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Abstract

Background: Steroidogenic factor 1 (SF-1, NR5A1) is a key transcriptional regulator of many genes
involved in the hypothalamic–pituitary–gonadal axis and mutations in NR5A1 can result in 46,XY
disorders of sex development (DSD). Patients with this condition typically present with ambiguous
genitalia, partial gonadal dysgenesis, and absent/rudimentary Müllerian structures. In these cases,
testosterone is usually low in early infancy, indicating significantly impaired androgen synthesis.
Further, Sertoli cell dysfunction is seen (low inhibin B, anti-Müllerian hormone). However, gonadal
function at puberty in patients with NR5A1 mutations is unknown.
Subjects and methods: Clinical assessment, endocrine evaluation, and genetic analysis were performed in
one female and one male with 46,XY DSD who showed spontaneous virilization during puberty.
The female patient presented at adolescence with clitoral hypertrophy, whereas the male patient presented
at birth with severe hypospadias and entered puberty spontaneously. Molecular analysis of NR5A1 was
performed followed by in vitro functional analysis of the two novel mutations detected.
Results: Testosterone levels were normal during puberty in both patients. Analysis ofNR5A1 revealed two
novel heterozygous missense mutations in the ligand-binding domain of SF-1 (patient 1: p.L376F; patient
2: p.G328V). The mutant proteins showed reduced transactivation of the CYP11A promoter in vitro.
Conclusion: Patients with 46,XY DSD and NR5A1 mutations can produce sufficient testosterone for
spontaneous virilization during puberty. Phenotypic females (46,XY) with NR5A1 mutations can present
with clitoromegaly at puberty, a phenotype similar to other partial defects of androgen synthesis or action.
Testosterone production in 46,XY males with NR5A1 mutations can be sufficient for virilization at
puberty. As progressive gonadal dysgenesis is likely, gonadal function should be monitored in adolescence
and adulthood, and early sperm cryopreservation considered in male patients if possible.
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Introduction

Steroidogenic factor 1 (SF-1, NR5A1), a member of the
nuclear receptor superfamily, is a key transcriptional
regulator of many genes involved in the hypothalamic–
pituitary–gonadal and hypothalamic–pituitary–adrenal
axes (e.g. inhibin a, DAX1 (NR0B1), StAR (STAR),
CYP11A (CYP11A1), CYP17A1, HSD3B2, CYP19A1,
MIS (AMH), oxytocin, and SOX9) (1). SF-1 is highly
expressed in steroidogenic tissues from very early stages
of development, including the developing gonad and
adrenal, and continues to be expressed in these tissues
into adult life (2). SF-1 is also expressed in the
ventromedial hypothalamic nucleus and pituitary
gonadotropes (3, 4, 5). Consistent with this central
ndocrinology
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nd reproduction in any medium, provided the ori
role in reproductive and adrenal development, XY Sf-1
knockout mice (Sf-1K/K) lack adrenal glands and show
male to female ‘sex reversal’ due to complete gonadal
dysgenesis (6). Furthermore, male gonad-specific
Sf-1K/K mice display hypoplastic testes and internal
genitalia, undescended testes, and infertility (7). SF-1
interacts in vitro with several other major factors
playing a role in gonadal determination and differen-
tiation (e.g. SRY, GATA4, and SOX9) (8, 9, 10).

To date, about 50 different NR5A1 mutations
have been reported in humans with disorders of
sex development (DSD). NR5A1 mutations were first
described in two 46,XY patients with complete gonadal
dysgenesis and primary adrenal failure (11, 12) and in
one 46,XX female with primary adrenal failure (13).
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More recently, however, many more heterozygous
NR5A1 mutations have been identified in patients
with 46,XY DSD without adrenal insufficiency. The
majority of these 46,XY DSD patients without adrenal
failure have a phenotype of ambiguous genitalia at
birth, partial gonadal dysgenesis, and absent or
rudimentary Müllerian structures (14, 15, 16). The
frequency of NR5A1 mutations in patients with this
phenotype has been estimated to be about 15% (17,
18). Furthermore, NR5A1 mutations have also been
identified in 46,XY patients with hypospadias and
cryptorchidism, which is likely to be caused by a milder
form of partial gonadal dysgenesis (19, 20), as well as
in association with vanishing testis syndrome, micro-
penis, or infertility (21, 22, 23). In addition, SF-1 plays
a role in ovarian development and function and
mutations have been reported in women (46,XX) with
primary ovarian insufficiency and premature ovarian
failure (24). NR5A1 mutations rarely cause isolated
adrenal insufficiency (25). Therefore, it is currently
thought that disruption of SF-1 has a more significant
effect on human gonadal development and function
compared with human adrenal development and
function (25).

