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ABSTRACT 

ABSTRACT 

 

This thesis describes the results of a series of investigations examining the operational 

performance followed by the fundamental re-development of two analytical instruments, 

namely a Pneumatic Spring Particle Sizer (PSPS) and handheld Spring Particle Sizer 

(handheld SPS) for size distribution analysis of dry powders in the 100 – 2000 μm size range. 

Each instrument shares the same basic principle of operation involving the use of a closed 

coil helical extension spring, which is partly filled with the test powder. Particle size 

distribution data is obtained by stretching the spring to known lengths and measuring the 

mass of the discharged particles from the spring’s coils. In the case of the Handheld SPS, 

aimed at on the spot quality control applications, the test particles are discharged from the 

spring using manual shaking. In the case of the PSPS on the other hand, the particles are 

discharged using pulsating pressurised air.  

 

The design, development and evaluation of two methods for the in-situ measurement of the 

sample mass within the PSPS are discussed. These include a full-bridge strain gauge 

assembly and the investigation of the correlation between the minimum fluidisation velocity 

and the mass of the test sample within the spring. The strain gauge proved to be a successful 

method producing a mass resolution of ± 1 % for a total sample mass of 280 g. The second 

method was unsuccessful as it was found that the minimum fluidisation velocity, in most 

cases did not follow a clear trend with mass. 

 

Detailed investigations are conducted aimed at understanding the processes governing the 

mass discharge rate from the PSPS and hence the sample analysis time by studying the 

particle migration behaviour. A pulsating fluidised bed of similar dimensions to the spring is 

used to mimic the behaviour in the spring. Tests involved pulsating fluidisation followed by 

particle size distribution analysis at equal distances along the length of the bed containing 

poly-dispersed and mono-dispersed particles. It was observed that any operating or design 

parameter that promoted the degree of mixing, for example, increasing the fluidising air pulse 

frequency would reduce the test analysis time. The analysis time also increased with the 

sample poly-dispersity.  
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In an attempt to reduce the sampling time, the handheld SPS was rotated using a variable 

speed tumbler as an alternative to manual shaking. Despite the marked reduction in the 

sampling time, this method resulted in the discharge of particles larger than spring coil 

openings thereby producing erroneous results.  

 

Calibration experiments for the same types of powders revealed a linear relationship between 

the discharge sample volume and its mass, independent of the particle size in the range 212 – 

1000 μm. This allows in-situ measurement of the discharge sample mass in the handheld unit 

by reading the sample volume collected in the integrated graduated collection cylinder and 

reference to a previously generated calibration line. 
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NOMENCLATURE 

NOMENCLATURE 

 

Symbol  Name Units 

A Particle area m
2
 

CD Drag Coefficient - 

dstatic Spring aperture size when static m 

ddynamic Spring aperture size when dynamic (transverse vibration) m 

FD Drag force Pa·m² 

g Acceleration due to gravity m·s
-2

 

m Mass of particles kg 

P Particle perimeter m 

∆P Pressure drop Pa 

R Unrolled particle radius (see figure 2.2) m 

Re Reynolds number Dimensionless 

S Particle surface area m
2 

umf Minimum fluidisation velocity m·s
-1 

V Particle volume m
3 

xv Volume diameter m 

xs Surface diameter m 

xsv Surface volume diameter m 

xd Drag diameter m 

xf Free-falling diameter m 

xStk Stokes’ diameter m 

xa Projected area diameter m 

xp Projected area diameter m 

xc Perimeter diameter m 

xA Sieve diameter m 

xF Feret’s diameter m 

xM Martin’s diameter m 

xR Unrolled diameter (see figure 2.2) m 

x Particle diameter m 
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NOMENCLATURE 

Greek Letters 

Symbol Name Units 

ρf Fluid density kg·m
-3 

ρp Solid density kg·m
-3

 

υ Settling velocity m·s
-1

 

µ Fluid viscosity Pa·s 

ε Voidage - 

θR Unrolled diameter angle (see figure 2.2)  

  Circularity - 

ϕ Sphericity - 

ϕv Volume shape coefficient - 

ϕs Surface shape coefficient - 

 

Abbreviations 

A1 and A2 Airedale Springs 1 and 2 respectively 

ca. circa 

handheld SPS handheld Spring Particle Sizer 

HP VEE Hewlett Packard Visual Engineering Environment 

PSD Particle Size Distribution  

PSPS Pneumatic Spring Particle sizer 

SPS Spring Particle Sizer (general name for all models) 
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CHAPTER 1: Introduction 

CHAPTER 1 INTRODUCTION 

 

Materials that incorporate or, are produced from powders are all around us. The most 

commonly encountered powders include cement, limestone, fertilizer, cosmetic powders, 

salt/sugar, detergents, and many other household items. In fact, over 75 % of all materials 

processed in industry are in particulate form (Merkus, 2009).  

 

Particle size and size distribution (PSD) determines many of the properties of particles such 

as its dissolution rate, reactivity, segregation and flowability (Merkus, 2009). Consequently, 

accurate measurement and classification of particles by size play an essential role in 

manufacturing as even small differences in size or shape can affect process performance and 

product attributes.  

 

The determination of PSD is by no means limited or restricted to commercial products or any 

one area of technology, but actually cuts across various fields. For example, it has become 

increasingly important to characterise very small particles due to the effects of air pollution 

and emission control regulations in recent years (European Council, 2008). Within the 

agricultural industry, it is important to use the correct fertilizer particle size, to enable 

sufficient infusion into the soil at the appropriate rate. The use of particles that are too small 

run the risk of sub-standard crops, and particles too large may lead to damaged crops 

(Cooper, 2010). 

 

Due to its significant importance within a wide variety of industries, particle size analysis has 

become the largest and fastest growing segment of the particle characterisation market. In 

1993, the US Department of Commerce estimated the impact of particle science and 

technology to United States industrial output to be one trillion dollars annually (Allen, 2003). 

 

The continual growth in the particle characterisation market has led to the development of 

numerous techniques to measure PSD. These techniques fall into two distinct categories, 

fractionating and non-fractionating methods. Fractionating methods classify the particles 

according to their size or density such as sieving or sedimentation. Examples of non-
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fractionating methods on the other hand include laser diffraction and ultrasound spectroscopy 

(Bernhardt, 1994).  

Increasing developments in technology has led to increasing advances in the level of 

sophistication of particle size analysis methods. Some instruments, such as laser diffraction 

particle sizers have been developed to operate in an on-line mode by integrating into the 

manufacturing process. This feature is essential during the manufacture of large quantities of 

powders as it enables the control of the particle size if and when required, thus resulting in 

considerable reduction in the production of ‘off-spec’ particles.   

 

Some manufactures now provide accessories that enable off-line instruments to be adapted to 

on-line operations. For example both Mettler Toledo International Inc. (2012) and CSC 

Scientific Company Inc. (2012) offer sieving techniques with online capabilities.  

 

A number of factors should be considered prior to selecting a particle size analyser. The most 

important factors include sample analysis time, particle size range, accuracy/sensitivity, 

sample mass, cost, maintenance and robustness as well as on-line or off-line capability 

(Bernhardt, 1994).  

 

Despite the advances in particle size analysis techniques, a number of technological and 

operational problems exist that limits the scope and range of applicability of the available 

instruments. These include the robustness of the instruments, complicated operating 

procedures, sample representation problems due to small sample sizes and on-line particle 

size measurement at low cost. 

 

In the light of the above shortcoming, Mahgerefteh and his co-workers at UCL (Mahgerefteh 

and Shaeri, 2000, Mahgerefteh and Kamugasha, 2004, Patel, 2001, Kerdvibulvech, 2008) 

developed a Spring Particle Sizer (SPS) aimed at overcoming a number of the problems 

associated with conventional techniques for particle sizing. 

 

In its basic form, the SPS comprises a closed coil helical extension spring, which is partially 

filled with the test powder. When the spring is extended incrementally along its length and 

mechanically agitated, particles are discharged according to the opening distance between the 

spring coils. For a uniformly extending spring, the latter may be found from the spring total 
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extension and the number of coils. The measurements of the spring extension and the 

corresponding mass of the powder discharged are then used to construct the particle size 

distribution.  

The Pneumatic Spring Particle Sizer (PSPS) and the Hand-held unit are two versions of this 

technique developed by Mahgerefteh et al. (2000, 2004). In the case of the PSPS, the test 

particles inside the vertically held spring are discharged using pulsating air. The hand-held 

unit on the other hand, as the name suggests is a portable version in which the particles from 

the spring are discharged by manual shaking or agitation. For both units, the PSD is 

determined by plotting the percentage mass of discharged powder at a particular spring 

extension against corresponding particle size.  

 

The Spring Particle Sizer offers a number of advantages compared to conventional techniques 

available for particle sizing. These include robustness, large sample capacity (limited by the 

spring size), ease of operation and low capital and maintenance costs.  

 

Despite all this, the SPS suffered from a number of fundamentally important design and 

operational limitations, which compromised their commercial success. Examples included 

non-uniform spring coil opening, sample loss during testing and long analysis time. In the 

case of the pneumatic sizer, the inability to measure the mass discharge from the spring in-

situ limited its use to off-line applications.  

 

This thesis describes the results of a series of investigations relating to the fundamental 

design and operational development of the spring particle sizers aimed at addressing the 

above limitations.  

 

The thesis comprises nine chapters. 

 

As most particles are irregular in shape, Chapter 2 reviews the different particle size 

definitions. The varying definitions of particle shape and size are described both qualitatively 

and quantitatively presented. Different methods of presenting particle size distribution data 

are also discussed. 
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Chapter 3 reviews the most commonly used particle size distribution techniques, operating 

principles followed by a discussion of their strengths and weaknesses. The review 

commences with a brief discussion of commonly used sampling techniques due to its 

importance in particle size analysis. 

In chapter 4, the various modifications of Spring Particle Sizer (SPS) developed at UCL prior 

to the present work are presented and discussed. These include the two early versions (Mark I 

and Mark II) involving the mechanical agitation of the loaded spring using an electromagnet 

incorporating an automated mass measurement mechanism.  

 

Being the focus of this thesis, the detailed design and operating features of the Pneumatic 

Spring Particle Sizer (PSPS) and the handheld SPS together with their merits and 

disadvantages are presented and discussed next.  

 

The proceeding chapters, present work carried out in the present study as summarised below. 

 

Chapter 5 presents the results of a series of investigations using image analysis for 

characterising two especially fabricated springs in terms of coil opening uniformity and 

reproducibility. The performance of the selected springs in terms of the aperture uniformity is 

next evaluated by comparing their standard deviation for a given aperture size against the 

corresponding data for sieves.  

 

A major drawback of the PSPS is the requirement to measure the sample mass discharged 

from the spring independently using a balance. Apart from increasing capital cost and 

analysis time, the above relies on collecting all the particles discharged from the spring. In 

practice, this is extremely difficult to achieve due to sample loss. The development of various 

techniques aimed at addressing the above limitation by introducing in-situ mass measurement 

capability is presented in chapter 6. These rely on the use of in-built strain gauges (section 

6.2) or correlating the powder mass within the spring to the minimum fluidisation velocity 

(section 6.6). 

 

The study of the different factors affecting the sample discharge time and thereby developing 

operating methodologies for reducing the PSD analysis time is presented in chapter 7.  
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Central to the above are a series of experiments investigating particle migration behaviour 

within the spring. These involve using a pulsating fluidized of similar dimensions to the 

spring followed by careful extraction of representative samples from the static bed at 

different powder depths for PSD analysis. Various pulsating air frequencies and pressures are 

used in order to investigate their impact on particle size migration and the corresponding 

sample discharge time.  

 

Chapter 8 presents a comparison of particle size measurement with standard sieve data to the 

performance characteristics of the handheld unit. This is presented in terms of its accuracy 

and reproducibility when using a variable speed tumbler as an alternative to manual shaking. 

The development of volume to mass calibration curves for direct mass measurement from the 

unit is also discussed. 

 

Chapter 9 describes the general conclusions and main findings of this thesis and the 

recommendations for future improvements. 

 



  

 

16 
CHAPTER 2: Particle Characterisation 

 
 

CHAPTER 2 PARTICLE CHARACTERISATION 

 

This chapter deals with the various approaches used to express the size of a single particle. A 

number of definitions used in the thesis such as particle shape, particle size distribution are 

also presented.  

 

2.1 Particle Size 

 

The particle size is one or more linear dimensions defined to characterize an individual 

particle (Yang, 2003). An ideal particle like a sphere is uniquely defined by its diameter, or 

for a matchstick, its length, breadth and height. However, it becomes more complex for a 

grain of sand or other irregular particles (Yang, 2003).  

 

For irregular shaped particles, the particle size is derived from certain reference properties, 

this however, depends mainly on the particle sizing method employed (Yang, 2003). Several 

diameters have been defined and used to characterize irregular particles, using geometry and 

a theoretical equivalent sphere with regard to some properties (e.g. volume, settling velocity, 

surface area, projected area). Commonly used diameters are defined in table 2.1 below. 

Figure 2.1 gives an illustration for some of these defined diameters.  

