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Abstract

Standard marginal structural models (MSMs) are commonly applied to estimate causal ef-

fects in the presence of time-dependent confounding; these may be extended to history-adjusted

MSMs to estimate e¤ects conditional on time-updated covariates, and dynamic MSMs to esti-

mate e¤ects of pre-speci�ed dynamic regimes (Cain et al., 2010). We address methods to assess

the optimal time for treatment initiation with respect to CD4 count in HIV-infected persons,

and apply these to CASCADE cohort data. We advocate the application of all three types of

MSM to address such causal questions and investigate gaps in the literature concerning their

application.

Of importance is the construction of suitable inverse probability weights. We have structured

this process as four key decisions, de�ning a range of strategies; all demonstrated a bene�cial

e¤ect of ART in CASCADE. We found a trend towards greater treatment bene�t at lower CD4

across a range of models.

Via large simulated randomised trials based on CASCADE data, longer grace periods (per-

mitted delay in treatment initiation) and in particular less-frequently observed CD4 indicated

higher optimal regimes (earlier treatment initiation at higher CD4), although similar AIDS-free

survival rates may be achieved at these higher optimal regimes. In realistically-sized obser-

vational simulations, the optimal regime estimates lacked precision, mainly due to broadly

constant AIDS-free survival rates at higher CD4. Optimal regimes estimated from dynamic

MSMs should be interpreted with regard to the shape of the outcome-by-regime curve and the

precision. In our clinical setting, we found that allowing a 3-month grace period may increase

precision with little bias under the interpretation of no grace period; under longer grace periods,

the bias outweighed the e¢ ciency gain. In our CASCADE population, immediate treatment was

preferable to delay, although estimation was limited by relatively short follow-up. Comparison

across the MSM approaches o¤ers additional insights into the methodology and clinical results.
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Chapter 1

Introduction

The motivation for this thesis lies in the application of marginal structural models and their

extensions to estimate optimal dynamic treatment regimes. The clinical motivation arises from

the �eld of HIV infection, namely the contentious question of when to initiate treatment in HIV-

infected persons. We begin by introducing the concept and estimation methods of causality,

followed by a de�nition of dynamic treatment regimes and an outline of the methods for their

optimisation. We give an overview of the treatment of HIV-infection (section 1.5) and an

introduction to the CASCADE data which are used throughout the thesis (section 1.6). Finally,

we provide an outline for the rest of the thesis (section 1.7).

1.1 Causality

The causal e¤ect of an intervention on an individual is de�ned as the di¤erence in the outcome

of interest under that intervention compared to the outcome in the absence of the intervention

(Rubin, 1974). Our interest lies in the receipt of a treatment compared to no treatment, but

�intervention�could, for example, also refer to other medical procedures or environmental expo-

sures, and may be compared to standard practice or a control. For example, for an individual i,

let Ai = 1 if the individual receives a particular treatment and Ai = 0 otherwise, and let Yi(Ai)

represent some outcome of interest under treatment Ai. Then we may be interested in for exam-

ple the causal e¤ect Yi(1)� Yi(0). Clearly, it is not possible to observe both these outcomes in

the same individual, and so they are referred to as �potential outcomes�. These concepts were

introduced by Neyman et al. (1923) for randomised experiments, developed by Rubin (1974) for

non-randomised studies, and later formalised and referred to as Rubin�s Causal Model (Holland,

1986). If there are no (classically) missing data, then for each subject one potential outcome

will be observed, while the other remains counterfactual, and so it is clearly not possible to
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calculate the causal e¤ect in one person. In general, interest lies in the average causal e¤ects in

a population, and looking at average causal e¤ects (hereafter, simply causal e¤ects) allows us

statistically to overcome the issue of counterfactuals (Rubin, 1974). Note that counterfactual

variables can be considered a form of missing data and the methods can be applied similarly

(see section 1.2.6).

In general, treatment may be initiated or stopped over time and so Ai(t) may be time-

dependent. We describe di¤erent patterns of treatment as �treatment regimes�. For example,

Ai(t) := fAi(0); :::; Ai(t)g = f0; :::; 0g indicates the regime of no treatment up until time t,

Ai(t) = f1; :::; 1g indicates immediate and continuous treatment to time t, whereas Ai(t) =

f0; :::; 0; 1; :::; 1g represents treatment initiation at some intermediate time s, 0 < s < t (and

continuous thereafter to time t). From here on, we assume that patients are a random sample

from a large population with a common distribution and hence drop the subscript i for subject.

In a randomised controlled trial (RCT), the balance created by randomisation means that we

can simply compare the average outcomes in those randomised to receive treatment compared

to those not, in a standard intention-to-treat (ITT) analysis. In the presence of non-compliance

to randomised regime, an ITT analysis will still provide an unbiased estimate of e¤ectiveness

(the expected e¤ect of the randomised strategy in an equivalent population of compliers and

non-compliers), but may be biased for e¢ cacy (the e¤ect in those persons who would follow

exactly the randomised treatment regime). Further, while analysis by ITT is generally seen as

conservative, this is not true for trials in which the outcome is safety or which aim to demonstrate

equivalence (Toh et al., 2010).

In the absence of evidence from an RCT we may turn to observational studies, but these are

prone to confounding. That is, there may exist variables which are simultaneously predictors of

(future) treatment and risk factors for the outcome of interest. We could use standard methods

such as a suitable model for the outcome of interest with adjustment for the confounders, but

if there exist time-dependent confounders L(t) which are predicted by past treatment, then

standard methods will be biased for the estimation of causal e¤ects (Hernán et al., 2005). This

is sometimes referred to as confounding by intermediate variables, since the covariates lie on

the causal pathway between treatment and outcome (Figure 1.1; Robins (1989a)).

For the estimation of e¢ cacy, either from an RCT which su¤ers from non-compliance, or

an observational study in which there exist time-dependent confounders which are predicted by

treatment history, causal methods are required (Hernán et al., 2006).

18



A(t) Y

L(t) L(t+1)

A(t) Y

L(t) L(t+1)

Figure 1.1: The time-dependent confounder L(t+ 1) lies on the causal pathway between treat-
ment A(t) and the outcome Y .

1.2 Methods for estimating causal e¤ects

The �eld of causal inference has advanced enormously in the last couple of decades. Robins

(1986) �rst introduced the g-computation algorithm estimator to compare the causal e¤ects

of di¤erent treatment regimes on the time to an event of interest in an observational setting,

and extensions of these methods led to the development of g-estimation of structural nested

models (SNMs, section 1.2.2). The pre�x �g�stands for �generalised�and is used to indicate

methods which permit unbiased estimation of any form of hypothetical intervention, even in

the presence of time-dependent confounders which are a¤ected by previous treatment. The

term �structural�arose from the disciplines of economics and social sciences but is synonymous

with �causal�. Robins (1998) was also responsible for the development of another methodology

for investigating causal e¤ects: estimation of marginal structural models (MSMs) using inverse

probability of treatment weighting (section 1.2.3). Below, we outline and brie�y compare these

three approaches. Non-parametrically, these methods will lead to identical results (Daniel et al.,

2011), but in realistic scenarios with a number of time-points and/or more complex treatment

regimes, parametric methods are required.

1.2.1 G-computation formula

G-computation originated in an observational setting to compare the causal e¤ects of di¤erent

treatment regimes on the time to an event of interest (Robins, 1986). Let TA represent a

potentially counterfactual time-to-event outcome under a treatment regime A for a given patient.

Then the g-null hypothesis of no e¤ect of treatment on the time to the event of interest is given

by:

Pr(TA1 > t) = Pr(TA2 > t) for all treatment regimes A1 and A2.

The g-computation formula expresses Pr(TA > t) in terms of the conditional probabilities of

the event given treatment and covariate history, and of the current covariates given treatment
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and covariate history (Lok et al., 2004). For example, consider a study with clinic visits at

times t = 0; 1; 2; ::: where t = 0 represents baseline (time of entry into study). For each patient,

at each time-point t, a covariate vector L(t) is measured and treatment A(t) is determined,

and an overall time T to an event of interest is observed (in the absence of any censoring). As

above, let overbars represent history, and let lower case letters represent realisations of random

variables. Then, under certain assumptions, the g-computation formula is given by (Lok et al.,

2004):

Pr(TA > t+ 1) =
P
l0
:::
P
lt

264
Pr
�
T > t+ 1jL(t) = l(t); A(t) = a(t); T > t

�
�

tY
k=0

8><>: Pr
�
T > kjL(k � 1) = l(k � 1); A(k � 1) = a(k � 1); T > k � 1

�
�Pr

�
L(k) = l(k)jL(k � 1) = l(k � 1); A(k � 1) = a(k � 1); T > k

�
9>=>;

375
where the summation over l0; :::; lt is over all possible values l of the covariate history. For

continuous L(t), this summation is replaced with an integral, as in Daniel et al. (2011). This

equation is sometimes equivalently referred to simply as the g-formula (Daniel et al., 2011;

Taubman et al., 2009). Therefore, the g-formula expresses Pr(TA > t+ 1) in terms of:

Pr
�
T > t+ 1jL(t) = l(t); A(t) = a(t); T > t

�
which is the probability of remaining event-free beyond time t+1, given covariate and treatment

history to time t and remaining event-free to time t;

Pr
�
T > kjL(k � 1) = l(k � 1); A(k � 1) = a(k � 1); T > k � 1

�
which for k = 0; :::; t is the probability of remaining event-free beyond time k, given covariate

and treatment history to time k � 1 and remaining event-free to time k � 1; and

Pr
�
L(k) = l(k)jL(k � 1) = l(k � 1); A(k � 1) = a(k � 1); T > k

�
which is the probability of the covariates L(k) = l(k) measured at time k, given covariate

and treatment history to time k � 1 and remaining event-free to time k. As Daniel et al.

(2011) outline, the g-formula is the appropriate generalisation of standardisation (estimation of

expected outcome in a population under a hypothetical time-independent intervention, given
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time-independent covariates) to a scenario with time-dependent covariates and treatment.

Robins (1986) developed an algorithm to aid the computation of this formula which requires

knowledge, or estimation from the data, of the conditional distributions, such as implemented

by Taubman et al. (2009) and Young et al. (2011). Brie�y, there are three main steps which

must be applied for each of the treatment regimes under consideration. The �rst step is to use

the data to estimate the parameters of the conditional distributions of (a) each of the current

covariates, and (b) the outcome, given covariate and treatment history. Secondly, Monte Carlo

simulation is used to simulate a cohort based on the estimated distributions and under the given

treatment regime. In the simple example of initiating treatment immediately, this would mean

setting the treatment indicator variable(s) in the conditional distribution models equal to 1 for

all time, and similarly equal to 0 for the scenario of never initiating treatment. Thirdly, the

simulated cohort is used to estimate the outcome, which can be interpreted as an estimate for

the outcome under that speci�c treatment regime. Once this is repeated for each treatment

regime, these estimates can be compared across regimes.

A disadvantage of the g-formula is the number of parametric assumptions required and hence

increased risk of bias. In addition, this approach may su¤er from the �g-null paradox�, whereby

under certain situations and given enough data, the null hypothesis (of no e¤ect of treatment

for example) will be rejected even when true. This is discussed further by Daniel et al. (2011)

and Robins et al. (1999).

1.2.2 G-estimation of structural nested models

To address the limitations of the g-computation formula, Robins (1989b) developed semi-

parametric accelerated failure time (AFT) structural nested models (SNMs), which directly

model the causal e¤ect of treatment received at a given time on subsequent outcome, given

treatment and covariate history (Robins, 1994). Lok et al. (2004) showed that AFT SNMs

may be considered as a reparameterisation of the g-computation formula and estimated using

maximum likelihood estimation, but this is not straightforward and cannot be computed easily

using standard software (see also Walker et al. (2004)). Alternatively, the parameters of AFT

SNMs can be estimated using a technique called g-estimation, which controls for confounding

by intermediate variables. Conceptually, for each time, the procedure estimates the association

between the treatment at that time and the counterfactual underlying true but unknown time

to event under no treatment, after adjusting for treatment and covariate history, but with-

out adjusting for subsequent treatment and covariate values (Robins et al., 1992). It does not
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consider identical treatments received at di¤erent times (that is, with di¤erent treatment and

covariate histories) to be the same, since the time-varying confounding means that these are

not comparable (Robins et al., 1992).

Consider just the single parameter case. In the absence of censoring, each subject�s observed

time to event T under observed treatment A(T ) = fA(0); :::; A(T )g may be related to the

potentially counterfactual event time T0 which would have been observed had the subject never

received treatment, using:

T0 =

TZ
0

exp f A(t)g dt (1.1)

(Robins and Tsiatis, 1991). In this equation, expf g is the factor by which time is �stretched�

when on treatment compared to not. For example, if  is estimated as �log(2), then for a

patient who initiates treatment immediately, their time to event is doubled compared to that

which would have been observed had they remained o¤ treatment for all time.

The parameters of this AFT SNM can be estimated using g-estimation as follows. For a

chosen estimate e of  , it is possible to calculate T0(e ) from the observed data fT;A(T )g

using 1.1 and inserting the chosen e for  . A �g-test� is constructed and applied to test the

hypothesis that e is equal to the true value  . The g-estimate b of  is that for which the
g-test has p-value equal (or closest) to 1.

In an RCT, by the nature of randomisation, at the true value of  the randomised treatment

is independent of T0, and a test of this hypothesis constitutes the g-test (that is, the randomised

group is the intermediate variable). Therefore g-estimation is able to directly exploit the ran-

domisation, and in such circumstances these methods are known as �randomisation-respecting�

or �randomisation-based�and preserve the ITT p-value (White et al., 1999).

In an observational study, one approach would be to formulate a model for treatment, given

treatment and covariate history, which incorporates T0. For example, consider a study with

clinic visits at times t = 0; 1; 2; ::: in which we are interested in the causal e¤ects of a treatment

which once initiated is continued. A possible model for treatment initiation, given treatment

and covariate history, and incorporating T0(e ), might be:
logit Pr

n
A(t) = 1 j A(t� 1) = 0; L(t); T0(e ); T > t

o
= �(t) + L(t) + �T0(e )

where logit(p) = log
�

p
1�p

�
and �(t),  and � are unknown parameter vectors. Under the as-

sumption of no unmeasured confounders, the treatment received at a given time t is independent

of T0 at the true value of  , given the treatment and covariate history. Therefore, a test for
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� = 0 corresponds to a test for the independence of A(t) and T0 given treatment and covariate

history, and this forms the g-test (Witteman et al., 1998).

Test-based (1� �)% con�dence intervals for  can be found based on those values of e for
which the g-test fails to reject at the �% level. In practice, a simple way to �nd the g-estimate

and associated con�dence interval is to perform a grid or interval search (White et al., 1999).

Under certain assumptions (see section 1.2.4), g-estimates are unbiased under the null hy-

pothesis of no e¤ect of treatment, but are only valid under administrative censoring and even

then require an additional step of arti�cial re-censoring (Robins and Tsiatis, 1991). If a patient

is censored at a time C, then for a given e , T0(e ) is censored at:
R0 =

CZ
0

exp
ne A(t)o dt

which is a function of A(t) and therefore may depend on the underlying prognosis of the patient.

As White et al. (1999) explain, even if censoring on the T0-scale is non-informative, it may be

informative on the R0-scale. For example, patients with the same T0 are more likely to be

censored the more treatment they receive, assuming treatment is bene�cial. This problem can

be addressed by arti�cially re-censoring T0(e ) by a function of T0(e ) and C which is observed

for all patients. White et al. (1999) provide an example of this for an RCT and Witteman et al.

(1998) outline an example in an observational setting.

SNMs have been applied to repeated measure outcomes (Robins, 1994), but the extension

to Cox proportional hazards (PH) models has been limited. Greenland et al. (2008) attempted

to interpret their results from an AFT SNM in terms of hazards, by assuming that the un-

derlying event (hazard) rate was constant given baseline covariates, so that the inverse rate

(hazard) ratios were equal to the event time ratios. White et al. (1999) attempted to translate

from AFT modelling into a PH interpretation by constructing arti�cial datasets based on the

parameters from the AFT model that would have been observed under a desired treatment

scenario. They used these data to estimate �corrected� hazard ratios, though the properties

of such estimators �are unclear� (Loeys et al., 2005). Cox PH SNMs have been constructed

directly in a randomisation-based setting, �rstly for all-or-nothing treatment (Loeys and Goet-

ghebeur, 2003), and then for the more general case of time-constant (but could be categorical or

continuous, perhaps time-averaged) treatment (Loeys et al., 2005), but the estimation of these

models is not straightforward. While the AFT SNMs construct potential survival times under

no treatment for each patient, the approach of Loeys et al. (2005) uses a PH model to relate
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the treatment-regime-speci�c observed survival time in the treatment arm to the counterfactual

survival time which would have been observed had that patient (counter to fact) been ran-

domised to no treatment. The authors assumed that patients randomised to the no treatment

arm cannot access the treatment. Although the estimation of Cox PH SNMs is challenging, an

advantage is that arti�cial re-censoring is not required as for the AFT models. Further, hazard

ratios are more commonly used and understood in practice. However, as far as we are aware,

the PH methods have not been developed for time-dependent treatment and so far have not

been applied to allow for treatment changes in both treatment and control arms; the extension

to observational studies is not trivial.

1.2.3 Estimation of marginal structural models using inverse probability of

treatment weighting

MSMs model the marginal distributions of potential outcomes relating to di¤erent treatment

histories, rather than modelling the joint distribution of such variables (Fewell et al., 2004).

That is, they directly model the outcomes that would have been observed had all patients been

subject to the same treatment history (Robins and Tsiatis, 1991). The beauty of MSMs is that

they are natural extensions of standard methods and can relatively easily be applied to any

outcome of interest, leading to an explosion in the application of MSMs in the last decade. For

example, Toh et al. (2010) applied MSMs with a survival outcome to estimate the causal e¤ect

of postmenopausal hormone therapy on the risk of invasive breast cancer, Cole et al. (2005)

used repeated measures MSMs to estimate the e¤ect of treatment on the biomarker CD4 count

in HIV-infected persons and Bodnar et al. (2004) applied logistic MSMs to look at the e¤ect of

iron supplements during pregnancy on the odds of anaemia at delivery, to name but a few.

We will be interested in a time-to-event outcome and hence the estimation of Cox PH

MSMs. As above, let TA be the potentially counterfactual time to event under a treatment

regime A = fA(0); A(1); :::g and let V be a vector of baseline covariates where V � L(0) . Then

for each possible A, a Cox PH MSM is given by:

�TA ftjA(t); V g = �0(t) exp f�A(t) + �V g

where �0(t) is the baseline hazard, � and � are unknown parameters and expf�g can be inter-

preted causally as the hazard ratio of the outcome of treatment versus no treatment at time t,

given V (Hernán et al., 2000). (Note that other speci�cations exist, for example incorporating

functions of A(t) rather than just the treatment received at time t.) Since at least some of these
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outcomes will remain unobserved, it is not possible to �t this model directly. However, the pa-

rameters of MSMs can be consistently estimated (under certain assumptions, see section 1.2.4)

using inverse probability of treatment weighting. Brie�y, for a Cox PH MSM, each individual

still in the risk set at each event time is weighted by an estimate of the inverse probability of

the observed treatment received by that person at that time, given their observed treatment

and covariate history. This weighting addresses the bias due to time-dependent confounding of

intermediate variables and will be discussed further in chapter 2.

1.2.4 Assumptions

In any study, whether randomised or observational, measurement error may be present and there

exist methods to address this. However, here we assume that the data are measured without

error (or minimally). We also assume that there is no interaction between patients (known

at �SUTVA�, the stable unit treatment value assumption; Little and Rubin (2000)) and that

any missing data are missing at random (Hernán and Robins, 2006). For causal inference in

observational studies, we also require the following assumptions (Cole and Hernán, 2008):

� Consistency: this states that the potentially counterfactual outcome under a particular

treatment regime is equal to the observed outcome if the individual was observed to follow

that regime.

� No unmeasured confounders between treatment and the outcome (otherwise known as

exchangeability).

� No misspeci�cation of the models.

Further, MSMs require the assumption of positivity (or the experimental treatment assign-

ment assumption), that is that there is a non-zero probability of receiving each treatment regime

for all combinations of covariate and treatment history. This is discussed further in section 2.2.2.

With time-to-event data, right-censoring is common. If information on prognostic factors

for censoring is available, then censoring-weighted estimators can be used to correct for the

potential bias due to this censoring under the (untestable) assumption that there is no residual

confounding (Robins and Finkelstein, 2000). This will be addressed further in section 2.2.4. The

assumption of no unmeasured confounders between outcome and censoring can be explored via

sensitivity analyses by considering the potential e¤ects of an imaginary unmeasured confounder;

Scharfstein et al. (2001) developed such methods for discrete time and Scharfstein and Robins

(2002) extended these methods to allow for continuous time. More recently, the methods of
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Rotnitzky et al. (2007) allow for competing censoring mechanisms by introducing a �censor-

ing bias function�. However, we assume that the available data are su¢ cient to describe the

censoring processes and these methods are not addressed further in this thesis.

1.2.5 Comparison of methods

A considerable advantage of the use of MSMs to estimate causal e¤ects, using inverse probability

of treatment weighting, is their resemblance to standard models and hence relative ease of

implementation. A potential di¢ culty associated with the application of MSMs is the need

for positivity. If the data are �close� to non-positivity (for example, if at some levels of the

covariates, treatment is nearly always given), then large weights may arise (Cole and Hernán,

2008). Similarly, if there are many time-points or treatment is strongly correlated with baseline

covariates, then the weights may become large. These problems may be attenuated to some

extent by stabilisation of the weights (see section 2.2.3), truncation of the very largest weights

(Cole and Hernán, 2008), or addressed using doubly robust estimators (Bang and Robins, 2005).

Doubly robust estimators are not discussed further in this thesis.

While the g-computation formula can be applied to highly complex pre-de�ned interventions

(such as �avoid smoking, exercise at least 30 minutes daily and consume at least 5g of alcohol

daily�; Taubman et al. (2009)), it is computationally intensive and best suited to a small number

of interventions (Daniel et al., 2011). In addition, this approach is at risk of the g-null paradox

(see section 1.2.1).

Although g-estimation of SNMs may bene�t from greater e¢ ciency than inverse probability

treatment weighting of MSMs and fewer parametric assumptions than g-computation (Daniel

et al., 2011), it is perhaps less robust to model misspeci�cation and is not intuitive nor easy

to apply. Further, if there is right-censoring of survival times, g-estimation of SNMs requires

arti�cial re-censoring in order to break any dependency of the censoring time on treatment,

which may be related to the underlying prognosis of the patient (section 1.2.2). In practice,

other authors have found that this method may su¤er from low power (White et al., 1999).

Young et al. (2009) performed a simulation study to illustrate and compare MSMs versus SNMs

and found that, compared to the g-estimators, the inverse probability weighted estimators were

similarly or less biased, and were more e¢ cient.
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1.2.6 Relation to missing data problems

Counterfactual variables may be considered as a missing data problem; they are monotonely

missing data. Inverse probability weighting methods have been developed and applied simi-

larly in the missing data paradigm (Robins et al., 1995). Drawing on other methods from the

�eld of missing data, one could perhaps consider implementing multiple imputation in a poten-

tial outcomes setting, where counterfactual outcomes are multiply imputed using the observed

outcomes and measured confounders. Under certain scenarios, inverse probability weighting

methods resemble those of multiple imputation, but these methods are not addressed further

in this thesis.

1.2.7 E¤ect modi�cation by baseline covariates

The methods described above can all easily be adapted to incorporate an interaction between

treatment and a baseline covariate to investigate e¤ect modi�cation. A number of papers

describe this for MSMs (Bodnar et al., 2004; Hernán et al., 2006; Robins et al., 2000), but, to

our knowledge, it has rarely been applied in practice in the setting of antiretroviral therapy for

HIV-infected persons (our clinical example, introduced in section 1.5). The only example we

are aware of is a series of papers by Cole and colleagues (2007; 2005; 2003), looking at whether

there is a di¤erential e¤ect of treatment by sex or CD4 count at study entry on a range of

di¤erent outcomes. Loeys et al. (2005) outline how to adapt their causal PH SNM to allow for

an interaction between treatment and a baseline covariate, but we are not aware of this having

been applied in practice.

1.3 Dynamic treatment regimes

There are many situations in medical practice in which treatment decisions are made based

on the current well-being of the patient, perhaps to minimise time spent on potentially toxic

treatments or to optimise resources. For example, treatment may be given until a desired level

of recovery is achieved, delayed until a certain stage of disease progression is reached, or given

intermittently, perhaps based on some observed biomarker. Such treatment regimes which are

in response to a patient�s time-dependent measurements are known as �dynamic�(Hernán et al.,

2006). Moodie et al. (2007) and Murphy (2003) view dynamic regimes as a function or list of

decision rules, which are based on treatment and covariate history. These types of treatment

regimes have also been referred to as �individualized treatment rules� (Petersen, Deeks, and

van der Laan, 2007) or �adaptive strategies�(Murphy, 2003). Note that while treatment regimes
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may change over time, they may not necessarily be dynamic; for example, �take drug X for Y

weeks then drug Z�is an example of a time-varying but non-dynamic regime. Although clinical

trials most often compare non-dynamic treatment regimes, dynamic treatment regimes may be

more common in practice (Cain et al., 2010). Dynamic treatment regimes can be considered as

interactions between treatment and time-dependent covariates (Hernán et al., 2002). We may

naturally wish to identify optimal dynamic treatment regimes, de�ned by Petersen, Deeks, and

van der Laan (2007) as �the treatment rule that produces, on average, the best patient outcome

at a given time-point�. Dawid and Didelez (2010) recommend approaching the assessment of

strategies as a decision theory problem.

1.3.1 Classes of dynamic treatment regimes

Theoretically, dynamic treatment regimes may be a complex function of all covariate and treat-

ment history; consider such a large class of regimes R. In practice, a more limited set of

well-de�ned regimes may be preferable. For example, consider the simple question of when to

initiate treatment for a chronic disease, where once treatment is initiated it is continued for life

(for example, in the motivating clinical example of HIV infection introduced in section 1.5). In

order to preserve time o¤ treatment, treatment may be delayed until a certain disease stage

is reached and if so then one could pre-specify a limited set of regimes, de�ned by treatment

initiation dependent on di¤erent stages of disease. This pre-de�ned set of regimes R� is a subset

of the larger class R. It is possible to imagine the equivalent RCT which in theory could be

conducted to determine the optimal choice in terms of an outcome of interest from this pre-

de�ned set of regimes R�: patients would be enrolled at some starting point, perhaps onset of

the disease, and then randomised to one of the regimes in the set R�. Comparison of the out-

come across the patients would inform the optimal regime from this set R�. Such a pre-de�ned

set may be of most use to inform policy makers.

In contrast, rather than pre-de�ning a limited set of regimes in advance, consider the presen-

tation of a patient to clinic, where the natural question arising is whether to initiate treatment

at that time, or delay. This decision may be based on the covariate and treatment history of

that patient to that time-point. The RCT comparison in this situation would be based on a

series of randomisations at each successive clinic visit, to immediately initiate or defer treat-

ment. Van der Laan and Petersen (2004) refer to the optimisation of such regimes as estimating

�optimal history-adjusted static treatment regimes�or �statically-optimal dynamic treatment

regimes�; we will use the former nomenclature. Following the optimal history-adjusted static
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regime over time maps to a speci�c type of optimal dynamic treatment regime, de�ned by follow-

ing at each time-point the �rst action of the optimal history-adjusted static treatment regime.

It may be argued that optimisation of such regimes would be of most interest to clinicians who

wish to determine the best immediate course of action for a patient who has presented to clinic.

1.4 Methods for estimating optimal dynamic treatment regimes

1.4.1 G-computation formula

The g-computation formula may easily be applied to optimise dynamic treatment regimes (Taub-

man et al., 2009; Young et al., 2011). The method as described in section 1.2.1 can be directly

extended at the second stage to incorporate dynamic treatment regimes, and the optimal treat-

ment regime is identi�ed as that with the best outcome across all the regimes.

1.4.2 G-estimation of structural nested models

SNMs can easily be extended to handle simple dynamic treatment regimes by incorporating

interactions (Hernán et al., 2006). For example, Hernán et al. (2005) discuss the extension to

a two-parameter model in an observational study for evaluating how the e¤ect of treatment

received at a given time is modi�ed by a time-dependent covariate. We are aware of only one

such application in practice: White et al. (1999) grouped HIV-infected persons by their CD4

count at treatment initiation (� or > 350 cells/mm3) and used a bivariate model to obtain

separate estimates for the e¤ect of treatment by whether it was initiated at low or high CD4

count, and thus providing (albeit limited) information of the timing of treatment initiation in

such patients (see further detail on this clinical example in section 1.5). Each parameter requires

a separate test; the authors used logrank and Gehan-Wilcoxon (or Breslow) tests (Breslow, 1970;

Gehan, 1965). However, the authors found this method was not robust and su¤ered from a lack

of power. Murphy (2003) and Robins (2004) developed semi-parametric methods for structural

nested mean models for optimisation of more complex dynamic treatment regimes, which have

been compared and reconciled by Moodie et al. (2007). Rosthoj et al. (2006) applied the methods

of Murphy (2003) to investigate dosing strategies for patients on anticoagulant treatments, and

discussed problems met in their implementation.
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1.4.3 Estimation of marginal structural models using inverse probability of

treatment weighting

MSMs have been deemed �less useful� for estimation of causal e¤ects of dynamic treatment

regimes since they are not directly applicable to such questions (Hernán et al., 2002, 2006). Two

extensions to standard MSMs have been suggested: history-adjusted MSMs (HAMSMs) for the

estimation of optimal history-adjusted static treatment regimes (Van der Laan et al. (2005);

Petersen, Deeks, Martin, and van der Laan (2007)) and dynamic MSMs for the optimisation of

pre-de�ned dynamic treatment regimes (Cain et al., 2010; Hernán et al., 2006; Robins et al.,

2008).

HAMSMs can be viewed as a series of �trials� at each time in the visit schedule, where

the aim at each new �baseline� visit is to optimise subsequent outcome. In its most basic

form, a history-adjusted model may just estimate the causal e¤ect of the treatment received

at �baseline�and adjust for the �baseline�covariates (Writing Committee for the CASCADE

Collaboration, 2011), but may also look at subsequent treatment received during each �trial�,

with adjustment for subsequent time-dependent confounders using inverse probability of treat-

ment weights as for a standard MSM. That is, a standard MSM is assumed at each time-point

(Petersen, Deeks, Martin, and van der Laan, 2007), and a common model is formulated which

considers each time-point in turn, in a static way, resulting in regimes in terms of treatment at

each time-point with respect to time-dependent covariates. A potential criticism of these meth-

ods is that while the models need to be su¢ ciently �exible to allow time-dependent treatment

e¤ects, this could result in incompatibilities and implausible conclusions (Robins et al., 2007).

Further details on these methods are given in chapter 3.

Dynamic MSMs are another extension of standard MSMs for simple but perhaps more

pragmatic dynamic regime classes. In their most basic form, they depend upon the availability of

a suitable time-dependent covariate upon which the dynamic treatment regimes may be de�ned

in advance. Hernán et al. (2006) introduced these methods for just two dynamic regimes and

they have since been extended to many regimes (Cain et al., 2010; Robins et al., 2008). The

key idea behind this approach is that all patients are considered to follow all of the pre-de�ned

treatment regimes initially and are censored from each regime if they become noncompliant.

Of course, this arti�cial censoring process is likely to be informative but inverse probability

weighting can be used to address this. Since the censoring process will depend entirely on

treatment and the time-dependent covariate by which the dynamic regimes are de�ned, the

weights required are the inverse probability of treatment weights as employed by the standard
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MSMs. These methods will be further discussed in chapter 4.

1.4.4 Comparison of methods

While the methods of Murphy (2003) and Robins (2004) using SNMs and the approach of

Petersen, Deeks, Martin, and van der Laan (2007) with HAMSMs are useful for optimising

complex treatment regimes, such as intermittent treatment dependent on a number of factors,

this can be a disadvantage if simpler treatment regimes are desired which may perhaps be more

readily translated into clinical practice. Thus, the g-computation formula and dynamic MSMs

may be more useful as they can estimate the causal e¤ects of pre-speci�ed treatment regimes,

from the set R� (section 1.3.1). In theory, SNMs may be used to estimate potentially large

classes of dynamic treatment regimes from the larger set R, however in practice this is typically

restricted by the number of interactions which can be included given the available data.

The SNMs discussed above require a correct model but use all the available data (except if re-

censoring is required in the presence of right-censored data). Conversely, the censoring required

under the dynamic MSMs means that data after arti�cial censoring is discarded, therefore this

approach may be less e¢ cient, but does not impose a structural model for the e¤ect of treatment

across regimes. This is the usual bias-variance trade-o¤ frequently encountered in statistical

modelling (Hernán et al., 2006).

1.4.5 Consistency across marginal structural models

Further to the estimation of treatment e¤ects using a standard MSM, under the assumption

of constant treatment e¤ect regardless of the time on treatment, it is possible to estimate

the cumulative e¤ects of having received immediate and continuous versus no treatment. For

example, if we are interested in a time-to-event outcome, then it would be possible to estimate

the event-free survival under immediate versus no treatment initiation. These treatment regimes

of immediate versus no treatment could also be incorporated into the set of regimes considered

under a dynamic MSM and we might expect the results to be consistent with those from the

standard MSM. Similarly, a basic HAMSM considering treatment initiation or deferral given

�baseline� covariates at successive �trials� will yield information on the bene�t of treatment

at di¤erent values of the �baseline�covariates. If these covariates are also those by which the

dynamic regimes are de�ned, then we might expect consistency in the conclusions drawn from

the history-adjusted and dynamic MSMs.
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1.5 Treatment of HIV-infection

We now introduce the clinical topic of interest throughout the thesis.

Thanks to the rapid development of a range of antiretroviral therapies, HIV has been trans-

formed from a disease with poor prognosis to a manageable condition with much improved

long-term survival (Ewings et al., 2008). However, successful treatment requires a number of

concurrent drugs which may have a variety of side e¤ects. Further, long-term treatment may

result in the development of drug resistance. For these reasons, initiation of treatment is often

delayed until some immunode�ciency is evident, but there are arguments for starting treatment

earlier to potentially minimise the long-term damage of HIV. A key biomarker used to moni-

tor the degree of immunosuppression in HIV-infected persons is CD4 cell count, which typically

declines after infection and low levels predict poor prognosis. Previous guidelines in the UK rec-

ommended initiating treatment around CD4 counts of 200 cells/mm3, while current guidelines

in the UK recommend initiating treatment around 350 cells/mm3 (Gazzard and on behalf of the

BHIVA Treatment Guidelines Writing Group, 2008), but there may be bene�ts of initiating still

earlier at higher CD4 counts. For example, a recent study in more than 40,000 treatment-naïve

persons with high CD4 counts (� 350 cells/mm3) found that the mortality rate was higher

than that in the general population, and was greatest at lower CD4 counts within this range,

therefore o¤ering support for further exploration of treatment in such persons (Study Group on

Death Rates at High CD4 Count in Antiretroviral Naive Patients, 2010). Recently, there have

been a number of observational studies investigating the question of when to start treatment in

patients with HIV infection, but the �ndings have left experts divided.

A large study in approximately 17,500 persons found that in those with CD4 counts in the

ranges 351 � 500 or > 500 cells/mm3, immediate treatment initiation was associated with a

reduction in the risk of death compared to delaying treatment (Kitahata et al., 2009). Sub-

sequent to these �ndings, the US guidelines were amended at the end of 2009 to recommend

earlier treatment initiation, though the panel members were not able to reach agreement regard-

ing initiation of treatment at CD4 counts > 500 cells/mm3 (Panel on Antiretroviral Guidelines

for Adults and Adolescents, 2009). However, there were a number of concerns raised about this

study relating to potential sources of bias (Arribas et al., 2009; Buchbinder and Jain, 2009;

Hernán and Robins, 2009).

A di¤erent approach relying on historical data was used by the When to Start Consortium

(2009). In contrast, they found that deferring treatment until CD4 count was in the range

251 � 350 cells/mm3 was associated with a higher risk of AIDS or death than initiating when

32



CD4 count was in the range 351� 450 cells/mm3 but did not see a bene�t of earlier treatment

initiation with CD4 count > 450 cells/mm3.

While a separate study found that treatment initiation at CD4 counts < 500 cells/mm3 was

bene�cial, the authors cautioned that due to the low absolute AIDS and death rate at CD4

counts � 350 cells/mm3, the bene�ts of treatment should be balanced against the implications

of long-term therapy, such as side-e¤ects and the risk of developing drug resistance (Writing

Committee for the CASCADE Collaboration, 2011). Of note, this study used data from the

CASCADE collaboration; we will be using a subset of these data (see section 1.6).

More recently, the HIV-CAUSAL Collaboration (2010) applied the methods of Cain et al.

(2010) and found that treatment initiation when CD4 counts were around 500 cells/mm3 im-

proved AIDS-free survival compared to waiting until CD4 counts dropped lower, but mortality

rates did not vary greatly when treatment was initiated > 300 cells/mm3.

Aside from AIDS-de�ning illnesses, the implications of other serious adverse events have

more recently been recognised. For example, Lichtenstein et al. (2010) found higher risk of car-

diovascular disease at low CD4 counts, therefore raising the question of whether early treatment

may help reduce the risk of events other than those traditionally associated with HIV infection.

A large international randomised controlled trial (START; INSIGHT (2009)) is currently

underway to determine whether immediate initiation of treatment in patients with CD4 counts

� 500 cells/mm3 is superior to deferral of treatment initiation until CD4 count drops to < 350

cells/mm3 in terms of mortality and HIV- and non-HIV-related morbidity, but this will not be

completed until 2016. Therefore our interest lies in the question of when to initiate treatment

with respect to CD4 count in HIV-infected individuals, which is an example of a dynamic

treatment regime. Further, while the START trial compares just two regimes, in practice some

intermediary regime may be preferable and indeed the application of observational methods to

this problem may suggest other possible regimes for consideration in future trials, or potentially

yield additional information worth further exploration such as e¤ect modi�cation by baseline

covariates.

1.6 CASCADE

Throughout the thesis, we used data from CASCADE (Concerted Action on SeroConversion to

AIDS and Death in Europe), an ongoing collaboration of cohorts of HIV-infected persons with

well-estimated dates of infection (CASCADE Collaboration, 2009). CASCADE annually pools

participant data, including information on demographics, vital status, AIDS events, treatment
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use, and CD4 cell count and HIV RNA measurements. Data collection and follow-up varies

across the cohorts, which are a mixture of interval and clinical cohorts (Lau et al., 2007). For

each participant, the HIV seroconversion date was estimated as the date of laboratory evidence

of seroconversion, if available, otherwise as the midpoint of the last negative and �rst positive

HIV antibody tests, no more than 3 years apart. The data used here were collated in July 2008

on 19,615 participants from 22 cohorts across 12 countries.

1.6.1 Data used for our analyses

Entry to our analysis

Participants were eligible to enter our analysis at their �rst CD4 count � 500 cells/mm3 at least

1 year but no more than 5 years after seroconversion and after 1 January 1996, provided still

treatment-naïve and AIDS-free at this point (Figure 1.2). We refer to the time of entry to the

study as baseline. These criteria are quite stringent but necessary to capture the population

of interest and avoid bias, for the reasons as follows. Firstly, the inclusion of participants from

the time of a high CD4 cell count at least 1 year after seroconversion ensured that we captured

participants at a �peak�CD4 cell count before the decline associated with long-term infection.

This is the population in whom our question �when to start treatment� has meaning, since

patients with low CD4 counts shortly after seroconversion do not have the opportunity to start

treatment at high CD4 counts. While the initial methods we used (standard MSMs, section

1.2.3) could be applied without the rather stringent restriction of a �rst CD4 � 500 cells/mm3,

thus enabling us to include a greater number of patients and from an earlier starting time, we

wished to demonstrate a treatment e¤ect in the subset of patients which are included in our

later analyses (to answer the question of when to start, using dynamic regime MSMs), which in

this case do require such restrictions if we desire all patients to initially be eligible for all regimes

(although this was not enforced by all researchers; see discussion in chapter 5). Secondly, we

excluded patients who had been infected for over 5 years at analysis entry since, in the absence of

treatment, it is unusual for an individual to remain alive, AIDS-free and with high CD4 counts

for over 5 years after infection (Lodi et al., 2011). These excluded patients were a mixture

of (i) those who were enrolled late into the cohort with missing earlier CD4 counts and (ii)

those who initially had CD4 counts < 500 cells/mm3 with a blip to � 500 cells/mm3 at some

time later during infection. The inclusion of type (i) patients may have led to survivorship

bias, since these are a select group who have survived long enough to enter the cohort. Our

question of �when to start treatment�is less applicable to type (ii) patients, for whom a di¤erent
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Figure 1.2: Timeline showing eligibility and entry of participants into the study.
SC=seroconversion. LTFU=lost to follow-up.

treatment management strategy is likely to be preferable. Lastly, e¤ective treatment was only

available from 1 January 1996, therefore we only allowed entry after this time to avoid classic

survivorship bias (only a select subset of participants with good outcome surviving long enough

without treatment to enter the analysis). We further excluded participants aged <16 years old

at HIV seroconversion and a relatively small number of people who initiated treatment with a

suboptimal or unknown treatment regime (see de�nition below).

Treatment

E¤ective antiretroviral therapy (hereafter, ART) was de�ned as any regimen consisting of at

least three antiretroviral drugs from at least two classes, or containing abacavir or tenofovir. We

were interested in the initiation of ART, therefore we ignored subsequent treatment interrup-

tions. This approach assumes that once a participant initiates treatment, they remain on it and

so has an ITT ��avour�(Hernán et al., 2006). Therefore participants who have stopped ART

will be counted as having started on treatment, and so potentially diluting estimated treatment

e¤ects as estimates of e¢ cacy. However, treatment may be stopped for a number of reasons

including for example due to toxicity, which is an inherent part of the chosen treatment path.

Estimating the e¤ect of �ever having started�(e¤ectiveness) is an estimate of likely population

level e¤ect assuming that the cohort participants are representative of the wider population

of interest in terms of patterns of treatment discontinuation. Further, only 6% of the total

follow-up time post-treatment initiation was spent o¤ ART.

Outcome

Our outcome of interest was time to �rst diagnosis of AIDS or death (CDC, 1992); reaching

CD4 count < 200 cells/mm3 was not considered an AIDS event. Data on serious non-AIDS
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events were not available.

Baseline covariates

Baseline covariates included sex, age at and year of HIV seroconversion, route of HIV transmis-

sion, an indicator for short HIV test interval (�30 days between last negative and �rst positive

HIV tests, or laboratory evidence of seroconversion) as a proxy for seroconversion illness (Tyrer

et al., 2003), length of time HIV-infected at baseline (approximated by time from estimated

seroconversion to study entry), baseline CD4 count and baseline HIV RNA (if available within

�6 to +1 months relative to study entry date). Cohorts were grouped by country, and countries

with less than 100 participants were combined. In the analyses, continuous baseline covariates

were treated as linear, route of HIV transmission was categorised as injecting drug use (IDU)

versus other, and a missing indicator for the availability of baseline HIV RNA was included.

Follow-up and censoring

We split time into one-monthly intervals from entry into this analysis (at the �rst CD4 count

� 500 cells/mm3 at least one year but no more than �ve years after seroconversion and after 1

January 1996), given by t = 1; 2; :::. Follow-up ended when the patient progressed to AIDS or

death, or was censored. We de�ned three types of censoring, with indicators Cx(t), x = 1; 2; 3:

1. lost to follow-up (LTFU), which was de�ned as when a patient had no CD4 count in the

12 months prior to the last CD4 measurement within their cohort. Censoring occurred at

the earliest of the patient�s last known alive date or 12 months after their last CD4 count.

2. irregular CD4 counts, where there was a gap between measurements of over 12 months,

with subsequent CD4 counts recorded. Censoring occurred at 12 months after the last

CD4 count before the (�rst) gap.

3. administrative, which included all remaining patients who were alive, AIDS-free and not

otherwise censored. We used the last alive date as the date of censoring.

Of note, there is a temporal ordering to these censorings: a patient had to remain in follow-

up with regular CD4 counts in order to be administratively censored, and must not have been

LTFU in order to be censored due to irregular CD4 counts. The reasoning behind censoring

type (2) is that we require time-updated data in order to reliably estimate the weights via the

treatment prediction model. Patients did not re-enter the risk set after a gap between CD4
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count measurements of more than 12 months in CD4 count measurements because there was

concern that the reasons for the gap may not be adequately captured by the available data.

Time-dependent covariates

Time-dependent covariates L(t) were taken as the latest recorded strictly before time t; the

notation will be formalised in section 2.2.1. This included the latest CD4 count provided within

the last 12 months. By allowing a CD4 count to be valid for up to 12 months, we essentially

carried the last observation forward for this time, so the CD4 count for 12 consecutive months

was constant if there was no interim measurement. For modelling purposes, CD4 counts > 1000

cells/mm3 were truncated to 1000 cells/mm3 since the inherent variability at such high CD4

counts (which are within the normal range for HIV-uninfected adults) means there is little to

distinguish such values biologically (Samet et al., 2001).

In addition to CD4 count, we considered a number of other time-varying covariates to be

included in L(t), broadly following Writing Committee for the CASCADE Collaboration (2011):

� CD4 count decrease from time t � 1 (arti�cially zero if the last observation was carried

forward due to no recent CD4 count)

� time in months since last CD4 count, de�ned as t�date of last CD4 count

� nadir CD4 count prior to time t

� number of previous CD4 counts prior to time t

� number of previous HIV RNA measurements prior to time t (with all the following vari-

ables set to zero if none)

� last HIV RNA (observation carried forward inde�nitely if no subsequent measurements

recorded)

� time in months since last HIV RNA

� peak HIV RNA prior to time t.

CD4 count decrease was categorised as large increase (> 100 cells/mm3), small increase

(� 100 cells/mm3), no change, small decrease (� 100 cells/mm3) or large decrease (> 100

cells/mm3) since it was heavily weighted on zero due to no change when the last CD4 count

value was carried forward. HIV RNA was categorised using the 10, 25, 50, 75 and 90th percentiles

(corresponding to � 500, > 500� 2910, > 2910� 11820, > 11820� 37743, > 37743� 97809 and

> 97809 copies/ml, respectively), with an additional category for no previous measurement.
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1.6.2 Sample characteristics

Participants and baseline characteristics

Of the initial 19,615 CASCADE participants, 115 and 9 patients had estimated seroconversion

date (as de�ned in section 1.6) after treatment initiation and progression to AIDS, respectively,

451 did not have any available CD4 counts and 976 had no CD4 counts before progression to

AIDS. In order to meet our analysis entry criteria (outlined in section 1.6.1) of a CD4 count

� 500 cells/mm3 at least 1 year but no more than 5 years after seroconversion and after 1

January 1996, the following participants were excluded:

� 55 and 2388 due to treatment initiation or AIDS, respectively, before 1 January 1996

� 601 due to no CD4 count available after 1 January 1996

� 4375 due to no CD4 count at least 1 year but no more than 5 years after seroconversion

� 6672 due to no (treatment-naïve) CD4 count � 500 cells/mm3 within the above window.

A further 6 patients aged < 16 years at seroconversion, 539 who initiated suboptimal or

unknown treatment (357 of whom initiated in 1996-97), and 46 who had less than one month

of follow-up were excluded, leaving 3382 adults for our analysis. The numbers of participants

within cohorts and respective countries are summarised in Table 1.1. The majority (55%) of

patients were from French cohorts; the patients from the smallest cohorts in Australia, Canada,

Denmark, the Netherlands and Norway were combined.

The median (interquartile range, IQR) age at seroconversion was 31 (26, 37) years, and

the majority of participants were male (80%) and infected through sex between men (61%)

(Table 1.2). The median (IQR) year of seroconversion was 2000 (1995, 2003) and time between

seroconversion and entry to our analysis was 1.3 (1.1, 1.9) years. Only 8% of participants

were identi�ed as HIV-infected close to seroconversion. At baseline (entry to our analysis), the

median (IQR) CD4 count was 641 (560, 788) cells/mm3 and, of those who had a measurement

available (2671, 79% of patients), the baseline HIV RNA was 4.1 (3.5, 4.7) log10 copies/ml and

� 500 copies/ml in 289 (11%) patients (a broadly similar rate of viraemic control as seen in

previous CASCADE analyses of untreated patients; Madec et al. (2005)).
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There were some di¤erences in the patient characteristics across the countries, re�ecting

underlying di¤erences in the HIV-infected populations targeted by the di¤erent seroconverter

cohorts. Germany and the UK had few female patients (8 and 6%, respectively), and this

was re�ected in a greater proportion of patients reporting the route of HIV transmission as

sex between men in those countries (86 and 89%, respectively). On average, the patients

from Germany seroconverted later (median year 2004) and those from Italy and Spain earlier

(1996 and 1997, respectively); this tied in with a relatively large proportion of Italian and

Spanish patients reporting the route of HIV transmission as injecting drug use (IDU; 31 and

37%, respectively, compared to 9% overall). These individuals were also less likely to have an

available baseline HIV RNA measurement (65 and 52%, respectively). A large percentage of

German patients were identi�ed as HIV-infected close to seroconversion (36%). The median

baseline CD4 count ranged from 629 cells/mm3 in UK patients to 706 cells/mm3 in Spanish

patients, and the percentage of patients with baseline HIV RNA �500 copies/ml ranged from

3% in Germany to 14% in Italy and Switzerland.

Follow-up

A total of 686 (20%) patients were censored due to irregular CD4 counts (resulting in the

censoring of 74 events); of these, 626 patients (19 events) would subsequently have been censored

due to LTFU. A further 1652 (49%) patients (with otherwise regular CD4 counts during follow

up) were censored due to LTFU (no CD4 count in the 12 months before the last CD4 in the

cohort); of these, 240 patients (34 events) were censored at 12 months after their last CD4 date

and 1412 patients were censored at their last alive date. The large number of patients censored

at their last alive date (which ranged from July 1996 to March 2008) came mainly from France

(n = 911) and the UK (n = 279). After these censorings, 157 (5%) AIDS or death events were

observed (103 AIDS and 54 deaths). The remaining 705 (21%) patients were considered to be

administratively censored. The median follow-up time was 2.3 years (IQR 1.1, 4.6; maximum

12.4; Table 1.1). Overall, 1082 (32%) patients were observed to initiate treatment during follow-

up, at median (IQR) [range] 17 (5, 33) [0, 123] months after baseline and at CD4 count 432

(296, 576) [12, 1998] cells/mm3. The median (IQR) time between CD4 count measurements

was 3.3 (2.4, 4.6) months, though varied by country (Table 1.1). The last CD4 count was

carried forward in 75% of patient-months. There were no HIV RNA data available at all for

7% of patients and no prior HIV RNA data was available in 6% of patient-months. The time-

dependent covariates are summarised over all follow-up time in Table 1.3. Of note, the median

(IQR) CD4 count over all follow-up was relatively high, at 595 (468, 767) cells/mm3.
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All follow-up Treatment-naïve follow-up
(1082 patients initiated treatment)

Number of patient-months follow-up 133 568 88 545
Follow-up time, months 27 (13, 55) 17 (5, 33)
CD4 count, cells/mm3 595 (468, 767) 591 (477, 751)
[5th and 95th percentiles] [303, 1116] [326, 1090]

CD4 count decrease
Large increase (>100 cells/mm3) 5798 (4%) 2521 (3%)
Small increase (�100 cells/mm3) 7604 (6%) 3976 (4%)
No change[1] 104 982 (79%) 72 711 (82%)
Small decrease (�100 cells/mm3) 8241 (6%) 5001 (6%)
Large decrease (>100 cells/mm3) 6943 (5%) 4336 (5%)

Time since last CD4 count, months 2.1 (1.0, 3.8) 2.3 (1.0, 4.0)
Nadir CD4 count, cells/mm3 482 (345, 610) 530 (417, 661)
Number of previous CD4 counts 6 (3, 14) 4 (2, 8)
Number of previous HIV RNAs 6 (3, 13) 4 (2, 8)
Last HIV RNA, log10 copies/ml[2;3] 3.7 (2.3, 4.4) 4.1 (3.4, 4.6)
Time since last HIV RNA, months[2] 2.1 (1.0, 3.9) 2.4 (1.0, 4.2)
Peak HIV RNA, log10 copies/ml[2] 4.6 (4.0, 5.0) 4.3 (3.8, 4.8)

Table 1.3: Summary of time-dependent covariates over all follow-up and treatment-naïve follow-
up. Values are n (%) for categorical variables and median (interquartile range) for continuous
variables unless otherwise indicated. [1] By de�nition, there was no change in CD4 count
if the last value was carried forward (as for 75% of observations over all follow-up and 78%
of observations over treatment-naïve follow-up). [2] Of the patient-months with prior HIV
RNA data available (94% over all follow-up and 90% over treatment-naive follow-up). [3] If no
subsequent measurements available, last HIV RNA measurement carried forward regardless of
the length of time.
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1.7 Scope of the thesis

Our interest ultimately lay in the application of dynamic MSMs to optimise pre-speci�ed dy-

namic treatment regimes, de�ned by time-dependent covariates, but these rely on having ap-

propriately estimated inverse probability weights. We begin in chapter 2 with the estimation

of causal treatment e¤ects using a standard MSM, in order to investigate the construction of

such weights. This process is not straightforward and there currently exists limited guidance

for researchers. We illustrate and discuss the complexities of obtaining a suitable set of weights.

We propose a simple and transparent algorithm for the construction of the weights, framed as a

series of decisions, which must inevitably be subjective. We applied our algorithm to the CAS-

CADE data to explore the implications of those decisions on the overall conclusions relating to

the e¤ect of antiretroviral therapy on the risk of AIDS or death in HIV-infected persons.

In chapter 3, we extend the standard MSMs in the most straightforward way to incorporate

e¤ect modi�cation by a time-dependent covariate. We �rstly considered the estimation of

the e¤ect of immediate versus deferred treatment initiation given current CD4 count, which

addresses the clinically-relevant question regularly faced by health care providers and patients

regarding whether to initiate or defer treatment with respect to current CD4 count. We then

used history-adjusted MSMs to estimate the e¤ects of treatment initiation immediately versus

never, given current CD4 count. We compared these results to those under the immediate versus

deferred treatment scenario, and also to the results from the standard MSMs; although these

approaches address di¤erent questions, these comparisons may help improve understanding of

the causal e¤ects of treatment. The results from these history-adjusted MSMs could then be

used to determine the optimal history-adjusted static regime for a patient, given their time-

dependent covariate history.