In most published cases of 46,XY DSD due to NR5A1
mutations, testosterone has been low indicating signi-
ficantly impaired androgen synthesis. Sertoli cell
hypofunction has been suggested because of low levels
of inhibin B and anti-Müllerian hormone (AMH) and
elevated FSH. However, normal testosterone levels at
birth have been reported in one patient with 46,XY DSD
and low normal testosterone levels during puberty have
been described in another patient (23, 26). We report
two novel NR5A1 mutations in two patients with 46,XY
DSD who demonstrate normal male testosterone
production during puberty.
Subjects

Written informed consent for genetic analysis was
obtained according to institutional ethical guidelines
from the parents of patient 1 and from patient 2.
Patient 1

Patient 1 is a female who presented at puberty with
clitoral hypertrophy. She was born to nonconsangui-
neous German Caucasian parents. The clinical presen-
tation, endocrine and laparoscopic findings, and
gonadal histology are summarized in Table 1. Psycho-
logical evaluation of the patient showed female gender
identity. At 14 6/12 years, bilateral gonadectomy was
performed with the patient’s consent and estrogen
substitution was initiated. Mutations of 5-a reductase
type 2 (SRD5A2), 17-b hydroxysteroid dehydrogenase
type 3 (HSD17B3), and androgen receptor (AR) genes
were excluded. Basal cortisol was normal at puberty.
www.eje-online.org
Patient 2

Patient 2 is a 28-year-old male who first presented at
birth with severe penoscrotal hypospadias, hypoplastic
phallus, and small inguinal testes. He was born to
nonconsanguineous German Caucasian parents. In
early infancy, a two-step surgical correction of hypo-
spadias was carried out. The clinical presentation,
testicular histology, results of laparoscopy, pubertal
development, hormones, and semen analysis of the
patient are summarized in Table 1. Mutations of the
SRD5A2, AR, and LH/choriogonadotropin receptor
(LHCGR) genes were excluded. Testosterone sub-
stitution was started at 28 years of age. Basal and
stimulated cortisol (Synacthen test) levels were normal
in adulthood.
Methods

Molecular analysis of NR5A1 gene

Molecular analysis of exons 2–7 of the gene encoding
SF-1 (NR5A1) was performed as described previously
(18). DNA mutation numbering is based on GenBank
reference DNA sequence NM_004959.4, with the A of
the ATG initiation codon designated C1 (www.hgvs.
org/mutnomen).
Functional characterization

In vitro functional activities of the NR5A1 mutations on
the murine Cyp11a promoter was assessed by transient
gene expression assays in human embryonic kidney
TSA-201 cells as described previously (17).
Results

Molecular genetic analysis and functional
characterization

Analysis of the NR5A1 gene revealed a novel hetero-
zygous missense mutation c.1126COT (p.L376F,
g.127253372) in exon 6 in patient 1 and a novel
heterozygous missense mutation c.983GOT (p.G328V,
g.127255316) in exon 5 in patient 2. Both mutations
are located in the ligand-binding domain of SF-1
(Fig. 1). The p.L376F alteration is a de novo mutation
as neither parents of patient 1 harbored this change.
Only the mother of patient 2 was available for genetic
analysis and she did not harbor the mutation. The
mutated amino acids, leucine at position 376 and
glycine at position 328, are highly conserved in SF-1
orthologs (Fig. 1). The c.1126COT and c.983GOT
variants are unlikely to be neutral nonpathological
polymorphisms as they are not present in the database
of single-nucleotide variants (dbSNP132) or the
1000 Genomes data (www.1000genomes.org/data).

http://www.hgvs.org/mutnomen
http://www.hgvs.org/mutnomen
http://www.1000genomes.org/data