 

Table 2.1: Equivalent Diameters for Irregular Particles (Allen, 1997; International 

Organisation for Standardisation, 2001; International Organisation for 

Standardisation, 2008; Webb & Orr, 1997; Yang, 2003; Arai, 1996). 

Symbol Name Definition Formula 

xv Volume 

diameter 

Diameter of a sphere having 

the same volume as the 

particle 

3

6
vxV


 ......................(2.1) 

xs Surface 

diameter 

Diameter of a sphere having 

the same surface as the 

particle 

2

sxS  ........................(2.2) 

xsv Surface 

volume 

diameter 

Diameter of a sphere having 

the same external surface to 

volume ratio as the particle 
2

3

s

v

sv
x

x
x  .......................(2.3) 
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xd Drag 

diameter 

Diameter of a sphere having 

the same resistance to 

motion as the particle in 

fluid of the same viscosity 

and velocity    (Re < 0.2) 

 

2

2v
ACF fDD  ............(2.4) 

Where )( dD xfAC  .....(2.5)  

vxAF dD 3 ..............(2.6) 



x
Re .................(2.7) 

 

xf Free-falling 

diameter 

Diameter of a sphere having 

the same terminal velocity 

as the particle in fluid of the 

same viscosity and density 

 

xStk Stokes’ 

diameter 

The free-falling diameter of 

particle in laminar flow 

region (Re < 0.2) d

v
Stk

x

x
x

3
2
 ....................(2.8) 

xa Projected 

area 

diameter 

Diameter of circle with the 

same area as the projected 

area of the particle resting in 

stable position 

2

4
axA


 ......................(2.9) 

xp Projected 

area 

diameter 

Diameter of circle with the 

same area as the projected 

area of the particle resting in 

random orientation 

Mean value for all possible 

orientations xp = xs for convex 

particles 

xc Perimeter 

diameter 

Diameter of circle with the 

same perimeter as the 

particle  

cxP  .......................(2.10) 

xA Sieve 

diameter 

The width of the minimum 

square aperture that the 

particle will pass 

 

xF Feret’s 

diameter 

 The mean value of the 

distance between pairs of 

parallel tangents to the 

projected outline of the 

particle, (see figure 2.1) 

 

xM Martin’s 

diameter 

The mean chord length of 

the projected outline of the 

particle,(see figure 2.1) 

 

 Krumbein The maximum line that can 

be drawn on the projected 

area in a constant direction 

(Arai, 1996) 

 

xR Unrolled 

diameter 

The mean chord length 

through the centre of gravity 

of the particle(see figure 

2.2) 








2

0

1
)( RRR dxxE ....(2.11) 



  

 

18 
CHAPTER 2: Particle Characterisation 

 
 

 

Fer
et
’s

D
ia

m
et

er

Projected Area Diameter

Martin’s Diameter

Particle

Fer
et
’s

D
ia

m
et

er

Projected Area Diameter

Martin’s Diameter

Particle
 

Figure 2.1: Three diameters used to estimate particle size of irregular particles (Yang, 

2003). 

R

xR
θR

Particle

 

Figure 2.2: Definition of unrolled diameter xR, radius R and angle θR (Allen, 2003) 

 

2.2 Particle Shape 

 

Particle shape is another fundamental particulate feature, which affects several powder 

properties. Examples of these include powder packing, bulk density, cohesion, flowability, 

caking behaviour (Heyd and Dhabbar, 1979), porosity, interaction with fluids and the 

covering power of pigments (Allen, 1997). 
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Some mathematical expressions have been developed to define the shape of an irregular 

particle (see examples in (Allen, 1997) and (Gotoh et al., 1997). However complexity 

prevents them from being used widely in powder technology (Shaeri, 1997). 

 

Particle shape is often described by the particle’s geometrical characteristics. These are used 

to establish shape parameters such as Circularity, Convexity and Aspect Ratio, which help to 

identify and quantify distinctions in particle shape. These parameters are standardized to a 

range between 0 and 1, in order to provide quick and easy comparability (Sysmex 

Corporation, 2009).  

 

The common shape parameters used are as follows:  

 

a) Circularity/Roundness  : Wadell (1933) introduced the ‘‘degree of circularity’’, 

defined as “the ratio of the perimeter of the particle to that of a sphere of the same 

projected area”. This is given by: 

 

P

A2
     

image particle projected ofPerimeter 

particle  theas area sectional cross same having circle of nceCircumfere





.......(2.12) 

where, 

A = Area of particle 

P = Perimeter of particle 

b) Sphericity: Wadell (1933) also proposed the ‘‘degree of true sphericity’’ defined as 

“The ratio of the surface area of a particle to that of a sphere of the same volume”. 

According to the International Organisation for Standardisation (2008) the most 

widely used sphericity factor is given by equation 2.13: 

S

x

x

x v

s

v

22

particle of area Surface

sphere equivalent of  volumeof area Surface



















....................................................(2.13) 

where, 
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xv = Diameter of a sphere having the same volume as the particle 

ds = Diameter of a sphere having the same surface as the particle 

S = Surface area of the particle 

c) Aspect ratio: The ratio of the length of a particle to its width at right angles. This 

signifies the elongation of the particle. It is defined by the ratio of the smallest and 

largest diameter (International Organisation for Standardisation, 2008; Sysmex 

Corporation, 2009). 

d) Flakiness index: The ratio of the mass of particles with thickness of less than 0.5-0.6 

of their mean sieve size to the mass of tested particles (British Standards Institute, 

1997). 

e) Convexity: Convexity is the measure of surface roughness of a particle. It is obtained 

by dividing the object area by the area enclosed by an imaginary “rubber band” 

wrapped around the object. The convexity has values in the range 0 – 1. A convex or 

smooth shape has convexity 1.0 (e.g. sphere), while a concave or “spiky” shape has a 

lower value, close to 0 as shown in figure 2.3 (Huck, 2006; Sysmex Corporation, 

2009). 

f) Volume shape coefficient: The ratio of the volume of a particle to that of a cube of 

the same diameter (Allen, 1997). 

3x

V
v   

(2.14) 

where, 

v  = volume shape coefficient 

V = particle volume 

x = particle diameter 

g) Surface shape coefficient: This is the coefficient of proportionality relating the 

surface area of the particle with the square of its measured diameter (Allen, 1997). 

2x

S
s   

(2.15) 

where, 
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s = surface shape coefficient 

S = surface area of a particle 

h) Surface volume coefficient: This is the ratio of surface to volume shape factors 

combining the features of the two together (Allen, 1997). 

i) Elongation shape factor: The ratio of the length of a rectangle with two sides parallel 

to the longest dimension of a particle to its width (Gotoh et al., 1997). 

j) Dynamic shape coefficient: The ratio of the resistance-to-motion of a particle to that 

of a spherical particle of the same volume (Gotoh et al., 1997). 

 

Various definitions for expressing particle shape are defined in table 2.2. Diagrammatic 

examples are given in figure 2.4. 

 

Table 2.2: Definitions of Particle Shape (Allen, 1997; United State of Pharmacopeia, 

2000). 

Term  Description  

Acicular Slender, needle-like particle of similar width and thickness 

Angular Sharp-edged or having approximately polyhedral shape 

Crystalline Having the geometric symmetry characteristic of a crystal 

Dendritic Having a branched crystalline shape 

Fibrous Threadlike, either regularly formed or not 

Flaky  Thin, flat particle of similar length and width 

Granular Having an approximately equi-dimensional but irregular shape 

Irregular Having different measurements in the three dimensions 

Nodular Having a rounded irregular shape 

Spherical Global shape 

Lath Long, thin, and blade-like particle 

Equant Particles of similar length, width, and thickness; both cubical and 

spherical particles are included 

Plate Flat particles of similar length and width but with greater thickness 

than flakes 

Columnar Long, thin particle with a width and thickness that are greater than 
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those of an acicular particle 

 

Dendritic

Fibrous

NodularAngularAcicular

Irregular Granular

Equant

Flake

Columnar

Plate

Lath
 

Figure 2.4: Diagrammatic examples of common particle shapes (Beehag, 2000; Merkus, 

2009; United State of Pharmacopeia, 2000). 
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Figure 2.3: Particle Shape Parameters (Sysmex Corporation, 2009). 



  

 

23 
CHAPTER 2: Particle Characterisation 

 
 

2.3 Particle Size Distribution (PSD) 

 

Particulate systems are usually characterised by the existence of a wide range of shapes and 

sizes in them. They are evaluated to determine the particle size and distribution (PSD) from a 

sample representing the whole system. The PSD of a powder, a granular material, or particles 

dispersed in fluid, is a list of values or a mathematical function that defines the relative 

amounts of particles present, sorted according to size (Jillavenkatesa et al., 2001). 

 

A PSD can be presented either as a frequency distribution, cumulative distribution or as a 

differential distribution, in a graphical or in a tabular form. The method used to determine a 

PSD is called particle size analysis, and the apparatus, a particle size analyser (Syvitski, 

2007).  

 

2.3.1 Frequency Distribution 

 

A frequency distribution presents the ratio of particles in each size range to the total particles 

under test. This ratio can be in fractions, percentage by mass, volume or any other basis upon 

which the data may be acquired. 

 

It is often of interest to evaluate and represent the so-called particle size distribution as a 

histogram, or frequency curve over a given range or a ‘bin’ distribution curve (Sommer, 

2001). The data can be presented as a table as shown in Table 2.3 or interpreted pictorially as 

a histogram, where the frequency of the particle in each size range is plotted against the 

particle related size (International Organisation for Standardisation, 1998). Figure 2.5(a) 

shows a typical frequency distribution presented as a histogram. 
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Table 2.3: Typical particle size distribution data table by number of particles. 

Diameter Range, (µm) Frequency (number) Percentage of 

Particles in Size 

Range (x %) 

40-50 3 0.57 

50-60 10 1.88 

60-70 25 4.71 

70-80 49 9.23 

80-90 77 14.50 

90-100 97 18.27 

100-110 98 18.46 

110-120 79 14.88 

120-130 51 9.61 

130-140 27 5.09 

140-150 10 1.88 

150-160 5 0.94 

 

Figure 2.5: Typical frequency distribution presented as a histogram (a) (OriginLab, 

2009) and a frequency distribution presented as a cumulative curve with the right 

ordinate on a linear scale (b) (Earle and Earle, 2004). 
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2.3.2 Cumulative Distribution 

 

The particle size distribution may also be presented as a cumulative distribution. A 

cumulative distribution on a weight basis represents the weight fraction of the particles with 

diameters smaller or larger than a specific size. This is known as an undersize or oversize 

cumulative distribution respectively (International Organisation for Standardisation, 1998). 

The weight fraction is determined relative to the total weight of the sample. It is 

characteristically shaped as a logistic curve as illustrated by figure 2.5 (b).  

 

When the particle size distribution is very broad it is difficult to represent it accurately on the 

linear scale. It is thus, often advantageous to plot the frequency against the logarithm of the 

size rather than the size itself (Colloidal Dynamics, 1999). A typical example is shown in 

figure 2.6. 

 

Figure 2.6: Histogram and frequency curve of a log-normal particle size distribution 

(OriginLab, 2009). 

 

2.4 Conclusions 

 

This chapter gave a number of definitions used to characterise particles. The knowledge of 

particulate characteristics is essential for the manufacturing, handling and application of all 
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particulate based materials. Most particulate materials consist of irregular shaped particles; it 

can therefore be complicated to classify individual particles into certain sizes. Thus, several 

methods are used to specify this equivalent diameter, based on volume, mass, surface or 

linear dimensions. The range of particle sizes within a test powder is represented in the form 

of a particle size distribution, which can either be a histogram, frequency distribution or a 

cumulative distribution. 
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CHAPTER 3  A REVIEW OF PARTICLE SIZING AND 

SAMPLING TECHNIQUES  

 

In chapter 2, the physical characteristics of irregular and regular shaped particles 

measured by various PSD techniques were presented. In this chapter, a review of the 

current state of the art techniques used to determine PSD in academia and industry is 

presented. The advantages and disadvantages of each technique is also presented and 

discussed. A discussion of the various sampling techniques that can be used to prepare a 

representative sample prior PSD analysis is given first.  

 

The PSD techniques reviewed include: 

 Sieving 

 Optical and Electron Microscopy  

 Sedimentation Techniques 

 Laser Diffraction/ Static Light Scattering  

 Dynamic Light Scattering 

 Electrical Sensing Zone (Coulter Principle) 

 Impaction  

 Acoustic Attenuation Spectroscopy  

 Focused Beam Reflectance Measurement  

 

3.1 Sample Preparation 

 

An essential precursor to performing particle size analysis is the preparation of a 

representative sample which reflects the physical or chemical characteristics of the bulk 

powder. A non-representative/bias sample can lead to an over or under representation of 

the corresponding parameter in the bulk powder being analysed as well as segregation of 

particles according to size or density. 

 

In order to reduce the impact of sample bias on the results of particle size analysis, two 

important rules of sampling need to be adhered to (Allen, 2003): 
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1. The powder should be in motion when sampled. 

