following R commands:

> mod <- gamlss(rabbits∼1, family=GEOM)
GAMLSS-RS iteration 1: Global Deviance = 731.6
> summary(mod)

*******************************************************************
Family: c("GEOM", "Geometric")

Call: gamlss(formula = rabbits ∼ 1, family = GEOM)

Fitting method: RS()

-------------------------------------------------------------------
Mu link function: log
Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)
-7.761e-01 4.442e-02 -1.747e+01 3.084e-51

-------------------------------------------------------------------
No. of observations in the fit: 402
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Degrees of Freedom for the fit: 1
Residual Deg. of Freedom: 401

at cycle: 1

Global Deviance: 731.6
AIC: 733.6
SBC: 737.5965

*******************************************************************
> mod$mu.fv[1]

1
0.460199
> histDist(rabbits, family=GEOM)

The generic function summary produces a summary of the results of gamlss

models which have class "gamlss". The fitted Geometric model for the number of

stillbirths (Y ) is given by Y ∼ Geometric(µ̂). The output estimates the coefficient

of the µ function as −0.078 and we can therefore estimate the mean parameter as

µ̂ = exp(−0.078) = 0.46. This value can also be extracted from the fitted values

of the model, using the command mod$mu.fv[1]. Plot a) in Figure 7.1 shows the

fitted Geometric distribution created using the histDist command, shown above.

This distribution is not a good fit to the data as it underestimates the proportion of

zeros and overestimates the probability of one or two stillbirths.

7.2 Yule Distribution

Initially presented in Section 2.16 of Chapter 2, the Yule distribution has one parameter,

λ with pdf,

fY (y;λ) =
B (λ+ 1, y + 1)

B (λ, 1)
. (7.3)

This distribution can be reparameterized in the GAMLSS framework with location

parameter µ equal to the mean, given by µ =
1

λ− 1
. By substituting λ =

µ+ 1

µ
, into

the pdf of the Yule distribution it then becomes,

fY (y;µ) = P (Y = y) =
B
(

2µ+1
µ
, y + 1

)
B
(
µ+1
µ

) , (7.4)
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Figure 7.1: Numbers of stillbirths in New Zealand White rabbits with fitted a)
Geometric b) Yule and c) Waring distributions respectively
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As for the Geometric distribution there are five functions for the Yule distribution:

the probability density, cumulative density, quantile and random generating functions

alongside a distribution function in the form of a gamlss.family object. The pdqr

functions for the Yule distribution with parameter mu have the following usage,

dYUL(x, mu = 2, log.p = FALSE)
pYUL(q, mu = 2, lower.tail = TRUE, log.p = FALSE)
qYUL(p, mu = 2, lower.tail = TRUE, log.p = FALSE,
max.value = 10000)
rYUL(n, mu = 2)

where the arguments of these functions are the same as those given in the previous

section for the Geometric distribution. The YUL gamlss.family function has

usage,

YUL(mu.link = "log")

with argument "mu.link" specifying the link of the mu parameter.

1 YUL<-function (mu.link = "log")
2 {
3 mstats <- checklink(which.link="mu.link",
4 which.dist="Yule", link=substitute(mu.link),
5 link.List="log")
6
7 structure(list(family = c("YUL", "Yule"),
8 parameters = list(mu = TRUE),
9 nopar = 1,

10 type = "Discrete",
11 mu.link = as.character(substitute(mu.link)),
12 mu.linkfun = mstats$linkfun,
13 mu.linkinv = mstats$linkinv,
14 mu.dr = mstats$mu.eta,
15 dldm = function(y, mu){
16 lambda <- (mu+1)/mu
17 dldm <- (digamma(lambda+1) - digamma(lambda+y+2)
18 +(1/lambda))*(-1/(mu^2))
19 dldm
20 },
21 d2ldm2 = function(y, mu){
22 d2ldm2 <- 1/(mu*(mu-1))
23 d2ldm2
24 },
25 G.dev.incr = function(y, mu, ...)
26 -2 * dYUL(y, mu = mu, log = TRUE),
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27 rqres = expression(rqres(pfun = "pYUL",
28 type = "Discrete", ymin = 0, y = y, mu = mu)),
29 mu.initial = expression(mu <- rep(mean(y),
30 length(y))),
31 mu.valid = function(mu) all(mu > 0) ,
32 y.valid = function(y) all(y >=0)),
33 class = c("gamlss.family", "family"))
34 }

Listing 7.2: Yule Family distribution function.

R code for the Yule gamlss.family distribution function, YUL is given in

Listing 7.2. This function again follows the template provided by the gamlss library

for gamlss.family objects and since this function has the same parameter as the

GEOM function there are many similarities between these two functions. The YUL

function also uses a log link for the parameter mu in the mstats object in lines 3-5.

The family argument now specifies that a Yule distribution is to be fitted.

The expressions for the first and expected second derivatives can be found by

making use of the log-likelihood for the λ parameterization of the Yule distribution

in Equation 7.3 given by,

`(λ) = log Γ(λ+ 1) + log Γ(y + 1)− log Γ(λ+ y + 2) + log λ . (7.5)

The first derivative of the log-likelihood `, with respect to the location parameter µ can

be derived by using the chain rule, as follows,

∂`

∂µ
=
∂`

∂λ
× ∂λ

∂µ

=
(
ψ(λ+ 1)− ψ(λ+ y + 2) + 1

λ

) (
− 1
µ2

) , (7.6)

where ψ(n) (z) gives the nth derivative of the digamma function. Also needed is the

expected second derivative of the log-likelihood with respect to µ,

E

[
∂2`

∂µ2

]
=

1

µ(µ− 1)
. (7.7)

These derivative can be found as the objects dldm and d2ldm2 in lines 16-25 of the
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YUL function code. In, the gamlss.family template the commands to calculate

the global deviance for the model G.dev.incr and the quantile residuals rqres

use the dYUL and pYUL functions in their computation.

We can also fit the Yule distribution as a GAMLSS model to the numbers of

stillbirths in litters of New Zealand white rabbits using the following R code,

> mod <- gamlss(rabbits~1, family=YUL)
GAMLSS-RS iteration 1: Global Deviance = 677.5246
GAMLSS-RS iteration 2: Global Deviance = 677.5239
> summary(mod)
GAMLSS-RS iteration 1: Global Deviance = 677.5246
GAMLSS-RS iteration 2: Global Deviance = 677.5239

*******************************************************************
Family: c("YUL", "Yule")

Call: gamlss(formula = rabbits ∼ 1, family = YUL)

Fitting method: RS()

-------------------------------------------------------------------
Mu link function: log
Mu Coefficients:
Estimate Std. Error t value Pr(>|t|)

-7.898e-01 6.737e-02 -1.172e+01 1.708e-27

-------------------------------------------------------------------
No. of observations in the fit: 402
Degrees of Freedom for the fit: 1

Residual Deg. of Freedom: 401
at cycle: 2

Global Deviance: 677.5239
AIC: 679.5239
SBC: 683.5204

*******************************************************************
> mod$mu.fv[1]

1
0.4539463
> histDist(rabbits, family=YUL)

The fitted Yule distribution for the number of stillbirths (Y ) in litters of New

Zealand white rabbits is given by Y ∼ YUL(µ̂) where µ̂ = exp(−0.79) = 0.45.

In Figure 7.1 the second plot shows the fitted Yule distribution to the numbers of

stillbirths, again produced using the histDist function. The plot shows that a Yule

distribution provides a better fit to the data in comparison to the Geometric distribution
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and is supported by the lower BIC value of 683.52 in contrast to a value of 737.60 for

the Geometric model.

7.3 Waring Distribution

The Waring distribution presented in Section 2.3.6 of Chapter 2 has two parameters n

and b with pdf,

fY (y;n, b) = P (Y = y) =
B(n+ y, b+ 1)

B(n, b)
, (7.8)

where b ≥ 0 and n ≥ 0 (Wimmer and Altmann, 1999, P. 643). The mean of this

distribution is

µ =
n

b− 1
, (7.9)

with variance

σ2 =
B(1 + n, 1 + b)PFQ({2, 2, 1 + n}, {1, 2 + b+ n}, 1)

B(n, b)
− n2

(b− 1)2
. (7.10)

Since the expression for the variance contains a hypergeometric function, when attempting

to solve these as simultaneous equations the solution is intractable for expressions

of b and n. If we let the location parameter µ =
n

b− 1
and set σ =

1

b− 1
, we can

reparameterize the Waring distribution in Equation 7.8 where b = 1 +
1

σ
and n = µ (b− 1),

giving the following pdf,

fY (y;µ, σ) = P (Y = y) =
(1− σ) Γ

(
y + µ

σ

)
Γ
(
µ+σ+1

σ

)
σ Γ
(
y + µ+1

σ
+ 2
)

Γ
(
µ
σ

) . (7.11)

where µ > 0 and σ > 0. The pdqr functions for the Waring distribution with

parameters µ and σ have usage,

dWAR(y, mu = 2, sigma = 2, log.p = FALSE)
pWAR(q, mu = 2, sigma = 2, lower.tail = TRUE, log.p = FALSE)
qWAR(p, mu = 2, sigma = 2, lower.tail = TRUE, log.p = FALSE,

max.value = 10000)
rWAR(n, mu = 2, sigma = 2)
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where mu and sigma are vectors of positive mu and sigma parameters. The arguments

y, q, p, n, lower.tail, log.p and max.value are as described for the Yule

pdqr functions in the previous section. The WAR function defines the Waring distribution

as a gamlss.family object and has usage,

WAR(mu.link = "log", sigma.link = "log")

with two arguments mu.link and sigma.link for the links of the parameters mu

and sigma. R code for this function is given in Listing 7.3.

1 WAR <- function (mu.link = "log", sigma.link = "log")
2 {
3 mstats <- checklink("mu.link", "WAR",
4 substitute(mu.link), "log")
5 dstats <- checklink("sigma.link", "WAR",
6 substitute(sigma.link), "log")
7 structure(list(family = c("WAR", "Waring"),
8 parameters = list(mu = TRUE, sigma = TRUE),
9 nopar = 2, type = "Discrete",

10 mu.link = as.character(substitute(mu.link)),
11 sigma.link = as.character(substitute(sigma.link)),
12 mu.linkfun = mstats$linkfun,
13 sigma.linkfun = dstats$linkfun,
14 mu.linkinv = mstats$linkinv,
15 sigma.linkinv = dstats$linkinv,
16 mu.dr = mstats$mu.eta, sigma.dr = dstats$mu.eta,
17 dldm = function(y, mu, sigma) {
18 dldm <- (1/sigma) * (digamma((mu/sigma) + y)
19 - digamma(y + (mu + 1)/sigma) + 2)
20 - digamma(mu/sigma)
21 + digamma((mu + sigma + 1)/sigma))
22 dldm
23 }, d2ldm2 = function(y, mu, sigma) {
24 dldm <- (1/sigma) * (digamma((mu/sigma) + y)
25 - digamma(y + ((mu + 1)/sigma) + 2)
26 - digamma(mu/sigma)
27 + digamma((mu + sigma + 1)/sigma))
28 d2ldm2 <- -dldm * dldm
29 d2ldm2
30 }, dldd = function(y, mu, sigma) {
31 dldd <- (1/sigma^2) * (-1 + (1/(sigma + 1))
32 - mu * harmonic(y + (mu/sigma) - 1)
33 + (mu + 1) * harmonic(y +
34 ((mu + 1)/sigma) + 1)
35 - (mu + 1) * harmonic((mu + 1)/sigma)
36 + mu * (-digamma(1)
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37 + digamma(mu/sigma)))
38 dldd
39 }, d2ldd2 = function(y, mu, sigma) {
40 dldd <- (1/sigma^2) * (-1 + (1/(sigma + 1))
41 - mu * harmonic(y + (mu/sigma) - 1)
42 + (mu + 1) * harmonic(y +
43 ((mu + 1)/sigma) + 1)
44 - (1 + mu) * harmonic((mu + 1)/sigma)
45 + mu * (-digamma(1)
46 + digamma(mu/sigma)))
47 d2ldd2 <- -dldd * dldd
48 d2ldd2
49 }, d2ldmdd = function(y, mu, sigma) {
50 dldm <- (1/sigma) * (digamma((mu/sigma) + y)
51 - digamma(y + ((mu + 1)/sigma) + 2)
52 - digamma(mu/sigma)
53 + digamma((mu + sigma + 1)/sigma))
54 dldd <- (1/sigma^2) * (-1 + (1/(sigma + 1))
55 - mu * harmonic(y + (mu/sigma) - 1)
56 + (mu + 1) * harmonic(y +
57 ((mu + 1)/sigma) + 1)
58 - (1 + mu) * harmonic((mu + 1)/sigma)
59 + mu * (-digamma(1)
60 + digamma(mu/sigma)))
61 d2ldmdd <- -dldm * dldd
62 d2ldmdd
63 }, G.dev.incr = function(y, mu, sigma, ...) -2 *
64 dWAR(y, mu, sigma, log = TRUE),
65 rqres = expression(rqres(pfun = "pWAR",
66 type = "Discrete", ymin = 0, y = y,
67 mu = mu, sigma = sigma)),
68 mu.initial = expression(mu <-
69 (y + mean(y))/2),
70 sigma.initial = expression(sigma <-
71 rep(2, length(y))),
72 mu.valid = function(mu) all(mu > 0),
73 sigma.valid = function(sigma) all(sigma > 0),
74 y.valid = function(y) all(y >= 0)),
75 class = c("gamlss.family", "family"))
76 }

Listing 7.3: Waring family distribution function.

The Waring distribution’s two parameters, mu and sigma are reflected in this

template of this function. In the first section of the code, there is an additional object

dstatswhich specifies the link of the sigma parameter in the same way that mstats

specifies the link of the mu parameter. For this distribution "log" links are once again
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used as both parameters are restricted to positive values.