We move to dynamic MSMs in chapter 4 to consider the optimisation of pre-speci�ed dy-

namic treatment regimes, de�ned by CD4 count in our application to the treatment of HIV-

infected persons. Although history-adjusted and dynamic MSMs share similar concepts, they

are applied to di¤erent questions. Once again, while these di¤erent questions will of course

give di¤erent answers, one might expect some consistency across the results with respect to

treatment initiation in relation to CD4 count in HIV-infection. The inverse probability weights

which are required for history-adjusted and dynamic MSMs are constructed in a similar way as

for the standard MSM, hence the importance of the �rst step in determining adequate weights

for the standard MSM before proceeding to more complex methods. We aimed to use this

sequential application of all three types of MSM to enhance our understanding of the causal
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e¤ects of interest.

There have been recent developments in the application of dynamic MSMs to incorporate

permitted delays in treatment initiation (�grace periods�; Cain et al. (2010)). These have rarely

been applied in practice (Cain et al., 2010; HIV-CAUSAL collaboration, 2011; Shepherd et al.,

2010) and their implications have not previously been investigated; we attempted to address this

gap in the literature in chapter 4. In addition, we aimed to contribute to the debate outlined

above in section 1.5 regarding the optimal timing of treatment initiation with respect to CD4

count in HIV-infected individuals.

Finally, in chapter 5, we compare and summarise the results across the chapters, draw some

conclusions, discuss limitations and outline potential future work.

1.8 Summary of main contributions of the thesis

We advocate the application of all three types of MSM to address dynamic causal questions, and

comparison across the approaches o¤ers additional insights into the methodology and clinical

results.

For the crucial step of construction of suitable inverse probability weights, we have structured

this process as four key decisions, de�ning a range of strategies; all demonstrated a bene�cial

e¤ect of ART in CASCADE. We found a trend towards greater treatment bene�t at lower CD4

across a range of models.

Via large simulated randomised trials based on CASCADE data, longer grace periods (per-

mitted delay in treatment initiation) and in particular less-frequently observed CD4 indicated

higher optimal regimes (earlier treatment initiation at higher CD4), although similar AIDS-free

survival rates may be achieved at these higher optimal regimes. In realistically-sized obser-

vational simulations, the optimal regime estimates lacked precision, mainly due to broadly

constant AIDS-free survival rates at higher CD4. Optimal regimes estimated from dynamic

MSMs should be interpreted with regard to the shape of the outcome-by-regime curve and

the precision. When our desired inference is under the absence of a grace period, we found

in our clinical setting that allowing a 3-month grace period may increase precision with little

bias; under longer grace periods, the bias outweighed the e¢ ciency gain. In our CASCADE

population, immediate treatment was preferable to delay, although estimation was limited by

relatively short follow-up.
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Chapter 2

Standard marginal structural models

2.1 Introduction

In chapter 1, we introduced a number of methods for the estimation of causal e¤ects. The

aim of this chapter is to explore the estimation of causal e¤ects using marginal structural

models (MSMs) via inverse probability weighting. As discussed in section 1.7, the construction

of appropriate weights may be a complex process. This has been addressed to some extent

by previous authors (Cole and Hernán, 2008), but the majority of previous approaches are

somewhat opaque and perhaps not easily implementable by many researchers (see section 2.3.1;

Brookhart and van der Laan (2006); Mortimer et al. (2005); Petersen, Deeks, Martin, and

van der Laan (2007)). We aim to contribute to this area by approaching the construction of the

weights as a series of decisions, and use these to propose a range of plausible model building

strategies. We apply these methods to estimate the causal e¤ects of treatment on time to AIDS

or death in HIV-infected persons in our population of patients from CASCADE, and assess the

implications of these decisions.

2.2 Methodology

2.2.1 Notation

We wish to estimate the e¤ect of treatment on time to the �rst occurrence of an AIDS-de�ning

illness or death, assuming for now that there is no censoring (relaxed in section 2.2.4). We

discretise time into small intervals (months) so that treatment and event probabilities can be

calculated within those intervals and therefore aid computation; the weighted logistic regression

models which we introduce in section 2.2.2 approximate weighted Cox proportional hazards

regression models, provided event probabilities within each time interval are small (D�Agostino
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et al., 1990), and are easier to implement using standard software.

Adapting and extending the notation introduced in chapter 1, let T be the time to the �rst

AIDS event or death, and let Y (t) be an indicator for whether an AIDS event or death occurred

prior to time t , that is Y (t) = 1 if T < t and Y (t) = 0 if T � t. Similarly, let A(t) = 0; 1 be an

all-or-nothing but time-dependent indicator for whether treatment was initiated prior to time t,

that is A(t) = 1 if treatment was initiated before time t, and 0 otherwise (including if treatment

was initiated at time t). As indicated previously, we are interested in treatment initiations and

ignore subsequent treatment discontinuations, therefore if A(t) = 1 then A(s) = 1 for s > t. Let

L(t) represent the latest time-dependent covariates measured prior to time t. As before, we use

overbars to indicate history, so A(t) = fA(0); A(1); : : : ; A(t)g and L(t) = fL(0); L(1); : : : ; L(t)g,

and V represents a vector of baseline covariates.

For illustration, Figure 2.1 shows two examples of the data which may be collected. In

example (a), the patient�s time-dependent covariates L were measured between times t� 2 and

t � 1; these measurements would then be used for L(t � 1). The patient initiated treatment

between t� 1 and t, meaning that A(t� 1) = 0 while A(t) = 1, and the patient experienced the

event between times t and t+ 1, therefore Y (t) = 0 and Y (t+ 1) = 1. Example (b) is included

to illustrate what happens if these measurements and events take place at given time-points,

which may be considered at, rather than between, clinic visits. The time-dependent covariates

L were measured at time t� 2 for this patient, therefore by our de�nition this informs L(t� 1).

Similarly, this patient initiated treatment at time t�1 and therefore A(t�1) = 0 and A(t) = 1,

and this patient experienced the event at time t, so Y (t) = 0 with Y (t+ 1) = 1.

Of note, we have used the end of each time interval to label the outcome, treatment and

covariates (that is, prior to time t rather than including time t). These choices are unlikely to

a¤ect the �ndings from our work, but clearly it is important to apply the de�nitions consistently

throughout to ensure temporality (time-dependent covariates predicting treatment, and both

time-dependent covariates and treatment predicting outcome). We have applied these de�nitions

since, in our work, the covariates L are typically measurements such as CD4 count or HIV RNA,

for which bloods are taken and the results available at some later time. Other choices may be

more appropriate in situations where the covariates L consist of measurements whose results

are known immediately, such as blood pressure or weight.
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(b)
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Figure 2.1: Examples of measurement of time-dependent covariates (L), treatment and events.
See text for how these are used to determine the values at each time-point. Both examples are
likely to occur in any observational data (including in interval and clinical cohorts).

2.2.2 Marginal structural Cox proportional hazards models

We might attempt to estimate the e¤ect of current treatment using a Cox proportional hazards

(PH) model given by:

�T ftjA(t); V g = �0(t) exp
�
�0A(t) + �0V

	
(2.1)

If, given V , treatment was unconfounded, then b�0 would be an unbiased estimate for the causal
e¤ect of ever versus never having initiated treatment. However, as discussed in chapter 1, if

treatment is confounded by time-updated covariates (an example of confounding by indication),

then b�0 will be a biased estimate for the causal e¤ect of treatment, whether or not we adjust
for those time-dependent covariates in addition to V (Hernán et al., 2002).

Recall that TA represents the time to event under a particular treatment regime A. For a

given patient, TA will remain unobserved for the regimes which that patient did not follow and,

under the assumption of consistency (see below), will equal the observed T for the treatment

regime(s) A that they did follow. Then, as introduced in section 1.4.3, the Cox PH MSM of

interest is given by:

�TA ftjA(t); V g = �0(t) exp f�A(t) + �V g (2.2)

As outlined previously, since at least some of these outcomes will remain unobserved, we

cannot �t this model directly. However, if we use inverse probability weights to create a pseudo-

population in which we upweight patients who are and are not on treatment at each time-point to

account for the patients with the same covariate history but who are not on the same treatment

path, then we have removed the dependence of treatment on the measured time-dependent

covariates and so treatment is no longer confounded by those covariates (Hernán et al., 2000).
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Then the standard Cox PH model of equation 2.1 applied to the pseudo-population (via inverse

probability of treatment weighting) will yield an unbiased estimate �̂ for the causal e¤ect of

ever versus never treated, under certain assumptions.

Assumptions

As outlined in section 1.2.4, for the application of MSMs to estimate causal e¤ects in observa-

tional studies, we require the following assumptions (Cole and Hernán, 2008):

� Consistency: formally, this states that the potentially counterfactual outcome TA under

treatment regime A is equal to the observed outcome T if the patient was observed to

follow regime A.

� No unmeasured confounders between treatment and the outcome (otherwise known as ex-

changeability). That is, at each time t, the treatment received at that time is independent

of the time to event, given treatment and covariate history. Formally, this means that for

each A, we assume that TA is independent of A(t) given A(t � 1) and L(t � 1) (Hernán

et al., 2001).

� No misspeci�cation of the models.

� Positivity, that is that there is a non-zero probability of receiving each treatment regime

for all combinations of treatment and covariate history. Formally, letting f(�) repre-

sent the probability density function, we assume that f
�
A(t� 1); L(t� 1)

	
> 0 implies

f
�
A(t)jA(t� 1); L(t� 1)

	
> 0 for all A(t); A(t� 1); L(t� 1) (Hernán et al., 2002).

The �rst three assumptions cannot be tested from the data, though the second and third

can be explored by considering a broad range of potential confounders and di¤erent model

speci�cations. Note that we also require temporality, that is L(t� 1) is measured prior to A(t),

which we have by the conservative construction of our data (section 2.2.1).

Since current guidelines (outside the USA) recommend HIV-infected persons to initiate

treatment around CD4 counts of 350 cells/mm3 (Gazzard and on behalf of the BHIVA Treatment

Guidelines Writing Group, 2008; WHO, 2010), we might for example expect all patients with

CD4 count < 300 cells/mm3 to be on treatment. This would violate the positivity assumption

and we would not be able to estimate the causal e¤ects of treatment in this CD4 count range.

Cole and Hernán (2008) refer to such cases as �structural zeroes� since by de�nition in these

circumstances there would be zero probability of never having started treatment when CD4

count < 300 cells/mm3. In practice, it is unlikely that we will see such consistent treatment

48



patterns. �Random zeroes� due to chance are permitted since the use of a model essentially

�borrows�from the remaining data, although the presence of random zeros increases the chance

of bias due to non-positivity (Cole and Hernán, 2008).

Aside from non-positivity concerns, if there exist patients who remain treatment-naïve with

very low CD4 counts, these patients are an unusual subset. If it was possible to identify

such �treatment refusers� from the outset, then we might consider excluding those patients

altogether, on the grounds that they do not constitute our population of interest and further we

may be worried that we have not captured all potential confounders to adequately describe the

treatment behaviour of these patients. However, this could result in bias; we cannot identify

these patients from the outset. Alternatively, if we observed a patient to reach CD4 count

< 100 cells/mm3 without initiating treatment then we may be tempted to censor the patient

at that time, in order to attempt to restrict to our population of interest, namely patients who

would consider taking treatment. However, such a censoring process is dynamic and cannot

be appropriately accounted for, via weighting of MSMs or otherwise, without addressing the

dynamic element. In chapter 3, where we consider the start of each treatment-naïve month

of follow-up as a �trial� for immediate treatment initiation versus deferral, we will be able to

exclude �trials� where the �baseline� CD4 count is < 100 cells/mm3. Further, in chapter 4

such patients will implicitly be censored from regimes de�ned by earlier treatment initiation at

higher CD4 counts. However, we cannot easily address this issue further with standard MSMs.

2.2.3 Inverse probability of treatment weights

In general, the treatment weights are not known, therefore we must estimate them from the data.

However, even if the true weights are known, it has been shown that appropriately estimated

weights are more e¢ cient (Hernán et al., 2001; Moodie, 2009). The inverse probability of

treatment weight for a particular patient at time t is de�ned by the inverse probability of that

patient having received their observed treatment to t, given their baseline and time-updated

covariates and previous treatment. In practice, we split time into suitable intervals denoted

t = 1; 2; ::: and use pooled logistic regression, treating each person-time interval as an observation

and estimate the treatment probabilities up to each time t as follows.

Following the notation of Hernán et al. (2001), de�ne:

pA (t) := Pr
�
A (t) = 0jA (t� 1) = 0; Y (t) = 0; L (t� 1)

	
(2.3)

for t = 1; 2; ::: where A(0) = 0, since by de�nition all patients are treatment-naïve at base-
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line, and L(0) are the time-dependent covariates measured at baseline and include the time-

independent covariates V . We perform a pooled logistic regression, on patients previously

treatment-naïve, with outcome of treatment initiation, to obtain the probabilities of treatment

initiation in the time intervals t = 1; 2; ::: given time-updated covariates, and hence obtain the

estimates bpA (t) for non-initiation of treatment. We are then able to estimate the probability of
each patient�s observed treatment to time t, given baseline covariates, time-dependent covariate

history and past treatment, as follows:

bqA (t) =
8>>>><>>>>:

tY
k=1

bpA (k) if patient did not initiate treatment up to time t
f1� bpA (k)g k�1Y

l=1

bpA (l) if patient initiated treatment in [k � 1; k), for k � t

and we estimate the weights using: cW (t) = 1bqA (t) :
For example, consider four patients with the same covariate history prior to time t� 1, who

were all treatment-naïve prior to time t�1, and three of these patients remained o¤ treatment to

time t but the fourth patient initiated treatment prior to time t. Then in this subset of patients,

the probability of initiating treatment prior to time t (given o¤ treatment prior to time t � 1)

is 1=4. At time t, the �rst three patients who did not initiate treatment are assigned weight

1
1�1=4 = 4=3, so these three patients count for themselves and also the fourth patient who is no

longer following that treatment regime of not initiating treatment prior to time t. Conversely,

the fourth patient who did initiate treatment is assigned weight 1
1=4 = 4, and therefore counts

for him/herself plus the three patients who did not follow that regime of initiating treatment

prior to time t.

In practice, a select few patients may have large weights and these would dominate the

analysis thus leading to large standard errors. Therefore, we usually stabilise the weights to

increase the e¢ ciency (Hernán et al., 2000). In theory, this can be done by replacing the

numerator of 1 in cW (t) with any function of treatment A(t) but which is not a function of the
time-dependent covariates (Hernán and Robins, 2006). In practice, we typically use a function

of time-independent variables by de�ning p�A (t) analogously to pA (t) as in equation 2.3, except

replacing L (t� 1) with V , and similarly estimate bq�A (t) . Then the stabilised weights are given
by: dSWA (t) =

bq�A (t)bqA (t) :
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Informally, the denominator is the probability of treatment given treatment history and time-

updated covariates (including baseline), whereas the numerator is the probability of treatment

given treatment history and baseline covariates only. The informal reasoning behind this is

that we can adjust more e¢ ciently for the baseline covariates in the outcome model instead,

rather than via the weighting. We must adjust for the covariates V in the outcome model, since

the stabilised weights only remove the time-dependent confounding conditional on V (Cole and

Hernán, 2008). To further help control the weights, truncation may be performed (Cole and

Hernán, 2008). For further discussion on the weight estimation, see section 2.3.

2.2.4 Censoring

As mentioned in section 1.2.4, right-censoring is common with time-to-event data therefore some

patients will be censored before we observe the event. Under the assumption that the censoring

process is independent of T , conditional on covariate and treatment history (no unmeasured

confounders), then we can easily adapt our weighting method of above to estimate inverse

probability of censoring weights and therefore account for censoring. By doing so, we are

attempting to estimate the e¤ect of treatment in the absence of any censoring (Hernán et al.,

2001). For illustration, assume there is just one type of censoring and let C(t) = 0; 1 represent

whether censoring has occurred prior to time t. De�ne for t = 1; 2; ::::

pC (t) := Pr
�
C(t+ 1) = 0jA (t) ; L (t) ; C(t) = 0; Y (t+ 1) = 0

	
and again analogously for p�C (t) with L (t) replaced by V . We consider C(t+1), that is, censoring

in the interval [t; t+1), rather than C(t), to correspond with the interval used for the outcome

estimation (see section 2.2.5). Estimation of the stabilised weights dSWC(t) then follows as above

for the treatment weights. In practice, there may be a number of di¤erent reasons for censoring

(as in section 1.6.1, for example). These methods can be applied to di¤erent censoring types

to estimate separate weights, which can then be combined, or extended analogously to treat

di¤erent censoring types as a range of outcomes in a multinomial logistic regression. While in

theory any number of di¤erent types of censoring may be incorporated in this way, in practice

this may be limited by the data available, and the analyst should check that this does not cause

excessive variability in the weights.

The overall weights are given by the joint probability of observed treatment and remaining

uncensored, assuming these are independent processes given the measured confounders. There-

fore in the presence of censoring, we amend the treatment weight estimation to also condition on
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C(t) = 0 in equation 2.3 and similarly for p�A (t), and obtain the overall weights by multiplying

the (amended) treatment and censoring weights together to estimate the overall weights:

dSW (t) = dSWA(t)� dSWC(t):

2.2.5 Estimation of treatment e¤ect

Finally, for t = 1; 2; :::, we estimate:

p(t) := Pr
�
Y (t+ 1) = 1jY (t) = 0; C(t+ 1) = 0; A (t) ; V

	
using for example a pooled logistic regression of the form:

logit fp(t)g = log
�

p(t)

1� p(t)

�
= �A(t) + �V + f(t) (2.4)

weighted using the overall stabilised weights dSW (t), where f(t) is some function of time. That
is, the log-likelihood function which we seek to maximise is given by:

X
i

�
I [Yi(t+ 1) = 1]SWi(t) log pi(t) + I [Yi(t+ 1) = 0]SWi(t) log (1� pi(t))

�
=

X
i

SWi(t) log

�
exp fI [Yi(t+ 1) = 1] (�Ai(t) + �Vi + f(t))g

1 + exp f�Ai(t) + �Vi + f(t)g

�

where I [�] is an indicator equal to 1 if � is true, and 0 otherwise, and i indexes the patients in

the study; the parameters to be estimated are �, � and . Using the weights dSW (t) for the
estimation of the outcome in the interval [t; t + 1) means that we do not adjust for treatment

initiations in that interval, to ensure temporality (treatment initiation in that interval could be

in response to the event).

In general, it is not possible to e¢ ciently estimate an intercept for every time interval,

therefore we use a function of time f(t), perhaps categorical or a spline (Hernán et al., 2000).

Assuming small event probabilities per time interval, the resulting odds ratios can be interpreted

as hazard ratios (D�Agostino et al., 1990). Under the assumption of no unmeasured confounders

for treatment and outcome, we obtain an unbiased estimate �̂ for the e¤ect of ever versus never

treated on the time to AIDS or death. We use robust variance estimators to allow for correlated

observations induced by the use of time-dependent weights (Cook et al., 2002; Zeger and Liang,

1986), implemented using Stata�s robust command which uses the sandwich variance estimator.

This model assumes a constant e¤ect of treatment over time, which may not be plausible
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in certain scenarios. For example, we might expect a greater bene�t of treatment the longer

time spent on it; this could be incorporated with a covariate capturing time on treatment. In

addition, it is possible to investigate treatment e¤ect modi�cation by baseline covariates V by

incorporating interactions with treatment, for example using:

logit fp(t)g = �A(t) + �V + f(t) + �A(t)V:

Of note, if we wish to look at such interactions with baseline covariates then it is not essential

to incorporate those baseline covariates into the model for the numerator of the weights, but

since they will be in the outcome model including them in the model for the numerator may

potentially increase e¢ ciency.

Usual model �tting techniques and methods for checking goodness of �t can and should be

applied.

2.3 Estimation of the weights in practice

We now discuss the estimation of the inverse probability of treatment weights in practice, but

in the presence of censoring the same principles and methods can be applied to estimate inverse

probability of censoring weights.

2.3.1 Bias-variance trade-o¤

Adequate speci�cation of the treatment prediction model is necessary for consistent estimation

of causal treatment e¤ects via an MSM, but in practice determination of such a model may

not be straightforward. Cole and Hernán (2008) outline three main steps for constructing the

weights: �rstly, they recommend checking the positivity assumption for the confounders which

are suspected to be most in�uential. Secondly, they suggest investigation of the assumption

of no unmeasured confounders by considering a broad range and speci�cation of measured

potential time-dependent covariates in the weight estimation, checking for sensitivity in the

estimated treatment e¤ect. Lefebvre et al. (2008) recommend including in the treatment model

confounders for outcome and treatment, and risk factors for the outcome, but not predictors

of treatment alone (that is, which are not also associated with the outcome); they found via

simulations that the bias in using an incorrect treatment model was not signi�cant and was

outweighed by the gain in e¢ ciency. The third step of Cole and Hernán (2008) is to assess

model speci�cations by looking at the distribution of the weights, namely the mean and spread.
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At each time-point, the mean of the stabilised weights should be close to one. To see why, let

f(A;C) be the probability density function for treatment A and censoring C. Then the stabilised

weights are given by f(A;CjV )
f(A;CjL(t)) and so the stabilised weights should have mean one since, under

the assumption of no unmeasured confounders, E
n

f(A;CjV )
f(A;CjL(t))

o
= E

h
E
n

f(A;CjV )
f(A;CjL(t)) jL (t)

oi
= 1

(Hernán and Robins, 2006). For simplicity, we usually simply look at the mean over all time

intervals. As Cole and Hernán (2008) indicate, this could lead to the selection of weights which

�t reasonably well over all time-points rather than a set of alternative weights which �t better

at most time-points but poorly at a few. For this reason, we may also wish to check the weights

at each time-point.

Large weights may arise due to a few patients who for some reason do not follow typical

treatment patterns (and are thus most informative with regard to confounding), leading to

situations close to non-positivity. Further, large weights may arise due to model misspeci�cation,

particularly for continuous covariates since the treatment model may predict very low or high

probabilities of treatment initiation at the extremes of the range, therefore any patients who do

or do not initiate treatment, respectively, will receive large weights. Even in the absence of bias

due to non-positivity or model misspeci�cation, large weights which are merely a consequence

of sampling variation may dominate the analysis leading to large standard errors and unstable

estimates, so some truncation of the weights may be prudent.

Whilst we would expect well-estimated weights to have small standard deviation or range,

Cole and Hernán (2008) note that the �best�weights, with respect to these conditions of small

standard deviation and mean one, would be equal to one for all patients and time-intervals,

but this would not adjust for time-dependent confounding at all. They describe this process of

simultaneously attempting to address the assumptions of positivity, no unmeasured confounders

and no model misspeci�cations as a bias-variance trade-o¤. This balance can be explored by

looking at progressive truncation of the weights (Cole and Hernán, 2008), though Cole et al.

(2005) caution that the most extreme weights contain the most information with respect to

confounding therefore weight truncation is not ideal for model checking.

Therefore, even within the extent of existing guidance, there are a number of subjective

decisions to be made in terms of this balance of bias and variance which may legitimately be

approached di¤erently by di¤erent researchers. The potential for di¤erent choices primarily

lies with determining what size change is important when investigating the sensitivity in the

estimated treatment e¤ect to di¤erent model speci�cations and what is deemed a reasonable

weight distribution. Of note, �traditional�model building approaches such as stepwise back-
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wards selection are not appropriate since they focus on determining predictors of treatment

rather than confounders of treatment and outcome, and do not consider the e¢ ciency of the

treatment e¤ect estimator.

There have been a number of attempts to formalise the treatment model selection procedure.

Firstly, the approach of Mortimer et al. (2005) requires prede�ning a candidate set of treat-

ment models (they used 10) and optimising the bias-variance trade-o¤ using a cross-validation

approach with a residual sum of squares (RSS) criterion. In particular, the �rst step of their

method involves splitting the data by 90% to 10% into training and test sets, respectively. Each

of the candidate treatment models are �t to the training set and that which minimises the

Akaike information criterion (AIC, given by 2k � 2 ln(L), where k is the number of parameters

and L is the maximised value of the likelihood function) is labelled X. From each of the can-

didate models, inverse probability weights are estimated and the corresponding MSM estimate

of the parameter of interest is obtained. The outcome is then predicted for each observation

in the test set based on each of the MSM estimates. Ideally, the best MSM estimate would be

that which minimises the mean counterfactual RSS, but of course those are not all observed.

Therefore, a modi�ed RSS is employed, whereby the observed RSS is weighted just as in an

MSM. That is, the modi�ed RSS is given by:

Q =
1
nobserved RSS

Pr (treatment j time-updated covariates)

where n is the number of observations in the test dataset. The model X determined above is

used to apply this weighting. This process should be iterated a large number of times (Mortimer

et al. (2005) did so 10,000 times) and the overallQ is taken to be the average. The best treatment

model is then chosen as that with minimal overall Q.

A potential limitation of this approach is the requirement for a restricted set of treatment

models to be chosen at the outset. Further, although the authors note that the distribution

of the weights should always be checked and recommend that sensitivity analyses should be

performed in order to give con�dence in the chosen weights, they do not provide any additional

recommendations on how this may be done. In particular, if this procedure leads to a model

with weights which are not deemed suitable for some reason, then it is unclear how the analyst

should proceed; indeed, it is not entirely clear how to assess the suitability of the weights.

In a paper on HAMSMs (see chapter 3), Petersen, Deeks, Martin, and van der Laan (2007)

used a somewhat di¤erent cross-validation approach with a �deletion/substitution/addition

algorithm� in order to select their treatment model. Once again, this process involves �tting

55



models of various sizes and complexities, assessing performance in independent samples, and

selecting that which optimises the bias-variance trade-o¤. While the range of model possibilities

under Petersen, Deeks, Martin, and van der Laan (2007) was quite extensive, there was still

some lack of transparency in the process, which would not be straightforward to implement.

Brookhart and van der Laan (2006) also used a cross-validation approach, to minimise the mean

square error.

The ultimate aim of these methods is to select a treatment model which best balances bias

versus variance. While a parsimonious model may o¤er relatively low variance and avoid bias due

to positivity, it may inadequately control for the time-dependent confounding in the treatment

model. Further, treatment model misspeci�cation may result in bias or in�ated variance. While

the approaches above methodically select an optimal treatment model based on a (�nite sample)

bias-variance trade-o¤, they are not easy to apply and are unlikely to be adopted by many

researchers. The processes are not transparent; a suitable stepwise approach to the model

selection process (which focuses on controlling for confounding between treatment and outcome,

not determining predictors of treatment like in �traditional�model building approaches) may

o¤er insights into the data at hand and potential issues with particular variables or models.

Further, there are a number of other factors, such as truncation of the weights, which are not

addressed by these methods. Lastly, as mentioned above, it is unclear how to proceed if the

approaches discussed above yield weights that are for some reason deemed unsuitable. We sought

to address the various subjective decisions that an analyst may be faced with when attempting

to determine a suitable treatment model and propose an informal, transparent approach to the

construction of the weights, as a series of decisions.

The positivity assumption

As mentioned above, the �rst step of Cole and Hernán (2008) for constructing the weights is

to check the positivity assumption for the key confounders. In practice, this can be explored

by examining the treatment initiation patterns across di¤erent categories of the confounder,

to see whether patients do and do not initiate treatment at all levels of the confounder. This

could simply be done for one key confounder (for example, CD4 count), or across di¤erent levels

of multiple confounders (for example, CD4 count and HIV RNA). Even if it is thought that

structural zeroes are unlikely, then this may help identify random zeroes.

If there is concern about violations of the positivity assumption, then one option for the

analyst may be to collapse categories of the confounder, or model the confounder continuously in

order to smooth over the random zeroes. An alternative, and somewhat more extreme option,
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would be to restrict the sample to exclude groups of patients for whom there exists limited

variability in the treatment pattern (for example, if the vast majority of patients initiated

treatment when CD4 < 200 cells/mm3 then we exclude the small subset of patients who did

not initiate treatment with such a low CD4 count, on the grounds that those patients do not

constitute the population in whom we wish to estimate treatment e¤ects).

Petersen et al. (2010) provide more detail about diagnosing and responding to violations in

the positivity assumption, and, in the presence of such violations, the authors recommend a

systematic approach to the trade-o¤ between the desired inference (unbiased) and identi�ability

(precision).

2.3.2 Key decisions

While Cole and Hernán (2008) give a broad outline of the principles behind the treatment model

building process, there is still scope for a number of di¤erent approaches. One such di¤erence lies

in the starting point for analysis. Let Lkey be a small number of covariates which are known a

priori to be important confounders of the relationship between treatment and outcome; the �rst

step of Cole and Hernán (2008) is to investigate the positivity assumption with respect to these

variables. Let Lpot denote the remaining potential confounders which may be considered for

inclusion in the treatment model. One possible approach to the model building process might be

to begin with a treatment model consisting of time, baseline covariates V and Lkey only and then

consider the addition of each of the other potential confounders of Lpot in turn with reference

to some pre-de�ned criteria for identifying which covariates are important confounders and so

should be included in the treatment model. Iterating this process until no further covariates

meet the criteria for inclusion would yield the �nal treatment model. Alternatively, the analyst

could start from a �full�treatment model including the potential confounders Lpot, in addition

to time, V and Lkey, and the reverse procedure applied to identify covariates which are not

important confounders and so can be removed from the treatment model.

The pre-de�ned criteria for identifying important confounders may incorporate a number

of factors, such as the distribution of the weights, the estimated treatment e¤ect and/or its

standard error; this is di¤erent to a standard model selection procedure such as backwards

elimination which would only consider the signi�cance or otherwise of the variables in the

treatment model. Note that covariates which are solely risk factors for the outcome, and not

confounders for treatment, may be adjusted for directly in the outcome model, even if they are

time-dependent.

57



Starting point: minimal treatment model with
time, baseline covariates V and Lkey; or full

model with in addition Lpot (decision 1)

Add/remove all remaining covariates
of Lpot one at a time

Identify the covariate to add/remove
(under criteria of decision 3)

Repeat until no more
covariates to

include/remove

Identify level of truncation for final weights
(under criteria of decision 4)

Work with weights which are untruncated
or truncated (decision 2)

Starting point: minimal treatment model with
time, baseline covariates V and Lkey; or full

model with in addition Lpot (decision 1)

Add/remove all remaining covariates
of Lpot one at a time

Identify the covariate to add/remove
(under criteria of decision 3)

Repeat until no more
covariates to

include/remove

Identify level of truncation for final weights
(under criteria of decision 4)

Work with weights which are untruncated
or truncated (decision 2)

Figure 2.2: Flow chart for treatment model building process. See text for further details on the
decisions.

In the absence of bias in the estimated treatment e¤ect, progressive truncation of the weights

will result in weights which have mean closer to one and smaller standard deviation. In practice,

truncation may result in bias due to poorer control of confounding, but conversely it may help

protect against bias due to non-positivity or model misspeci�cation. Therefore it is prudent to

check sensitivity of the estimated treatment e¤ect to weight truncation.

One possible approach to the treatment model building process, covering the aspects dis-

cussed above, is outlined in Figure 2.2, with the key decisions highlighted. While there are other

possible approaches and scope for variation, these decisions cover a number of key aspects and

will illustrate the potential di¤erences that may arise under alternative but equally plausible

strategies. We now consider each of the decisions in detail.

Decision 1: starting point

As suggested above, the analyst may choose to start with a minimal model consisting of time,

baseline covariates V and the key confounders Lkey, or a �full�model consisting of the potential

confounders Lpot, in addition to time, V and Lkey. Backwards selection could be done, but if for

example Lpot contains a large number of variables and there are concerns about non-positivity,

then it may be preferable to start with the minimal model. This relates to the forward/backward

part of the algorithm proposed by Brookhart and van der Laan (2006).
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Decision 2: working weights

The weights used during the treatment model building process may be truncated or untrun-

cated. If there is concern about non-positivity and it is thought that some truncation may be

performed on the �nal weights, then one may argue that it is preferable to work with truncated

weights throughout; the extent of the truncation could be determined from a priori set criteria.

Conversely, one may argue that it is preferable to work with untruncated weights during the

model building process to ensure that all potential confounders are identi�ed, although one may

wish to still consider truncation at the end under the criteria of decision 4.

Decision 3: covariate selection

Firstly consider the case where we start with a minimal model and identify covariates for

inclusion. At each stage, we will have a basic model M to which we are considering adding

each of the remaining covariates of Lpot which are not yet in the treatment model; let modelMi

denote modelM but with in addition the ith covariate of Lpot. If the addition of covariate i to the

treatment model moves the estimated treatment e¤ect away from the unweighted estimate, then

this could be due to better control of confounding (or similarly improved model speci�cation)

or problems relating to bias. Bias could be due to �nite-sample bias and being close to non-

positivity (Cole and Hernán, 2008), or to selection bias arising from collider-strati�cation. This

latter issue is discussed by Greenland (2003); it is di¢ cult to think how this might arise in

our application and it would not be possible to detect empirically, but if this source of bias

was suspected then it may perhaps indicate that we should not include the covariate i in the

model (Cole and Hernán, 2008). Problems with positivity can be identi�ed by looking at the

distribution of the weights: mean weights far from one indicate problems with positivity, or

perhaps model misspeci�cation. Preference may also be given to models with a small standard

error (as in Cole and Hernán (2008)) though note it is likely that the unweighted treatment e¤ect

estimate will also have small standard error since there is no additional variability introduced

by the weights. Of note, if a covariate is a statistically signi�cant predictor of treatment but

does not result in much change in the estimated treatment e¤ect, then that covariate is unlikely

to be a (strong) confounder of treatment and outcome. Further to the �ndings of Lefebvre

et al. (2008), such a variable should not be included in the treatment model since the potential

bias due to an incorrect treatment model would be minimal compared to the gain in e¢ ciency.

Therefore when comparing models M with Mi to determine whether to include covariate i,

there are three factors to be considered: the proximity of the mean of the weights to one, the
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size of the treatment e¤ect estimate and the size of the standard error of the treatment e¤ect

estimate (which is related to the standard deviation and range of the weights, therefore we do

not consider these separately). We quanti�ed these factors as follows:

1. proximity of the mean of the weights to one by looking at the absolute change in the mean

of the weights towards one for model Mi compared to M

2. movement of the estimated treatment e¤ect relative to the unweighted estimate by looking

at the absolute and relative change for model Mi compared to M

3. absolute and relative increase in the standard error of the estimated treatment e¤ect for

model Mi compared to M .

These factors were informally considered by Cole and Hernán (2008) when comparing di¤er-

ent treatment models. These could be combined and parameterised as follows: the ith covariate

of Lpot is eligible for inclusion if, compared to modelM , it (i) moves the mean of the weights >�

closer to one or (ii) changes the treatment e¤ect estimate relative to the unweighted estimate

by > �p% (and >� for some small �, to avoid very small di¤erences being counted) or reduces

the standard error by > �p% (and > �) but with mean of the weights � �m further from one.

Increasing �, �p or �p, or decreasing �m; will make the criteria more stringent and hence may

lead to a smaller treatment model. When identifying eligible covariates, all three criteria are

of equal importance. If more than one covariate is eligible, then we pick the one for inclusion

as that which most improves the weights (or impairs the least if none improve, since we may

wish to include a covariate which has a large impact on the treatment e¤ect estimate even at

the expense of slightly poorer weights). That is, we prioritised criterion 1 over criteria 2 and 3,

in order to focus on obtaining well-behaved weights. With our logistic regression models, the

treatment e¤ect estimate and associated standard error should be considered on the log odds

scale since the standard error of the odds ratio will be related to the size of the odds ratio.

Interactions and strati�cation Interactions between key covariates can be considered under

these criteria in the same way as the addition of a covariate. Taking this one step further, if

there are known strata such as di¤erent centres or countries, then strati�cation on that factor

can be considered similarly, since strati�cation can be considered as incorporating interactions

between the strati�cation factor and all other variables. Therefore although there would be

a large increase in the number of parameters, the unstrati�ed model is still nested within the

strati�ed model. So letting M represent the unstrati�ed model and Mi represent the strati�ed
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model, then the same criteria as above can be applied to determine whether separate treatment

models should be estimated within levels of the strati�cation factor (e.g. centre or country).

Process beginning with a �full�model Under decision 1 where the analyst begins with

a �full�model, the reverse of this process can be applied to determine removal of covariates.

That is, if M 0 represents the current model, then compare with each of the models M 0
i which

are identical to M 0 but with the ith remaining covariate of Lpot removed. Applying the reverse

of the same criteria as above, we can determine whether or not to remove covariate i from M 0

in favour of the smaller model M 0
i .

A combination of these steps, akin to the stepwise backwards procedure often used in tra-

ditional model selection, could be applied. For ease, this was not applied here, but we would

anticipate seeing broadly similar results as under the range of strategies considered below.

Decision 4: degree of weight truncation

As discussed above, weight truncation may induce bias due to poorer control of confounding

but conversely may help protect against bias due to non-positivity or model misspeci�cation.

Similarly to Cole and Hernán (2008), we propose considering progressive truncation to investi-

gate the e¤ects on the estimated treatment e¤ect and distribution of the weights. In addition

we propose speci�c criteria to determine what level of truncation to choose, re�ecting either a

desire for a simpler model if there are concerns about positivity or a more complex model in or-

der to better control for confounding. Assuming no bias in the initial treatment e¤ect estimate,

progressive truncation will result in estimates which are increasingly biased but more precise

(Cole and Hernán, 2008), so we will typically see a decrease in the mean and standard deviation

of the weights, which translates to a treatment e¤ect estimate closer to the unweighted estimate

and smaller standard error of that estimate.

It will be necessary to propose a set of truncations to consider. There is little to inform the

speci�c levels of truncation in this set and it should be recognised that di¤erent choices may

lead to di¤erent conclusions, since clearly the decision whether to progress from one level of

truncation to the next will depend on the (relative) levels of truncation. If very extreme weights

are seen then it may be prudent to perform some minimal truncation by default.

For each �nal treatment model, we propose the following two possible criteria to determine

whether to proceed with additional truncation (and stop when decide not to truncate any

further):

(a) truncate if it leads to a reduction (that is, weakening) in the estimated treatment e¤ect of

61



> ' and > 'p%, provided no worsening of the mean of the weights in terms of absolute

distance from one (and assuming reduction of the standard error)

(b) truncate if it leads to a reduction in the standard error by > � and > �p%, provided the

reduction in the estimated treatment e¤ect is � 'm%

Rule (a) favours truncation if that is associated with a large change in the treatment e¤ect,

since this large change could indicate problems with positivity and truncation may help protect

against the potential bias due to non-positivity. This will typically be a conservative approach.

In contrast, rule (b) will only truncate if that o¤ers bene�ts in terms of increased precision and

is not associated with a large change in the treatment e¤ect; since �the extreme weights encode

the greatest amount of confounding�(Cole et al., 2005), the argument is that truncation may

lead to inadequate control for confounding.

2.3.3 Strategies

In theory, numerous permutations of the decisions above could be combined to form a large

number of strategies; in order to have a manageable but varied set of strategies, we may wish

to consider a limited combination of decisions. For example, if we were most concerned about

positivity (perhaps from initial investigations or through consultation with clinicians) then we

might favour the following options, which we might suspect would lead to a smaller model and

therefore avoid large models where there may be a higher risk of non-positivity:

� start with the minimal model; recognise that some weights are likely to be unreasonably

large and so work with truncated weights; choose the parameters f�; �; �g to favour a

smaller model; apply criterion (a) to favour greater truncation to avoid bias due to non-

positivity.

Conversely, if we suspect that our a priori speci�ed set of covariates really are likely to be

important confounders for treatment and outcome and we are most concerned about adequate

control for confounding, then we might instead prefer the following options to tend towards a

larger model to allow maximum control for confounding:

� start with a large model; work with untruncated weights which may better capture the

confounding; choose the parameters f�; �; �g to favour a larger model; apply criterion (b)

to favour less truncation.
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Strategy Decision
1. Where to 2. Working 3. Covariate selection 4. Degree of
start? weights? procedure? Parameterise weight trunca-

f�; �; �g to favour: tion? Favour:

I (a) minimal (a) truncated (a) smaller model (a) greater
model truncation

II (a) minimal (a) truncated (a) smaller model (b) less
model truncation

III (a) minimal (a) truncated (b) larger model (b) less
model truncation

IV (a) minimal (b) untruncated (b) larger model (b) less
model truncation

V (b) �full� (b) untruncated (b) larger model (b) less
model truncation

Table 2.1: Summary of the treatment model building strategies.

These two strategies are shown as I and V, respectively, in Table 2.1. In addition, we propose

to evaluate three other intermediate strategies, yielding a set of strategies which provide direct

comparisons for each of the four decisions. We would anticipate di¤erent combinations of the

decisions to be intermediaries of this set. While other approaches or decisions are possible,

we believe the chosen strategies provide a realistic yet varied set of approaches to the weight

construction.

2.3.4 Model checking using centre or country

As discussed above, if there exist known strata such as centre or country, then we may wish to

stratify the treatment model on that factor by �tting separate treatment models for each level

of that covariate. Such a variable may also be exploited in a di¤erent way: while we might ex-

pect di¤erent event rates across the di¤erent strata, we may expect to see consistent treatment

e¤ects across the strata, assuming that the treatment is homogeneous. This may not be the

case for complex interventions such as behavioural therapy for example, but where there exist

fairly standard drug regimens and guidelines across the strata, the assumption of homogeneity

is likely to be reasonable. This can easily be investigated by incorporating interactions between

treatment and the centre or country covariate in the outcome model. However, if there exist

interactions between treatment and other baseline covariates, these could induce spurious in-

teractions between treatment and the strati�cation factor if the baseline covariates di¤er across

the strata, therefore such interactions should also be considered.
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2.4 Application to CASCADE

The CASCADE data were introduced in section 1.6.

2.4.1 Methods

We �rstly demonstrated that CD4 count is a time-dependent confounder, by �tting pooled

logistic regression models for (i) AIDS or death on time (2-yearly categories), V , time-updated

treatment (ever versus never initiated) and time-updated CD4 count to show that CD4 count

predicts time to AIDS or death and (ii) treatment initiation on time (�ve knot spline with knots

at the 5, 25, 50, 75 and 95th percentiles of 0.1, 0.6, 1.3, 2.7 and 5.8 years), V and time-updated

CD4 count to show that CD4 count predicts treatment initiation. We used a linear model for

mean CD4 count at time t, adjusting for t (2-yearly categories), V , treatment at time t� 1 and

CD4 count at time t � 2, to show that treatment predicts subsequent CD4 count and hence

CD4 count is on the causal pathway between treatment and outcome.

To investigate the positivity assumption, we tabulated treatment initiations �rstly by CD4

count alone and secondly also by HIV RNA.

Model �tting

As a preliminary treatment model, we included time (�ve knot spline as above), V and Lkey =

fCD4 countg. We considered a variety of functional forms for CD4 count, including categorical

(by 50 cells/mm3) and three, �ve and seven knot splines (with knots at the 10, 50 and 90th

percentiles; 5, 25, 50, 75 and 95th percentiles; and equally spaced between 2.5 and 97.2th

percentiles, respectively, broadly following Harrell (2001)). All weights were stabilised using the

baseline covariates V ; the outcome model included the same covariates V plus an indicator for

treatment and time in 2-yearly categories.

Since our preliminary model indicated some large weights (perhaps due to positivity or

model misspeci�cation), we decided to apply by default minimal truncation of the outer 0.1%

of all �nal stabilised weights. By truncation of the outer p% of weights, we mean replacing

those which are < pth or > (100 � p)th percentiles with the pth and (100 � p)th percentiles,

respectively. In a slight abuse of phrase, we will refer to this as �p% truncation�. A common

(though arbitrary) practice is to truncate the weights at a maximum of 10 (see for example HIV-

CAUSAL Collaboration (2010)); 0.1% truncation roughly corresponded with a similar order of

truncation across most models.

We used clustered sandwich estimators to estimate robust standard errors, since the esti-
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mated weights induce correlation within patients. These estimators may be conservative, there-

fore we also calculated bootstrap con�dence intervals for the main results using nonparametric

resampling with 1000 replications.

The additional time-dependent covariates to be included in L(t) were introduced in section

1.6.1. CD4 count decrease and HIV RNA were categorised as previously. The remaining time-

dependent covariates were included as �ve knot splines (with knots at the 5, 25, 50, 75 and

95th percentiles). In models where HIV RNA-related variables were included but the absence

of any previous measurements was not captured by those variables, we also included a missing

indicator for availability. For example, if the number of previous HIV RNA measurements was

included in a model, then such an indicator was not required since it was captured by the value

zero of the number of previous HIV RNA measurements. However, if for example the only HIV

RNA related variable included was the last value, then the missing indicator was included. An

indicator for whether the last CD4 count was carried forward (maximum 12 months; termed

LOCF) was also considered for inclusion.

Since di¤erent guidelines or typical clinical practice across the di¤erent countries may im-

pact on treatment decisions, we considered �rstly an interaction between country and the key

confounder CD4 count, and secondly separate treatment models for each country. Since only

one German patient was observed to progress to AIDS or death, we combined the German pa-

tients with the �Other�category. Further, there were no Italian patients who met the criteria

for being identi�ed as HIV-infected close to seroconversion and were subsequently observed to

initiate treatment, therefore we omitted this variable from the treatment model for Italy.

Application of the strategies

We applied the model building process and �ve strategies of section 2.3. Under decision 2, where

working weights were truncated, we used 0:5% truncation since we did not want to be over-

zealous with the weight truncation at this stage; a di¤erent choice may have yielded di¤erent

results but this choice will serve to illustrate the potential di¤erences that may arise.

Under decision 3, we used one of the following two parameterisations, which were directly

compared (that is, holding the other conditions the same) under strategies II and III, respec-

tively:

(a) the ith covariate of Lpot was eligible for inclusion if, compared to model M , it (i) moved

the mean of the weights > 0:01 closer to one or (ii) moved the treatment e¤ect estimate

away from the unweighted estimate by > 10% (and > 0:05) or reduced the standard error
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by > 10% (and > 0:05) but with mean of the weights � 0:005 further from one.

(b) the ith covariate of Lpot was eligible for inclusion if, compared to model M , it (i) moved

the mean of the weights closer to one at all (practicably, say > 0:001) or (ii) moved the

treatment e¤ect estimate away from the unweighted estimate by > 5% (and > 0:05) or

reduced the standard error by > 5% (and > 0:05) but with mean of the weights � 0:01

further from one.

To put these parameterisations into context, the preliminary treatment model yielded weights

with mean 1.133 and treatment e¤ect estimate on the log-scale of �2:28 (standard error 0.40).

Therefore, under criterion (a), covariate i of Lpot would be eligible for inclusion if it reduced

the mean of the weights to < 1:123, or resulted in treatment e¤ect estimate < �2:51 or with

standard error < 0:35 provided the mean of the weights was � 1:138. Under criterion (b), the

variable would be eligible if it reduced the mean of the weights to < 1:132, or yielded treatment

e¤ect estimate < �2:39 or standard error < 0:35 but with mean of the weights � 1:143.

These criteria impose the direction of change of the estimated treatment e¤ect to be away

from the unweighted estimate. The reason for this is that, based on prior knowledge about HIV

treatment, we know the direction of the causal e¤ect relative to the unweighted estimate (and

supported by the preliminary treatment model with CD4 count alone). However, there may

be concern that these criteria lead to a causal estimate that is too strong. Therefore we also

introduced a sixth strategy (labelled strategy Ib) which was the same as the original strategy I

(now labelled Ia) but with the following parameterisations for decision 3, which did not specify

the direction of change of the estimated treatment e¤ect relative to the unweighted estimate:

(c) the ith covariate of Lpot was eligible for inclusion if, compared to model M , it (i) moved

the mean of the weights > 0:01 closer to one or (ii) changed the treatment e¤ect estimate

relative to the unweighted estimate by > 10% (and > 0:05) or reduced the standard error

by > 10% (and > 0:05) but with mean of the weights � 0:005 further from one.

Under decision 4, we considered the following progressive truncations: 0.1, 0.5, 1, 2, 5 and

10%. As mentioned above, a common practice is to truncate weights at a maximum of 10; in

our analyses, truncations of around 0.1 or 0:5% yielded weights with similar order maximum

weights. We used the following two parameterisations of the criteria of section 2.3:

(a) truncate if it leads to a reduction (that is, weakening) in the estimated treatment e¤ect of

> 0:01 and > 10%, provided no worsening of the mean in terms of absolute distance from

one.
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Strategy Decision
1. Where to start? 2. Working 3. Covariate selection 4. Degree of weight

weights? procedure? Parameterise truncation? Favour:
Truncated: f�; �; �g to favour: (default 0:1%)

Ia (a) minimal model (a) 0:5% (a) smaller model (a) greater
(� = 0:01; �p = 10; (' = 0:01; 'p = 10)
�p = 10; �m = 0:005)

Ib (a) minimal model (a) 0:5% (c) smaller model (as (a) greater
above but no direction (as above)
for treatment e¤ect)

II (a) minimal model (a) 0:5% (a) smaller model (b) less (� = 0:01;
(as top) �p = 10; 'm = 10)

III (a) minimal model (a) 0:5% (b) larger model (b) less (as above)
(� = 0:001; �p = 5;
�p = 5; �m = 0:01)

IV (a) minimal model (b) - (b) larger model (b) less (as above)
(as above)

V (b) �full�model (b) - (b) larger model (b) less (as above)
(as above)

VI HIV RNA and interaction with CD4 count
VII �Traditional�model-building approach

Table 2.2: Summary of the treatment model building strategies applied to the CASCADE data.
See text for more details.

(b) truncate if it leads to a reduction in standard error by > 0:01 and > 10%, provided the

reduction in the estimated treatment e¤ect is � 10%:

These were directly compared (that is, keeping the other criteria constant) under strategies

I and II. Putting these parameterisations into context by applying them to the results from the

preliminary treatment model, criterion (a) would lead to truncation if it yielded a treatment

e¤ect estimate > �2:05 provided the mean of the weights remained � 1:133, whereas criterion

(b) would lead to truncation if it yielded a standard error of < 0:36 provided the treatment

e¤ect estimate was � �2:05.

None of the prede�ned strategies led to inclusion of any HIV RNA data, which we felt could

be an important confounder and appeared to have a di¤ering impact on treatment initiation

by CD4 count, therefore we additionally considered a model with CD4 count, HIV RNA and

their interaction (labelled strategy VI). Lastly, for comparison we also employed a �traditional�

model building strategy of stepwise backwards selection (remove if p > 0:05, re-enter if p <

0:01) for comparison with our de�ned pre-strategies (labelled strategy VII). The strategies are

summarised in Table 2.2.
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Standard error estimation

We used robust standard errors throughout, but since these may be conservative we also boot-

strapped with resampling strati�ed by country (1000 repetitions; grouped Italy with Others

since few patients in Italy). We assumed �xed weights for all strategies; for two strategies

(Ia and II) we also did a separate set of bootstraps re-estimating the weights each time to

incorporate the uncertainty associated with estimating the weights.

Censoring

As indicated in section 2.3, the same process for the construction of the treatment model can be

applied for that of the censoring process(es). Therefore we applied the same �rst six strategies

as outlined above to construct inverse probability weights for the three di¤erent censoring

mechanisms, starting with the same covariates of time, V and CD4 count as previously. We

used the same Lpot for consideration for inclusion for all three censoring types except under

censoring type 2 (irregular CD4 counts). By the de�nition of that censoring, the last CD4

count and most likely last HIV RNA measurement would be 12 months previously therefore

we omitted the variables relating to time since last CD4 count and HIV RNA measurement,

and also the indicator for LOCF (true by de�nition). Lastly, the usual CD4 decrease variable

(by de�nition equal to zero when LOCF) was amended to take the value of the decrease in

CD4 count when that variable was last measured 12 months previously. We also applied the

�traditional�model building approach as an additional strategy.

The treatment weights from each strategy were multiplied together with the three sets of

censoring weights from the matching strategy to form the overall weights for each strategy.

Since there was no strategy VI (with CD4 count by HIV RNA interaction) considered for the

censoring weights, the overall strategy VI weights were obtained using the censoring strategy IV

weights. The degree of truncation of these overall weights was decided according to the relevant

criteria for each strategy (decision 4).

Treatment e¤ect modi�cation

We investigated treatment e¤ect modi�cation by baseline covariates, by incorporating interac-

tions between treatment and all the baseline covariates (except country) in the outcome model

and applying a stepwise backward selection procedure (remove if p > 0:05, re-enter if p < 0:01).

We allowed for non-linearity in continuous baseline covariates using splines (three knots at the

10, 50 and 90th percentiles; Harrell (2001)), which were tested for non-linearity and included if
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p < 0:05, otherwise linear. We lastly examined the interaction between treatment and country

(combining German and Italian patients in the �Other� category since there were few events

among those patients) as a model checking procedure (see section 2.3.4).

AIDS-free survival

Throughout, we report hazard ratios, which estimate the e¤ect of ever versus never having

received treatment, assuming a constant treatment e¤ect regardless of the time spent on treat-

ment. The comparable RCT would consist of sequential randomisations at each time-point.

However, it is possible that the bene�t of treatment may change with the time spent on treat-

ment. Therefore we replaced the treatment indicator in the outcome models with time on

treatment, categorised as < 0:5, 0:5� < 2 and � 2 years. From these models, we were able

to estimate the standardised (by baseline covariates) survival curves for immediate versus no

treatment. To do this, we estimated the predicted conditional probabilities of survival at each

time t given survival through to time t � 1, and multiplied across time to obtain the survival

estimates. We did this �rstly assuming all patients initiated treatment at baseline to represent

immediate treatment, and secondly with the time on treatment set to zero for all time to rep-

resent no treatment; survival was estimated at every time-point for all patients regardless of

when events or censoring was observed (Toh et al., 2010). This allowed us to plot the survival

curves over time for immediate versus no treatment. We obtained 95% con�dence intervals

using bootstrap strati�ed by country (1000 repetitions).

2.4.2 Results

Demonstration of time-dependent confounding by CD4 count

Compared to < 200 cells/mm3, current CD4 counts of 200�349, 350�499 and � 500 cells/mm3

were associated with a 80% (95% con�dence interval 63, 89), 88% (78, 93) and 94% (90, 97) lower

odds of AIDS or death, respectively. Therefore, CD4 count is a risk factor for the outcome, with

lower CD4 counts associated with poorer outcome, as we would expect. Compared to < 200

cells/mm3, CD4 counts of 200 � 349, 350 � 499 and � 500 cells/mm3 were associated with a

85% (77, 90), 97% (95, 98) and 99% (98, 99) lower odds of initiating treatment, respectively.