2. The whole of the powder stream should be taken for many short time increments 

of time in preference to part of the stream being taken for the whole duration. 

 

There are two main branches of powder sampling: 

Static: Techniques used on non-flowing or stored material. Examples include, 

scooping from the top, cone and quartering and sample thief methods. 

 

Dynamic: Most powder systems are transported at some point during their 

manufacture as flowing streams. Examples of commonly used methods include 

conveyer belt sampling, table sampling, chute splitter, and a spinning riffler.  

 

Table 3.1 gives a summary of the advantages and limitations of the various sampling 

techniques for static and dynamic systems. 

 

Table 3.1: Sampling techniques comparison (Allen and Khan, 1970, Jillavenkatesa et 

al., 2001). 

METHOD ADVANTAGES DISADVANTAGES 

Cone & quarter 

 

Good for powders with 

poor flow characteristics 

Operator 

dependent 

Scooping  from the top 

 

Reliable for homogenous 

and non-flowing powder 

Particle 

segregation 

 

Table sampling Separates a large quantity 

of material 

Initial feed dependant 

Chute splitter 

 

Reduce powder sample by 

half after one pass 

Operator bias 

 

Spinning 

riffler 

 

Reliable for free flowing 

powder 

Inability to handle  large 

quantities efficiently 
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3.2 Particle Sizing Techniques  

 

A wide range of manual and automated measuring techniques are available to determine 

the particle size distribution of a sample of powder. In practice, each method is applicable 

to a finite range of sizes and gives a particular equivalent size which is dependent on the 

technique’s measurement principle. A number of factors need to be considered when 

selecting a particle sizing instrument. These include (Weiner, 2010): 

 

1. Quantitative Specifications - size range capability, throughput, accuracy, 

precision, reproducibility and resolution. 

2. Qualitative Specifications - ease-of-use, cost, versatility, support and life cycle. 

 

Table 3.2 gives a general summary of the most commonly used particle size distribution 

techniques including the size range capability and the principle of operation. The 

following is their description. 
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Table 3.2: Comparison of Methods for particle size analysis based on various principles (Merkus, 2009). 

Technique 

Size range 

(μm) Type of size 

Type of 

quantification 

Sample 

types Sample size 

Analysis 

time 

(mins) 

Cost 

(≈ k£) 

On-line 

capability 

Sieving 5-10
5
 Sieve opening Mass P, Su Large 20 1-20 No 

Microscopy   Length/Shape/Structure Number   Very small 10    

- optical 0.3-500     E, Sp, Su   < 10 Yes 

- SEM 0.01-500     E, Su   > 10 No 

- TEM 0.001-5     E, Su   > 10 No 

Sedimentation   Stokes’ diameter   Su      

- gravitational 0.3-200 +diffusion Mass   Small/ medium ≥ 30 3-50 No 

- centrifugal 0.02-10   Mass/optical   Small/ medium 15 10-50 No 

Laser diffraction 0.1-10
4
 Scatter diameter Volume 

A, E, Pa, 

Sp, Su Small/ medium < 1 > 10 Yes 

Dynamic Light 

Scattering  0.005-1 
Hydro-dynamic 

Scatter 

intensity 

A, E, Pa, 

Sp, Su  Small 1 10-50 Yes 

Electrical Sensing Zone 0.5-1000 Volume Number Su Small 2 10-50 No 

Impaction 0.01-50 Aero-dynamic Mass A, Pa Small 10 1-25 No 

Ultrasound attenuation 0.01-3,000 US-attenuation Volume E, Su Medium/large 5 > 50 Yes 

Focused Beam 

Reflectance Method 0.5-3,000 Chord length Number 

A, E, Pa, 

Su Small <1 10-50 Yes 

 

Notes: Sample types: A = aerosol; E = emulsion; P = powder; Pa = powder dispersion in air; Sp = spray; Su = suspension. 
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3.2.1 Sieving 

 

Sieving is perhaps the first method used to measure particle size in ancient Egypt over 

4000 years ago. Archaeological evidence such as wall paintings, have shown ground 

foodstuff being sieved, possibly through a rough cloth of woven reeds to remove the large 

bits for further grinding. Sieving is commonly considered as one of the most simple, 

reproducible, and inexpensive particle sizing methods available. Recently sieve analysis 

has been described as the 'Cinderella' of particle metrology in that it does most of the 

work while getting little of the credit (Rideal, 2008).  

 

There are two types of standard sieves used for obtaining particle size measurements, 

perforated sieves and woven-wire sieves. These are illustrated in figure 3.1. 

 

Figure 3.1: Types of Standard Sieve (Arai, 1996). 

 

Sieving involves separating particulate material of various-sized particles, either dry or 

suspended in a liquid, into two or more fractions, by passing through screens of specified 

mesh sizes usually made from metal wire (Bernhardt, 1994). Typical sieve trays consist of 

a shallow pan with a wire mesh bottom or an electroformed grid. Aperture sizes of sieve 

trays are typically in the range 5 µm to 125 mm. 
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Prior to sieving the sample, the sieves are stacked up with the smallest aperture size at the 

bottom and the largest one at the top. The entire sample is placed on the top sieve (largest 

aperture size), covered, and the stack of sieves is then shaken for a specified time period, 

usually with a mechanical shaker. The particle size distribution of the sample is then 

determined using the mass or volume of the sample retained in each sieve.  

 

Wet sieving is generally used to measure the PSD of materials originally suspended in a 

liquid or for powders that agglomerate during dry sieving. In this technique, a non-solvent 

liquid is added continuously to the sample in the top sieve. The solvent eliminates the 

electrostatic and surface forces which normally impede the flow of fine particles through 

the sieve apertures under dry conditions. 

 

A major advantage of sieving is it allows a relatively broad particle size spectrum to be 

analysed quickly and reliably. Conversely, one of the main disadvantages of using sieving 

is the impact of particle shape on the efficacy of the PSD results. Since sieving measures 

the smallest diameter that can pass through the mesh opening, irregular-shaped particles 

tend to be more difficult to analyse resulting in inaccurate PSD measurements.  

 

Other disadvantages associated with sieving include blinding, sieve cloth sagging, 

cohesion between particles, especially when powder consists of fine particles and the 

limited range of aperture sizes available.  

 

3.2.2 Optical Microscopy  

 

Optical microscopy is used to determine particle size by examining the morphological 

appearance and shape of individual particles either directly with the naked eye or by using 

a microscopic image. 

 

Particles to be imaged in an optical microscope are usually dispersed in a drop of viscous 

fluid on a glass slide. Their images are then visually compared with a set of standard 

circles, geometric shapes, or linear grids to derive their actual sizes and shapes (Yang, 

2003). 
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The microscope’s eyepiece micrometer or graticule is calibrated against a stage 

micrometer (a microscope slide with a scale etched on the surface) for each magnification 

and length used. An example of an eyepiece graticule used in optical microscopy is shown 

in figure 3.2.  

 

Optical microscopy is used to examine particles in the size range 0.3 µm – 500 µm. It is 

not recommended for particles below 3 µm due to the blurring of the edges of the images 

seen due to diffraction effects (Allen, 1997; Merkus, 2009).  

 

The main limitations of optical microscopy are the resolution of the image, the size and 

height of the field of view and the large number of particles required to be measured to 

obtain a size distribution (Etzler and Sanderson, 1995). 

 

 

Figure 3.2: Examples of eyepiece graticules used in microscopy (United States 

Pharmacopeia, 2007). 

GFOV = Graticule Field of View 
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3.2.3 Electron Microscopy 

 

An electron microscope characterises particles by bombarding the particle(s) with high-

energy electrons. It is capable of much higher magnifications and has a greater resolving 

power than an optical microscope, allowing it to see much smaller objects in finer detail.   

There are two types of electron microscopes commonly employed: 

1. Transmission electron microscope (TEM). 

2. Scanning electron microscope (SEM). 

 

In TEM, a thin solid specimen (≤ 0.2 μm thick) is bombarded in vacuum with a focused 

electron beam (100 – 200 keV) of sufficient energy to penetrate through the specimen. 

The transmitted electrons form an image of the internal and external structure of the 

particles due to differences in interaction between the electrons and the atomic 

constituents of the sample. Thus, it yields information on particle size and shape as well 

as atomic structure and defects present in the material. TEM is often used for the direct 

examination of particles in the size range 0.001 – 5 µm (Allen, 1997; Merkus, 2009). 

 

In SEM on the other hand, a focused beam of electrons (5 – 50 keV) is used to scan across 

a sample in a series of parallel tracks. The interaction between the electrons and the 

sample produce various secondary electron emissions (SEE) including back scattered 

electrons (BSE) and X-rays. A cathode ray tube is used to display the detected signals. 

The SEM is applicable for a size range of 0.01 – 500 μm with a resolution of 5 nm (Allen, 

1997; Merkus, 2009).  

 

The type of electron microscope used and the cost of analysis are dependent on the size 

range of the test particles, magnification and the particles resolution required.  

 

The disadvantages associated with electron microscopy are that it can be time consuming, 

high cost and requires a high level of operator expertise and training. Another drawback is 

that the particles need to remain static at all times. 
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3.2.4 Sedimentation Techniques 

 

Sedimentation is one of the oldest established techniques used to measure particle size 

distribution. Sedimentation techniques use the fact that a single solid (or nonporous) 

sphere settling in a fluid has a terminal settling velocity (under gravity) which is uniquely 

related to its diameter. The measured velocities are then converted to Stokes diameters by 

applying the Stokes equation, assuming that the particles are all spherical in shape. The 

resulting relationship between the frictional force given by Stokes’ law and the 

gravitational force on the particle is given by (International Organisation for 

Standardisation, 2001): 

 

 gt
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(3.1) 

 

 

Where, 

xStk = equivalent spherical diameter of particle (m) 

µ = coefficient of viscosity of suspension medium (Pa s) 

h = sedimentation distance (m) 

ρp = density of particle (kg m
-3

) 

ρs =  density of suspension medium (kg m
-3

) 

g = gravitational acceleration (m s
-2

) 

t = time of settling (s) 

 

Sedimentation techniques can be classified according to the various combinations of the 

suspension type (Homogeneous or Line Start), measurement principle (Incremental or 

Cumulative) and the type of force field applied (Gravitational or Centrifugal 

(Kerdvibulvech, 2008). Figure 3.3 shows some of the methods that can be used to 

determine the quantity of particles that have settled. 
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Figure 3.3: Types of Sedimentation Methods (Arai, 1996). 

 

The cumulative type method determines the rate at which the particles settle is 

determined, typically, by weighing the mass of settled particles at a certain depth, B, over 

time. On the other hand the incremental method determines the change in the 

concentration of the particles with time is measured at known depths (Arai, 1996).  

 

Gravitational sedimentation methods are capable of measuring particles in the size range 

0.3 – 200 µm while centrifugal sedimentation methods can measure particles in the size 

range 0.02 – 10 µm (Merkus, 2009). 

 

The limitations of sedimentation methods include: 

 Aggregation of particles. However, this can be minimised by the addition of 

dispersant (Cornell and Hoveling, 1998) 

 Not suitable for very fine particles due to the impact of Brownian motion. 

 Not suitable for particles of different densities. 

 Maximum settlement is required for best results; as a consequence the method is 

therefore slow (15 – 20 minutes in most cases). 
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3.2.5 Laser Diffraction/ Static Light Scattering  

 

When a beam of light passes through a particulate system, the particles scatter some of the 

light in all directions. Some of the light is absorbed, some is reflected, some is refracted 

and some diffracted. This is illustrated in figure 3.4. 

 

Transmitted ray

Diffracted ray

Reflected ray

Internally reflected 

ray

 

Figure 3.4: Interaction of a light ray with a particle (Allen, 2003). 

 

Laser diffraction, also known as low angle light scattering, is a technique developed in the 

early 1970s, which depends on the above method to determine particle size. It relies on 

the fact that particles passing through a laser beam scatter distinct angular light patterns 

that is inversely proportional to their size.  

 

Small particles scatter light at wide angles and low intensity whereas large particles 

scatter light at narrow angles and high intensity. Therefore, the particle size distribution is 

obtained by measuring the intensity of light scattered from a sample as a function of 

angle. This is compared with a scattering model based on Mie theory or the Fraunhofer 

theory, in order to calculate the size distribution. Figure 3.5 shows an example of the light 

scattering patterns observed for small and large particles. 
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(a) (b)

r0
r0

 

Figure 3.5: Light scattering patterns observed for a small particle (a) and a large 

particle (b) [the distance r0 of the first minimum to the centre is dependent on the 

particle size] (Sympatec GmbH, 2010) . 

 

Mie theory assumes the particles are optically homogeneous and spherical. The model 

requires knowledge of both the real and imaginary (adsorption) parts of the refractive 

index. Fraunhofer theory on the other hand assumes that the particles being measured are 

opaque and scatter light at narrow angles. As a result, it is only applicable to large 

particles and will give an incorrect assessment of the fine particle fraction (Allen, 1997). 

According to ISO 13320:2009 (International Organisation for Standardisation, 2009), 

both theories give similar results for particles greater than 50 µm, while the Mie theory is 

recommended for particles smaller than 50 µm. 