Within the second section of the distribution, additional information is needed on

the sigma parameter which can be extracted from the dstats object detailing the

link function. The log-likelihood for the Waring distribution given in Equation 7.11 is,

`(µ, σ) = log

(
1 +

1

σ

)
+ log Γ

(
y +

µ

σ

)
− log Γ

(
y +

µ+ 1

σ
+ 2

)
−log Γ

(µ
σ

)
+ log Γ

(
µ+ σ + 1

σ

) . (7.12)

The first derivative of the log-likelihood of the Waring distribution `, with respect to µ:

∂`

∂µ
=

1

σ

(
ψ
(
y +

µ

σ

)
− ψ

(
y +

µ+ 1

σ
+ 2

)
− ψ

(µ
σ

)
+ ψ

(
µ+ σ + 1

σ

))
,

(7.13)

where Hn gives the nth harmonic number. This derivative is specified in lines 17-23 of

the WAR function as the object dldm. For the second parameter, σ, the first derivative

of the log-likelihood of the Waring distribution with respect to σ is:

∂`

∂σ
=

1

σ2
(

1

σ + 1
− µH

(
y +

µ

σ
− 1
)

+ (1− µ)H

(
y +

µ+ 1

σ
+ 1

)
−(1 + µ)H

(
µ+ 1

σ

)
+ µ

(
γ + ψ

(µ
σ

))
− 1 ) ,

(7.14)

where γ is Euler’s constant with numerical value ≈ 0.577216 (Johnson et al., 2005,

P.9). The derivative for the sigma parameter dldd and d2ldd2 are computed

in lines 30-39. Expressions for the expected second derivatives can be replaced for

this distribution by the negative squared first derivatives, shown in lines 39-49 for

the expected second derivative of the log-likelihood with respect to µ (d2ldm2),

lines 39-49 for the expected second derivative of the log-likelihood with respect to

σ (d2ldd2) and lines 49-63 for the expected cross derivative of the log-likelihood

with respect to µ and σ (d2ldmdd).

In the final section of the template code, the G.dev.incr object now utilizes

the probability density function specified for the Waring distribution in calculating the

global deviance of the model and the cumulative density function is used to calculate
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the quantile residuals in the object rqres. Initial values and valid parameter bounds

are given for sigma in lines 28 and 40.

The Waring distribution can also be fitted as a GAMLSS model to the numbers of

stillbirths in litters of New Zealand white rabbits as follows:

> mod <- gamlss(rabbits~1, family=WAR)
GAMLSS-RS iteration 1: Global Deviance = 680.5955
GAMLSS-RS iteration 2: Global Deviance = 679.5804

.

.

.
GAMLSS-RS iteration 12: Global Deviance = 675.889
GAMLSS-RS iteration 13: Global Deviance = 675.8882
> summary(mod)

*******************************************************************
Family: c("WAR", "Waring")

Call: gamlss(formula = rabbits ∼ 1, family = WAR)

Fitting method: RS()

-------------------------------------------------------------------
Mu link function: log
Mu Coefficients:
Estimate Std. Error t value Pr(>|t|)

-7.179e-01 1.745e-01 -4.113e+00 4.734e-05

-------------------------------------------------------------------
Sigma link function: log
Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)
-0.3459 0.3803 -0.9096 0.3636

-------------------------------------------------------------------
No. of observations in the fit: 402
Degrees of Freedom for the fit: 2

Residual Deg. of Freedom: 400
at cycle: 13

Global Deviance: 675.8882
AIC: 679.8882
SBC: 687.8811

*******************************************************************
> mod\$mu.fv[1]

1
0.4877834
> mod\$sigma.fv[1]

1
0.7075593
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> histDist(rabbits, family=WAR)

The summary of the output shows that the fitted Waring distribution for the number

of stillbirths (Y )in litters of New Zealand white rabbits is given by Y ∼ WAR(µ̂, σ̂)

where µ̂ = exp(−0.72) = 0.49 and σ̂ = exp(−0.35) = 0.71. The final plot in Figure

7.1 shows the fitted Waring distribution against the numbers of stillbirths, created using

the above histDist command. Comparing this plot and the BIC value of 687.88

to the fitted distributions and BIC’s of the Geometric and Yule distributions, we can

conclude that of the three models fitted the Waring distribution provides the best fit to

the data.

7.4 Validation of the functions

In this library, the three distributions each have d, p, q and r distribution functions

and a GAMLSS family function. The distribution functions were tested for a range

of parameter values in the same way as the distribution functions in the Altmann

library. GAMLSS family functions can were also tested using a randomly generated

sample from the selected distribution, with known parameter estimates. A GAMLSS

model was then fitted to the sample to confirm that the model produced approximately

the same parameter estimates. Correct convergence was checked inside the GAMLSS

models using i.control = glim.control(glm.trace=T) , where at each

iteration it was confirmed that the deviance was reducing. Residual analysis of these

GAMLSS models also established that the models were performing adequately.

The results of the GAMLSS models can also be compared to fitted values from

published datasets in a similar way to those in the Altmann library. The datasets

used were the counts of stillbirths in New Zealand white rabbits (Morgan et al., 2007)

and haemocytometer counts of yeast cells (Plunkett and Jain, 1975) datasets presented

in the Altmann library. The results from the GAMLSS models for each distribution

were compared to the results using maximum likelihood estimation in the Altmann

library and also the rapid estimated produced by the Altmann fitter software program
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(Altmann, 1997), to check for consistency in the parameter estimates and fitted values.

7.5 Application to Electroencephalographic Seizures in

coma patients

Data from a study on the incidence of electroencephalographic seizures (ES) in comatose

patients is presented in Section 1.3 of Chapter One. The aim of this study is to use

continuous EEG monitoring to document the incidence of ES in children unconscious

from a variety of aetiologies. Regression models are used to investigate potential

predictors of incidence of ES, exploratory variables are: centre (UK, UK neonate or

Kenya), aetiology (with levels: Encephalitis, Head Injury, Hypoxic-ischaemic, Maleria,

Meningitis, Reye’s and other), EEG classification (with levels: Burst suppression,

Diffuse slowing, diffuse slowing with some fast activity, Isoelectric, Low amplitude,

Normal), the presence of clinical seizures at any time (yes/no) and the following

variables on admission: Pediatric Index of Mortality (PIM) score, Adelaide Coma

Scale (ACS) score, temperature, the use of drugs benzodiazepine (yes/no) and

phenytoin/phenobarbitone (yes/no). The number of ES is adjusted by the duration of

monitoring, which is included in models as an offset. ES may be clinically subtle

or only manifest electroencephalographically and differ from clinical seizures which

manifest physically.

The gamlss library can be used to fit regression models using the GAMLSS

framework for a range of discrete distributions. Regression models for discrete outcomes

predict the mean number of ES and coefficients for explanatory variables yield rate

ratios, which estimate the rate of change in the mean number of ES.

A stepwise model analysis was performed to select a predictor variables by minimizing

the BIC. In gamlss, stepwise model selection can be performed using the functions

stepGAIC and stepGAICAll.B. The function step.GAIC is used to build models

for individual parameters of the distribution of the response variable, while the function

stepGAICAll.B builds a model for all the parameters. For each distribution, a null
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model was fitted which includes no covariates. This is illustrated for a Geometric

distribution, GEOM, as follows,

> seiz.mod.geom<-gamlss(NSEIZEEG∼1, offset=DURNMON, data=seizures, + family=GEOM, method=RS(), n.cyc=200)
GAMLSS-RS iteration 1: Global Deviance = 1412.330

The step function stepGAIC and stepGAICAll.B have similar usage,

stepGAIC(object, scope, direction = c("both", "backward",
"forward"), k = 2, ... )

stepGAICAll.B(object, scope, direction = c("both",
"backward", "forward"), k = 2, ... )

where the scope argument defines the range of models examined, with lower detailing

terms always included in the model and upper the most complicated model that the

procedure would consider. The penalization parameter a can be specified as k=log(n)

to give the BIC, where n is the number of independent observations. The argument

direction determines the mode of stepwise search, with "both" performing forward

stepwise model selection. For the above Geometric model a stepwise model selection

can be implemented as follows,

> geom.mod <- stepGAICAll.B(seiz.mod.geom, direction="both",
k=log(184), scope=list(lower=∼1,
upper=∼as.factor(UKENUNEO)+
as.factor(AETIOLOGY)+PIM+ACSOA+TOA+
as.factor(EEGOA)+SEIZURE+PXOTHER+DIAZPRE))

Start: AIC= 1417.55
NSEIZEEG ∼ 1

Df AIC
+ as.factor(AETIOLOGY) 6 1257.3
+ as.factor(EEGOA) 5 1341.9
+ SEIZURE 1 1349.1
+ as.factor(UKENUNEO) 2 1354.8
+ TOA 1 1377.3
+ PIM 1 1391.5
<none> 1417.5
+ DIAZPRE 1 1421.8
+ ACSOA 1 1422.2
+ PXOTHER 1 1422.8

Step: AIC= 1257.28
NSEIZEEG ∼ as.factor(AETIOLOGY)

Df AIC
+ SEIZURE 1 884.53
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+ DIAZPRE 1 1162.84
+ TOA 1 1211.65
+ as.factor(EEGOA) 5 1215.80
+ PIM 1 1250.09
<none> 1257.28
+ ACSOA 1 1262.38
+ PXOTHER 1 1262.48
+ as.factor(UKENUNEO) 2 1266.36
- as.factor(AETIOLOGY) 6 1417.55

Step: AIC= 884.53
NSEIZEEG ∼ as.factor(AETIOLOGY) + SEIZURE

Df AIC
+ TOA 1 870.88
+ DIAZPRE 1 883.52
<none> 884.53
+ PIM 1 886.99
+ as.factor(EEGOA) 5 887.50
+ ACSOA 1 887.86
+ as.factor(UKENUNEO) 2 888.17
+ PXOTHER 1 889.74
- SEIZURE 1 1257.28
- as.factor(AETIOLOGY) 6 1349.11

Step: AIC= 870.88
NSEIZEEG ∼ as.factor(AETIOLOGY) + SEIZURE + TOA

Df AIC
+ PIM 1 866.15
<none> 870.88
+ ACSOA 1 870.92
+ DIAZPRE 1 871.07
+ as.factor(EEGOA) 5 873.91
+ PXOTHER 1 875.24
+ as.factor(UKENUNEO) 2 875.61
- TOA 1 884.53
- SEIZURE 1 1211.65
- as.factor(AETIOLOGY) 6 1229.10

Step: AIC= 866.15
NSEIZEEG ∼ as.factor(AETIOLOGY) + SEIZURE + TOA + PIM

Df AIC
<none> 866.15
+ DIAZPRE 1 866.78
+ ACSOA 1 868.29
- PIM 1 870.88
+ PXOTHER 1 871.20
+ as.factor(UKENUNEO) 2 872.19
+ as.factor(EEGOA) 5 874.42
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- TOA 1 886.99
- as.factor(AETIOLOGY) 6 1151.50
- SEIZURE 1 1184.84

Beginning with the null model (containing no covariates) at each step of the process

each variable is added to the model in turn and the BIC values compared to the current

model in a table. Current variables in a model are also systematically removed, the

model BIC values calculated and included in the table to determine if removing any

of the current models in a backwards procedure improves the fit of the model. In the

output given above, in the table showing the first step of the procedure for a Geometric

model, each variable is systematically added to the null model. The addition of the

variable AETIOLOGY to the null Geometric model (shown in the first line of the table

for the first step) produces the lowest BIC value of the models at 1257.3. The variables

SEIZURE, TOA, and PIM and DIAZPRE are then systematically added in the next 3

steps to result in a final selection of the Geometric model containing: AETIOLOGY,

SEIZURE, TOA and PIM.

Distribution Significant Covariates BIC(in order of addition)
Negative binomial SEIZURE, CENTRE 743.17
Sichel SEIZURE, AETIOLOGY 750.15
Waring SEIZURE, CENTRE, TOA, DIAZPRE 762.56
Delaporte SEIZURE, DIAZPRE, TOA, ACSOA 773.26
Zero-inflated

SEIZURE, TOA 813.15
negative binomial
Yule TOA, DIAZPRE, PIM 858.29
Geometric AETIOLOGY, SEIZURE, TOA, PIM 866.14
Zero-inflted DIAZPRE, EEGOA, CENTRE

4254.40
Poisson TOA, SEIZURE, PXOTHER

Poisson
AETIOLOGY, SEIZURE, EEGOA,

5316.85TOA, CENTRE, PXOTHER,
ACSOA, PIM, DIAZPRE

Table 7.1: Summary of discrete regression models resulting from stepwise model
selection fitted to incidence of ES dataset.

Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative binomial,

Sichel, Delaporte, Geometric, Yule and Waring models were all fitted and a comparison

of BIC values can be found in Table 7.1. The variable SEIZURE is added into all but
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one model (the Yule distribution) however the addition of other variables varies by

distribution. SEIZURE is also added firstly in the top five fitting models. The negative

binomial distribution provides the best fit to the data with a BIC of 743.17 and includes

the variables SEIZURE the presence of seizures and CENTRE the location of the site.

This model is fitted with the R commands below,

> nb.mod<-gamlss(NSEIZEEG∼as.factor(CENTRE)+SEIZURE,
sigma.formula=∼as.factor(CENTRE)+SEIZURE,
data=seizures, offset=DURNMON, family=NBII())

GAMLSS-RS iteration 1: Global Deviance = 710.3076
GAMLSS-RS iteration 2: Global Deviance = 708.0219

.

.

.
GAMLSS-RS iteration 17: Global Deviance = 701.4534
GAMLSS-RS iteration 18: Global Deviance = 701.4529
> summary(nb.mod)

*******************************************************************
Family: c("NBII", "Negative Binomial type II")

Call:
gamlss(formula = NSEIZEEG ∼ as.factor(CENTRE) + SEIZURE,

sigma.formula = ∼as.factor(CENTRE) + SEIZURE,
family = NBII(), data = seizures, offset = DURNMON)

Fitting method: RS()

-------------------------------------------------------------------
Mu link function: log
Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.8708 1.1127 1.681 9.447e-02
as.factor(CENTRE)2 -2.4800 0.5192 -4.776 3.746e-06
as.factor(CENTRE)3 -0.8409 0.7311 -1.150 2.516e-01
SEIZURE 1.9107 1.1434 1.671 9.648e-02

-------------------------------------------------------------------
Sigma link function: log
Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.5221 1.2116 5.383 2.314e-07
as.factor(CENTRE)2 -1.6942 0.6451 -2.626 9.395e-03
as.factor(CENTRE)3 -0.6326 0.8999 -0.703 4.830e-01
SEIZURE -1.5083 1.2550 -1.202 2.310e-02

-------------------------------------------------------------------
No. of observations in the fit: 184
Degrees of Freedom for the fit: 8
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Residual Deg. of Freedom: 176
at cycle: 18

Global Deviance: 701.4529
AIC: 717.4529
SBC: 743.1724

*******************************************************************

The summary command provides tables of parameter estimates and p-values for

the negative binomial model. Discrete regression models yield rate ratios (RRs),

which estimate the change in the relative (rather than absolute) mean number of events

between the groups. RRs can be expressed in different ways. For example,RR = 1.25

indicates that the mean in one group is, on average, 1.25 times higher or, alternatively,

that there is a 25% increase in one group compared with the other. On the other hand,

e.g. RR=0.83 indicates a 17% decrease in one group compared with the other. In this

example, the model predicts the mean number of ES and is adjusted by the duration of

monitoring (measured in hours) as an offset.