Therefore low CD4 count predicted subsequent treatment, and we have demonstrated that CD4

count is a time-dependent confounder for AIDS or death (see section 1.1). Being on treatment

predicted a 25 (22, 28) cells/mm3 higher CD4 count in the next month, thus demonstrating

that CD4 count is a¤ected by prior treatment.
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CD4 count, Number of Initiated treatment?
cells/mm3 patient-months No Yes

< 50 29 (< 1%) 27 (93.1%) 2 (6.9%)
50� 99 34 (< 1%) 25 (73.5%) 9 (26.5%)
100� 149 87 (< 1%) 59 (67.8%) 28 (32.2%)
150� 199 217 (< 1%) 167 (77.0%) 50 (23.0%)
200� 249 763 (1%) 682 (89.4%) 81 (10.6%)
250� 299 1640 (2%) 1535 (93.6%) 105 (6.4%)
300� 349 3411 (4%) 3301 (96.8%) 110 (3.2%)
350� 399 4885 (6%) 4782 (97.9%) 103 (2.1%)
400� 449 6592 (8%) 6513 (98.8%) 79 (1.2%)
450� 499 7093 (8%) 7032 (99.1%) 61 (0.9%)
500� 549 10828 (13%) 10696 (98.8%) 132 (1.2%)
550� 599 8973 (10%) 8875 (98.9%) 98 (1.1%)
600� 649 8268 (10%) 8216 (99.3%) 52 (0.6%)
650� 699 6155 (7%) 6106 (99.2%) 49 (0.8%)
700� 749 5431 (6%) 5396 (99.4%) 35 (0.6%)
750� 799 4739 (5%) 4710 (99.4%) 29 (0.6%)
800� 849 3607 (4%) 3589 (99.5%) 18 (0.5%)
850� 899 2837 (3%) 2830 (99.8%) 7 (0.3%)
900� 949 2068 (2%) 2060 (99.6%) 8 (0.4%)
950� 999 1962 (2%) 1957 (99.8%) 5 (0.3%)
� 1000 6626 (8%) 6605 (99.7%) 21 (0.3%)

Table 2.3: Pattern of treatment initiation across patient-months by CD4 count. Values are num-
ber of (previously treatment-naïve) patient-months and either (column) percentage of patient-
months over all (previously treatment-naïve) follow-up for column 2 or (row) percentage of
patient-months within that CD4 count category for columns 3 and 4.

Investigation of the positivity assumption

Treatment initiation was more likely at lower CD4 counts, as we would expect, but treatment

initiations did and did not occur over a broad range of CD4 counts (Table 2.3). However, at high

CD4 counts, the probability of treatment initiation was very low (< 1% for CD4 counts � 600

cells/mm3). For CD4 counts < 50 cells/mm3, there were a surprisingly low number of treatment

initiations; these results were driven by a small number of patients who either were not observed

to initiate treatment or delayed treatment initiation despite having very low CD4 counts. We

shall see that there were potential problems with the weights at lower CD4 counts, possibly due

to non-positivity, but also perhaps due to residual unmeasured confounding in these �treatment

refusers�or model misspeci�cation. However, without resorting to the rather drastic approach

of excluding these patients altogether, we cannot address these problems without moving to a

dynamic modelling framework.

Looking at treatment initiations also by HIV RNA, but with broader CD4 count categories

(Table 2.4), we can see that at low CD4 counts, participants were more likely to initiate treat-

ment if they also had a high HIV RNA.
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HIV RNA, CD4 count, cells/mm3 Total
copies/ml < 200 200� 349 350� 499 � 500

None available 1/7 (14%) 4/140 (3%) 5/582 (1%) 37/7507 (< 1%) 47/8236 (1%)
� 500 2/35 (6%) 5/180 (3%) 7/1029 (1%) 65/7280 (1%) 79/8524 (1%)

>500-2910 2/12 (17%) 10/425 (2%) 10/1874 (1%) 31/8800 (< 1%) 53/11111 (< 1%)
>2910-11820 1/39 (3%) 38/1088 (3%) 27/4480 (1%) 55/13682 (< 1%) 121/19289 (1%)
>11820-37743 10/49 (20%) 59/1619 (4%) 43/4979 (1%) 89/12929 (1%) 201/19576 (1%)
>37743-97809 24/77 (31%) 64/1096 (6%) 66/3257 (2%) 67/7278 (1%) 221/11708 (2%)

>97809 49/148 (33%) 116/1266 (9%) 85/2369 (4%) 110/4018 (3%) 360/7801 (5%)
Total 89/367 (24%) 296/5814 (5%) 243/18570 (1%) 454/61494 (1%) 1082/86245 (1%)

Table 2.4: Treatment initiations by CD4 count and HIV RNA. Values are n=N (%) where
n=number of treatment initiations and N=number of (previously treatment-naïve) patient-
months. HIV RNA categorised by 10, 25, 50, 75 and 90th percentiles.

Functional form for CD4 count

6717 (8%) observed treatment-naïve CD4 counts were > 1000 cells/mm3 (median 1158, max-

imum 2367 cells/mm3) and therefore truncated to 1000 cells/mm3. Figure 2.3 illustrates the

odds of initiating treatment over the range of CD4 counts, compared with CD4 count of 450

cells/mm3 (approximate median CD4 count at treatment initiation) for di¤erent functional

forms of CD4 count. In general, as we would expect, the probability of treatment initiation was

higher at lower CD4 counts, however the categorical plot clearly shows a decline in the probabil-

ity of treatment at lower CD4 counts, which is not captured by any of the splines. As discussed

above, this is likely to be due to a small subset of patients who repeatedly refused treatment.

While the three knot spline displayed some evidence of poor �t at higher CD4 counts, the �ve

knot spline appeared to capture the data well for the majority of the CD4 count range, and for

parsimony we favoured this over the seven knot spline, which is similar. In order to attempt to

address the sharp drop o¤ in treatment initiation at CD4 counts < 100 cells/mm3, we truncated

CD4 counts < 100 cells/mm3 to 100 cells/mm3 (n = 66; median 50, minimum 5 cells/mm3)

and re-�t this �blunted� �ve knot spline, which essentially forced a constant probability of

treatment initiation within that range. While this is somewhat arbitrary, it provided us with

a better treatment prediction model in that it reduced somewhat the predicted probabilities of

treatment for CD4 counts < 100 cells/mm3 (Figure 2.3, green dashed line).

Naïve estimation of treatment e¤ect

Table 2.5 illustrates the estimated treatment e¤ects based on an unadjusted model (model only

with treatment indicator and time), a model adjusted for baseline covariates, and a model ad-

justed for baseline covariates and time-dependent CD4 count. Under the unadjusted model, the

point estimate suggests a bene�t of treatment (HR=0.91) but this is not statistically signi�cant
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Figure 2.3: Treatment initiation by CD4 count, with CD4 count categorical or modelled as a
three, �ve or seven knot spline.

Model Hazard ratio for treatment
e¤ect (95% CI)

Unadjusted 0.91 (0.63, 1.32)
Adjusted for baseline covariates[1] 0.91 (0.61, 1.36)
Adjusted for baseline covariates and time-dependent CD4 2.58 (1.16, 5.71)

Table 2.5: Naïve estimation of treatment e¤ect. [1] This result is the same as the unweighted
estimate in the �rst row of Table 2.6.

(95% CI 0.63, 1.32). Adjusting for the baseline covariates does not materially alter the results.

However, adjusting in addition for time-dependent CD4 count changes the results considerably

(HR 2.58, 95% CI 1.16, 5.71), suggesting that treatment is harmful in terms of time to AIDS

or death. This result is biased since it does not appropriately adjust for the time-dependent

confounder CD4 which is also predicted by treatment history.

Estimation of the inverse probability of treatment weights

The overall results based on the preliminary treatment model of section 2.4.2, with CD4 count

the only time-dependent covariate included, are shown in Table 2.6. The mean and maximum

of the estimated weights were large at 1.133 and 1508, respectively; minimal truncation of the

outer 0.1% controlled the weights well bringing the mean and maximum down to 1.052 and

26, respectively. This resulted in a more moderate estimated treatment e¤ect, with odds ratio

(OR) of 0.33 compared to 0.10 with untruncated weights. This indicated that there may be
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issues with non-positivity in our dataset, and this observation led to the decision to perform

0.1% truncation by default regardless of the strategy. Compared to the unweighted treatment

e¤ect estimate, the OR was considerably further from one (0.33 compared to 0.91 unweighted),

demonstrating control of confounding.

Strategy Ia The complete treatment model selection process for strategy Ia is illustrated in

Table 2.7. At the �rst stage in strategy Ia, nadir CD4 count and number of previous CD4

counts met the criteria for inclusion under decision 3a (together with time-dependent CD4

count), since both brought the mean weights at least 0.01 closer to one; the latter was chosen

since the mean of the weights was slightly closer to one (1.002 compared to 0.997 with nadir

CD4 count and 1.013 without either, after 0.5% truncation according to decision 2a of strategy

I). At the next step, only time since last CD4 count was eligible for inclusion; although the

mean weights increased slightly, from 1.002 to 1.005, the OR moved further from one, from

0.56 to 0.52, suggesting perhaps better control of confounding. No subsequent variables were

identi�ed, therefore yielding a �nal treatment model with number of previous CD4 counts and

time since last CD4 count, in addition to time, CD4 count and baseline covariates (Table 2.6).

Strategy Ib Strategy Ib was the same as Ia except that it did not specify direction of change

of the estimated treatment e¤ect in the model selection process. At the �rst step, two additional

covariates (number of previous HIV RNA measurements and time since last HIV RNA) were

identi�ed, since they moved the estimated treatment e¤ect > 10% towards the null, with mean of

the weights within the permitted limits. However, since the covariate which most improves the

mean of the weights is selected, number of previous CD4 counts was chosen as in strategy Ia. At

the second stage, no additional covariates beyond time since CD4 count were identi�ed, therefore

was included as in strategy Ia. In contrast to strategy Ia, nadir CD4 count was identi�ed for

inclusion at the third step, since it moved the estimated treatment e¤ect on the log-scale from

�0:65 to �0:56. No further variables were identi�ed, therefore yielding a �nal treatment model

the same as that under strategy Ia but including also nadir CD4 count. Compared to strategy

Ia, the estimated treatment e¤ect was more moderate with an OR of 0.57 (SE 0.14) versus 0.52

(0.15). The means of the weights were a similar distance from one (0.994 under strategy Ib

compared to 1.005 under strategy Ia; Table 2.6).
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Strategy II Strategy II di¤ered from Ia only in the degree of truncation performed at the end

of the modelling process (decision 4), therefore used the same treatment model. However, strat-

egy Ia led to 0.5% truncation (notably, the level at which the modelling was performed according

to decision 2a) whereas strategy II suggested no truncation, but our default 0.1% truncation

was applied. As we would expect, greater truncation under strategy Ia led to weights with mean

closer to one (1.005 versus 1.025 after 0.5% (Ia) and 0.1% (II) truncation, respectively) and a

more moderate estimated treatment e¤ect (OR 0.52 versus 0.39, respectively; Table 2.6).

Strategy III Under strategy III, a number of covariates met the criteria for inclusion at the

�rst stage (CD4 decrease, time since last CD4 count, nadir CD4 count, number of previous CD4

counts, number of previous HIV RNA measurements and LOCF) but number of previous CD4

counts was selected as under strategy Ia, and the subsequent covariate selection was as that of

strategy Ia. Therefore strategy III yielded the same treatment model as strategy II, indicating

that decision 3 relating to preference for a smaller or larger model did not make a di¤erence in

practice in this example.

While the CD4 count by country interaction was highly statistically signi�cant (p < 0:0001),

strategies Ia, Ib, II and III did not support inclusion of this interaction, nor of separate treatment

models by country, according to decision 3. For example, under strategy Ia, the mean of the

weights was slightly increased with separate treatment models by country (from 1.005 to 1.010,

after 0.5% truncation) with no clear strengthening of the estimated treatment e¤ect (OR 0.52

compared to 0.58 with separate treatment models).

Strategy IV Strategy IV di¤ered from III in that the modelling process was performed using

untruncated weights (decision 2). At the �rst step, a number of covariates were identi�ed

as eligible for inclusion under decision 3b (CD4 count decrease, time since last CD4 count,

nadir CD4 count, number of CD4 counts, number of previous HIV RNA measurements and

LOCF), of which time since last CD4 count was selected. At the second step, nadir CD4 count,

number of previous CD4 counts and LOCF met the criteria for inclusion; nadir CD4 count

was selected. At the third stage, only number of previous CD4 counts was eligible and so

was included. At the fourth stage, LOCF was additionally identi�ed and included; no further

variables were subsequently identi�ed. Thus strategy IV yielded a more complex treatment

model than the previous strategies, incorporating nadir CD4 count and LOCF, in addition to

time since last CD4 count and number of previous CD4 counts. Further, this strategy supported

separate treatment models by country under decision 3b. Decision 4b indicated only the default
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0.1% truncation. Compared to strategies II/III, the mean and maximum of the weights were

slightly smaller under strategy IV (1.020 versus 1.025, and 11 versus 16, respectively; Table

2.6). Correspondingly, the estimated treatment e¤ect was closer to the unweighted estimate

(0.60 versus 0.39).

Strategy V The �rst four strategies all started with a minimal model with time, V and

CD4 count only; in contrast, strategy V began with a �full�model including all potential time-

dependent confounders (see section 2.4.1; decision 1b), with the remaining decisions re�ecting

those of strategy IV. At the �rst stage, CD4 count decrease, time since last CD4 count, time

since last HIV RNA, peak HIV RNA and LOCF were identi�ed for removal under decision 3b;

peak HIV RNA was selected. The subsequent iterations led to the successive removal of last

HIV RNA, CD4 count decrease, number of previous CD4 counts, time since last HIV RNA

and number of previous HIV RNA measurements, thus yielding a model with time since last

CD4 count, nadir CD4 count and LOCF. Once again, this strategy indicated separate treatment

models by country under decision 3b, and decision 4b indicated only the default 0.1% truncation.

Therefore this model was the same as that under strategy IV, except it did not include number

of previous CD4 counts, and the results were similar, with mean of the weights 1.020 and

estimated treatment e¤ects 0.54 (versus 1.020 and 0.60, respectively, under strategy IV; Table

2.6).

There was clear overlap in the di¤erent treatment models across the strategies: all contained

time since last CD4 count and there was no variable which made an appearance in only one

strategy. Across all models, there was evidence of nonlinearity for all the included covariates

(test of the spline components, all p � 0:05). In contrast to I-III, strategies IV and V indicated

separate treatment models by country according to decision 3. For comparison, the results

from strategies IV and V, but with one overall treatment model across all countries, are also

given in Table 2.6. The results from strategies II/III, IV and V with one overall treatment

model were fairly similar (mean of the weights 1.025, 1.025 and 1.020; ORs 0.39, 0.40 and 0.43,

respectively). However, allowing separate treatment models in strategies IV and V changed the

results fairly dramatically (mean of the weights both 1.020; ORs more modest at 0.60 and 0.54,

respectively).

Strategy VI Interestingly, none of the treatment models included any HIV RNA-related

variables as main e¤ects. High HIV RNA is a known predictor for faster pre-treatment disease

progression (Mellors et al., 1996) and Figure 2.4 illustrates that high HIV RNA was associated
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Figure 2.4: Treatment initiation by HIV RNA. CI=con�dence interval.

with higher probability of treatment initiation; we have seen that there may be a di¤erential

association by CD4 count (see Table 2.4). Of note, no previous HIV RNA measurement was

associated with low probability of treatment initiation, probably related to fewer clinic visits.

Therefore we considered an additional treatment model, based on that of strategy IV (the largest

model), but in addition incorporating an interaction between CD4 count and HIV RNA (both

categorical). A few of the weights were exceptionally large (> 10000) likely due to positivity

issues; after 0.1% truncation, HIV RNA met the criteria for inclusion under decision 3b since

it reduced the mean of the weights to 1.007 (compared to 1.025 in the model with categorical

CD4 count alone). Although the interaction did not meet the criteria for inclusion (after 0.1%

truncation, the mean of the weights increased slightly to 1.011 and the treatment e¤ect was

little changed), it was highly statistically signi�cant (p = 0:0006). This formed our model under

strategy VI. We did not consider separate treatment models by country under this approach

due to limited numbers of patients in each CD4 count/HIV RNA category within each country.

The estimated OR was very similar to that under strategy IV without strati�cation by country

(0.39 [SE 0.32 on the log-odds scale] versus 0.40 [0.33]; Table 2.6), perhaps indicating that HIV

RNA is not an important confounder.

Strategy VII The standard model building approach with stepwise backwards selection re-

moved CD4 count decrease and nadir CD4 count (p = 0:05 and 0.07, respectively), yielding a
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model with time since last CD4 count, number of previous CD4 counts, LOCF, last HIV RNA,

peak HIV RNA, time since last HIV RNA, and number of HIV RNA measurements. The un-

truncated weights were somewhat unwieldy, with mean 42 and maximum > 1000000. Applying

decision 4a to favour truncation, 0.5% truncation was preferred, giving mean weights of 0.971

(maximum 8) and OR 0.43 (Table 2.6).

Summary To summarise, we have derived four treatment models from our six original strate-

gies: one each from Ia/II/III, Ib, IV and V. In addition, we have two models which are more

complex: one incorporating an interaction between CD4 count and HIV RNA (strategy VI),

and one from a �traditional�model building approach (strategy VII). Therefore we have six

treatment models in total. All strategies resulted in the default 0.1% weight truncation, except

strategies Ia, Ib and VII with 0.5% truncation.

The (robust) standard errors of the treatment e¤ect estimates were very similar for strategies

II-VII (ranging from 0.31 to 0.33 on the log odds scale). The standard errors from strategies Ia

and Ib, where there was greater truncation, were somewhat smaller at 0.27 and 0.26, respectively.

In contrast, the standard error from the preliminary model, which had a large mean of the

weights, was larger at 0.40 with no truncation and 0.38 after 0.1% truncation. These standard

errors were all larger than that from the unweighted model (0.20) by the nature of being based

on weighted estimation. Where estimated, bootstrap con�dence intervals were very similar to

the con�dence intervals based on a robust standard error (Table 2.6) and the medians of the

bootstrapped estimates were broadly similar to the overall point estimates. Where estimated,

the bootstrap con�dence intervals which re-estimated the weights were fairly similar (although

slightly larger as expected) to those which assumed �xed weights ((0.30, 0.92) and (0.20, 0.76)

for strategies Ia and II/III, respectively, versus (0.30, 0.90) and (0.21, 0.75), respectively).

Predictors of treatment initiation

For illustration, the treatment model from strategies Ia, II and III is summarised in Table 2.8

and the model used for the numerator of the stabilised weights (the same across all strategies

except estimated separately by country under strategies IV and V) is summarised in Table

2.9. Of note, while we have given standard errors and p-values here for reference, these were

deliberately omitted by Petersen, Deeks, Martin, and van der Laan (2007) in order to emphasise

that only the point estimates are relevant in terms of contributing to the estimated weights.

In both models, higher baseline HIV RNA, no available baseline HIV RNA, earlier year of

HIV seroconversion and shorter time HIV-infected at baseline were associated with higher prob-
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Variable Odds ratio Standard error p

Time-dependent covariates
CD4 count, cells/mm3 [1] - < 0:0001
Number of previous CD4 counts [2] - < 0:0001
Time since last CD4 count, months [2] - < 0:0001

Baseline covariates (V )
Baseline HIV RNA, log10 copies/ml 1.29 0.06 < 0:001
Baseline HIV RNA not available 1.67 0.35 0.01
Baseline CD4 count, per 100 cells/mm3 1.03 0.02 0.21
Sex, female 0.95 0.08 0.54
Age at HIV seroconversion, per 10 years 1.06 0.04 0.10
Year of HIV seroconversion 0.87 0.01 < 0:001
Route of HIV transmission, IDU 0.82 0.10 0.12
Country, versus France < 0:0001
Germany 0.43 0.15
Italy 0.65 0.10
Spain 0.77 0.11
Switzerland 0.97 0.14
UK 0.37 0.03
Others 0.46 0.06

Time HIV-infected at baseline, years 0.89 0.04 0.01
Identi�ed as HIV-infected close to seroconversion 0.85 0.12 0.23

Table 2.8: Results from the treatment model: denominator with time-dependent and baseline
covariates for strategies Ia, II and III. Time modelled as a spline. [1] Not illustrated; similar
to the spline illustrated previously in Figure 2.3 from the preliminary treatment model. [2]
Modelled as a spline; see Figure 2.5.

Variable Odds ratio Standard error p

Baseline HIV RNA, log10 copies/ml 1.56 0.07 < 0:001
Baseline HIV RNA not available 3.41 0.70 < 0:001
Baseline CD4 count, per 100 cells/mm3 0.81 0.02 < 0:001
Sex, female 0.99 0.08 0.89
Age at HIV seroconversion, per 10 years 1.11 0.04 0.002
Year of HIV seroconversion 0.90 0.01 < 0:001
Route of HIV transmission, IDU 0.97 0.12 0.80
Country, versus France < 0:0001
Germany 0.43 0.15
Italy 0.66 0.10
Spain 0.76 0.10
Switzerland 0.82 0.11
UK 0.50 0.04
Others 0.68 0.08

Time HIV-infected at baseline, years 0.91 0.04 0.02
Identi�ed as HIV-infected close to seroconversion 0.77 0.10 0.06

Table 2.9: Results from the treatment model: numerator with baseline covariates only. Time
modelled as a spline.
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ability of treatment initiation, but there was no association between treatment initiation and

either sex or route of HIV transmission. Compared to France, the odds of treatment initiation

were typically lower in the other countries, particularly Germany, the UK and �Others�.

In the numerator model, there were a number of other covariates which were associated with

treatment initiation, namely lower baseline CD4 count, older age and not being identi�ed as

HIV-infected close to seroconversion. Further, lack of a baseline HIV RNA measurement was

more strongly predictive of treatment initiation in the numerator model with a relatively large

odds ratio of 3.41. We examined more closely the 711 patients with no baseline HIV RNA:

a relatively large proportion were from Spain (19%) and the UK (24%). A high proportion

of these patients were IDU (20% compared to 9% overall), they tended to be slightly younger

(median [IQR] age at HIV seroconversion 29 [25, 34] years), seroconverted earlier (1994 [1993,

1995]) and were HIV-infected for a relatively long time before entering our study (2.1 [1.4, 3.3]

years). Therefore perhaps these patients were at a later stage of disease by the time they entered

our study in a way that is not entirely captured by the other covariates, and hence more likely

to initiate treatment.

From the denominator model, the splines for the continuous time-dependent covariates num-

ber of previous CD4 count measurements and time since last CD4 count measurement are il-

lustrated in Figure 2.5. A higher number of previous CD4 count measurements was associated

with higher probability of treatment initiation. Either a short or long time since last CD4

count measurement was associated with a higher probability of treatment initiation, the former

probably due to having had a recent clinic visit at which treatment decisions would be made,

and the latter perhaps because a large gap between CD4 count measurements indicated poorer

health of the patient and hence treatment was initiated or perhaps because a clinic visit did

occur but we are missing a recorded CD4 measurement.

Distribution of the treatment weights

It is of interest to know from where the largest weights are arising. As discussed above, for ease

we have so far considered the mean of the weights over all time intervals, but in general we expect

the stabilised weights to have mean one across all time intervals. Figure 2.6 illustrates the mean

and range of the weights from the six �nal treatment models arising from the eight strategies,

plotted over time in yearly categories; Figure 2.7 is the same except after 0.1% truncation of

the weights. It is clear from Figure 2.6 that there are some very large weights occurring, most

noticeably under strategies Ia/II/III (which shared the same treatment model), Ib, VI, and,

exceptionally, VII. While the outer 0.1 percentiles clearly depend on the distribution of the
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Figure 2.5: Treatment initiation by number of previous CD4 count measurements and time
since last CD4 count measurement. The vertical dashed lines indicate the interquartile range.

weights for each strategy, Figure 2.7 shows that even after this relatively minimal truncation,

the weights are much more well-behaved and more similar across the strategies, although still

somewhat larger under strategy VII.

Across these six treatment models, the upper 0.1 percentile of the weights came from 405

patient-months in 20 patients: 9 French, 1 German, 1 Italian, 1 Spanish, 7 UK and 1 Danish.

There was nothing remarkable about the baseline characteristics of these patients, except they

had slightly lower median (IQR) baseline CD4 count of 601 (540, 630) cells/mm3 compared to

641 (560, 788) cells/mm3 across all patients and they tended to be early seroconverters with

median (IQR) year of HIV seroconversion 1996 (1993, 1998) compared to 2000 (1995, 2003)

across all patients.

The vast majority of the large weights were due to non-initiation at low CD4 counts (typi-

cally with high HIV RNA). Where patients were observed to eventually initiate treatment, the

weights then dropped, though in two cases (both French) the weights from strategies VI and

VII remained in the upper 0.1 percentile (at 127 and 222 for strategies VI and VII, respectively,

for one patient; and at 28 and 321, respectively, for the second patient) and so were carried for-

ward for the rest of follow-up (approximately 3 and 4.5 years, respectively). If the weights were

large under one model, they tended to be in�ated across all models, though only two patients

had weights in the upper 0.1 percentile across all six treatment models (both French, due to

no or delayed treatment initiation at low CD4 counts; one of these patients was the �rst one
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mentioned above who had large weights carried forward after eventually initiating treatment).

Three patients (German, Spanish and UK) had large weights due to initiation of treatment

at high CD4 counts (684, 760 and 690 cells/mm3, respectively); by de�nition these weights were

then carried forward for the rest of follow-up (approximately 2, 5 and 3.5 years, respectively).

However, the size of these weights was relatively small compared to those �agged due to non-

initiation at low CD4 counts (German patient: strategy IV weight = 11, strategy V weight =

12; Spanish patient: strategy Ib weight = 24; UK patient: strategy V weight = 11).

One French patient had a somewhat odd CD4 count pattern of 820 followed by 192 (at which

point they received a large weight of 41 under strategy VI for non-initiation at such a low CD4

count), then 840 and �nally initiated treatment at 570 cells/mm3 (at which point the weight

under strategy VI increased to 77, and also weights from strategies Ib and IV were in�ated at

23 and 16, respectively, due to initiation at a high CD4 count; these weights were then carried

forward for the remaining 1.5 year follow-up). There was one further French patient whose

CD4 count pattern appeared questionable: (s)he had successive CD4 counts of 624, 69 and

567 cells/mm3 within the space of four months and received a weight of 19 under strategy Ia

(in the upper 0.1 percentile) due to non-initiation at CD4 count of 69 cells/mm3; this weight

remained large for the remaining four year follow-up during which time the patient remained

treatment-naïve but had quite variable CD4 counts ranging from 323 to 1006 cells/mm3. While

we could have excluded the low CD4 count of 69 cells/mm3 on the grounds of implausibility, the

resulting weights are not overly large and unlikely to a¤ect the overall conclusions, particularly

after weight truncation.

Seventeen of the 20 patients with large weights were censored before progressing to AIDS

or death; the remaining three progressed to AIDS while treatment-naïve with low CD4 counts.

One was the French patient mentioned above who remained treatment-naïve with exceptionally

large weights across all six treatment models (562, 502, 84, 69, 10,358 and > 1; 000; 000 under

strategies Ia, Ib and IV-VII, respectively), the second had large weights under strategies Ia, Ib,

VI and VII (470, 249, 13,001 and > 100; 000, respectively), and the third had a large weight

under strategy V only (26).

84



St
ra
te
gy

Fr
an
ce

G
er
m
an
y

It
al
y

Sp
ai
n

Sw
it
ze
rl
an
d

U
K

O
th
er
s

Ia
,
II
,
II
I

1.
10
5
(5
62
)

0.
99
1
(4
)

1.
24
3
(4
70
)

1.
29
4
(1
5)

0.
96
5
(6
)

0.
90
2
(3
6)

0.
98
0
(1
5)

Ib
1.
09
0
(5
02
)

0.
99
2
(4
)

1.
11
8
(2
49
)

1.
37
5
(2
4)

0.
97
3
(6
)

0.
89
3
(3
3)

0.
97
4
(1
5)

IV
1.
05
2
(8
4)

1.
13
6
(1
1)

0.
93
9
(5
)

1.
12
7
(9
)

1.
07
6
(9
)

0.
96
7
(3
9)

0.
94
7
(2
0)

V
1.
04
3
(9
2)

1.
12
5
(1
2)

0.
94
1
(5
)

1.
16
8
(1
0)

1.
10
1
(9
)

0.
96
9
(4
3)

0.
95
8
(1
3)

V
I

2.
07
0
(1
03
58
)

0.
97
3
(2
)

6.
21
5
(1
30
01
)

1.
16
9
(8
)

0.
97
3
(6
)

0.
89
8
(4
0)

0.
92
1
(1
4)

V
II

74
.2
15
(1
72
76
02
)

0.
95
2
(2
)

76
.2
18
(1
98
23
4)

1.
10
3
(5
)

0.
96
9
(5
)

0.
94
1
(5
1)

0.
91
6
(1
5)

T
ab
le
2.
10
:
Su
m
m
ar
y
of
m
ea
n
(m
ax
im
um
)
w
ei
gh
ts
by
co
un
tr
y,
ac
ro
ss
th
e
di
¤
er
en
t
st
ra
te
gi
es
(n
o
tr
un
ca
ti
on
).

St
ra
te
gy

Fr
an
ce

G
er
m
an
y

It
al
y

Sp
ai
n

Sw
it
ze
rl
an
d

U
K

O
th
er
s

Ia
1.
03
5
(6
)

0.
99
1
(4
)

0.
97
4
(6
)

1.
19
4
(6
)

0.
96
5
(6
)

0.
89
4
(6
)

0.
97
1
(6
)

Ib
1.
02
6
(5
)

0.
99
2
(4
)

0.
96
2
(5
)

1.
16
3
(5
)

0.
97
3
(5
)

0.
88
2
(5
)

0.
96
5
(5
)

II
,
II
I

1.
05
4
(1
6)

0.
99
1
(4
)

0.
99
2
(1
6)

1.
29
4
(1
5)

0.
96
5
(6
)

0.
89
9
(1
6)

0.
98
0
(1
5)

IV
1.
04
1
(1
1)

1.
13
6
(1
1)

0.
93
9
(5
)

1.
12
7
(9
)

1.
07
6
(9
)

0.
95
9
(1
1)

0.
94
5
(1
1)

V
1.
03
1
(1
0)

1.
10
2
(1
0)

0.
94
1
(5
)

1.
16
8
(1
0)

1.
10
1
(9
)

0.
95
9
(1
0)

0.
95
7
(1
0)

V
I

1.
06
3
(2
8)

0.
97
3
(2
)

0.
93
2
(2
8)

1.
16
9
(8
)

0.
97
3
(6
)

0.
89
6
(2
8)

0.
92
1
(1
4)

V
II

0.
99
9
(8
)

0.
95
2
(2
)

0.
93
5
(8
)

1.
10
4
(5
)

0.
96
9
(5
)

0.
89
0
(8
)

0.
91
1
(8
)

T
ab
le
2.
11
:
Su
m
m
ar
y
of
m
ea
n
(m
ax
im
um
)
w
ei
gh
ts
by
co
un
tr
y,
ac
ro
ss
th
e
di
¤
er
en
t
st
ra
te
gi
es
w
it
h
tr
un
ca
ti
on
as
p
er
th
e
st
ra
te
gy
(0
.5
%
un
de
r
st
ra
te
gi
es

Ia
,
Ib
an
d
V
II
;
0.
1%

un
de
r
th
e
re
st
).

85



Tables 2.10 and 2.11 show the means and maxima of the weights by country, without trun-

cation and with truncation as per the strategy, respectively. The very largest weights appeared

mainly from France, and also Italy under strategies I-III, VI and VII. Where the treatment

model was strati�ed by country, the weights were much more well-behaved. After truncation,

the means of the weights were generally centred on one and the maxima much more tolerable

(generally around 5-15, although >20 under strategy VI in France, Italy and the UK). However,

there were some clear di¤erences by country, with the mean of the weights always less than one

for Italy, UK and Others, and always greater than one for France and Spain. It is di¢ cult to

determine why this might be, but could indicate residual confounding.

Censoring

For all three censoring types (1, LTFU; 2, irregular CD4 counts with a gap of more than 12

months; 3, administrative), strategies Ia, II and III did not add any further variables to the

preliminary model incorporating just time, baseline covariates V and CD4 count. These results

are shown in Table 2.12; note that this table is to illustrate the e¤ects of incorporating censoring

weights compared to the unweighted model and there is no treatment weighting. Further, no

truncation of the weights has yet been performed; this will be done according to the criteria of

each strategy after the treatment and censoring weights have been combined. The estimated

weights from strategies Ia, II and III were centred on one with mean (SD) 1.000 (0.022), 1.003

(0.119) and 1.000 (0.012) for the censoring types 1, 2 and 3, respectively, and the estimated

treatment e¤ects were identical to 2 decimal places to the unweighted e¤ect estimate of 0.91 (SE

0.19). This could perhaps indicate that none of the censorings were very informative. However,

there were some di¤erences in the censoring models under the other strategies.

For censoring type 1 (LTFU), strategy Ib did not include any further covariates. In contrast,

strategy IV added in succession: number of HIV RNA measurements, LOCF and CD4 decrease;

this yielded weights with similar mean (0.999 compared to 1.000 under strategies Ia, II and III)

but with much larger maximum weights (112 compared to 1.3). The standard error of the

treatment e¤ect estimate was similar though the point estimate was somewhat smaller than the

unweighted (0.86 compared to 0.91). Strategy V led to a more complex censoring model, with

only time since last CD4 count and CD4 decrease removed from the �full�model, leaving nadir

CD4 count, number of previous CD4 counts, number of previous HIV RNA measurements, last

HIV RNA, time since last HIV RNA measurement, peak HIV RNA and LOCF. The mean of the

weights was somewhat increased (1.007), as was the maximum (204), although the treatment

e¤ect estimate was similar to the unweighted estimate (OR 0.93, SE 0.20). Strategy VII (step-
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wise backwards selection) removed nadir CD4 count and peak HIV RNA (p = 0:64 and 0.08,

respectively) to leave another complex model with CD4 decrease, time since last CD4 count,

number of previous CD4 counts, last HIV RNA, number of previous HIV RNA measurements,

time since last HIV RNA measurement and LOCF. However, this model yielded weights with

smaller mean (0.959) although once again the estimated treatment e¤ect was similar to the

unweighted estimate (OR 0.90, SE 0.19).

For censoring type 2 (irregular CD4 counts), strategy Ib added CD4 decrease (the amended

variable to capture CD4 decrease at the last CD4 count which by de�nition was observed 12

months ago), but at the expense of weights with large mean at 1.087 (maximum 117). The

point estimate for the OR of treatment e¤ect was above one (OR 1.15, SE 0.25). Strategy IV

introduced only peak HIV RNA. The mean of the weights remained centred on one (1.000) with

maximum 10 and the estimated treatment e¤ect was similar to the unweighted estimate (OR

0.94, SE 0.20). Strategy V led to the removal of (amended) CD4 decrease only, therefore yielding

another complex model with nadir CD4 count, number of previous CD4 counts, number of

previous HIV RNA measurements, last HIV RNA and peak HIV RNA (recall, a slightly di¤erent

set Lpot was used for this censoring type; see section 2.4.1). The weights remained centred on

one (mean 1.000) but the maximum increased hugely to 1374, perhaps raising concerns of model

misspeci�cation or non-positivity. The estimated treatment e¤ect was close to one (OR 1.00) and

poorly estimated (SE 0.24; 0.25 on the log-odds scale). Strategy VII successively removed last

HIV RNA, peak HIV RNA and nadir CD4 count (p = 0:33, 0.63 and 0.23, respectively), leaving

a model with (amended) CD4 decrease, number of previous CD4 counts and number of previous

HIV RNA measurements. The mean and maximum of the weights increased considerably, to

1.260 and 1586, respectively, and the estimated treatment odds ratio was 1.29 (SE 0.34); this

may raise concerns about model misspeci�cation or non-positivity.

For censoring type 3 (administrative), strategies Ib, IV and V also led to the simple model

with no additional covariates. Strategy VII successively removed number of previous CD4

counts, LOCF, last HIV RNA, number of previous HIV RNA measurements, nadir CD4 count

and peak HIV RNA (p = 0:82, 0.80, 0.36, 0.28, 0.14 and 0.06, respectively), leaving a model

with CD4 decrease, time since last CD4 count and time since last HIV RNA measurement. The

estimated weights and treatment e¤ects were broadly similar to those from the simpler model

with just time, the baseline covariates V and CD4 count (mean of the weights 1.000, OR 0.90,

SE 0.18).
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We applied the same techniques as for the treatment model to investigate whether to stratify

the censoring models by country. There were few Swiss patients with no baseline HIV RNA

and of those all were LTFU, therefore we omitted this variable from the Swiss censoring type 1

models. There were very few patients from Italy, Switzerland or �Others�who had a change in

CD4 count before being LTFU, therefore the covariate CD4 decrease was omitted from those

country censoring type 1 models under strategy VI. Similarly under strategy V, there were few

Swiss patients who were LTFU in each of the last HIV RNA categories, therefore that covariate

was omitted from that Swiss censoring type 1 model. Lastly, all Italian or Spanish patients who

were identi�ed as HIV-infected close to seroconversion were administratively censored, therefore

this covariate was removed from those country censoring type 3 models. However, none of the

censoring types indicated stratifying by country under any of the strategies I-V.

Distribution of the censoring weights As outlined above, for censoring type 1 (LTFU),

there were four censoring models (Table 2.12). Across these models, the upper 0.1 percentile of

the weights came from 461 patient-months in 108 patients. These patients broadly matched the

overall cohort demographics, although were more likely to be female (29% versus 20% overall)

and infected through IDU (14% versus 9%). All these patients were eventually censored (92

LTFU, two due to irregular CD4 counts, 14 administratively). Only one patient had any weights

>100; this patient was from Spain, was not observed to initiate treatment despite CD4 dropping

to around 360 cells/mm3, and received weights > 100 at month 25 under strategy V and at

month 30 under strategy IV, although all the weights remained < 200 until administrative

censoring at 31 months.

For censoring type 2 (irregular CD4 counts), the upper 0.1 percentile of the weights across

the �ve censoring models came from 506 patient-months in 63 patients. As for censoring type

1, these patients were more likely to be female (32%) and infected through IDU (27%). In

addition, these patients tended to be younger (median 29 years old versus the overall median

of 31), seroconverted earlier (1995 versus 2000) and were less likely to have a baseline HIV

RNA measurement (available for 51% versus 79%). The summary of the weights in Table 2.12

illustrates that the maxima varied considerably across the di¤erent models. There were seven

patients who had any censoring type 2 weights > 100: six were French and one was from Norway

(grouped under Other countries). None of these patients were observed to reach AIDS or death;

�ve were LTFU, one was censored due to irregular CD4 counts and one was administratively

censored. Six of these patients typically had high CD4 counts and were not observed to initiate

treatment; all had large weights under strategies V and/or VII. Three of these patients had
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Strategy Estimated weights Estimated treatment e¤ect
Truncation Mean (SD) Range OR (SE)[1] 95% CI[1] Log OR (SE)[1]

Unweighted - - - 0.91 (0.18) 0.61, 1.35 -0.10 (0.20)
Ia 0.5 1.000 (0.676) 0.04, 6 0.54 (0.14) 0.32, 0.90 -0.62 (0.26)
Ib 1 0.995 (0.702) 0.05, 5 0.63 (0.16) 0.38, 1.04 -0.46 (0.26)
II/III 0.1 1.030 (1.075) 0.03, 23 0.36 (0.12) 0.19, 0.70 -1.02 (0.34)
IV 0.1 1.031 (1.221) 0.02, 26 0.50 (0.20) 0.22, 1.11 -0.69 (0.41)
V 0.1 1.022 (2.247) 0.01, 50 0.29 (0.14) 0.11, 0.75 -1.25 (0.49)
VI 0.1 1.071 (2.583) 0.02, 66 0.35 (0.10) 0.19, 0.62 -1.06 (0.30)
VII 0.5 0.898 (1.108) 0.02, 12 0.32 (0.10) 0.17, 0.60 -1.14 (0.32)

Table 2.13: Results from the strategies: combined treatment and censoring weights and es-
timated treatment e¤ects. SD=standard deviation. OR=odds ratio. SE=standard error.
CI=con�dence interval. [1] Robust SE calculated using clustered sandwich estimator, except
for unweighted models since no weights to induce correlations.

just a single month with large weights before censoring occurred. In the other three patients,

where large weights were observed over longer follow up, the weights escalated in size quite

quickly. For example, one patient �rst received weights > 100 under both strategies V and

VII at month 30, of values 135 and 117, respectively, which then increased to 1374 and 1024

by month 33 before being censored (LTFU). The one remaining patient, who was observed

to initiate treatment at 5.5 years, had large weights > 100 occurring under strategy Ib from

approximately 8 years onwards but these weights always remained < 120 until administrative

censoring at approximately 11 years.

Across the two censoring models for censoring type 3 (administrative), the upper 0.1 per-

centile of the weights came from 237 patient-months in 136 patients. However, the maxima of

the weights were just 2 (under the model applied to all but strategy VII) and 4 (under strategy

VII). This is as we might expect for administrative censoring, which we would anticipate to be

independent of patients�characteristics.

Treatment e¤ect estimates

After obtaining the overall weights for each strategy by combining the relevant treatment and

censoring weights, as previously strategy Ia led to 0.5% truncation and strategies II, IV and

V indicated only the default 0.1% truncation, whereas strategy Ib indicated 1% truncation.

As discussed previously, 0.1% and 0.5% truncation was applied under strategies VI and VII,

respectively. The overall weights and resulting treatment e¤ect estimates are summarised in

Table 2.13 and illustrated in Figure 2.8.

Compared to the results when just incorporating treatment weights (Table 2.6), the results

for strategies Ia, Ib, II/III, IV and VI were broadly similar, although the con�dence interval
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Figure 2.8: Estimated treatment e¤ect on time to AIDS or death across the modelling strategies.

for strategy Ib after incorporating censoring weights contained one. The estimated treatment

e¤ects for strategies V and VII were somewhat more extreme, perhaps unsurprisingly since

those two strategies had the most complex censoring models and therefore may have had better

control for confounding due to censoring (or could perhaps be bias). This was at the expense

of an increase in the standard error for strategy V (from 0.34 to 0.49 on the log-odds scale),

although due to the large change in the estimated treatment e¤ect, the con�dence interval still

excluded one.

All the strategies appeared to demonstrate considerable control for confounding, with the

point estimates having moved away from the unweighted estimate. There was a trend towards

stronger estimated treatment e¤ects with higher strategy number (that is, those designed to

be more complex), but overall the strategies led to broadly consistent results, with overlapping

con�dence intervals and all but strategies Ib and VI indicating a statistically signi�cant bene�t

(at the 5% level) of treatment in delaying time to AIDS or death. The OR point estimates ranged

from 0.29 (95% CI 0.11, 0.75) to 0.63 (0.38, 1.04), corresponding to a 37% to 71% reduction

in the hazard of AIDS or death with treatment compared to no treatment. Strategies IV and

V had considerably larger standard errors at 0.41 and 0.49 on the log-odds scale, compared to

a maximum of 0.34 under the other strategies; this is probably due to the strati�cation of the

treatment models by country. Strategy Ib led to a more moderate estimated treatment e¤ect

than strategy Ia; this could be related to our reason for introducing this strategy, namely that
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Figure 2.9: E¤ect of progressive truncation of the weights on the mean of the weights and the
estimated treatment e¤ect (treatment model from strategy Ia).

incorporating the direction of movement of the estimated treatment e¤ect away from the null

(as in strategy Ia) may lead to causal e¤ect estimates that are too strong. However, strategy

Ib led to more complex treatment and censoring models than strategy Ia, and therefore greater

truncation was required to bring the weights under control; this was perhaps at the expense of

control for confounding.

The only di¤erence between strategies Ia and II/III was the degree of truncation of the

weights. Exploring this further, Figure 2.9 illustrates the e¤ect of progressive truncation of the

weights from strategy Ia, which results in smaller mean weights and smaller estimated treatment

e¤ects, with 2% truncation yielding an estimated treatment e¤ect which is no longer statistically

signi�cant at the 5% level, and 10% truncation yielding an estimated treatment e¤ect which is

similar to the unweighted estimate and therefore indicating little if any control for confounding.

The largest jump in the odds ratio is seen between no and 0.1% truncation; the truncation may

be to some extent protecting against bias due to non-positivity or model misspeci�cation, or

may be demonstrating poorer control for confounding. One might argue that 0.5% truncation

may be preferred since it results in weights most closely centred on one (mean 1.000). However,

as argued previously, the extreme weights capture the most information with respect to time-

dependent confounding (Cole et al., 2005) and the intermediate 0.1% truncation o¤ers perhaps

a satisfactory compromise, although this is inevitably a subjective decision.
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Predictors of outcome

Looking at the outcome models more closely, Table 2.14 summarises the results after applying

weights from strategies Ia, Ib, II/III and IV. Under strategy Ia, being IDU and male were

predictive of poor outcome, with OR 2.53 (95% CI 1.51, 4.22) for IDU versus not, and 0.58

(0.34, 1.00) for female versus male. There was a suggestion that higher baseline HIV RNA, no

baseline HIV RNA, older age at HIV seroconversion, earlier year of HIV seroconversion, longer

time HIV-infected at baseline and being identi�ed as HIV-infected close to seroconversion were

also all associated with poorer outcome, but not statistically signi�cantly so (at the 5% level).

There was no evidence of a di¤erence in AIDS-free survival by country (p = 0:73), although

the ORs ranged from 0.50 (0.09, 3.71) for Germany to 1.48 (0.85, 2.57) for the UK, compared

to France. There was no association between baseline CD4 count and time to AIDS or death

(p = 0:52), probably because the time-dependent CD4 count which is taken into account via

the weighting is more important.

Except for the treatment e¤ect estimate, the outcome results after weighting according to

strategies Ib, II/III (same treatment model as for strategy Ia but with 0.1% instead of 0.5%

truncation) and IV were broadly similar to those under strategy Ia (Table 2.14). The results from

strategy V were also broadly similar, although the association of the lack of baseline HIV RNA

(OR 9.37 [95% CI 1.88, 46.79]) and being identi�ed as HIV-infected close to seroconversion (5.17

[1.40, 19.10]) with AIDS-free survival increased considerably though the con�dence intervals

were wide, and IDU was no longer associated with the outcome (1.34 [0.65, 2.74]; Table 2.15;

key results to note indicated with an asterisk).

The results from strategy VI were somewhat di¤erent. There was no suggestion of an

association between baseline HIV RNA or its availability (p =1.00 and 0.94, respectively; Table

2.15), probably because strategy VI incorporated time-updated HIV RNA therefore baseline

HIV RNA became less important. Lower baseline CD4 was associated with faster progression

(OR 0.91 [95% CI 0.83, 1.00]) and there was an indication of di¤erent AIDS-free survival by

country (p =0.04) with the ORs ranging from 0.39 (0.05, 2.96) in Germany to 1.72 (0.90, 3.27)

in Italy, compared to France. The results from strategy VII were broadly similar to those under

strategies II/III (Table 2.15).
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Treatment e¤ect modi�cation by baseline covariates

There was evidence of nonlinearity in the outcome models for baseline HIV RNA and time

HIV-infected at baseline under strategies VI and VII (p = 0:0002 and 0.003, respectively, under

strategy VI, and p = 0:02 and 0.02, respectively, under strategy VII; p-values are for the test for

the spline components), but not for any other baseline covariates or strategies. For consistency,

to investigate the interactions between treatment and baseline covariates, we included baseline

HIV RNA and time HIV-infected at baseline as splines in all strategies, and the other continuous

baseline covariates as linear.

The interactions between treatment and baseline covariates as identi�ed by the stepwise

backward selection procedure are summarised in the �rst 3 columns of Table 2.16. There was

quite a range of di¤erent interactions identi�ed under the di¤erent strategies.

Under strategy Ia, interactions with treatment were identi�ed for year of seroconversion and

lack of a baseline HIV RNA measurement (p = 0:03 for both). The estimated OR (95% CI)

for the e¤ect of treatment for a patient who seroconverted in the median year 2000 and with a

baseline HIV RNA measurement was 0.72 (0.37, 1.40). For a comparable patient who serocon-

verted one year later, the estimated treatment e¤ect was 0.87 (0.40, 1.91). For a comparable

patient who seroconverted in 2000 but without a baseline HIV RNA measurement, the esti-

mated treatment e¤ect was 2.73 (0.69, 10.9). The reasons for these e¤ects are not clear, though

there is a great deal of uncertainty and there may perhaps be some residual confounding.

Under strategies II/III, there was evidence of treatment e¤ect modi�cation by time HIV-

infected at baseline, with the suggestion of a greater bene�t of treatment the less time infected at

baseline (Figure 2.10). This may be related to those identi�ed closer to seroconversion generally

having poorer prognosis (Tyrer et al., 2003), although these patients have been infected for at

least one year before inclusion in this study. Relatedly, those infected longer at study entry have

survived AIDS-free longer with high CD4 counts, therefore perhaps do not bene�t as greatly

from treatment as those identi�ed closer to infection.

Under strategy V, there was initially evidence of treatment interactions with baseline HIV

RNA, age at and year of seroconversion, and whether identi�ed as HIV-infected close to se-

roconversion. However, if incorporating baseline HIV RNA, then it is necessary to include

the indicator for availability of such a measurement; when incorporating interaction between

treatment and the indicator, the interaction with baseline HIV RNA was no longer statistically

signi�cant (p = 0:1) therefore this was removed from the model; the rest of the interactions

remained statistically signi�cant. Therefore, for a patient with median year of seroconversion
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Figure 2.10: Odds ratio for estimated e¤ect of treatment by length of time HIV-infected at
baseline. Solid vertical line=median; dashed vertical lines=interquartile range.

(2000), a baseline HIV RNA measurement, median age at seroconversion (31 years) and who

was not identi�ed as HIV-infected close to seroconversion, the estimated treatment e¤ect was

0.43 (0.19, 1.00). For a comparable patient who seroconverted one year later, the estimated

treatment e¤ect was 0.59 (0.22, 1.61), that is, in the same direction as seen under strategy Ia.

For a comparable patient with no baseline HIV RNA measurement, the estimated treatment

e¤ect was 6.85 (0.58, 81.0); once again, in the same direction as seen for strategy Ia. For a

comparable patient who was identi�ed as HIV-infected close to seroconversion, the estimated

treatment e¤ect was 0.06 (0.01, 0.33). The size of this result is somewhat surprising, but pa-

tients who are identi�ed as HIV-infected close to seroconversion are a small selected subset and

this is a known surrogate for subsequent poorer prognosis (Tyrer et al., 2003), therefore we may

expect a greater bene�t of treatment in these patients who otherwise fare poorly. Finally, for

a comparable patient who was 10 years older at seroconversion, the estimated treatment e¤ect

was 0.86 (0.34, 2.16). Since we would expect older patients to have poorer prognosis in general,

this does not tie in with our argument above that those who would otherwise fare poorly bene-

�t the most from treatment. However, our �nding is in agreement with previous studies which

have shown better immunological and clinical response to treatment in younger persons (Col-

laboration of Observational HIV Epidemiological Research Europe (COHERE) Study Group,

2008).
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Under strategy VI, there was evidence of treatment interactions with age at HIV seroconver-

sion and whether identi�ed as HIV-infected close to seroconversion. For a patient with median

age at seroconversion (31 years) and who was not identi�ed as HIV-infected close to seroconver-

sion, the estimated treatment e¤ect was 0.45 (0.26, 0.79). For a comparable patient who was 10

years older at seroconversion, the estimated treatment e¤ect was 0.76 (0.40, 1.45); this was 0.07

(0.02, 0.28) for a comparable patient who was identi�ed as HIV-infected close to seroconversion.

These results are similar to those seen under strategy V.

There was no evidence of treatment e¤ect modi�cations under strategies Ib, IV or VII. The

estimated treatment e¤ects under strategies Ib and IV were somewhat closer to 1, therefore

perhaps making the detection of interactions unlikely.

Interaction between treatment and country Finally, we considered interactions between

treatment and country. As discussed in section 2.3.4, we anticipated that there should be no

such interaction. However, we found evidence of such an interaction under strategies IV and

VI (p = 0:05 and 0.02, respectively; Table 2.16), and these interactions remained even when

taking into account other interactions with treatment where indicated (for example, age at

seroconversion and whether identi�ed as HIV-infected close to SC under strategy VI). Since

the treatment-by-country interactions remained broadly similar regardless of whether other

interactions were taken into account, and in order to compare across the di¤erent strategies by

country, we proceeded with the models with interactions between treatment and country only,

for illustrative purposes.

The estimated treatment e¤ects by country for all of the strategies are illustrated in Figure

2.11 (without any other interactions included). The point estimates for treatment e¤ect were

somewhat di¤erent across the strategies albeit with wide con�dence intervals. Note that across

all strategies and in all countries, the weighted models yielded estimated treatment e¤ects

further from the null than the unweighted model, demonstrating control of confounding.

The only di¤erence between strategies Ia (orange) and II/III (green) was the degree of

truncation. To investigate this further, consider Figure 2.12 which illustrates the results from

these strategies and in addition with no truncation. In line with previous results, and as we

would anticipate, progressive truncation resulted in more moderate estimated treatment e¤ects

across all countries, except Switzerland where the results were consistent regardless of the degree

of truncation. This is because, as we have seen above, Switzerland has fairly stable weights and

is little a¤ected whether 0.1 or 0.5% truncation is performed.
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Time, years Strategy No treatment Immediate treatment Di¤erence

3 Unweighted 0.96 (0.95, 0.96) 0.97 (0.96, 0.98) 0.01 (0.002, 0.03)
Ia 0.95 (0.94, 0.96) 0.97 (0.96, 0.98) 0.02 (0.009, 0.04)
Ib 0.95 (0.94, 0.96) 0.97 (0.96, 0.98) 0.02 (0.007, 0.03)
II/III 0.94 (0.93, 0.96) 0.98 (0.97, 0.99) 0.04 (0.02, 0.05)
IV 0.95 (0.93, 0.97) 0.97 (0.96, 0.99) 0.02 (0.002, 0.05)
V 0.94 (0.91, 0.96) 0.98 (0.96, 0.99) 0.04 (0.01, 0.07)
VI 0.93 (0.91, 0.95) 0.97 (0.95, 0.99) 0.04 (0.02, 0.07)
VII 0.94 (0.93, 0.96) 0.98 (0.97, 0.99) 0.04 (0.02, 0.05)

6 Unweighted 0.91 (0.89, 0.93) 0.93 (0.91, 0.96) 0.02 (-0.01, 0.06)
Ia 0.91 (0.89, 0.94) 0.95 (0.93, 0.97) 0.04 (0.009, 0.07)
Ib 0.92 (0.90, 0.94) 0.95 (0.93, 0.97) 0.03 (0.002, 0.06)
II/III 0.90 (0.87, 0.93) 0.96 (0.94, 0.98) 0.06 (0.02, 0.09)
IV 0.91 (0.89, 0.94) 0.95 (0.92, 0.98) 0.04 (-0.005, 0.08)
V 0.90 (0.86, 0.94) 0.96 (0.93, 0.99) 0.06 (0.01, 0.11)
VI 0.88 (0.85, 0.91) 0.95 (0.92, 0.98) 0.07 (0.02, 0.12)
VII 0.90 (0.87, 0.93) 0.96 (0.94, 0.98) 0.06 (0.02, 0.10)

Table 2.17: Predicted 3 and 6 year AIDS-free survival (bootstrapped 95% con�dence intervals).

