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SUMMARY

In conformational diseases, native protein con-
formers convert to pathological intermediates that
polymerize. Structural characterization of these key
intermediates is challenging. They are unstable and
minimally populated in dynamic equilibria that may
be perturbed by many analytical techniques. We
have characterized a forme fruste deficiency variant
of a1-antitrypsin (Lys154Asn) that forms polymers
recapitulating the conformer-specific neo-epitope
observed in polymers that form in vivo. Lys154Asn
a1-antitrypsin populates an intermediate ensemble
along the polymerization pathway at physiological
temperatures. Nuclear magnetic resonance spec-
troscopy was used to report the structural and
dynamic changes associated with this. Our data
highlight an interaction network likely to regulate
conformational change and do not support the re-
cent contention that the disease-relevant interme-
diate is substantially unfolded. Conformational
disease intermediates may best be defined using
powerful but minimally perturbing techniques, mild
disease mutants, and physiological conditions.

INTRODUCTION

The conformational diseases are characterized by conformational

transitions in mutant proteins that allow multimerization and aber-

rant protein deposition. They include Alzheimer’s disease and

Lewy body dementia, the prion encephalopathies, systemic

amyloidosis, and the serpinopathies (Lomas and Carrell, 2002).

The serpinopathies result from the polymerization of mutants of

members of the serine protease inhibitor or serpin superfamily of

proteins (Gooptu and Lomas, 2009). The archetype of the serpino-

pathies is a1-antitrypsin deficiency. a1-antitrypsin is synthesized

by hepatocytes (Laurell and Jeppsson, 1975) and released into

the circulation, where it protects the lung from the actions of

neutrophil elastase (Gooptu et al., 2009a). Severe a1-antitrypsin
504 Structure 20, 504–512, March 7, 2012 ª2012 Elsevier Ltd All righ
deficiency is found in 1:2000 individuals of North European

descent (Blanco et al., 2001) and typically results from homozy-

gosity for the Z allele (Glu342Lys). The Z mutation causes

a1-antitrypsin to adopt an intermediate conformation and rapidly

polymerize (Figure 1A; Lomas et al., 1992). Polymers accumulate

within the endoplasmic reticulum of hepatocytes in association

with neonatal hepatitis, cirrhosis, and hepatocellular carcinoma.

Concomitant deficiency of circulating a1-antitrypsin predisposes

to severe, early onset emphysema (Gooptu and Lomas, 2008).

Previousdata suggest that serpinpolymers are formedby inter-

molecular linkage of the reactive center loop of onemolecule with

b sheet A of another (Dunstone et al., 2000; Gooptu et al., 2000;

Huntington et al., 1999; Lomas et al., 1992; Schulze et al., 1990).

However, a recent model suggests that the polymer is linked by

a more extensive domain swap involving both the reactive center

loop and strand 5 of b sheet A (Krishnan and Gierasch, 2011; Ya-

masaki et al., 2008). The controversy may be partly explained by

our recent finding that structurally distinct polymers are favored

by different conditions used to induce polymerization in vitro

(Ekeowaet al., 2010). Resolving these issues at a residue-specific

level is important for targeting drug design against the patholog-

ical polymerizationofa1-antitrypsindeficiency.Wehave therefore

used nuclear magnetic resonance (NMR) spectroscopy and

adeficiency-associatedandpolymerogenica1-antitrypsin variant

to characterize structural and dynamic changes associated with

population of the pathological intermediate state.

RESULTS

Detection of a1-AntitrypsinQueen’s

A mutation that, to our knowledge, has not previously been

described was detected in an individual whose circulating

a1-antitrypsin levels (median value 0.6 mg/ml; normal range

1.5–3.5mg/ml) were between those expected of a Z homozygote

and an MZ heterozygote. Genotyping revealed a compound

heterozygote for the Z allele and a Lys154Asn variant that we

have named a1-antitrypsinQueen’s.

Population of the Pathological Intermediate
Recombinant Lys154Asn a1-antitrypsin was characterized

biochemically and biophysically (Figure S1, available online;
ts reserved
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Figure 1. Pathological Polymerization of Lys154Asn a1-Antitrypsin

(A) Polymerisation pathway from native conformer (mutation site circled).