For the parameter µ, the mean number of ES for patients in Kenya (Centre 2) is

91.63% lower (RR:exp(-2.48)=0.084, 95% CI:(0.03,0.23), p < 0.001) than those in

the UK Intensive Care Unit (ICU). Similarly, for UK Neonate patients (Centre 3) the

mean number of ES is 56.87% lower (RR:exp(-0.8409)=0.43, 95% CI:(0.10, 1.81),

p = 0.025) than those in the UK ICU. In patients where clinical seizures were present,

the mean number of ES was around 5.5 times higher (RR:exp(1.9107)=6.76, 95%

CI:(0.72, 63.55), p = 0.096) than those who did not have clinical seizures.

In the GAMLSS parameterization of the negative binomial type II distribution the σ

parameter represents the dispersion of the distribution. Patients in Kenya have 81.63%

lower dispersion (RR: exp(-1.6942)=0.18, 95% CI:(0.05, 0.65), p = 0.009 ) than

those in the UK ICU. For UK Neonate patients the dispersion is 46.88% lower (RR:

exp(-0.6326)=0.53, 95% CI:(0.09, 3.10), p = 0.48) compared to those in the UK

ICU. Where actual seizures were present in a patient, the dispersion is 77.87% lower

(RR:exp(-1.5083)=0.22, 95% CI:(0.02, 2.59), p = 0.023) than those who did not have

actual seizures.

The goodness-of-fit of this model can be determined through plots of the randomized
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quantile residuals and can be obtained for models of class "gamlss" using the generic

function plot(),

> plot(nb.mod)

*******************************************************************
Summary of the Randomized Quantile Residuals

mean = -0.05770572
variance = 1.054727

coef. of skewness = 0.04187008
coef. of kurtosis = 2.702588

Filliben correlation coefficient = 0.9981934

*******************************************************************
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Figure 7.2: Residual plot from the fitted negative binomial model

Figure 7.2 shows plots of the (normalized quantile) residuals: i) against the fitted

values ii) against a index iii) a non-parametric kernel density estimate and iv) a normal
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Q-Q plot. The residuals follow normal distribution, indicated by the density estimate

and normal Q-Q plot and plots of the residuals against the fitted values and index show

no signs of non-constant variance or violations of independence. We can therefore

determine that the fit of the model is adequate. The gamlss library can also implement

worm plots of the randomized quantile residuals,

> wp(nb.mod)

●

●

●●●
●

●
●

●●
●

●●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●● ● ●● ●●●

● ●●

●

●

●
●

●

●

● ●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

● ●
● ●

●

●

●
●

● ● ●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●●●
● ●

●
●

●

●
●

●
● ●

● ●
●

●● ●● ●

●

●

●

●

● ●

●

●
● ●●●● ●

●

●
●●

●●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

−4 −2 0 2 4

−
0.

5
0.

0
0.

5

Unit normal quantile

D
ev

ia
tio

n

Figure 7.3: Worm plot from the fitted negative binomial model

The worm plot (van Buuren and Frederiks, 2001) is a de-trended normal Q-Q plot of

the residuals, and points plotted outside of the (dotted) confidence bands indicate a

possible inadequacy in modelling the distribution. The worm plot produced for the

negative binomial model in Figure 7.3 supports the conclusion that the model is an

adequate fit to the data as there are no points outside of the confidence bands.

Estimated values for the parameters of the negative binomial model can be constructed

using the predict generic function. This function first requires a data frame containing

new values for the explanatory variables used in the model. R commands to produce
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the parameter estimates are as follows,
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Figure 7.4: Predictions from the fitted negative binomial model across three centres by
the presence of seizures
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> new.seiz<-data.frame(CENTRE=c(1,1,2,2,3,3),
SEIZURE=c(0,1,0,1,0,1))

> pred.seiz <- predictAll(nb.mod, newdata=new.seiz)
> pred.seiz
$mu
[1] 6.4935144 43.8831234 0.5438137 3.6750893
[5] 2.8008424 18.9280726

$sigma
[1] 679.97566 150.47312 124.94515 27.64935 361.20718
[6] 79.93223

attr(,"family")
[1] "NBII"
[2] "Negative Binomial type II"

The above values of the parameters µ and σ can be used to plot the observed

data and fitted negative binomial model for the number of ES. Figure 7.4 plots the

predictions from the fitted negative binomial model for the three different site locations

in CENTRE and where clinical seizures (SEIZURE) are present and are not present.

Regression analysis of the incidence of ES in paediatric coma patients has shown

a negative binomial model provides the best fit to the data. There are two significant

predictors of incidence of ES in this model: centre of study and presence of clinical

seizures. This model suggests there is no association between incidence of ES and

aetiology, EEG classification, PIM, ACS, temperature, use of drugs benzodiazepine

(yes/no) and phenytoin/phenobarbitone on arrival. The centre of study is associated

with incidence of ES- patients in UK neonatal units and Kenya have lower mean

incidence of ES than those in UK ICU units. The presence of clinical seizures also

decreases the incidence of ES in comparison with those who were not affected by

clinical seizures. The dispersion parameter of the negative binomial distribution is

lower for patients in Kenya and UK Neonatal units than for those in the UK ICU and

is also lower for patients with clinical seizures in comparison to those where clinical

seizures are not present.
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Summary

The aim of the discrete.reg library is to extend the range of discrete distributions

which can be fitted within the GAMLSS framework. Alongside model fitting procedures,

the gamlss library includes many useful tools for model selection, predictions and

goodness-of-fit assessments. The inclusion of a dispersion parameter when modelling

the incidence of ES in paediatric coma patients demonstrates the need for more complex

regression models for discrete outcomes. Such models improve the interpretation and

understanding of discrete datasets.
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Chapter 8

Discussion

This chapter will first discuss the unique contributions of the Altmann, discrete.diag

and discrete.reg libraries to current software available for modelling discrete

data. The implications this software has in the analysis of discrete data will then be

considered in the second section, followed by a discussion of the scope and limitations

of the software. In the final section, possible areas of extending this research will be

addressed.

8.1 Contributions to software

8.1.1 Altmann library

A large variety of models for discrete data have been implemented in the Altmann

library, which include: parameter-mix distributions such as the Delaporte, Sichel,

Yule and Waring; component-mixtures including adjustments for zero-inflation and

mixtures of distributions; truncated distributions such as the positive Holla and Sichel;

the Lerch family including the Good, Zeta, Zipf and Lerch distribution and finally,

distributions in the Generalized Poisson family, which are the Neyman type A, Hermite,

generalized Hermite, Gegenbauer and generalized Gegenbauer. Many of these distributions

have not previously been implemented in R. The benefit of the Altmann library is that

these models can be found together, allowing the fit of these distributions to a dataset to
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easily be compared using goodness-of-fit statistics in the altmann.fitter function.

A novel aspect of the parameter fitting procedure in this library is the use of rapid

estimates as starting values in the maximum likelihood algorithm, which improves the

efficiency of the estimation procedure.

8.1.2 discrete.diag library

The randomized quantile method of calculating residuals produces residuals for discrete

response variables on a continuous scale. These residuals have a standard normal

distribution and are utilized in plots for residual analysis. This has been implemented

for the range of distributions which can be fitted using the maximum likelihood estimation

functions in the Altmann library. The EPGF plot is a new implementation of the

methodology presented by Nakamura and Pérez-Abreu (1993b) and Rueda and O’Reilly

(1999) which provides model comparisons through the use of the EPGF and fitted

pgf’s of a dataset. Previously, there were no appropriate software techniques available

for the detection of outliers in discrete data. The discrete.diag library implements

the EPGF outliers method for investigating outliers and presents a novel use of the SI

as a tool to detect outliers.

8.1.3 discrete.reg library

Three discrete distributions the geometric, Yule and Waring are introduced for the

GAMLSS framework. These additional distributions can be fitted as regression models

using the gamlss() procedure in the gamlss library.

8.2 Implications for data analysis

The purpose of the R libraries is to facilitate the interpretation of discrete data. The

libraries provide a larger variety of distributions including more complex models which

enables an appropriate distribution to be chosen to fit the data. Methods for comparing

distributions, the epgf.plot and altmann.fitter functions, offer improved
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ability to compare the fit of distributions, ensuring that the distribution with the optimum

fit is chosen to model the data. Diagnostic methods can also be used to test the

adequacy of the fit and check for possible outlying observations. The techniques in

these libraries ensures the distribution chosen provides the best possible approximation

of the data, resulting in the maximum information available to be extracted from the

data. This improves interpretation of the data and may enhance the understanding of

clinical aspects of disease, offering new strategies for treatment and prevention.

Three examples of discrete data from the fields of child health and epidemiology

illustrate the benefits of improved analysis capabilities afforded by the R libraries. In

Chapter 5, Zipf distributions predict the surname distribution across districts in the

UK. The fitting of Zipf distributions to the surnames distribution instead of the usual

one-parameter Zeta distribution, which has been previously used to model surname

frequencies, enable the interpretation of the parameters of the Zipf distributions to be

used as measures for assessing the diversity of surnames in the UK.

Outlier detection methods applied to counts of cysts in steroid treated embryonic

mouse kidneys in Chapter 6 indicate the importance of the choice of model fitted to

the data. Under a Poisson distribution it would appear that the observation of 19 cysts

is an outlier but under a negative binomial distribution, which includes a dispersion

parameter, this observations is not considered an outlier. The inclusion or exclusion

of the potential outlier has an impact on the interpretation of the model, as a high cyst

count indicates an abnormality in kidney growth.

Finally, a series of regression models were used to analyse the incidence of ES

in paediatric coma patients in Chapter 7. A negative binomial distribution is the best

model of those fitted to the dataset, with the incidence of ES associated with centre of

study and presence of clinical seizures. This model includes a dispersion parameter,

which allows the dispersion to vary according to the two covariates. This example

illustrates the need for complex distributions to model discrete outcome variables.
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8.3 Limitations of libraries

The Altmann library can estimate 32 distributions. The Altmann Thesaurus (Wimmer

and Altmann, 1999) is perhaps the most complete source documenting discrete distributions,

containing 100’s of distributions and the Altmann fitter software implements approximately

200 of these distributions (Altmann, 1997). There is therefore potential to include more

distributions in the Altmann R library. The maximum likelihood estimation functions

provide reliable parameter estimates but the procedure does not always converge. This

may be due to the the incorrect specification of the model to the data or unsuitable

starting values for parameters given by the rapid estimates. Parameter values resulting

from rapid estimation may be outside the parameter bounds. The inclusion of an

optional argument in the maximum likelihood estimation functions to specify alternative

starting points may help users to ensure convergence. Similarly, alternative methods

of minimization selected in the optim function used by the maximum likelihood

algorithm allow the user to adjust the maximum likelihood procedure to improve convergence.

A non-parametric method, the EPGF technique of outlier detection places no assumptions

on the dataset, instead the empirical pgf is used to create a smooth transformation of the

data from which we take our inferences. The SI plot is a parametric method and relies

on the underlying assumptions of the model used to generate parameter estimates to

calculate SI’s. We assume the chosen model is an appropriate and good fit to the data

and any parameter estimates are correct. The SI cannot be used to compare the fit of

distributions but informs us which values are surprising under a specified model. The

benefit of this method is that it is not necessary to graphically display the SI to detect

outliers- if a SI value is greater than the threshold of 1,000 then it is considered to be

an outlier.

The geometric, Yule and Waring distributions have been programmed as

gamlss.family objects in the discrete.reg library. There is the potential to

program more distributions using the GAMLSS framework. For example, the Zipf,

Zeta and Good distributions are members of the Lerch family and have not been

implemented as regression models in R. The generalized Poisson family also has distributions
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which could be introduced as regression models using the gamlss library. These

are the Neyman type A, Hermite, generalized Hermite, Gegenbauer and generalized

Gegenbauer. The GAMLSS framework requires that the distribution be parameterized

in terms of the location, scale and shape parameters which proves difficult where

there are more than two parameter and/or expressions for the mean and variance are

complex. There are also limitations due to the derivatives of the likelihood, which for

some distributions are complex. Procedures for the numerical estimation of derivatives

are available in the gamlss library which utilizes the density function of the distribution

and can be used to estimate the derivatives in cases where analytical solutions are

unavailable. However, the disadvantage of using numerical derivatives is the resulting

estimation procedure is slower.

8.4 Further Work

The R environment is provided with a command line interface (CLI) which requires

users to have a good knowledge of the language. CLI’s can be intimidating for beginners

and therefore graphic user interfaces (GUI) are often preferable. The R libraries in this

thesis could be made more user-friendly through the creation of a GUI to perform

analyses. There are various types of GUI, such as: menus and dialog boxes (MDB)

which are commonly found in statistical environments such PASW (SPSS Inc, 2011),

spreadsheets such as Microsoft Excel (Microsoft, 2010b), notebook style GUI’s which

are an extensions of word processors, for example MATHEMATICA (Inc, 2009) and

web-based interfaces in which active web pages with forms trigger analyses on a

server. Several projects develop or offer the opportunity to develop alternate GUI

(CRAN, 2010). The tcltk library (R Development Core Team, 2009), available as

part of the R language when downloaded, provides access to the platform-independent

Tcl scripting language and Tk GUI elements and allows building of custom dialog

boxes to create GUI. Alternatively, the R-(D)COM server allows access to R using

Microsoft COM to build an RGUI client using tools such as Microsoft C++ (Microsoft,

2010a), Microsoft Visual Basic (Microsoft, 2010c) or Microsoft Excel (Microsoft,
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2010b). These resources could be utilized to create a GUI for the Altmann and

discrete.diag libraries.

Data on several related discrete outcome measurements can be modelled jointly

using a multivariate approach. For example, in studies of birth defects several variables

measuring facial growth can be used to characterize a gradient of effect (Sammel et al.,

1997). Johnson et al. (1997) present a range of analyses for discrete bivariate and

multivariate data, however these distributions have not been addressed as part of this

thesis. There is a need for software to analyse bivariate and multivariate discrete

response data. The libraries developed in this thesis provide will be extended to

incorporate distributions which allow for bivariate and multivariate discrete data.