 

The benefits of laser diffraction are that it is a non-intrusive and flexible method that can 

be used for either dry or wet samples. It is also able to measure particle size in the range 

0.02 – 2000 µm (Seville et al., 1998; Rumpf, 1990). Figure 3.6 shows an illustration of a 

typical laser diffraction instrument. 
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Figure 3.6: Schematic illustrating laser diffraction configuration with light 

diffracting off the particulate sample shown in the centre of the diagram (Malvern 

Instruments Ltd, 2009). 

 

A disadvantage of laser diffraction is the occurrence of “multiple scattering” when the 

concentration of particles is high. At low particle concentrations, the laser diffraction 

instrument follows Beer-Lambert's law; i.e. the turbidity (a measure of the incident light 

lost due to scattering) varies linearly with the particle concentration. However, as the 

particle concentration increases Beer's law no longer holds due to the re-scattering of 

radiation by surrounding particles. This results in higher angles than predicted in theory 

and leads to an underestimation of the particle’s size. 

 

3.2.6 Dynamic Light Scattering 

Dynamic Light Scattering (DLS) technique, also known as Quasi-elastic light scattering 

(QELS) and Photon correlation spectroscopy (PCS), measures the time-dependent 

fluctuations in the intensity of scattered light due to Brownian motion. Analysis of these 

intensity fluctuations enables the determination of the distribution of diffusion 

coefficients of the particles, which are converted into a size distribution using established 

theories. 

 

Early particle size analysers using the DLS method placed the detector at 90 degrees to 

the incident light as shown in figure 3.7. This required a high powered laser and was 

sensitive to dust contamination of the fluid. The correlation technique limited the 
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resolution capabilities of the algorithm, so it was often not capable of independently 

determining the presence of multiple modes in a sample. 

 

Laser

Scattered light

Particle dispersion
Focusing lens

Photon detector

Coherence optics

Correlator

 

Figure 3.7: Schematic diagram of a conventional 90° dynamic light scattering 

instrument (Malvern Instruments Ltd, 2009). 

 

In more recent DLS instruments, the detector is place at or near 180 degrees to the 

incident light beam. This allows the measurement of higher concentration suspensions 

and eliminates the need for dilution and the effect of dust contamination (Horiba Jobin 

Yvon, 1996). 

 

The main advantages of DLS include the capability of measuring average size relatively 

rapidly (a few minutes) without calibration. However, there are some limitations to this 

technique. Samples must be highly dilute to avoid multiple scattering and over-

attenuation of the light beam results in an underestimation of the particle size. Its ability to 

separate accurately multimodal distribution, and determine wide size distributions has 

also been questioned (Horiba Jobin Yvon, 1996). 

 

3.2.7 Electrical Sensing Zone (Coulter Principle) 

 

The Coulter method of sizing and counting particles is based on measurable changes in 

electrical resistance produced by non-conductive particles suspended in an electrolyte. 



  

 

41 
CHAPTER 3 A Review of Particle Sizing and Sampling Techniques 

 

The instrument consists of two electrodes fixed at either side of a small orifice or aperture, 

with a dilute suspension of particles in an electrolyte as shown in figure 3.8. As the 

particle passes through the orifice, the particles displace their own volume of electrolyte 

causing a change in electrical resistance. This in turn gives rise to a change in the 

amplitude of the voltage pulse. Such pulses can then be counted and the number 

concentration of particles in the known volume of suspension can be estimated. The pulse 

heights are proportional to the particle volume, therefore the particle diameter derived 

from this method is the equivalent volume diameter (Wynn and Hounslow, 1997). 
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Output 
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Figure 3.8: Schematic for a Standard Electrical Sensing Zone Method Instrument 

(Figueiredo, 2000). 

 

According to the International Organisation for Standardisation (2007) an aperture should 

be chosen such that the diameter of the largest particles to be analysed is less than 

approximately 60 % of the diameter of the aperture. This is to reduce the possibility of 

blocking the aperture. Also for particles that are spherical or nearly spherical, the aperture 

chosen is such that the diameter of the largest particles is less than 80 % of the diameter of 

the aperture (International Organisation for Standardisation, 2007). 



  

 

42 
CHAPTER 3 A Review of Particle Sizing and Sampling Techniques 

 

Measurements from this method are subject to errors especially at high concentrations of 

particles. The instrument relies on the assumption that particles pass through an orifice 

tube one at a time, so that each counted pulse corresponds to a single particle, and the 

magnitude of the pulse corresponds to a single particles size. However, if two or more 

particles pass through the orifice in close proximity, the resulting signal will be a single 

pulse and the magnitude of the single pulse will equal the sum of the magnitudes of each 

particle. Although this does not affect the total particulate volume observed, it does 

reduce the observed number of particles and increases the observed mean size (Wynn and 

Hounslow, 1997). 

 

Another limitation of the Coulter method is the particle size determined is dependent on 

the shape of the particles. Flaky materials rotate as they pass through the orifice resulting 

in over-sizing; whilst extreme shapes like rods may cause a change in size distribution if 

the whole shape cannot be accommodated in the orifice. If the particles contain pores, 

these will be filled by the electrolyte solution leading to an untrue change in the voltage 

pulse (Allen, 1997). The material of the particle may also influence the size measurement, 

since the proportionality to the volume is different for conductive and non-conductive 

particles (Eckhoff, 1969). Care is required with powder of wide size range as any 

uncounted fraction may form a substantial part of the distribution (Van der Plaats et al., 

1981). 

 

3.2.8 Impaction 

 

This technique is used for measuring aerosol particles. The principle is that particles have 

greater inertia than the gas and this prevents their following exactly the same streamlines 

of the gas flow around a surface. Some of the larger particles will impinge upon and be 

retained by the surface (Rumpf, 1990).  

 

The most common form this technique applied consists of stages arranged in series, each 

stage consisting of one or more slits or holes facing a surface which may be a microscope 

slide coated to prevent re-entrainment of particles. The slits or holes are progressively 

smaller. The aerosol is drawn through the array with a pump. Each stage has a smaller 

mean ‘cut-off’ size than the previous stage, so the particles are classified according to 
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size. Some means must be provided for determining the amount of material collected at 

each stage if a size distribution is to be obtained (Rumpf, 1990). 

 

3.2.9 Acoustic Attenuation Spectroscopy  

 

Acoustic attenuation, also known as ultrasound attenuation spectroscopy, is technique 

whereby sound pulses are transmitted through a dispersed sample. Particles absorb and 

scatter ultrasound in the similar manner they do with light. The attenuation of the sound 

pulses is measured over a wide range of ultrasonic frequencies and at a range of detector 

spacing. Instead of measuring scattered energy versus angle, the transmitted energy versus 

frequency is measured. This attenuation depends on the particle size, which can then be 

calculated from the measured spectra (Dukhin et al., 1998). 

 

3.2.10 Focused Beam Reflectance Measurement   

 

The focused-beam reflectance measurement (FBRM) is among the most widely used in-

process techniques (Barrett and Glennon, 2002). FBRM uses a focused beam of laser light 

that scans across particles passing in front of a probe window to measure a chord length 

distribution (CLD), which is a function of the true particle diameter distribution 

 

The measurement principle of FBRM is based on backward light scattering. A laser beam 

is coupled to an immersible probe via an optical fibre. This laser beam is deviated from 

the probe's central axis in a rotational movement with a high constant velocity and 

focused into a disperse medium. When a particle passes this laser beam light scattering 

occurs. A certain fraction of the light is scattered back (back scatter) into the system and 

is conducted to a detector and converted into an electronic signal. 

 

The time period of backscatter is multiplied by the scan speed and the result is a chord 

length of the particle. By knowing the chord lengths and the population of the particles, 

the chord-length distribution is produced. 

 

Advantages of the technique include ease of use, little maintenance or calibration 

requirements and its capacity for on-line and in-situ measurements in systems with high 
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solid concentration. Compared with CLD information, the PSD is more useful because it 

is directly related to product quality and process productivity. However, it is not easy to 

convert a measured CLD into its corresponding PSD accurately due to the lack of a 

theoretical analysis (Mingzhong et al., 2006). 

 

3.3 On-Line Techniques 

 

Industrial plants that do not have continuous analysis are typically controlled using off-

line measurements. Online analysis addresses the significant disadvantages of off-line 

systems.  

 

With an online system, the analytical procedure is automated, eliminating operator-to-

operator variability. Furthermore, the best systems give almost instantaneous 

measurement, allowing real-time tracking of the variable as different process parameters 

change. This is in sharp contrast to the delays that can accumulate with an off-line 

procedure involving sample procurement, transport to the lab, analysis and subsequent 

feedback of the results. The change is likened to switching from having snapshots of the 

process to having a video (Pugh, 2007). 

 

Malvern Instrument Limited (2002) has developed several on-line particle size analysers 

based on a number of techniques, primarily using laser diffraction. However, acoustic 

techniques such as ultrasonic spectroscopy also show potential for on-line applications, 

particularly in regards to colloidal-based materials. According to the company, the 

instruments offer real-time repeatable particle size data regardless of the instantaneous 

process loading (i.e. sample concentration) resulting in instant feedback to allow a process 

engineer to adjust the process parameters, if required (Malvern Instruments Limited, 

2002; Strategic Directions International Inc., 2001). However, they are very expensive (ca 

£65,000) and not robust to use in aggressive environments thus not suitable for in-line 

particle size measurement in typical powder production plants. In addition, the systems’ 

response is subject to errors due to the variations in suspension conditions, solvent, 

temperature and focal point position (Patel, 2001).  
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3.4 Conclusions 

The existence of the large number of particle sizing instruments operating based on 

different techniques is a verification of the importance of particle sizing in the particle 

production and processing industries. These techniques are extremely diverse, and 

although each has its benefits, there is no perfect instrument to cover all types of materials 

and for all size ranges. The most commonly used techniques include, sieving, laser 

diffraction, microscopy, light scattering and sedimentation. Certain qualitative and 

quantitative specifications must be taken into account when selecting a particle sizing 

instrument. 

 

Several problems associated with conventional particle sizing techniques, including 

expense, complicated operating procedures, robustness, sample representation problems 

and on-line potential; limit the scope of their capabilities. This has continued the search 

for an instrument, which can address and overcome a range of these issues.  
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CHAPTER 4 SPRING PARTICLE SIZER (SPS) 

 

In this chapter, the historical development of various prototypes of the Spring Particle Sizer 

(SPS) is reviewed. The Vibro-spring Particle Analyser initially developed by Mahgerefteh 

and Shaeri (2000) is presented first. This is followed by the design and improvement of the 

Pneumatic Spring Particle Sizer (PSPS) developed by Patel (2001). Finally, the Hand-held 

SPS, designed by Kerdvibulvech (2008) is discussed. 

 

4.1 Vibro-Spring Particle Sizer (Mark I) 

 

Mahgerefteh and Shaeri (2000) developed a novel technique for particle size analysis, which 

utilizes a vibrating extension spring. Figure 4.1 shows a schematic representation of the 

instrument. A test powder containing different sized particles is fed via an elbow feed into a 

horizontal extension spring. One end of the spring is extended by a screw thread, which is 

affixed to an adjustable plate. The spring extension is measured by the position of the screw 

head. The whole system is vibrated to enable particle discharge from the spring. A computer 

controlled stepper motor is used to control the system directly as shown in figure 4.2. 

Separated samples are collected at different extensions in containers attached to a carousel.  

Each collected sample is then weighed to produce a PSD. The mean particle size of each 

discharged sample is inferred from the spring extension and the number of active coils being 

used for the discharge. This information is used to plot the particle size distribution. A 

detailed description is given by Kerdvibulvech (2008) 
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Figure 4.1: Schematic representation of Vibro-

Spring Particle Size Analyser (Patel, 2001). 

Figure 4.2: Photograph of Vibro-Spring 

Particle Size Analyser (Patel, 2001). 

 

 

According to Shaeri (1997), this device is capable of measuring particles in the size range of 

75-800 µm with a resolution of ca ± 20 µm. The ability of this device to separate a test 

powder into different size fractions allows it to be considered as a classifier.  

 

The Vibro-spring particle size analyser offers several advantages over conventional 

techniques because it is robust, simple and has the potential to provide on-line measurements. 

Compared to sieving, this technique is in principle capable of producing an infinite number of 

size cuts while the alternative is restricted to the standard size cuts available. Another 

significant problem associated with sieving is blinding of the apertures which lead to “down 

time” to clean the wire meshes increasing the risk of sieve cloth deforming or breaking which 

will cause result inaccuracy. Neither of these problems is associated with the Vibro-spring 

particle sizing technique. If any particles are trapped between the spring openings, they are 

released as the spring is stretched to the next size cut (Kerdvibulvech, 2008). 
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The disadvantage of this technique was the lack of an in-situ mass measurement capability as 

the collectors filled with particles during tests (see figure 4.1) are manually removed from the 

carousel and weighed. In addition, the number of collectors attached on the carousel also 

restricts the number of size cuts.  