(B)7.5%(w/v)nativePAGE;polymerizationofwild-typeandLys154Asna1-antitrypsin (0.5mg/mlprotein [pH7.4]) invitroover12daysat37�Cand42�C.Polymerization

is reported by loss of the monomeric band and the appearance of aggregated protein. (Right) Polymers formed by 30 min incubation between 40�C and 50�C of

nonglycosylated wild-type (blue) and Lys154Asn (red) a1-antitrypsin are detected by 2C1 mAb ELISA (Z a1-antitrypsin polymer calibrated; Miranda et al., 2010).

Differences between wild-type and mutant are significant (p < 0.05 to p < 0.005) for all temperatures. The increase in signal relative to starting material reaches

significance for Lys154Asn a1-antitrypsin for incubations at 47.5 (p < 0.05) and 50 (p < 0.005)�C. Data aremean ± standard deviation (error bars) of three experiments.

(C) (Left) Thermal denaturation CD spectroscopy (left; mean ellipticity at 222 nm, n = 10) for wild-type (blue) and Lys154Asn (red) a1-antitrypsin. (Right) Arrival

times and collision cross-section (CCS) values calculated by IM-MS for wild-type (blue) and Lys154Asn a1-antitrypsin indicated a 7.8% increase in CCS in

Lys154Asn relative to wild-type a1-antitrypsin at 39�C (no difference at 20�C and 34�C). Data are mean ± standard deviation (error bars) of three experiments.

See also Figure S1.
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Figures 1B and 1C). The variant had 64% of the functional

activity of wild-type a1-antitrypsin (i.e., 1.6-fold greater stoichi-

ometry of inhibition [SI]) with an apparent association rate

constant (kapp’) with bovine a-chymotrypsin of 5.5 (+/�1.1) 3

104 M-1s-1 (n = 3). When corrected for the increase in SI, the

association rate constant (kapp) for Lys154Asn a1-antitrypsin

was 1.3 3 105 M-1s-1, an order of magnitude lower than the

wild-type control (1.16 3 106 M-1s-1). Sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) confirmed

increased substrate-like behavior in Lys154Asn a1-antitrypsin

relative to the wild-type (Figure S1C).

The Queen’s variant formed polymers under physiological

conditions (Figure 1B). This was slow at 37�C, and more rapid

at 42�C and higher temperatures. The general pathological rele-

vance of these polymers was demonstrated by the presence of

the 2C1 neo-epitope that is specific for polymers associated

with disease (Miranda et al., 2010; Figure 1B, right).

Polymer formation occurs via population of an intermediate

state (Dafforn et al., 1999). We therefore studied intermediate

formation by Lys154Asn a1-antitrypsin. The variant populated

intermediate states more readily than wild-type a1-antitrypsin

in urea-induced and thermal denaturing conditions (Figure S1A;

Figure 1C). Since we had established the disease relevance of

the polymerogenic intermediate at temperatures in the physio-

logical range, we focused on structural changes induced by

incubation in these conditions. CD spectroscopy studies

(Figures 1C and S1D) indicated that the mutant fold underwent

a subtle structural transition between 35�C and 45�C before

more dramatic transition between 50�C and 60�C. Increasing
concentration did not affect the first transition but caused

the second transition to commence at a lower temperature.

Wild-type a1-antitrypsin remained stable to 60�C and underwent

a sharp unfolding transition at higher temperatures, consistent

with previous studies (Gooptu et al., 2009b; Parfrey et al.,

2003). Increasing concentration cold-shifted the second half of

the transition but did not affect its initial phase (Figure S1D).

Increasing protein concentration 2.5-fold (0.4 to 1.0 mg/ml)

reduced the midpoint of the overall transition for wild-type

a1-antitrypsin by �1.5�C and that of Lys154Asn a1-antitrypsin

by�1.0�C. The profiles of the first part of the transition observed

for wild-type a1-antitrypsin and the first transition observed

for Lys154Asn a1-antitrypsin are both concentration-indepen-

dent. Therefore, this likely reports upon structural change within

the molecule. The subsequent transition is concentration-

dependent. It therefore likely reports, to some degree, upon

polymerization of a species populated during the first phase.

Polymerogenic intermediate formation in a1-antitrypsin has

been previously studied by ANS fluorescence. ANS fluoresces

strongly upon binding to regions in which both polar and hydro-

phobic motifs are exposed to solvent and so binds to interme-

diate states, rather than fully folded or unfolded polypeptides.