Longitudinal studies allow investigation of the effect of repeated measurements

where observations are grouped into levels. These repeated measurements are correlated

and the correct statistical approach requires random effects or a multilevel model. An

example of a longitudinal dataset is found in a study of Picture Exchange Communication

System (PECS) training in Autistic children in Section 1.2.4 of Chapter 1, which

yields repeated outcome measures- the frequency of initiations, frequency of PECS

use and the frequency of speech- across three treatments schedules and over three

time periods. This study was previously analysed using multilevel logistic regression

models (Howlin et al., 2007) and later Poisson multilevel regression models to test for

an interaction between treatments and baseline measures (Gordon et al., 2011).

Software for fitting multilevel or random effects models can be found in a range of

statistical environments, including Stata (StataCorp, 2009) and R (R Development

Core Team, 2009). Functions for panel models in Stata allow for fixed effects,

random-effect and population-averaged models for the Poisson (xtpoisson) and

negative binomial (xtnbreg) distributions and the gllamm add-on package fits Generalized

Linear Latent and Mixed Models (Rabe-Hesketh et al., 2004). Random-effects models

can also be fitted in the gamlss package in R using the random() function. The

MLwiN software environment (Rasbash, J and Charlton, C and Browne, W J and

Healy, M and Cameron, B, 2009; Rasbash et al., 2009) provides the specification
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and analysis of a wide range of multilevel models, including Binomial and Poisson

multilevel regression models for discrete data with repeated measurements or clustered

levels. A negative binomial distribution can also be fitted as a regression model as

an extra option of the error distribution for Poisson regression models. Software

for models incorporating random effects into more complex distribution regression

models, such as the zero-inflated Poisson or zero-inflated negative binomial distributions

will be included in extensions of the libraries.

8.5 Conclusion

The aim of this thesis has been to develop software to implement models for discrete

epidemiological and clinical data. It has been identified that there is a need for software

to make more complex methodologies for the analysis of discrete data available to the

clinical and scientific community. Three add-on libraries for the R environment for

statistical programming provide univariate parameter estimation, model diagnostics

and regression modelling within the GAMLSS framework. These libraries provide

a toolkit of methods for analysing discrete data, allowing clinical scientist to fit and

interpret relatively complex statistical models for a wide range of data with increased

ease, thus offering an improved understanding of discrete data.
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Appendix A

Distribution Moments

The raw and central moments for the distributions presented in Chapter 2 are additionally

presented in this Appendix. The first raw moment µ′1 gives the mean, whilst the second

central moment µ2 gives the variance. The third and fourth central moments are used

in calculations for the the skewness and kurtosis coefficients.

Basic Distributions

Bernoulli (p)

The raw moments of the Bernoulli distribution are all equal, where µ′n = p. Central

moments:
µ1 = 0

µ2 = p(1− p)

µ3 = p(1− p)(1− 2p)

µ4 = p(1− p)(3p2 − 3p+ 1)

. (A.1)

Binomial (p, n)

Raw moments:

µ′1 = np

µ′2 = np(1− p+ np)

µ′3 = np(1− 3p+ 3np+ 2p2 − 3np2 + n2p2)

µ′4 = np(1− 7p+ 7np+ 12p2 − 18np2 + 6n2p2 − 6p3 + 11np3 − 6n2p3 + n3p3)

,

(A.2)
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Central moments:

µ1 = 0

µ2 = np(1− p)

µ3 = np(1− p)(1− 2p)

µ4 = np(1− p) (3p2(2− n) + 3p(n− 2) + 1)

. (A.3)

Geometric (p)

Raw moments:
µ′1 = (1−p)

p

µ′2 = (2−p)(1−p)
p2

µ′3 = (1−p)(6+(p−6)p)
p3

µ′4 = (2−p)(1−p)(12+(p−12)p)
p4

, (A.4)

Central moments:
µ1 = 0

µ2 = 1−p
p2

µ3 = (p−2)(p−1)
p3

µ4 = − (p−1)(9+(p−9)p)
p4

. (A.5)

Hypergeometric (m,n, k)

Raw moments:

µ′1 = km
m+n

µ′2 = km(k(m−1)+n)
(m+n−1)(m+n)

µ′3 = km(k2(m−2)(m−1)+3k(m−1)n+n(n−m))
(m+n−2)(m+n−1)(m+n)

µ′4 = km(k3(m−3)(m−2)(m−1)+6k2(m−2)(m−1)n−k(m−1)(4m−7n−1)n+n(m+m2+n−4mn+n2))
(m+n−3)(m+n−2)(m+n−1)(m+n)

,

(A.6)
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Central moments:

µ1 = 0

µ2 = kmn(m+n−k)
(m+n−1)(m+n)2

µ3 = −km(k−m−n)(2k−m−n)(m−n)n
(m+n−2)(m+n−1)(m+n)3

µ4 = 1
(m+n−3)(m+n−2)(m+n−1)(m+n)4

(kmn(−k +m+ n)) (m+ n)2

(m+m2 + n− 4mn+ n2) + 3k (m3(n− 2) + 2m2n2 − 2n3 +mn3)

−3k2 (m2(n− 2)− 2n2 +mn(n+ 2))

.

(A.7)

Poisson (µ)

Raw moments:
µ′1 = µ

µ′2 = µ (1 + µ)

µ′3 = µ (1 + µ (3 + µ))

µ′4 = µ (1 + µ (7 + µ (6 + µ)))

, (A.8)

Central moments:
µ1 = 0

µ2 = µ

µ3 = µ

µ4 = µ(1 + 3µ)

. (A.9)

Parameter Mix Distributions

Negative Binomial (p, r)

Raw moments:

µ′1 = r(1
p
− 1)

µ′2 = (p−1)r((p−1)r−1)
p2

µ′3 = r(2−3p+p2+3(p−1)2r−(p−1)3r2)
p3

µ′4 = r(6−(p−4)(p−3)p+11r+p((19−4p)p−26)r−6(p−1)3r2+(p−1)4r3)
p4

, (A.10)
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Central moments:
µ1 = 0

µ2 = r−pr
p2

µ3 = ((p−2)(p−1)r)
p3

µ4 = − (p−1)r(p2+3(2+r)−3p(2+r))
p4

(A.11)

Holla (α, θ)

Raw moments:

µ′1 = θ

µ′2 = θ + θ2 + θ3

α

µ′3 = θ(3θ4+3αθ2(θ+1)+α2(1+θ(θ+3)))
α2

µ′4 = 1
α3 θ(15θ6 + 3αθ4(6 + 5θ) + α2θ2(7 + 6θ(3 + θ)) + α3(1 + θ(7 + θ(6 + θ))))

,

(A.12)

Central moments:

µ1 = 0

µ2 = θ + θ3

α

µ3 = θ + 3θ3

α
+ 3θ5

α2

µ4 = 1
α3 (θ (15θ6 + 3αθ4(6 + θ) + α3(1 + 3θ) + α2θ2(7 + 6θ)))

, (A.13)
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Sichel (α, θ, γ)

Raw moments:

µ′1 = 1
2
√

1−θKγ(α
√

1−θ)

(
αθKγ+1(α

√
1− θ)

)
µ′2 = 1

4(θ−1)2

(
θ
(

4γ + 4γ2θ − α2(−1 + θ)θ + 2α
√

1−θ(1+γθ)Kγ−1(α
√

1−θ)
Kγ(α

√
1−θ)

))
µ′3 = 1

8(−1+θ)3
(θ (−24γ2θ − 2α2(θ − 3)(θ − 1)θ − 8γ3θ2 + 4γ (−2 + θ (−2 + α2(θ − 1)θ)))

+
α
√

1−θ(−4+θ(−4−12γ−4γ2θ+α2(−1+θ)θ))Kγ−1(α
√

1−θ)
Kγ(α

√
1−θ)

µ′4 = 1
16(−1+θ)4

θ (96γ3θ2 + 16γ4θ3 + α2(θ − 1)θ (−28 + θ (8 + (−4 + α2(θ − 1)) θ))

+4γ (4 + θ (16 + (4 + 3α2(−4 + θ)(−1 + θ)) θ))

+4γ2θ (28 + θ (16− 3α2(−1 + θ)θ))

+ 1
Kγ(α

√
1−θ)4α

√
1− θ (2 + θ (8 + 12γ2θ + (2 + α2(−3 + θ)(−1 + θ)) θ

+2γ3θ2 + γ (14 + θ (8− α2(−1 + θ)θ))Kγ−1(α
√

1− θ)
(A.14)

Central moments:

µ1 = 0

µ2 = 1
4(θ−1)2

θ (4γ + 4γ2θ − α2(θ − 1)θ

+
(
α
(
2
√

1− θ(1 + γθ)Kγ−1(α
√

1− θ)Kγ(α
√

1− θ)

+α(θ − 1)θKγ+1(α
√

1− θ)2/Kγ(α
√

1− θ)2

µ3 = 1
4
θ

(
−α2(θ−3)(θ−1)θ−8γ3θ2+γ(4+θ(4+α2(θ−1)θ))

(θ−1)3

+
(
α
(
−3α
√

1− θθ(1 + γθ)Kγ−1(α
√

1− θ)2Kγ(α
√

1− θ)

+ (2 + θ (2− 6γ − 10γ2θ + α2(θ − 1)θ))Kγ−1(α
√

1− θ)Kγ(α
√

1− θ)2

−α2(θ − 1)θ2Kγ+1(α
√

1− θ)3/
(

(1− θ) 5
2Kγ(α

√
1− θ)3

)
µ4 = 1

16
αθ

(
αθ(−28+θ(8+4γ(−6+θ)−4γ2θ+(−4+α2(−1+θ))θ))

(−1+θ)3

−
(
Kγ+1

(
α
√

1− θ
)

(−4 (2 + θ (8 + 12γ2θ + (2− α2(−3 + θ)(θ − 1)) θ

+2γ3θ2 + γ (14 + θ (8 + α2(θ − 1)θ))Kγ

(
α
√

1− θ
)3

+2α
√

1− θθ (8 + θ (8 + 24γ + 8γ2θ + α2(θ − 1)θ))Kγ

(
α
√

1− θ
)2
Kγ+1

(
α
√

1− θ
)

+12α2(θ − 1)θ2(1 + γθ)Kγ

(
α
√

1− θ
)
Kγ+1

(
α
√

1− θ
)2

+3α3(1− θ)3/2θ3Kγ+1

(
α
√

1− θ
)3
/
(

(1− θ)7/2Kγ

(
α
√

1− θ
)4
)

.

(A.15)
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Delaporte (α, β, γ)

Raw moments:

µ′1 = α + β
(

1
γ
− 1
)

µ′2 = 1
γ2

(β2(γ − 1)2 + α(α + 1)γ2 − β(γ − 1)(2αγ + 1))

µ′3 = 1
γ3

(−β3(γ − 1)3 + α(1 + α(3 + α))γ3 + 3β2(γ − 1)2(1 + αγ)

−β(γ − 1)(2 + γ(−1 + 3α(1 + γ + αγ)))

µ′4 = 1
γ4

(β4(γ − 1)4 + α(1 + α(7 + α(6 + α)))γ4 − 2β3(γ − 1)3(3 + 2αγ)

+β2(γ − 1)2(11 + 2γ(−2 + 3α(2 + γ + αγ)))− β(γ − 1)

(6 + γ (−6 + γ + 2α (4 + γ + 3αγ + 2(1 + α(3 + α))γ2)))

(A.16)

Central moments:

µ1 = 0

µ2 = α + β−βγ
γ2

µ3 = β(γ−2)(γ−1)+αγ3

γ3

µ4 = 1
γ4

(3β2(−1 + γ)2 + α(1 + 3α)γ4 − β(−1 + γ)(6 + γ(−6 + γ + 6αγ)))

.

(A.17)

Yule (λ)

Raw moments:

µ′1 = λΓ(1 + λ) 2F1(2, 2, 3 + λ, 1)

µ′2 = λΓ(1 + λ) 2F1(2, 2, 3 + λ, 1) + 2 2F1(3, 3, 4 + λ, 1)

µ′3 = λ(6+λ) 2F1(2,2,3+λ,1)
(λ−3)(λ2−4)

µ′4 = λΓ(1 + λ) ( 2F1(2, 2, 3 + λ, 1) + 28 2F1(3, 3, 4 + λ, 1)+

216 2F1(4, 4, 5 + λ, 1) + 576 2F1(5, 5, 6 + λ, 1)

, (A.18)
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Central moments:

µ1 = 0

µ2 = λΓ[1 + λ] ( 2F1(2, 2, 3 + λ, 1)− λΓ(1 + λ) 2F1(2, 2, 3 + λ, 1)2

+28 2F1(3, 3, 4 + λ, 1) + 216 2F1(4, 4, 5 + λ, 1)

+576 2F1(5, 5, 6 + λ, 1)

µ3 = λ 2F1(2, 2, 3 + λ, 1)
(

(6+λ)Γ(2+λ)
6−5λ+λ2

+ 3λΓ(λ+1) 2F1(2,2,3+λ,1)
2+λ−λ2

+2λ5Γ(λ)3
2F1(2, 2, 3 + λ, 1)2

µ4 = λΓ(λ+ 1)
(

2F1(2, 2, 3 + λ, 1)− 4λ(6+λ)Γ(4+λ) 2F1(2,2,3+λ,1)2

36−13λ2+λ4

+6λ4(2+λ)Γ(λ)2 2F1(2,2,3+λ,1)3

−2+λ
− 3λ6Γ(λ)3

2F1(2, 2, 3 + λ, 1)4

+28 2F1(3, 3, 4 + λ, 1) + 216 2F1(4, 4, 5 + λ, 1) + 576 2F1(5, 5, 6 + λ, 1)

.

(A.19)

Waring (b, n)

Raw moments:

µ′1 = bnΓ(b+ n) 2F1(2, n+ 1, b+ n+ 2, 1)

µ′2 = bn(b+2n)Γ(b+n) 2F1(2,n+1,b+n+2,1)
b−2

µ′3 =
bn(b+b2+6bn+6n2)Γ(b+n) 2F1(2,n+1,b+n+2,1)

6−5b+b2

µ′4 = bnΓ(b+ n) ( 2F1(2, n+ 1, b+ n+ 2, 1) + 2(1 + n))(
(15+7b+18n) 2F1(3,n+2,b+n+3,1)

b−3
+ 12(n+ 2)(n+ 3) 2F1(5, n+ 4, b+ n+ 5, 1)

)
.