 

4.2 Vibro-Spring Particle Sizer (Mark II) 

 

Patel (2001) developed a fully automated Spring Particle Sizer, which overcame most of the 

problems associated with the earlier design by Mahgerefteh and Shaeri (2000). Full details of 

the system’s design are given by Patel (2001); hence, a brief account is given here. 

 

Figure 4.3 shows a schematic representation of the Vibro-Spring Particle Sizer (Mark II) 

developed by Patel (2001).  

 

Approximately 10g of test powder is fed into the Vibro-Spring Particle Sizer via the feed 

funnel mounted at one end of the spring. The required spring extension is controlled using 

the two aluminium bars affixed to both ends of the spring.  

 

The size and mass of the discharged particles are determined from the spring extension and a 

specially designed in-situ cantilever mechanism respectively. The cantilever mechanism is 

similar to a conventional pan balance and equilibrium, and relies on the use of a non-

contacting capacitance transducer. The addition of test powder to the spring offsets the 

balance of the system resulting in a downward deflection of the spring. Its displacement is 

detected by the capacitance transducer, which outputs a stable analogue voltage signal that 

varies linearly with the mass of sample in the spring. However, the maximum output range of 

the capacitance transducer used was 5 mm, which limits the maximum mass of sample that 

can be analysed to 10 g (Kerdvibulvech, 2008). 
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Figure 4.3: Perspective representation of the Vibro-Spring Particle Sizer (Mark II) 

(Patel, 2001). 

1. Spring  2. Rectangular bars 

3. Control screw 4. Stepper motor 

5. Wire connection 6. Control disk 

7. Funnel 8. T-piece 

9. Support frame 10. Steel disk 

11. Electro-magnet 12. Spring steel reed 

13. Reed support block 14. Base plate 

15. Infrared detector 16. Detector support legs 

17. Base support legs 18. Ball bearings 

 

The ability to automatically weigh the quantity of powder in the spring in-situ significantly 

reduces the testing time thus making the technique particularly suited for process control 

applications. In such circumstances, reproducibility is as important as absolute measurements 

since operators are frequently interested in knowing whether the size distribution of a product 

is different from the specification (Patel, 2001).  
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The system was validated by comparing the measured PSD against sieve measurements for a 

variety of dry powders in the size range 30 – 1200 μm. The PSD data exhibited very good 

reproducibility and excellent agreement with sieve measurements (Patel, 2001).  

 

The Vibro-Spring Particle Sizer (Mark II) offered several advantages over conventional 

techniques due to its robustness, ease of use and the ability to provide on-line measurements 

due to its in-situ mass measurements and system automation. 

 

Despite the improvements to the Vibro-Spring Particle Sizer (Mark II), Patel (2001) 

identified a number of possible improvements to translate the Vibro-Spring Particle Sizer for 

use in the real industrial environment. These include errors in spring length caused by 

slippage of the gear mechanism and extended analysis times for fine powders due to an 

angled funnel.  

 

Another design limitation identified by Patel (2001) is the bending of the horizontal spring as 

it is vibrated vertically. The bending causes significant variations in the intercoil distance 

especially at its mid-length where the maximum deflection occurs, thereby leading to errors 

in size analysis. Figures 4.4 and 4.5 show schematic representations of the spring’s static and 

dynamic intercoil distances respectively. Mahgerefteh and Shaeri (2001) developed a 

mathematical model predicting the spring’s dynamic profile during vibration allowing the 

determination of the maximum intercoil distance, ddynamic (see figure 4.5).   
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Figure 4.4: Schematic representation of the pitch length of a static spring (Patel, 2001). 
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Figure 4.5: Schematic representation of the pitch length of a dynamic spring (Patel, 

2001). 
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4.3 The Pneumatic Spring Particle Sizer (PSPS) 

 

Mahgerefteh and Kamugasha (2004) developed the Pneumatic Spring Particle Sizer (PSPS), 

which is used in this study, to address the drawbacks associated with Patel’s (2001) Vibro-

Spring Particle Sizer (Mark II). Figure 4.6 shows a schematic representation of the PSPS. 

 

The PSPS consists of a large capacity extension spring (23 mm i.d., 180 mm length, 3 mm 

wire dia.) which is stretched vertically along its length by a screw mechanism in conjunction 

with a stepper motor. The unit has a capacity of 75 cc, this translates to a maximum sample 

mass of approximately 190 g for Glass Ballotini with a bulk density of ca 2540 kg m
-3

. The 

spring extension is monitored and controlled by an optical shaft encoder attached to the 

stepper motor.  

 

The test powder is fed into the unit via a feed hopper, which is mounted on a feed plate. The 

top end of the extension spring used for particle size analysis is inserted into the base of the 

supporting plate via a spring connector. The bottom end of the extension spring is inserted 

into the top of a conical base holder, which also houses the compressed air inlet channel, and 

the 32 µm screen mesh used to support particles within the spring (Kerdvibulvech, 2008). 

Pulsed compressed air is used to agitate and discharge the particles from the spring chamber. 

 

The above assembly (parts 1-13, figure 4.6) is mounted onto a supporting base via three 

aluminium rods. The base also supports the feed plate via three aluminium rods (16) mounted 

in a triangular formation. 

 

The entire system is housed by a 1 mm thick Perspex cylindrical enclosure, which contains 

the powder discharged from the spring. The powder discharged from the spring is directed 

towards a machined outlet orifice (20 mm) located at the bottom of the base using gravity. 

The discharged powder can then be collected and weighed (Kerdvibulvech, 2008). 
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Figure 4.6: Schematic diagram of Pneumatic Spring Particle Sizer (Kerdvibulvech, 

2008). 

1. Feed hopper 2. Supporting plate 

3. extension spring  4. Spring connector  

5. Conical base holder  6. Compressed air inlet channel  

7. Screen mesh  8. Spring extension screw  

9. Telescopic enclosure  10. Hollow aluminium tube 

11. Stepper motor  12. Optical shaft encoder  

13. Cylindrical aluminium container  14. Supporting base  

15. Aluminium rods 16. Aluminium support rods 

17. Perspex cylindrical enclosure  18. Outlet orifice  
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The weighing mechanism situated at the bottom of the structure consists of an aluminium 

collection pan used to capture discharged powder from the spring. A 30 μm filter cloth 

attached to the pan, allows the release of compressed air from the system whilst 

simultaneously preventing the loss of discharged powder to atmosphere. The collection pan is 

mounted onto a weighing pan-balance for direct mass measurement. The weighing 

mechanism also includes a system of electro-magnets and solenoids specially designed to 

clamp the weighing pan up during particle size analysis. This action enables the weighing pan 

to be attached to the system, capturing the discharged powder whilst allowing the compressed 

air to escape to the atmosphere. Once the discharged powder has been collected, the weighing 

pan is unclamped and isolating it from the whole system. This in turn, stabilises the weighing 

pan before the monitoring of the mass of each discharged size cut.  

 

The device was compared against sieves using measured PSD data for a selection of dry 

powders in the size range 100 – 2000 μm. The PSD data exhibited very good reproducibility 

and excellent agreement with sieve measurements (Kerdvibulvech, 2008). 

 

4.3.1 Electronic Drive and Control Box 

 

Kerdvibulvech (2008) gave a detailed description of the control software and the electronic 

configuration of the control box used to operate the PSPS. Therefore, only a brief summary 

of the PSPS controls is given in this section. 

 

The Pneumatic Spring Particle Sizer is controlled using a 32-Bit computer interface bus. The 

computer interface is linked to the control box, which electronically operates the moving 

parts of the pneumatic SPS. Bits of data are sent to and from the control box to the computer 

via this network, which allows for control inputs and measurement outputs to be entered and 

interpreted by the operator 

 

4.3.2 Control Software HP VEE 

 

HP VEE (Hewlett Packard Visual Engineering Environment) is a visual programming 

language developed by Hewlett-Packard for programming tasks in instrument control, 
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measurement processing and test reporting. It produces dramatic improvements in test 

development time (Helsel, 1998). The software was used for programming the electronic 

transducers for the SPS system. 

 

The software package provides a GUI (Graphic User Interface) for manipulating graphical 

objects and linking them into block diagrams to represent a program. The DT VPI Manual 

(Data Translation Visual Programming Interface) and Patel’s PhD thesis (2001) also provide 

further details on the data acquisition interface and the control of the I/O (Input/Output) 

subsystems. 

 

4.4 Handheld Spring Particle Sizer 

 

The handheld version of the Spring Particle Sizer was developed by Kerdvibulvech (2008) 

using the same principle of spring extension for powder fractionation. Figure 4.7 shows a 

photograph of the handheld Spring Particle Sizer. The unit consists of an extension spring 

(24.5 mm i.d., 72 mm long and 3 mm wire dia.) housed within a Perspex tube and supported 

by three aluminium rods. A support base holds the other end of the spring through which test 

powder is fed, and contains openings where particles fall through and are collected from a 

sample bottle. 

 

Extension of the spring to cause particle discharge is obtained by turning the screw cap of the 

unit, which houses the extension mechanism, in an anti-clockwise direction.  The extension 

screw cap is machined with 26 TPI (teeth per inch) threads, stretches by ca. 0.98 mm for each 

full turn (Kerdvibulvech, 2008). The handheld SPS agitated is by shaking to enhance 

particulate discharge. As spring aperture size increases, particles are discharged into the 

Perspex tube. By holding the unit vertically and tapping on the tube gently, the particles fall 

into the sample container and mass measurement can be carried out manually to obtain the 

particle size distribution. 

 

The device provides the same attractiveness and advantages as the pneumatic SPS over the 

conventional instruments currently available. The handheld SPS is relatively inexpensive, 

robust, simple to use, able to handle a good amount of sample (ca. 30 g). Other benefits 
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include a very low maintenance cost and most importantly, the unit can be used to monitor 

particle size distribution for quality assurance purposes. Its main advantage is that it is very 

easy to carry and can be used as a tool for checking and rechecking conformity with the 

prescribed standards of powders at various stages in any production process. For this device, 

the operating sequence, mass measurement and data acquisition have been designed to be 

completely manual (due to the purpose it was developed for). 
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Figure 4.7: Photograph of the Handheld Spring Particle Sizer with calibrated Perspex 

sample collector. 

1. Extension screw cap  2. Closed-coil extension spring  

3. Perspex tube  4. Aluminium rods  

5. Support base  6. Powder outlet  

7. Sample collector  

 

 

 

8. Rubber bung handle 
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4.5 Problems Associated with the Spring Particle Sizer 

 

Despite various improvements in the SPS, it has encountered a number of fundamentally 

important design and operational limitations, which have hindered its commercial success. 

Major problems include sample retention in the PSPS system primarily through static charge 

build up by the fluidising air stream in addition to obstructions within the unit. This 

consequently leads to errors in the PSD due to sample loss. The lack of an in-situ mass 

measurement system, which may address the problem, has inhibited this and limited its use 

for on-line applications.  

 

Other drawbacks included non-uniform spring coil openings, non-reproducibility of springs, 

and extended analysis time.  
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CHAPTER 5 SPRING COIL APERTURE ANALYSIS 

 

5.1 Introduction 

 

The efficacy and reproducibility of PSD measured using the PSPS critically depends 

on the uniformity of the spring coil apertures as the spring is extended. Also, from a 

commercial point of view when producing the PSPS, it is highly advantageous to 

utilise springs with very similar coil opening uniformity to avoid having to perform 

individual calibrations.  

 

This chapter presents the results and discussion of a series of tests involving the 

measurements of the mean spring coil aperture and standard deviation at a given 

spring extension for two ‘identically fabricated’ springs, A1 and A2 supplied by 

Airedale Springs Limited (2008). Provided that the elastic limit of each spring is not 

exceeded and assuming all the spring’s apertures open uniformly, the nominal spring 

coil aperture size can then be calculated by dividing the change in spring length 

following extension by the number of active coils in the spring.  

 

The performance of the two springs is then evaluated by comparing their standard 

deviation for a given aperture size against the corresponding data given by the British 

Standards Institute (British Standards Institute, 2000) for sieves.  

 

5.2 Experimental Arrangement  

 

Khan (2009) conducted a series of tests using springs produced by various spring 

manufacturers, namely Airedale Springs Limited, Skegness Springs Limited and UCL 

Chemical Engineering Workshop to determine the spring with the most uniform coil 

apertures. The tests showed that springs produced by Airedale Springs Limited 

(Airedale Springs Limited, 2008) had the most uniform coil apertures. Consequently, 

Airedale Springs Limited springs are used throughout this study. 
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Figure 5.1 shows a schematic diagram of the experimental setup used to determine the 

uniformity of the spring coil apertures. Table 5.1 gives the dimensions of the two 

Airedale Springs Limited springs, A1 and A2 used in the experiments. The springs are 

made of stainless steel grade 316. 

 

Graduated 

scale

Digital camera

Adjustable tripod

Support 

stand

Extension 

spring

Screw thread

Rotary knob

 

 

Figure 5.1: Schematic diagram of image analysis experimental set-up using 

digital photography for measuring spring coil aperture size. 

 

Table 5.1: Dimensions of the two Airedale Springs Limited springs (A1 and A2) 

used in the experiments. 