The ability of the Queen’s variant of a1-antitrypsin to bind ANS

was therefore assessed (Figure S1E). Lys154Asn a1-antitrypsin

showed hyperfluorescence compared with the wild-type protein

at 25�C. This was unexpected, since assays directly reporting

structural information (CD spectroscopy, intrinsic fluorescence,

and NMR spectroscopy) strongly indicated that both proteins

were similarly well-folded and stable at this temperature. These

observations of Lys154Asn a1-antitrypsin behavior are similar to
506 Structure 20, 504–512, March 7, 2012 ª2012 Elsevier Ltd All righ
those described for Z a1-antitrypsin (Knaupp et al., 2010). More-

over, incubating Lys154Asn a1-antitrypsin with ANS for longer

resulted in even greater hyperfluorescence, whereas increasing

temperature to 37�C did not enhance this further (Figure S1E).

Wild-type a1-antitrypsin showed no change in ANS fluorescence

at either temperature or upon prolonged incubation. These data

indicate that for a1-antitrypsin variants in which conversion to

the polymerogenic intermediate in solution is facile, ANS binding

stabilizes the intermediate state sufficiently to skew the position

of the native-intermediate equilibrium to the right. For Lys154Asn

a1-antitrypsin, this effect is so significant that it outweighs any

effect of temperature change between 25�C and 37�C. This

supports our general view that the degree to which assays

perturb solution equilibria must be considered when studying

intermediate formation.

We hypothesized that ion-mobility mass spectrometry (IM-MS)

might have sufficient sensitivity to detect population of the inter-

mediate while minimally perturbing the solution equilibrium. At

20�Cand34�C,monomericLys154Asna1-antitrypsinwas indistin-

guishable from thewild-type protein by IM-MS. However, at 39�C,
there was a 7.8% increase in the collision cross-section (CCS) of

monomeric Lys154Asn a1-antitrypsin relative to the wild-type

protein in keeping with population of an intermediate state (Fig-

ure 1C). The CCS of the intermediate state has been calculated

as �18% greater than the native state, so a 7.8% increase in

CCS is consistent with substantial population (�40%) of the inter-

mediate state in equilibrium at physiological temperatures.

NMR Spectroscopic Characterization of a1-Antitrypsin
Solution Behavior and Mutation Effects
We have observed and assigned backbone resonances for

almost all residues in wild-type a1-antitrypsin in a series of

NMR experiments (Biological Magnetic Resonance Bank entry

17804; Nyon et al., 2011), allowing us to analyze its solution

behavior (Figures 2 and S2). Chemical shift index analysis (Ber-

janskii and Wishart, 2006) was performed for Ca backbone

bond signals alone or in conjunction with side-chain signals (Fig-

ure S2A). This method did not use any crystallographically

derived predictions, so it permitted residue-specific comparison

of the secondary structure behavior of the protein directly

observed in solution with that observed crystallographically.

Although most of the secondary structure behavior of individual

residues was conserved between solution and the crystal lattice

conditions, b sheet C showed considerable lability in solution.

The solution behavior of helices C and I was reported as a-helical

by Ca backbone bond signals. However, when side-chain sig-

nals were also considered, these reported random coil behavior.

Such differences may indicate that these motifs also displayed

some lability in solution (Figure S2A).

Two-dimensional (2D) NMR spectroscopy of 15N-labeled

Lys154Asn a1-antitrypsin was then performed (Figure 2). At

25�C the well-dispersed regions of the spectrum contained a

similar number (148) of cross-peaks to the number seen for the

wild-type protein (152), and mean cross-peak intensities were

similar for both proteins. A subset of 123 residues could be

confidently assigned in the well-dispersed region of the 1H-15N

TROSY-HSQC spectrum of Lys154Asn a1-antitrypsin. Overall

peak integrals in the central region were also similar between

the spectra for wild-type and Lys154Asn a1-antitrypsin
ts reserved



Figure 2. 1H-15N TROSY-HSQC Spectrum of Wild-Type and Lys154Asn a1-Antitrypsin

Zoom (right) illustrates examples of reporter residues (wild-type, black; Lys154Asn, red).