(A.20)
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Central moments:

µ1 = 0

µ2 = bnΓ(b+ n) 2F1(2, 1 + n, 2 + b+ n, 1)
(
b+2n
b−2
− bnΓ(b+ n)

2F1(2, 1 + n, 2 + b+ n, 1)

µ3 =
(
b+b2+6bn+6n2

6−5b+b2
+ bnΓ(b+ n) 2F1(2, 1 + n, 2 + b+ n, 1)(

−3(b+2n)
−2+b

+ 2bnΓ(b+ n) 2F1(2, 1 + n, 2 + b+ n, 1)
)

µ4 = bnΓ[b+ n] ( 2F1(2, 1 + n, 2 + b+ n, 1)

−4bn(b+b2+6bn+6n2)Γ(b+n) 2F1(2,1+n,2+b+n,1)2

6−5b+b2
+ 6b2n2(b+2n)Γ(b+n)2 2F1(2,1+n,2+b+n,1)3

−2+b

−3b3n3Γ(b+ n)3
2F1(2, 1 + n, 2 + b+ n, 1)4 + 2(1 + n)(

(15+7b+18n) 2F1(3,2+n,3+b+n,1)
−3+b

+ 12(2 + n)(3 + n) 2F1(5, 4 + n, 5 + b+ n, 1)
)

.

(A.21)

Beta-Binomial (a, b, n)

Raw moments:

µ′1 =
a n

a+ b

µ′2 =
a n (b+ n+ a n)

(a+ b) (a+ b+ 1)

µ′3 =
a n (b (b− a) + 3(a+ 1) b n+ (a+ 1) (a+ 2)n2)

(a+ b) (a+ b+ 1) (a+ b+ 2)

µ′4 = (a n (b (a2 + (b− 1)b− a(4b+ 1)) + (a+ 1)b(7b− 4a− 1)n+

6(a+ 1)(a+ 2)bn2 + (a+ 1)(a+ 2)(a+ 3)n3

((a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3))

(A.22)
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Central moments:

µ1 = 0

µ2 =
a b n(a+ b+ n)

(a+ b)2(a+ b+ 1)

µ3 =
a(a− b) b n (a+ b+ n)(a+ b+ 2n)

(a+ b)3
(a+ b+ 1)(a+ b+ 2)

µ4 = (a b n ((a+ b)3 (a2 + (b− 1)b− a(1 + 4b)) +

(a+ b)2 (a2(7 + 3b) + b(7b− 1) + a(−1 + b(3b− 10))n+

6 (2a2b2 + 2b3 + ab3 + a3(2 + b))n2 + 3 (a(b− 2)b+ 2b2 + a2(2 + b))n3/

((a+ b)4(1 + a+ b)(2 + a+ b)(3 + a+ b))

.

(A.23)

Component Mix Distributions

Zero-inflated Poisson (ω, µ)

Raw moments:
µ′1 = µ(ω − 1)

µ′2 = µ(1 + µ)(ω − 1)

µ′3 = µ(1 + µ(µ+ 3))(ω − 1)

µ′4 = µ(1 + µ(7 + µ(µ+ 6)))(ω − 1)

, (A.24)

Central moments:

µ1 = 0

µ2 = µ(−1)(1 + µω)

µ3 = µ(ω − 1)(1 + µω(3 + µ(−1 + 2ω)))

µ4 = µ(ω − 1) (1 + µ (3 + ω (4 + 6µω + µ2(1 + 3(ω − 1)ω))))

. (A.25)

Zero-inflated Negative Binomial (ω, p, r)

Raw moments:

µ′1 = (p−1)r(ω−1)
p

µ′2 = − (p−1)r((p−1)r−1)(ω−1)
p2

µ′3 =
(p−1)r(2−p−3(p−1)r+(p−1)2r2)(ω−1)

p3

µ′4 = − (p−1)r(p3r3+3p(r+1)2(r+2)−(r+1)(r+2)(r+3)−p2(r+1)(1+3r(r+1)))(ω−1)

p4

, (A.26)
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Central moments:

µ1 = 0

µ2 = − (p−1)r(ω−1)(−1+(p−1)rω)
p2

µ3 =
(p−1)r(ω−1)(2−p−(p−1)r(3+(p−1)r)ω+2(p)−12r2ω2)

p3

µ4 = 1
p4

(p− 1)r (p3r3ω(1 + ω(−4− 3(ω − 2)ω)) + p2(ω − 1)

(1 + rω (4 + 6rω + r2(3 + 9(ω − 1)ω)))− 3p(ω − 1)

(2 + r (1 + ω (4 + 4rω + r2(1 + 3(ω − 1)ω)))) + (ω − 1)

(6 + r (3 + ω (8 + 6rω + r2(1 + 3(ω − 1)ω))))

. (A.27)

Zero-inflated Sichel (ω, α, θ, γ)

Raw moments:

µ′1 = αθ(ω−1)Kγ−1(α
√

1−θ)
2
√

1−θKγ(α
√

1−θ)

µ′2 =
θ(ω−1)

(
−4γ−4γ2θ+α2(θ−1)θ−

2α
√
1−θ(1+γθ)Kγ−1(α

√
1−θ)

K γ
(α
√

1−θ)
)4(θ − 1)2

µ′3 = 1
8(θ−1)3

θ(ω − 1) (24γ2θ + 2α2(θ − 3)(θ − 1)θ + 8γ3θ2

+γ (8 + 4θ (2− α2(θ − 1)θ)) +
α
√

1−θ(4+θ(4+12γ+4γ2θ−α2(θ−1)θ))Kγ−1(α
√

1−θ)Kγ(α
√

1−θ)
)

µ′4 =
(
θ(ω − 1)

(
1√
1−θα (α6(θ − 1)3θ3 + 16α2(γ − 1)(θ − 1)

(2 + θ (−6 + 21γ + 6(1 + γ(4γ − 3))θ + (−2 + γ(7 + γ(5γ − 9)))θ2))

−4α4(θ − 1)2θ(7 + θ(7(θ − 2) + 6γ(3 + (γ − 2)θ)))

−64(γ − 2)(γ − 1)γ(1 + θ(4 + θ + γ(7 + θ(4 + γ(6 + γθ)))))

Kγ−4(α
√

1− θ)− 1
θ−1

4 (α6(θ − 1)3θ2(3− 3θ + 2γθ)

+8α2(γ − 2)(γ − 1)(θ − 1) (3 + θ (−9 + 28γ + (9− 26γ + 30γ2) θ

+(−3 + 2γ(5 + 3(γ − 2)γ))θ2 − 2α4(θ − 1)2

(1 + θ (−24 + 21γ + 45θ + 6γ(6γ − 13)θ + (−22 + γ(47 + 2γ(−18 + 5γ)))θ2))

−32(γ − 3)(γ − 2)(γ − 1)γ(1 + θ(4 + θ + γ(7 + θ(4 + γ(6 + γθ)))))

Kγ−3(α
√

1− θ)/
(
16α3(1− θ)9/2Kγ(α

√
1− θ)

)

,

(A.28)
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Central moments:

µ1 = 0

µ2 = 1
4(θ−1)2

θ(ω − 1) (−4γ − 4γ2θ + α2(θ − 1)θ

+ 1
Kγ(α

√
1−θ)2α

(
−2
√

1− θ(1 + γθ)Kγ−1(α
√

1− θ)Kγ(α
√

1− θ)

+α(θ − 1)θ(ω − 1)Kγ+1(α
√

1− θ)2

µ3 = 1
8
θ(ω − 1)

(
24γ2θ+2α2(θ−3)(θ−1)θ+8γ3θ2+γ(8+4θ(2−α2(θ−1)θ))

(θ−1)3

+
α(−4+θ(−4−12γ−4γ2θ+α2(θ−1)θ))Kγ−1(α

√
1−θ)

(1−θ)5/2Kγ(α
√

1−θ)

+
(
α2θ(ω − 1)Kγ+1(α

√
1− θ)

(
3α(θ − 1)θKγ(α

√
1− θ)2

−6
√

1− θ(1 + γθ)Kγ(α
√

1− θ)Kγ+1(α
√

1− θ)

+2α(θ − 1)θ(ω − 1)Kγ+1(α
√

1− θ)2/
(
(1− θ)5/2Kγ(α

√
1− θ)3

)
µ4 =

(
θ(ω − 1)

(
1

(1−θ)9/2

(
1√
1−θα (α6(θ − 1)3θ3

+16α2(γ − 1)(θ − 1) (2 + θ (−6 + 21γ + 6(1 + γ(4γ − 3))θ

+(−2 + γ(7 + γ(5γ − 9)))θ2 − 4α4(θ − 1)2θ(7 + θ(7(θ − 2)

+6γ(3 + (γ − 2)θ)))− 64(γ − 2)(γ − 1)γ(1 + θ(4 + θ

+γ(7 + θ(4 + γ(6 + γθ)))))Kγ−4(α
√

1− θ)

− 1
θ−1

4 (α6(θ − 1)3θ2(3 + (2γ − 3)θ) + 8α2(γ − 2)(γ − 1)(θ − 1)

(3 + θ (−9 + 28γ + (9− 26γ + 30γ2) θ + (−3 + 2γ(5 + 3(γ − 2)γ))θ2))

−2α4(θ − 1)2 (1 + θ (−24 + 21γ + 45θ + 6γ(6γ − 13)θ

+(−22 + γ(47 + 2γ(−18 + 5γ)))θ2 − 32(γ − 3)(γ − 2)(γ − 1)γ

(1 + θ(4 + θ + γ(7 + θ(4 + γ(6 + γθ)))))Kγ−3(α
√

1− θ)Kγ(α
√

1− θ)3

− 1
(1−θ)7/2 4α4θ(ω − 1) (24γ2θ + 2α2(θ − 3)(θ − 1)θ + 8γ3θ2

+γ (8 + 4θ (2− α2(θ − 1)θ)) +
α
√

1−θ(4+θ(4+12γ+4γ2θ−α2(θ−1)θ))Kγ−1(α
√

1−θ)
Kγ(α

√
1−θ)

Kγ(α
√

1− θ)3Kγ+1(α
√

1− θ)− 1
(θ−1)3

6α5θ2(ω − 1)2Kγ(α
√

1− θ)(
−2α
√

1− θ(γθ + 1)Kγ−1(α
√

1− θ)− (4γ + 4γ2θ − α2(θ − 1)θ)Kγ(α
√

1− θ)
)

Kγ+1(α
√

1− θ)2 − 3α7θ3(ω−1)3Kγ+1(α
√

1−θ)4
(θ−1)2

/
(
16α3Kγ(α

√
1− θ)4

)

.

(A.29)

2-component Poisson Mixture (ω, µ, λ)
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Raw moments:

µ′1 = λ− λω + µω

µ′2 = −λ(λ+ 1)(ω − 1) + µ(µ+ 1)ω

µ′3 = λ(1 + λ(λ+ 3)) + (−λ(1 + λ(λ+ 3)) + µ+ 3µ2 + µ3)ω

µ′4 = λ(1 + λ(7 + λ(6 + λ))) + (−λ(1 + λ(7 + λ(6 + λ)))

+µ(1 + µ(7 + µ(6 + µ))))ω

. (A.30)

Central moments:

µ1 = 0

µ2 = λ+ (λ− µ− 1)(λ− µ)ω − (λ− µ)2ω2

µ3 = λ− (λ− µ) (1 + λ2 + µ(3 + µ)− λ(3 + 2µ))ω

+3(λ− µ− 1)(λ− µ)2ω2 − 2(λ− µ)3ω3

µ4 = λ(3λ+ 1) + (λ− µ) (λ3 − 3λ2µ+ λ(1 + 3µ(µ+ 2)− 1)

−µ(7 + µ(6 + µ))ω − 2(λ− µ)2 (2 + λ(2λ− 3)

+6µ− 4λµ+ 2µ2ω2 + 6(λ− µ− 1)(λ− µ)3ω3 − 3(λ− µ)4ω4

. (A.31)

2-component Poisson-Negative Binomial Mixture (ω, µ, r, p)

Raw moments:

µ′1 = (p−1)r(ω−1)
p

+ µω

µ′2 = (p−1)r(ω−1)−(p−1)2r2(ω−1)+p2µ(µ+1)ω
p2

µ′3 = 1
p3

(−(p− 2)(p− 1)r(ω − 1)− 3(p− 1)2r2(ω − 1) + (p− 1)3r3(ω − 1)

+p3µ(1 + µ(µ+ 3))ω

µ′4 = 1
p4

((p− 1)(6 + (p− 6)p)r(ω − 1) + (p− 1)2(4p− 11)r2(ω − 1)

+6(p− 1)3r3(ω − 1)− (p− 1)4r4(ω − 1) + p4µ(1 + µ(7 + µ(6 + µ)))ω

,

(A.32)
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Central moments:

µ1 = 0

µ2 = (µ− (r + µ)2(ω − 1))ω − r(ω−1)(rω+1)
p2

+ r(ω−1)(1+2(r+µ)ω)
p

µ3 = 1
p3

((p− 1)3r3(ω − 1)ω(2ω − 1) + 3(p− 1)2r2(−1 + ω)ω(−1 + pµ(−1 + 2ω))

+(−1 + p)r(ω − 1) (2 + p (−1− 3µ(1 + p+ pµ)ω + 6pµ2ω2))

+p3µω(1 + µ(ω − 1)(µ(2ω − 1)− 3))

µ4 = − 1
p4

((−p)4r4(ω − 1)ω(1 + 3(ω − 1)ω) + 2(p− 1)3r3(ω − 1)ω(−3ω

+2pµ(1 + 3(ω − 1)ω)) + p4µω (−1 + µ (−7 + 4ω + µ(ω − 1)

(6 + µ− 3(µ+ 2)ω + 3µω2) + (p− 1)2r2(ω − 1)(3 + 2ω(4 + p(−2− 6µω

+3pµ(1− ω + µ(1 + 3(ω − 1)ω))))) + (p− 1)r(ω − 1) (−6 + p (6 + 8µω

+p (−1 + 2µω (−2− 3µω + 2p (1 + µ (3 + µ− 3(1 + µ)ω + 3µω2))))

.