Recall that strategies IV (blue) and V (purple) have treatment models strati�ed by country.

To explore this further, consider Figure 2.13 which illustrates the results for these strategies,

in addition with one overall treatment model across countries. Stratifying the treatment mod-

els by country resulted in more moderate estimated treatment e¤ects, with the exception of

Switzerland where the e¤ect is in the opposite direction. The reasons for this are not clear;

we have seen above that the weights for Switzerland are fairly stable, therefore perhaps this

suggests some lack of control for confounding in the remaining countries.

AIDS-free survival

Although some interactions were detected with some weighting strategies, there was a lack

of agreement across them. For illustration, the standardised survival curves for immediate

versus no treatment, as described in section 2.4.1, are shown in Figure 2.14, assuming no

interactions with treatment. Table 2.17 also gives the predicted AIDS-free survival at 3 and

6 years under these treatment regimes, with bootstrapped con�dence intervals, and for the

di¤erences in AIDS-free survival between the two regimes at those time-points. The medians

of the bootstrapped estimates were similar to the overall point estimates. Of note, two of the

bootstrapped datasets only contained patients from Italy who were not observed to reach the

endpoint, therefore all patients from Italy were dropped from the pooled logistic regression

models. However, the results from those models were checked by eye individually and were

found not to be overt outliers compared to the overall bootstrap estimates, and therefore were

included for the bootstrapped con�dence interval estimation.
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Figure 2.12: E¤ect of treatment by country, under weighting from treatment model of strategies
I-III, with di¤erent degrees of truncation.
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Figure 2.13: E¤ect of treatment by country, unweighted and under weighting from strategies
IV and V, with either separate treatment models by country or overall treatment models.
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Figure 2.14: Standardised AIDS-free survival over 6 years for immediate (solid lines) versus no
(dashed lines) treatment, across the di¤erent strategies and an unweighted model.

The unweighted curves for immediate and no treatment remained fairly close together over

time compared to the weighted curves, which all predicted higher AIDS-free survival under

immediate treatment, and typically similar or lower AIDS-free survival under no treatment,

compared to the unweighted curve. While there was some departure between the weighted

curves at later times, there was a great deal of uncertainty at these times, and overall they

yielded fairly consistent results. At 3 years, the unweighted and weighted curves all predicted

statistically signi�cantly higher AIDS-free survival for immediate versus no treatment, although

the weighted curves more so (from 2 to 4% higher AIDS-free survival compared to 1% higher

survival unweighted). At 6 years, the magnitudes of the di¤erences between the curves for

immediate versus no treatment increased although the uncertainty also increased; there was

no longer any evidence of a di¤erence between the two regimes from the unweighted models.

In contrast, most of the weighted models continued to predict higher AIDS-free survival under

immediate versus no treatment, with the exception of strategy IV (unsurprisingly since we have

already seen greater uncertainty under this strategy) and strategy V. The predicted AIDS-free

survival at 6 years ranged across the weighted models from 0.88 (0.85, 0.91) to 0.92 (0.90,

0.94) under strategies VI and Ib, respectively, for a patient who had never taken treatment,

and around 0.95-0.96 under all strategies for a patient who started treatment immediately.

The di¤erence in AIDS-free survival ranged from 0.03 (0.002, 0.06) to 0.07 (0.02, 0.12) under
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strategies Ib and VI, respectively, compared to 0.02 (-0.01, 0.06) under the (biased) unweighted

approach.

2.5 Discussion

While MSMs o¤er a relatively intuitive extension of standard methods to estimate causal e¤ects,

their application in practice is not straightforward. Of crucial importance is the construction

of suitable inverse probability of treatment weights, which requires a number of inevitably

subjective decisions. While formal methods have been proposed to develop a treatment model

(Brookhart and van der Laan (2006); Mortimer et al. (2005); Petersen, Deeks, Martin, and

van der Laan (2007)), these methods are not necessarily easy to implement, are somewhat

opaque and still require decisions at the start regarding potential covariates and at the end to

determine whether a suitable model has been achieved. We have broken down and structured

the process as a set of four well-de�ned key decisions: the starting point (minimal model of key

potential confounders versus �full�model of potential confounders), working with truncated or

untruncated weights, identi�cation of covariates to add (or remove) from the model, and the

level of truncation for the �nal weights. We have indicated potential choices which may be

preferable to di¤erent researchers, and based on these di¤erent viewpoints have constructed a

set of six varied strategies (Ia, Ib, II, III, IV and V). Of course, there are many other possibilities

which may yield di¤erent results; these six realistic options were chosen to explore and illustrate

the potential di¤erences that could arise, and might be expected to yield the most contrasting

results.

2.5.1 The key decisions and strategies for construction of the treatment

model

The six strategies led to four distinct models for treatment weights, although there was a great

deal of overlap. A broad range of potential confounders were considered for inclusion in the

treatment model, although no variable appeared in only one treatment model. Time since last

CD4 count appeared in all models, and the number of previous CD4 counts appeared in all

but one; some had in addition nadir CD4 count and the indicator for last CD4 observation

carried forward. Two of the treatment models were strati�ed by country. Even the preliminary

model with CD4 count as the only time-dependent variable demonstrated considerable control

for confounding, with a reduction in the estimated OR for the e¤ect of treatment by almost two-

thirds, from 0.91 unweighted to 0.33 (after 0.1% truncation of the weights). The weights were
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improved upon with the incorporation of other time-dependent covariates. All the strategies

appeared to demonstrate considerable control for confounding, with the point estimates having

moved away from the unweighted estimate.

Applying the same strategies to the construction of censoring weights, the strategies which

were constructed to favour larger models did result in larger models, although all the ORs

were fairly close to 1 indicating that the censoring processes were not very informative in this

example.

Decision 1

Decision 1 regarding the starting point (minimal versus �full� model) may be most directly

assessed by comparing strategies IV (starting with the minimal model) and V (starting with

the �full� model). These two strategies led to similar treatment models although, perhaps

conversely to expected, the forward selection procedure of strategy IV yielded a slightly larger

model which included the number of previous CD4 counts in addition to those covariates which

were included under strategy V.

After applying in addition the censoring weights, strategy V led to the most extreme OR

seen from all the strategies (0.29) compared to 0.35 under strategy IV, albeit with larger SE

(0.49 versus 0.41 on the log-odds scale).

Decision 2

Decision 2 determined the level of truncation of the weights when making decisions about which

covariates to add to (or remove from) the model; working with untruncated weights led to a much

more complex model, including strati�cation by country (comparing strategies IV versus III).

This is in the direction that we might expect. It is not immediately clear whether one approach

is advantageous over the other; one could argue that the untruncated weights have greater

potential for capturing confounding, therefore indicating that working with truncated weights

may result in important confounders being missed. Conversely, if there are positivity problems,

then working with untruncated weights may result in including variables which amplify that

problem.

Of note, we found that if the model building process was performed at a given degree of

truncation, then this was subsequently matched by the degree of truncation selected at the

�nal stage. This is unsurprising since the process has been directed towards that degree of

truncation, but is worth noting since it implies that decisions made relating to the criteria for

selecting covariates are inevitably linked to the weight truncation indicated at the end.
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After applying in addition the censoring weights, strategy IV with the more complex treat-

ment and censoring models yielded results with a more moderate estimated treatment e¤ect

(OR=0.50 versus 0.36 under strategies II/III) and less precision (SE=0.41 versus 0.34 on the

log-odds scale). Therefore, it appears that working with truncated weights during the treatment

model building process may be advantageous.

Decision 3

In our example, we found that decision 3 relating to di¤erent criteria for adding variables to (or

removing from) the treatment model did not make a di¤erence (comparing strategy III versus

II). However, during the construction process more variables were identi�ed as eligible under the

decision criterion which favoured a larger model (strategy III) as opposed to that which favoured

a smaller model (strategy II), therefore it is possible that in other applications, this decision

may result in di¤erent treatment models. However, it is somewhat reassuring that somewhat

di¤erent but equally reasonable strategies with respect to the incorporation of covariates are

likely to lead to similar treatment models.

Decision 4

Decision 4, regarding the truncation of the �nal weights, will in general make the largest dif-

ference to the estimated causal e¤ects, as illustrated by Figures 2.9 and 2.12. It is necessary

for the analyst to make a reasonable judgment about whether large weights are likely due to

non-positivity problems or model misspeci�cation (and therefore truncate) or the degree of con-

trol of confounding (therefore do not truncate). This cannot typically be determined from the

data, therefore it seems prudent to perform some truncation if there are extreme weights; in

addition, this will most likely help increase the precision of the treatment e¤ect estimate. In

our example, we felt that some truncation was needed, and 0.1% truncation seemed su¢ cient

to bring the weights under control.

Compared to strategy II, additional truncation was applied under strategy Ia, which favoured

greater protection from non-positivity or model misspeci�cation bias. After applying in addi-

tion the censoring weights, the impact of this decision on the estimated treatment e¤ect was

considerable, changing the estimated OR from 0.36 under strategy II/III to 0.54 under strategy

Ia, with an associated reduction in the SE (0.34 to 0.26 on the log-odds scale).

Weight truncation will typically make a substantial di¤erence to estimates of treatment

e¤ect on outcome, and perhaps researchers should be encouraged to specify a priori what level

they will use or at least what criteria will be applied to determine the level of truncation at
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each stage. However, we would recommend performing a range of sensitivity analyses to assess

the impact of the weight truncation, which should be reported alongside the main results.

Additional non-directional strategy

We realised that incorporating the direction of change of treatment e¤ect away from the null in

the selection process may preferentially lead to an exaggerated estimate of treatment e¤ect. We

therefore introduced an additional strategy (Ib) which matched strategy Ia except it did not

depend on the direction of change of the treatment e¤ect estimate. Compared to Ia, strategy

Ib incorporated one extra variable in the treatment model, namely nadir CD4 count. The

estimated treatment e¤ect was more moderate under strategy Ib than strategy Ia; this could be

related to our reason for introducing this strategy, namely that incorporating the direction of

movement of the estimated treatment e¤ect away from the null (as in strategy Ia) may lead to

causal e¤ect estimates that are too strong. However, strategy Ib led to more complex treatment

and censoring models than strategy Ia, and therefore greater truncation was required to bring

the weights under control; this was perhaps at the expense of control for confounding.

Additional strategy with interaction between CD4 count and HIV RNA

Strategy VI, incorporating an interaction between CD4 count and HIV RNA, yielded some very

large weights, most likely due to non-positivity issues (very few patients with high CD4 counts

and low HIV RNA levels were observed to initiate treatment). However, after 0.1% truncation

of the weights, the estimated treatment e¤ects were very similar to those from strategy IV

without strati�cation by country (the same model but without the CD4 count by HIV RNA

interaction). Therefore our original treatment model building strategy did not appear to have

missed an important confounder in HIV RNA.

Additional strategy using traditional model selection procedure

The additional strategy VII with the �traditional� stepwise procedure led to an overly com-

plex model, incorporating a number of variables capturing HIV RNA-related data. This model

yielded some very extreme weights, perhaps due to positivity issues with the large model.

Greater truncation was needed (0.5% compared to 0.1% under the majority of the other strate-

gies) in order to bring the weights under control. However, after truncation, the results were

not inconsistent with those from the other strategies, therefore suggesting perhaps that even in

cases of severe non-positivity, this issue may be to some extent ameliorated with simple weight

truncation. After incorporating in addition the censoring weights, the results from this strategy
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were not inconsistent with the results from the majority of the other strategies (OR 0.32, SE

0.32 on the log-odds scale).

Summary

In summary, strategies Ia, Ib and IV yielded somewhat more modest estimated treatment

e¤ects, with ORs of 0.54, 0.63 and 0.50, respectively. The remainder of the strategies had

broadly consistent results, with the ORs ranging from 0.29 under strategy V to 0.36 under

strategy II/III. All these ORs were statistically signi�cantly di¤erent from 1. Strategies IV and

V had considerably larger standard errors at 0.41 and 0.49 on the log-odds scale, compared to a

maximum of 0.34 under the other strategies; this was due to the strati�cation of the treatment

models by country. Notably, these strategies used untruncated weights during the treatment

model building process. We therefore recommend strategies Ia, Ib, II and III over strategies

IV and V. Analysts may be reassured that the di¤erent criteria for covariate selection did not

make a di¤erence in practice in our application to the CASCADE data. In such examples

where there are concerns about violations of the positivity assumption, we may prefer to opt

for the strategy which was designed to lead to a minimal model, namely strategy Ia. If there

are not concerns about non-positivity, then further work simulating di¤erent scenarios may be

useful to determine which strategy may be more generally preferable in di¤erent circumstances.

Regardless, we recommend that a range of strategies, in particular with di¤erent degrees of

weight truncation, are performed to examine the sensitivity of the results to the assumptions.

2.5.2 �Treatment refusers�

A number of the models yielded some overtly large weights; these derived mainly from a few

patients with low CD4 counts who persistently delayed treatment initiation, resulting perhaps in

non-positivity issues, residual confounding or model misspeci�cation. This issue was addressed

to some extent by adapting the CD4 count model to the �blunted� spline, forcing a constant

probability of treatment initiation at CD4 counts <100 cells/mm3, and also with default 0.1%

truncation of the weights. This degree of truncation was somewhat arbitrary but was necessary

in order to exclude unreasonably large weights (for example >1000 for the preliminary model).

A further step may be to censor these persistent �treatment refusers�at those low CD4 counts,

but then the dynamic element must be recognised since this censoring process is dependent on

time-updated data. Therefore within the constraints of these standard MSMs, there is nothing

that can easily be done to unbiasedly address this problem. However, we shall see in subsequent
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chapters that it is possible to incorporate the dynamic element with history-adjusted or dynamic

MSMs. In the next chapter on HAMSMs, we can simply exclude �trials�with low �baseline�

CD4 count, say < 100 cells/mm3, on the grounds that these extreme cases are irrelevant to

treatment decisions at a population level. In dynamic MSMs, the lowest regime that will be

considered will be to initiate when the CD4 count is �rst observed to drop below 200 cells/mm3,

and so these �treatment refusers� will implicitly be dealt with. That is, these patients will

be progressively censored from regimes as their CD4 count drops, and �nally censored from

all regimes when their CD4 count dropped < 200 cells/mm3 and they still did not initiate

treatment.

2.5.3 Treatment e¤ect modi�cation by baseline covariates

We investigated treatment e¤ect modi�cation by baseline covariates. There was a lack of agree-

ment in the interactions identi�ed, though that may be due to lack of power, particularly in

strategies IV and V where there was strati�cation of the treatment model by country.

Where interactions were identi�ed, they were typically present in two strategies. These

were discussed in detail in section 2.4.2. Brie�y, in strategies Ia and V, later year of serocon-

version and lack of a baseline HIV RNA measurement were associated with weaker treatment

e¤ect estimates, but the reasons for these associations were not clear and there may be residual

confounding. The particularly strong bene�cial e¤ect of treatment in those identi�ed close to

seroconversion under strategies V and VI was somewhat surprising, but we know that such

patients are a small and select subgroup, and such early presentation is a well-known pre-

dictor for worse prognosis (Tyrer et al., 2003), therefore it is plausible that treatment could

be particularly bene�cial among that subset of patients. Previous studies have shown better

immunological and clinical response to treatment in younger persons (Collaboration of Obser-

vational HIV Epidemiological Research Europe (COHERE) Study Group, 2008), in agreement

with our �ndings under strategies V and VI, where younger age at seroconversion was asso-

ciated with stronger treatment e¤ect. One further interaction was identi�ed, under strategies

II/III: shorter time infected at baseline was associated with stronger treatment e¤ect. This may

be related to a survivorship bias, in that those infected longer at baseline must have survived

longer treatment-naïve, AIDS-free and with such high CD4 counts > 500 cells/mm3 in order to

enter the analysis.

As far as we are aware, the only previous investigation of treatment (antiretroviral therapy)

e¤ect modi�cation by baseline covariates using MSMs in HIV-infected patients was in a series
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of papers by Cole and colleagues (2007; 2005; 2003), where �baseline�was the �rst clinic visit

in 1995 or 1996. In their 2003 paper, they found no di¤erence in the estimated treatment e¤ect

on progression to AIDS or death by sex. However, they did �nd that treatment appeared to be

most bene�cial in those with lower baseline CD4 counts, and in fact there was no strong bene�t

of treatment in those with baseline CD4 counts > 350 cells/mm3. In their 2005 paper looking at

the e¤ect of treatment on CD4 count, the authors found a larger e¤ect of treatment in the �rst

year among men compared to women, but there was no evidence of a di¤erence after one year.

Similarly, those with a lower baseline CD4 count experienced a greater bene�t of treatment

in the �rst year but with no di¤erence thereafter. In 2007, the authors found evidence of a

stronger e¤ect of treatment in men compared to women on HIV RNA, but no di¤erence by

baseline CD4 count. In contrast to those studies, our population includes patients with high

baseline CD4 counts, and subsequent CD4 decline, rather than the starting value, is likely to be

more important, therefore it is no surprise that we did not see any treatment e¤ect modi�cation

by baseline CD4 count. This may be di¤erent when we progress to HAMSMs where we can look

at treatment e¤ect modi�cation by trial �baseline�, that is time-dependent, CD4 count. We

did not �nd any evidence of an interaction of sex with treatment across any of the strategies.

2.5.4 Model checking using country

As suggested in section 2.3.4, we were able to exploit the existence of di¤erent countries to test

for an interaction with treatment, as a model checking procedure.

Recall that a number of countries with few patients were combined, namely Australia,

Canada, Denmark, the Netherlands and Norway. There is no reason that treatment or outcome

in these countries would necessarily be similar in any way; greater numbers of patients would

enable analyses split by these countries too and perhaps add to our understanding. Those coun-

tries which were included separately are known to contain di¤erent populations; in particular,

the populations from the UK and Germany were predominantly men infected through having

sex with men, while the populations from Italy and Spain had high proportions of patients

infected through IDU. The frequency of CD4 count measurements varied by country, with the

medians ranging from 3.0 to 5.6 months.

There was evidence of di¤erential treatment e¤ects by country under strategies IV and VI. Of

note, strategy VI was based on strategy IV, but with the incorporation of an interaction between

CD4 count and HIV RNA in the treatment model. Strategy IV led to the largest treatment

model of the original strategies, but aside from this it was not clear how this strategy di¤ered
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to indicate treatment e¤ect modi�cation by country where the others did not. However, Figure

2.11 illustrates that, despite not reaching conventional statistical signi�cance, there appeared

to be some di¤erential e¤ects of treatment by country across all the strategies. In particular,

the treatment e¤ect appeared to be strongest in Switzerland. Notably, the estimated treatment

e¤ects for Switzerland were least a¤ected by truncation of the weights, perhaps suggesting that

the strong treatment e¤ect estimates seen for Switzerland better captured the truth and we

may be missing residual confounders in the other countries. However, given that treatment

guidelines across these countries are broadly consistent, and based mainly on CD4 count, it is

di¢ cult to imagine what those confounders might be.

Regardless of the result, we found this process to be helpful in examining and understanding

the data and would encourage others to consider applying such an approach. We did not see any

great advantage in stratifying the treatment models by country. While other examples may be

di¤erent, this o¤ers some reassurance to other studies where strati�cation may not be possible,

for example by subpopulations of clinical centres which may not be recorded.

2.5.5 Limitations

All results presented here rely on a number of assumptions (section 2.2.2), in particular con-

sistency, no unmeasured confounders between treatment and outcome, no misspeci�cation of

the treatment or outcome models and positivity. The consistency assumption is likely to be a

reasonable one in general, but the others are perhaps more debatable. There was some empirical

evidence of non-positivity. We have considered a range of di¤erent models, but we cannot ex-

plicitly test whether the models, in terms of speci�cation and incorporation of all confounders,

are correct. Truncation of the weights should provide some protection against violation of these

assumptions, at the potential expense of bias.

Patients with less than one month of follow-up were excluded, therefore the probability of

AIDS-free survival in the �rst month was arti�cially equal to 1 in our analysis, although there

were only 46 such patients.

The median follow-up was only 2.3 years, restricted in part by the follow-up time starting

at least one year after seroconversion and by the large proportions of patients being censored

due to lack of availability of CD4 counts. With longer follow-up with complete CD4 count

data, and hence greater power, some of the di¤erences arising under the di¤erent strategies, for

example identi�cation of di¤erent interactions of treatment with baseline covariates, may have

been resolved.
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2.5.6 Application to other disease areas

Our approach of de�ning the treatment model building process as a series of (subjective) de-

cisions helps to ensure the decision-making process is transparent and may facilitate greater

involvement of collaborators such as clinicians. Our range of strategies helped to illustrate the

potential di¤erences in results that may arise from di¤erent modelling approaches. While no

approach is more �correct�than another, this may help researchers understand potential di¤er-

ences seen in literature published previously or in the future, and may for example help inform

any systematic reviews by having indicated likely sources of any heterogeneity between results,

such as the degree of weight truncation. Further, we suggest that authors may wish to consider

more than one of the strategies outlined here, in order to explore the potential problems of

positivity, model misspeci�cation or residual confounding. Of course, there are other possible

strategies which may also be considered. These recommendations apply to the �eld of HIV

research and more widely.

2.5.7 Summary

In this chapter, we have proposed a transparent process for the construction of treatment models

in terms of a series of decisions, and illustrated how these may be combined to form di¤erent

modelling strategies. These may be adapted for the estimation of causal e¤ects in any setting.

We have applied these strategies to our population of patients from CASCADE, and illustrated

the need for weighting to appropriately adjust for time-dependent confounders which are used

in the treatment decision process. Across all strategies, we demonstrated a bene�cial e¤ect of

treatment in terms of reduction in the risk of AIDS or death. There were some di¤erences in

the point estimates obtained, but overall the results were broadly consistent. In addition, we

have estimated survival according to the non-dynamic treatment regimes of immediate versus

no treatment, adjusting for baseline covariates only. We will compare these estimates to those

obtained in subsequent chapters under di¤erent approaches.

We have explored treatment e¤ect modi�cation by baseline covariates, but, as previously

described, it is not possible to investigate such e¤ect modi�cation by time-dependent covariates

with standard MSMs. A natural follow-on question is when to initiate treatment; perhaps an

intermediate time would still provide the bene�ts a¤orded by immediate treatment initiation,

but reduce the time spent on treatment over a patient�s lifetime, thus potentially reducing

the risks associated with long-term treatment such as side e¤ects and development of drug

resistance. In the following chapter, we will incorporate interactions between treatment and
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CD4 count using HAMSMs to address the question of whether to initiate or defer treatment

with respect to current CD4 count, which is the situation faced by clinicians and patients at

each clinic visit. In chapter 4, we then proceed to consider pre-speci�ed, well-de�ned dynamic

treatment regimes in terms of CD4 count, whose e¤ects are estimated using dynamic MSMs. The

construction of inverse probability of treatment weights for unbiased estimation of treatment

e¤ects via history-adjusted and dynamic MSMs follow the same principles as those for standard

MSMs, therefore we will make use of the weights constructed in this chapter.
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Chapter 3

History-adjusted marginal structural

models

3.1 Introduction

As discussed in section 2.5.7, a limitation of standard MSMs is that they cannot directly incor-

porate interactions between treatment and time-dependent covariates. For example, we found

that baseline CD4 count was not a treatment e¤ect modi�er in our population of HIV-infected

persons from CASCADE, perhaps unsurprisingly given that, by design, all patients had a high

CD4 count at the time of study entry. However, one might hypothesise that treatment is

most bene�cial at subsequent low CD4 counts; such treatment e¤ect modi�cations cannot be

addressed using standard MSMs.

We introduced the concept of history-adjusted static treatment regimes and their estimation

using history-adjusted MSMs (HAMSMs) in section 1.4.3, with the idea of a series of �trials�and

a common standard MSM assumed at each time-point (Petersen, Deeks, Martin, and van der

Laan, 2007). In chapter 2, we outlined a range of potential strategies for estimation of the

inverse probability weights, applied these to the CASCADE data to obtain an array of estimated

weights, and demonstrated a treatment e¤ect on the time to AIDS or death in our population

of CASCADE patients.

In this chapter, we build on that work, �rstly introducing the theory of HAMSMs and then

applying these methods to the CASCADE data using the di¤erent sets of estimated weights from

chapter 2, and in particular exploring treatment e¤ect modi�cation by time-updated CD4 count.

As outlined in section 1.5, previous researchers have looked at estimating the causal e¤ects of

immediate versus deferred treatment, given current (or past) CD4 count, using CASCADE
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data (although with all initial CD4 counts, not restricted to those with a �rst CD4 count � 500

cells/mm3 as in our population; Writing Committee for the CASCADE Collaboration (2011)).

As we shall see, this question may be extended to consider the e¤ects of treatment initiation

immediately versus never (that is, no subsequent treatment), using HAMSMs (Hernán et al.,

2008). We consider and compare both of these approaches, and obtain causal estimates of

treatment given current CD4 count. It will be of interest to return to these results in chapter

5 to compare them with those obtained from the optimisation of dynamic treatment regimes,

in chapter 4. While the application of history-adjusted and dynamic MSMs typically answer

di¤erent questions, we might anticipate some consistency across the two approaches, and the

application of both may o¤er additional insights to the inference of interest.

3.2 Methodology

As in section 1.4.3, in their most basic form HAMSMs can be used to estimate the e¤ects of ini-

tiating treatment sequentially at each given time-point, given treatment and covariate history,

ignoring whether treatment is subsequently initiated by those patients who initially deferred

treatment, that is considering only the e¤ect of starting treatment now versus not starting now

and assuming behaviour in those deferring treatment is generalisable. This approach may be

extended to estimate �adherence-adjusted�e¤ects (Hernán et al., 2008), where appropriate ad-

justment is made for those patients who initially deferred but subsequently initiated treatment,

in order to estimate the e¤ects of immediate versus no treatment. We now describe these two

scenarios further and the appropriate methods for estimation.

3.2.1 Treatment regimes Immediate versus Deferred treatment

Notation

We use exactly the same set-up and notation for time-dependent covariates L(k), treatment

A(k) and outcome Y (t) as introduced in section 2.2.1, with overbars representing history to that

time. The key concept behind HAMSMs is to consider each small time interval, for example

month, of patient follow-up as the start of a new �trial�, and then investigate treatment e¤ects

by performing estimation across the pooled trials. Therefore, in practice, the �rst step is to

expand the data, treating each month in which a patient remains alive, event-free, in follow-up

and previously treatment-naïve as the start of a new trial. For the �rst trial, given by k = 1, we

use the �rst month of follow-up, that is time [0; 1), to determine A(1) and hence the treatment

status for that �rst trial, where A(1) = 0 means the patient is following the regime Deferred
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Figure 3.1: Illustration of expansion of data for an example patient who was treatment-naïve
up to time-point 2 but had initiated treatment by time-point 3. We create a series of trials,
starting at each time-point the patient remains alive, event-free, in follow-up and previously
treatment-naïve. The solid lines indicate the follow-up time included for that trial; the dashed
lines indicate the time during which the treatment status is determined for that trial (Immediate
or Deferred).

treatment and A(1) = 1 means the patient is following the regime Immediate treatment. Follow-

up of that �rst trial then begins at time 1. In general, for a trial k, the treatment status of the

patient is determined by A(k) and follow-up begins at time k. We use t = 0; 1; 2; ::: to indicate

follow-up time within a given trial k. The �baseline� covariates for trial k are those given by

L(k� 1); this ensures temporality in that the �baseline�covariates are always measured before

determination of treatment status. In order to clearly distinguish between di¤erent variables,

we refer to those at overall study entry as �true-baseline�covariates (constant for each patient

across all trials) and those at the start of each trial as �trial-baseline�covariates (constant within

each trial but di¤erent for each patient-trial). Expansion is performed for all patient-months for

which the patient remains in follow-up with A(k � 1) = 0 and Y (k) = 0. Of note, this requires

for the �rst trial that Y (1) = 0, on the grounds of temporality; if treatment was initiated in the

�rst month then we cannot be sure that it was not in response to the event.

Consider the example patient illustrated in Figure 3.1. In the �rst two months, the patient

did not initiate treatment, therefore A(1) = A(2) = 0, and so for the �rst two trials, given by

k = 1; 2, we consider the patient to be following the regime Deferred treatment. In the third

month, the patient did initiate treatment, and so A(3) = 1 and, in this third trial, the patient

is considered to be following the regime Immediate treatment. The patient does not contribute

to any further trials.

The equivalent RCT would involve the randomisation of patients who are currently treatment-
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naïve at each time-point to one of the two treatment regimes of Immediate or Deferred treat-

ment. Note that the treatment regime Deferred permits treatment initiation at any subsequent

time; see further discussion relating to this in section 3.2.2.

Cox proportional hazards model

When comparing the regimes of Immediate versus Deferred treatment, since the covariates

L(k � 1) can be considered as baseline covariates for trial k, and we do not take into account

subsequent treatment, this means that we do not have the problem of time-dependent confound-

ing for the comparison of these two regimes. This means that straightforward adjustment of the

trial-baseline covariates will provide an unbiased estimate for the e¤ect of initiating treatment

immediately versus deferral on the outcome of interest, under standard assumptions (section

1.2.4). In this case, weighting is not required and it is possible to easily use standard mod-

els, such as Cox proportional hazards models for our time-to-event outcome, since there are

no time-varying weights to incorporate. Compared to pooled logistic regression models, this

reduces computational time since only one record per patient per trial is required, rather than

one record per patient per trial per month, so less data expansion is required. In addition,

standard model building approaches can be employed.

Consider trial k; we could �t the following Cox proportional hazards model in patients who

are in follow-up, previously treatment-naïve and event-free:

�
(k)
T

�
tj(A(k); A(k � 1) = 0; L(k � 1);

	
= �

(k)
0 (t) exp f�A(k) + �L(k � 1)g (3.1)

where T is the time to event of interest (now measured from the start of trial k). A(k),

A(k � 1) and L(k � 1) are as explained above. Equation 3.1 therefore consists of the baseline

(perhaps trial-dependent) hazard �(k)0 (t), and parameters � and � which we seek to estimate.

In particular, b� will provide our estimate of the e¤ect of the regimes Immediate versus Deferred
treatment. To clarify for the equivalent RCT analysed by ITT, A(k) represents the randomised

regime (Immediate or Deferred treatment), rather than whether the patient actually initiated

treatment or not, in order to preserve the randomisation balance.

Assuming homogeneity in the treatment e¤ect across trials, we can pool across all k, al-

though then we may choose to include k in the model, preferably as a smooth function. This

homogeneity assumption can be tested by incorporating an interaction between treatment and

k (Hernán et al., 2008). The treatment e¤ect modi�cation by a trial-baseline covariate can then

be explored using interactions between that covariate and treatment regime.
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This approach was used by Writing Committee for the CASCADE Collaboration (2011)

to estimate the e¤ect of treatment on time to AIDS or death by CD4 count in CASCADE

participants (not restricting to those with a high initial CD4 count); the authors found that

treatment initiation, compared to deferral, was bene�cial at CD4 counts < 350 cells/mm3, and

more greatly so at lower CD4 counts. There was some suggestion that initiation of treatment

at CD4 counts of 350� 500 cells/mm3 may be bene�cial, but the authors noted that the event

rate was low in this range of CD4 counts. The authors also considered an alternative approach,

whereby instead of direct adjustment of the baseline covariates for each trial in the model via

L(k�1) in equation 3.1, they estimated inverse probability of treatment weights and used these

in a Cox proportional hazards model to account for the non-random di¤erences between the

patients who were and were not observed to initiate treatment at the start of each trial. They

noted that the results were very similar, as one would expect.

3.2.2 Treatment regimes Immediate versus No treatment

The approach described in section 3.2.1 comparing the e¤ect of immediate initiation of treatment

versus deferral does not attempt to take into account the subsequent treatment (or not) in those

patients who initially deferred treatment. This in itself is useful clinically, where clinicians

and patients are typically faced with the decision to immediately initiate or defer treatment

at successive clinic visits. However, �deferral� in this instance encompasses a broad range

of subsequent treatment options. If instead interest lies in the e¤ect of initiating treatment

immediately versus never, then this approach would in general yield a conservative estimate.

In a study investigating the e¤ect of postmenopausal hormone therapy on the risk of coronary

heart disease using observational data, Hernán et al. (2008) began with the direct-adjustment

method of Writing Committee for the CASCADE Collaboration (2011), but then progressed to

an �adherence-adjusted� approach. This involved censoring patients when they discontinued

their trial-baseline treatment regime; that is, those who initiated treatment immediately at the

start of a given trial were censored if they subsequently stopped treatment, and those who

initially deferred treatment were censored if they subsequently initiated treatment. They used

inverse probability weighting of pooled logistic regression models to account for this potentially

informative censoring, thus up-weighting those patients who remained on their trial-baseline

regime to allow for those censored from their trial-baseline regime due to non-adherence. Of

note, while Hernán et al. (2008) censored both those patients who initially initiated treatment

but later stopped and those who initially deferred treatment but later started, as outlined
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in section 1.6.1, we will only be concerned with the latter, under the assumption that once

treatment is initiated, it is continued for life in HIV-infected persons. This is similar to other

studies in HIV infection (Gran et al., 2010; Writing Committee for the CASCADE Collaboration,

2011).

More recently, Gran et al. (2010) employed sequential Cox proportional hazards models to

estimate the direct causal e¤ect of treatment in HIV-infected persons. As in the adherence-

adjusted approach of Hernán et al. (2008), patients were censored if they initially deferred but

subsequently initiated treatment, and weights were applied accordingly. They estimated the

parameters of these models using composite (pseudo) likelihood, stratifying the Cox models by

trial start time, and estimated the standard errors using a jackknife approach. These models

are the same as those approximated by the weighted pooled logistic regression models of Hernán

et al. (2008), which are easier to implement with time-varying weights in standard software. As

discussed in section 2.2.5, the odds ratios obtained from pooled logistic regression models can

be interpreted as hazard ratios providing the probability of an event in each time interval is

small (D�Agostino et al., 1990).

Petersen, Deeks, Martin, and van der Laan (2007) used a similar approach in a di¤erent

�eld of HIV: when to switch from a failing treatment regime. They included patients with

virological failure and estimated the e¤ect of each additional month delay until switching on

the CD4 count eight months later. As in the approach used by Writing Committee for the

CASCADE Collaboration (2011), they constructed a number of trials, starting at each month

that a patient remained in the study. Inverse probability weighting was used to adjust for

treatment switches after the baseline time. Petersen, Deeks, Martin, and van der Laan (2007)

refer to their models as HAMSMs, since they employed standard MSMs with multiple baseline

times. In particular, they used a range of baseline times, and for each there was a single

�xed time after the start of that trial at which the outcome was evaluated. That is, for each

trial, there was a trial-speci�c outcome, namely CD4 count eight months later. However, in a

subsequent commentary, Robins et al. (2007) suggest that the term HAMSM should be reserved

for the scenario where there are a number of baseline times mapping to at least one overarching

outcome time across the study, rather than the one-to-one relationship between start and end

times in Petersen, Deeks, Martin, and van der Laan (2007). Robins et al. (2007) argue that

the danger of such HAMSMs is that if one allows realistically �exible models, then there may

be a risk of model incompatibilities. However, such inconsistencies will not arise provided the

assumptions of correct model speci�cation and no unmeasured confounding are met.
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At each time-point k, the estimates from the Immediate versus No treatment regimes deter-

mine the optimal history-adjusted static treatment regime from that time k onwards. Petersen,

Deeks, Martin, and van der Laan (2007) demonstrated that following the optimal history-

adjusted static treatment regime determined at time k will in general yield a poorer outcome

compared to sequentially following the optimal history-adjusted static treatment regime deter-

mined at time k, followed by the optimal history-adjusted static treatment regime determined

at time k+1, and so on. Consider a simple example, where the optimal history-adjusted treat-

ment regime is to initiate if the current CD4 count is < 350 cells/mm3. If a patient, who was

previously treatment-naïve, had a CD4 count > 350 cells/mm3 at time k, then following the

optimal history-adjusted treatment regime determined at time k from that time onwards would

mean not initiating treatment for the remainder of follow-up. However, sequentially following

the optimal history-adjusted static treatment regime determined at time k, followed by that

at time k + 1, and so on, would mean that the patient would initiate treatment if they have a

subsequent CD4 count < 350 cells/mm3, and this will in general yield a better outcome than

remaining o¤ treatment.

These sequential optimal history-adjusted static treatment regimes can be considered to map

to a dynamic treatment regime. Petersen, Deeks, Martin, and van der Laan (2007) show that

in a simple scenario with just one time-point, their optimal history-adjusted static treatment

regime yields the optimal dynamic treatment regime (see chapter 4). However, with more

time-points, their statically-optimal dynamic treatment regime may be inferior to the optimal

dynamic treatment regime. In addition, they note that if the outcome is for example CD4 count

m months later, rather than for example CD4 count at a speci�c time K at the end of the study,

then their HAMSMs and the dynamic MSMs of Robins et al. (2008) are optimising di¤erent

quantities since the outcome is di¤erent.

As outlined above, estimation of the e¤ects of the Immediate versus No treatment regimes

�rstly requires censoring patients who deviate from their initial treatment regime. As we assume

that treatment is continued once initiated, we are only concerned with the censoring of patients

who initially deferred but subsequently initiated treatment. This censoring may be informative

and we address this using inverse probability weighting.

Inverse probability weighting

We �rstly assume that there is no �usual�censoring, for example due to loss to follow-up; this

is addressed below. Since the arti�cial censoring from the regime Deferred treatment is directly

related to treatment initiation, we use an analogous approach as for the inverse probability of
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treatment weighting of standard MSMs. We �t the same model as in 3.1, except that patients

who initially deferred but later initiated treatment are censored from the time they initiated,

and inverse probability weights are incorporated to account for this potentially informative

censoring.

As in section 2.2.3, we de�ne:

pA(u) := Pr
�
A(u) = 0jA(u� 1) = 0; Y (u) = 0; L(u� 1)

	
for u = 1; 2; :::. Estimation of pA(u) follows as previously, using pooled logistic regression on

the unexpanded data (hence we have used u to denote time, rather than t, to avoid confusion

with follow-up time within a trial k). However, the remainder of the estimation di¤ers.

As above, the data are expanded into one record per patient per trial k per month of follow-

up, while patients remain in follow-up, treatment-naïve and event-free. All patients receive

weight 1 at time t = 0 in each trial, because the trial-baseline covariates may be adjusted

for directly in the outcome model. In addition, since we assume that treatment is continued

once initiated, those patients with A(k) = 1, who are considered to be following the regime

Immediate treatment, receive weight 1 for all follow-up in that trial k. For the patients who

initially deferred treatment in trial k, we use the estimates bpA(u) to obtain the (cumulative)
probability of remaining o¤ treatment. That is, for a given patient in trial k = 1; 2; :::, the

weight at times t = 0; 1; 2; ::: is estimated by:

bq(k)A (t) =

8>>><>>>:
1 if t = 0 or A(k) = 1
k+tY

u=k+1

bpA(u) if t � 1 and A(k) = 0
(3.2)

As in section 2.2.3, the (non-stabilised) weights then are estimated as:

cW (k)
A (t) =

1bq(k)A (t)

Stabilisation The weights can be stabilised as previously using the true-baseline covariates

(section 2.2.3). Alternatively, we can now incorporate the trial-baseline covariates with the aim

of increasing the e¢ ciency. De�ne:

p
(k)y
A (t) := Pr

�
A(t) = 0jA(t� 1) = 0; Y (t) = 0; L(k � 1)
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which is the same as p�A(t) de�ned in section 2.2.3, except replacing V with L(k� 1), and using

the superscript (k) to indicate the trial-dependence. Estimation of p(k)yA (t) follows from pooled

logistic regression models for the probability of treatment initiation, estimated on the expanded

data over patient-months with t � 1 in trials where treatment was initially deferred, that is

A(k) = 0. The numerator for the stabilised weights is estimated similarly to q(k)A (t):

bq(k)yA (t) =

8>><>>:
1 if t = 0 or A(k) = 1
tY
s=1

bp(k)yA (s) if t � 1 and A(k) = 0

and the stabilised weights are then simply given by:

dSW (k)

A (t) =
bq(k)yA (t)bq(k)A (t)

Pooled logistic regression model

Still assuming no �usual�censoring, we estimate for t = 1; 2; ::::

p(t) = Pr
�
Y (t+ 1) = 1jY (t) = 0; k; A(k); A(k � 1) = 0; L(k � 1)

	
using for example a pooled logistic regression model, in patients event-free and previously

treatment-naïve, with estimated weights dSW (k)

A (t):

logit fp(t)g = �A(k) + �L(k � 1) + f(k) + �f y(t)

where f(k) and f y(t) are functions of the trial k and follow-up time t within that trial, respec-

tively. As indicated above, this assumes heterogeneity across the trials k; this can be tested by

incorporating an interaction between A(k) and f(k).

Comparison with standard MSMs

As we have seen in chapter 2, standard MSMs may be susceptible to large inverse probability of

treatment weights, resulting in unstable treatment e¤ect estimates. These may arise in partic-

ular at treatment initiations when the estimated probability of treatment is small. In contrast,

with these history-adjusted models, patients who initially deferred treatment are censored at

the time of subsequent treatment initiation, therefore such large weights at treatment initiations

will be censored (Gran et al., 2010). Further, under standard MSMs, the estimated weights at

treatment initiation are carried forward for the remaining follow-up; again this is not the case
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under history-adjusted estimation. Of note, the weights are, strictly-speaking, inverse proba-

bility of (arti�cial) censoring weights, but since the (arti�cial) censoring is determined based

on treatment history, and in order to distinguish from �usual� censoring, we will refer to the

inverse probability of (arti�cial) censoring weights as inverse probability of treatment weights

henceforth.

As discussed in chapter 2, large weights may arise when the data are close to non-positivity.

In CASCADE, we have seen that there is a small subset of patients who continued to defer

treatment initiation despite having low CD4 counts. With the standard MSMs, we were unable

to do anything further, other than truncate the weights, unless we had taken the rather drastic

and potentially biased approach of excluding those patients completely. However, with history-

adjusted models, it is easy to restrict the trials, with respect to the trial-baseline covariates, to

the population of interest. We suspected that these patients who persistently deferred treatment

initiation despite low CD4 counts are not part of the population in which we wished to estimate

the e¤ects of treatment, and therefore it was possible to simply restrict our analyses to those

trials in which the trial-baseline CD4 count is above a certain threshold, that is for when the

question of Immediate versus Deferred treatment initiation is a clinically relevant choice.

While the treatment e¤ect parameters from the standard MSMs and the HAMSMs discussed

above are not the same and therefore not directly analogous, both approaches are an attempt to

understand the e¤ects of treatment and we would anticipate that the results would be broadly

compatible. Gran et al. (2010) found their results to be very similar to previous treatment e¤ect

estimates from applying standard MSMs to the same data; they argued that this supports the

validity of each approach. However, as mentioned, the treatment parameters in these models

are not identical. In particular, the adherence-adjusted treatment e¤ect estimate (looking at

immediate versus no treatment) from the HAMSM is adjusted for the trial-baseline covariates,

whereas that from the standard MSM is not.

Comparison with e¤ect of regimes Immediate versus Deferred treatment

Any di¤erences observed in the estimated e¤ects of the treatment regimes Immediate versus

No treatment, compared to Immediate versus Deferred, will depend on the treatment initiation

patterns in relation to the time-dependent covariates. We might anticipate that treatment is

less likely to be delayed for long periods of time at low current CD4 counts, therefore at such

CD4 counts the actual di¤erences between the Immediate and Deferred treatment regimes may

be relatively small due to those initially deferring treatment subsequently initiating soon after.

In contrast, the Immediate versus No treatment estimation will censor those patients, and
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upweight accordingly comparable patients who remain o¤ treatment, therefore we may expect

to see stronger treatment e¤ects under this approach, and particularly at low CD4 counts,

compared to the treatment regimes Immediate versus Deferred treatment.

3.2.3 Censoring

In the presence of �usual� censoring, for example due to LTFU, weights may be applied in

a similar way to those as in section 2.2.4. As for the treatment weights described above, the

denominator of the �usual�censoring weights is typically estimated using the unexpanded data,

and the numerator is typically estimated based on the expanded data to include the trial-baseline

covariates. For adherence-adjusted estimation, the overall weights are obtained as in chapter 2.

The outcome models must also then condition on being uncensored due to �usual�censoring.

3.2.4 Standard error estimation

As for standard MSMs, we use robust variance estimators in the outcome models. For the

comparison of the regimes Immediate versus Deferred treatment, this is necessary since patients

may contribute to more than one trial. This reasoning also applies to the adherence-adjusted

estimation, but also to allow for correlated observations induced by the use of time-dependent

weights estimated from the data.

3.3 Application to CASCADE

Our ultimate aim is to apply dynamic MSMs to the CASCADE data to investigate the question

of when to initiate treatment in HIV-infected persons. Using standard MSMs in chapter 2, we

have begun by demonstrating a treatment e¤ect on the time to AIDS or death in the population

of patients from CASCADE in which we will apply the dynamic MSMs, and have considered

e¤ect modi�cation by true-baseline covariates. We now propose the following analyses:

1. use the direct-adjustment approach of Writing Committee for the CASCADE Collabo-

ration (2011) to estimate the e¤ect on time to AIDS or death of the regimes Immediate

versus Deferred treatment, ignoring subsequent treatment in those patients who initially

deferred treatment, in our subset of CASCADE participants with CD4 � 500 cells/mm3

at study entry; and

2. extend these analyses to obtain the adherence-adjusted estimates of Hernán et al. (2008),

by accounting for subsequent treatment initiations in the patients who initially deferred

124



with the use of censoring and inverse probability weighting, to give estimates of the e¤ect

of the regimes Immediate versus No treatment.

For both, we will investigate treatment e¤ect modi�cation by time-dependent (trial-baseline)

CD4 count. This will help inform our subsequent work with dynamic MSMs and enable us to

make comparisons between the di¤erent methods.

3.3.1 Methods

We �rstly outline the methods for estimating the e¤ects of the regimes Immediate versus De-

ferred treatment, ignoring subsequent treatment initiations in those patients who initially de-

ferred treatment. Recall that, since the regime is determined at the start of the trial, adjustment

for the trial-baseline covariates in the outcome model is su¢ cient, and this can be done straight-

forwardly using Cox proportional hazards models. That is, no weighting is required. Secondly,

we detail the methods for the adherence-adjusted approach, which censors patients who initially

deferred but subsequently initiated treatment. Inverse probability weights are required to ac-

count for this potential informative censoring, and we use (weighted) pooled logistic regression

models due to limitations of current software.

Treatment regimes Immediate versus Deferred treatment

We began by using Cox proportional hazards models adjusted for the true-baseline covari-

ates only (including country), then incorporated �rstly just trial-baseline CD4 count and then

the other time-dependent trial-baseline covariates. We considered a �full�model with all the

covariates a priori identi�ed as potential confounders (see Table 1.3 of chapter 2, with the cate-

gorisations as given there for the categorical variables and splines for the continuous variables,

with �ve knots at the 5, 25, 50, 75 and 95th percentiles) and then used a stepwise backwards

selection procedure for the trial-baseline covariates (except CD4 count which was kept in the

model) to identify a more parsimonious model (remove if p > 0:05, re-enter if p < 0:01). Trial

start time k, measured from overall entry into the study as detailed in section 1.6.1, was in-

cluded as a spline (�ve knots at the 5, 25, 50, 75 and 95th percentiles). To test for heterogeneity

in the treatment e¤ect across trials, we considered including an interaction between treatment

regime and trial k.

To investigate treatment e¤ect modi�cation by trial-baseline CD4 count, we included an

interaction between CD4 count and treatment, with underlying CD4 count modelled as a �ve

knot spline and the interaction with treatment based on categorical CD4 count. We began by
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categorising CD4 count as Writing Committee for the CASCADE Collaboration (2011), but

had limited data in the lowest CD4 count category of < 50 cells/mm3 (5 patients contributing

to 29 trials) therefore combined the two lowest categories and considered < 200, 200 � 349,

350� 499 and � 500 cells/mm3.

We performed a range of sensitivity analyses, as follows:

1. Strati�ed by trial-baseline CD4 count, therefore permitting di¤erent e¤ects of the other

confounders on the time to AIDS or death by the trial-baseline CD4 count.

2. Excluded the trials beginning in the �rst month, since a high number of treatment initia-

tions occurred in the �rst month (161 (5%) patients initiated in the �rst month following

entry into the study as detailed in section 1.6.1).

3. Excluded trials with no previous HIV RNA information, since we suspected that HIV

RNA might be important and the lack thereof indicative of a di¤erent prognosis.

4. Excluded trials with trial-baseline CD4 count < 100 cells/mm3. As discussed previously,

we were concerned that such �treatment refusers�might be di¤erent in some way to our

population of interest.

5. Relaxed the LTFU and regular CD4 count requirements (as de�ned in section 2.4.1).

This was required in the standard MSM approaches since we needed regular CD4 counts

in order to reliably estimate the inverse probability of treatment weights. While we may be

concerned about the implications of LTFU or irregular CD4 counts, we can be reassured

that this censoring did not appear to be very informative in the estimation of the standard

MSMs, and we were able with the history-adjusted models to relax that requirement. That

is, patients were no longer censored during the course of a trial if they had irregular CD4

counts or met the criteria for LTFU (no CD4 count measured for > 12 months). However,

patients did not contribute to new trials once they were considered censored under these

criteria, since trial-baseline data would not have been available.

6. Used pooled logistic regression instead of Cox proportional hazards models, to check that

the approximation of the pooled logistic regressions (which were used for the adherence-

adjusted estimation with time-dependent weights, presented next) was reasonable. In this

model, time since trial start t was included as a spline (�ve knots at the 5, 25, 50, 75 and

95th percentiles).
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Treatment regimes Immediate versus No treatment

We proceeded to apply the adherence-adjusted approach to estimate the e¤ects of immediate

versus no treatment, by censoring patients who initially deferred treatment at the start of a trial

but subsequently initiated, and using inverse probability weighting to account for this potentially

informative censoring. Since it is not straightforward to apply time-dependent weights with Cox

proportional hazards models, we used pooled logistic regression models. We also considered

the e¤ects of applying the censoring only, without the upweighting, labelled the �unweighted�

approach. Note that this will in general be biased for the causal estimates of interest, since it

fails to account for the potential informative censoring of patients who initially deferred but

subsequently initiated treatment. Further note that this is di¤erent to the approach above

comparing Immediate versus Deferred treatment regimes, which addresses a di¤erent question

and where weighting is not required.

We used the treatment models derived in the di¤erent strategies of chapter 2 to estimate

a range of weights, with the numerator determined using the trial-baseline values of the time-

dependent covariates in the respective treatment model. However, we did not include strategy

VI since it was not possible to reliably estimate the model with interactions between CD4 count

and both HIV RNA and treatment. We estimated an additional set of weights based on the

model selected by the stepwise backwards procedure from the estimation of the e¤ect of the

regimes Immediate versus Deferred treatment (labelled strategy VIII). Time was included in

the numerator models as outlined above (k and t as splines). Truncations were applied as

indicated in chapter 2 (prior to incorporating censoring weights); that is, 0.1% truncation for

all strategies, except for strategies Ia, Ib and VII where 0.5% truncation was applied. Since the

weights from strategy VIII were somewhat unstable, 0.5% truncation was applied. All weight

summaries presented were based on the trials in which the patient initially deferred treatment,

and did not include the �rst month of each trial. That is, the summaries were only over the

patient-months in which the weights were estimated, and not those in which the weights were

set to 1 (see equation 3.2). This is to avoid including a lot of patient-months in which the

weight is known to be 1, which does not help inform the performance of the weight estimation.

In the outcome models, time was included as above (k and t as splines). Although the

treatment parameters from the standard MSMs and the adherence-adjusted HAMSMs are not

directly comparable, it is reasonable to expect that they might be consistent, therefore we �rst

estimated average hazard ratios across all trial-baseline CD4 counts. We then proceeded to

incorporate an interaction between treatment and CD4 count as above to look at the e¤ect of
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treatment by trial-baseline CD4 count.

Standard error estimation

As outlined in the methods, robust variance estimators were used throughout. However these

may be conservative, therefore for the main analyses we also bootstrapped (1000 repetitions)

with resampling strati�ed by country (though as for the standard MSMs, we had to group Italy

with Others since there were few patients in Italy). We assumed �xed weights since re-estimating

the weights is extremely time- and computer-intensive, and previous work with the standard

MSMs indicated that the additional uncertainty associated with re-estimating the weights on

each bootstrap sample is likely to be relatively small.

Censoring

As outlined in section 3.2.3, we proceeded to incorporate censoring weights. We used the censor-

ing models as determined previously, with the numerator estimated based on the trial-baseline

covariates for each respective model, as for the treatment weights. The simplest censoring

weights (from strategy Ia) were combined with the treatment weights from the new strategy

VIII to create the overall strategy VIII weights.

Model checking using country

As under the standard MSMs, we considered incorporating an interaction between country and

treatment, as a form of model checking.

AIDS-free survival

As for standard MSMs, these HAMSMs assume no e¤ect of the length of time spent on treat-

ment. To assess e¤ect modi�cation by CD4 count with a time-varying or cumulative e¤ect

of treatment, it would be necessary to include interactions between time on treatment and

trial-baseline CD4 count. However, due to limited numbers of patients and events within these

categories, this is not possible without substantially collapsing the CD4 categories, therefore

this has not been addressed here.
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Trial N N initiated N N events in those
patients treatment events who initiated

immediately immediately

1 3356 161 157 10
2 3156 32 144 1
3 3071 22 142 0
4 3015 19 140 3
5 2938 21 134 0
6 2871 25 129 0
7 2803 24 128 1
8 2737 19 123 0
9 2681 33 121 2
10 2603 29 115 2

Table 3.1: Illustration of the expansion of the CASCADE data to create a new trial for each
month that a patient remains alive, AIDS-free, in follow up and treatment-naive (for �rst 10
trials).