See also Figure S2.
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(Figure S2B). Nevertheless intensity and chemical shift differ-

enceswere induced by the presence of themutation in the native

state of the protein (Figure S2C). The degree of variation reported

by intensity and chemical shift in the observed residues corre-

lated closely. The magnitude of changes are shown by heatmap

coloring of spheres mapped to the crystal structure and demon-

strate the mutation most affects residues around the F-helix,

strands 1–3 of b sheet A, and the reactive loop. In particular,

the spectral effects were most dramatic on residues around

hF and s3A, where the chemical shift changes were too great

to allow their confident assignment in the mutant protein (Fig-

ure S2C, black spheres).

NMR Spectral Changes and Polymerogenicity
Our principal aimwas to assess changes in a1-antitrypsin associ-

ated with population of the disease-relevant intermediate

state. Native state behavior was defined as that observed for

wild-type a1-antitrypsin at the temperatures studied in which no

polymerization was observed. At 37�C, slow, irreversible, and

linear loss of the observable, monomeric sample due to

polymerization was observed in Lys154Asn but not the wild-

type a1-antitrypsin. The linearity indicated a constant rate of

polymer formationandhence that thepopulationof thepolymero-

genic intermediate was also constant, that is, the solution was

in pseudo-equilibrium. 1H-15N TROSY-HSQC spectra reported

residue-specific structural and dynamic changes in Lys154Asn

a1-antitrypsin by nonuniform intensity change in assigned

cross-peaks relative to wild-type a1-antitrypsin (Figure 3A).

Values are scaled for monomer concentration; they take into

account changes observed between wild-type and mutant

protein at 25�C in the absence of polymerization and changes

observed in wild-type a1-antitrypsin between 25�C and 37�C.
They therefore report differential changes in Lys154Asn a1-anti-

trypsin associated with population of the polymerogenic state.
Structure 20,
Most reporter cross-peaks signaled minimal change in

Lys154Asn a1-antitrypsin at 37�C (Figure 3B). Those in strand 5

in b sheet A, helix I, and the connecting linker strongly preserved

intensity (Figure 3C). NMR intensity data are highly sensitive

reporters of changes in structure and dynamics, so relatively

large changesmay be induced by quite small changes in solution

behavior. Nevertheless, residues reporting the most dramatic

intensity change in the polymerogenic ensemble notably occur

in regions previously linked with conformational change (upper

s3A, upper hF, underlying the upper s4A site, and hA; Cabrita

et al., 2004; Mahadeva et al., 1999; Zhou et al., 2003).

A further 12 distinct cross-peaks (signal:noise 11.5) were

observed in the well-dispersed region of the spectrum in

Lys154Asn but not the wild-type a1-antitrypsin at 37�C (Fig-

ure S3A). The new cross-peaks disappeared on cooling and so

may represent residues within a nonnative monomeric state,

rather than polymers, since these did not dissociate (and would

predictably give peaks of very low intensity). If so, these data

support a process of native-non-native monomeric conforma-

tional exchange that is slow (Rms) by NMR timescales, consis-

tent with previous data (Dafforn et al., 1999).

The mutation will mildly perturb local electrostatic interactions

involving Lys154 (Figure S3B). Its effects on resonances of

nearby residues were too great to dissect by cross-peak anal-

ysis. We therefore studied a eukaryotic cell model of disease

(Gooptu et al., 2009b) by mutagenesis. These clarified that the

hydrogen bond of Lys154 (F-helix) with the main-chain carbonyl

oxygen of Lys174 (neighboring linker) regulated against polymer

formation (Figure S3B).

The residue-specific changes caused by the Lys154Asnmuta-

tion differed markedly from those observed in urea conditions

causing a similar degree of polymerization (1.5 M; Figure S3C).

Both patterns differ from that indicated by studies in guanidine

or low pH conditions (Krishnan and Gierasch, 2011; Yamasaki
504–512, March 7, 2012 ª2012 Elsevier Ltd All rights reserved 507



Figure 3. Population of the Intermediate by Lys154Asn a1-Antitrypsin under Physiological Conditions

(A) Differential change in intensity for reporter cross-peaks in the 1H-15N TROSY-HSQCof Lys154Asn a1-antitrypsin at 37
�C. Intensities are scaled relative to the wild-

type protein at the same temperature and the intensities observed for Lys154Asn a1-antitrypsin relative to the wild-type at 25�C [(IK154N,37/Iwt,37)/(IK154N,25/Iwt,25)].
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et al., 2008). Thus, the polymerogenic monomer ensemble to

which this mild deficiency mutation reduces the energetic

barrier, differs structurally and/or dynamically from polymero-

genic ensembles induced by other conditions. The resultant

polymers are also structurally distinct (Ekeowa et al., 2010).