 

Number of active coils 32  

Wire diameter 2.03 mm 

Internal diameter 21.5 mm 

External diameter 25.5 mm 

Active Length  67 mm 
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Returning to figure 5.1, the test springs were held in position on both ends by metallic 

wires attached to 1 mm pitch screw threads. Each spring was extended by turning the 

rotary knobs and the total spring extension was determined using the graduated scales 

adjacent to the rotary knobs. 

 

A preliminary visual check was conducted using the transmitted light from a fibre-

optic light source to verify no presence of closed coils when the spring was extended. 

Following this test, a 5 megapixel camera (Sony Cyber-shot DSC-F707) was used to 

take six photographs along the length of the spring. The height of the camera was 

adjusted using a tripod to minimise optical errors associated with misalignment. The 

above procedure was performed with the spring extended from one side (unilateral 

extension) and then repeated with the spring extended from both sides (bilateral 

extension). Table 5.2 gives the total spring extension, the mode of spring extension 

(unilateral or bilateral) and the nominal spring opening aperture for each test 

performed. As mentioned in section 5.2, the nominal spring coil aperture size is 

calculated by dividing the total spring extension by the number of active coils in the 

spring. 

 

The photo editing software Irfanview (Škiljan, 2008) was used to perform the image 

analysis in this study. Each photograph was magnified by 400 % and the number of 

pixels between each coil was converted to an aperture size using the known size of the 

spring wire (2.03 mm) as the reference calibration. Figure 5.2 shows an example of 

the analysis performed on a photograph taken from Test 5 (see table 5.2). To reduce 

the errors due to image resolution, all the pixel measurements were taking along an 

imaginary line drawn through the centre of the spring. 
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Table 5.2: Summary of extensions tests carried out on springs A1 and A2.  

 

Test 

Number Spring 

Extension 

Type 

Total Spring 

Extension (mm) 

Nominal Spring 

Coil Aperture 

(μm) 

1 A1 Unilateral 2 62.5 

2 A1 Bilateral 2 62.5 

3 A1 Unilateral 4 125 

4 A1 Bilateral 4 125 

5 A1 Unilateral 6 187.5 

6 A1 Bilateral 6 187.5 

7 A1 Unilateral 8 250 

8 A1 Bilateral 8 250 

9 A1 Unilateral 10 312.5 

10 A1 Bilateral 10 312.5 

11 A2 Unilateral 2 62.5 

12 A2 Bilateral 2 62.5 

13 A2 Unilateral 4 125 

14 A2 Bilateral 4 125 

15 A2 Unilateral 6 187.5 

16 A2 Bilateral 6 187.5 

17 A2 Unilateral 8 250 

18 A2 Bilateral 8 250 

19 A2 Unilateral 10 312.5 

20 A2 Bilateral 10 312.5 
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Figure 5.2: An example of the image analysis technique used on a magnified 

digital photograph from Test 5 (unilateral extension of spring A1 to 6 mm) to 

determine the spring coil apertures.  

 

Coil C 

Coil B 

Coil A 

Coil Width = 126 Pixels = 2.03 mm 

13 Pixels = 209.4 μm 

8 Pixels = 129 μm 
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5.3 Results and Discussion 

 

The following presents the results of the image analysis performed to determine the 

uniformity of the spring coil apertures for the two Airedale springs. 

 

Figure 5.3 shows the variation of the spring coil aperture size with aperture number 

for spring A1 following a 2 mm extension (Tests 1 and 2). Curves A and B are the 

measured coil aperture sizes following unilateral and bilateral extensions respectively. 

The nominal spring coil aperture size based on the total spring extension is also 

indicated in the figure. 

 

The large variations observed in the measured coil apertures in figure 5.3 highlights 

the non-uniformity of spring A1. The figure also shows that extending the spring 

unilaterally or bilaterally had no impact on the results. In contrast to the nominal 

spring coil aperture size of 62.5 μm, the measured aperture sizes varied between 18 

µm to 126 µm for unilateral extension (curve A) and 16 µm to 138 µm for bilateral 

extension (curve B).  

 

Figures 5.4 to 5.12 show the variation in coil aperture size with aperture number for 

springs A1 and A2 at various spring extensions (Tests 3 to 20). The nominal spring 

coil aperture for each extension is given in each figure. The figures show the same 

large variations in the measured coil aperture size irrespective of the spring being 

extended unilaterally or bilaterally.  
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Figure 5.3: Variation of individual aperture size along the length for spring A1 

when extended to 2 mm. 

 

Curve A: A1 unilateral extension 

Curve B: A1 bilateral extension 

 

Nominal spring coil 

aperture = 62.5 μm 

Top of spring Base of spring 
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Figure 5.4: Variation of individual aperture size along the length of A1 when 

extended to 4 mm. 

 

Curve A: A1 unilateral extension 

Curve B: A1 bilateral extension 

 

Nominal spring coil 

aperture = 125 μm 

Top of spring Base of spring 
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Figure 5.5: Variation of individual aperture size along the length of A1 when 

extended to 6 mm. 

 

Curve A: A1 unilateral extension 

Curve B: A1 bilateral extension 

 

Nominal spring coil 

aperture = 187.5 μm 

Top of spring Base of spring 



  

 

67 
CHAPTER 5: Spring Aperture Size Evaluation 

 

160

180

200

220

240

260

280

300

320

340

360

380

0 5 10 15 20 25 30 35

A
p

er
tu

re
 S

iz
e 

(μ
m

)

Aperture Number

Curve A

Curve B

 

 

Figure 5.6: Variation of individual aperture size along the length of A1 when 

extended to 8 mm. 

 

Curve A: A1 unilateral extension 

Curve B: A1 bilateral extension 

 

Nominal spring coil 

aperture = 250 μm 

Top of spring Base of spring 



  

 

68 
CHAPTER 5: Spring Aperture Size Evaluation 

 

200

220

240

260

280

300

320

340

360

380

400

420

0 5 10 15 20 25 30 35

A
p

er
tu

re
 S

iz
e 

(μ
m

)

Aperture Number

Curve A

Curve B

 

 

Figure 5.7: Variation of individual aperture size along the length of A1 when 

extended to 10 mm. 

 

Curve A: A1 unilateral extension 

Curve B: A1 bilateral extension 

 

Nominal spring coil 

aperture = 312.5 μm 

Top of spring Base of spring 
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Figure 5.8: Variation of individual aperture size along the length of A2 when 

extended to 2 mm. 

 

Curve A: A2 unilateral extension 

Curve B: A2 bilateral extension 
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aperture = 62.5 μm 

Top of spring Base of spring 
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Figure 5.9: Variation of individual aperture size along the length of A2 when 

extended to 4 mm. 

 

Curve A: A2 unilateral extension 

Curve B: A2 bilateral extension 

 

Nominal spring coil 

aperture = 125 μm 

Top of spring Base of spring 
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Figure 5.10: Variation of individual aperture size along the length of A2 when 

extended to 6 mm. 

 

Curve A: A2 unilateral extension 

Curve B: A2 bilateral extension 

 

Nominal spring coil 

aperture = 187.5 μm 

Top of spring Base of spring 
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Figure 5.11: Variation of individual aperture size along the length of A2 when 

extended to 8 mm. 

 

Curve A: A2 unilateral extension 

Curve B: A2 bilateral extension 
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aperture = 250 μm 
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Figure 5.12: Variation of individual aperture size along the length of A2 when 

extended to 10 mm. 

 

Curve A: A2 unilateral extension 

Curve B: A2 bilateral extension 
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Table 5.3 gives the % difference between the mean and nominal spring coil aperture 

sizes for tests 1 to 20. The table shows that with the exception of tests 1 and 2 which 

had a difference of ca. 20%, the absolute difference between the nominal and mean 

spring coil aperture size for springs A1 and A2 is < 7%.  The large differences seen in 

tests 1 and 2 may be attributed to the initial tension in the spring, which becomes 

more significant at small spring extensions.  

 

 

Table 5.3: Percentage difference between the mean and nominal spring coil 

aperture sizes for tests 1 to 20 using springs A1 and A2. 

 

Test 

Number Spring 

Mean Coil 

Aperture 

Size  (μm) 

Nominal Coil 

Aperture size  

(μm) 

% 

Difference 

1 A1 80.5 62.5 22.3 

2 A1 82.2 62.5 23.9 

3 A1 128.7 125 2.8 

4 A1 130.0 125 3.8 

 5 A1 197.4 187.5 5.0 

6 A1 201.4 187.5 6.9 

7 A1 256.7 250 2.6 

8 A1 251.9 250 0.7 

9 A1 314.9 312.5 0.8 

10 A1 315.2 312.5 0.9 

11 A2 64.8 62.5 3.5 

12 A2 64.7 62.5 3.4 

13 A2 124.7 125 -0.3 

14 A2 124.4 125 -0.5 

15 A2 182.6 187.5 -2.7 

16 A2 184.3 187.5 -1.7 

17 A2 245.9 250 -1.6 

18 A2 244.5 250 -2.2 

19 A2 305.4 312.5 -2.3 

20 A2 306.8 312.5 -1.8 

 

 

Table 5.4 gives a comparison of the standard deviations for sieves and springs A1 and 

A2 for various sieve aperture sizes. The large standard deviations observed for springs 
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A1 and A2’s clearly demonstrates the level of non-uniformity of the springs. The 

table also shows that regardless of how springs A1 and A2 were extended (unilateral 

or bilateral) the standard deviation for a given aperture size is consistently greater 

than that for a sieve. However, it should be noted that the standard deviation for 

sieves normally increases with time due to deformation of the apertures caused by 

regular cleaning of the sieves (Kerdvibulvech, 2008).  
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Table 5.4: Comparison of standard deviations for sieves and springs A1 and A2 for various aperture sizes.  

 

Nominal 

Aperture 

Size 

(μm) 

Sieve 
A1 A2 

Unilateral 

  

Bilateral 

  

Unilateral 

  

Bilateral 

  

Mean 

Size 

(μm) 

Standard 

Deviation  

Mean 

Size 

(μm) 

Standard 

Deviation  

Mean 

Size 

(μm) 

Standard 

Deviation  

Mean 

Size 

(μm) 

Standard 

Deviation  

Mean 

Size 

(μm) 

Standard 

Deviation  

62.5 63.0 9.9 80.5 35.2 82.2 34.3 64.8 36.1 64.7 36.5 

125.0 125.0 14.4 128.7 36.6 130.0 35.5 124.7 37.4 124.4 38.3 

187.5 180.0 18.0 197.4 37.7 201.4 36.3 182.6 38.5 184.3 40.1 

250.0 250.0 22.4 256.7 40.8 251.9 40.0 245.9 41.0 244.5 41.2 

312.5 315.0 26.1 314.9 42.3 315.2 41.9 305.4 42.3 306.8 43.0 
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5.4 Conclusions 

 

The efficacy and reproducibility of PSD measured using the PSPS critically depends 

on the uniformity of the spring coil apertures as the spring is extended. Also, from a 

commercial point of view when producing the PSPS, it is highly advantageous to 

utilise springs with very similar coil opening uniformity to avoid having to perform 

individual calibrations.  

 

In this chapter the uniformity of two ‘identical’ Airedale Springs Limited (A1 and A2) 

springs was evaluated by comparing the mean and the standard deviation of the spring 

coil apertures as the springs are extended for any given load. The study was carried 

out using digital photography, and involved extending the springs unilaterally and 

bilaterally. A comparative study of the results produced by both springs against 

standard sieve data (British Standards Institute, 2000) was also presented and 

discussed.  

 

For tests for extensions ranging from 2 mm to 10 mm, both springs exhibited a non-

uniform trend.  This was demonstrated by the observed wide range of spring coils 

aperture sizes for all extensions evaluated. The results also show that the extension 

method (unilateral or bilateral) has no significant impact on the uniformity of the coil 

aperture sizes. 

 

With the exception of tests carried out for A1 at a 2 mm extension which had a 

difference of > 20%, the observed mean sizes for both springs showed an absolute 

difference of < 7% as opposed to the expected mean.  

 

Comparisons of A1 and A2 at various extensions against sieve data show that both 

springs exhibit standard deviations considerably greater than that for a sieve of the 

same aperture size. However, when both springs are compared, the greatest difference 

is 17.5 μm. A smaller difference is observed at aperture sizes above 250 μm, where 

the standard deviations for both springs converge. Thus, the results indicate that the 

springs are reproducible; however, their precision is lower compared to sieves (British 

Standards Institute, 2000). 
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CHAPTER 6 MASS MEASUREMENT 

 

6.1 Introduction 

 

An important practical limitation of the Pneumatic Spring Particle Sizer (PSPS) is the 

loss of sample during analysis, resulting in errors in the measured Particle Size 

Distribution (PSD). The loss of sample is due to two main factors: 

 

1) Static charge induced adhesion of the test particles to the cylindrical Perspex 

container wall (see figure 4.6, chapter 4). 

2) Accumulation of test particles in crevices and joints along the structure of the 

PSPS. 