Table 1 Clinical presentation, endocrine data, and other investigations of patients. Conversion to SI units: testosterone ng/ml!3.47 for
nmol/l; inhibin B pg/ml!1.0 for pmol/l. Normal values for testosterone in males with Tanner stages 2–3, 0.62–2.26 ng/ml; Tanner stages
4–5, 1.68–6.0 ng/ml; normal testosterone peak after stimulation with HCG 5000 IU/m2 at 0 h 0.20–4.0 ng/ml and at 72 h 3.0–10.0 ng/ml;
basal FSH in males with Tanner stage 1, !1–1.3 IU/l; Tanner stages 2–3, !1–4.0 IU/l; Tanner stages 4–5, 1.4–5.1 IU/l; basal LH in males
with Tanner stage 1, !1–1.5 IU/l; Tanner stages 2–3, 1–4.1 IU/l; Tanner stages 4–5, 3.4–7.5 IU/l; inhibin B, 74–470 pg/ml.

Age (years)
Clinical
presentation

Testosterone
(ng/ml)

FSH
(IU/l)

LH
(IU/l)

Other
investigations

Patient 1
14 B1, P4, A1 2.1 35.9 2.3 Karyotype: 46,XY

Clitoromegaly Laparoscopy: abdominal
testes, no Müllerian
structures

Testicular histology: bilateral
testicular tissue, no sperma-
togenesis

Inhibin B: !10 pg/ml
Steroid profile: normal

Patient 2
At birth Severe penoscrotal

hypospadias
NA NA NA Karyotype: 46,XY

Small inguinal testes
Penile length 1 cm

3.5 Penile length 2.5 cm NA 0.6 0.9 Laparoscopy: vaginal rest
Testicular histology: reduction

of spermatogonia, increased
intertubular tissue, thicken-
ing of the tunica albuginea

13.5 G2, P2, A1 Gynecomastia
B2 (3 cm :)

3.9/6.5 (after
HCG 5000 IU/m2)

25.9 3.4 –

Penile length 4.7 cm
Right testis 5 ml,

left testis 4 ml
16 G4, P5, A3 Gynecomastia

B4–5 (9 cm :)
2.6 35.4 7.0 –

Penile length 7.1 cm
Right testis 13 ml,

left testis 15 ml
19 Penile length 6 cm 3.3 37.9 10.9 Surgery for gynecomastia

Right testis 6 ml,
left testis 6 ml

28 Right testis 6 ml,
left testis 6 ml

2.6 58.7 14.0 Inhibin B: undetectable
Spermiogram: azoospermia

NA, not available; HCG, human chorionic gonadotrophin.
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Functional analysis of the mutants showed reduced
activities to 12% (p.L376F) and 8% (p.G328V) of wild-
type activity on the Cyp11a promoter (Fig. 2). No
functional activity of the mutants on the AMH, TESCO,
and INSL3 promoter was investigated as the two
patients did not show either persistent uterine develop-
ment as a sign of disturbed AMH secretion or severe
gonadal dysgenesis as a result of impaired testes
determination.
Discussion

We report two novel NR5A1 mutations (p.G328V and
p.L376F) in two 46,XY DSD patients with normal male
testosterone production at puberty. To date, knowledge
about gonadal function at puberty in patients with
46,XY DSD and NR5A1 defects is very scarce, as most
cases identified have undergone gonadectomy in early
infancy. Only one 46,XY DSD patient with low normal
testosterone production during puberty has been
reported (26).