DISCUSSION

Studying key native to intermediate transitions can elucidate

mechanisms of the conformational diseases and aid targeting

of novel therapeutic strategies. However, the intrinsic tendency

of intermediates to adopt more stable, polydisperse, and

multimeric conformations renders this inherently challenging.

Moreover, structurally distinct serpin polymers are induced by

chemical denaturants compared to pathological mutations or

heating (Ekeowa et al., 2010). Techniques that can perturb

equilibria by stabilizing particular structural endpoints (e.g.,

selective labeling, proteolysis, and/or peptide binding) may

also skew characterization of intermediate ensembles in confor-

mational diseases. We have therefore undertaken the residue-

specific study of a forme fruste disease mutant in solution, under

physiological conditions, using minimally perturbing techniques.

This is arguably the best strategy for studying intermediate

states relevant to conformational diseases.

Lys154Asn a1-antitrypsin populates a polymerogenic interme-

diate state at 37�C. Polymers formed from Lys154 mutants

recapitulate the pathognomic 2C1 neo-epitope. Polymerization

of Lys154Asn a1-antitrypsin is therefore a good structural model

for the pathological polymerization in vivo of more common and

severe variants, such as Z a1-antitrypsin. Serendipitously, poly-

merization occurs slowly enough to allow the study of the

solution behavior of a1-antitrypsin when the pathological inter-

mediate state is populated. We have overcome obstacles posed

by the molecule’s large size (45 kDa) to use NMR spectroscopy

and characterize residues that remain native-like or alter their

solution behavior in association with formation of the patholog-

ical intermediate. Our data are consistent with sufficient popula-

tion of the intermediate state in Lys154Asn a1-antitrypsin at

physiological temperatures to contribute to our observations.
All intensities were scaled for concentration and 4,4-dimethyl-4-silapentane-1-sulf

observed in the datasets from which the values are derived, according to the formu"�
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the observed standard deviation of peak intensities within each spectra.
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only for residues in s5A but also for residues in hI and the connecting linker. (Right)

induced by the Gly117Phe mutation; Gooptu et al., 2009b) and destabilizing (red

See also Figure S3.
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Most observed residues behave in a highly native-like way under

these conditions. Relative intensity values indicate preservation

of native-like signal after correcting for changes due to the

mutation at 25�C and changes in protein tumbling and polymer-

ization at 37�C. A value of 100%would therefore indicate entirely

native-like structural and dynamic behavior in a particular

residue. The mean relative intensity across the entire subset of

residues that could be analyzed in this way was 82%. It is there-

fore unlikely that the intermediate ensemble is substantially

unfolded as required for extensively domain-swapped models

of polymerization. Specifically, analysis of cross-peak intensities

supports high stability in the hI-s5A region proposed to unfold in

the b-hairpin model (Figure 3C). This is indicated by relative

intensities of 90% for the seven residues within this region

compared with the equivalent cross-peaks in the native state.

Similar preservation of native-like signal is indicated for the

core strands 4 and 5 of b sheet B (residues 370–388).

Larger changes (Figures 3A and 3B) may be due to a number

of differences in structural and/or dynamic behavior, so their

interpretation is complex. Nevertheless, the localization of the

greatest changes from wild-type native behavior is striking.

Such changes are reported by residues in regions associated

with remodeling during formation of the intermediate state in

parsimonious models of polymerization (Figure 3B, left panel,

circled: Thr165 at the top of hF, relative intensity 0.46, Phe189,

upper s4a, 0.31). The effects on these residues cannot be

simply explained by proximity to the mutation site, since they

lie further from it than many residues that report highly native-

like behavior. Residues reporting a major loss of relative intensi-

ties are also observed at the C-terminal end of hA (Figure 3B,

right panel ellipse: Arg39, relative intensity 0.11 and His 43,

0.33), even further from the mutation site. This corresponds to

the site of another polymerogenic a1-antitrypsin deficiency

mutation (Ile39Cys; Mahadeva et al., 1999). Mutations in nearby

serpin residues (Tyr38Ser, antithrombin; Leu41Pro, a1-antitryp-

sin) are also associated with deficiency and disease (Dafforn,

1999). Our data suggest that structural and/or dynamic changes

here are associated with formation of the pathological interme-

diate. The effects would be transmitted most directly to the
onic acid (DSS) control intensity. Error bars are defined according to variability

laffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

+

�
dWT;37

IWT;37

�2

+

�
dK154N;25

IK154N;25

�2

+

�
dWT;25

IWT;25

�2

;