 

In this chapter, the design, development and evaluation of two methods for the in-situ 

measurement of the sample mass within the spring with the aim of addressing the 

above problems is presented. These include a full-bridge strain gauge assembly and 

measuring the minimum fluidisation velocity of the test sample within the spring. 

 

6.2 Strain Gauge Principle 

 

A strain gauge is a sensor whose electrical resistance varies with the applied load 

following the application of an electric current.  

 

In applications that require a strain gauge to be bonded to a larger structure under 

stress, a strain gauge bridge circuit is used to measure strain from the degree of 

imbalance. The degree of imbalance can be accurately measured using a precision 

voltmeter located in the centre of the bridge (Strain gauges, 2011). Figure 6.1 shows a 

typical full-bridge strain gauge circuit containing four strain gauges bonded to a test 

member.  
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Figure 6.1: Schematic representation of a typical full-bridge strain gauge circuit 

(Radecky, 2009). 

 

Two strain gauges are mounted on the top surface, and the other two are mounted on 

the opposite surface of the test member. When the beam is forced downward the top 

two gauges under tension increase in resistance while the bottom two decrease, 

unbalancing the bridge and producing an output proportional to the displacement. 

Upward motion reverses the roles of the strain gauges. 

 

As the output signal from the strain gauge bridge circuit is small, (typically a few 

millivolts) the signal is amplified to increase the signal level to 5 to 10 volts, a 

suitable level for application to external data collection systems such as recorders or 

PC Data Acquisition and Analysis Systems (Strain gauges, 2011). 

 

The bridge nulls out potential errors due to temperature changes because all four 

strain gauges have the same temperature coefficient and are located in close proximity 

to the specimen. The resistance of the lead wire does not affect the accuracy of the 

measurement provided that the input amplifier has high input impedance and the 

bridge excitation is remotely sensed (Radecky, 2009). 
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6.3 Strain Gauge Experimental Arrangement 

 

Figures 6.2 shows a schematic of the experimental setup constructed to evaluate the 

suitability of using a full-bridge strain gauge circuit to measure the mass of the test 

powder in the spring.  

 

Strain gauge 

amplifier

Keithley 175 

Auto-ranging

Multi-meter

Retort 

stand

Strain gauge 

bonded to metal 

reed

Contact node 

adhered to 

metal film

Extension 

spring

Powder inserted 

Clamp

 

Figure 6.2: Schematic diagram of strain gauge experimental set-up for in-situ 

mass measurement in PSPS. 

 

The close-coiled extension spring (24.5 mm i.d, 123.5 mm length, 3 mm wire 

diameter) used in this investigation is clamped vertically along its length using a retort 

stand. A thin stainless steel film (30 µm) with a contact node located in the centre is 

welded to the base of the spring to act as a seal for the test powder.  

 

An Omega Engineering strain gauge (model SGT-2/350-FB43) (Omega Engineering, 

2009) is bonded onto a 250 µm thick stainless steel reed using methyl cyanoacrylate. 

The reed is positioned directly below the contact node to mirror the displacement of 

the steel film as test sample is added to the spring. The magnitude of the steel reed’s 

deflection is then recorded as a voltage, using the full-bridge strain gauge circuit. To 

increase the measurement resolution and improve the signal-to-noise ratios from the 

strain gauge circuit, a strain gauge amplifier connected to a Keithley 175 auto-ranging 

multi-meter (converts the signal into a voltage) is used. 



  

81 

CHAPTER 6: Mass Measurement 

 

The system is calibrated using 280 g of bronze shot powder added to the extension 

spring in 10 g, 5 g and 2 g increments. The output voltage from the Keithley 175 auto-

ranging multi-meter is recorded after each increment in mass. The data obtained is 

then used to determine a mathematical correlation between the mass of sample in the 

spring as a function of the measured strain gauge output voltage for calibration. Each 

test is performed twice to establish reproducibility.  

 

6.4 Strain Gauge Results and Discussion 

 

Figure 6.3 shows the variation of the strain gauge output voltage with mass following 

the addition of 10 g incremental samples into the spring. The measurements are taken 

twice, labelled Test 1 (curve A) and Test 2 (curve B) to determine reproducibility.   

Curve C shows the calibration line based on regression analysis of the data from 

curves A and B. 

 

The equation for the calibration line is given by 

 

xy 3832.0  (6.1) 

 

Where, y is the strain gauge output voltage and x is the mass of sample in the spring. 

The correlation coefficient is 0.9917.  

 

A statistical t-test (Bland and Altman, 2009) was carried out to determine the 

reproducibility based on Tests 1 and 2 data. Table 6.1 gives the results obtained. It can 

be observed that with 95 % confidence, the difference between the upper and lower 

confidence intervals from data is 0.0096 mV/g (= upper limit – lower limit), 

indicating good reproducibility. 

 

The minimum and maximum deviation between Tests 1 and 2 are ± 0.7 mV and ± 5 

mV respectively (translating to ± 1.83 g and ± 13.05 g respectively). However, the 

larger deviation is experienced at higher masses, i.e. above 200 g. This may be due to 

hysteresis experienced on the strain gauge. 
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Table 6.1: Reproducibility results of tests 1 and 2 for a 10 g incremental increase 

in mass using t-test.  

  

Coefficients 

(mV/g) 

Standard 

Error 

Lower limit 

(mV/g) 

Upper limit 

(mV/g) 

X Variable 1 0.3832 0.0026 0.3784 0.3880 

  

To test the validity of equation 6.1 as the calibration line for in-situ mass 

measurement using the strain gauge, further tests were conducted for 2 g and 5 g 

increments in mass.  

 

Figure 6.4 shows the same data as in figure 6.3 but performed using smaller mass 

intervals of 2 g (curve A) , 5 g (curve B)  and 10 g (curve C). Curve D shows the 

calibration line generated using equation 6.1.   

 

The mass sensitivity of the instrument inferred from the slope of the correlated data in 

figure 6.4 was 0.3832 mV/g and precision of the multimeter, ± 1 mV. Using this data, 

the resolution of the strain gauge was determined as ± 2.6 g. For the typical 280 g test 

sample the above translates into a mass resolution of ± 0.93 %.  
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Figure 6.3: Variation of the strain gauge output voltage with 10 g incremental 

mass of sample in the spring.  

Curve A: Test 1 

Curve B: Test 2 

Curve C: Correlated data obtained from the average of tests 1 and 2 

 

 



  

84 

CHAPTER 6: Mass Measurement 

 

0

20

40

60

80

100

120

0 50 100 150 200 250 300

V
o

lt
ag

e 
(m

V
)

Mass of Particles (g)

Curve A
Curve B
Curve C
Curve D

 

Figure 6.4: Variation of the strain gauge output voltage with mass of sample in 

the spring for various incremental masses compared to calibration curve 

developed using linear regression. 

 

Curve A: 2 g increments  

Curve B: 5 g increments  

Curve C: 10 g increments 

Curve D: Predicted data 
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6.5 Application of Strain Gauge In-Situ Mass 

Measurement Technique to the PSPS 

 

The results of the evaluation study showed that a strain gauge assembly is in principle 

capable of measuring with relative accuracy (± 2.6 g for a typical 280 g test sample) 

the mass of sample in the spring. However, a number of design changes in the design 

of the PSPS are required in order to incorporate the strain gauge. Figure 6.5 shows the 

proposed design. The modifications include:  

 

 A new port in the PSPS Perspex case to connect the wires between the strain 

gauge mechanism and the signal recorder (amplifier plus voltage recorder). 

This is illustrated in figure 6.5(a). 

 

 Redesign of the conical base holder attached to the base of the spring to hold a 

rigid support structure for the strain gauge and steel reed, as shown in figure 

6.5(b). This modification is needed to ensure that only the steel reed is 

displaced when test sample is added to the spring.  

 

 To prevent damage to the strain gauge, the air distributor used to feed the 

fluidisation air into the base of the spring should be removed. Instead, the 

spring used in the PSPS should be redesigned to include a metallic spring cap 

on the base of the spring through which the fluidising air would be fed in to 

the unit. Figure 6.6 shows a schematic representation of the proposed modified 

spring with the attached metallic spring cap. The base of the cap would be 

sealed with a thin 30 µm steel film with a contact node in the centre of the 

film. As mentioned in section 6.3, the steel reed would be positioned directly 

below the contact node to mirror the displacement of the steel film as test 

sample is added to the spring. 
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Figure 6.5: Schematic description for the proposed structural changes required for in-situ mass measurement in the PSPS using a strain 

gauge. 
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Figure 6.6: Diagrammatic description of structural changes required for PSPS for in-situ mass measurement using a strain gauge. 
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6.6 Application of Fluidisation Principles for Mass 

Measurement in the PSPS 

 

The following presents the results of a series of experiments carried out using the 

Pneumatic Spring Particle Sizer (PSPS) with the aim of determining powder mass in-

situ. The objective is to determine the correlation between the minimum fluidisation 

velocity and the mass of the particles within the spring which may subsequently be 

used for system calibration. 

 

Figure 6.7 shows the variation of pressure drop with air flowrate for varying masses 

(5, 10, 20, 50 and 100 g) of glass Ballotini of size ranges 212 – 300 µm. The first test 

was conducted by feeding 5 g of test powder into the PSPS. The spring was opened to 

50 µm aperture size, to allow its discharge through the spring coils but at the same 

time retain the particles within the spring. A constant air pressure of ca. 103.4 kPa 

was used. A Comark C9555 digital pressure meter (Comark Limited, 2011) connected 

to the unit to enable pressure drop measurement across the spring, with one port 

connected to the air inlet and the other port open. The air supply was slowly increased 

to a flowrate of 20 dm
3 

min
-1

 into the bed via a rotameter. The pressure drop across 

the bed was recorded using the digital pressure meter. The experiment was continued 

with a step wise increase in flowrate of 10 dm
3 
min

-1
 until 150 dm

3 
min

-1
 was attained. 

The procedure was then repeated for 10 g, 20 g, 50 g and 100 g each and for size 

ranges 300 – 425 µm, 425 – 500 µm, 500 – 600 µm, 710 – 850 µm and 850 – 1000 

µm.  

 

Returning to figure 6.7, as it may be observed, all the data demonstrate the same 

trends in terms of the variation of pressure drop with air flowrate. The following are 

the important features of the data:  

 

i) For the same air flowrate, the pressure drop across the bed increases with 

sample mass. This is to be expected given the increase in the resistance to 

flow of air within the bed as the sample mass increases. 
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ii) In all cases for the same sample mass, there is a general increase in the 

pressure drop across the bed with increase in air flowrate. However, with 

the exception of 100 g sample, the data show an intermediate inflection 

point characterised by a small drop followed by a relatively rapid recovery 

in the pressure drop as the air flowrate increases. The observed 

discontinuity in the pressure is characteristic of the minimum fluidisation 

velocity for fluidised beds. This feature will be elaborated later. For the 

100 g sample mass, a continuous increase in pressure drop is observed at 

all flow rates tested. 

 

Figures 6.8 – 6.12 show the variation of pressure drop with air flowrate for varying 

masses (5, 10, 20, 50 and 100 g) of glass Ballotini for larger  size ranges 300 – 425 

µm, 425 – 500 µm, 500 – 600 µm, 710 – 850 µm and 850 – 1000 µm respectively. All 

figures exhibit the same trend where the pressure drop increases with air flowrate. 

However, it can be observed that for these larger size ranges, in contrast to the data in 

figure 6.7 for a smaller size range, in most cases, for samples below 50 g, the pressure 

drop is independent of the mass.  

 

Returning to figures 6.7 – 6.12, all size ranges tested demonstrate the same 

characteristic fluidisation behaviour, known as slugging fluidisation (Holdich, 2002). 

The slugging fluidisation regime is experienced in the bed after the bubbling flow 

regime as the air flowrate increases. It is characterised by the bubble size approaching 

the bed’s cross section and the bed surface rises and falls with regular frequency with 

corresponding pressure fluctuations which increase with an increase in flowrate. This 

trait of regular pressure fluctuations is also demonstrated by the PSPS. The slugging 

flow regime typically occurs in a bed which has a bed height to bed diameter ratio 

larger than 2. With a large aspect ratio, the bed provides enough time for bubbles to 

coalesce into bigger ones. When the bubbles grow to approximately two–thirds of the 

bed diameter, the bed enters the slugging regime with periodic passing of large 

bubbles and regular large fluctuation of bed pressure drop corresponding to the bubble 

frequency (Gibilaro, 2001; Holdich, 2002; Yang, 2003).   
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Figure 6.7: Variation of pressure drop with air flowrate for varying masses of 

glass Ballotini of size range 212 – 300 µm at 103.4 kPa  air pressure. 

Curve A: 5 g 

Curve B: 10 g 

Curve C: 20 g 

Curve D: 50 g 

Curve E: 100 g 

 

100 g 

50 g 

Increasing mass 

20 g 

10 g 

5 g 

100 g 

50 g 



  

91 

CHAPTER 6: Mass Measurement 

 

 

In the case of the PSPS the spring height to diameter ratio is 7.83, indicating its 

characteristics as a slugging bed. Figure 6.13 is an illustration of slugging fluidisation 

and the variation of pressure drop with superficial gas velocity in this regime. 