(A.33)

Truncated Distributions

Positive Poisson (µ)

Raw moments:
µ′1 =

(
1 + 1

eµ−1

)
µ

µ′2 = eµµ(µ+1)
eµ−1

µ′3 = eµµ(µ(µ+3)+1)
eµ−1

µ′4 = eµµ(µ(7+µ(6+µ))+1)
eµ−1

, (A.34)

Central moments:

µ1 = 0

µ2 = eµ(eµ−µ−1)µ

(eµ−1)2

µ3 =
eµµ(1+e2µ+µ(µ+3)+eµ((µ−3)µ−2))

(eµ−1)3

µ4 =
eµµ(e3µ(3µ+1)−1−e2µ(13µ+µ3+3)−µ(7+µ(µ+6))+eµ(3+µ(17−(µ−6)µ)))

(eµ−1)4

. (A.35)

Positive Geometric (p)
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Raw moments:
µ′1 = 1

p

µ′2 = 2−p
p2

µ′3 = 6+(p−6)p
p3

µ′4 = − (p−2)(12+(p−12)p)
p4

. (A.36)

Central moments:
µ1 = 0

µ2 = 1−p
p2

µ3 = (p−2)(p−1)
p3

µ4 = − (p−1)(9+(p−9)p)
p4

. (A.37)

Positive Negative Binomial (r, p)

Raw moments:

µ′1 = (p−1)r
p(pr−1)

µ′2 = − (p−1)r((p−1)r−1)
p2(pr−1)

µ′3 =
r(3p−p2−3(p−1)2r+(p−1)3r2−2)

p3(pr−1)

µ′4 = 1
p4(pr−1)

r (12p− 7p2 + p3 + (p− 1)2(4p− 11)r + 6(p− 1)3r2 − (p− 1)4r3 − 6)

,

Central moments:

µ1 = 0

µ2 = − (p−1)r(1+pr((p−1)r−1))

p2(pr−1)2

µ3 =
r(2(p−1)3r2+3(p−1)2(pr−1)r((p−1)r−1)+(pr−1)2(+3p−p2−3(−1+p)2r+(−1+p)3r2−2))

p3(pr−1)3

µ4 = 1
p4(pr−1)4

r (−3(p− 1)4r3 − 6(p− 1)3 (pr − 1) r2((p− 1)r − 1)

−4(p− 1) (pr − 1)2 r (3p− p2 − 3(p− 1)2r + (p− 1)3r2 − 2)

+ (pr − 1)3 (−6 + 12p− 7p2 + p3 + (p− 1)2(4p− 11)r + 6(p− 1)3r2

−(p− 1)4r3

.

Positive Holla (α, θ)
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Raw moments:

µ′1 = eααθ

(2eα−2eα
√
1−θ)

√
1−θ

µ′2 =
eααθ(2+(α

√
1−θ−1)θ)

4(eα−eα
√
1−θ)(1−θ)

3
2

µ′3 = − eααθ(−4+θ(2+3α
√

1−θ(θ−2)−θ+α2(θ−1)θ))
8(eα−eα

√
1−θ)(1−θ)

5
2

µ′4 = −
eααθ

(
−8+θ

(
−4+(−4+θ)θ−6α2(−2+θ)(−1+θ)θ−α3(1−θ)

3
2 θ2+α

√
1−θ(−28+(20−7θ)θ)

))
16(eα−eα

√
1−θ)(1−θ)

7
2

,

(A.40)

Central moments:

µ1 = 0

µ2 = − eααθ(eα(−2+θ)+eα
√

1−θ(2+(−1+α
√

1−θ)θ))
4(eα−eα

√
1−θ)

2
(1−θ)3/2

µ3 = 1

8(eα−eα
√

1−θ)
3
(1−θ)5/2

(eααθ (e2α(4 + (−2 + θ)θ)

+eα+α
√

1−θ (−8 + θ
(
4 + 3α

√
1− θ(−2 + θ)− 2θ − α2(−1 + θ)θ

))
+e2α

√
1−θ (4 + θ

(
−2− 3α

√
1− θ(−2 + θ) + θ − α2(−1 + θ)θ

))
µ4 = − 1

16(eα−eα
√
1−θ)

4 eααθ

(
3e3αα3θ3

(−1+θ)2
− 6e2α(eα−eα

√
1−θ)α2θ2(2+(−1+α

√
1−θ)θ)

(1−θ)5/2

+
4eα(eα−eα

√
1−θ)

2
αθ(−4+θ(2+3α

√
1−θ(−2+θ)−θ+α2(−1+θ)θ))

(−1+θ)3

+
(eα−eα

√
1−θ)

3
(−8+θ(−4+(−4+θ)θ−6α2(−2+θ)(−1+θ)θ−α3(1−θ)3/2θ2+α

√
1−θ(−28+(20−7θ)θ)))

(1−θ)7/2

.

(A.41)

Positive Sichel (α, θ, γ)
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Raw moments:

µ′1 = − αθKγ+1(α
√

1−θ)
√

1−θ
(

2(1−θ)
γ
2Kγ(α)−2Kγ(α

√
1−θ)

)
µ′2 =

(
θ

(
(−4γ−4γ2θ+α2(θ−1)θ)Kγ−2(α

√
1−θ)

(θ−1)2

+
2(−4(γ−1)γ(1+γθ)+α2(θ−1)(1+(2γ−1)θ))Kγ−1(α

√
1−θ)

α(1−θ)
5
2

/(
4
(
(1− θ) γ2Kγ(α)−Kγ(α

√
1− θ)

))
µ′3 = (θ (α (α4(θ − 1)2θ2 − 4α2(θ − 1)(1 + θ(−2 + θ + 3γ(2 + (γ − 1)θ)))

+16(γ − 1)γ(1 + θ(1 + γ(3 + γθ)))Kγ−3(α
√

1− θ)

+ 1√
1−θ2 (3α4(θ − 1)2θ(1 + (γ − 1)θ)− 4α2(γ − 1)(θ − 1)

(2 + θ(−4 + 9γ + (2 + γ(−5 + 4γ))θ)) + 16(γ − 2)(γ − 1)γ(1 + θ(1 + γ(3 + γθ)))

Kγ−2(α
√

1− θ)/
(
8α2(1− θ)7/2

(
−(1− θ)γ/2Kγ(α) +Kγ(α

√
1− θ)

))
µ′4 =

(
θ
(

1√
1−θα (α6(θ − 1)3θ3 + 16α2(γ − 1)(θ − 1) (2 + θ (−6 + 21γ

+6(1 + γ(4γ − 3))θ + (−2 + γ(7 + γ(−9 + 5γ)))θ2

−4α4(θ − 1)2θ(7 + θ(7(θ − 2) + 6γ(3 + (γ − 2)θ)))

−64(γ − 2)(γ − 1)γ(1 + θ(4 + θ + γ(7 + θ(4 + γ(6 + γθ)))))

Kγ−4(α
√

1− θ)− 1
θ−1

4 (α6(θ − 1)3θ2(3− 3θ + 2γθ)

+8α2(γ − 2)(γ − 1)(θ − 1) (3 + θ (−9 + 28γ + (9− 26γ + 30γ2) θ

+(−3 + 2γ(5 + 3(γ − 2)γ))θ2 − 2α4(θ − 1)2 (1 + θ (−24 + 21γ + 45θ

+6γ(−13 + 6γ)θ + (−22 + γ(47 + 2γ(−18 + 5γ)))θ2

−32(γ − 3)(γ − 2)(γ − 1)γ(1 + θ(4 + θ + γ(7 + θ(4 + γ(6 + γθ)))))

Kγ−3(α
√

1− θ)/
(
16α3(1− θ)9/2

(
(1− θ)γ/2Kγ(α)−Kγ(α

√
1− θ)

))

,

(A.42)
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Central moments:

µ1 = 0

µ2 = 1
4
θ

 (−4γ−4γ2θ+α2(θ−1)θ)Kγ−2(α
√
1−θ)

(θ−1)2
+

2(−4(γ−1)γ(γθ+1)+α2(θ−1)(1+(2γ−1)θ))Kγ−1(α
√
1−θ)

α(1−θ)5/2

(1−θ)
γ
2Kγ(α)−Kγ(α

√
1−θ)

+ α2θKγ+1(α
√

1−θ)2

(θ−1)
(
−(1−θ)

γ
2Kγ(α)+Kγ(α

√
1−θ)

)2
µ3 = 1

8α2(1−θ)7/2 θ ((α (α4(θ − 1)2θ2 − 4α2(θ − 1)(1 + θ(−2 + θ + 3γ(2 + (γ − 1)θ)))

+16(γ − 1)γ(1 + θ(1 + γ(3 + γθ)))Kγ−3(α
√

1− θ)

+ 1√
1−θ2 (3α4(θ − 1)2θ(1 + (γ − 1)θ)

−4α2(γ − 1)(θ − 1)(2 + θ(−4 + 9γ + (2 + γ(4γ − 5))θ))

+16(γ − 2)(γ − 1)γ(1 + θ(1 + γ(3 + γθ)))Kγ−2(α
√

1− θ)/(
−(1− θ) γ2Kγ(α) +Kγ(α

√
1− θ)

)
+
(
3α2
√

1− θθ
(
α
√

1− θ (−4γ − 4γ2θ + α2(θ − 1)θ)Kγ−2(α
√

1− θ)

+2 (−4(γ − 1)γ(1 + γθ) + α2(θ − 1)(1 + (2γ − 1)θ))Kγ−1(α
√

1− θ)

Kγ+1(α
√

1− θ)/
(
−(1− θ) γ2Kγ(α) +Kγ(α

√
1− θ)

)2 − 2α5(θ−1)2θ2Kγ+1(α
√

1−θ)3

((1−θ)γ/2Kγ(α)−Kγ(α
√

1−θ))
3

,

(A.43)
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µ4 = 1
16α3 θ

((
1√
1−θα (α6(θ − 1)3θ3 + 16α2(γ − 1)(θ − 1) (2 + θ (−6 + 21γ

+6(1 + γ(4γ − 3))θ + (−2 + γ(7 + γ(−9 + 5γ)))θ2 − 4α4(θ − 1)2θ(7 + θ(7(θ − 2)

+6γ(3 + (γ − 2)θ)))− 64(γ − 2)(γ − 1)γ(1 + θ(4 + θ + γ(7 + θ(4 + γ(6 + γθ)))))

Kγ−4(α
√

1− θ)− 1
θ−1

4 (α6(θ − 1)3θ2(3 + (2γ − 3)θ) + 8α2(γ − 2)(γ − 1)(θ − 1)

(3 + θ (−9 + 28γ + (9− 26γ + 30γ2) θ + (−3 + 2γ(5 + 3(γ − 2)γ))θ2))

−2α4(θ − 1)2 (1 + θ (−24 + 21γ + 45θ + 6γ(6γ − 13)θ + (γ(47 + 2γ(5γ − 18))

−22)θ2 − 32(γ − 3)(γ − 2)(γ − 1)γ(1 + θ(4 + θ + γ(7 + θ(4 + γ(6 + γθ)))))

Kγ−3(α
√

1− θ)/
(
(1− θ)9/2

(
(1− θ)γ/2Kγ(α)−Kγ(α

√
1− θ)

))
− (4α2θ (α (α4(θ − 1)2θ2 − 4α2(θ − 1)(1 + θ(−2 + θ + 3γ(2 + (γ − 1)θ)))

+16(γ − 1)γ(1 + θ(1 + γ(3 + γθ)))Kγ−3(α
√

1− θ)

+ 1√
1−θ2 (3α4(θ − 1)2θ(1 + (γ − 1)θ)− 4α2(γ − 1)(θ − 1)(2 + θ(−4 + 9γ

+(2 + γ(4γ − 5))θ)) + 16(γ − 2)(γ − 1)γ(1 + θ(1 + γ(3 + γθ)))Kγ−2(α
√

1− θ)

Kγ+1(α
√

1− θ)/
(

(θ − 1)4
(
−(1− θ)γ/2Kγ(α) +Kγ(α

√
1− θ)

)2
)

+
(
6α4θ2

(
α
√

1− θ (−4γ − 4γ2θ + α2(θ − 1)θ)Kγ−2(α
√

1− θ)

+2 (−4(γ − 1)γ(1 + γθ) + α2(θ − 1)(1 + (2γ − 1)θ))Kγ−1(α
√

1− θ)

Kγ+1(α
√

1− θ)2/
(

(1− θ)7/2
(
(1− θ)γ/2Kγ(α)−Kγ(α

√
1− θ)

)3
)

− 3α7θ3Kγ+1(α
√

1−θ)4

(θ−1)2(−(1−θ)γ/2Kγ(α)+Kγ(α
√

1−θ))
4

.

(A.44)

Positive Yule (λ)

Raw moments:

µ′1 = λ(λ+1) 2F1(1,2,3+λ,1)
λ2+λ−2

µ′2 = B(λ+ 1, 2)Γλ+ 3)
(
λ(λ+1)(λ+5) 2F1(1,2,3+λ,1)

λ−1
+ 12(λ− 3) 2F1(3, 4, 4 + λ, 1)

)
µ′3 = 1

(λ−1)λ
B(λ+ 1, 2)Γ(λ+ 3) (λ2(λ+ 1)(λ+ 13) 2F1(1, 2, 3 + λ, 1)

+72((λ− 3)(λ− 1)λ 2F1(3, 4, 4 + λ, 1) + 2(λ− 5)(λ− 4) 2F1(4, 5, λ+ 4, 1))

µ′4 = Γ(λ− 1) (λ2(λ+ 1)(λ+ 29) 2F1(1, 2, λ+ 3, 1)

+60(5(λ− 3)(λ− 1)λ 2F1(3, 4, λ+ 4, 1) + 24(λ− 5)(λ− 2) 2F1(4, 5, λ+ 4, 1))

,

(A.45)
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Central moments:

µ1 = 0

µ2 = −λ4(λ+ 1)4Γ(λ− 1)2
2F1(1, 2, 3 + λ, 1)2 + B(λ+ 1, 2)Γ(λ+ 3)(

λ(λ+1)(λ+5) 2F1(1,2,λ+3,1)
λ−1

+ 12(λ− 3) 2F1(3, 4, λ+ 4, 1)
)

µ3 = −3λ2(λ+1)(λ+5)_2F1(1,2,λ+3,1)2

(λ+λ2−2)2
+ 2λ6(λ+ 1)6Γ(λ− 1)3

2F1(1, 2, λ+ 3, 1)3

+ 1
λ−1

(−36(λ− 3)λΓ(λ+ 2)2
2F1(1, 2, λ+ 3, 1) 2F1(3, 4, λ+ 4, 1)

+Γ(λ) (λ2(λ+ 1)(λ+ 13) 2F1(1, 2, λ+ 3, 1) + 72((λ− 3)(λ− 1)λ

2F1(3, 4, λ+ 4, 1] + 2(λ− 5)(λ− 4) 2F1(4, 5, λ+ 4, 1))

µ4 = Γ(λ− 1) (6λ6(λ+ 1)5(λ+ 5)Γ(λ− 1)2
2F1(1, 2, λ+ 3, 1)3

−3λ8(λ+ 1)8Γ(λ− 1)3
2F1(1, 2, λ+ 3, 1)4 + 4λ4(λ+ 1)3Γ(λ− 1)

2F1(1, 2, λ+ 3, 1)2(−13− λ+ 18(λ− 3)Γ(λ+ 2) 2F1(3, 4, λ+ 4, 1))

+60(5(λ− 3)(λ− 1)λ 2F1(3, 4, λ+ 4, 1) + 24(λ− 5)(λ− 2) 2F1(4, 5, λ+ 4, 1))

+λ2(λ+ 1) 2F1(1, 2, λ+ 3, 1)(29 + λ+ 288(λ+ 1)Γ(λ− 1)(−(λ− 3)(λ− 1)λ

2F1(3, 4, λ+ 4, 1)− 2(λ− 5)(λ− 4) 2F1(4, 5, λ+ 4, 1)))

.