1-antitrypsin at 25� or 37�C as indicated by the subscripts and d terms represent

ues (spheres) in red-white-blue heatmap coloring (increases, red; unchanged,

responds to a relative intensity of 0.11. Increasing redness indicates increasing

e-like intensity.

cting linkers. Current structural models of polymerogenic intermediates in the

omparison (b strand 5A magenta; hI and connecting linker cyan).

ormation through propagation of conformational change from the mutation site

ishes a hydrogen bond between hF and the neighboring linker (clasp, purple)

the upper part of the clasp (II). Consequent structural changes in the upper part

n s3A are also transmitted via (IV) the shutter region and s6B (brown) to the

a native-like environment during formation of the intermediate. This is seen not

Factors stabilizing (blue, arrow denotes stabilizing displacement of clasp region

) the network of regulatory interactions.
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A-helix from s3A via the intervening shutter and s6B motif

(Figure 3D), known hotspots for pathological, polymerogenic

mutations.

Taking together the data from biochemical, biophysical,

enzyme-linked immunosorbent assay (ELISA) and cell studies,

and previous observations (Bruce et al., 1994; Sharp et al.,

1999), we propose that the helix F and linker region constitutes

a ‘‘clasp’’ motif (Figure 3D, purple). This may seal a network of

interactions that regulate conformational change. Compromise

of the network is associated with formation of the pathological

intermediate.

Our data indicate that the methods used to induce interme-

diate formation when studying conformational diseases can be

major determinants of the structural distribution of intermediate

states within the solution ensemble. A recent study undertook

residue-specific labeling of single Cys mutants during early

guanidine denaturation. It supported extensive unfolding of

strands 5 and 6, as well as helices F and I (Krishnan and Gier-

asch, 2011). That pattern differs from our observations, both in

the presence of the Lys154Asn mutation at 37�C and in low

concentrations of urea. The modulation of monomeric ensem-

bles to produce analogous but structurally distinct polymer

states is relevant to studies of other conformational diseases,

where chemical denaturants are commonly used in vitro to

induce multimerization. It may also explain the phenomenon of

strain specificity observed in conformational disorders, such as

prion diseases and amyloidoses.

We have demonstrated that NMR spectroscopy is optimal

for studying pathological intermediate formation in the serpino-

pathies, providing residue-specific detail without perturbing

dynamic solution equilibria. Comparison of wild-type a1-anti-

trypsin characteristics with those of mild deficiency variants

also powerfully dissects disease-relevant behavior. Such studies

appear timely, given the range of proposed polymerisation

models based upon data obtained using a range of more per-

turbing techniques. Further studies using different variants and

NMR modalities, for example, detailed dynamics studies, will

further characterize this contentious mechanism of pathological

conformational change to optimize drug design and so treat the

serpinopathies.
EXPERIMENTAL PROCEDURES

Molecular Biology, Protein Purification, and Cell-Free

Characterization

Mutations were introduced into a1-antitrypsin cDNA within the pQE31 and/or

the pcDNA3.1 plasmids by polymerase chain reaction mutagenesis (Zhou

et al., 2001; Gooptu et al., 2009b). pQE31 plasmids containing cDNA encoding

hexahistidine-tagged, recombinant a1-antitrypsin were transfected into XL1

Blue Escherichia coli (Stratagene, Santa Clara, California, USA). The proteins

were expressed and purified as previously described (Parfrey et al., 2003).

They were characterized using SDS-, nondenaturing and transverse urea

gradient (TUG)-PAGE, circular dichroism (CD), intrinsic and 8-anilinonaphtha-

lene-1-sulfonate (ANS) fluorescence spectrometry and by enzyme inhibitory

activity and kinetics assays (Dafforn et al., 1999, 2004; James et al., 1999;

Stone and Hofsteenge, 1986).