3.3.2 Results

Data

Our initial dataset was the same as that used for the application of standard MSMs in chapter

2. Of note, patients with less than one month of follow-up (including due to AIDS or death)

were excluded from that dataset, therefore meeting the requirement of Y (1) = 0 as indicated

in section 3.2.1. Of the 3382 patients, 26 had less than two months follow-up before being

censored, therefore, although they contributed to the estimation of censoring weights, they did

not contribute to the outcome model. The remaining 3356 patients contributed cumulatively

to a total of 84,029 patient-trials, with a median of 18 trials per patient (IQR 11, 33). The

maximum number of trials per patient was 147; 10 patients contributed to at least 130 trials

each. Table 3.1 illustrates, for the �rst 10 trials, the number of patients contributing to each

trial, the number of patients initiating treatment immediately, and the number of subsequent

events. Of note, a large number of patients initiated treatment in the �rst month despite having

high CD4 counts; this may in part be related to all patients by de�nition having a clinic visit

at that time (a CD4 count was recorded); these were excluded under the second sensitivity

analysis, as detailed above.
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Trial-baseline CD4 count stratum, cells/mm3

< 200 200� 349 350� 499 � 500
Number of trials 360 5683 18103 59883
Number of patients[1] 115 698 1458 3356
Follow-up, person-years[1] 331 2164 4638 10974
Number of events[1] 8 38 78 157
Treatment regime
Defer 272 5395 17864 59436
Immediate 88 288 239 447

Subsequently initiated after Deferred[2] 157 (58%) 3219 (60%) 7156 (40%) 14365 (24%)

Table 3.3: Summary of trials, patients, follow-up, subsequent treatment initiations and events,
by trial-baseline CD4 count. [1] Follow-up time and the numbers of patients and events are
unique within but not across the strata. [2] Percentage of those who initially deferred treatment
at the trial start.

Demographics and follow-up

The characteristics of patients who immediately initiated versus deferred treatment, by trial-

baseline CD4 count, are shown in Table 3.2. As we would expect, the probability of treatment

initiation was higher at lower CD4 counts, and within each CD4 stratum those who initiated

treatment had lower CD4 counts and higher HIV RNA levels. UK (and to some extent Other)

patients made up a higher proportion of those who initiated at lower versus higher CD4 counts;

conversely, the French made up a smaller proportion. At lower CD4 counts, females and IDUs

were more likely to defer treatment; these factors are likely to be correlated and this higher rate

of deferral amongst IDU was observed by Writing Committee for the CASCADE Collaboration

(2011). Also at lower CD4 counts, patients with decreases in CD4 count were more likely to

initiate treatment immediately, as we might expect. Further, no change in CD4 count, LOCF

and longer time since last CD4 count were associated with deferral of treatment at lower CD4

counts; these are likely to be proxy measures for no recent clinic visit and hence no CD4

measured. At higher CD4 counts, the nadir CD4 count tended to be slightly lower amongst

those who initiated treatment immediately, but this was not seen at the lower CD4 counts,

perhaps because at that stage of infection, the current CD4 count is a more in�uential factor in

the treatment decision than past values. At lower CD4 counts, the median number of previous

CD4 counts was lower in those who deferred treatment; again, this may be a proxy measure for

no recent CD4, but also it may be that the type of patient who attends fewer visits is less likely

to begin treatment.

Subsequent follow-up, including treatment initiations in patients who initially deferred and

events, is summarised in Table 3.3. There was a great deal more follow-up at higher CD4

counts, since patients all began with CD4 counts � 500 cells/mm3. As we might expect, a large
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Trial-dependent covariates Estimated treatment e¤ect
included in the model HR (SE)[4] 95% CI[4] p

- 0.83 (0.12) 0.63, 1.10 0.20
CD4 count[1] 0.71 (0.13) 0.50, 1.00 0.05
CD4 count plus all other trial-dependent covariates[2] 0.58 (0.10) 0.41, 0.82 0.002
CD4 count and peak HIV RNA[3] 0.58 (0.11) 0.40, 0.83 0.003

Table 3.4: Estimated e¤ect of treatment, with di¤erent time-dependent covariates included in
the Cox proportional hazards model. All models included time of trial start as a �ve knot
spline, plus the true-baseline covariates. HR=hazard ratio. SE=standard error. CI=con�dence
interval. [1] Spline with �ve knots at the 5, 25, 50, 75 and 95th percentiles. [2] See text
for further details of the trial-dependent covariates. [3] As determined by a re�ned stepwise
backwards selection procedure (see text for more details). [4] Robust standard errors.

percentage of patients who initially deferred treatment in any given trial went on to initiate

subsequently, particularly at lower trial-baseline CD4 counts.

E¤ect on time to AIDS or death of regimes Immediate versus Deferred treatment

(no adjustment for subsequent treatment initiation if initially deferred)

There was no evidence of a signi�cant di¤erence in the regimes Immediate versus Deferred

treatment on the time to AIDS or death in the model adjusting for true-baseline covariates only

(HR=0.83 [95% CI 0.63, 1.10], p = 0:20; Table 3.4). However, after adjusting for trial-baseline

CD4 count, Immediate treatment was associated with a 29% reduction in the hazard of AIDS

or death compared to Deferred treatment (0.71 [0.50, 1.00], p = 0:05). After further adjustment

for all trial-baseline covariates, a stronger bene�t of treatment was apparent (0.58 [0.41, 0.82],

p = 0:002).

The stepwise backwards selection procedure successively dropped time since last RNA

measurement, LOCF, last HIV RNA, number of previous CD4 counts and nadir CD4 count

(p = 0:87, 0.85, 0.60 and 0.35, respectively), leaving a model with CD4 decrease, time since

last CD4 count, number of previous HIV RNA measurements and peak HIV RNA (along with

CD4 count, the true-baseline covariates and time). The estimated treatment regime e¤ect was

similar to the full model, but with slightly more precision (0.56 [0.40, 0.79], p = 0:001).

However, there were concerns about over-�tting in this model due to e¤ect estimates of

certain covariates being in the opposite direction to that expected based on HIV epidemiology,

and colinearity was suspected between some covariates. For example, both shorter and longer

time since last CD4 count at trial-baseline were associated with lower risk of AIDS or death,

as was no change in CD4 count compared with any change (whether increase or decrease),

but the CD4 decrease category of no change captures to some extent the lack of a recent
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CD4 measurement. Therefore we undertook the following re�nements to the model: �rstly,

we re�tted the model without time since last CD4 count. This resulted in no change to 2

decimal places in the estimated e¤ect of the regime Immediate versus Deferred treatment, nor

in much di¤erence to the e¤ects of the other covariates, except that it rendered CD4 decrease

non-signi�cant. Therefore, in the interests of a parsimonious model, it was decided to omit

both (trial-baseline) time since last CD4 count and CD4 decrease, yielding a similar HR for the

regimes Immediate versus Deferred treatment of 0.55 (0.39, 0.77).

There were a number of HIV RNA-related variables in the model which gave rise to fur-

ther concerns about colinearity. In particular, both the absence of a true-baseline HIV RNA

measurement and higher true-baseline HIV RNA, if available, were associated with lower risk

of progression to AIDS or death, contrary to expectations. This e¤ect was reversed if (trial-

baseline) peak HIV RNA was omitted from the model, supporting our concern of colinearity.

However, this resulted in a weaker treatment e¤ect estimate (HR=0.72), suggesting that peak

HIV RNA may be an important confounder and should be included in the model. Therefore,

true-baseline HIV RNA and the indicator for its availability were removed from the model. In

this revised model, the (trial-baseline) number of previous HIV RNA measurements was no

longer signi�cant (p = 0:14), therefore this was also dropped from the model (although an

indicator for availability of any previous HIV RNA measurement was included).

In conclusion, the �nal model, via this re�ned stepwise backwards selection procedure, in-

cluded the same true-baseline covariates as previously except for baseline HIV RNA, and in-

cluded only the trial-baseline covariates CD4 count and peak HIV RNA (and its availability).

The resulting estimated HR for the regimes Immediate versus Deferred treatment was 0.58

(0.40, 0.83). Including an interaction between treatment regime and time of trial start yielded

a p-value of 0.53, indicating homogeneity across trials, therefore we proceeded with the model

pooled across trials.

The results from this �nal model are given in Table 3.5. There was no evidence of a di¤erence

in outcome by trial-baseline CD4 count (p = 0:45). Higher peak HIV RNA was associated with

faster time to AIDS or death, as we would expect (Figure 3.2). There was a strong trend

towards the lack of any previous HIV RNA measurement being predictive of AIDS or death,

but the con�dence interval was extremely wide. Being HIV-infected via IDU was associated

with faster time to AIDS or death, as was shorter time HIV-infected at study entry. This may

be because those entering further from seroconversion were a di¤erent type of patient in that

they had to have survived that long with a high CD4 count in order to enter the study. There
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Covariate HR (95% CI)[1] p

Immediate, versus Deferred treatment 0.58 (0.40, 0.83) 0.003
Trial-baseline covariates
CD4 count, cells/mm3 [2] 0.45
Peak HIV RNA, log10 copies/ml [2] < 0:001
No previous HIV RNA measurement available 3.13 (0.10, 98.2) 0.52

True-baseline covariates
CD4 count, per 100 cells/mm3 1.02 (0.94, 1.12) 0.60
Sex, female 0.69 (0.37, 1.28) 0.24
Age at seroconversion, per 10 years 1.17 (0.96, 1.43) 0.13
Year of seroconversion 0.94 (0.87, 1.03) 0.18
Route of HIV transmission, IDU 1.96 (1.10, 3.49) 0.02
Country, versus France 0.94
Germany 0.50 (0.07, 3.79)
Italy 0.74 (0.26, 2.12)
Spain 0.94 (0.39, 2.28)
Switzerland 1.06 (0.42, 2.66)
UK 0.75 (0.43, 1.32)
Others 0.94 (0.48, 1.85)

Time HIV-infected at entry, years 0.79 (0.62, 1.01) 0.06
Identi�ed as HIV-infected close to seroconversion 1.71 (0.80, 3.64) 0.16

Table 3.5: Predictors of time to AIDS or death. Time included as a �ve knot spline. HR=hazard
ratio. SE=standard error. CI=con�dence interval. [1] Robust standard errors. [2] Splines used
for continuous variables.
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Figure 3.2: Hazard ratios for time to AIDS or death for peak HIV RNA (�ve knot spline).
Centred on HR=1 for the median. The vertical dashed lines indicate the interquartile range.
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was no association between time to AIDS or death and true-baseline CD4 count, sex, age at or

year of seroconversion, country or whether identi�ed as HIV-infected close to seroconversion.

Sensitivity analyses Table 3.6 shows the overall results for this model and the sensitivity

analyses (outlined in section 3.3.1); the results are all broadly similar.

Treatment e¤ect modi�cation by CD4 count We proceeded to incorporate an interaction

between treatment regime and CD4 count in the original model to look at e¤ect modi�cation by

trial-baseline CD4 count. While the interaction was not signi�cant (p = 0:27 and 0.26 with CD4

categorical or continuous, respectively), there was a trend towards greater bene�t of treatment at

lower CD4 counts (Table 3.6). At trial-baseline CD4 counts < 350 cells/mm3, there was clear

evidence of a bene�t of immediate compared to deferred treatment, although the con�dence

intervals were wide, probably due to the more limited data in these strata (HR 0.20 [0.05, 0.77]

and 0.44 [0.22, 0.88] for CD4 counts < 200 and 200�349 cells/mm3, respectively). There was a

suggestion of a bene�t of immediate compared to deferred treatment at trial-baseline CD4 counts

� 350 cells/mm3 but the con�dence intervals included one and overlapped considerably (0.79

[0.46, 1.37] and 0.70 [0.44, 1.09] for CD4 counts 350� 499 and � 500 cells/mm3, respectively).

The e¤ects of the other true- and trial-baseline covariates were similar to those from the model

without the CD4 count by treatment interaction.

Sensitivity analyses The results from the original model are presented along with those

by CD4 stratum from the sensitivity analyses in Table 3.6 and Figure 3.3. The results were

all fairly consistent across the di¤erent sensitivity analyses. Restricting to those trials with

trial-baseline CD4 count � 100 cells/mm3, the HR for the lowest CD4 category (now 100� 199

compared to 0� 199 cells/mm3 previously) was closer to one at 0.31 (0.08, 1.14), as we would

expect since by de�nition the trials with the very lowest CD4 counts were omitted.
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Regimes Immediate versus No treatment (adherence-adjusted estimation, adjusting

for those trials where treatment was initially deferred but subsequently initiated)

As detailed in the methods, to obtain adherence-adjusted estimates, the patients who initially

deferred treatment at the start of a trial but then subsequently initiated were censored at the

time of treatment initiation, and weighting was required to adjust for this potentially informative

censoring. We proceeded with the original analysis above only (that is, we did not repeat any

of the sensitivity analyses detailed in the previous section), since the treatment e¤ect estimates

did not appear to be sensitive to these assumptions. However, the weighting was applied using

the range of treatment and censoring models developed under the di¤erent strategies of chapter

2. Of note, trial-baseline CD4 count was always included in the models for the denominator

and numerator of the weights.

Distribution of the inverse probability weights The estimated inverse probability weights,

for the arti�cial censoring of the patients who initially deferred but subsequently initiated treat-

ment, are illustrated over time in Figures 3.4 and 3.5 (the former with no truncation and the

latter with 0.1% truncation for illustration). Once again, there were some very large weights

occurring, but in contrast to the weights employed for the standard MSMs, there were also some

very small weights. The weights were much more centrally located on one, with narrower in-

terquartile ranges, compared to those for the standard MSM. After 0.1% truncation, the weights

were again much more well-behaved, although there were still somewhat large weights under

strategies VII and VIII (neither of which were the main strategies recommended in chapter 2),

although still < 100.

As outlined in section 3.3.1, the treatment model building strategies were used to determine

what degree of truncation should be applied, which was 0.1% truncation across all strategies,

except strategies Ia, Ib and VII where 0.5% truncation was applied, and 0.5% truncation was

applied to the new strategy VIII. After applying these strategy-speci�c truncations, the means

of the weights were all slightly less than one, ranging from 0.969 under strategy VIII to 0.996

under strategy V (Table 3.7). All sets of weights were fairly stable with smaller standard

deviations and ranges compared to the weights under the standard MSMs (maximum weight

11, under strategies II/III).
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Figure 3.3: Results from the original and sensitivity analyses: estimated e¤ect of regimes Imme-
diate versus Deferred treatment by trial-baseline CD4 count. See section 3.3.1 for further details
on the di¤erent sensitivity analyses; brie�y, 1=strati�ed by trial-baseline CD4 count, 2=ex-
cluded �rst trials, 3=excluded trials without HIV RNA, 4=excluded trials with trial-baseline
CD4 count <100 cells/mm3, 5=relaxed LTFU and regular CD4 count restrictions, 6=pooled
logistic regression.

Figure 3.4: Distribution of the estimated stabilised weights for the di¤erent treatment models.
Spikes = range, bars = interquartile range, o = median, x = mean. Note that the scales of the
y-axes vary.
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Figure 3.5: Distribution of the estimated stabilised weights for the di¤erent treatment models,
after truncation of the outer 0.1 percentiles, for illustration. Spikes = range, bars = interquartile
range, o = median, x = mean. Note that the scales of the y-axes vary.
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Average estimated treatment e¤ects The results for the e¤ect of immediate versus no

treatment, across all CD4 strata, arising from each of the di¤erent strategies are shown in

Table 3.7. All strategies demonstrated considerable control for confounding when compared to

the unweighted estimate of 0.46 (0.25, 0.86). Recall that this unweighted approach involved

applying the censoring of patients who initially deferred but subsequently initiated treatment,

but not the weighting, and therefore is biased for the causal e¤ect of the regimes Immediate

versus No treatment; it is included to demonstrate the e¤ects of weighting. Strategies Ia and

Ib yielded odds ratios closest to one (0.31 [0.15, 0.62] and 0.30 [0.15, 0.61], respectively), as we

might have expected since these had the greatest truncation of 0.5% applied. However, strategy

VIII (the model obtained by the adapted stepwise backwards selection procedure) also had 0.5%

truncation applied yet yielded the odds ratio furthest from one (0.20 [0.11, 0.39]). Of note, the

standard errors arising from strategies IV and V, where the treatment models were strati�ed

by country, were considerably larger than those from the other strategies (0.52 and 0.54 on the

log-odds scale, respectively, compared to 0.31-0.36 under the other strategies).

Comparing the estimated treatment e¤ects with those from the standard MSMs

and those of the regimes Immediate versus Deferred treatment As discussed above,

although the treatment parameters of the standard MSMs and adherence-adjusted HAMSMs

are not the same, we would expect e¤ects in the same direction, as observed. With respect to the

magnitude of e¤ect, the adherence-adjusted odds ratios were all consistently lower (further from

one) than those from the standard MSMs (Table 3.7). In fact, the results from the standard

MSMs more closely matched the estimated e¤ect of the regimes Immediate versus Deferred

treatment (0.56 [0.40, 0.79], Table 3.4). Therefore, by adjusting for the subsequent treatment

initiations in those who initially deferred treatment, a greater bene�t of treatment is apparent,

as we might expect.

The standard errors from the HAMSMs were all somewhat larger than those from the stan-

dard MSMs, perhaps contrary to what we might expect. The bootstrapped CIs were comparable

to the robust CIs, and if anything were a little wider (Table 3.7). We incorporated a further

500 bootstraps for strategies Ia and III, but the resulting CIs were very similar. The medians

were similar to the point estimates.

Treatment e¤ect modi�cation by CD4 count Incorporating an interaction between treat-

ment and trial-baseline CD4 count, the odds ratios for Immediate versus No treatment across

all strategies and CD4 count strata were lower than the unweighted estimates (that is, with cen-
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Strat- CD4 count, cells/mm3 p[2]

egy < 200 200� 349 350� 499 � 500
Unweighted[1] 0.08 (0.02, 0.35) 0.28 (0.12, 0.65) 0.92 (0.46, 1.82) 0.83 (0.48, 1.42) 0.007

Ia 0.04 (0.01, 0.17) 0.19 (0.08, 0.46) 0.73 (0.35, 1.52) 0.73 (0.42, 1.27) < 0:001
Ib 0.03 (0.01, 0.15) 0.21 (0.09, 0.50) 0.78 (0.37, 1.66) 0.70 (0.40, 1.22) < 0:001
II/III 0.03 (0.01, 0.14) 0.16 (0.07, 0.37) 0.57 (0.26, 1.24) 0.63 (0.35, 1.11) < 0:001
IV 0.02 (0.004, 0.15 0.17 (0.06, 0.50) 0.71 (0.31, 1.61) 0.63 (0.34, 1.20) < 0:001
V 0.02 (0.003, 0.12) 0.15 (0.05, 0.45) 0.70 (0.30, 1.63) 0.57 (0.29, 1.12) < 0:001
VII 0.03 (0.01, 0.13) 0.15 (0.07, 0.36) 0.39 (0.19, 0.84) 0.44 (0.24, 0.81) 0.004
VIII 0.03 (0.006, 0.11) 0.13 (0.06, 0.32) 0.47 (0.22, 1.02) 0.44 (0.24, 0.82) < 0:001

Table 3.8: Estimated e¤ect of regimes Immediate versus No treatment, by trial-baseline CD4
count, across the di¤erent treatment model building strategies of chapter 2 (treatment (arti�cial
censoring) weights only). Results are odds ratio (95% con�dence interval, with robust standard
errors). Note that the overall results are shown in Table 3.7. [1] Censoring applied (therefore
di¤erent to the previous results which were estimating the e¤ects of Immediate versus Deferred
treatment with no censoring performed) but no weighting applied (therefore in general biased for
the causal e¤ects of the regimes Immediate versus No treatment). [2] p-value for the interaction
between treatment and trial-baseline CD4 count category.

soring but not weighting applied), as expected, since these estimates account for the patients

who initially deferred but subsequently initiated treatment (Table 3.8 and Figure 3.6). We saw

a similar pattern to the results from the regimes Immediate versus Deferred treatment, but

the evidence for a greater bene�t of treatment at lower CD4 count strata was much stronger.

Compared to the Immediate versus Deferred treatment results, the estimated odds ratios were

broadly similar for CD4 counts � 350 cells/mm3, but in contrast were now somewhat lower

(further from one) for CD4 counts < 350 cells/mm3, at least for strategies II/III, VII and VIII.

This is in line with our observation that, at lower trial-baseline CD4 counts, higher percentages

of patients were subsequently observed to initiate treatment. The con�dence intervals after the

arti�cial censoring and weighting for non-adherence to trial-baseline regime were wider than

under the regimes Immediate versus Deferred treatment, as we might expect by the nature of

weighted estimates.

As previously, while there was a suggestion of a bene�t of treatment at CD4 counts � 350

cells/mm3, the con�dence intervals spanned one for the majority of the strategies. However,

strategies VII and VIII indicated that there may be a bene�t of treatment at CD4 counts

350�499 cells/mm3 (albeit borderline for strategy VIII) and even � 500 cells/mm3 (0.39 [0.19,

0.84] and 0.44 [0.24, 0.81], respectively, for strategy VII; 0.47 [0.22, 1.02] and 0.44 [0.24, 0.82],

respectively, for strategy VIII). However, given the issues raised earlier in this section regarding

potential collinearity between a number of HIV RNA variables, we might be concerned about

the results from strategy VII, which incorporated a number of covariates based on HIV RNA

data.
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Unweighted [1]
Strategy Ia
Strategy Ib
Strategy II/III
Strategy IV
Strategy V
Strategy VII
Strategy VIII
Immediate/deferred [1]
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Strategy Ia
Strategy Ib
Strategy II/III
Strategy IV
Strategy V
Strategy VII
Strategy VIII
Immediate/deferred [1]

Unweighted [1]Unweighted [1]
Strategy IaStrategy Ia
Strategy IbStrategy Ib
Strategy II/IIIStrategy II/III
Strategy IVStrategy IV
Strategy VStrategy V
Strategy VIIStrategy VII
Strategy VIIIStrategy VIII
Immediate/deferred [1]Immediate/deferred [1]

Figure 3.6: E¤ect of regimes Immediate versus No treatment on time to AIDS or death by trial-
baseline CD4 count, and by the di¤erent strategies (treatment (arti�cial censoring) weights
only). [1] �Unweighted�approach censored patients if they initially deferred but subsequently
initiated treatment (biased for the causal e¤ect of Immediate versus No treatment); �imme-
diate/deferred� approach applied neither censoring nor weighting of such patients (di¤erent
question).

Censoring The results after incorporating the weights for the �usual� censoring are shown

in Table 3.9. The means, standard deviations and maxima of the estimated weights were all

slightly larger than with the treatment weights only, most noticeably for strategy V where

the standard deviation and maximum more than doubled (from 0.403 to 1.027 and from 8 to

24, respectively); this strategy had rather complex censoring models. These changes in the

estimated weights were re�ected in the larger standard errors of the average (across CD4 count

strata) estimated treatment e¤ects, except for strategies IV and V where the standard errors

were smaller. These two strategies also yielded more extreme average estimated treatment

e¤ects once censoring was taken into account (average ORs reduced from 0.24 to 0.17 and from

0.21 to 0.17, respectively). The average estimated treatment e¤ects under the other strategies

were all broadly similar; those for strategies VII and VIII were slightly larger than previously

but the con�dence intervals were widely overlapping.
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Treatment e¤ect modi�cation by CD4 count after censoring applied Considering the

results by CD4 strata (Table 3.9 and Figure 3.7), the estimated ORs tended to be slightly larger

(closer to one) in the < 200 cells/mm3 stratum compared to previously, but the con�dence

intervals were somewhat larger. The most noticeable di¤erences were seen in the 200 � 349

cells/mm3 stratum, where the ORs roughly doubled across all strategies when using censoring

weights as well as treatment weights (for example from 0.19 to 0.38 under strategy Ia). The

estimated treatment e¤ects in the 350 � 499 cells/mm3 stratum also increased, but not quite

so dramatically. In contrast, there was no clear pattern in the � 500 cells/mm3 stratum; under

strategy Ia there was little change in the estimated treatment e¤ect (0.73 compared with 0.72

previously), under strategy IV the estimated odds ratio dropped from 0.60 to 0.49, and under

strategy VIII the estimated odds ratio increased from 0.44 to 0.49.

Model checking using country Figure 3.8 illustrates the estimated e¤ects of the regimes

Immediate versus No treatment by country for each of the di¤erent strategies (all CD4 count

strata combined; estimation performed by incorporating an interaction between treatment and

country). Visually, there appears to be some di¤erence in the estimated treatment e¤ects by

country, although not statistically signi�cant under any of the strategies (p-values shown in

brackets in the Figure). As under the standard MSMs, the treatment e¤ect estimates appeared

to be strongest for Switzerland and Spain, while weakest for France and the UK. Overall, we

may be reassured that there is no strong evidence of a di¤erence in the treatment e¤ect estimates

by country.

3.4 Discussion

We have estimated that the e¤ect of immediate treatment initiation compared to deferral (ignor-

ing any subsequent treatment initiation), with straightforward adjustment for time-dependent

covariate history, is associated with a 42% (17, 60) reduction in the risk of AIDS or death in

our CASCADE population. Although not statistically signi�cant, we observed a trend towards

a greater bene�t of immediate treatment initiation compared to deferral at lower current CD4

counts, with treatment associated with a 80% (23, 95) reduction in the risk of AIDS or death

in those with current CD4 counts < 200 cells/mm3 compared to 30% reduction (9% increase to

46% reduction) in those with current CD4 counts � 500 cells/mm3. These results were robust

to a broad range of sensitivity analyses. One of these sensitivity analyses relaxed the LTFU

and regular CD4 requirements, by not censoring patients within a trial if they had irregular
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Figure 3.7: E¤ect of regimes Immediate versus No treatment on time to AIDS or death by trial-
baseline CD4 count, and by the di¤erent strategies (treatment (arti�cial censoring) and �usual�
censoring weights). �Unweighted� approach censored patients if they initially deferred but
subsequently initiated treatment (biased for the causal e¤ect of Immediate versus No treatment).
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Figure 3.8: Estimated e¤ect of regimes Immediate versus No treatment on time to AIDS or death
by country. Values in brackets are the p-values for the interaction between regime and country.
�Unweighted� approach censored patients if they initially deferred but subsequently initiated
treatment (biased for the causal e¤ect of Immediate versus No treatment). [1] Treatment model
strati�ed by country.
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CD4 counts or met the LTFU criteria (no CD4 count measured for > 12 months). However,

patients did not contribute to new trials once considered censored under these criteria. This

could have been further extended to include patients again if new CD4 counts were available,

although there may be concern about what happened to those patients in the interim, which it

may not be possible to adjust for using observed data.

We have outlined why �adherence-adjusted�estimates may be desirable, shown how these

may be obtained using inverse probability weighting of HAMSMs, and applied these methods

to our CASCADE population using a range of weight-estimation strategies. By �adherence-

adjusted�estimates, we mean the estimation of the e¤ect of the regimes Immediate versus No

treatment. Although the principles of weight estimation are exactly the same as for standard

MSMs, the weights are applied slightly di¤erently. In particular, for a patient who initially de-

ferred but subsequently initiated treatment, their follow-up is censored at the time of treatment

initiation and therefore large weights, which may occur under standard MSMs due to a low

probability of treatment initiation, may be avoided (Gran et al., 2010). This was apparent in

the more stable weights observed here, with means close to one and small range, compared to

those for the standard MSM.

After applying the appropriate censoring and weighting for those patients who initially

deferred but subsequently initiated treatment, the estimated odds ratios were much further

from one compared to those from the Immediate versus Deferred treatment analysis. This is as

we would expect since the regime Deferred treatment encompasses a broad range of subsequent

treatment paths and implicitly assumes that treatment will be started at some later time-point,

rather than being arti�cially withheld forever. The results of this adherence-adjusted analysis of

Immediate versus No treatment were broadly consistent across the di¤erent weighting strategies,

as expected, with odds ratios ranging from 0.20 (0.11, 0.39) to 0.31 (0.15, 0.62). If weighting

was not applied to account for the arti�cial censoring process, we saw a somewhat larger odds

ratio (0.46 [0.25, 0.86]), which nicely illustrates the important role of weighting for unbiased

estimation in this scenario.

We observed a stronger trend towards greater bene�t of treatment at lower current CD4

counts under the regimes Immediate versus No treatment, compared to the regimes of Immediate

versus Deferred treatment, due to the larger proportions of patients who initially deferred

treatment at lower CD4 counts subsequently initiating treatment, as we might expect. Although

the con�dence intervals were wide, there were di¤erences in the treatment e¤ect estimates for

current CD4 counts < 200, 200� 349 and � 350 cells/mm3, with strong evidence of a bene�t of
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treatment when current CD4 counts were < 200 and 200� 349 cells/mm3 (0.06 [0.01, 0.33] and

0.38 [0.16, 0.92], respectively) but no clear bene�t of treatment at when current CD4 counts of

350� 499 or � 500 cells/mm3 (0.98 [0.41, 1.63] and 0.72 [0.32, 1.63], respectively).

The overall e¤ect estimate from the Immediate versus Deferred treatment regimes (odds ratio

0.58 [0.40, 0.83]) broadly resembled the treatment e¤ect estimates from the standard MSMs (for

example, 0.54 [0.32, 0.90] under strategy Ia), while the estimates from the Immediate versus

No treatment regimes were considerably smaller (odds ratios of 0.20-0.31 as given above). As

discussed in section 3.2.2, Gran et al. (2010) suggested that the treatment e¤ects of interest from

the standard MSMs and adherence-adjusted HAMSMs should be similar, and they found this

to be the case. However, they also obtained similar estimates with and without the adherence-

adjustments, that is, with and without taking into account subsequent treatment initiations

in those patients who initially deferred treatment. The reason for this is not clear, but will

be dependent on the subsequent treatment initiation patterns of those patients who initially

deferred treatment in relation to their CD4 count trajectories. While the treatment e¤ect

estimates of Gran et al. (2010) were considerably further from one than our estimates (their

overall HR was 0.17 [0.08, 0.34]), their results were not dissimilar to the estimates we obtained

in the Swiss data (visible in Figure 3.8; their study used data from the Swiss HIV Cohort, which

feeds in to CASCADE). Also, in contrast to their study, our treatment e¤ect estimates were

somewhat di¤erent with and without the weighting to adjust for adherence. Fundamentally,

the standard MSMs and adherence-adjusted HAMSMs are estimating di¤erent quantities (Gran

et al., 2010), so it is possible that the fact that their estimates were similar was coincidental.

The approach used by Writing Committee for the CASCADE Collaboration (2011) is most

comparable to our analysis of the regimes of Immediate versus Deferred treatment regimes, since

the authors permitted patients to follow any treatment path following initial deferral. However,

they included all patients regardless of initial CD4 count, rather than focus on the group with

high CD4 counts shortly after seroconversion. Overall, our results were broadly consistent with

their �ndings, albeit with wider con�dence intervals because of the smaller sample size due to

our stringent eligibility criteria (our estimates: 0.20 [0.05, 0.77], 0.44 [0.22, 0.88], 0.79 [0.46,

1.37] and 0.70 [0.44, 1.09] for CD4 counts < 200, 200 � 349, 350 � 499 and � 500 cells/mm3;

respectively; their results: 0.32 [0.17, 0.59], 0.48 [0.31, 0.74], 0.59 [0.43, 0.81], 0.75 [0.49, 1.14]

and 1.10 [0.67, 1.79] for CD4 counts < 50, 50�199, 200�349, 350�499 and 500�799 cells/mm3;

respectively, with sample size 9455 patients).

As discussed in chapter 2, our population is unlike many others in that all patients enter
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the risk set with a high CD4 count. In particular, this meant we had limited data on trials with

low trial-baseline CD4 count. Longer follow-up may address this issue, however if all patients

initiated treatment according to current guidelines then there would be no patients with CD4

counts < 350 cells/mm3 remaining o¤ treatment.

Of note, Hernán et al. (2008) performed the treatment model �tting with the time-dependent

covariates (which then contributes to the denominator of the inverse probability weights) on

the expanded data, with one treatment model per trial. This was possible because they had

a limited number of trials, only 8. In contrast, we �tted the treatment models with the time-

dependent covariates on the unexpanded data, following Petersen, Deeks, Martin, and van der

Laan (2007), because we had a large number of trials (median 18 per patient, and one patient

contributed to 147). No heterogeneity was detected between the trials, therefore it was possible

to use a model pooled across the trials.

We have demonstrated treatment e¤ect modi�cation by time-dependent CD4 count, with

treatment having a greater e¤ect in those with lower current CD4 count. In chapter 5, we will

return to the results presented here to compare with those obtained from the optimisation of

dynamic treatment regimes, which are explored in the next chapter. As previously highlighted,

while the application of history-adjusted and dynamic MSMs typically answer di¤erent ques-

tions, we might anticipate some consistency across the two approaches, and such a comparison

may o¤er additional insights to the inference of interest.
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Chapter 4

Dynamic marginal structural models

4.1 Introduction

In previous chapters, we have explored the estimation of causal e¤ects using MSMs. We have

proposed and applied a range of plausible strategies for the estimation of the inverse probability

weights, and have considered treatment e¤ect modi�cation by baseline covariates. We progressed

to HAMSMs, to allow the e¤ects of treatment to depend on time-dependent covariates. We now

move to an approach which will allow us to look directly at the estimation of pre-de�ned dynamic

treatment regimes, that is a set of regimes which are de�ned in advance in terms of a patient�s

time-dependent covariates (see section 1.3). Our motivating clinical example is when to initiate

treatment in HIV-infected persons, with respect to their CD4 count.

In this chapter, we begin by outlining the methodology of dynamic MSMs, which are a rel-

atively recent approach. These methods have recently been extended to incorporate permitted

delays in treatment initiation (grace periods; see section 4.2.2; Cain et al. (2010)). However,

these extensions have been rarely applied in practice (Cain et al., 2010; HIV-CAUSAL collabora-

tion, 2011; Shepherd et al., 2010), and their implications have not previously been investigated.

We discuss and explore some of the issues surrounding these methods, �rstly via simulation

studies and then applied to the CASCADE data.

4.1.1 A hypothetical randomised trial

A recommended approach to de�ning dynamic causal questions is to consider the hypothet-

ical randomised trial we would ideally conduct (Cain et al., 2010; Hernán et al., 2008). To

address our question of when treatment should be initiated with respect to CD4 count in

HIV-infected persons, we could imagine a trial which enrols treatment-naïve patients with

CD4 counts � 500 cells/mm3 and randomises them to start treatment when their CD4 count
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�rst falls below x cells/mm3, with the range of x to be considered perhaps given by x 2

f200; 210; 220; :::; 490; 500g. Alternatives to this set are discussed in section 4.6.3. As in any

randomised trial, we may specify certain requirements in the protocol, such as that patients

should have their CD4 count measured every month and start treatment within a month of

their CD4 count reaching the value de�ned by their randomised regime x. It would then be

possible to compare these regimes by looking at the AIDS-free survival at say 10 years, and se-

lecting the optimal x as that which maximises 10-year AIDS-free survival. However, in practice

it would not be trivial to conduct such a trial, since very large numbers of patients would be

required with very long follow-up. We wish to mimic this randomised trial using causal methods

with observational data; this could help inform a more limited set of potential optimal regimes

for consideration in future trials.

4.2 Methodology

4.2.1 Dynamic marginal structural Cox model

As in the hypothetical randomised trial (section 4.1.1), HIV-infected treatment-naïve persons

are included from the time of �rst observed CD4 count � 500 cells/mm3 and regimes are de�ned

by:

�initiate treatment when observed CD4 count �rst falls below x cells/mm3�

where x 2 f200; 210; :::; 500g. For brevity, we refer to these regimes by their index x, for example

regime x = 350 means to initiate treatment when observed CD4 count �rst drops below 350

cells/mm3. Let Tx be the time to AIDS or death for a given patient under a regime x. If we could

observe Tx for all patients and regimes x, or indeed if a su¢ ciently large number of patients were

randomised to each x as in section 4.1.1, then the optimal regime x would simply be that which

minimises the risk of AIDS or death across all patients, assuming constant treatment regime

e¤ects across patients. However, even in the absence of any other censoring, it is clearly not

possible to observe Tx for all patients and regimes; in practice, for each patient we observe only

a subset of regimes (which may be empty, or have one or more elements), and the regime(s) that

any given patient is observed to follow may be confounded by their prognosis. In particular,

any patient who initiated treatment at a CD4 count above their nadir (lowest value to date) no

longer contributes to any regimes. Assuming for now that there is no censoring, for each patient

we observe the time to event T and, under the assumption of consistency, T under observed

x is Tx (section 1.2.4). For those regimes x which a patient is not compliant with throughout
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follow-up, Tx remains counterfactual.

We de�ne a dynamic marginal structural Cox model for the time to AIDS or death by:

�Tx (tjx; V ) = �0 (t) exp f�g (x) + �V g

where V is a vector of baseline covariates and g(x) is some function of the regimes, which

could for example simply be categorical or linear, or more complex such as a spline or fractional

polynomial (Royston and Sauerbrei, 2008). This is an extension of the standard MSM (equation

2.2). Since Tx remains counterfactual for some patients and regimes x, we cannot �t this model

directly. However, we can estimate the causal parameter of interest � of this MSM using inverse

probability weighting methods, similar to those of section 2.2.3. There are three main steps to

the method.

Step 1. All patients initially follow all regimes

As previously, we split time into suitable intervals, given by t = 1; 2; :::. We use exactly the

same set-up and notation for time-dependent covariates L(t), treatment A(t) and outcome Y (t)

as introduced in section 2.2.1, with overbars representing history to that time. Of note, as in

previous chapters, since we model outcome Y (t + 1) given A(t), this means that we assume

treatment in [t; t + 1) is independent of the outcome in that interval. We consider all patients

to be compliant with all regimes initially; patients are then arti�cially censored from regimes

when they �rst become noncompliant with that regime due to their covariate and treatment

history. De�ne Cx(t) to be an indicator for �arti�cial�censoring, taking value 0 if the patient�s

observed data is still consistent with regime x prior to time t, and value 1 otherwise.

Consider the example patient shown in Figure 4.1. This patient had monthly CD4 counts,

where, as per the notation introduced in section 2.2.1, CD4(t) refers to the latest CD4 count

measured in [t � 1; t) (that is, the latest CD4 count assumed to be available to inform the

treatment decision at time t). Treatment was initiated in the interval [5; 6), therefore A(t) = 0

for t � 5 and A(t) = 1 for t � 6. The patient may then have experienced AIDS or death at

some later time t > 6.

Firstly, imagine the simple case of just three regimes, de�ned by x = 200; 350; 500. The

patient is compliant with all regimes to start with. Under the regime given by x = 500, we have

C500(t) = 0 for t � 2 and C500(t) = 1 for t � 3, since the patient did not initiate treatment

in the interval [2; 3) in response to the �rst observed CD4 count below that threshold. It is

important to note that although the censoring indicator takes the value 1 in this interval, any
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Figure 4.1: Illustration of compliance over time for an example patient with CD4 counts observed
monthly and with regimes given by x = 200; 350 and 500 (no grace period). Recall that CD4(t)
is the latest CD4 count measured in the time interval [t� 1; t). Cx(t) is an arti�cial censoring
indicator; see text for more details.

AIDS or death events occurring in this interval would be included in the analysis; only AIDS

or death events occurring from time 3 onwards are censored. The reason for this is to ensure

that events occurring in patients who did and did not initiate treatment in a given interval are

handled in the same way, to avoid introducing bias. Henceforth, when we refer to a patient

being censored from (or non-compliant with) a regime from time t onwards, we mean that AIDS

or death events occurring from time t onwards are no longer included in the analysis, and we

have Cx(s) = 0 for s � t� 1 and Cx(s) = 1 for s � t.

Considering the regime given by x = 350, since the patient did initiate treatment in response

to his �rst observed CD4 count below that threshold, he is considered to be compliant with

that regime for all time. Lastly, under the x = 200 regime, the patient is censored from time

6 onwards, since he initiated treatment in the interval [5; 6) when his last CD4 count was still

> 200 cells/mm3.

Expanding this example to all regimes of interest given by x = 200; 210; :::; 500, Table 4.1

(no grace period) and panel A of Figure 4.2 illustrate the regimes the same example patient is

considered to be compliant with over time (see section 4.2.2 for discussion on the grace period).

Prior to time 3, this patient is compliant with all regimes since CD4(t�1) > 500 cells/mm3 for

t < 3. However, when he does not initiate treatment in response to CD4(2) = 475 cells/mm3,

he is censored from time 3 onwards from all higher regimes given by x > 475 and therefore is still

compliant only with the 28 regimes given by x = 200; 210; :::; 470. While the patient remains

o¤ treatment, the number of regimes with which he remains compliant drops with his observed
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t CD4(t� 1) A(t) Regimes from which uncensored from t onwards
(cells/mm3) No grace period Grace period

(m = 1) (m = 2)
x = N x = N

1 520 0 200-500 31 200-500 31
2 505 0 200-500 31 200-500 31
3 475 0 200-470 28 200-500 31
4 393 0 200-390 20 200-470 28
5 360 0 200-360 17 200-390 20

6 onwards 280 1 290-360 8 290-390 11

Table 4.1: Compliance over time of the example patient of Figure 4.1 with multiple regimes
given by x = 200; 210; :::; 500 with no grace period (m = 1) and a grace period (m = 2; see
section 4.2.2). Recall that CD4(t � 1) is the latest CD4 count measured in the time interval
[t� 2; t� 1).

CD4 count. Once treatment was initiated following the observed CD4 count of 280 cells/mm3,

the patient is thereafter compliant with just the 8 regimes given by x = 290; 300; :::; 360. Of

note, once a patient is observed to initiate treatment, they will never be censored o¤ the regimes

with which they were compliant at treatment initiation.

Cain et al. (2010) indicate that an alternative to this expansion method would be to randomly

allocate each patient to one of the multiple regimes with which they are compliant, although

this would be statistically ine¢ cient compared to the approach applied here of including all

patients on all regimes which with they remain compliant, and adjusting the variance estimates

accordingly for multiple observations per patient (either approach requires the weighting as

detailed in the next section for unbiased estimation).

Formalising our notation, let Qx(t) be an indicator for whether a patient�s CD4 count has

dropped < x cells/mm3 prior to time t. Then the censoring indicator Cx(t) is a deterministic

function of A, Y and x, given for t = 1; 2; ::: by:

Cx(t) = 0 if and only if, for all j � t, A(j) = 0 when Qx(j � 1) = 0; Y (t) = 0

and A(j) = 1 when Qx(j � 1) = 1; Y (t) = 0

and Cx(t) is missing if Y (t) = 1. As noted above, if A(t) = 1 and Cx(t) = 0 then Cx(s) = 0 for

all s > t, since if treatment was initiated in compliance with a given regime then the patient will

be compliant with that regime for the remainder of their follow-up. This broadly follows Cain

et al. (2010) but we have used discrete indicators. Of course, this arti�cial censoring process is

likely to be informative; we take account of this using inverse probability weighting.
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Figure 4.2: Illustration of compliance over time with regimes given by x = 200; 210; :::; 500 of:
the example patient of Figure 4.1, (A) under no grace period (m = 1) and (B) with a grace
period of m = 2 months, and a second patient who has the same CD4 trajectory as the �rst
patient, but delays treatment initiation for one month, by which time his CD4 count increased
above the nadir, (C) under no grace period (m = 1) and (D) with a grace period of m = 2
months. Recall that CD4(t�1) is the latest CD4 count measured in the time interval [t�2; t�1).
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Step 2. Estimate inverse probability weights

Under the assumption of no unmeasured confounders for censoring and outcome (see section

2.2.2), and given baseline and time-updated covariates and treatment history, the weight for a

patient on regime x at time t is the inverse probability of remaining uncensored to t:

Wx(t) =
I [Cx(t) = 0]

tQ
j=1

Pr
�
Cx(j) = 0jCx(j � 1) = 0; Y (j) = 0; L(j � 1)

	
where I [�] is an indicator equal to 1 if � is true, and 0 otherwise.

As with HAMSMs, the probability of remaining uncensored for any given regime to a given

time is the same as the probability of the observed treatment history to that time, conditional

on baseline and time-updated covariates and treatment history (Hernán et al., 2006; Robins

et al., 2008). Therefore the weights can equivalently be given by:

Wx(t) =
I [Cx(t) = 0]

tQ
j=1

Pr
�
A(j)j �A(j � 1); Y (j) = 0; �L(j � 1)

	
=

I [Cx(t) = 0]
tQ
j=1

pA(j)I[A(j)=0] f1� pA(j)gI[A(j�1)=0;A(j)=1]

where

pA(j) := Pr
�
A(j) = 0jA(j � 1) = 0; Y (j) = 0; L(j � 1)

	
is the probability of not initiating treatment given covariate history as in equation 2.3, noting

that after treatment initiation the probability of treatment is 1. As in section 2.2.3, we can esti-

mate pA(j) from the data using a pooled logistic regression model. The treatment probabilities

are independent of treatment regime x, so we �t this model on a dataset with one observation

per patient (per month), and when we expand to one observation per patient per regime (per

month), at any given time the weights are constant for each patient across all regimes with

which they are still compliant.

Stabilisation of the weights As in section 2.2.3, we may wish to stabilise the weights.

However, we cannot use the same approach as for standard MSMs; not only must the nu-

merator of the stabilised weights not depend on time-updated covariates, but it also cannot

depend on past treatment. That is, the numerator can depend on x, V and Y , but not on

L nor A. Cain et al. (2010) suggest a natural choice is the cumulative product over time of
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Pr
�
Cx(j) = 0jCx(j � 1) = 0; Y (j) = 0; x; V

	
. Therefore while the patient remains uncensored,

the stabilised weights may be given by:

SWx(t) =

tQ
j=1

Pr
�
Cx(j) = 0jCx(j � 1) = 0; Y (j) = 0; x; V

	
tQ
j=1

pA(j)I[A(j)=0] f1� pA(j)gI[A(j�1)=0;A(j)=1]

We can similarly �t a pooled logistic regression model for the numerator, but, because x is a

factor in the linear predictor, the model for the numerator must be estimated on the expanded

data (that is, with all patients following all regimes until censored, as in Step 1, so one obser-

vation per patient per regime [per month]) and over all time intervals in which patients remain

uncensored, regardless of whether they are on treatment on not. Separate numerator models

could be used for each treatment regime, or if there are many regimes then it may be more

e¢ cient to use just one model incorporating regime, perhaps as a smooth function.

If a patient has initiated treatment in accordance with a given regime, then we know they

cannot be censored from that regime, but they will continue to contribute to the numerator

censoring model. This means that, while the non-stabilised weights will remain constant after

treatment initiation, the stabilised weights will not. Non-stabilised weights essentially weight

the data such that all patients follow all regimes for all time (with patient numbers at later

times declining only because of patients dropping out due to events, or �usual� censoring).

Conversely, the stabilised weights depend on the �arti�cial� censoring process, therefore the

weighted follow-up will re�ect that of the (arti�cially) censored but unweighted follow-up over

time.

Cain et al. (2010) state that these stabilised weights may not necessarily reduce the variance.

It has also not been described how to stabilise the weights under a scenario with uniform

initiation across a grace period (see section 4.2.2), which is not trivial. Therefore, we will only

use non-stabilised weights hereafter.

Step 3. Weighted discrete-time survival regression with a smooth function for

regime x

Once we have estimated the weights, a simple approach would be to estimate the (weighted)

survival for each regime. In realistic scenarios, this may be somewhat unstable, since few patients

will be following any one regime at a given time. Instead, Cain et al. (2010) suggest applying

a pooled logistic regression model to the weighted data with one observation per patient per

regime (per month) and using a smooth function for regime x. That is, they suggest employing
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a model such as:

logitPr fY (t+ 1) = 0jY (t) = 0; Cx(t) = 0; x; V g = exp f�g (x) + �V + f(t) + �g (x) f(t)g

(4.1)

where f(t) is some function of time, as in equation 2.4. The parameters of this model may be

estimated using weighted maximum pseudo-likelihood, with robust standard errors, since there

are multiple non-independent observations per patient. Of note, as highlighted above, we model

Y (t + 1) conditional on Cx(t) = 0, therefore even if Cx(t + 1) = 1, we include AIDS or death

events which occur in that interval [t; t+ 1).

The assumption of proportional hazards is highly likely to be implausible when looking at

dynamic treatment regimes. For example, consider the regimes given by x = 200 and 350;

these regimes are identical until the patient�s CD4 count drops < 350 cells/mm3. Therefore it

is important to allow for time-dependent e¤ects of the regimes (g(x)f(t) in the above pooled

logistic regression model) and so we will consider survival curves rather than hazard ratios. We

will plot survival curves, estimated from the pooled logistic regression parameters, over time

and focus on 10-year AIDS-free survival rates. The optimal regime x is therefore determined as

that which minimises the risk of AIDS or death by 10 years.

Alternative approaches There are alternatives to the pooled logistic regression model as

outlined above. For example, we could �rst obtain the weighted Kaplan-Meier estimates for the

event of interest for each regime, and then perhaps perform some smoothing over these estimates.

A global procedure would require modelling on the bounded [0; 1] scale of the survivor function

which is unlikely to be appropriate. Rather, a local smoothing procedure may be preferable,

although if there is a great deal of uncertainty in the estimates, then relatively heavy local

smoothing may be required. The estimation of standard errors would not be straightforward,

but bootstrapping could be applied.

4.2.2 Grace periods

In clinical practice, there may be a delay between the taking of bloods for CD4 count mea-

surement, performing the analysis, informing the patient of the results and the patient being

prescribed and �nally initiating treatment. Further delay may result if the patient or clinician

requests a second con�rmatory CD4 count before initiating treatment, although the treatment

initiation may still be considered in response to the �rst CD4 measurement. For these reasons,

allowing delayed initiation may better re�ect the processes that led to the observed data. Cain
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et al. (2010) refer to this permitted delayed action as a �grace period�indexed by m. Formally,

the regimes are de�ned as:

�initiate treatment within m months after observed CD4 count �rst falls below x cells/mm3�

and such regimes, with a permitted delay, may be more typical of those implemented via the

protocol of an RCT. Note that Cain et al. (2010) consider �immediate�initiation of treatment

to be given by m = 0, but since �immediate�initiation refers to within the �rst month we prefer

to consider this as m = 1 and so true grace periods here are given by m � 2. As in the scenario

where there is no grace period, patients are censored if they initiate treatment before becoming

eligible for a given regime (that is, observed CD4 count > x cells/mm3). However, for all other

patients, since we are allowing m > 1 months for initiation after having observed CD4 count

dropping below the given threshold, none will be censored during the grace period, but will

be censored after the mth interval of the grace period if they have not initiated treatment by

that time. As in the m = 1 situation, patients who are not censored at that point will remain

uncensored for the rest of their follow-up. Our de�nition of Cx(t) can be extended to allow for

a grace period of m months as follows (Cain et al., 2010):

Cx(t) = 0 if and only if, for all j � t, A(j) = 0 when Qx(j � 1) = 0; Y (t) = 0

and A(j +m� 1) = 1 when Qx(j � 1) = 1; Y (t) = 0

and again Cx(t) is missing if Y (t) = 1. Again, note that we model Y (t + 1) conditional on

Cx(t) = 0.

Example patients

Consider our example patient (Figure 4.1), whose regime compliance permitting a grace period

of m = 2 months is given in the last two columns of Table 4.1 and illustrated in panel B of

Figure 4.2. Compared to the scenario with no grace period, the patient is compliant with at

least as many regimes within each time interval, and often more.

A bene�t of a grace period is that if the patient�s observed CD4 count rises slightly from the

nadir before treatment initiation, then the patient may still be considered to be compliant with

some regimes with which they would not have been considered compliant if no grace period

were permitted. For example, consider a second patient with the observed CD4 counts as given

in Table 4.2. The covariate and treatment history of this patient is the same as that of the

�rst example patient, except that this patient delayed treatment for one month, by which time
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t CD4(t� 1) A(t) Regimes from which uncensored from t onwards
(cells/mm3) No grace period Grace period

(m = 1) (m = 2)
x = N x = N

1 520 No 200-500 31 200-500 31
2 505 No 200-500 31 200-500 31
3 475 No 200-470 28 200-500 31
4 393 No 200-390 20 200-470 28
5 360 No 200-360 17 200-390 20
6 280 No 200-280 9 200-360 17

7 onwards 290 Yes - 0 290-360 8

Table 4.2: Compliance of a second example patient with multiple regimes over time give by
x = 200; 210; :::; 500 with no grace period (m = 1) and a grace period (m = 2). Recall that
CD4(t� 1) is the latest CD4 count measured in the time interval [t� 2; t� 1).

his observed CD4 count had risen slightly from 280 to 290 cells/mm3. Under no grace period,

this patient would be censored from all regimes from time 7 onwards (illustrated in panel C

of Figure 4.2). However, under a grace period of m = 2 months, this patient is considered

to be compliant with the eight regimes given by x = 290; 300; :::; 360 from time 7 onwards, a

scenario which is perhaps more clinically realistic given known measurement error and natural

�uctuations in CD4 count (Table 4.2 and panel D of Figure 4.2).

In observational data, since such �uctuations in observed CD4 count and treatment initia-

tion patterns may be common, permitting a grace period may result in fewer of the observed

treatment initiations being censored, therefore perhaps leading to more e¢ cient estimation. It

is important to note that to allow a grace period is to ask a di¤erent question, that is the e¤ect

of the regimes permitting a maximum delay in treatment initiation, compared to the original

question which considers the e¤ects of the regimes assuming no delay in treatment initiation.

However, one may be prepared to accept the potential bias associated with an interpretation

assuming no grace period, although one was permitted for analysis, in order to exploit the

potential gain in e¢ ciency. Below, we seek to evaluate these trade-o¤s through simulation.

Regimes are not fully identi�ed

In the presence of a grace period, the regimes are not fully identi�ed, since for each x there is

more than one possible treatment path which is consistent with the de�nition, namely those in

which treatment is initiated in any of the m intervals of the grace period. Of note, Young et al.