(A.46)

Lerch Family Distributions

Lerch (p, a, c)

Raw moments:

µ′1 = Φ(p,c−1,a+1)−aΦ(p,c,a+1)
Φ(p,c,a+1)

µ′2 = Φ(p,c−2,a+1)−2aPhi(p,c−1,a+1)+a2Φ(p,c,a+1)
Φ(p,c,a+1)

µ′3 = Φ(p,c−3,a+1)−3aΦ(p,c−2,a+1)+3a2Φ(p,c−1,a+1)−a3Φ(p,c,a+1)
Φ(p,c,a+1)

µ′4 = Φ(p,c−4,a+1)−4aΦ(p,c−1,a+1)+6a2Φ(p,c−2,a+1)−4a3Φ(p,c−1,a+1)+a4Φ(p,c,a+1)
Φ(p,c,a+1)

, (A.47)
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Central moments:

µ1 = 0

µ2 = 1
Φ(p,c,a+1)2

(−(Φ(p, c− 1, a+ 1)− aΦ(p, c, a+ 1))2 + (Φ(p, c− 2, a+ 1)

+a(−2Φ(p, c− 1, a+ 1) + aΦ(p, c, a+ 1)))Φ(p, c, a+ 1)

µ3 = 1
Φ(p,c,a+1)3

(2(Φ(p, c− 1, a+ 1)− aΦ(p, c, a+ 1))3 − 3(Φ(p, c− 1, a+ 1)

−aΦ(p, c, a+ 1))(Φ(p, c− 2, a+ 1) + a(−2Φ(p, c− 1, a+ 1) + aΦ(p, c, a+ 1)))

Φ(p, c, a+ 1) + (Φ(p, c− 3, a+ 1)− a(3Φ(p, c− 2, a+ 1) + a(−3Φ(p, c− 1, a+ 1)

+aΦ(p, c, a+ 1))))Φ(p, c, a+ 1)2

µ4 = 1
Φ(p,c,a+1)4

(−3(Φ(p, c− 1, a+ 1)− aΦ(p, c, a+ 1))4 + 6(Φ(p, c− 1, a+ 1)

−aΦ(p, c, a+ 1))2(Φ(p, c− 2, a+ 1) + a(−2Φ(p, c− 1, a+ 1) + a(p, c, a+ 1)))

Φ(p, c, a+ 1)− 4(Φ(p, c− 1, a+ 1)− aΦ(p, c, a+ 1))(Φ(p, c− 3, a+ 1)

−a(3Φ(p, c− 2, a+ 1) + a(−3Φ(p, c− 1, a+ 1) + aΦ(p, c, a+ 1))))Φ(p, c, a+ 1)2

+ (Φ(p, c− 4, a+ 1) + a (−4Φ(p, c− 3, a+ 1) + a (6Φ(p, c− 2, a+ 1)

−4aΦ(p, c− 1, a+ 1) + a2Φ(p, c, a+ 1)Φ(p, c, a+ 1)3

.

(A.48)

Zipf (a, c)

Raw moments:

µ′1 = Φ(1,c−1,a+1)−aΦ(1,c,a+1)
ζ(c,a+1)

µ′2 = Φ(1,c−2,a+1)−2aΦ(1,c−1,a+1)+a2Φ(1,c,a+1)
ζ(c,a+1)

µ′3 = Φ(1,c−3,a+1)−3aΦ(1,c−2,a+1)+3a2Φ(1,c−1,a+1)−a3Φ(1,c,a+1)
ζ(c,a+1)

µ′4 = Φ(1,c−4,a+1)−4aΦ(1,c−3,a+1)+6a2Φ(1,c−2,a+1)−4a3Φ(1,c−1,a+1)+a4Φ(1,c,a+1)
ζ(c,a+1)

, (A.49)
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Central moments:

µ1 = 0

µ2 = 1
ζ(c,a+1)2

(−(Φ(1, c− 1, a+ 1)− aΦ(1, c, a+ 1))2 + (Φ(1, c− 2, a+ 1)

+a(−2Φ(1, c− 1, a+ 1) + aΦ(1, c, a+ 1)))ζ(c, a+ 1)

µ3 = 1
ζ(c,a+1)3

(2(Φ(1, c− 1, a+ 1)− aΦ(1, c, a+ 1))3 − 3(Φ(1, c− 1, a+ 1)

−aΦ(1, c, a+ 1))(Φ(1, c− 2, a+ 1) + a(−2Φ(1, c− 1, a+ 1)

+aΦ(1, c, a+ 1)))ζ(c, a+ 1) + (Φ(1, c− 3, a+ 1)− a(3Φ(1, c− 2, a+ 1)

+a(−3Φ(1, c− 1, a+ 1) + aΦ(1, c, a+ 1))))ζ(c, a+ 1)2

µ4 = 1
ζ(c,a+1)4

(−3(Φ(1, c− 1, a+ 1)− aΦ(1, c, a+ 1))4 + 6(Φ(1, c− 1, a+ 1)

−aΦ(1, c, a+ 1))2(Φ(1, c− 2, a+ 1) + a(−2Φ(1, c− 1, a+ 1)

+aΦ(1, c, a+ 1)))ζ(c, a+ 1)− 4(Φ(1, c− 1, a+ 1)− aΦ(1, c, a+ 1))

(Φ(1, c− 3, a+ 1)− a(3Φ(1, c− 2, a+ 1) + a(−3Φ(1, c− 1, a+ 1)

+aΦ(1, c, a+ 1))))ζ(c, a+ 1)2 + (Φ(1, c− 4, a+ 1) + a (−4Φ(1, c− 3, a+ 1)

+a (6Φ(1, c− 2, a+ 1)− 4aΦ(1, c− 1, a+ 1) + a2Φ(1, c, a+ 1)) ζ(c, a+ 1)3

(A.50)

Good (p, c)

Raw moments:
µ′1 = p−cLi)c−1(p)

ζ(c)

µ′2 = p−cLi)c−2(p)
ζ(c)

µ′3 = p−cLi)c−3(p)
ζ(c)

µ′4 = p−cLi)c−4(p)
ζ(c)

, (A.51)
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Central moments:

µ1 = 0

µ2 =
p−2c(−Lic−1(p)2+pcLic−2(p)ζ(c))

ζ(c)2

µ3 = 1
ζ(c)3

p−3c (2Lic−1(p)3 − 3pcLic−2(p)Lic−1(p)ζ(c) + p2cLic−3(p)ζ(c)2)

µ4 = 1
ζ(c)4

p−4c (−3Lic−1(p)4 + 6pcLic−2(p)Lic−1(p)2ζ(c)

−4p2cLic−3(p)Lic−1(p)ζ(c)2 + p3cLic−4(p)ζ(c)3

.

(A.52)

Zeta (c)

Raw moments:
µ′1 = ζ(c−1)

ζ(c)

µ′2 = ζ(c−2)
ζ(c)

µ′3 = ζ(c−3)
ζ(c)

µ′4 = ζ(c−4)
ζ(c)

, (A.53)

Central moments:

µ1 = 0

µ2 = ζ(c−2)ζ(c)−ζ(c−1)2

ζ(c)2

µ3 = 2ζ(c−1)3−3ζ(c−2)ζ(c−1)ζ(c)+ζ(c−3)ζ(c)2

ζ(c)3

µ4 = −3ζ(c−1)4+6ζ(c−2)ζ(c−1)2ζ(c)−4ζ(c−3)ζ(c−1)ζ(c)2+ζ(c−4)ζ(c)3

ζ(c)4

. (A.54)

Generalized Poisson Distributions

Neyman Type A (µ, φ)

Raw moments:

µ′1 = eµ+1µφ

µ′2 = eµ+1µφ(1 + φ+ µφ)

µ′3 = e−1+µµφ(1 + φ(3 + φ+ µ(3 + (3 + µ)φ)))

µ′4 = e−1+µµφ (1 + φ (7 + 7µ+ 6φ+ 6µ(3 + µ)φ+ (1 + µ(7 + µ(6 + µ)))φ2))

,

(A.55)
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Central moments:

µ1 = 0

µ2 = e−2+µµφ (−eµµφ+ e(1 + φ+ µφ))

µ3 = e−3+µµφ (2e2µµ2φ2 − 3e1+µµφ(1 + φ+ µφ)

+e2(1 + φ(3 + φ+ µ(3 + (3 + µ)φ)))

µ4 = e−4+µµφ (−3e3µµ3φ3 + 6e1+2µµ2φ2(1 + φ+ µφ)

+e3 (1 + φ (7 + 7µ+ 6φ+ 6µ(3 + µ)φ+ (1 + µ(7 + µ(6 + µ)))φ2))− 4

e2+µµφ(1 + φ(3 + φ+ µ(3 + (3 + µ)φ)))

.

(A.56)

Hermite (a, b)

Raw moments:

µ′1 = a+ 2b

µ′2 = a+ 2b+ (a+ 2b)2

µ′3 = a+ 8b+ 2(a+ 2b)(a+ 4b) + (a+ 2b)(a+ 4b+ (a+ 2b)2)

µ′4 = a+ 16b+ 3(a+ 2b)(a+ 8b) + 3(a+ 4b)(a+ 4b+ (a+ 2b)2)

+(a+ 2b)(a+ 8b+ 2(a+ 2b)(a+ 4b) + (a+ 2b)(a+ 4b+ (a+ 2b)2))

,

(A.57)

Central moments:

µ1 = 0

µ2 = a+ 4b

µ3 = a+ 8b

µ4 = a(1 + 3a) + 8(2 + 3a)b+ 28b2

. (A.58)

Generalized Hermite (a, b,m)
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Raw moments:

µ′1 = a+mb

µ′2 = a+m2b+ (a+mb)2

µ′3 = a3 + 2a2(1 +mb) +m3b(1 + b(3 + b)) + a(1 + 3mb(1 +m+mb))

µ′4 = a4 + a3(6 + 4mb) + a2(7 + 6mb(2 +m+mb)) +m4b(1 + b(7 + b(6 + b)))

+a(1 + 2mb(2 +m(3 + 2m) +mb(3 + 6m+ 2mb))

,

(A.59)

Central moments:

µ1 = 0

µ2 = a+m2b

µ3 = a+m3b

µ4 = 3a2 +m4b(1 + 3b) + a(1 + 6m2b)

. (A.60)

Gegenbauer (a, b, k)

Raw moments:

µ′1 = −k(a+2b)
a+b−1

µ′2 = 1
(a+b−1)2

(k(ka2 + 4b(kb+ 1) + a(1 + (4k − 1)b)))

µ′3 = − 1
(a+b−1)3

(k (a3k2 + a2 (1 + 3k + b (1− 3k + 6k2)) + 8b (1 + b (1 + 3k + bk2))

+a (1 + 18bk + b2(6k(2k − 1)− 1))

µ′4 = 1
(a+b−1)4

k (a4k3 + a2 (7k + 2b+ 4 (4 + k + 24k2) + b2(4 + k(7 + 24(k − 1)k)))

+16b (1 + b (4 + 7k + b (1 + 4k + 6k2 + bk3))) + a3 (1 + 4k + 6k2

+b(2k(2 + k(−3 + 4k))− 1) + a(1 + b(13 + 64k + b(−13 + 8k(1 + 15k)

+b(8(−1 + k)k(1 + 4k)− 1))))

(A.61)

372



Central moments:

µ1 = 0

µ2 = k(a−(a−4)b)
(a+b−1)2

µ3 = − (b+1)(a(a−b+1)+8b)k
(a+b−1)3

µ4 = 1
(a+b−1)4

(k (−a3(b− 1) + 16b+ 16b2(b+ 3k + 4)

−a(b− 1)(1 + b(14 + b+ 24k)) + a2(4 + 3k + b(8− 6k + b(4 + 3k)))

(A.62)

Generalized Gegenbauer (a,m, α, β)

Raw moments:

µ′1 = −a(α+mβ)
α+β−1

µ′2 = −
a

(
α+βm2− (1+a)(α+βm)2

α+β−1

)
α+β−1

µ′3 = −
a

α+βm3−
2(1+a)(α+βm)(α+βm2)

α+β−1
−

(1+a)(α+βm)

(
α+βm2− (2+a)(α+βm)2

α+β−1

)
α+β−1


α+β−1

µ′4 = − 1
α+β−1

a

(
α + βm4 − 3(1+a)(α+βm)(α+βm3)

α+β−1
−

3(1+a)(α+βm2)
(
α+βm2− (2+a)(α+βm)2

α+β−1

)
α+β−1

−
(1+a)(α+βm)

α+βm3−
2(2+a)(α+βm)(α+βm2)

α+β−1
−

(2+a)(α+βm)

(
α+βm2− (3+a)(α+βm)2

α+β−1

)
α+β−1


α+β−1

,

(A.63)

Central moments:

µ1 = 0

µ2 =
a(α+β(−α(m−1)2+m2))

(α+β−1)2

µ3 = −a(α2(1+β(m−1)3)+β(1+β)m3+α(1−β2(m−1)3−β(m−2)(m+1)(−1+2m)))
(α+β−1)3

µ4 = 1
(α+β−1)4

k (α3 (1− β(m− 1)4) + β(1 + β(4 + β + 3a))m4

+α2 (4 + 3a+ β (−8− 6a(m− 1)2 + β(4 + 3a)(m− 1)4

+16m− 8m3 + 3m4 + α (1 + β (−3 +m (4 +m (6 + 6a+ 4m− 3m2))

+β (3− β(−1 +m)4 − 6a(−1 +m)2m2 − 8 (m− 2m3 +m4))

,

(A.64)
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Appendix B

Publications and posters arising from

this research

B.1 List of publications

McElduff, F, Mateos, P, Wade, A, and Cortina-Borja, M (2008). Whats in a name?

The frequency and geographic distributions of UK surnames. Significance, 5:189192.

Chan, SK, Riley, PR, Price, KL, McElduff, F, Winyard, PJ, Welham, SJM, Woolf,

AS, and Long, DA (2010). Corticosteroid-induced kidney dysmorphogenesis is associated

with deregulated expression of known cystogenic molecules, as well as indian hedgehog.