Ion Mobility Mass Spectrometry

Samples were buffer exchanged into 100 mM ammonium acetate (pH 7.0),

desalted, and concentrated to a final concentration of 20 mM. Proteins were

introduced to the mass spectrometer by nano electrospray ionization. All
510 Structure 20, 504–512, March 7, 2012 ª2012 Elsevier Ltd All righ
IM-MS experiments were performed in a hybrid quadrupole, orthogonal accel-

eration time-of-flight (oa-TOF) mass spectrometer equipped with a traveling

wave (T-Wave) ion mobility separation device (Synapt HDMS, Waters, Man-

chester, UK; Pringle et al., 2007). The source temperature was 40�C, capillary
voltage optimized 1.0–1.2 kV, and cone voltage was 20 V. The pressure in the

T-Wave ion mobility cell was 0.55 mbar. The mobility gas was nitrogen.

T-Wave height and velocity were set at 10 V and 300 m/s, respectively. Arrival

time distributions were converted to collision cross-sections (CCS) by power

fit (Hilton et al., 2010; Thalassinos et al., 2009). The calibrant protein was

equine myoglobin (Sigma-Aldrich, Gillingham, UK). Data acquisition and pro-

cessing were carried out using MassLynx 4.1 software (Waters Corp., Milford,

MA, USA). Data are the mean (+/� SD) of three repeats.

Sample Preparation for NMR Spectroscopy

cDNA coding for hexahistidine-tagged a1-antitrypsin within a pQE31 plasmid

was transformed into strain BL21-Gold (DE3) E. coli (Stratagene). Cells

were cultured in M9 minimal media (in H2O or D2O) at 37�C with 1 g/l of
15NH4Cl (Spectra Stable Isotopes, Columbia, MD, USA) and 2 g/l of either

glucose or 13C-glucose (Sigma-Aldrich) as the sole nitrogen and carbon sour-

ces, respectively. Following induction of protein expression cells were grown

for 6 hr, rather than the 4 hr, period used with rich media. In all other respects

protein expression and purification was carried out as described above.

Samples were stored in 25 mM Na2HPO4 (pH 8.0), 50 mM NaCl, and 1 mM

ethylenediaminetetraacetic acid. Sample homogeneity was confirmed by

SDS-, nondenaturing and transverse urea gradient (TUG)-PAGE and by

assessment of inhibitory activity.

NMR Spectroscopy Conditions

NMR spectra used to compare wild-type and Lys154Asn a1-antitrypsin

were collected on uniformly 15N-labeled samples at 298 K, 175 mM on a Varian

UnityInova 600 MHz spectrometer with an HCN cryoprobe. Ten percent D2O/

1% 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) was added to concen-

trated a1-antitrypsin samples prior to NMR spectroscopy.

Backbone assignments were obtained from TROSY (Pervushin et al., 1997)

versions of HNCO, HN(CA)CO, HNCA, HN(CO)CA, HNCACB, and HN(CO)

CACB spectra (Eletsky et al., 2001; Salzmann et al., 1998), together with

a 3D NOESY-TROSY-15N HSQC spectrum (Zhu et al., 1999). 2H decoupling

(1 kHz WALTZ-16; Shaka et al., 1983) was applied in triple-resonance

experiments. Magnetization was transverse on CA or CB. Two-dimensional

TROSY-15N HSQC spectra for assignment. Wild-type and Lys154Asn a1-anti-

trypsin comparison spectra were recorded using single-transition-to-single-

transition polarization transfer and phase cycling for coherence order selection

(Rance et al., 1999; Zhu et al., 1999). Spectra were processed and analyzed

using nmrPipe (Delaglio et al., 1995) and CCPN (Fogh et al., 2002). All spectra

were referenced to DSS at 0.0 ppm, manually phased and baseline corrected.

Lys154Asn a1-antitrypsin spectra were analyzed by changes in cross-peak

intensity relative to the data on wild-type a1-antitrypsin (IK154N/Iwild-type) and

magnitude of chemical shift change (Dd). This was calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Dd1H

�2
+
�
Dd15N=5

�2q
;

where D1H was the change in the chemical shift along the 1H axis andD15N the

change in chemical shift along the 15N axis (parts per million [ppm]).

Cell Biological Characterization

The pcDNA3.1 plasmids containing wild-type and mutant a1-antitrypsins were

transiently transfected into COS-7 cells. The resulting protein expression was

characterized by western blot analyses of SDS- and nondenaturing PAGE of

intracellular material as previously described (Miranda et al., 2008, 2004).

Luciferase controls were used to confirm equivalent loading between samples.

The polymer load was quantified by ELISA using the polymer-specific 2C1

monoclonal antibody as the primary antibody (Miranda et al., 2010).
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