(2011) refer to regimes without grace periods as deterministic, and to those with grace periods

as random, since there may be a random element to the time at which treatment is initiated

during the grace period. Cain et al. (2010) considered two examples. The �rst can be more
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precisely speci�ed as �do not initiate treatment before the CD4 count is <x cells/mm3, and do

initiate exactly m months after the CD4 count �rst drops below x cells/mm3 if treatment has

not already been initiated in the �rst m� 1 months of the grace period�. The authors describe

their second example as �initiate treatment within m months after the CD4 count �rst drops

below x cells/mm3, such that there is a uniform probability of starting in each of the months

1; 2; :::;m�, though note this is still not fully speci�ed since the treatment probabilities could

be conditional on covariates such as CD4 count yet still achieve uniform marginal probabilities

of treatment initiation across the grace period. These choices have implications for the weight

estimation; we now describe how the weights may be estimated in each of these two scenarios.

Weight estimation

Note that since we model Y (t + 1) (equation 4.1), the weights Wx(t) are used to upweight

outcome in the next month. Patients who reach the end of the grace period without initiating

treatment are censored at the end of the grace period; there is no censoring during the grace

period.

First approach The weight estimation is simplest under the �rst approach of Cain et al.

(2010), where only the patients who initiated treatment in the mth interval of the grace period

are weighted up (in the next month) to account for those censored at the end of the grace period

due to non-initiation of treatment. Let the time qx be such that Qx(qx�1) = 0 and Qx(qx) = 1.

Then the (non-stabilised) weights are estimated as follows:

Wx(t) =
I [Cx(t) = 0]8<:

tY
j=1

pA(j)I[j<qx]

9=;� f1� pA(qx +m)gI[t�qx+m]
where pA(j) is estimated from the data as in the case where m = 1, that is, on the dataset

before expansion. The �rst component of the denominator of these weights is the probability

of remaining uncensored while CD4 count is � x cells/mm3, that is, o¤ treatment. The second

component of the denominator is the probability of remaining uncensored after the mth interval

of the grace period (which is m months after treatment indicated by the regime and CD4

count history); this probability is given by the probability of treatment initiation at that time.

Therefore, those patients who initiated treatment in the mth interval of the grace period are

upweighted to account for those censored at the end of the grace period due to non-initiation

of treatment.
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Second approach Under the second approach of Cain et al. (2010), we assume that the

probability of treatment initiation is uniform across the grace period, and the patients who

initiated treatment at any point during the grace period are weighted up to account for those

censored at the end of the grace period because they did not initiate by that time. The (non-

stabilised) weights are estimated as follows:

Wx(t) =
I [Cx(t) = 0]
tY
j=1

pA(j)I[j<qx]

mY
l=1

8><>:
n
1�1=(m+1�l)
pA(qx+l)

oI[t�qx+l;A(qx+l)=0]
�
n
1=(m+1�l)
1�pA(qx+l)

oI[t�qx+l;A(qx+l�1)=0;A(qx+l)=1]
9>=>;

The �rst component of the weights is identical to that of the �rst approach (the probability

of remaining uncensored, that is, o¤ treatment, while CD4 count is � x cells/mm3). The second

part of the weights spans the grace period, l = 1; :::;m, that is, covering the m months after

treatment is indicated by the regime and CD4 count history. The denominator is based on the

probabilities of observed treatment, that is, the probability of remaining o¤ treatment while

treatment-naïve during the grace period, multiplied by the probability of initiating treatment

when (if) it is initiated during the grace period. The numerator of the second part of these

weights is to form the uniform distribution of treatment initiation over the grace period. In

the lth interval of the grace period, the numerator takes value 1=(m + 1 � l) for patients who

initiated in that interval (that is 1=m; 1=(m�1); :::; 1=2; 1 for intervals l = 1; :::;m; respectively)

and value 1 � 1=(m + 1 � l) for those who did not initiate in that interval (that is values

1� 1=m; 1� 1=(m� 1); :::; 1=2; 0 for intervals l = 1; :::;m; respectively). Given this adjustment,

it is di¢ cult to express these weights in terms of the probability of remaining censored at a

given time t, but they serve to upweight those patients who initiated during the grace period

to account for those who are censored at the end of the grace period due to non-initiation of

treatment.

Comparison of these approaches

The �rst approach upweights the patients who initiated treatment in the mth interval of the

grace period to account for those who did not initiate by the end of the grace period; this may

potentially be a small subset of patients who may not be comparable to those who initiated

earlier in the grace period. The second approach assumes uniform treatment initiation across

the grace period which also may not be plausible; for example, if m is large then perhaps

patients may be more likely to initiate earlier in the grace period, with few patients delaying

treatment initiation for m months.
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Of course, other choices are possible. For example, suppose it was anticipated that if the

regimes were implemented in practice then the majority of patients would initiate in the �rst

interval of the grace period. Then one could assume for example 80% of the patients would

initiate in the �rst interval, and uniform initiation across the remainder of the grace period. Fur-

ther, the treatment initiation pattern could be data-driven, that is based on what was observed

in the real data. However, the correct weights would need to be determined (adjustments made

to the numerator) and, strictly-speaking, the results should then be interpreted in the same

vein. This approach would only be advantageous if it was thought that clinicians would employ

the same treatment initiation patterns when implementing the results of the study, which is

perhaps unlikely, since if they are changing practice then the treatment initiation patterns are

likely to also change.

4.2.3 Other censoring

Other types of �usual� censoring, such as LTFU or administrative, may be incorporated in a

similar way as for standard MSMs (section 2.2.4).

4.2.4 Interactions between treatment e¤ect and baseline characteristics

We have so far assumed a constant regime e¤ect across all patients; that is, the optimal regime(s)

is the same for all patients. In reality, the optimal regime x may vary by baseline patient

characteristics such as age or sex. These can be addressed using interactions, for example by

replacing the function g(x) of regime x in the pooled logistic regression model for the outcome

(equation 4.1, in the components �g (x)+ �g (x)h(t)) with some function g (x; V ) of the regime

x and baseline covariates V , for example:

g(x; V ) =
X
j

(1 + �jV )x
pj

Robins et al. (2008) described the use of such interactions, but to our knowledge this has not

been done in practice in the context of optimal dynamic treatment regimes.

4.2.5 Gaps in the methodological literature

While dynamic MSMs have been applied in practice a number of times previously (Cain et al.,

2010; HIV-CAUSAL collaboration, 2011; Shepherd et al., 2010), and we know that asymp-

totically the methods are unbiased for causal estimation of the e¤ects of dynamic treatment

regimes (Robins et al., 2008), their performance in realistically-sized datasets has not been sys-
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tematically explored. In addition, the impact on the optimal regime of factors such as the rate

of decline and measurement frequency of the biomarker which is used to de�ne the dynamic

regimes, and also length of the grace period, has not been investigated. Such knowledge could,

for example, enable comparison between di¤erent studies which have been conducted under

di¤erent conditions to help understand any di¤erences in the results.

Further, while we may be interested in inferences under the assumption of no grace period,

which may be easier to interpret and implement in practice, there could perhaps be potential

gains in e¢ ciency by permitting a grace period for the purposes of analysis, since fewer treatment

initiations will be censored. This may be at the risk of bias for the inference of interest (assuming

no grace period); this bias-variance trade-o¤ has not previously been studied.

We investigated these issues via simulation studies.

4.3 Simulation study 1

4.3.1 Motivation

There were two overarching aims for our �rst simulation study. The �rst was concerned with

the e¤ects of di¤erent CD4 observation frequencies and grace periods on the optimal regime.

Since we are de�ning the optimal regimes in terms of maximising a time-to-event outcome, it

is not possible to easily determine the optimal regimes directly. Therefore we simulated large

randomised trials for this purpose. The second aim was related to the performance of these

methods in realistic situations, therefore we simulated observational studies.

First aim (via randomised trials)

Our �rst aim was to explore the e¤ects of di¤erent observation frequencies of CD4 count (for

the purposes of treatment initiation) and di¤erent length grace periods on the optimal regime.

As mentioned above, this has not previously been systematically investigated. These two issues

are clearly closely related. For example, individuals monitored less frequently or permitted a

delay in treatment initiation may need to be directed to initiate earlier at higher CD4 counts

to prevent long periods of time before treatment initiation and hence CD4 counts dropping to

levels associated with increased risk of AIDS or death. We also considered populations with

di¤erent average treatment-naïve CD4 declines. Of note, these scenarios with di¤erent CD4

declines, CD4 count observation frequencies and grace periods are expected to lead to di¤erent

results since they are addressing di¤erent questions. As mentioned above, initially we were

interested in the true e¤ects of these factors on the optimal regime, therefore we simulated large
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randomised trials to address these issues.

Second aim (via observational studies)

Our second aim was to explore the performance of these methods using realistically-sized ob-

servational datasets, in terms of bias and precision. We know that asymptotically the methods

will be unbiased, but in practice limited data will be available.

A key motivation for incorporating grace periods is to attempt to minimise the number of

censored treatment initiations in (likely limited) observational data, thereby aiming to increase

e¢ ciency. Since permitting a grace period is to ask a di¤erent question than a scenario without

a grace period, we were also interested in the potential bias arising from interpreting results from

a study with a grace period as if there was no grace period. If the gain in e¢ ciency outweighed

the potential bias, then even in scenarios where inference was desired in the absence of a grace

period, it may be bene�cial to allow a grace period anyway for the purposes of analysis. This

bias-variance trade-o¤ has not previously been studied, and was therefore part of our second

aim.

To investigate these issues, we simulated realistically-sized observational studies. In partic-

ular, the questions we wished to address were:

1. With realistically-sized datasets, are the methods unbiased (compared to the results from

the RCT simulations for the same population in terms of treatment-naïve CD4 decline

and CD4 count observation frequency, and also the same grace period)?

2. What is the precision of a single analysis of this size?

3. What is the bias-variance trade-o¤ in allowing grace periods of m > 1 months, when in

fact the question of interest is under the scenario of no grace period (m = 1)? That

is, assuming that we want to interpret the results under no grace period, we compared

the results from the RCT with a given population (in terms of treatment-naïve CD4

decline and CD4 count observation frequency) and no grace period with the results from

the observational studies with the same population but permitting a grace period. As

discussed above, by increasing the grace period, we may gain e¢ ciency but potentially at

the expense of bias for the inference of interest.
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4.3.2 Methods

Data generation

Simulated patients were included with observed baseline CD4 counts uniformly in [500; 550]

cells/mm3; this narrow range of baseline CD4 counts was chosen to avoid lengthy amounts of

time spent with CD4 count � 500 cells/mm3, which would not contribute to the comparison

between the de�ned regimes. Follow-up over 10 years was divided into monthly intervals.

Modelling CD4 count trajectory Our models were based on previous work modelling

CD4 count using CASCADE data by A Babiker (personal communication, 10 September 2010).

This previous work suggested a piecewise linear mixed e¤ects model for square-root CD4 count,

with a change-point at treatment initiation and one year after initiation, and incorporating

Brownian motion (this was superior over the standard mixed e¤ects model). We now describe

these models in more detail, and give the parameters as estimated by that previous work. Note

that all the following parameter estimates are those which were used for the population with

regular treatment-naïve CD4 decline; the changes made to consider populations with di¤erent

CD4 declines are described below.

Let CD4Ti (t) and CD4
O
i (t) represent the true and observed CD4 count, respectively, for

patient i at time t. Measurement error was incorporated as follows:

q
CD4Oi (t) =

q
CD4Ti (t) + Ei(t) (4.2)

where Ei(t) are independent random measurement errors with distribution N(0; �2E), with the

variance �2E dependent on whether treatment had been initiated or not. We used the following

model for the treatment-naïve CD4 trajectory:

q
CD4Ti (t) = BTi + S0;i(t=12) +W0;i(t)

where time t is measured in months and, for patient i, (BTi )
2 is the true baseline CD4 count

and S0;i is the random slope drawn from N(�S0 ; �
2
S0
). Note that BTi is random, determined

from the uniformly-simulated observed baseline CD4 count CD4Oi (0) in [500; 550] cells/mm
3

(see above) and equation 4.2. No correlation between the baseline CD4 count and subsequent

slope was incorporated, since time was from trial entry and patients are captured within a

narrow range of observed baseline CD4 counts (of note, the range of true baseline CD4 counts

was somewhat wider than the observed due to the measurement error, though not large; see
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results in Table 4.3). Outside a simulation model, we would be unlikely to capture patients

within such a narrow range of CD4 counts, but here the baseline CD4 count is not for example

representative of the CD4 count at seroconversion, so we would not necessarily expect a corre-

lation between the baseline CD4 count and subsequent slope. W0;i(t) represents the Brownian

motion process, which is independent of the baseline CD4 count or slope, and has W0(0) = 0,

distribution N(0; �0t=12) and corr [W0(t1);W0(t2)] = min(t1; t2)=
p
t1t2. Appendix A describes

howW0;i(t2) is simulated in practice, given W0;i(t1). The parameters were previously estimated

from CASCADE data to be �S0 = �1:10; �S0 = 0:50; �0 = 6:89 and �
2
E1
= 2:26.

After treatment initiation, the CD4 trajectory was modelled as follows, with time t0 in

months from treatment initiation:

q
CD4Ti (t

0) =

8><>: Ri + S1;i(t
0=12) +W1;i(t

0) if t0 < 12 months

Ri + S1;i + S2;i(t
0=12� 1) +W1;i(t

0) if t0 � 12 months

where, for patient i, R2i is the true CD4 count at treatment initiation, and S1;i and S2;i are

the slopes during the �rst year and from one year after treatment initiation, respectively, on

the square-root scale. Therefore, R2i is known (the true CD4 count at treatment initiation) and

S1;i and S2;i were simulated conditional on Ri (see appendix A). Overall, these three random

variables followed a trivariate Normal distribution, with mean vector and variance-covariance

matrix given by:

� =

0BBBB@
�R

�S1

�S2

1CCCCA =

0BBBB@
19:69

2:93

0:10

1CCCCA

and � =

0BBBB@
�2R �R;S1 �R;S2

�R;S1 �2S1 �S1;S2

�R;S2 �S1;S2 �2S2

1CCCCA

=

0BBBB@
�2R rR;S1�R�S1 rR;S2�R�S2

rR;S1�R�S1 �2S1 rS1;S2�S1�S2

rR;S2�R�S2 rS1;S2�S1�S2 �2S2

1CCCCA
where rx;y = corr(x; y) =

�x;y
�x�y

. The variance-covariance parameters were previously estimated

from CASCADE data to be �R = 5:71; �S1 = 2:06; �S2 = 0:57 and rR;S1 = �0:44; rR;S2
was found to be -1, that is the slope after one year after treatment initiation was a linear

function of Ri (the square-root of the true CD4 count at treatment initiation), and therefore
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rS1;S2 = �rR;S1 . Once again, W1;i(t) represents a Brownian motion process, independent of R,

S1 and S2, with W1(0) = 0, distribution N(0; �1t=12) and correlation as given above (simulated

as described in appendix A). The remaining parameters were given by �1 = 7:83 and �2E2 = 2:19.

In practice, successive CD4 counts were determined as follows:

q
CD4Ti (t) =

q
CD4Ti (t� 1) + Sj;i=12�Wj;i(t� 1) +Wj;i(t)

That is, the random e¤ects and Brownian motion components were additive. In our simula-

tion study, CD4 counts were truncated at 0 if estimated as < 0 cells/mm3, and values > 1000

cells/mm3 were truncated at 1000 cells/mm3, due to the high biological variation at such high

CD4 counts and little di¤erence in the probability of reaching AIDS/death (or initiating treat-

ment, in the observational study) at those levels. The numbers of observations truncated at

each of these limits are shown in the results (Tables 4.3 and 4.8).

Modelling event rates Let pi(t) represent the probability of AIDS or death at a given time

t for patient i; this was dependent on true CD4 count and treatment, as follows:

log
pi(t)

1� pi(t)
=

8><>: �0 � �0
q
CD4Ti (t� 1) if Ai(t� 1) = 0

�1 � �1
q
CD4Ti (t� 1) if Ai(t� 1) = 1

=

8><>: 0:582� 0:266
q
CD4Ti (t� 1) if Ai(t� 1) = 0

0:763� 0:415
q
CD4Ti (t� 1) if Ai(t� 1) = 1

where the parameters �0; �0; �1; �1 were chosen to equate to the probability of the event being

0.01 and 0.0005 while o¤ treatment for CD4 counts of 200 and 500 cells/mm3, respectively,

and 0.006 and 0.0002 while on treatment for the same CD4 counts, respectively. These values

were based on previous work estimating event rates using CASCADE data (A Babiker, personal

communication, 23 August 2010). The event probability curves are illustrated in Figure 4.3.

Determining the optimal regime The optimal regime was that with the highest AIDS-

free survival at 10 years (see below for how this was estimated in the RCTs and observational

studies).

The randomised trials

A total of 31 million simulated patients were randomised equally across the 31 regimes given

by �initiate treatment within one month of observed CD4 count �rst dropping < x cells/mm3�
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Figure 4.3: Model for probability of AIDS or death given true CD4 count and treatment status.

where x = 200; 210; :::; 500 (1 million patients on each regime). AIDS-free survival was estimated

by Kaplan-Meier. The sample size was chosen to be large enough to obtain su¢ ciently stable

results; further exploration of the impact of the sample size on precision is discussed below.

Exploration of the sample size Due to the large measurement errors and low event rates,

a large number of patients were required. By using Kaplan-Meier estimation, we were able to

see any residual uncertainty in estimating the optimal regime by plotting the 10-year AIDS-free

survival against regime. In theory, with su¢ cient patient numbers and high enough event rate,

by the construction of the models, the curve should be smooth. However, even with such a large

sample size of 1 million patients per regime, it was still possible to detect a small amount of

uncertainty. Whilst we could have used a global smoothing method, such as modelling regime

with a spline or fractional polynomials, there was concern that this may only serve to hide the

uncertainty and perhaps lead to incorrect inferences. In particular, the uncertainty was greatest

at higher regimes due to the lower event rates at high CD4 counts; these extremities of the data

may unduly in�uence such models. It is important to note that the di¤erences in the 10-year

AIDS-free survival between neighbouring regimes (that is, di¤ering by 10 cells/mm3) close to

the optimal regime were very small, and typically they were identical to 3 decimal places. Such

di¤erences are not of great interest clinically but we wanted to be certain that we were correctly

determining the optimal regime. Therefore, we considered a number of di¤erent sensitivity

analyses:
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1. We applied a least squares local smoothing technique (�lowess�in Stata 11.1; StataCorp

(2009)). This procedure performs a series of weighted linear regressions of the dependent

variable of interest y (here, the estimated 10-year AIDS-free survival) on the independent

variable of interest z (here, regime x) to obtain smoothed estimates, with one regression

centred on each (yi; zi). We used a bandwidth of 0.2, meaning that 20% of the data

were used for each regression; this relatively small bandwidth was chosen to ensure only

very local smoothing. The regressions were weighted with the greatest weight going to

the central data pair; we used �tricube� weighting, which means that for each of the

observations (yj ; zj) contributing to the regression centred on (yi; zi), the following weight

was applied:

!j =

"
1�

�
jzj � zij
�

�3#3
where � = 1:0001max

�
zi+ � zi; zi � zi�

�
, and zi+ and zi� are the maximum and mini-

mum values of z contributing to the (yi; zi) regression, respectively.

2. We used an ad-hoc local smoothing approach by weighting the 10-year AIDS-free survival

estimate for each regime x (given by bux) as follows: (bux�10 + 2bux + bux+10)=4, with no
change for the most extreme datapoints.

3. We considered the �minimum acceptable regime�, de�ned as that given by the lowest x

with no worse than 0.5% poorer AIDS-free survival at 10 years than that of the optimal

regime. The reasoning behind this is that the 10-year AIDS-free survival estimates are very

similar close to the optimal regime, therefore this lower bound of the minimum acceptable

regime may be more stable. Note that the minimum acceptable regime is not the same as

the optimal regime, and answers a di¤erent question.

Variations We explored a variety of scenarios via the RCT simulations, including populations

with di¤erent mean treatment-naïve CD4 count declines, less-frequently observed CD4 counts

and permitting grace periods.

Treatment-naïve CD4 decline The above models assumed a mean absolute treatment-

naïve CD4 decline of 1.10 per year on the square-root scale (referred to as the �regular-decline�

population), based on the previous work mentioned above using CASCADE data. We considered

the e¤ect of di¤erent populations, with slower or faster average decline, to look at the impact on

the optimal regime. That is, we changed the mean decline per year on the square-root scale to

either 0.76 or 1.44 (based on the lower and upper quartiles, respectively, of the regular decline
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distribution; labelled the �slow� and �fast� decline populations, respectively). For a patient

with a CD4 count of 500 cells/mm3 and mean decline at the population level, their CD4 count

one year later would be 467, 452 or 438 cells/mm3 in populations with slow, regular or fast

decline, respectively. Similarly, a patient with a CD4 count of 350 cells/mm3 and mean decline

at the population level would have a CD4 count one year later of 322, 310 or 298 cells/mm3,

respectively, in those three populations. We would anticipate estimated optimal regimes given

by higher x in populations with faster treatment-naïve CD4 decline.

Frequency of observed CD4 count If CD4 counts are observed less frequently than

monthly for treatment initiation, then these methods may be applied in exactly the same way.

However, this is likely to have an impact on the results and the interpretation. For example,

if CD4 counts are only observed every p > 1 months, then initiating treatment when CD4

count is �rst observed to drop below a given threshold will tend to be later, in terms of CD4

count at treatment initiation and hence cumulative event risk, than if CD4 counts had been

observed monthly (p = 1), due to the time lag. Therefore, under schedules where CD4 count

is observed less frequently, we might expect optimal regimes to be given by higher x compared

to scenarios where CD4 count is observed more frequently, in order to attempt to address that

time lag. We considered the impact on the optimal regime if CD4 counts were observed every

p = 3, 6 or 12 months. Of note, for the RCTs, the frequency of observed CD4 counts relates to

those observed for the purposes of treatment initiation only; that is, true CD4 counts were still

estimated monthly for the purposes of applying the event rates and the outcome estimation was

still applied with time split into monthly intervals.

Grace periods No grace period (that is, m = 1, �immediate� treatment initiation) has

so far been assumed. We considered allowing grace periods of m = 3, 6 or 12 months; we would

anticipate higher estimated optimal regimes with longer grace periods. As discussed above,

regimes in the presence of grace periods are not fully identi�ed; we chose to apply uniform

initiation across the grace period (second approach of Cain et al. (2010)). For the RCTs,

this meant that all patients identi�ed for treatment initiation at a given time, based on their

randomised regime and CD4 count history, were treated as if they had been randomly allocated

to initiate in one of the following intervals of the grace period, with probability of initiation in

each interval given by 1=m. Note that, after this allocation, patients may have been removed

from the risk set before treatment initiation during the grace period due to reaching the event

(that is, while waiting for their allocated treatment initiation time during the grace period), but
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since the event rates were low this would typically be a very small number of patients. The use

of this approach means that, in the equivalent observational study, we avoid estimating weights

based on a small and potentially unrepresentative group of subjects initiating treatment in the

last interval of the grace period.

The observational studies

We �rstly simulated a large observational study with n = 100; 000 patients, with regular

treatment-naïve CD4 decline, monthly observed CD4 counts and no grace period (m = 1),

and only considered the 3 regimes given by x = 200, 350 and 500, to check that we obtained

similar results to the equivalent RCT (the number of patients and regimes were limited by

the computational power required at the data expansion step). There was some uncertainty re-

maining despite the large sample size, therefore we also considered di¤erent scenarios (3-monthly

observed CD4 counts and 3-month grace periods, all with regular treatment-naïve CD4 decline)

and then repeated all of these large observational studies (di¤erent starting seed) to look at the

variation in the 10-year AIDS-free survival estimates.

We then simulated 1000 datasets each with n = 3000 patients, from a population with regular

treatment-naïve CD4 decline and CD4 counts measured monthly. We repeated these simulations

with CD4 counts observed only every 3 months, which is the median frequency observed in

our CASCADE data. As mentioned above, the CD4 observation frequency is relevant for

the purposes of treatment initiation; the event rates were applied to the true CD4 counts

which were always calculated monthly. However, for the observational studies, the observed

CD4 counts were in addition used for performing the weight estimation. These datasets were

then used with di¤erent grace periods for the estimation of the optimal regime (with regimes

x = 200; 210; :::; 500). Of note, we considered the grace periods to be a step in the data analysis,

not in the data generation.

Modelling treatment initiation The curve for the probability of treatment initiation given

CD4 count was chosen to resemble that of the model from chapter 2 (page 72), with the

parameters of the curve determined by the probability of treatment initiation at CD4 count 200

and 500 cells/mm3 being 0.23 and 0.01, respectively (approximately based on the results of the

chapter 2 model). The model used was:

log
p(t)

1� p(t) = 4:62� 0:412
q
CD4O(t)
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Figure 4.4: Model for probability of treatment initiation given current observed CD4 count.

where p(t) represents the probability of treatment initiation at time t, and this is illustrated in

Figure 4.4. If CD4 counts were observed less frequently than monthly, then the last observed

CD4 count was carried forward and the treatment probabilities applied to that. Of note, since

A(t) was generated based on CD4O(t), this was re�ected in the treatment model, rather than

modelling A(t) conditional on CD4O(t� 1) as indicated in section 4.2. The latter approach is

in order to be conservative with real data, where CD4 counts in the same month as treatment

initiations may not actually have been available at the time of treatment initiation and therefore

not contributed to the treatment decision, or indeed may have been measured after treatment

initiation; this concern does not apply to these simulated data, and the interpretation and

generalisability of the results is not a¤ected.

Weight estimation We used a pooled logistic regression model for treatment initiation in pa-

tients previously treatment-naïve, given current observed CD4 count (square-root transformed

and as a continuous variable; this mimics the data generation). From this, we estimated the

(non-stabilised) weights under the second approach of Cain et al. (2010) as described above in

section 4.2.2. The weights were truncated at maximum 20.

Outcome model In such realistically-sized datasets, there will undoubtedly be a great deal of

uncertainty in the (weighted) Kaplan-Meier estimates of the AIDS-free survival. One approach

is to model the outcome of AIDS or death using the pooled logistic regression models of Cain

et al. (2010), as outlined in section 4.2. However, this global procedure may be heavily in�uenced

by the extremes of the data. Therefore we also considered di¤erent approaches, as indicated in
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section 4.2. That is, we estimated the optimal regimes (that with the highest 10-year AIDS-free

survival) under the following approaches:

1. Based on the raw Kaplan-Meier estimates.

2. Applying local smoothing to the Kaplan-Meier estimates. Due to the much smaller sample

size and hence greater uncertainty than the randomised trials, much heavier local smooth-

ing was required. We used the command �smooth�of Stata 11.1 (StataCorp, 2009), which

applies robust non-linear smoothing. A smoother of span r produces smoothed values of

the variable y of interest by taking the median of each yi and the r � 1 values around

yi (with linear interpolation if r is even). We applied multiple smoothers in sequence

to ensure relatively heavy smoothing, along with the Hanning smoother (Velleman and

Hoaglin, 1981), which applies a smoother of span 3 with binomial weights (speci�ed by

�H�), and some further re�nements: �rstly, special treatment of the ends of the data

(speci�ed by �E�); secondly, �splitting� repeated values with a smoother of span 3 to

avoid �at-topped peaks and troughs (speci�ed by �S�); lastly, repeating an odd-spanned

smoother until the smoothed variable did not change anymore (speci�ed by �R�). The

complete command we used was: 753SR8642EH.

3. Using a spline in a weighted pooled logistic regression model, as Cain et al. (2010). Regime

and time were modelled as four-knot splines (with knots at the 5, 35, 65 and 95th centiles),

and interactions between regime (as a spline) and time (in two-yearly categories) were

incorporated.

The questions of interest Addressing the questions of interest as outlined above:

1. To investigate bias in these realistically-sized datasets, we compared the mean and median

of the optimal regimes from the 1000 datasets to the optimal regime from the equivalent

randomised trial (that is, with the same treatment-naïve CD4 decline, frequency of ob-

served CD4 and grace period). In addition, we looked at the proportion of estimates which

were less than the minimum acceptable regime from the equivalent RCT.

2. To look at the precision of a single analysis of this size, we estimated the standard error

using the standard deviation of the estimates from the 1000 simulated datasets.

3. To investigate the bias-variance trade-o¤ in allowing grace periods of m > 1 months,

when the inference of interest is under no grace period (m = 1), we compared the results
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from the observational study simulations, with grace periods of m = 1, 3 and 6 months,

with that from the equivalent randomised trial except with no grace period (that is, the

same population treatment-naïve CD4 decline and frequency of observed CD4 counts).

We assessed the bias-variance trade-o¤ by examining the mean square error, calculated as

the square of the estimated standard error from (2) plus the square of the di¤erence in the

estimated optimal regimes from the observational study and RCT (Burton et al., 2006).

In addition, we considered the relative e¢ ciency, which for a given CD4 count observation

frequency was calculated for each approach and choice of grace period as the square of the

estimated standard error from (2) divided by the square of the standard error under the

pooled logistic regression approach with no grace period (m = 1; Lebanon (2006)); this

was chosen as the reference group since this method is commonly used in the literature.

4.3.3 Results: the randomised trials

We �rstly present detailed results for the population with regular treatment-naïve CD4 decline,

where CD4 counts were observed monthly for the purpose of treatment initiation, and with no

grace period (m = 1).

For illustration, Figure 4.5 shows the path of CD4 count over time for an example patient,

who was randomised to initiate treatment when their CD4 count was �rst observed to drop

< 200 cells/mm3. The black lines indicate the underlying CD4 slopes, with decline while

treatment-naïve, relatively steep increase after treatment initiation at 57 months, and more

gradual increase from one year after treatment initiation onwards. The blue lines show the path

of the true CD4 count over time, that is after incorporating the Brownian motion. The red lines

illustrate the observed CD4 count, that is after allowing for measurement error. Of note, this

patient initiated treatment at a low observed CD4 count of 169 cells/mm3, while their true CD4

count was at 333 cells/mm3. This behaviour was common across the population, by the nature

of CD4 decline and the de�nitions of the regimes. This issue is discussed further in section 4.6.

Summary of baseline characteristics and treatment

Summary statistics of the baseline characteristics and treatment for the 1; 000; 000 patients on

each of the three regimes given by x = 200, 350 and 500 are given in Table 4.3. As anticipated

for a large randomised trial, the baseline CD4 counts (observed or true) and treatment-naïve

slopes were very similar across all regimes. While the observed baseline CD4 counts were all

by de�nition in [500; 550] cells/mm3, this did not necessarily hold for the true baseline CD4
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Figure 4.5: Illustration of underlying, true and observed CD4 count over time for an example
patient randomised to initiate when CD4 count was �rst observed to be < 200 cells/mm3 (from
the scenario with regular treatment-naïve CD4 decline, CD4 counts observed monthly and no
grace period). This patient initiated treatment at 57 months, when their observed and true
CD4 counts were 169 and 333 cells/mm3; respectively.

counts, as shown by the interquartile ranges of 457 to 598 cells/mm3 across the regimes.

The summary results relating to treatment initiation re�ect what we might expect by de-

�nition of the regimes. At regimes de�ned by higher x, a greater proportion of patients were

observed to initiate treatment (> 99% versus 78% for the x = 500 and 200 regimes, respectively)

and sooner (median 3 versus 37 months, respectively). The percentage of follow-up time spent

on treatment was 94% for regime x = 500 compared with just 49% for regime x = 200.

By de�nition, the observed CD4 counts at treatment initiation were all < x cells/mm3

for each of the regimes, with median 432 versus 175 cells/mm3 for regimes x = 500 and 200,

respectively. The true CD4 counts at treatment initiation tended to be higher than that de�ned

by the regime, in�uenced by unusually low observed CD4 counts resulting in treatment initiation

despite higher true CD4 count, as exempli�ed by the CD4 count paths of the example patient

shown in Figure 4.5. This was more noticeable at regimes de�ned by lower x, with median true

CD4 counts at treatment initiation of 503 versus 275 cells/mm3 for regimes x = 500 and 200,

respectively.

As a consequence of the random error structure of the simulated data, treatment initiation

at lower CD4 counts was associated with faster initial and subsequent CD4 count increase

on the square-root scale. The median increase in square-root CD4 count over the �rst year
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Regimes given by x
200 350 500

Baseline
Observed CD4 count, cells/mm3 525 (513, 538) 525 (512, 537) 525 (512, 538)
True CD4 count, cells/mm3 525 (457, 598) 525 (457, 598) 525 (457, 598)
Annual slope, square-root scale 1.10 (0.76, 1.44) 1.10 (0.76, 1.44) 1.10 (0.76, 1.44)

Treatment
N patients observed to initiate 783,766 (78%) 952,144 (95%) 995,522 (>99%)

treatment
Time to initiation, months[1] 37 (21, 62) 10 (4, 25) 3 (2, 5)
Observed CD4 count at 175 (154, 189) 313 (282, 333) 432 (379, 469)
initiation, cells/mm3[1]

True CD4 count at initiation, 275 (240, 313) 425 (381, 472) 503 (441, 565)
cells/mm3[1]

Initial annual slope after 3.42 (2.16, 4.68) 2.78 (1.52, 4.04) 2.51 (1.24, 3.77)
initiation, square-root scale[1;2]

Annual slope one year after 0.41 (0.30, 0.52) 0.01 (-0.10, 0.12) -0.17 (-0.31, -0.03)
initiation, square-root scale[1;2]

Percentage of follow-up time 49% 79% 94%
spent on treatment

Table 4.3: Simulation study 1 (RCT): summary of baseline characteristics and treatment for
n = 1; 000; 000 patients on each of the three regimes given by x = 200, 350 and 500 (popu-
lation with regular treatment-naïve CD4 decline, CD4 counts observed monthly and no grace
period). Unless otherwise stated, values are n (%) for categorical variables and median (in-
terquartile range) for continuous variables. Of note, < 1% of true CD4 counts were truncated
at 0 cells/mm3, and approximately 1, 2 and 3% of true CD4 counts were truncated at 1000
cells/mm3 on the regimes given by x = 200, 350 and 500 cells/mm3 respectively. [1] In those
patients who were observed to initiate treatment. [2] As assigned at treatment initiation.
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after treatment initiation was 2.51 and 3.42 for regimes x = 500 and 200, respectively. In the

absence of Brownian motion, and for patients who initiated when their true CD4 counts were

500 and 200 cells/mm3, these median increases translated to a CD4 count one year later of 618

and 308 cells/mm3, respectively (a broadly similar increase on the absolute scale). The median

increase in square-root CD4 count after the �rst year on treatment was �0:17 and 0.41 per year

thereafter for regimes x = 500 and 200, respectively. Similarly, these translated to a CD4 count

of 577 and 384 cells/mm3, respectively, �ve years later. Of note, for regimes de�ned by higher x,

the slope beyond one year after treatment initiation tended to be negative, thereby introducing

a penalty for early treatment initiation. Figures 4.6 and 4.7 illustrate the distribution of true

CD4 count over time for the regimes x = 200, 350 and 500 (in a random subset of n = 100; 000

patients per regime due to computational limitations); in Figure 4.6, it is possible to see the

slightly negative slope over the longer term for the x = 500 regime.

Outcome results

Overall, 17%, 13% and 14% of patients were observed to progress to AIDS/death on regimes

given by x = 200, 350 and 500, respectively, during the 10 year follow up. Figure 4.8 shows the

estimated AIDS-free survival curves for these three regimes; the estimated 10-year AIDS-free

survival was 0.8278, 0.8657 and 0.8587, respectively, for these regimes.

Figure 4.9 illustrates the estimated AIDS-free survival at 10 years by regime; the peak of the

curve at x = 350 is the optimal regime. As mentioned above, the probability of surviving AIDS-

free to 10 years under this regime was 0.8657. As discussed in the methods, there was some

residual uncertainty apparent in the plot, particularly at regimes given by higher x where the

event rate is much lower. Applying the local smoothing by either least squares or weighting, the

optimal regime was given by x = 360 (with 10-year AIDS-free survival of 0.8656 in both cases).

The smoothed plots are illustrated in Figure 4.10. Consideration of the minimum acceptable

regime, as illustrated in Figure 4.9, yielded x = 290 regardless of whether local smoothing was

applied (with 10-year AIDS-free survival rates of 0.8621, 0.8619 and 0.8620 for no smoothing,

least squares smoothing or weighted smoothing, respectively).

Frequency of observed CD4 counts

In the population with regular treatment-naïve CD4 decline and with no grace period, reducing

the frequency of observed CD4 counts from monthly to every 3, 6 or 12 months increased

the optimal treatment regime from x = 350 to 410, 460 and 490, respectively, and the 10-

year AIDS-free survival on those optimal regimes decreased from 0.8657 to 0.8650, 0.8634 and
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Figure 4.6: Simulation study 1 (RCT): true CD4 count over time (median, interquartile range
and 5/95th percentiles) for a subset of n = 100; 000 patients in the RCT on each of the three
regimes given by x = 200, 350 and 500 (population with regular treatment-naïve CD4 decline,
CD4 counts observed monthly and no grace period).
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Figure 4.7: Simulation study 1 (RCT): true CD4 count categorised over time from trial start
for a subset of n = 100; 000 patients on each of the three regimes given by x = 200, 350 and
500 (population with regular treatment-naïve CD4 decline CD4 decline, CD4 counts observed
monthly and no grace period).
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Figure 4.8: Simulation study 1 (RCT): AIDS-free survival curves over 10 years for the three
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CD4 counts observed monthly and no grace period).
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Figure 4.9: Simulation study 1 (RCT): probability of surviving AIDS-free to 10 years by regime
(population with regular treatment-naïve CD4 decline, CD4 counts observed monthly and no
grace period). The optimal regime is determined by that with maximum 10-year AIDS-free
survival (solid lines). The minimum acceptable regime is de�ned as the lowest with no worse
than 0.5% poorer 10-year AIDS-free survival than under the optimal regime (dashed lines).
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Figure 4.10: Simulation study 1 (RCT): probability of surviving AIDS-free to 10 years by
regime, with no smoothing, least squares smoothing or weighted average smoothing (and all
three compared in the bottom right plot; they overlap considerably; population with regular
treatment-naïve CD4 decline, CD4 counts observed monthly and no grace period).

0.8564, respectively (Table 4.4 and Figure 4.11). Figure 4.12 illustrates that observing CD4

counts only annually results in 10-year AIDS-free survival under the optimal regime more than

0.5 percentage points lower than if CD4 counts were observed monthly.

However, applying the optimal regime from the population with regular treatment-naïve

CD4 decline and CD4 counts observed monthly (namely, x = 350; no grace period) to the

comparable scenario but with CD4 counts observed 3-, 6- or 12-monthly, the 10-year AIDS-free

survival would be 0.8616, 0.8528 and 0.8304, respectively. Similarly, if the optimal regime from

the population with regular treatment-naïve CD4 decline and 3-monthly observed CD4 counts

was applied to the comparable scenario but with 6- or 12-monthly observed CD4 counts, then

the 10-year AIDS-free survival would be 0.8615 and 0.8484, respectively.

Similar patterns were observed in the populations with slower or faster treatment-naïve

CD4 decline (Table 4.4 and Figure 4.11). As we might expect, in populations with faster CD4

decline, the optimal regime tended to be given by higher x, and the 10-year AIDS-free survival

was lower. If CD4 counts were observed only 6- or 12-monthly, the impact of the di¤erent

population CD4 declines was less apparent, but the optimal regime for the population with fast

CD4 decline when CD4 counts were observed so infrequently was estimated at the maximum of

the permitted range (x = 500) and so may be higher in reality.
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CD4 decline[1] Frequency of observed CD4 counts, months[2]

1 3 6 12

Slow 310 (0.8731) 380 (0.8720) 460 (0.8705) 490 (0.8671)
320 (0.8727) - 420 (0.8703) 480 (0.8668)

- - 420 (0.8703) -
Regular 350 (0.8657) 410 (0.8650) 460 (0.8634) 490 (0.8564)

360 (0.8656) - - -
360 (0.8656) - - -

Fast 360 (0.8601) 460 (0.8592) 460 (0.8569) 500 (0.8471)
370 (0.8600) 450 (0.8591) 500 (0.8569) -
370 (0.8600) - 500 (0.8569) -

Table 4.4: Simulation study 1 (RCTs): optimal regimes in populations with di¤erent
treatment-naïve CD4 declines and frequencies of observed CD4 count (no grace period, m = 1).
For each population, the �rst line gives the results with no local smoothing, and the second and
third line shows the results under local smoothing using least squares and weighting, respec-
tively (the smoothed results are only shown if the optimal di¤ers from that under no smoothing).
Values in brackets are the estimated probabilities of surviving AIDS-free to 10 years under that
regime. [1] Population CD4 decline while treatment-naïve; see text for details regarding the
rates. [2] Frequency with which CD4 count was observed for treatment initiation.
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Figure 4.11: Simulation study 1 (RCTs): probability of surviving AIDS-free to 10 years by
regime, across di¤erent treatment-naïve CD4 declines and frequencies of observed CD4 counts
(no grace period, m = 1). Note that probabilities were only plotted if � 0:80 to preserve a
common scale. Horizontal lines drawn at 0.85 to aid comparison between plots.
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Figure 4.12: Simulation study 1 (RCTs): probability of surviving AIDS-free to 10 years under
the optimal regime, for the population with regular treatment-naïve CD4 decline and di¤erent
CD4 observation frequencies (with grace period �xed at 1 month) and grace periods (with CD4
observation frequency �xed at monthly). The horizontal dashed line is set at 0.5 percentage
points lower AIDS-free survival than that under the scenario when CD4 counts were observed
monthly and with no grace period. Numbers on the plot show the optimal regime for each
scenario after local smoothing applied (in bold where the CD4 observation frequency was varied,
and in italic where the grace period was varied).

Smoothing Local smoothing of the results resulted in some small changes to the estimated

optimal regime (Table 4.4), but typically by no more than 10 cells/mm3. There were two

exceptions, both where CD4 counts were observed every 6 months, and in both cases the two

methods of local smoothing yielded the same optimal regimes. Firstly, in the population with

slow declining treatment-naïve CD4 count, the optimal regime estimated after smoothing was

420 compared to 460 cells/mm3 without smoothing. Secondly, in the population with fast

declining CD4 count, the optimal with smoothing was 500 compared to 460 cells/mm3 without.

However, the estimated 10-year AIDS-free survival probabilities on the optimal regimes from

smoothing and not smoothing were very similar, and it is clear from Figure 4.11 that the curves

were quite �at in these regions.

Minimum acceptable regime The same patterns were observed when considering the min-

imum acceptable regime (Table 4.5). As anticipated, these minimum acceptable regimes were

somewhat more stable than the optimal regimes, with only three instances of the smoothed and

non-smoothed approaches leading to di¤erent estimated optimal regimes. In a population with

regular treatment-naïve CD4 decline, CD4 counts observed monthly and no grace period, de-

laying treatment initiation until CD4 count was �rst observed to drop below 290 cells/mm3 was

associated with 10-year AIDS-free survival no worse than 0.5 percentage points lower than the

185



CD4 decline[1] Frequency of observed CD4 counts, months[2]

1 3 6 12

Slow 260 (0.8682) 310 (0.8673) 350 (0.8657) 410 (0.8622)
- - - -
- - - -

Regular 290 (0.8621) 350 (0.8616) 390 (0.8587) 430 (0.8517)
- 340 (0.8602) - -
- 340 (0.8601) - -

Fast 310 (0.8564) 370 (0.8552) 410 (0.8526) 460 (0.8445)
- 360 (0.8541) - 450 (0.8422)
- 360 (0.8541) - 450 (0.8421)

Table 4.5: Simulation study 1 (RCTs): minimum acceptable regimes in populations with
di¤erent treatment-naïve CD4 declines and frequencies of observed CD4 count (no grace period,
m = 1). For each population, the �rst line gives the results with no local smoothing, and the
second and third line shows the results under local smoothing using least squares and weighting,
respectively (the smoothed results are only shown if the optimal di¤ers from that under no
smoothing). Values in brackets are the estimated probabilities of surviving AIDS-free to 10
years under that regime. [1] CD4 decline while treatment-naïve; see text for details regarding
the rates. [2] Frequency with which CD4 count is observed for treatment initiation.

optimal (under the regime given by x = 350). For a patient with the median treatment-naïve

CD4 decline, this translates to a delay in treatment initiation of approximately 18 months, in the

absence of Brownian motion or measurement error (time for CD4 count to drop 60 cells/mm3

from 350 to 290 cells/mm3).

Grace periods

Fixing the frequency with which CD4 counts were observed as monthly, and with regular

treatment-naïve CD4 decline, increasing the grace period from m = 1 to 3, 6 or 12 months

resulted in an increase in the optimal regime from x = 350 to 360, 370 and 380, respectively,

and the 10-year AIDS-free survival on those optimal regimes decreased from 0.8657 to 0.8644,

0.8631 and 0.8598, respectively (Table 4.6 and Figure 4.13). Therefore, the e¤ect of permitting

a grace period of 12 months had much less of an impact on the optimal regime than reducing the

observation frequency to 12 monthly. This is as we might anticipate, for at least two reasons.

Firstly, with only yearly observed CD4 counts, patients were only able to initiate treatment at

yearly time-points, whereas under the 12-month grace period, only 1=12 patients eligible to ini-

tiate treatment delayed for the full 12 months. Secondly, and perhaps more importantly, there

is an asymmetry due to the regimes being de�ned by CD4 counts dropping below a threshold.

For example, when the CD4 counts were observed monthly, the same patients were identi�ed

for treatment initiation regardless of whether a grace period of 1 or 12 months was permitted.

However, if a CD4 count observed on the monthly schedule indicated treatment initiation ac-
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CD4 decline[1] Grace period (m), months
1 3 6 12

Slow 310 (0.8731) 310 (0.8722) 340 (0.8708) 350 (0.8679)
320 (0.8727) 320 (0.8721) 350 (0.8707) 360 (0.8674)

- 320 (0.8721) 350 (0.8707) -
Regular 350 (0.8657) 360 (0.8644) 370 (0.8631) 380 (0.8598)

360 (0.8656) - - 400 (0.8596)
360 (0.8656) - - 400 (0.8596)

Fast 360 (0.8601) 400 (0.8589) 420 (0.8575) 450 (0.8538)
370 (0.8600) 390 (0.8588) - -
370 (0.8600) - - -

Table 4.6: Simulation study 1 (RCTs): optimal regimes in populations with di¤erent
treatment-naïve CD4 declines and grace periods (CD4 counts observed monthly). For each
population, the �rst line gives the results with no local smoothing, and the second and third
line shows the results under local smoothing using least squares and weighting, respectively (the
smoothed results are only shown if the optimal di¤ers from that under no smoothing). Values
in brackets are the estimated probabilities of surviving AIDS-free to 10 years under that regime.
Of note, the �rst column of results is the same as that presented in Table 4.4. [1] CD4 decline
while treatment-naïve; see text for details regarding the rates.

cording to a given regime, but that CD4 count was not observed on the 12-monthly CD4 count

schedule, then that patient would not have been identi�ed for treatment initiation under the

less-frequent CD4 observation until some time later. In particular, if that CD4 count observed

on the monthly but not 12-monthly schedule was a random low value, and the following observed

CD4 counts were higher (closer to the underlying trend), then that patient may not have been

identi�ed for treatment initiation until much later on the 12-monthly schedule. Therefore the

regime would need to be higher in order to identify such patients for treatment initiation, hence

the optimal regime is higher. However, it is still important to note that allowing grace periods

of 12 months resulted in 10-year AIDS-free survival more than 0.5 percentage points lower than

immediate treatment initiation (m = 1) on the optimal regime (Figure 4.12). Therefore if grace

periods are to be used to potentially increase power, then grace periods of this length will be

associated with substantial bias. Broadly similar patterns were observed across the populations

with di¤erent treatment-naïve CD4 decline.

Smoothing Again, local smoothing of the estimates resulted in some small changes in the

estimated optimal regime, though typically no more than 10 cells/mm3. The one exception was

in the scenario with regular treatment-naïve CD4 decline and a 12 month grace period, where

the smoothed optimal regimes were 400 compared to 380 cells/mm3 in the absence of smoothing.

Once again, the estimated 10-year AIDS-free survival probabilities were very similar, and the

curves were fairly �at in this region (Figure 4.13).
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Figure 4.13: Simulation study 1 (RCTs): probability of surviving AIDS-free to 10 years by
regime, across di¤erent treatment-naïve CD4 declines and grace periods (CD4 counts observed
monthly). Note that probabilities were only plotted if � 0:80 to preserve a common scale.
Horizontal lines drawn at 0.85 to aid comparison between plots.

Minimum acceptable regime The same patterns were observed when considering the min-

imum acceptable regime (Table 4.7), but with no di¤erences between the smoothed and non-

smoothed optimal regimes, indicating the greater stability of the minimum acceptable regimes.

Di¤erent combinations of CD4 count observation frequency and grace periods

All the results above either hold grace period at m = 1 months and vary the frequency of CD4

measurements, or vice versa. Combinations of these are likely to be of interest.

For a population with regular treatment-naïve CD4 decline, observing CD4 counts every

3 months and permitting a 3- or 6-month grace period, the optimal regime was given by x =

410 and 460, respectively (with 10-year AIDS-free survival of 0.8638 and 0.8625, respectively,

which is 0.0019 and 0.0032 less, respectively, than the optimal under the scenario where CD4

counts were observed monthly and with no grace period, when the optimal regime was given

by x = 350). The local smoothing methods led to the same optimal regime in the presence of

the 3-month grace period, but were somewhat lower at 420 with a grace period of 6 months;

the curve was very �at at high x (10-year AIDS free survival under this optimal regime after

local smoothing using least squares and weighting was 0.8621 and 0.8662, respectively). The

minimum acceptable regimes were given by x = 350 (0.8600) and 360 (0.8584) under 3- and
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CD4 decline[1] Grace period (m), months
1 3 6 12

Slow 260 (0.8682) 270 (0.8682) 280 (0.8670) 300 (0.8638)
- - - -
- - - -

Regular 290 (0.8621) 290 (0.8600) 300 (0.8581) 330 (0.8553)
- - - -
- - - -

Fast 310 (0.8564) 310 (0.8542) 330 (0.8535) 350 (0.8489)
- - - -
- - - -

Table 4.7: Simulation study 1 (RCTs): minimum acceptable regimes in populations with
di¤erent treatment-naïve CD4 declines and grace periods (CD4 counts observed monthly). For
each population, the �rst line gives the results with no local smoothing, and the second and third
line shows the results under local smoothing using least squares and weighting, respectively (the
smoothed results are only shown if the optimal di¤ers from that under no smoothing). Values
in brackets are the estimated probabilities of surviving AIDS-free to 10 years under that regime.
Of note, the �rst column of results is the same as that presented in Table 4.4. [1] CD4 decline
while treatment-naïve; see text for details regarding the rates.

6-month grace periods, respectively, with no change under local smoothing.

If instead CD4 counts were measured every 6 months and with a 6-month grace period, then

the optimal regime was given by x = 460 (with 10-year AIDS-free survival of 0.8603, which is

0.0054 less than under the optimal regime if CD4 counts were observed monthly and with no

grace period). Local smoothing under either method led to a slightly di¤erent optimal regime

of x = 470, with corresponding 10-year AIDS-free survival of 0.8601. The minimum acceptable

regime was x = 410 (0.8569), again with no change under local smoothing.

Summary

The simulation of these large RCTs has highlighted some important results. We have seen that

the measurement error in CD4 counts may be large, and that large numbers of patients are

required for precise estimation. In addition, it is clear that su¢ cient follow-up time is required

in order to see di¤erences between the regimes. In these data, the AIDS-free survival rates are

broadly similar at high CD4 counts. In a population with regular treatment-naïve CD4 decline,

monthly observed CD4 counts and no grace, the optimal regime is given by x = 360 (after

smoothing). As discussed above, decreasing the frequency of observed CD4 counts substantially

raised the optimal regimes, whereas increasing the grace period had less of an e¤ect.
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4.3.4 Results: single large observational study

Summary of baseline characteristics and treatment

Summaries of the baseline characteristics and treatment for the n = 100; 000 patients in the

single large observational study, after expansion to the three regimes given by x = 200, 350, 500,

are shown in Table 4.8, both unweighted and after applying weights (truncated at maximum

20; note this is for a population with regular treatment-naïve decline, monthly observed CD4

counts and no grace period). The baseline results were similar to those from the RCT (see Table

4.3). The median follow-up time (censoring when no longer compliant with a given regime) was

longer after weighting, at 55 versus 27 months for the x = 200 regime, and 4 versus 2 months

for the x = 500 regime, as we would anticipate since we are upweighting those patients who

remain uncensored to account for those who have been censored.

The median time of treatment initiation was typically longer after weighting and more

comparable with that from the RCT, for example at 33 months after weighting versus 24 without

weighting for the x = 200 regime (compared to 37 months in the RCT; Table 4.3), although was

not noticeably di¤erent for the x = 500 regime (2 months with or without weighting, compared

to 3 months in the RCT). Similarly, the observed and true CD4 counts at treatment initiation

were higher under all three regimes after weighting, compared to no weighting, making them

more comparable to those in the RCT, although still somewhat lower for the x = 500 regime.

The post-treatment slopes moved in di¤erent directions after weighting, but in all cases moved

closer to those seen under the RCT.

Looking at the distribution of true CD4 counts over time, in the absence of weighting (Figure

4.14) and comparing to that from the RCT (Figure 4.6), we do not see the initial decline in CD4

under the 200 regime, we see an initial increase under the 350 regime and for the 500 regime

we see a big initial increase followed by a sharper decline. In contrast, after the application of

weights (truncated at maximum 20; Figure 4.15), the plots much more closely resemble those

from the RCT.

Of the 16,773 patients who were observed to initiate treatment in compliance with at least

one regime, 1534 (9%) and 153 (1%) initiated treatment in compliance with 2 and 3 regimes,

respectively. Those patients who initiated in compliance with all three regimes tended to have

low true baseline CD4 counts, with median 335 (IQR 295, 392) cells/mm3, and the observed

CD4 count was by de�nition > 500 cells/mm3 at baseline but then plummeted soon after, with

93% of those patients initiating in the next month.