American Journal of Physiology: Renal Physiology, 298:F346F356.

McElduff, F, Cortina-Borja, M, Chan, S-K, and Wade, A (2010). When t-tests or

Wilcoxon-Mann-Whitney tests wont do. Advances in Physiology Education, 34:128133.

Gordon, K, Pasco, G, McElduff, F,Wade, A, Howlin, P, and Charman, T (2011).

A Communication-Based Intervention for Nonverbal Children With Autism: What

Changes? Who Benefits? Journal of Consulting and Clinical Psychology, 79:447457.
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B.2 List of Posters

McElduff, F, Mateos, P, Wade, A, and Cortina-Borja, M. The UK Surname distribution

and potential applications. University of Edinburgh, UK. Royal Statistical Society

Conference. September 2009 (Awarded 3rd prize in poster competition). and University

of Lancaster, UK. Research Students Conference in Probability and Statistics. April

2009 (Awarded Best Poster).

McElduff, F, Wade, A, Chan, S-K, Woolf, A and Cortina-Borja, M. When are

outliers surprising? University of Warwick, UK. Research Students Conference in

Probability and Statistics. April 2010.

McElduff, F, Wade, A and Cortina-Borja, M. Outlier detection in discrete distributions.

Brighton, UK. Royal Statistical Society Conference. September 2010.
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The UK surname distribution and 
potential applications

1 MRC Centre of Epidemiology for Child Health, University College London Institute of Child Health
 2Department of Geography, University College London 

Institute of Child HealthInstitute of Child Health

Fiona McElduff1, Pablo Mateos2, Angie Wade1 and Mario Cortina-Borja1 

Background Dataset
•The ‘enhanced electoral register’ contains the names and addresses of all 
adults entitled to vote in the UK, with additional non-registered voters sourced 
from commercial surveys and credit scoring databases. 

•In 2001 the register contained 45,614,126 individuals, with a total of 817,391 
surnames; 65.07% were unique but only correspond to 4.41% of the 
population.  

•The dataset contains surname frequencies from 434 districts which can be 
grouped into 12 regions according to the official Government Office Regions.

•This long-tailed, value-inflated 
distribution makes it an ideal dataset to 
include in my PhD (‘Models for discrete 
epidemiological and clinical data’).

•Figure 1 illustrates the skew nature 
of the surname frequency distribution. 
Most surnames occur relatively few 
times with some common surnames 
having very high frequencies. 

Figure 1:  Surname frequencies

•There are strong relationships between surname frequencies and the ethnic 
and genetic structures in a population. 

•Surnames can be used in the field of child health as indicators of ethnicity in 
probabilistic record linkage1.

•Examples of surnames as an indicator of ethnic origin in record linkage can 
be seen in studies of childhood cancer2,3. 

•Surnames are often patrilinearly inherited so they correlated well with Y-
chromosomes4 and can be used to identify genetic factors in certain 
diseases/conditions. 
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•An established measure of diversity in linguistics used to quantify literary 
style is Yule’s K5, which is proportional to the probability of two persons 
randomly selected sharing the same surname. Larger values of K indicate 
lower diversity in a population and hence greater uniformity of 
surnames. 

•The number of different surnames divided by the number of people in the 
population measures the volume of surname diversity. 

•Surnames can be categorized by their geographical origin using the National 
Trust profiler (http://www.nationaltrustnames.org.uk/).  

Methods

Results
•Figure 2 shows that districts 
in the South of Britain have a 
higher proportion of surnames 
per head of population than 
those in the North. 

•Figure 3 demonstrates there 
is a trend for those districts with 
a large proportion of people with 
unique surnames to have low 
values of K (indicating greater 
diversity).

•Scotland and Northern Ireland 
tend to have large K values and 
Wales clearly has the largest, 
signifying a higher rate of 
uniformity of surnames than in 
the rest of the UK. 
•Districts in London have much 
higher proportions of people 
with unique surnames and lower 
values of K. 

London Districts

<0.12
[0.12, 0.14)
[0.14, 0.16)
[0.16, 0.45)
≥ 0.45

Figure 2: Ratio of the number of different surnames 
divided by the number of people in each district
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Figure 3: Proportion of people with 
unique surnames vs. Yule’s K 

•Oxford and Cambridge are clear outliers. Also the London districts of Tower 
Hamlets, Brent and Newham have a large number of unique surnames but much 
lower diversity. 

•Smith is the most frequent surname in 308 out of the 434 districts- 1.02% of the 
population are Smith’s.

•The percentage of the population with the top 10 ranked surnames for each 
country, is given in Table 1.

•Wales has the highest cumulative percentage of the population with surnames 
in the top 10 (24.5%), indicating a lower diversity of surnames than those of the 
other countries.

•Irish surnames, e.g. Kelly and O’Neill, and Scottish surnames, e.g. Campbell, 
and Johnston, rank highly in the top surnames in Northern Ireland. 

•English originating surnames, however, occur in all four UK countries, for 
example Brown arise in the top 10 surnames for all countries.
Rank England Scotland Wales Northern Ireland

1 Smith (1.26) Smith (1.28) Jones (5.75) Wilson (0.75)
2 Jones (0.75) Brown (0.94) Williams (3.72) Campbell (0.75)
3 Taylor (0.59) Wilson (0.89) Davies (3.72) Kelly (0.74)
4 Brown (0.56) Robertson (0.78) Evans (2.47) Johnston (0.69)
5 Williams (0.39) Thomson (0.78) Thomas (2.43) Moore (0.62)
6 Wilson (0.39) Campbell (0.77) Roberts (1.53) Thompson (0.61)
7 Johnson (0.37) Stewart (0.73) Lewis (1.53) Smyth (0.60)
8 Davies (0.34) Anderson (0.70) Hughes (1.23) Brown (0.59)
9 Robinson (0.32) Scott (0.55) Morgan (1.16) O’Neill (0.57)
10 Wright (0.32) Murray  (0.53) Griffiths (0.96) Doherty (0.54)

Table 1: Top Surnames by Country (%)

• In this study we found that geographical regions of the UK have different 
surname structures. The spatial distribution of surnames reflects the genetic 
pool of the country’s population6. 

• London, the South East and the East of England have higher surname 
diversity; Wales has a less varying surname distribution. 

• A potential application of surnames frequencies is their use in childhood 
disease epidemiology as an indicator of genetic association.  
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• Probability models are compared in Table 1 us-
ing the BIC and Figure 3 shows the plotted SI’s 
for the distributions fitted. 

• The observations of 16 and 19 are considered surprising and therefore outliers, we should:  (a) check for possible observational errors in these values  

 (b) If no errors are found, quantify the sensitivity of any conclusions drawn to the presence of these surprising values.    

Conclusion 
 

Results 
 

Distribution BIC 

Negative Binomial (NB) 5530.2 

Zero-inflated negative binomial (ZINB) 5542.6 

Sichel 5550.3 

Zero-inflated Poisson (ZIP) 5838.8 

Poisson 6933.0 

Table 1: BIC values for models fitted to cysts. 

Aims: To determine the model  that best fits 
the data and to characterize any outliers. 

Figure 1: Em-
bryonic Kidney 
with cysts 
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• This study is interested in the effects of mothers 
diets on the growth of kidney’s in their unborn 
baby. 

• Embryonic mice kidney cells (n=2,559) were ex-
amined for cysts (Figure 1).  

• The distribution of the number of cysts per kid-
ney cell (Figure 2) is highly skew with 69.2% of 
cells having no cysts. There are three possibly 
outlying cells with16, 19 and19 cysts.   
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Figure 2: Histogram of the number of cysts 

Dataset 
 

 (ii) Tossing a Coin The coin could land heads, 
 tails or on its edge. Landing on its edge is a sur-
 prising event since the probability of this occur
 ring is low in relation to the probability of heads 
 or tails, it is also a rare event because it has a 
 very small probability.      

  

 

• We calculated analytical expressions for the SI 
for discrete distributions, estimated their parame-
ters using R

3
 and compared models using 

Bayesian Information Criterion (BIC), where a 
low BIC value indicates a better fit.  

Background 
 

• An outlier is an observation which appears to be inconsistent with the remainder of the dataset
1
. 

• Outlying observations can distort any inferences that are drawn from the sample. 

• The detection of outliers poses particular problems when the data are discrete and/or the underlying distribution is highly skew with a long tail. 

• This problem often arises whilst analysing data from paediatric clinical and epidemiological studies.  

• The Surprise Index
2
 (SI) provides an empirical 

measure of how unexpected an observed value 
is.  

• If a random event has values V1,V2, …,Vk occur-
ring with probabilities p1,p2, …,pk then the SI is 
defined for each value x  with corresponding 
probability px as:  

 SIx  = expected value of p ( E(p) =Σ
k
i=1pi

2
) divided 

by the probability that the variable takes the value 
x (px) 

• A large SI indicates a more surprising event.  

Methods 
 

• The following categories can be used as guide-
lines to quantify how surprising an event is with 
respect to a chosen probability model

2
:  

• A rare event is not necessarily surprising but a 
surprising event is always rare. For example: 

 (i) Winning the Lottery is rare, but any combi-
 nation of winning numbers is not in itself surpris-
 ing since all combinations are equally likely.  

• The Poisson distribution has the highest BIC 
value and observations greater than 5 are con-
sidered to be surprising.  

• The ZIP distribution is a slight improvement to 
the fit of the data but observations greater than 8 
are still surprising.  

• For the NB and ZINB distributions observations 
greater than 12 (3 observations, 0.1%) are con-
sidered to be surprising.  

• Surprise indices for the Sichel distribution only 
regard observations of 19 as outliers.  

• The NB has the lowest BIC and hence provides 
the best overall fit to the data. 

<5   Not Surprising 

10 Begins to be surprising 

1,000 Definitely Surprising 

1,000,000 Very Surprising  

10
12
 Miracle! 

 

 

 

 

 

Figure 3: Surprise Index Plot 

SI=1,000 
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Surprise Index
•The Surprise Index2 (SI) provides an empirical measure of how 
unexpected an observed value is. 

•If a random event has values V1, V2, …, Vk occurring with probabilities p1, 
p2, …, pk then the SI is defined for each value x with corresponding 
probability px as: 

•A large value of SI indicates a more surprising event. The following 
categories can be used as guidelines to quantify how surprising an event is 
with respect to a chosen probability model2:

•We obtained analytical expressions for the SI of several discrete 
distributions, estimated their parameters using R3 and compared models 
using the Bayesian Information Criterion (BIC), where a low BIC value 
indicates a better fit.

•A rare event is not necessarily surprising but a surprising event is always 
rare. For example:

(i) Winning the Lottery is rare, but any combination of winning numbers is 
not in itself surprising since all combinations are equally likely. 

(ii)Tossing a coin The coin could land heads, tails or on its edge. Landing 
on its edge is a surprising event since the probability of this occurring is low 
in relation to the probability of heads or tails, it is also a rare event because 
it has a very small probability.     

Empirical Probability Generating Function
•The Empirical Probability Generating Function (EPGF) provides a smooth 
projection of the observed data, V1, V2, …, Vk:

•Where -1 ≤ t  ≤ 1.

•If an observation has a large effect on the distribution of the dataset the 
epgf calculated without the observation will be substantially different, hence 
a leave-one-out procedure can be used to detect outliers4. 

Outlier Detection in Discrete Distributions
Fiona McElduff, Angie Wade and Mario Cortina Borja

MRC Centre of Epidemiology for Child Health, 
University College London, Institute of Child Health. 
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•An outlier is an observation which appears to be inconsistent with the 
remainder of the dataset1.  

•Outlying observations can lead to distorted inferences from the sample.

•The detection of outliers poses particular problems when the data are 
discrete and/or the underlying distribution is highly skew with a long tail.  
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•We analyze the frequencies of stillbirths in 402 litters of New Zealand 
white rabbits5  (Table 1). 

•The distribution is zero-inflated with 78.1% of the litters having no 
stillbirths. Overdispersion is clearly present as the variance (1.51) is much 
larger than the mean (0.46). 

•A possibly outlying observation of 11 stillbirths in one litter can be seen in 
the tail end of the distribution. 

Distribution
Number of stillbirths

BIC

0 1 2 3 4 5 6 7 8 9 10 11
Observed 314 48 20 7 5 2 2 1 2 0 0 1 ---

Poisson 254 117 27 4 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 887.7

ZIP 314 33 28 16 7 2 1 ∙ ∙ ∙ ∙ ∙ 726.4

NB 314 46 19 10 5 3 2 1 1 ∙ ∙ ∙ 686.3

ZINB 314 46 19 10 5 3 2 1 1 ∙ ∙ ∙ 692.3

Sichel 314 49 18 9 5 3 2 1 1 ∙ ∙ ∙ 691.9

ZI Sichel 314 48 18 9 5 3 2 1 1 ∙ ∙ ∙ 697.9

SI- NB 0.8 5.5 13.2 26.3 48.0 83.5 140.8 232.5 378.0 607.1 965.9 1524.9 ---

Table 1: Frequencies of stillbirths and BIC values.

•The observation of 11 stillbirths in one litter is considered to be an outlier in this dataset. 

•Assuming that the underlying probability model is correct the SI is preferable as it yields a numerical value; the EPGF method is a graphical, non-parametric 
procedure. 

•With any dataset containing potential outliers various methods should be used for formal identification. If any outliers are detected and if no recording errors 
are found, then sensitivity analyses should be undertaken to assess their influence on the study conclusions.  
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•Comparing the BIC’s (Table 1) shows the negative binomial model 
provides the best fit to the data. A mean of 0.46 and dispersion of 2.15 can 
be estimated from the fitted model. 

•The probability of 11 stillbirths under this model is 0.0004, (SI=1524.9) 
indicating that this rare event with a low probability can also be regarded as 
surprising.

•Removing the outlying observation of 11 stillbirths in one litter and fitting a 
negative binomial model to the remainder of the dataset produces an 
estimated mean of 0.43 and dispersion of 1.88.
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Dataset

•402 EPGF curves each with 401 observations are plotted in Figure 1. 

•The curve for the EPGF not including the observation with 11 stillbirths 
(highlighted in red) is different to the remaining 401 curves.  

•Removing this observation and reconstructing the EPGF outlier plot 
(Figure 2) the remaining 401 curves do not indicate any outliers.     

Figure 1: EPGF outliers plot of frequency 
of stillbirths.

Figure 2: EPGF outliers plot of frequency of 
stillbirths without the observation with 11 
stillbirths.
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