The first patient we describe (patient 1) is a 46,XY
female who presented at puberty with clitoral hyper-
trophy, bilateral dysgenetic abdominal testes, no uterus,
and a testosterone level within the normal male range
for mid to late puberty. The phenotype of this patient
resembles the pubertal presentation of partial
5a-reductase type 2 deficiency, 17b-HSD type 3
deficiency, or partial androgen receptor or LH receptor
defects, all of which can also present with virilization at
puberty. However, the hormone profile (elevated FSH,
low inhibin B) is consistent with partial gonadal
dysgenesis, which is not present in androgen synthesis
defects. We hypothesize that maturation of other
compensatory steroidogenic enzymes or cofactors
www.eje-online.org
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Figure 1 (A) Structure of the gene encoding SF-1 (NR5A1) showing
different mutations: the two novel mutations reported in this study
(p.L376F and p.G328V); mutations identified in patients with male
infertility (p.G123A, p.P129L, p.P131L, p.R191C, p.G212S, and
p.D238N) (23); mutation of a 46,XY DSD patient with hypospadias
and low-normal testosterone production (p.R281P) (26). (B) The
mutated leucine at position 376 and glycine at position 328 are
conserved in SF-1 orthologs.
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Figure 2 Effect of the SF-1 mutants on transcriptional activity of the
minimal promoter of Cyp11a in TSA-201 cells. A previous loss of
function change in SF-1/NR5A1 (p.G35E) was used as a control for
loss of activity. All values represent the means of three separate
transfection experiments (GS.E.M.).
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during puberty in patients with NR5A1 mutations
can result in significant testosterone production in
some cases.

Patient 2, a 46,XY male born with ambiguous
genitalia, had sufficient testosterone synthesis at
puberty for spontaneous virilization and male pubertal
development to occur. However, toward the end of
puberty, he developed progressive gonadal failure
affecting both Leydig and Sertoli cells, with evidence of
deteriorating function through adulthood. At 28 years,
his testosterone was very low, inhibin B was undetect-
able, and azoospermia was present. The delayed
orchidopexy may have contributed to the azoospermia
but is unlikely to have been causative. Previously, we
have reported NR5A1 mutations in about 10% of
patients with a similar phenotype of complex hypospa-
dias at birth (severe hypospadias and/or hypoplastic
phallus and cryptorchidism) (19, 20). However, only
one other patient with complex hypospadias at birth
and testosterone production during puberty has been
reported; Philibert et al. (26) described a 46,XY boy with
hypospadias and micropenis at birth who was found to
harbor a heterozygous NR5A1 mutation (p.R281P) in
the ligand-binding domain of the protein. He entered
puberty spontaneously with a low-normal rise of
testosterone but had elevated FSH and decreased
inhibin B concentrations, reflecting Leydig and Sertoli
cell hypofunction.

Both patients reported in our study showed various
degrees of underandrogenization at birth revealing that
Leydig cell function had already been disturbed during
embryonic and fetal development. In contrast, embry-
onic/fetal Sertoli cell function was sufficient for
adequate AMH production and subsequent Müllerian
duct regression in patient 1. In patient 2, partially
impaired AMH production is suggested by the presence
of a small Müllerian rest. Neither of the patients we
describe showed any signs or symptoms of adrenal
www.eje-online.org
insufficiency as is the case with the majority of patients
with heterozygous NR5A1 mutations published pre-
viously. Although detailed tests of adrenal function are
not available for patient 1, we would currently
recommend more comprehensive adrenal testing (e.g.
cortisol response to Synacthen, and basal ACTH) and an
ongoing awareness of the potential risk of adrenal
failure in these patients. Further studies are required to
systematically address the risk of adrenal dysfunction in
such individuals in the long term.

In a recent study on male infertility, NR5A1
mutations were described in seven out of 199 (3.5%)
males with moderate/severe oligospermia or azoosper-
mia (23). All mutations were missense mutations in the
hinge region or proximal ligand-binding domain of the
protein. Notably, normal testosterone and low normal/
undetectable inhibin B levels were found in two patients
under 30 years of age while the older patients had low
to undetectable testosterone and inhibin B levels. These
observations suggest that infertile males with NR5A1
mutations are at risk of deterioration of gonadal
function with age (23).

Our study and the studies of Philibert et al. and
Bashamboo et al. show that patients with NR5A1
mutations can produce significant levels of testosterone
in adolescence and can enter puberty spontaneously.
However, progressive gonadal dysgenesis resulting in
oligospermia or azoospermia is potentially likely in
individuals where spermatogenesis has occurred.
Therefore, we strongly recommend regular monitoring
of gonadal function in adolescence and adulthood in
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males with NR5A1 mutations. If sperms are detected,
early cryopreservation could be undertaken with
appropriate genetic counseling in an attempt to
preserve future chances of fertility.
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