Figure 4.16 shows compliance over time, by whether on or o¤treatment, for the three regimes
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Regime given by x
200 350 500

Baseline
Observed CD4 count, cells/mm3 525 (513, 537) 525 (513, 537) 525 (513, 537)
True CD4 count, cells/mm3 525 (457, 598) 525 (457, 598) 524 (456, 597)
Annual slope, square-root scale 1.10 (0.77, 1.44) 1.10 (0.77, 1.44) 1.10 (0.77, 1.44)

Follow-up in compliance with regime
Follow-up time, months 27 (12,64) 10 (4,31) 2 (1,5)

55 (24,120) 60 (9,120) 4 (1,120)
Treatment
N patients observed to initiate 8887 (9%) 6786 (7%) 2938 (3%)

treatment
Time to initiation, months[1] 24 (13,43) 8 (4,20) 2 (2,4)

33 (19,54) 10 (4,23) 2 (2,4)
Observed CD4 count at 169 (146,186) 289 (248,321) 361 (288,423)
initiation, cells/mm3[1] 174 (153,188) 309 (278,330) 385 (335,437)

True CD4 count at 284 (248,323) 413 (369,461) 458 (388,526)
initiation, cells/mm3[1] 278 (243,315) 424 (381,471) 478 (414,541)

Initial annual slope after 3.39 (2.12,4.66) 2.83 (1.56,4.08) 2.62 (1.30,3.85)
initiation, square-root scale[1;2] 3.38 (2.09,4.68) 2.78 (1.51,4.06) 2.50 (1.24,3.78)

Annual slope one year after 0.38 (0.27,0.49) 0.04 (-0.08,0.15) -0.07 (-0.22,0.10)
initiation, square-root scale[1;2] 0.40 (0.29,0.51) 0.01 (-0.10,0.12) -0.12 (-0.26,0.03)

Percentage of follow-up time 17% 25% 37%
spent on treatment 47% 79% 89%

Table 4.8: Simulation study 1 (large observational study): summary of baseline characteristics
and treatment for n = 100; 000 patients, after expansion to the three regimes given by x =
200, 350 and 500 (population with regular treatment-naïve CD4 decline, CD4 counts observed
monthly and no grace period). However, patients who initiated treatment in the �rst month
while by de�nition observed CD4 count was > 500 cells/mm3 were immediately censored from
all regimes, and therefore these summary statistics are based on the 99; 108 patients who were
not immediately censored. Results in regular text are based on unweighted data; those in italics
are after weighting (with truncation at maximum 20). Unless otherwise stated, values are n
(%) for categorical variables and median (interquartile range) for continuous variables. Of note,
no true CD4 counts were truncated at 0 cells/mm3, and approximately 1, 2 and 2% of true
CD4 counts were truncated at 1000 cells/mm3 on the regimes given by x = 200, 350 and 500
respectively. [1] In those patients who were observed to initiate treatment. [2] As assigned at
treatment initiation.
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Figure 4.14: Simulation study 1 (large observational study): true CD4 count over time (median,
interquartile range and 5/95th percentiles) for the n = 100; 000 patients, after expansion to each
of the three regimes given by x = 200, 350 and 500, with no weighting (population with regular
treatment-naïve CD4 decline, CD4 counts observed monthly and no grace period).
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Figure 4.15: Simulation study 1 (large observational study): true CD4 count over time (median,
interquartile range and 5/95th percentiles) for the n = 100; 000 patients, after expansion to each
of the three regimes given by x = 200, 350 and 500, after application of weights (truncation
at maximum 20; population with regular treatment-naïve CD4 decline, CD4 counts observed
monthly and no grace period).
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Figure 4.16: Simulation study 1 (large observational study): compliance over time of n =
100; 000 patients with the three regimes given by x = 200, 350 and 500, by whether on or
o¤ treatment. The table shows the numbers of observed AIDS or death events in each 12
month period, and the percentage of those events that occurred while the patient was still o¤
treatment. If patients reached AIDS or death while uncensored, then they were removed from
the risk set, but those censored were carried forward for all time to illustrate the cumulative
impact of censoring.

given by x = 200, 350 and 500 (if patients reached AIDS or death then they were removed from

the risk set, but those censored were carried forward to illustrate the cumulative impact of

the censoring; note that no weighting has been applied here). As expected, the predominant

censoring on the 200 regime was due to early initiation of treatment, before CD4 count was

observed to drop below 200 cells/mm3, whereas on the 500 regime, the vast majority of patients

were censored due to remaining o¤ treatment when their CD4 count was �rst observed to drop

< 500 cells/mm3. The higher number of events in the regimes de�ned by lower x is clear. Across

all regimes, the proportion of events happening on treatment increased over time, simply due

to more patients initiating treatment.
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Frequency of Grace Approach Regime given by x
observed CD4 period, 200 350 500
count, months months

1 1 RCT 0.8278 0.8657 0.8587
Obs 1 0.8298 0.8653 0.8581
Obs 2 0.8285 0.8647 0.8460

3 RCT 0.8232 0.8642 0.8581
Obs 1 0.8282 0.8640 0.8584
Obs 2 0.8282 0.8638 0.8508

3 1 RCT 0.7926 0.8616 0.8614
Obs 1 0.8051 0.8631 0.8559
Obs 2 0.8120 0.8643 0.8589

3 RCT 0.7861 0.8600 0.8612
Obs 1 0.7975 0.8583 0.8630
Obs 2 0.7989 0.8622 0.8635

Table 4.9: Simulation study 1: comparison of the 10-year AIDS-free survival from the RCT with
n = 1; 000; 000 patients per regime and as estimated by two large observational studies with
n = 100; 000 patients per regime (di¤erent starting seeds; population with regular treatment-
naïve CD4 decline and CD4 counts observed every 1 or 3 months, and with grace periods of 1
or 3 months).

Outcome results

The 10-year AIDS-free survival, as estimated by weighted Kaplan-Meier, was 0.8298, 0.8653

and 0.8581 on the regimes given by x = 200, 350 and 500, respectively, matching to two decimal

places the results obtained from the equivalent RCT with regular treatment-naïve CD4 decline,

monthly observed CD4 counts and no grace period.

Precision of results In order to look at the variability in the results, we also considered

similar large observational studies with CD4 counts observed every 3 months and 3-month grace

periods, and then we repeated each of these (di¤erent starting seed). The results illustrate the

variability which remains in the estimates despite the large sample size (Table 4.9), reassuring

us that any di¤erences between the results from the large observational studies and the RCTs

are consistent with sampling variability and do not show any evidence of bias.

4.3.5 Results: 1000 realistically-sized observational studies

We simulated 1000 observational studies each with 3000 patients, considering the regimes x =

200; 210; :::; 500. For illustration, the Kaplan-Meier estimates for the 10-year AIDS-free survival

from the �rst 12 simulations for the population with regular treatment-naïve CD4 decline,

monthly observed CD4 counts and no grace period (m = 1) are shown in Figure 4.17, with

the locally-smoothed estimates overlaid. Of note is the variability in the estimates within and

between plots, and that the optimal regime is quite frequently at the highest value of x, namely
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Figure 4.17: Simulation study 1 (small observational studies): estimated probability of surviving
AIDS-free for 10 years by regime, for the �rst 12 of the simulated datasets, as estimated by
Kaplan-Meier and locally smoothed (population with regular treatment-naïve CD4 decline and
CD4 counts observed monthly, and with no grace period).

500.

When CD4 counts were observed monthly, the raw Kaplan-Meier estimates yielded means

and medians which were fairly close to, though slightly higher than, the optimal regime deter-

mined from the equivalent RCT (for example, with no grace period, the mean was 374 compared

to the optimal regime of 360 from the RCT; Table 4.10). Of note, a peak in the histograms

of the raw Kaplan-Meier estimates was visible at x = 500, probably due to the optimal regime

under some of those simulations being given by x > 500 (Figure 4.18). The standard deviations

were large, at 71-77 across the di¤erent grace periods. In particular, extending the grace pe-

riod from 1 to 6 months reduced the SD by only 9%. Across all grace periods, the percentage

of optimal regime estimates which were lower than the minimum acceptable regime from the

equivalent RCT was 13%.

The local smoothing and pooled logistic regression approaches yielded fairly similar results

to each other, but with means, medians and standard deviations typically higher than under

the raw Kaplan-Meier approach (for example, with no grace period, the standard deviations

were 85 and 89, respectively; Table 4.10). It is apparent from the histograms that this is due to

the optimal regime frequently being estimated at the maximum range of x, namely 500 (Figure

4.18).
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CD4 Approach Summary Grace period, months
freq., 1 3 6
months

1 RCT Optimal regime (MA) 360 (290) 360 (290) 370 (300)
Raw KM Mean (SD) 374 (77) 375 (73) 379 (71)

Median (%<RCT MA) 370 (13%) 370 (13%) 375 (13%)
Smoothed Mean (SD) 383 (85) 381 (81) 390 (76)
KM[1] Median (%<RCT MA) 380 (14%) 380 (13%) 390 (11%)
Pooled Mean (SD) 374 (89) 378 (86) 387 (80)
logistic[2] Median (%<RCT MA) 370 (21%) 370 (14%) 375 (11%)

3 RCT Optimal regime (MA) 410 (340) 410 (350) 420 (360)
Raw KM Mean (SD) 395 (70) 418 (57) 420 (60)

Median (%<RCT MA) 400 (23%) 420 (12%) 430 (16%)
Smoothed Mean (SD) 405 (73) 426 (62) 428 (62)
KM[1] Median (%<RCT MA) 410 (21%) 430 (12%) 430 (15%)
Pooled Mean (SD) 402 (76) 424 (66) 430 (63)
logistic[2] Median (%<RCT MA) 400 (24%) 420 (15%) 420 (14%)

Table 4.10: Simulation study 1: results from the 1000 simulated observational studies. Popula-
tion with regular treatment-naïve CD4 decline, with CD4 counts observed every 1 or 3 months,
and grace periods of 1, 3 or 6 months. RCT results shown are the optimal and minimum accept-
able regimes (after local smoothing applied). Results shown from the observational studies are
the mean, standard deviation and median of the estimated optimal regimes, and the percent-
age of estimated optimal regimes that were less than the minimum acceptable regime from the
equivalent RCT. KM=Kaplan-Meier. MA=minimum acceptable. SD=standard deviation. [1]
Local smoothing procedure applied to the Kaplan-Meier estimates. [2] Pooled logistic regression
applied to the raw data. See text for further details on all these methods.
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When the CD4 counts were observed every 3 months, we know that the optimal regimes as

determined by the RCTs are higher, and this was re�ected in the observational study simulation

results (Table 4.10 and Figure 4.19). Similar patterns with respect to the results of the equiv-

alent RCTs were seen as when the CD4 counts were observed monthly. However, the results

from the local smoothing and pooled logistic regression approaches were slightly improved, with

means and medians closer to the optimal regime from the equivalent RCT and smaller stan-

dard deviations, although this was probably due to the range of x over which the AIDS-free

survival rates were broadly constant being smaller (higher minimum acceptable regimes, and

the maximum of the range at 500).

Of note, under both CD4 observation frequencies, longer grace periods were associated with

slightly higher mean and median optimal regimes and slightly lower standard deviations, as we

would anticipate.

Inference under assumption of no grace period

For each CD4 count observation frequency, Table 4.11 shows the performance (bias, mean

square error (MSE), and relative e¢ ciency (RE) with reference to the pooled logistic regression

approach with no grace period) of the di¤erent approaches and grace periods, assuming that the

inference of interest is under no grace period (m = 1). Under monthly observed CD4 counts,

the biases under all approaches were all > 0, indicating overestimation of the optimal regime.

As anticipated, there was a trend towards greater bias, but smaller MSE and RE, with longer

grace periods. The raw Kaplan-Meier approach consistently performed better than the other

two approaches, related to the smaller variances (see the standard deviations in Table 4.10).

When CD4 counts were observed every 3 months, we saw broadly similar patterns, except

for two key di¤erences. Firstly, the bias, MSE and RE all tended to be smaller, compared to

when CD4 counts were observed monthly. Under all three approaches, with no grace period

the bias was negative (indicating underestimation of the optimal regime). Secondly, there was

no clear bene�t of permitting a 6-month compared to 3-month grace period, since the bias

increased under all approaches and the MSE and RE were either broadly similar or larger.

Summary

In this example, due to the large measurement error in CD4 count and the broadly constant

10-year AIDS-free survival rates at higher CD4 counts, a single analysis with a realistic sample

size may yield an estimate quite "far" from the optimal regime. In particular, the estimates

tended to be biased towards higher regimes. Although lacking precision, the raw Kaplan-
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CD4 count Approach Grace period, months
frequency, 1 3 6
months

1 Raw KM Bias 14 15 19
MSE 6149 5543 5386
RE 0.75 0.67 0.64

Smoothed KM[1] Bias 23 21 30
MSE 7733 6932 6711
RE 0.91 0.82 0.74

Pooled logistic[2] Bias 14 18 27
MSE 8084 7692 7112
RE 1 (ref) 0.93 0.81

3 Raw KM Bias -15 8 10
MSE 5099 3273 3644
RE 0.84 0.55 0.61

Smoothed KM[1] Bias -5 16 18
MSE 5388 4066 4135
RE 0.92 0.66 0.65

Pooled logistic[2] Bias -8 14 20
MSE 5874 4537 4333
RE 1 (ref) 0.75 0.68

Table 4.11: Simulation study 1: bias, mean square error (MSE) and relative e¢ ciency (RE)
when comparing the results from the observational studies with grace periods of 1, 3 or 6 months,
compared to the equivalent RCT but with no grace period (m = 1). Note that the variance
under each scenerio is given by the square of the standard deviation in Table 4.10. Population
with regular treatment-naïve CD4 decline and CD4 counts observed every 1 or 3 months. RCT
results after least square smoothing applied. KM=Kaplan-Meier. [1] Local smoothing procedure
applied to the Kaplan-Meier estimates. [2] Pooled logistic regression applied to the raw data.
See text for further details on all these methods.
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Meier approach performed best overall, since the smoothed Kaplan-Meier and pooled logistic

regression approaches frequently estimated the optimal regime at the upper bound of the set of

regimes under consideration (namely, at x = 500).

Of note for the CASCADE analyses, when CD4 counts were observed every 3 months,

permitting a grace period of 3 months may not result in a large bias for the estimation of the

optimal regime in the absence of a grace period, and may o¤er bene�ts in terms of greater

precision. Extension to a 6-month grace period may not o¤er any additional advantages. If

a grace period is permitted for the purposes of potentially increase precision, then under the

inference of no grace period, there will naturally be bias towards higher regimes.

4.4 Simulation study 2

4.4.1 Motivation

The results of the �rst simulation study reported above naturally raised the question of whether

in a scenario where the optimal regime is more distinct (that is, the outcome-by-regime curve

is less �at and has a clearer peak) and with a greater number of patients, the application of

dynamic MSMs to the observational data would yield results closer to those of the equivalent

RCT. We therefore repeated the simulation study above, but with a larger number of patients

and arti�cially enforcing a greater penalty for early and late treatment initiation, with respect

to CD4 count, to create an outcome-by-regime curve with a more distinct peak for the optimal

regime.

4.4.2 Methods

As in the �rst simulation study, we simulated large RCTs and a large number of realistically-

sized observational studies. The study was conducted in exactly the same way as the �rst, except

for three di¤erences. Firstly, we increased the number of patients in the observational studies

to n = 7000, which, within computational limitations, is closer to the size of other observational

studies investigating applying dynamic MSMs to look at the e¤ects of HIV treatment (Cain et al.

(2010); Young et al. (2011); these used prevalent rather than incident cohorts like CASCADE

and therefore had access to greater numbers of patients). Secondly, we applied a penalty for

early or late treatment initiation, with respect to CD4 count (see below). Lastly, we performed

500 rather than 1000 observational study simulations, to reduce computational time and because

the interpretations were fairly clear even with this smaller number of simulations.
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Penalty for early or late treatment initiation

We reduced the CD4 slope from one year after treatment initiation, if treatment was initiated

when true CD4 count was < 300 or > 400 cells/mm3. This penalty was a �xed linear function

of true CD4 count at treatment initiation, with the new slope S
0
2 on the square-root scale given

by:

S
0
2 =

8>>>><>>>>:
S2 � 1:2 + 0:004R2 if R2 < 300

S2 if R2 � 300 and � 400

S2 + 1:2� 0:003R2 if R2 > 400

where, as previously, R2 is the true CD4 count at treatment initiation and S2 is the CD4 slope

on the square-root scale from one year after treatment initiation. This equates to a reduction

in S2 by 0.4 and 0.3 if the true CD4 count at treatment initiation was 200 and 500 cells/mm3,

respectively. Note that this function is continuous at all values of CD4 count (with change-points

at 300 and 400 cells/mm3).

4.4.3 Results: the randomised trials

Optimal regimes

Figure 4.20 clearly shows that the 10-year AIDS-free survival by regime curves were less �at and

had clearer peaks, as intended. Under the scenario where CD4 counts were observed monthly,

the optimal regimes under grace periods of 1, 3 and 6 months were 290, 300 and 310, respectively

(with 10-year AIDS-free survival probabilities on those optimal regimes of 0.8559, 0.8533 and

0.8490, respectively; Table 4.12). There were no changes under smoothing, except for the grace

period of 1 month, where the optimal regime was 300 under both local smoothing methods

(with very similar 10-year AIDS-free survival probabilities).

When CD4 counts were observed every 3 months, the optimal regime was given by x = 350,

regardless of the length of the grace period, although with poorer 10-year AIDS-free survival with

longer grace periods (Table 4.12). However, there were some di¤erences under local smoothing,

with the optimal regimes being given by x = 340 and 350 with no grace period (m = 1) when

smoothing by least squares and weighting, respectively, and x = 360 under both local smoothing

methods for grace periods of both 3 and 6 months. The reason for few if any di¤erences in the

optimal regimes across the di¤erent grace periods is probably due to the AIDS-free survival

by regime curves having clearer peaks, resulting from the penalties imposed for early or late

treatment initiation with respect to CD4 count (Figure 4.20).
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CD4 count Grace Optimal regime Minimum acceptable regime
frequency, period,
months months

1 1 290 (0.8559) 270 (0.8530)
300 (0.8557) -
300 (0.8557) -

3 300 (0.8533) 270 (0.8498)
- -
- -

6 310 (0.8490) 280 (0.8454)
- -
- -

3 1 350 (0.8521) 310 (0.8476)
340 (0.8517) -
350 (0.8518) -

3 350 (0.8493) 320 (0.8455)
360 (0.8489) -
360 (0.8489) -

6 350 (0.8453) 330 (0.8418)
360 (0.8448) -
360 (0.8448) -

Table 4.12: Simulation study 2 (RCTs): optimal and minimum acceptable regimes in popula-
tions di¤erent CD4 count observation frequencies and grace periods (regular treatment-naïve
CD4 decline). For each scenario, the �rst line gives the results with no local smoothing, and the
second and third lines show the results under local smoothing using least squares and weight-
ing, respectively (the smoothed results are only shown if the optimal di¤ers from that under
no smoothing). Values in brackets are the estimated probabilities of surviving AIDS-free to 10
years under that regime.
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Figure 4.20: Simulation study 2 (RCTs): probability of surviving AIDS-free to 10 years by
regime, across di¤erent CD4 count observation frequencies and grace periods (population with
regular treatment-naïve CD4 decline). Note that probabilities were only plotted if � 0:78 to
preserve a common scale. Horizontal line drawn at 0.84 to aid comparison between plots.

Minimum acceptable regimes

The minimum acceptable regimes were given by x = 270, 270 and 280 under grace periods of

1, 3 and 6 months, respectively, when CD4 counts were observed monthly (Table 4.12). The

corresponding �gures were 310, 320 and 330 when CD4 counts were observed every 3 months.

There were no changes under either local smoothing method.

4.4.4 Results: the observational studies

Under both CD4 count observation frequencies, all approaches performed somewhat better com-

pared to the �rst simulation study, in particular with smaller standard deviations and smaller

percentages of estimated optimal regimes being less than the minimum acceptable regime from

the equivalent RCT (Table 4.13). This was most noticeable for the pooled logistic regression

approach. This is illustrated in the histograms, which were much more centred on the optimal

regime from the equivalent RCT, as we would expect in this scenario where there is a more

de�ned optimal curve (Figures 4.21 and 4.22).

When looking at inference under the assumption of no grace period, the most noticeable

di¤erence compared to the �rst simulation study was the reduction in MSE across all scenar-

ios, related to the reductions in variances (Table 4.14; see also standard deviations in Table
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CD4 Approach Summary Grace period, months
freq., 1 3 6
months

1 RCT Optimal regime (MA) 300 (270) 300 (270) 310 (280)
Raw KM Mean (SD) 314 (52) 316 (42) 321 (38)

Median (%<RCT MA) 300 (15%) 310 (11%) 320 (10%)
Smoothed Mean (SD) 312 (49) 315 (40) 321 (37)
KM[1] Median (%<RCT MA) 300 (10%) 310 (6%) 320 (7%)
Pooled Mean (SD) 303 (44) 308 (33) 315 (27)
logistic[2] Median (%<RCT MA) 290 (6%) 300 (2%) 310 (1%)

3 RCT Optimal regime (MA) 340 (310) 360 (320) 360 (330)
Raw KM Mean (SD) 363 (53) 363 (41) 372 (39)

Median (%<RCT MA) 350 (12%) 360 (12%) 370 (9%)
Smoothed Mean (SD) 365 (54) 361 (38) 372 (40)
KM[1] Median (%<RCT MA) 350 (10%) 350 (8%) 370 (8%)
Pooled Mean (SD) 361 (52) 357 (36) 369 (33)
logistic[2] Median (%<RCT MA) 360 (11%) 350 (6%) 370 (6%)

Table 4.13: Simulation study 2: results from the 1000 simulated observational studies. Popula-
tion with regular treatment-naïve CD4 decline, with CD4 counts observed every 1 or 3 months,
and grace periods of 1, 3 or 6 months. RCT results shown are the optimal and minimum accept-
able regimes (after local smoothing applied), Results shown from the observational studies are
the mean, standard deviation and median of the estimated optimal regimes, and the percent-
age of estimated optimal regimes that were less than the minimum acceptable regime from the
equivalent RCT. KM=Kaplan-Meier. MA=minimum acceptable. SD=standard deviation. [1]
Local smoothing procedure applied to the Kaplan-Meier estimates. [2] Pooled logistic regression
applied to the raw data. See text for further details on all these methods.
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CD4 count Approach Grace period, months
frequency, 1 3 6
months

1 Raw KM Bias 14 16 21
MSE 2919 2045 1890
RE 1.38 0.90 0.74

Locally-smoothed KM[2] Bias 12 15 21
MSE 2594 1832 1808
RE 1.24 0.81 0.70

Pooled logistic[3] Bias 3 8 15
MSE 1982 1123 955
RE 1 (ref) 0.54 0.38

3 Raw KM Bias 23 23 32
MSE 3380 2202 2573
RE 1.06 0.62 0.57

Locally-smoothed KM[2] Bias 25 21 32
MSE 3604 1873 2578
RE 1.10 0.53 0.58

Pooled logistic[3] Bias 21 17 29
MSE 3124 1561 1908
RE 1 (ref) 0.48 0.40

Table 4.14: Simulation study 2: bias, mean square error (MSE) and relative e¢ ciency (RE)
when comparing the results from the observational studies with grace periods of 1, 3 or 6
months, compared to the equivalent RCT but with no grace period (m = 1). Note that the
variance under each scenerio is shown in Table 4.10. Population with regular treatment-naïve
CD4 decline and CD4 counts observed every 1 or 3 months. RCT results after least square
smoothing applied. KM=Kaplan-Meier. [1] Local smoothing procedure applied to the Kaplan-
Meier estimates. [2] Pooled logistic regression applied to the raw data. See text for further
details on all these methods.

4.13). The pooled logistic regression approach performed consistently better than the other

approaches, with smaller bias, MSE and RE. As before, permitting a 3-month grace period led

to improvements in the MSE and RE, compared to no grace period (m = 1). When CD4 counts

were observed 3-monthly, there was no clear bene�t in allowing a 6-month grace period, due to

increases in the MSE across all approaches (the larger biases outweighed the gains in e¢ ciency).
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4.5 Application to CASCADE

A number of previous researchers have attempted to estimate the optimal time to initiate

treatment in HIV-infected persons with respect to CD4 count, as outlined in section 1.5. While

these studies have typically bene�ted from a greater sample size than we have available in

CASCADE, we have the advantage of a seroconverter, as opposed to seroprevalent, cohort. The

pros and cons of our approach are discussed further in chapter 5.

The work of our �rst simulation study with realistic CD4 count trajectories (section 4.3)

indicated that in populations where CD4 counts are observed every 3 months, permitting a

grace period of 3 months may not result in a large bias for the estimation of the optimal regime

in the absence of a grace period, and may o¤er bene�ts in terms of greater precision. Extension

to a 6-month grace period may not o¤er any additional advantages. Therefore we used the

CASCADE data to estimate the optimal regime in terms of when to initiate treatment with

respect to CD4 count, in those with CD4 counts � 500 cells/mm3, allowing a 3-month grace

period for treatment initiation. We used the second approach of Cain et al. (2010) where uniform

treatment initiation across the grace period is assumed, as was applied in the simulation studies.

4.5.1 Methods

Treatment regimes

We used the treatment regimes considered in the simulation studies, that is, de�ned by x =

200; 210; :::; 500. However, as we have seen in previous chapters, 15% of the 1082 treatment

initiations observed in our population of 3382 patients occurred in the �rst month following

study entry. Since by de�nition all patients had CD4 count �500 cells/mm3 at that time, none

of these treatment initiations would be compliant with any of the treatment regimes given by

x = 200; 210; :::; 500 and so would all be censored, resulting in a substantial loss of information.

Therefore, we considered incorporating an additional regime de�ned as �initiate treatment im-

mediately following study entry�, since it has some clinical meaning with respect to our entry

criteria (namely, �rst CD4 count � 500 cells/mm3 within 1-5 years after seroconversion). While

all our results are based on this large number of regimes, for clarity we will sometimes present

summaries of the data for just the key regimes given by x = 200; 350; 500 and �initiate im-

mediately�. Note that our immediate treatment initiation regime has a di¤erent meaning to

immediate initiation at �rst observed CD4 count, regardless of the CD4 count level; our results

refer only to the subpopulation who have a �rst observed CD4 count � 500 cells/mm3.
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Weight estimation

We used the treatment models as determined under the di¤erent strategies of chapter 2 to

estimate the weights. As indicated in section 4.2, it is not trivial to stabilise the weights while

permitting a grace period with m > 1; and the stabilised weights are not guaranteed to increase

the precision, therefore we used non-stabilised weights throughout. When using grace periods,

the �probabilities�in the numerator of the non-stabilised weights may be < 1 (including while

the denominator is equal to 1), therefore the non-stabilised weights may be < 1, in contrast to

non-stabilised weights under standard MSMs. However, the value of the numerator is a simple

function of the interval of the grace period, and therefore will not su¤er from extreme values;

with a grace period of 3, it will have a lower bound of 1=3 (see section 4.2.2). Therefore, rather

than truncating the outer percentiles, we truncated the upper 1%, which was typically close to

the value of 20 used in the simulation studies. Of note, the only di¤erence between strategies

Ia and II/III of chapter 2 was the degree of truncation, therefore with this blanket truncation

across all strategies there was no longer any di¤erence between these strategies and they are

presented here as one.

AIDS-free survival

As in the simulation studies, we estimated survival using Kaplan-Meier methods, with and

without local smoothing, and also using pooled logistic regression models. We obtained both

weighted and unweighted estimates, to look at the impact of the weighting.

To smooth the Kaplan-Meier estimates, we used the same approach as in the simulation

studies, but only across the range x = 200 to 500; the immediate treatment initiation regime

estimates were left unchanged.

In the pooled logistic regression models, time was included as a 5 knot spline as in chapter

2, and categorised as 0-<0.5, 0.5-<1, 1-<2 and �2 years for the interaction with regime (Cain

et al., 2010). Regime was included as a 4 knot spline for values x = 200 to 500, with knots at

the 5, 35, 65 and 95th percentiles (Harrell, 2001) which translated to x given by 210, 290, 380

and 490, and a separate indicator was used for the immediate treatment initiation regime. Of

note, the non-stabilised weights adjust for the time-dependent as well as the time-independent

covariates, therefore it was not necessary to include the baseline covariates in the outcome

model. We directly predicted survival from the pooled logistic regression models; the resulting

survival curves are analogous to the standardised survival curves of chapter 2.

As we have seen in the simulation studies, it is important to allow long follow-up when
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seeking to optimise dynamic treatment regimes. However, of course we were limited by the

observed follow-up in our population of CASCADE patients (median 2.3 years), therefore we

focussed on the AIDS-free survival at 3 and 6 years.

Interval estimation

95% con�dence intervals were estimated by bootstrap with resampling strati�ed by country

(500 repetitions).

Censoring

�Usual�censoring may be incorporated using weights as in previous chapters, but based on the

results from those chapters we would expect this to make little di¤erence in practice, and so

was not incorporated here.

4.5.2 Results

We used the same dataset of 3382 patients as throughout the thesis, but, as in chapter 3, 26

patients were censored in the second month of follow-up, and therefore those patients contributed

to the weight estimation only and not the outcome estimations.

Compliance with treatment regimes

In the absence of a grace period, 2325, 2072 and 1438 patients remained compliant throughout

their follow-up with the regimes given by x = 200, 350 and 500, respectively. Incorporating a

3-month grace period, 2356, 2166 and 1538 patients were compliant with those three regimes,

respectively. Overall, permitting a 3-month grace period, 35% of the 1082 observed treatment

initiations were compliant with at least one regime given by x = 200; 210; :::; 500; and 20%

initiated treatment immediately. Therefore, incorporating the regime of immediate treatment

initiation meant that 55% of the observed treatment initiations were in compliance with at least

one regime. Of note, 20% of the treatment initiations were at a CD4 count which had been

carried forward for more than 3 months, therefore were censored due to the treatment initiation

being beyond the permitted grace period.

Treatment initiations across the grace period

Table 4.15 illustrates the treatment initiation patterns across the grace period for those observed

treatment initiations which were compliant with each of the four regimes given by x = 200;
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Interval of the Regime
grace period x =200 350 500 Imm

1 46 (63%) 51 (40%) 42 (41%) 161 (75%)
2 18 (25%) 46 (37%) 30 (29%) 33 (15%)
3 9 (12%) 29 (23%) 30 (29%) 22 (10%)
Total 73 (100%) 126 (100%) 102 (100%) 216 (100%)

Table 4.15: Application to CASCADE: pattern of treatment initiation across the grace period,
for those observed treatment initiations which were in compliance with the regimes given by
x = 200, 350, 500, and immediate treatment initiation. Values are the number of treatment
initiations in a given interval of the grace period which were in compliance with the given regime
(% of total number of treatment initiations across the grace period which were in compliance
with the given regime). Imm=immediate treatment initiation regime.

350, 500 and immediate treatment initiation. A higher percentage of patients who initiated in

compliance with regime x = 200 initiated in the �rst interval of the grace period (63%) compared

to those who initiated in compliance with regimes x = 350 or 500 (40 and 41%, respectively).

This pattern is as we may expect, since at lower CD4 counts clinicians and patients may be

keen to initiate treatment sooner, whereas at higher CD4 counts they may not be concerned

about a small delay. However, a large percentage of patients who initiated in compliance with

the immediate treatment regime did so in the �rst interval of the grace period; this is probably

related to the de�nition of that regime. Of note, the �rst approach of Cain et al. (2010) would

only upweight those patients who waited until the last interval of the grace period after their

CD4 count had �rst dropped below the given threshold to initiate. For the regime given by

x = 200 in particular, this subset of patients is unlikely to be representative of the remainder

of the patients who initiated earlier in the grace period.

Weights

Summaries of the weights are presented in Table 4.16; of note, these are non-stabilised weights

therefore we no longer expect the mean to be close to 1. The maxima of the untruncated weights

were between 135 and 361 for the strategies Ia to V, and were much larger under strategies VI

and VII (1044 and 42034, respectively). After truncation of the upper 1% of the weights, the

maxima were between 14 and 17 across all strategies. The means of the truncated weights

ranged from 1.542 under strategy V to 1.606 under strategy Ib. The standard deviations were

around 2.

AIDS-free survival

Overall, 103, 89, 55 and 15 AIDS or death events were observed in patients remaining compliant

with the regimes given by x = 200; 350, 500 and immediate treatment initiation. Of these, only
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Strategy No truncation Truncation of upper 1%
Mean (SD) Range Mean (SD) Range

Ia/II/III 1.745 (3.557) 0.33, 135 1.604 (2.011) 0.33, 15
Ib 1.743 (3.569) 0.33, 172 1.606 (2.028) 0.33, 16
IV 1.767 (4.595) 0.33, 342 1.587 (2.102) 0.33, 17
V 1.742 (4.591) 0.33, 361 1.542 (1.785) 0.33, 14
VI 1.779 (4.349) 0.33, 1044 1.601 (2.082) 0.33, 16
VII 1.810 (45.30) 0.33, 42034 1.570 (2.023) 0.33, 16

Table 4.16: Application to CASCADE: summary of the estimated weights from each of the
di¤erent strategies. SD=standard deviation.

2, 7, 4 and 11, respectively, occurred following treatment initiation. Of note, the 4 events which

occurred while treatment-naïve and in compliance with the immediate treatment initiation

regime all occurred during the 3-month grace period (none initiated treatment before the event;

all patients still had CD4 counts over 500 cells/mm3 therefore these events were also included

in the events while treatment-naïve for the regimes given by x = 200; 350 and 500).

Figure 4.23 illustrates the probability of surviving AIDS-free to 6 years from study entry for

the regimes given by x = 200, 350, 500 and immediate initiation, unweighted and weighted based

on the di¤erent weight estimation strategies (under the raw Kaplan-Meier approach). Overall,

there was little di¤erence between the weight estimation strategies; all showed some greater

separation between the AIDS-free survival curves compared to the unweighted estimation. There

appeared to be little di¤erence between the treatment regimes given by x = 200 and 350,

except a suggestion of poorer AIDS-free survival on the regime x = 350 at later times, perhaps

contrary to what we might expect. Immediate treatment initiation appeared to be preferable

when considering AIDS-free survival to 6 years, compared to delaying treatment to any of the

three CD4 count thresholds considered (except perhaps under strategy VI).

Looking instead at the AIDS-free survival curves predicted from the pooled logistic regression

models (Figure 4.24), there was again greater separation between the regimes for the weighted

compared to the unweighted curves. Similarly to the raw Kaplan-Meier AIDS-free survival

curves, there was little di¤erence between the regimes given by x = 200 and 350. In contrast

to the raw Kaplan-Meier curves, there was a suggestion that waiting until the CD4 count is

�rst observed to drop < 500 cells/mm3 may be preferable in terms of 6-year AIDS-free survival

compared to immediate treatment initiation, at least under strategies IV, V, VI and VII.

For illustration and focussing on the time-points of 3 and 6 years, Tables 4.17 and 4.18 show

the estimated AIDS-free survival at those times, respectively, under the di¤erent weighting

strategies and estimation approaches, for the four regimes given by x = 200; 350, 500 and

immediate treatment initiation.
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Figure 4.23: Application to CASCADE: probability of remaining alive & AIDS-free to 6 years,
estimated using the raw Kaplan-Meier approach, under the di¤erent weight estimation strategies
(and with no weighting), for the four regimes given by x = 200, 350 and 500, and immediate
treatment initiation.
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Figure 4.24: Application to CASCADE: probability of remaining alive & AIDS-free to 6 years,
estimated using the pooled logistic regression model approach, under the di¤erent weight esti-
mation strategies (and with no weighting), for the four regimes given by x = 200, 350 and 500,
and immediate treatment initiation.
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Approach Regime
Strategy 200 350 500 Imm

Raw KM
Unweighted 0.957 (0.946,0.967) 0.961 (0.949,0.971) 0.968 (0.955,0.978) 0.991 (0.973,1.000)
Ia/II/III 0.956 (0.942,0.966) 0.960 (0.942,0.973) 0.977 (0.968,0.983) 0.995 (0.984,1.000)
Ib 0.955 (0.942,0.966) 0.960 (0.942,0.973) 0.977 (0.968,0.984) 0.995 (0.984,1.000)
IV 0.958 (0.948,0.967) 0.963 (0.951,0.974) 0.977 (0.969,0.984) 0.996 (0.989,1.000)
V 0.959 (0.949,0.968) 0.963 (0.950,0.973) 0.976 (0.967,0.983) 0.995 (0.985,1.000)
VI 0.949 (0.931,0.963) 0.957 (0.934,0.972) 0.975 (0.965,0.982) 0.997 (0.990,1.000)
VII 0.947 (0.923,0.964) 0.959 (0.939,0.973) 0.975 (0.965,0.982) 0.996 (0.989,1.000)

Smoothed KM
Unweighted 0.957 (0.946,0.967) 0.961 (0.950,0.971) 0.968 (0.955,0.978) 0.991 (0.973,1.000)
Ia/II/III 0.956 (0.942,0.966) 0.960 (0.942,0.973) 0.977 (0.968,0.983) 0.995 (0.984,1.000)
Ib 0.955 (0.942,0.966) 0.960 (0.942,0.973) 0.977 (0.968,0.983) 0.995 (0.984,1.000)
IV 0.958 (0.948,0.967) 0.963 (0.951,0.973) 0.977 (0.969,0.984) 0.996 (0.989,1.000)
V 0.959 (0.949,0.968) 0.963 (0.950,0.973) 0.976 (0.967,0.983) 0.995 (0.985,1.000)
VI 0.949 (0.931,0.963) 0.957 (0.933,0.972) 0.975 (0.965,0.982) 0.997 (0.990,1.000)
VII 0.947 (0.923,0.964) 0.959 (0.938,0.973) 0.975 (0.965,0.982) 0.996 (0.989,1.000)

Pooled logistic
Unweighted 0.959 (0.949,0.967) 0.961 (0.950,0.970) 0.966 (0.954,0.974) 0.974 (0.957,0.988)
Ia/II/III 0.955 (0.942,0.965) 0.957 (0.942,0.968) 0.970 (0.957,0.980) 0.985 (0.974,0.994)
Ib 0.955 (0.941,0.965) 0.958 (0.943,0.969) 0.970 (0.958,0.980) 0.986 (0.974,0.994)
IV 0.957 (0.946,0.965) 0.959 (0.946,0.968) 0.971 (0.957,0.981) 0.984 (0.973,0.994)
V 0.957 (0.946,0.966) 0.959 (0.946,0.968) 0.972 (0.961,0.980) 0.984 (0.972,0.993)
VI 0.949 (0.931,0.962) 0.955 (0.940,0.967) 0.970 (0.958,0.979) 0.981 (0.964,0.992)
VII 0.947 (0.921,0.963) 0.957 (0.943,0.968) 0.969 (0.957,0.978) 0.983 (0.967,0.993)

Table 4.17: Application to CASCADE: AIDS-free survival at 3 years, estimated by the three
approaches of raw Kaplan-Meier, smoothed Kaplan-Meier or pooled logistic regression, under
the di¤erent weight estimation strategies (and with no weighting), for the four regimes given
by x = 200; 350 and 500, and immediate treatment initiation. Values in brackets are 95%
bootstrap con�dence intervals. Imm=immediate treatment initiation regime.
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Approach Regime
Strategy 200 350 500 Imm

Raw KM
Unweighted 0.906 (0.880,0.931) 0.891 (0.858,0.921) 0.920 (0.881,0.957) 0.938 (0.882,0.980)
Ia/II/III 0.914 (0.889,0.936) 0.891 (0.842,0.932) 0.923 (0.871,0.966) 0.951 (0.896,0.989)
Ib 0.914 (0.888,0.936) 0.891 (0.842,0.932) 0.924 (0.875,0.966) 0.950 (0.894,0.989)
IV 0.912 (0.885,0.937) 0.893 (0.842,0.934) 0.929 (0.878,0.971) 0.960 (0.909,0.992)
V 0.911 (0.884,0.936) 0.893 (0.845,0.931) 0.937 (0.899,0.969) 0.952 (0.891,0.990)
VI 0.906 (0.881,0.931) 0.885 (0.835,0.926) 0.929 (0.882,0.967) 0.938 (0.858,0.991)
VII 0.907 (0.877,0.930) 0.890 (0.839,0.930) 0.924 (0.869,0.967) 0.943 (0.870,0.991)

Smoothed KM
Unweighted 0.906 (0.880,0.931) 0.890 (0.857,0.921) 0.920 (0.881,0.957) 0.938 (0.882,0.980)
Ia/II/III 0.914 (0.889,0.936) 0.885 (0.837,0.924) 0.923 (0.870,0.966) 0.951 (0.896,0.989)
Ib 0.914 (0.888,0.936) 0.886 (0.837,0.924) 0.924 (0.873,0.966) 0.950 (0.894,0.989)
IV 0.912 (0.885,0.937) 0.883 (0.839,0.926) 0.929 (0.878,0.971) 0.960 (0.909,0.992)
V 0.911 (0.884,0.936) 0.886 (0.844,0.924) 0.937 (0.898,0.969) 0.952 (0.891,0.990)
VI 0.906 (0.881,0.931) 0.881 (0.833,0.921) 0.929 (0.882,0.967) 0.938 (0.858,0.991)
VII 0.907 (0.877,0.930) 0.886 (0.837,0.923) 0.924 (0.867,0.967) 0.943 (0.870,0.991)

Pooled logistic
Unweighted 0.907 (0.883,0.926) 0.905 (0.878,0.927) 0.924 (0.893,0.947) 0.900 (0.846,0.946)
Ia/II/III 0.903 (0.873,0.927) 0.884 (0.842,0.919) 0.926 (0.872,0.962) 0.926 (0.877,0.967)
Ib 0.903 (0.872,0.927) 0.885 (0.843,0.919) 0.928 (0.875,0.963) 0.927 (0.876,0.967)
IV 0.900 (0.870,0.925) 0.889 (0.845,0.922) 0.932 (0.877,0.967) 0.916 (0.860,0.970)
V 0.899 (0.866,0.924) 0.890 (0.851,0.923) 0.938 (0.902,0.964) 0.914 (0.854,0.967)
VI 0.892 (0.852,0.925) 0.886 (0.847,0.921) 0.935 (0.892,0.964) 0.911 (0.835,0.965)
VII 0.888 (0.845,0.922) 0.891 (0.850,0.925) 0.931 (0.882,0.964) 0.916 (0.845,0.967)

Table 4.18: Application to CASCADE: AIDS-free survival at 6 years, estimated by the three
approaches of raw Kaplan-Meier, smoothed Kaplan-Meier or pooled logistic regression, under
the di¤erent weight estimation strategies (and with no weighting), for the four regimes given
by x = 200; 350 and 500, and immediate treatment initiation. Values in brackets are 95%
bootstrap con�dence intervals. Imm=immediate treatment initiation regime.
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Figure 4.25: Application to CASCADE: AIDS-free survival at 3 years by regime, estimated by
the three approaches of raw Kaplan-Meier, smoothed Kaplan-Meier or pooled logistic regression,
across the di¤erent weight estimation strategies (and under no weighting). Imm=immediate
treatment initation regime. The estimates for the immediate treatment initiation regime are
staggered to aid clarity.

Optimal regimes at 3 and 6 years

We now consider the whole range of the regimes, to determine the optimal regime as de�ned

by 3- and 6-year AIDS-free survival.

Comparing all the treatment weighting strategies and estimation approaches, it is clear that

the optimal regime with respect to 3-year AIDS-free survival is immediate treatment initiation

(Figure 4.25, and with 95% con�dence intervals in Figures 4.26, 4.27 and 4.28 for the raw Kaplan-

Meier, smoothed Kaplan-Meier and pooled logistic regression model approaches, respectively).

The curves were broadly similar across all the di¤erent strategies and approaches, although the

unweighted curves tended to underestimate somewhat the AIDS-free survival at regimes given

by higher x.

Considering the 6-year AIDS-free survival probabilities, we saw quite di¤erent shapes in the

AIDS-free survival by regime curves (Figure 4.29). Contrary to what we might expect based on

the realistic simulation study (section 4.3) and the known bene�ts of treatment at CD4 counts

� 350 cells/mm3, there appeared to be a trough at regimes given by intermediate x (300 to 400).

Similarly to the 3-year AIDS-free survival estimation, immediate treatment initiation appeared
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Figure 4.26: Application to CASCADE: AIDS-free survival at 3 years by regime, with 95%
bootstrap con�dence intervals, as estimated by the raw Kaplan-Meier approach, across the
di¤erent weight estimation strategies (and under no weighting). Imm=immediate treatment
initation regime.
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Figure 4.27: Application to CASCADE: AIDS-free survival at 3 years by regime, with 95%
bootstrap con�dence intervals, as estimated by the smoothed Kaplan-Meier approach,
across the di¤erent weight estimation strategies (and under no weighting). Imm=immediate
treatment initation regime.
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Figure 4.28: Application to CASCADE: AIDS-free survival at 3 years by regime, with
95% bootstrap con�dence intervals, as estimated by the pooled logistic regression model
approach, across the di¤erent weight estimation strategies (and under no weighting).
Imm=immediate treatment initation regime.
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Figure 4.29: Application to CASCADE: AIDS-free survival at 6 years by regime, estimated by
the three approaches of raw Kaplan-Meier, smoothed Kaplan-Meier or pooled logistic regression,
across the di¤erent weight estimation strategies (and under no weighting). Imm=immediate
treatment initation regime. The estimates for the immediate treatment initiation regime are
staggered to aid clarity.

to be the optimal choice under the raw and smoothed Kaplan-Meier approaches, although the

con�dence intervals overlapped considerably with those of the other regimes (Figures 4.30 and

4.31). However, under the pooled logistic regression approach, the point estimates for the 6-year

AIDS-free survival tended to be lower on the immediate treatment initiation regime, compared

to for example the regime given by x = 500; although, once again the con�dence intervals

overlapped considerably (Figure 4.32). The greater uncertainty is due to less uncensored follow-

up to 6 years.

The optimal regimes based on these results are shown in Table 4.19, along with the mini-

mum acceptable regimes. Across most scenarios, the optimal regime was immediate treatment

initiation, although, when considering 6-year AIDS-free survival, the pooled logistic regression

model approach yielded optimal regimes of x = 500 across all but one weighting strategy. Of

note, the raw and smoothed Kaplan-Meier estimated optimal regimes were unlikely be di¤erent

when the optimal regime for the former was immediate treatment initiation, since the smooth-

ing was only performed over the range x = 200 to 500, and the immediate treatment initiation

estimates were left unchanged.
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Figure 4.30: Application to CASCADE: AIDS-free survival at 6 years by regime, with 95%
bootstrap con�dence intervals, as estimated by the raw Kaplan-Meier approach, across the
di¤erent weight estimation strategies (and under no weighting). Imm=immediate treatment
initation regime.
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Figure 4.31: Application to CASCADE: AIDS-free survival at 6 years by regime, with 95%
bootstrap con�dence intervals, as estimated by the smoothed Kaplan-Meier approach,
across the di¤erent weight estimation strategies (and under no weighting). Imm=immediate
treatment initation regime.
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Figure 4.32: Application to CASCADE: AIDS-free survival at 6 years by regime, with 95%
bootstrap con�dence intervals, as estimated by the pooled logistic regression approach,
across the di¤erent weight estimation strategies (and under no weighting). Imm=immediate
treatment initation regime.
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Time-point Raw KM Smoothed KM Pooled logistic
Strategy

3 years
Unweighted Imm (0.991) Imm (0.991) Imm (0.974)

- - -
Ia/II/III Imm (0.995) Imm (0.995) Imm (0.985)

- - -
Ib Imm (0.995) Imm (0.995) Imm (0.986)

- - -
IV Imm (0.996) Imm (0.996) Imm (0.984)

- - -
V Imm (0.995) Imm (0.995) Imm (0.984)

- - -
VI Imm (0.997) Imm (0.997) Imm (0.981)

- - -
VII Imm (0.996) Imm (0.996) Imm (0.983)

- - -
6 years
Unweighted Imm (0.938) Imm (0.938) 500 (0.924)

- - 480 (0.920)
Ia/II/III Imm (0.951) Imm (0.951) Imm (0.926)

- - 490 (0.922)
Ib Imm (0.950) Imm (0.950) 500 (0.928)

- - 490 (0.924)
IV Imm (0.960) Imm (0.960) 500 (0.932)

- - 490 (0.928)
V Imm (0.952) Imm (0.952) 500 (0.938)

- - 490 (0.934)
VI Imm (0.938) Imm (0.938) 500 (0.935)

- - 490 (0.931)
VII Imm (0.943) Imm (0.943) 500 (0.931)

- - 490 (0.928)

Table 4.19: Application to CASCADE: optimal and minimum acceptable regimes with respect
to 3- and 6-year AIDs free survival. The �rst row for each time-point/strategy shows the
optimal regime, and the second shows the minimum acceptable regime (if di¤erent to the optimal
regime). Recall, the minimum acceptable regime is de�ned as that given by lowest x which has
< 0:005 poorer AIDS-free survival compared to under the optimal regime. Values in brackets
are the estimated probabilities of surviving AIDS-free to that time-point under that regime.
Imm=immediate treatment initiation regime. KM=Kaplan-Meier.
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Minimum acceptable regimes at 3 and 6 years

Due to the relatively large observed higher 3- and 6-year AIDS-free survival under the immediate

treatment initiation regime, there were typically no other regimes which met the stringent

criterion for acceptability (no worse than 0.5% poorer AIDS-free survival). However, where the

estimated optimal regime was given by x = 500 (when considering 6-year AIDS-free survival

under the pooled logistic regression approach), the regime given by x = 490 met this criterion

for acceptability (Table 4.19).

4.6 Discussion

4.6.1 Methodological �ndings

In this chapter, we have explored the optimisation of pre-de�ned treatment regimes using dy-

namic MSMs, via the clinical question of when to initiate treatment with respect to CD4 count

in HIV-infected persons. As outlined in section 4.1.1, these methods are best approached via

the concept of the RCT which one would ideally conduct (Cain et al., 2010; Hernán et al.,

2008). This enables the correct framing of the question to be addressed using the observational

data. We have demonstrated via simulations of large RCTs and observational cohorts that, with

su¢ cient data and under the standard assumptions (section 1.2.4), these methods yield the cor-

rect answers. However, in our clinical example where there are large natural �uctuations and

measurement error in the biomarker CD4 count which de�nes the dynamic treatment regimes,

and where the event (AIDS or death) rates are low, a great deal of uncertainty is present. This

was evident in our large simulated observational studies of 100,000 participants, and even to

some extent in the simulated RCTs of 31 million individuals. We have reinforced the current

view that large collaborative clinical cohorts are required to answer such causal questions.

A related issue encountered in our simulation study based on a realistic scenario (simula-

tion study 1) was that the outcome used to determine the optimum regime, that is, 10-year

AIDS-free survival, was broadly constant at high values of CD4 count, the time-dependent co-

variate used to de�ne the regimes x. This is encouraging in terms of support for current HIV

treatment guidelines, which typically recommend treatment initiation at CD4 counts of around

350 cells/mm3, and also reassuring for patients and clinicians, in that the optimal timing of

treatment initiation may not be critical before the CD4 count drops to around that threshold.

However, in terms of the application of these methods, the lack of a clear �peak� and hence

optimal regime means that, under any single analysis, the method may yield an estimate quite
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�far� from the optimal regime, as illustrated by the individual simulations (Figures 4.18 and

4.19). Consideration of the shape of the AIDS-free survival curve by regime as estimated by

the raw Kaplan-Meier approach helped our understanding of the data, and indeed when the

curve was so ��at�, we found that this approach outperformed the pooled logistic regression

approach. Our second simulation study illustrated that with a clearer �peak� (and a greater

number of patients), the methods perform better, and in this case the pooled logistic regression

approach outperformed the others. Therefore, in general, we would recommend that both the

raw Kaplan-Meier and pooled logistic regression approaches are applied, and urge caution in

the interpretation of optimal regimes, which should be done with regard to the shape of the

optimal criterion-by-regime curve and recognising that the precision may be low.

If broadly constant AIDS-free survival rates at regimes de�ned by higher x were observed in

real data, then clinically this ��atness�could be interpreted in di¤erent ways: at the expense of

a small increase in AIDS or death, treatment could be delayed a little past the optimal regime,

perhaps to the minimum acceptable regime, to preserve resources which could perhaps be more

bene�cially used in other areas, for example HIV prevention, or simply to preserve treatment-

free time for the patient, which might have bene�ts in terms of toxicity and preserving future

treatment options (delaying failure or resistance). Conversely, encouragement of treatment

initiation slightly earlier than the optimal regime could have population advantages by reducing

transmission risk; recently there has been a stronger interest and support in treatment as

prevention (Cohen et al., 2011). As many HIV-infected persons worldwide who need treatment

under the current treatment guidelines are not receiving it, earlier treatment initiation may be

a luxury a¤ordable only in high-income countries. Even then, timely treatment initiation is

dependent on individuals presenting for care early in infection.

Of note, the issues discussed above may apply to other disease areas, if those areas have

similar measurement error associated with the time-dependent covariate used to de�ne the

dynamic treatment regimes, low event rates, and/or ranges of the dynamic regimes across

which the outcome is broadly constant.

The recent extension of these methods to incorporate grace periods is one attempt to address

the more limited data typically available (Cain et al., 2010). This enables use of a greater number

of observed treatment initiations, potentially resulting in less censoring and hence greater power.

However, these extensions have been rarely applied in practice (Cain et al., 2010; Young et al.,

2011), and their implications in realistic scenarios have not previously been explored. CD4

count observation frequencies and grace periods are clearly interrelated, since less-frequently
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observed CD4 counts or longer grace periods may both result in CD4 counts dropping to lower

levels while awaiting treatment initiation, and such lower levels are associated with higher risk

of AIDS or death. We focussed initially on monthly observed CD4 counts as a �rst step, for

pedagogic purposes to develop understanding of the methods and ensure they were working

as anticipated before progressing to (perhaps more realistically) less-frequently observed CD4

counts. The choice of 3-monthly CD4 counts was driven by the typical visit schedule followed

in resource-rich settings, and as observed in our subset of CASCADE patients. In resource-

limited settings, 6-monthly measurement of CD4 counts may be more common. We found that

in populations with less frequent measurement of CD4 counts, or faster treatment-naïve CD4

decline, the optimal CD4 count for treatment initiation was higher and the AIDS-free survival

rates were lower, even on the optimal regime, as we might expect.

The treatment-naïve CD4 decline and CD4 count measurement frequency will in general be

�xed in a given population; while the CD4 count frequency could be reduced by ignoring those

recorded at intermittent time-points which do not �t into that schedule, this would surely only

be for exploratory purposes since would typically reduce precision. In contrast, the grace period

may be varied for analysis, and in the simulation of the observational studies, we considered

the grace periods as a step in the analysis only, not the data generation. The minimum length

of the grace period may only be limited by the observed data (for example, if the grace period

was set as 1 day then there may be no patients compliant with any regime). There is no upper

restriction to the length of the grace period, though of course the results must be interpreted

accordingly; very lengthy grace periods may only serve to blur the distinction between regimes

and are unlikely to be of much clinical relevance. We �rstly used no grace period (m = 1),

and extensions to 3- and 6-month grace periods corresponding to the CD4 count observation

frequencies considered, and as used by other researchers (Cain et al., 2010; HIV-CAUSAL

collaboration, 2011; Kitahata et al., 2009; Shepherd et al., 2010). As one may expect, we

found, via the large realistic RCT simulations, that lengthening the grace period typically led

to poorer 10-year AIDS-free survival. Although similar AIDS-free survival rates at 10 years

could be achieved with grace periods up to 6 months, compared to no grace period (with CD4

counts observed 1- or 3-monthly), the optimal regime had to be raised accordingly.

There is a di¤erent aspect to grace periods which must be considered, aside from being

a way of potentially reducing censoring of otherwise non-compliant treatment initiations: to

permit a grace period is to ask a di¤erent question. Two main approaches have previously been

de�ned (Cain et al., 2010); under the �rst approach, the regimes are de�ned by �do not initiate
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treatment before the CD4 count is <x cells/mm3, and do initiate exactly m months after the

CD4 count �rst drops below x cells/mm3 if treatment has not already been initiated in the �rst

m�1 months of the grace period�. Under the second approach, regimes are de�ned as �initiate

treatment within m months after the CD4 count �rst drops before x cells/mm3, such that there

is a uniform probability of starting in each of the months 1; 2; :::;m�. Di¤erent methods of

estimation must be applied to these two approaches. While previous applications have focussed

on the �rst approach (Cain et al., 2010; HIV-CAUSAL collaboration, 2011; Shepherd et al.,

2010), this involves upweighting the potentially small and unrepresentative subset of patients

observed to initiate in the last interval of the grace period. In addition, we have seen in the

CASCADE data that the treatment initiation pattern across the grace period may di¤er by

regime, with patients less likely to delay until later in the grace period if already at low CD4

counts. Therefore, we applied the second approach.

Of course, either approach should strictly then be interpreted in the appropriate context,

both of which may be somewhat ba ing to health care providers and patients. Both approaches

may perhaps be loosely interpreted by clinicians who �rst observe a patient�s CD4 count to drop

below the given threshold x as �start treatment within the next m months�. In fact, clinicians

and patients alike may prefer this extra time in order to prepare for the initiation of treatment

which will be life-long. Alternatively, the grace period may be ignored entirely and the dynamic

regime simply interpreted as treatment initiation when CD4 count is �rst observed to be below

the given threshold x. Public health policy makers may be keen to know the e¤ect of such

an interpretation. Via the simulation of small observational studies, we have investigated the

bias-variance trade-o¤ in permitting a grace period for the purposes of potentially increasing

e¢ ciency, at the risk of inducing bias for the inference of interest under no grace period. We

found that under 3-monthly observed CD4 counts, permitting a 3-month grace period was

bene�cial over no grace period, in terms of increasing precision slightly with minimal penalty in

terms of bias, but that the bias induced by extending to a 6-month grace period outweighed the

gain in precision. We therefore recommend that a 3-month grace period be used in observational

studies in similar resource-rich settings, which are likely to have a comparable CD4 observation

frequency, but further research may be required for other settings.

4.6.2 Clinical �ndings

In light of the results from the simulation studies, we permitted a 3-month grace period to apply

these methods to our CASCADE population, and consider that the resulting optimal regime
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may be interpreted in the absence of a grace period, rather than precisely as per the somewhat

complicated de�nition above.

A large proportion of patients were observed to initiate treatment immediately; this may

in part be due to the nature of the study entry (all patients had a clinic visit). We were able

to de�ne a treatment regime to capture these treatment initiations, which otherwise would

have been censored, since immediate treatment initiation has some meaning with respect to

our study entry criteria (namely � 500 cells/mm3, at the �rst CD4 count within 1-5 years

after seroconversion). We found under most scenarios that immediate treatment initiation

was preferable, although perhaps delaying until CD4 count was observed to drop below 500

cells/mm3 might o¤er some bene�t. We cannot rule out the possibility that the subset of

patients who initiated treatment immediately may be somewhat di¤erent to the remainder of

the patients, although we did control for a number of confounders via the weights. While the

subset of CASCADE patients included in these analyses were a selected subset, they are likely

to constitute the population in whom the choice of when to start treatment uniquely applies;

often patients who present later do so because of clinical symptoms and so in whom treatment is

indicated. Of note, the pooled logistic regression approach predicted somewhat lower AIDS-free

survival for the immediate treatment regime, especially at 6 years. The reasons for this are

not clear. In addition, we observed a slight increase in the estimated 6-year AIDS-free survival

for the regimes given by very low x (close to x = 200), compared to regimes around x = 350

to 400; the reason for this is not clear but there may be some residual confounding. Further,

the results from the simulation studies illustrate the inherent uncertainties in these data. The

shape of the curves derived from the pooled logistic regression models, when compared to those

from the raw Kaplan-Meier approach, reassured us that the parameterisations we chose (for

example, four knot spline for regime) were adequate.

Reassuringly, we found broadly consistent results across the di¤erent weighting strategies

as determined in chapter 2, all suggesting clearer distinction in terms of AIDS-free survival

between the regimes compared to without weighting. Of note, the uncertainty introduced in

applying the estimated weights was visible in the somewhat �jagged�appearance of the weighted

AIDS-free survival by regime curves, compared to the unweighted ones, particularly at 6 years.

For brevity in this chapter we did not compare the e¤ects of di¤erent weight truncations, but

we know from chapter 2 that this will in general yield di¤erent results.

Our �ndings are broadly consistent with previous studies, in that early treatment initiation

may be bene�cial but that the di¤erences in AIDS-free survival or overall survival are very small
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at regimes given by high CD4 count. Due to this issue, combined with large measurement error

in CD4 count and low event rates, we have demonstrated via the simulation studies that it is

quite plausible for two studies with the order of thousands of participants to yield somewhat

di¤erent estimated optimal regimes, even if the underlying distributions are the same. As an

example, the HIV-CAUSAL collaboration (2011) allowed a 6-month grace period and estimated

the optimal regime to be given by x = 500 in the set they considered (x = 200 to 500), but

emphasised that the overall survival was very similar for regimes given by x = 300 to 500.

As outlined in section 4.2.4, it is possible to look at interactions of regime with baseline

covariates, in order to tailor optimal treatment regimes to speci�c patients, but given the lack

of power in our subset of CASCADE patients, it was not possible for us to address this.

4.6.3 Limitations

We considered regimes de�ned by 10 cells/mm3 categories of CD4 count. This could lead to

censoring of intermittent treatment initiations. For example, if a patient�s nadir observed CD4

count to date was 489 cells/mm3 and treatment was initiated in response to a subsequent ob-

served CD4 count of 483 cells/mm3, then this treatment initiation would be censored under all

regimes given by x = 200; 210:::; 500. In our CASCADE population, this occurred in 32 pa-

tients, but 12 of those 32 treatment initiations were permitted when allowing a 3-month grace

period. The alternative would be to use a �ner categorisation of CD4 count, the most extreme

being de�ning regimes by 1 cell/mm3 categories. This would not only be extremely computa-

tionally challenging, but the clinical relevance is questionable, given the known biological and

measurement variation in CD4 count. Conversely, coarser categorisation of CD4 count could be

applied, for example de�ning regimes by 150 cells/mm3 categories, but this would result in the

censoring of many observed treatment initiations. Therefore, the 10 cells/mm3 categorisation

was considered to be a good compromise (Cain et al., 2010).

One of the implications of the large measurement error incorporated into the simulations,

and no doubt present in the CASCADE data, meant that large proportions of the observed

treatment initiations were censored from all regimes due to initiation at a CD4 count above the

nadir (lowest to date). If CD4 counts declined linearly while treatment-naïve (in the simulation

studies, this means in the absence of Brownian motion and measurement error), this censor-

ing would no longer occur. By permitting a grace period, we captured a greater number of

the treatment initiations, although relatively large proportions were still censored. Alternative

approaches, such as requiring two CD4 counts below the given threshold x for treatment initia-
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tion, could perhaps help reduce the number of censored treatment initiations, and perhaps help

mitigate to some extent the large measurement error, although would emulate to some extent

what the grace periods are attempting to do. In addition, if con�rmation of CD4 counts was not

consistently performed in an observational study, then enforcing this in the analysis is unlikely

to be bene�cial. Given the large measurement errors evident in CD4 counts, such censoring

of treatment initiations are inevitable. This was particularly visible in the RCT simulations,

where patients often initiated treatment at random low observed CD4 counts while the true

CD4 count (that is, incorporating Brownian motion but in the absence of measurement error)

was much higher. However, this measurement error is likely to re�ect what occurs in practice.

The simulation study models were based on previous modelling using CASCADE data.

When treatment was initiated at high CD4 counts, the resulting mean slope from one year after

initiation onwards was negative, due to the strong negative correlation indicated previously

between CD4 count at treatment initiation and long-term slope thereafter. It may be that, in

the data on which the previous modelling was performed, this correlation was driven by patients

who were observed to initiate treatment early but subsequently stopped treatment (including,

for example, in trials looking at short-course treatment in primary infection; SPARTAC Trial

Investigators (2011)). Therefore, the overall decline in CD4 count from one year after treatment

initiation observed in these data and hence incorporated into our simulation models may in fact

be a consequence of those patients typically being o¤ therapy subsequently. The implications of

this are that we may have underestimated the bene�t of early treatment initiation, with respect

to CD4 count, assuming that treatment is continued once initiated. However, one could argue

that this may mimic what would happen in practice, whereby patients feeling well may not

be motivated to take their medications, or having to take treatment over such long periods of

time may increase the cumulative risk of side e¤ects, hence leading to poorer adherence. Of

note, if a penalty for early treatment initiation had not been incorporated via this negative

correlation, and CD4 counts increased continuously on treatment (or at least to some plateau),

then it would always be optimal to initiate treatment immediately.

The determination of optimal treatment regimes is heavily dependent on time. When the

regimes are de�ned by a biomarker which is on average monotonely decreasing, su¢ cient time

must be allowed to pass for the biomarker to decrease and hence di¤erences in the outcome

emerge between the regimes. This is of particular importance when the patients enter the study

with similar levels of the biomarker, as in both our simulation studies and analysis of CASCADE

data. We considered follow-up to 10 years under the simulation studies, but the optimal regimes
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may have been di¤erent if longer follow-up was considered. This is illustrated in Figure 4.8: if

we had only considered up to 5 years, then the regime given by x = 500 would be preferable to

that given by x = 350; this was reversed by 10 years. We also saw in our CASCADE population

that di¤erent optimal regimes would be determined depending on whether 3- or 6- year follow-

up was considered. We were only able to consider up to 6 years for de�ning the optimal regime,

due to limited follow-up, but it may be that longer follow-up would indicate di¤erent optimal

regimes. In addition, other metrics, for example a CD4- or quality of life-based metric (Robins

et al., 2008; Shepherd et al., 2010), or restricted mean survival (Royston and Parmar, 2011),

may well yield di¤erent optimal regimes.

4.6.4 Summary

We have investigated the impact of several aspects, perhaps most importantly grace periods,

on the estimation of dynamic treatment regimes, and applied these methods to our CASCADE

population. In our clinical setting, where CD4 counts were measured 3-monthly, permitting a

3-month grace period may o¤er e¢ ciency bene�ts, with low bias, but lengthening to 6 months

increased the bias substantially. In our population of CASCADE patients, immediate treatment

initiation appeared to be most bene�cial in terms of 6-year AIDS-free survival; with respect to

the pre-speci�ed regimes de�ned by CD4 count, treatment initiation when CD4 counts were

�rst observed to drop < 500 cells/mm3 was preferable delaying until CD4 counts were observed

to drop further. In the next and �nal chapter, we discuss these results in relation to those from

other chapters.
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Chapter 5

Discussion

In this �nal chapter, we outline the main contributions of this research to the �eld of causal

estimation, and in particular make comparisons across the three types of MSMs and draw some

conclusions. We discuss some limitations and outline potential future work.

5.1 Construction of weights

Our �rst contribution to the application of MSMs for causal estimation is the development

of a simple algorithm for the construction of the inverse probability of treatment weights.

This process has been framed as a series of well-de�ned decisions, helping ensure transparency.

This approach should enable future researchers to more clearly understand the steps involved

and perhaps help identify reasons for any observed di¤erences in estimated e¤ects between

studies. We have shown how a range of plausible strategies for constructing inverse probability

weights may arise from these decisions. In our example, estimating the e¤ect of treatment

on time to AIDS or death in HIV-infected persons in CASCADE, these strategies consistently

demonstrated a bene�cial e¤ect of treatment, although the point estimates and precision varied

somewhat across the strategies. We recommend that researchers use a range of estimated

weights to check the sensitivity of the results to their assumptions. Of course, other choices or

strategies to those presented here are possible.

In addition, we have illustrated how a variable such as country or centre, across which

broadly constant treatment e¤ects may be expected, can be used in di¤erent ways. Firstly, sep-

arate treatment models, one for each country or centre, may be used to estimate the weights,

although in our example we found this tended to be less e¢ cient. Secondly, interactions between

treatment and the country or centre covariate may be used to explore whether there is hetero-

geneity in the estimated treatment e¤ect across di¤erent strata of that covariate. If so, this
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could either be a true phenomenon, or may indicate that there remains residual confounding

which has not been adequately captured by the weights.

5.2 Estimation of optimal dynamic treatment regimes

The second contribution of this work is related to the optimisation of dynamic treatment regimes

using dynamic MSMs, and in particular jointly assessing the impact of grace periods (permit-

ted delay for treatment initiation) and varying measurement frequencies, and evaluating the

performance of these methods in realistically-sized observational studies. We recommend that

both the (raw) Kaplan-Meier and pooled logistic regression model approaches are applied, and

that the resulting estimated optimal dynamic treatment regimes are interpreted with respect

to the shape of the outcome-by-regime curve and the precision.

Via the simulation of large realistic RCTs, we found that if CD4 counts are observed less

frequently then the (true) optimal regime may be substantially higher, that is, given by earlier

treatment initiation at higher CD4 counts. This has implications for the generalisability of

results from both randomised trials and observational studies. For example, the �ndings from

a randomised trial addressing the issue of when to start treatment with respect to CD4 count

in a resource-rich setting, where CD4 counts are typically measured 3-monthly, may not be

applicable to resource-limited settings, where CD4 counts are usually measured less frequently.

Lengthening the grace period also indicated higher optimal regimes, but not to the same extent

as CD4 count observation frequency. However, it is worth noting that, under the higher optimal

regimes with CD4 count observation frequencies or grace periods of up to 6 months, the 10-year

AIDS-free survival rates were similar to those under the optimal regimes with monthly observed

CD4 counts and no grace period.

Via the simulation of corresponding realistically-sized observational studies (n = 3000), with

CD4 counts observed 3-monthly, we found that permitting grace periods of up to 3 months in

our clinical setting may o¤er bene�ts in terms of increased precision, at little expense of bias,

for the estimation of the optimal dynamic treatment regime under no grace period, which may

be easier to understand and implement in practice. However, for longer grace periods of 6 or

12 months, the bias induced outweighed the gain in precision. Across the di¤erent length grace

periods considered, the e¢ ciency gains were perhaps smaller than might have been anticipated.
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5.3 Methodological comparison across the di¤erent MSMs

To our knowledge, this is the �rst time that standard, history-adjusted and dynamic MSMs have

systematically been applied to the same data. Our third contribution is to examine di¤erences

between these approaches, and present a strategy and rationale for applying all three methods

when interest lies in identifying optimal dynamic treatment regimes.

5.3.1 Weights

As highlighted in previous chapters, the principles of weight estimation are the same across the

di¤erent types of MSM, although the weights �nally applied are somewhat di¤erent. In particu-

lar, the weights used in the HAMSMs for the comparison of immediate versus no treatment may

be considered inverse probability of censoring, rather than treatment, weights, since patients

who initially deferred but subsequently initiated treatment are censored at treatment initiation

and no longer contribute follow-up. A common cause of large weights under the standard MSMs

is due to treatment initiations when the probability of treatment initiation is low, therefore,

depending on the question asked, these large weights may no longer be used in the HAMSMs,

hence potentially resulting in more stable weights, and perhaps more e¢ cient estimation. Fur-

ther, unlike standard MSMs, the stabilisation of the weights for the HAMSMs may be performed

using time-updated (trial-baseline rather than true-baseline) covariates, potentially increasing

e¢ ciency.

The weight estimation for the dynamic MSMs with no grace period is also broadly simi-

lar to that applied for the standard MSMs. However, large weights arising from persons who

persistently remain o¤ treatment despite low CD4 counts will automatically no longer be in-

corporated, if there is no such pre-speci�ed treatment regime under which that behaviour is

permitted. Again, this may result in more stable weights and potentially more e¢ cient estima-

tion.

When incorporating a grace period in dynamic treatment regimes, adjustments must be

made to the numerator of the weights, and di¤erent adjustments are required depending on the

approach, related to di¤erent interpretations of the corresponding regimes. In order to avoid

upweighting a potentially small and unrepresentative subset of patients who initiated in the

last interval of the grace period, we applied an approach which assumes uniform treatment

initiation across the grace period. Whilst this assumption may never exactly hold, moderate

deviations from it are unlikely to have as large an impact in many applications as upweighting

the small subset of people who initiated treatment in the last interval of the grace period. We
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recommend investigating the observed distribution of treatment initiations over the grace period

when applying these models.

5.3.2 Data expansion

One of the least transparent and potentially most in�uential steps in causal modelling is de-

termining adequate weights; our algorithm was deliberately designed to delineate the choices

required in this process. Once this step has been performed, the model �tting of the standard

MSM follows fairly simply. The history-adjusted and dynamic MSMs have added complexity,

requiring expansion of the data. This may be limited by computational capabilities, particularly

for dynamic MSMs if a relatively large number of treatment regimes are to be compared.

5.3.3 Arti�cial censoring

After the data expansion required for the history-adjusted and dynamic MSMs, appropriate

(arti�cial) censoring must be performed based on the observed history and compatibility with

regimes. This is fairly straightforward under the HAMSMs, since the compatibility depends

only on treatment. However, this step is more complex for the dynamic MSMs, since the

censoring process depends on the relationship between regime, time-dependent CD4 count and

treatment. Of note, in our example, the dynamic MSMs censor all treatment initiations which

are not at the nadir (lowest to date) CD4 count (although with grace periods may permit

delayed treatment initiation); this is not the case for HAMSMs, and therefore for this reason

HAMSMs may potentially bene�t from increased precision.

The censoring process is yet more complex for the dynamic treatment regimes if grace periods

are incorporated, since patients must be allowed until the end of the grace period to initiate

treatment, after it is indicated by the regime and time-dependent CD4 count, before applying

any censoring due to non-initiation of treatment.

Of note, in our example, we found that incorporating weights for censoring due to LTFU or

irregular CD4 count measurements had little impact on the estimated treatment e¤ect estimates.

5.3.4 Strategy for causal estimation using MSMs

In summary, if one wishes to estimate optimal dynamic treatment regimes using dynamic MSMs,

we recommend �rst implementing standard and history-adjusted MSMs. While standard and

history-adjusted MSMs ask a di¤erent question compared to that addressed by dynamic MSMs,

the reasons for our recommendation are: (i) to be satis�ed that adequate weights have been
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estimated, (ii) to demonstrate an e¤ect of treatment in the population under study, and (iii)

to gain understanding of the relationship between treatment and the time-dependent covariates

of interest.

Whilst standard MSMs are limited to the estimation of static treatment regimes, the weight

construction process is the same, and assessing the adequacy of the weights is substantially

easier, since it is straightforward to obtain stabilised weights, whose sum should be close to 1.

Further, if there is no evidence of a direct bene�t of treatment, then the questions posed by

optimal dynamic treatment regimes, for example relating to when to start treatment, may have

little relevance.

The bene�ts of the additional complexity of HAMSMs are that treatment e¤ect modi�cations

by time-dependent covariates may be addressed. While the role of CD4 count in HIV disease

epidemiology and treatment is well known in our example, the application of HAMSMs could aid

identi�cation of potential covariates for de�ning dynamic treatment regimes. Dynamic MSMs

are considerably more complex to implement, and are computationally demanding.

5.4 Clinical comparison across the di¤erent MSMs

There are several comparisons which can be made across the application of standard, history-

adjusted and dynamic MSMs to our CASCADE population, although it is important to recognise

the di¤erences between the three approaches and interpret the results in the light of these

di¤erences.

Standard MSMs estimate an �average�treatment e¤ect, attempting to emulate a sequential

randomised trial whereby patients at each given time-point who were previously treatment-naïve

are randomised to initiate treatment or not. The treatment e¤ect estimate is averaged across

these sequential randomisations, that is, averaged across �sequential trials�with di¤erent follow-

up times on and o¤ treatment, and di¤erent CD4 counts at treatment initiation. For example,

at later time-points, those patients initiating treatment will typically have lower CD4 counts,

in whom we may expect to see a greater bene�t of immediate treatment. Further, our primary

models assumed an instantaneous and constant e¤ect of treatment, regardless of the time spent

on treatment. This assumes that current treatment is a good measure of treatment history.

HAMSMs similarly estimate an �average� treatment e¤ect, but the (trial-baseline) CD4

count at treatment initiation is directly adjusted for in the model, and we condition on treat-

ment history (patients must be previously treatment-naïve to contribute to a new �trial�).

Therefore, the treatment e¤ect estimate may di¤er from that obtained under the standard
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MSMs. We can incorporate an interaction into the history-adjusted models to explore treat-

ment e¤ect modi�cation by CD4 count. The resulting estimates are interpreted as the e¤ect

of immediate versus no treatment given CD4 count, conditional on having survived AIDS-free

and o¤ treatment to that time.

In contrast, dynamic MSMs estimate the cumulative e¤ect of each regime de�ned by CD4

count. That is, the regimes are de�ned by treatment initiation when CD4 count is �rst observed

to drop below a given threshold, and so also depend on CD4 count history beyond the current

value (namely, the nadir). In addition, while we may anticipate that the e¤ect of immediate

versus no treatment given a CD4 count of z cells/mm3 estimated from a HAMSM is most

comparable to the dynamic regime given by x = z, this dynamic regime is somewhat di¤erent:

it is de�ned by treatment initiation when the CD4 count is observed to drop below z cells/mm3,

and indeed could be substantially lower. In addition, we permitted 3-month grace periods under

the dynamic treatment regimes, meaning that the CD4 count at treatment initiation may be

even lower, although in practice we observed relatively minimal impact of such grace periods

on the estimated optimal regimes in the simulation studies.

Having taken heed of these di¤erences, it is informative to compare the estimates across the

three approaches, since we might expect broad consistency.

5.4.1 History-adjusted and standard MSMs

The estimated ORs for the e¤ects of immediate versus no treatment initiation under the

HAMSMs were somewhat smaller (further from one) than the estimated e¤ects of treatment

under the standard MSMs (estimated ORs of around 0.2-0.3 under the HAMSMs compared to

around 0.4-0.5 under the standard MSMs). This may be because the HAMSMs adjust for CD4

count at treatment initiation, and treatment history, unlike the standard MSMs.

Of note, excluding those with trial-baseline CD4 counts < 100 cells/mm3 in the HAMSMs

did not materially a¤ect the estimated treatment e¤ect, therefore this reassures us that the

results from the standard MSMs were not unduly in�uenced by these �treatment refusers�.

5.4.2 Dynamic and history-adjusted MSMs

Under the history-adjusted modelling, we saw evidence of a greater bene�t of treatment at

lower CD4 counts, with stronger estimated treatment e¤ects at lower trial-baseline CD4 counts

< 350 cells/mm3. At higher CD4 counts, there was limited evidence of a bene�t of treatment,

and, comparing the ORs and associated con�dence intervals, there was no signi�cant di¤erence
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between the e¤ects of treatment for patients with trial-baseline CD4 counts of � 500 versus

350� 499 cells/mm3. For example, under strategy Ia, the estimated ORs were 0.06, 0.38, 0.98

and 0.72 for CD4 counts < 200, 200�, 350� and � 500 cells/mm3, respectively. The evidence

from the dynamic MSMs suggested that the optimal time to initiate treatment, in order to

maximise 6-year AIDS-free survival, was immediately at study entry, or at least when CD4

counts were �rst observed to drop < 500 cells/mm3, rather than further delay treatment.

Considering the AIDS-free survival rates, for illustration only under weighting strategies

Ia/II/III and based on the pooled logistic regression model approach, the estimated 6-year

AIDS-free survival probabilities were 0.90 (0.87, 0.93), 0.88 (0.84, 0.92), 0.93 (0.87, 0.96) and

0.93 (0.88, 0.97) under the regimes given by x = 200; 350, 500 and immediate treatment initi-

ation, respectively. The con�dence intervals overlap considerably, suggesting that the absolute

bene�ts from early treatment initiation are likely to be small, and the results are probably not

inconsistent with those from the HAMSMs. The lower 6-year AIDS-free survival rate under

the regime given by x = 350 was seen consistently across the di¤erent weighting strategies and

estimation approaches, but it does not concur with evidence from RCTs nor the results from our

HAMSMs; we know that treatment initiation around CD4 counts of 350 cells/mm3 is bene�cial,

compared to delay. The reasons for this apparent discrepancy are not clear, but this may illus-

trate a potential issue with few treatment initiations remaining uncensored after applying the

arti�cial censoring process required for the dynamic MSMs. The evidence from our simulation

studies based on real data, albeit a di¤erent population from the subset of CASCADE patients

considered here, suggests that any potential bene�ts of early treatment initiation are likely to

be small, and the AIDS-free survival probabilities may be very similar across high CD4 counts.

In addition, the simulation studies indicated that the large measurement error in these data

may be problematic.

5.4.3 Dynamic and standard MSMs

Lastly, we can compare the estimated 3- and 6-year AIDS-free survival rates from the standard

and dynamic MSM chapters, for illustration in strategy Ia only. The 3-year AIDS-free survival

under immediate treatment initiation was 0.97 (0.96, 0.98) under the standard MSM, compared

to 1.00 (0.98, 1.00) and 0.99 (0.97, 0.99) under the dynamic MSM with the raw Kaplan-Meier

and pooled logistic regression model approaches, respectively. At 6 years, the corresponding

estimates were 0.95 (0.93, 0.97), 0.95 (0.90, 0.99) and 0.93 (0.88, 0.97). Of note, the precision

of these estimates was slightly poorer under the dynamic compared to standard MSMs.
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Although the regime given by x = 200 from the dynamic MSM setting is not the same as the

regime of No treatment from the standard MSM approach, we may expect broadly similar results

given that few patients should remain o¤ treatment with CD4 counts < 200 cells/mm3. At 3

years, and considering again only strategy Ia for illustration, the estimated AIDS-free survival

rates were 0.95 (0.94, 0.96) under no treatment as estimated from the standard MSM, and

0.96 (0.94, 0.97) under regime x = 200 as estimated from the dynamic MSM (for both the raw

Kaplan-Meier and pooled logistic regression model approaches). At 6 years, the corresponding

estimates were 0.91 (0.89, 0.94), 0.91 (0.89, 0.94) and 0.90 (0.87, 0.93), respectively. Therefore

the estimates and con�dence intervals are very similar.

5.4.4 Summary

In conclusion, the results across all three approaches appear to be consistent, given the available

precision.

5.4.5 In perspective

There have been a number of recent observational studies investigating when to start treatment

in patients with HIV infection (HIV-CAUSAL collaboration, 2011; Kitahata et al., 2009; When

to Start Consortium, 2009; Writing Committee for the CASCADE Collaboration, 2011). The

overall suggestion from these studies is that early treatment initiation, with respect to CD4

count, may be optimal, but that the bene�ts of initiating at such high CD4 counts may be small

in absolute terms (as discussed in section 1.5 and summarised in Table 5.1). Our results concur

with these �ndings. These potentially small bene�ts should be balanced against the possible

risks, which may not be captured in large observational studies which for pragmatic reasons

collect a limited set of data, such as the development of drug resistance leading to more limited

treatment options over the long-term. A large randomised trial is required to provide a more

precise and unbiased estimate of the e¤ect of earlier treatment across a range of prospectively

evaluated outcomes, including those often not captured well in observational cohorts, such as

serious non-AIDS events (see below). The START trial (INSIGHT (2009); EudraCT number

2008-006439-12) is currently underway to determine whether immediate initiation of treatment

in patients with CD4 counts � 500 cells/mm3 is superior to deferral of treatment initiation

until CD4 count drops to 350 cells/mm3, however results are not expected until 2016. A major

advantage of observational data is that it is possible to explore a broad range of dynamic

regimes using causal methods; due to patient and resource limitations, it would not be feasible
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to randomise patients to the wide spectrum of regimes which we have been able to consider

here.

More recently, illnesses which were not originally considered to be directly associated with

HIV infection, such as cardiovascular disease, have been recognised as a signi�cant morbidity

burden in HIV-infected persons, particularly following the SMART trial (SMART Study Group

et al., 2006). However, information relating to serious non-AIDS events are not currently

captured by CASCADE therefore we were unable to address this. It may be important to

incorporate such information in future studies, and indeed such events are a component of the

primary endpoint for the START trial.

At the population level, there may be additional bene�ts of earlier treatment initiation in

terms of reduced transmission (Cohen et al., 2011). A further aspect which has not been con-

sidered, but would of course be of great interest to policy-makers, is the cost-e¤ectiveness of

earlier treatment initiation. Analysis of an RCT in a resource-limited setting (Haiti), com-

paring treatment initiation at CD4 counts between 200� 350 cells/mm3 versus deferring until

< 200 cells/mm3, found that early treatment reduced mortality by 75% and was cost-e¤ective

(US$2050 per years of life saved, <3 times the gross product per capita; Koenig et al. (2011)).

5.5 Limitations and potential extensions

5.5.1 Our CASCADE population

Our population was constructed to capture patients early in HIV infection, where there is the

greatest potential for early intervention and thus greatest potential bene�t from early treatment.

CASCADE participants have well-estimated dates of HIV seroconversion, and incorporating

only those persons with CD4 counts � 500 cells/mm3 within 1-5 years after seroconversion at

entry to the analysis meant that we did not include fast progressors who would be likely to

start treatment anyway. While this led to the exclusion of approximately 11,000 patients, this

ensured that our population may be considered the most appropriate in which to answer the

question of when to initiate treatment, and in particular whether early initiation is bene�cial.
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Other recent work in this area has made use of seroprevalent cohorts, the bene�t of which

are the typically greater sample sizes (HIV-CAUSAL collaboration, 2011; Shepherd et al., 2010).

These approaches include patients with no history of CD4 count below a given threshold, from

the time when their CD4 count is �rst observed to be below this threshold. The treatment

e¤ect estimates from such studies might be considered to be closer to those which would be

observed if such regimes were implemented in practice, where patients rarely present soon after

infection, and therefore may be more pragmatically appropriate. In contrast, our estimates from

the seroconverter cohorts may be considered to be closer to the true e¤ects of di¤erent regimes

de�ned by CD4 count thresholds, under a �best case�scenario where patients are identi�ed soon

after infection. Of note, the HIV-CAUSAL collaboration (2011) saw similarly large reductions

in their patient numbers to us when restricting for the purposes of investigating causal e¤ects

(from > 30; 000 to 8392 participants).

Shepherd et al. (2010) considered, as a sensitivity analysis, restricting to patients with a �rst

CD4 count � 500 cells/mm3, which resembles our approach. The authors discuss the advantages

and disadvantages of this, compared to their original approach as above. Clearly, a disadvantage

is the ultimate restriction of patients to those with an observed CD4 count � 500 cells/mm3,

which substantially limited the sample size in their seroprevalent cohort. The advantage of

restricting to patients with an initial high CD4 count is to control for variation at the start of

the trial. For example, if a patient entered the original analysis of Shepherd et al. (2010) with

a CD4 count of 349 cells/mm3 and initiated treatment immediately then this patient would be

compliant with all regimes given by x � 350. Therefore, attempting to distinguish between

the regimes given by higher x su¤ered from limited power in their analysis. In our approach,

a patient would only be compliant with regimes x = 350 and 500 (and intermediate regimes)

if their observed CD4 count dropped from > 500 cells/mm3 to < 350 cells/mm3, in response

to which treatment was initiated; such patients are atypical. Further, their original approach

compares patients compliant with the x = 350 regime who were never eligible for regime x = 500

(for example, a patient who remains treatment-naïve after a �rst CD4 count of 400 cells/mm3),

with those compliant with the x = 350 regime but who were (or still are) eligible and compliant

with the x = 500 regime (for example, a patient who remains treatment-naïve after a �rst CD4

count of 550 cells/mm3); in practice these patients may not be comparable.
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5.5.2 Power

As discussed above, our stringent inclusion criteria led to only approximately 3000 CASCADE

participants being included in our analyses. Our simulation studies have shown that the appli-

cation of dynamic MSMs in such sample sizes to estimate optimal dynamic treatment regimes

is likely to su¤er from low power. In addition, our study based on CASCADE data su¤ered

somewhat from limited follow-up. This is particularly pertinent to the application of the dy-

namic MSMs; as discussed in section 4.6.3, su¢ cient follow-up is necessary in order to be able

to distinguish between the e¤ects of di¤erent regimes on the outcome of interest.

5.5.3 Other dynamic treatment regimes

The focus in this thesis, and the majority of previous studies in this area (Hernán et al., 2006;

HIV-CAUSAL collaboration, 2011; Robins et al., 2008; Writing Committee for the CASCADE

Collaboration, 2011), has been on whether to initiate treatment early at CD4 counts of around

500 cells/mm3 or later (lower). This is for pragmatic reasons, in that people rarely present for

care earlier (with higher CD4 counts) and indeed it has recently been shown that nearly half

of individuals have CD4 counts < 500 cells/mm3 within just one year of seroconversion (Lodi

et al., 2011). However, it may be that the optimal time to initiate with respect to CD4 count is

above 500 cells/mm3. If we had further restricted to patients with baseline CD4 counts above

a higher threshold, then we would have had an even smaller subset of patients (upper quartile

baseline CD4 count was 788 cells/mm3). In their original analysis, Shepherd et al. (2010) did

use a higher threshold, of 750 cells/mm3, but in a sensitivity analysis found broadly consistent

results when they applied an upper limit of 500 cells/mm3.

The de�nition of dynamic treatment regimes need not be limited to just one time-dependent

covariate. Time-independent covariates, such as sex or age, could be easily incorporated via

interactions with treatment, as outlined in section 4.2.4, although we had limited power to ad-

dress this. Further, other time-dependent covariates could be incorporated, such as HIV RNA

levels or clinical events. For example, D Ford (personal communication, 25 March 2011) in-

corporated both previous clinical events and observed CD4 count to de�ne dynamic treatment

regimes related to switching from �rst- to second-line ART, and investigated their e¤ects on

mortality in HIV-infected persons in resource-limited settings. However, in our study, develop-

ment of AIDS was part of the endpoint and therefore by de�nition could not be incorporated

into the dynamic treatment regime. It has been shown in high-income settings that, in patients

with CD4 counts > 350 cells/mm3, higher levels of HIV RNA are known to be associated with
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higher risk of AIDS and non-AIDS events (Reekie et al., 2011), but typically the only covariate

consistently used in the treatment decision-making process would be CD4 count, in line with

clinical guidelines (Gazzard and on behalf of the BHIVA Treatment Guidelines Writing Group,

2008; Panel on Antiretroviral Guidelines for Adults and Adolescents, 2009), therefore the value

of extending the dynamic regime de�nition to include HIV RNA levels in our setting is not

clear. Other disease areas may naturally have more complex regimes. For example, Taubman

et al. (2009) incorporated a range of factors, such as BMI, exercise, alcohol and diet, to de�ne

a set of regimes and examine their collective impact on coronary heart disease.

5.5.4 Other causal methods

Other approaches such as the g-formula or g-estimation of SNMs could be used for the estimation

of causal e¤ects of treatment. Regardless of the method employed, such estimation in the

presence of time-dependent confounding requires the assumption of no unmeasured confounders.

This is similar to any observational analysis, except here this extends to time-dependent as well

as time-independent confounders. All approaches also require correctly-speci�ed models.

G-estimation of SNMs has the potential to be more e¢ cient than MSMs and with fewer

parametric assumptions than the g-formula (Daniel et al., 2011), but SNMs are less robust

to model misspeci�cation and are not intuitive to use. MSMs more closely resemble standard

methods and so the implementation and interpretation of results using these models is more

straightforward. For example, the hazard ratios obtained via the MSMs may be more familiar

than the results from the AFT SNMs proposed in section 1.2.2. However, MSMs require the

assumption of positivity, that is, at all levels of the covariate and treatment history, there

is a non-zero probability of the possible future treatments (Cole and Hernán, 2008). This

is not a requirement for g-estimation of SNMs nor the g-formula. In addition, the arti�cial

censoring process required for the application of dynamic MSMs may result in the censoring of

many treatment initiations, and hence potential loss of power. While the g-formula can easily

incorporate highly complex dynamic regimes, it is computationally intensive and perhaps most

useful when a small number of dynamic regimes are to be compared.

It should be noted that there are similarities between the application of the g-formula and

the observational simulation studies we performed. Recall (section 1.2.1) that there are three

steps to applying the g-formula: the �rst step is to estimate the parameters of the conditional

distributions of each of the current covariates and the outcome, given covariate and treatment

history; the second step requires simulation of a cohort based on the estimated distributions and
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the treatment regime of interest; lastly, the simulated cohort is used to estimate the outcome

under that treatment regime. For our observational simulation studies, we a priori de�ned

the covariate, treatment and outcome distributions, which were conditional on covariate and

treatment history. We then simulated a cohort using those distributions, similarly to the second

step of the g-formula. However, in our simulation studies, consideration of the treatment regime

of interest was not applied at this step, but rather after expansion of the simulated cohort, by

censoring patients when no longer compliant with each regime. The �nal step of our simulation

studies was to estimate the outcome, as in the third step of the g-formula, except that inverse

probability weighting was applied to account for the potentially informative censoring of non-

compliant patients. In addition, estimation of the outcome is performed separately for each

regime under the g-formula, whereas the dynamic MSMs allow us to model the outcome across

all regimes at once.

5.6 Final conclusions

Causal methods provide an opportunity to address many questions from observational studies,

which it would otherwise not be possible to consider without potentially su¤ering major bias

due to time-dependent confounding. It is infeasible to conduct su¢ cient randomised controlled

trials to address all these questions. However, we have shown that answers from causal analyses

may depend strongly on their implementation in ways which may not be obvious to a casual

reader, particularly when attempting to compare results across di¤erent studies. Researchers

conducting such analyses should be aware of these limitations and present multiple sensitivity

analyses to delineate the e¤ect of their assumptions on the results.
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Appendix A

Theory for simulation study

A.1 Conditional multivariate Normal distribution

A.1.1 Theorem

Let x =

0B@ x1

x2

1CA be a Normally-distributed n-dimensional random vector, where x1 and x2 have

dimensions p and q respectively (p + q = n). Denote the mean vector and variance-covariance

matrix for x by:

� =

0B@ �1

�2

1CA and � =

0B@ �11 �12

�T12 �22

1CA
Then the conditional distribution of x2 given x1 = a is also Normally-distributed with mean

vector and variance-covariance matrix given by:

�2j1 = �2 +�
T
12�

�1
11 (a� �1)

and �2j1 = �22 � �T12��111 �12

See for example Wang (2006) for proof.

A.1.2 Application of theorem for CD4 trajectory: simulating slope after

treatment initiation, given CD4 count at treatment initiation

As in the main text, R is the square-root true CD4 count at treatment initiation, and S1 and S2

are the slopes during the �rst year and from one year after treatment initiation respectively. Our

model states that these three are jointly Normally-distributed with mean vector and variance-
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covariance matrix given by:

� =

0BBBB@
�R

�S1

�S2

1CCCCA and � =

0BBBB@
�2R �R;S1 �R;S2

�R;S1 �2S1 �S1;S2

�R;S2 �S1;S2 �2S2

1CCCCA
Therefore, the conditional distribution of S1 and S2 given R = � is also Normally-distributed

with mean vector given by:

0B@ �S1

�S2

1CA+
0B@ �R;S1

�R;S2

1CA 1

�2R
(�� �1)

and variance-covariance matrix:0B@ �2S1 �S1S2

�S1S2 �2S2

1CA�
0B@ �R;S1

�R;S2

1CA 1

�2R

�
�R;S1 �R;S2

�

=

0B@ �2S1 �S1S2

�S1S2 �2S2

1CA� 1

�2R

0B@ �2R;S1 �R;S1�R;S2

�R;S1�R;S2 �2R;S2

1CA
A.1.3 Application of theorem for Brownian motion: simulating W (t2) given

W (t1)

Time was split into monthly intervals, therefore let t1 = t2 � 1=12. Then we have:

V ar[W (t1)] = �t1 = �t2(1� 1=12t2)

V ar[W (t2)] = �t2

corr[W (t1);W (t2)] =
t2 � 1=12p
(t2 � 1=12)t2

=
p
1� 1=12t2

cov[W (t1);W (t2)] =
p
(1� 1=12t2) �t2 (1� 1=12t2) �t2 = �t2 (1� 1=12t2)

and so W (t2) given W (t1) = w is Normally-distributed with mean vector simply w, since

V ar[W (t1)] = cov[W (t1);W (t2)], and variance-covariance matrix given by:

�t2 �
[�t2(1� 1=12t2)]2

�t2(1� 1=12t2)
=

�

12
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Appendix B

Example code

Here we provide some example code for estimating standard, history-adjusted and dynamic

MSMs using Stata (StataCorp, 2009). The data are set up with one observation per patient per

time period (month). Some key variables are de�ned in Table B.1. Throughout the code, text

in brackets such as <xxx> indicates insertion of the variables xxx as appropriate.

B.1 Standard MSMs

*** WEIGHT ESTIMATION

* DENOMINATOR

/* fit treatment model for denominator of weights, in periods up to and

including treatment initiation */

noi xi:logistic trt <time covariates> <baseline covariates> ///

<time-dependent covariates> if period<=initperiod|initperiod>=.

gen insample=e(sample)

/* predicted probability of treatment based on the denominator model; after

treatment initiation, pr(trt)=1 */

predict pred_ptrt if insample

replace pred_ptrt=1 if initperiod<. & period>initperiod

* predicted probability of OBSERVED treatment based on the denominator model

Variable name Description

patient Unique patient identi�er
period Time period
trt Indicator for being on treatment in a given period
initperiod Period in which the patient initiated treatment

(missing if not observed to initiate treatment)
event_1 Lagged event indicator

Table B.1: De�nition of key variables.
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gen ptrt_denom=pred_ptrt*trt+(1-pred_ptrt)*(1-trt)

drop pred_ptrt

* NUMERATOR

noi xi: logistic trt <time covariates> <baseline covariates> if insample

* predicted probability of treatment based on the numerator model

predict pred_ptrt if insample

replace pred_ptrt=1 if initperiod<. & period>initperiod

* predicted probability of OBSERVED treatment based on numerator model

gen ptrt_num=pred_ptrt*trt+(1-pred_ptrt)*(1-trt)

drop pred_ptrt

/* at each point, probability of treatment/censoring history is product to

that point. Last record will have predicted probability of treatment

missing (since trt=missing then), but don't use last period anyway since

always looking at Y(k+1). Keep original probabilities for use in the

history-adjusted and dynamic MSM work */

gen ptrt_denomORIG=ptrt_denom

sort patient period

by patient: replace ptrt_denom=ptrt_denom*ptrt_denom[_n-1] if _n>1

by patient: replace ptrt_num=ptrt_num*ptrt_num[_n-1] if _n>1

* WEIGHTS

* non-stabilised

gen weightns=1/ptrt_denom

* stabilised

gen weights=ptrt_num/ptrt_denom

*** OUTCOME ESTIMATION

* using the stabilised weights (note, untruncated)

noi xi: logistic event_1 trt <time covariates> <baseline covariates> ///

[pw=weights], robust cluster(patient)

B.2 HAMSMs

*** DATA EXPANSION

/* if a patient has X intervals of follow up, then need 1 copy of first

interval, 2 copies of the second, ..., and X copies of the last. Then

for each patient, have 1 trial starting at each month */

gen int exp=period+1

/* BUT for looking at effect of initiate vs defer, once patient has

initiated treatment, don't need further "trials" */
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replace exp=initperiod+1 if period>initperiod

/* because of the way the data is set up, trt will be missing for each of

the last records, therefore don't actually want to consider that a new

trial, and we're assuming the any censoring weighting has already been

sorted out */

replace exp=exp-1 if trt>=.

expand exp

drop exp

sort patient period

* eg trial=12 means the trial starting at month 12 onwards

by patient period: gen int trial=_n-1

* trial time

gen trialtime=(period/12)-trial/12

replace trialtime=0 if trialtime<0.00001

/* for each trial, the treatment regime (or randomisation, rx) is

determined by the trt in the first period*/

sort patient trial trialtime

by patient trial: gen byte rx=trt[1]

/* the "baseline" covariates are those at the start of that trial, ie in

the first period */

foreach var of varlist <trial-baseline covariates> {

by patient trial: gen b_`var'=`var'[1]

}

/* flag for censoring due to initiation of treatment after deferring in

first period of the trial (won't include any records from that

initiation onwards [including the one where initiate]) */

gen byte censdef=trt==1 & rx==0

* generate indicator for the records to be used in the models

gen byte inmodel=(rx==0 & trialtime>0 & (period<=initperiod | initperiod>=.))

*** WEIGHT ESTIMATION

* NUMERATOR

noi xi: logistic trt <time covariates, for trial and trial-time> ///

<true-baseline covariates> <trial-baseline covariates> if inmodel==1

/* trt weights only applied from the second month (ie period=1) onwards,

since in the first month (period=0), that's when the "randomisation" is

determined; so trt weights should be =1 in the first month. Also

treatment weights should be missing after initiation in patients

'randomised' to defer, and treatment weights should be =1 for patients
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'randomised' to initiate (just treatment weights applied to those

'randomised' to defer) */

* predicted probability of treatment based on the numerator model

predict pred_ptrt if e(sample)

* predicted probability of OBSERVED treatment based on the numerator model

gen ptrt_numHA=pred_ptrt*trt+(1-pred_ptrt)*(1-trt)

drop pred_ptrt*

* DENOMINATOR

* same as for standard MSMs, with some adjustments below

gen ptrt_denomHA=ptrt_denomORIG

/* at each point probability of treatment history is product to that point,

OVER PATIENT/TRIAL. In first month of each trial, set =1, and after

treatment initiation in patients who initially Deferred, make treatment

probabilities missing, and in patients 'randomised' to initiate, set

treatment weights =1 */

replace ptrt_denomHA=1 if trialtime==0|rx==1

replace ptrt_numHA=1 if trialtime==0|rx==1

replace ptrt_denomHA=. if censdef==1

replace ptrt_numHA=. if censdef==1

sort patient trial trialtime

by patient trial: replace ptrt_denomHA=ptrt_denomHA*ptrt_denomHA[_n-1] if _n>1

by patient trial: replace ptrt_numHA=ptrt_numHA*ptrt_numHA[_n-1] if _n>1

* WEIGHTS

gen weightnsHA=1/ptrt_denomHA

gen weightsHA=ptrt_numHA/ptrt_denomHA

*** OUTCOME ESTIMATION

noi xi: logistic event_1 rx <time covariates, for trial and trial-time> ///

<true-baseline covariates> <trial-baseline covariates> [pw=weightsHA] ///

if censdef==0, robust cluster(patient)

B.3 Dynamic MSMs

*** DATA EXPANSION

* apply program dynexpr - see below

*** WEIGHT ESTIMATION

* if wish to stabilise the weights (only if no grace period):

noi xi: logistic censreg <time and regime rx modelled flexibly> ///

<baseline covariates> if (time<=censregtime | censregtime>=.)
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predict pred_pcens if e(sample)

gen puncens=1-pred_pcens

replace puncens=0 if censregtime<. & time>censregtime

sort patient rx time

by patient rx: replace puncens=puncens*puncens[_n-1] if _n>1

* apply program dynwt - see below

*** OUTCOME ESTIMATION

/* the rx and time covariates should be flexibly modelled, and include

interactions; the results can then be used to predict and plot survival */

noi xi: logistic event_1 <rx and time covariates> if censreg==0 ///

[pw=weightnsDYN], robust cluster(patient)

B.3.1 Program dynexpr

This program expands the data into one record per patient per regime (per time period).

prog def dynexpr

vers 10.1

syntax, cd4var(string) xu(integer) xl(integer) xj(integer) m(integer) ///

[approach(integer 0) immed]

/* Expansion for dynamic MSM based on regimes defined by CD4 (given by

variable cd4var) as: xl(xj)xu. Note: should have already fit treatment

denominator models and got Pr(observed treatment|time-dependent

covariates) in each interval

- m = grace period (1=no grace period)

- approach = approach 1 or 2 of Cain et al 2010, if using a grace period

with m>1

- immed should be specified if want to consider a regime of immediate

treatment initiation */

qui {

noi dib "dynexp: expansion based on `xl'(`xj')`xu' [`immed']"

noi dib "GRACE PERIOD = `m' (1=no grace period); approach `approach'"

* checks

assert `xl'<`xu'

assert `m'>=1

assert `approach'==0 if `m'==1

assert `approach'==1|`approach'==2 if `m'>1

* expand the dataset, with variable rx representing faux randomisation

compress
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local nreg=(`xu'-`xl')/`xj' + 1

if "`immed'"!="" local nreg=`nreg'+1

confirm integer number `nreg'

expand `nreg'

sort patient time

local i=1

gen rx=0

assert `cd4var'<10000 if `cd4var'<.

local rxlist="`xl'(`xj')`xu'"

if "immed'"!="" local rxlist="`rxlist' 10000"

foreach x of numlist `rxlist' {

by patient time: replace rx=`x' if _n==`i'

local i=`i'+1

}

* indicator for when eligible for treatment initiation according to regime

gen elig_trt=(`cd4var'<rx)

sort patient rx time

by patient rx: replace elig_trt=sum(elig_trt)

replace elig_trt=1 if elig_trt>1 & elig_trt<.

assert elig_trt==0|elig_trt==1

/* grace variable (if applicable) =1 for first eligible interval, 2 for

second, ..., m for mth; missing outside of the grace windows */

if `m'>1 {

sort patient rx time

by patient rx: gen grace=1 if elig_trt==1 & (_n==1 | _n>1 & ///

elig_trt[_n-1]==0)

local k=2

while `k'<=`m' {

by patient rx: replace grace=`k' if grace[_n-`k'+1]==1 & _n>`k'-1

local k=`k'+1

}

assert grace>=1 & grace<=`m' if grace<.

assert elig_trt==1 if grace<.

}

* censor if initiate before eligible

gen censreg=(trt==1 & elig_trt==0)

gen _censregind=censreg

/* censor if initiated too late
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- no grace period: if did not initiate in first eligible interval

- grace period: if did not initiate in (by) mth eligible interval

(since once on always on, can just look forward to mth) */

if `m'==1 replace censreg=1 if trt==0 & elig_trt==1

if `m'>1 replace censreg=1 if trt==0 & elig_trt==1 & grace==`m'

replace _censregind=2 if censreg==1 & _censregind==0

* remain censored after first censored from regime

sort patient rx time

by patient rx: replace censreg=sum(censreg)

replace censreg=1 if censreg>1 & censreg<.

assert censreg==0|censreg==1

lab var censreg "cens, noncomp with dyn regime"

sort patient rx time

by patient rx: egen censregind=max(_censregind)

replace censregind=0 if censreg==0

drop _censregind

assert censregind==0|censregind==1|censregind==2

lab def censregindlab 1 "early" 2 "late"

lab val censregind censregindlab

* when censored

sort patient rx time

by patient rx: gen _censregtime=time if censreg==1 & ///

(_n==1 | _n>1 & censreg[_n-1]==0)

by patient rx: egen censregtime=max(_censregtime)

drop _censregtime

} /* end of qui */

end

B.3.2 Program dynwt

This program estimates the weights, assuming that the denominator probabilities within each

time period have already been derived (and the numerator probabilities, if using stabilised

weights).

prog def dynwt

vers 10.1

syntax, m(integer) approach(integer 0) [stab]

/* - m indicates the grace period length

- approach indicates the approach as per Cain et al 2010
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- specify stab option if wish to stabilise the weights - only possible

here with approach 1 */

qui {

assert `approach'==1|`approach'==2

if `approach'==2 assert "`stab'"==""

gen ptrt_denomDYN=ptrt_denomORIG

/* if have grace period, AND APPROACH 1, then no-one is censored in the

first m-1 intervals of the grace period, irrespective of whether

initiated treatment or not; therefore force DENOMINATOR probabilities

=1 there */

if `approach'==1 replace ptrt_denomDYN=1 if grace>=1 & grace<`m' & grace<.

/* if have grace period, AND APPROACH 2, then need to amend the numerator

of the weights during the grace period. Haven't taken inverse of

treatment probabilities yet therefore multiply by (throughout grace

period, including m): 1/[1/(m+1-j)]=(m+1-j) where initiate,

1/[1-{1/(m+1-j)}]=(m+1-j)/(m-j) if don't initiate. NB this will create

infinity (=missing) in mth grace period if treatment not initiated

there, but doesn't matter since that (and all subsequent) interval(s)

will be censored and so won't have weights anyway. No change if after

treatment initiation - interval-specific-weights there will be =1

(check for this just below) */

if `approach'==2 {

sort patient rx time

by patient rx: replace ptrt_denomDYN= ///

ptrt_denomDYN*(`m'+1-grace)/(`m'-grace) if grace<. & trt==0

by patient rx: replace ptrt_denomDYN=ptrt_denomDYN*(`m'+1-grace) ///

if grace<. & trt==1 & (_n==1 | _n>1 & trt[_n-1]==0)

/* note that the 'probabilities' here may be >1 after adjustment of

the numerator of the non-stabilised weights with grace period and

under approach 2 - so the non-stabilised weights may be <1 */

}

/* probability of remaining uncensored at each time point (while

uncensored) is the product of probabilities; this multiples over

time when censored too but doesn't matter since we won't take inverse

for weights there */

sort patient rx time

by patient rx: replace ptrt_denomDYN=ptrt_dnomDYN*ptrt_denomDYN[_n-1] ///

if _n>1
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* weights

gen weightnsDYN=1/ptrt_denomDYN if censreg==0

if "`stab'"!="" gen weightsDYN=puncens/ptrt_denomDYN if censreg==0

} /* end of qui */

end
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