 

Returning to figures 6.7 and 6.8, the 100 g samples for 212 – 300 µm and 300 – 425 

µm respectively, produce the same trend, where the pressure drop continuously 

increases with air flowrate. As the average particle size is increased (see figures 6.10 

– 6.12), 100 g mass samples follow the characteristic slugging fluidisation trend. The 

425 – 500 µm (refer to figure 6.9) is an exception, where the 100 g sample mass 

exhibits the characteristic trend for slugging fluidisation, however at 100 dm
3
min

-1
, 

there is a sudden decrease in pressure. The pressure then increases again beyond 100 

dm
3
min

-1
.  
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Figure 6.8: Variation of pressure drop with air flowrate for varying masses of 

glass Ballotini of size range 300 – 425 µm at 103.4 kPa air pressure. 
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Figure 6.9: Variation of pressure drop with air flowrate for varying masses of 

glass Ballotini of size range 425 – 500 µm at 103.4 kPa air pressure. 
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Figure 6.10: Variation of pressure drop with air flowrate for varying masses of 

glass Ballotini of size range 500 – 600 µm at 103.4 kPa air pressure. 
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Figure 6.11: Variation of pressure drop with air flowrate for varying masses of 

glass Ballotini of size range 710 – 850 µm at 103.4 kPa air pressure. 
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Figure 6.12: Variation of pressure drop with air flowrate for varying masses of 

glass Ballotini of size range 850 – 1000 µm at 103.4 kPa air pressure. 
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Figure 6.13: Slugging fluidisation regime and the variation of pressure drop with 

superficial gas velocity (Holdich, 2002). 
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The mathematical representation of the phenomenon described as the minimum 

fluidisation velocity (umf) is given by equation 6.2. The pressure drop, Delta P 

corresponding to the minimum fluidisation velocity, umf is given by: 

 

where, 

∆P = the pressure drop  

m = the mass of particles 

ρp and ρf = particle and fluid densities respectively 

g = the acceleration due to gravity 

 

Assuming particles are spherical, umf is given by 6.3 (Holdich, 2002): 

 
 








1180

23

svfp

mf

xg
u  

(6.3) 

 

 

where, 

ε = the voidage  

μ = the viscosity 

xsv = the surface volume diameter (see table 2.1) 

 

The main purpose of this study was to determine if the PSPS will behave comparably 

to any established fluidisation flow regimes and to measure the residual mass of the 

test powder within the PSPS. Equations 6.2 and 6.3 may be used to develop a 

correlation between the minimum fluidisation velocity umf, with the mass of particles 

in the spring. 

 

The height of the bed is required to determine the voidage in the fluidised bed and 

hence umf using equation 6.3. However it is extremely difficult to determine the height 

of the bed within the spring visually. As seen in figures 6.7 – 6.12, the inflection point 

(umf) in most cases does not change with mass and therefore cannot be used to develop 

a viable correlation. 

 g
A

m
P fp

p



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(6.2) 
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6.7 Conclusions 

 

In this chapter the suitability of using a full-bridge strain gauge circuit and fluidisation 

principles to measure the mass of sample in the PSPS in-situ were evaluated. The 

initial evaluation involved the development of a correlation for the mass of sample as 

a function of the strain gauge output voltage based on a linear regression of the 

voltage recorded as mass was added to the test spring. The coefficient of 

determination, R
2
 obtained for the correlation was 0.9917. All experiments were 

found to be reproducible with 95 % confidence. The correlated data obtained was 

found to be a good predictive tool using the strain gauge for in-situ mass measurement 

in the spring with a mass resolution is of ± 2.6 g for a 280 g sample corresponding to 

a mass resolution of ca. ± 1 %. 

 

Based on the results of the evaluation, a new PSPS design was proposed including the 

structural changes required to incorporate the strain gauge into the PSPS for mass 

measurement. These include: 

 

 a change in the position of the air inlet from the base of the spring,  

 fitting of a cap at the base of the spring to allow air to be passed through the 

side, and  

 a support block attached to the hollow tube enclosing the extension 

mechanism which will hold the reed with adhered strain gauge in place.  

 

The next part of the study involved the use of fluidisation principles to develop a 

correlation between minimum fluidisation velocity and sample mass within the PSPS. 

The data revealed that:  

 

i) For the same air flowrate, the pressure drop across the bed increases with 

sample mass (only observed for the 212 – 300 µm size range). This is to be 

expected given the increase in the resistance to flow of air within the bed 

as the sample mass increases. 
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ii) In all cases for the same sample mass, there is a general increase in the 

pressure drop across the bed with increase in air flowrate. However, with 

the exception of 100 g for 212 – 300 µm and 300 – 425 µm the data show 

an intermediate inflection point characterised by a small drop followed by 

a relatively rapid recovery in the pressure drop as the air flowrate increases 

a characteristic of slugging fluidisation.  The observed discontinuity in the 

pressure is characteristic of the minimum fluidisation velocity for fluidised 

beds.  

 

iii) All size ranges tested exhibit the same characteristic slugging fluidisation 

behaviour, where the pressure drop increases with air flowrate. However, it 

can be observed that for these larger size ranges, in contrast to the data for 

212 – 300 µm (a smaller size range), in most cases, masses below 50 g 

have no effect on the pressure drop.  

 

iv) The slugging flow regime typically occurs in a bed which has a bed height 

to bed diameter ratio larger than 2, in the case of the PSPS the ratio is 7.83. 

 

v) Minimum fluidisation velocity remains constant with mass in most cases.  

 

vi) Based on the data presented, the variation of the pressure drop versus air 

flowrate cannot be used as a method for determining the sample mass 

within the spring. 
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CHAPTER 7 PARTICULATE BEHAVIOUR IN THE 

PNEUMATIC SPRING PARTICLE SIZER 

 

7.1 Introduction 

 

Two of the main factors affecting the efficacy of the Pneumatic Spring Particle Sizer 

(PSPS) as a practical unit for particle size analysis include the sample analysis time 

and the in-situ mass measurement capability.  

 

The mass measurement aspect was dealt with in Chapter 6. This chapter presents the 

results of a series of experimental investigations aimed at understanding the processes 

governing the mass discharge rate from the spring and hence the sample analysis time 

by studying the particle migration behaviour. Given the practical difficulties in 

obtaining such data in a spring, a pulsating fluidised bed of similar dimensions to the 

spring is used for this purpose. The study of the impact of changing the pulsating air 

frequency on the discharge rate from the spring is dealt with first. As it will be shown, 

the results provide the incentive for the study of the particle migration behaviour.  

 

7.2 Impact of Air Pulse Frequency on Discharge Rate 

 

Figure 7.1 shows the variation of percentage cumulative discharged mass from the 

PSPS with time for 21 g of 212 – 300 µm glass Ballotini at various air pulse 

frequencies in the range 0 – 5 Hz. The spring gap opening corresponding to the upper 

particle size was 300 µm. A constant pulse air pressure of ca. 103 kPa was used as a 

higher pressure forced open the coil gaps, resulting in the discharge of particles larger 

than the spring coil opening. Lower operating pressures on the other hand resulted in 

insufficient fluidisation of the particles and hence slow discharge.  

 

Returning to figure 7.1, it is clear that little change in the particle discharge rate 

occurs as the pulse frequency is increased. Also, with the exception of the data at 1 Hz 

(curve C), over 97 % of the test powder is discharged within 1 minute.  
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Figure 7.2 – 7.4 show the corresponding data for 300 – 425 µm, 600 – 710 µm and 

850 – 1000 µm particles respectively. In each case the spring opening corresponds to 

the upper size range of each test sample. The pulse air pressure is ca. 103 kPa as 

before. 

 

Referring to figure 7.2, the 300 – 425 µm test sample also shows similar behaviour to 

the 212 – 300 µm sample (figure 7.1) with the expectation of a marginally slower 

discharge rate. Although there are some differences in the data presented in the figure, 

no obvious dependency on the pulse frequency may be observed.  

 

Similar observations may be made when examining the data presented in figures 7.3 

(600 – 710 µm) and 7.4 (850 – 1000 µm) where no trend between the sample 

discharge rate and the pulse frequency may be observed. However, it is clear that the 

sample discharge rate decreases with increasing average particle size.  

 

Having said this, it is interesting to note that with the exception of the 300 – 425 µm 

particles, the sample discharge rate decreases with increase in its poly-dispersity. For 

example in the case of the smallest particle size range of 212 – 300 µm, the maximum 

difference between the upper and lower size limit is 88 µm. This value increases to 

150 µm for the 850 – 1000 µm. In essence the broader the size range or the greater the 

sample poly-dispersity is, the slower the discharge rate from the spring.  

 

It appears that the discharge rate is a complex function of the pulse frequency and the 

degree of sample poly-dispersity.  

 

The following investigates particle migration behaviour during pulsating fluidisation 

in order to elucidate the above important observation. 
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Figure 7.1: Cumulative discharged mass (%) against analysis time for 21 g of 212 

– 300 µm glass Ballotini at various air pulse frequencies. 

Curve A: 0 Hz (continuous air) 

Curve B: 0.5 Hz 

Curve C: 1 Hz 

Curve D: 2 Hz 

Curve E: 5 Hz 
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Figure 7.2: Cumulative discharged mass (%) against analysis time for 21 g of 300 

– 425 µm glass Ballotini at various air pulse frequencies. 

 

Curve A: 0 Hz (continuous air) 

Curve B: 0.5 Hz 

Curve C: 1 Hz 

Curve D: 2 Hz 

Curve E: 5 Hz 
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Figure 7.3: Cumulative discharged mass (%) against analysis time for 21 g of 600 

– 710 µm glass Ballotini at various air pulse frequencies. 

Curve A: 0 Hz (continuous air) 

Curve B: 0.5 Hz 

Curve C: 1 Hz 

Curve D: 2 Hz 

Curve E: 5 Hz 
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Figure 7.4: Cumulative discharged mass (%) against analysis time for 21 g of 850 

– 1000 µm glass Ballotini at various air pulse frequencies. 

Curve A: 0 Hz (continuous air) 

Curve B: 0.5 Hz 

Curve C: 1 Hz 

Curve D: 2 Hz 

Curve E: 5 Hz 
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7.3 Impact of Sample Poly-dispersity on Discharge 

Rate: Particle Segregation Studies  

 

In this section the segregation behaviour of the test powder in the PSPS is 

investigated. As mentioned before, given the impracticality of obtaining such data in 

the spring, a cylindrical Perspex fluidised bed with similar overall dimensions to the 

spring is used. The experimental setup for this study is shown in figure 7.5.  

 

The fluidised bed comprises a 36.5 mm i.d (6.8 mm thickness), 500 mm long Perspex 

cylinder. The corresponding i.d and length for the extended spring to provide a 

maximum coil opening of 500 µm are 23 mm and 210 mm respectively.  

 

The test sample is supported on a 40 µm wire mesh distributor mounted near (85 mm 

from bottom) the base of the cylinder. The top of the cylinder is covered with a 30 µm 

filter cloth to prevent elutriation of the particles out of the bed during testing. A 

plenum chamber at the base air inlet ensures the uniform distribution of the pulsating 

compressed air inlet. 

 

The unit is support by a retort stand. A graduation scale attached to the outer wall of 

the Perspex cylinder is used to read the bed height.  
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Plenum chamber

Retort stand

Perspex cylinder

40 µm wire mesh Air inlet

Graduated scale

 

 

Figure 7.5: Schematic diagram illustrating the segregation experimental rig. 

Each segregation experiment involved consecutive loading of the fluidised bed 

column with two samples of glass Ballotini test powders corresponding to small and 

large size ranges. The small size range is introduced first as it is expected to percolate 

to the top of the bed thus maximising particle migration (Rowe et al., 1972).   
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In order to ensure consistency, the height of each test powder loaded is fixed at 3 cm, 

resulting in a total bed height of 6 cm for two samples of different size ranges.  

 

Figure 7.6 is a photograph of the sample collection equipment used for extracting 

representative samples from the fluidised bed following fluidisation for particle size 

distribution analysis using sieving. The unit comprises a 103 kPa vacuum pump 

(Telstar TD3, 2 stage, 2800 rpm), cylindrical sample collector and a 4.65 mm i.d steel 

probe used for extracting samples.   

 

Vacuum actuator

Steel probe

Vacuum pump

Sample collector

 

Figure 7.6: Photograph illustrating sample collection equipment used in 

segregation experiments. 

 

The degree of segregation following pulsating fluidisation is determined by first 

nominally dividing the bed into three sections of equal heights (2 cm each). Starting 

from the top, these are referred to as ‘Top’, ‘Middle’ and ‘Bottom’ sections. The 

entire amount of powder in each section is then carefully extracted from the column 
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using the vacuum probe followed by analysis to determine the particle size 

distribution using sieving.   

 

The degree of segregation within the poly-dispersed bed is determined by calculating 

the segregation coefficient, Cs as given by equation 7.1 (Williams, 1976):  

 

LbLt

LbLt

s
XX

XX
C




  

(7.1) 

 

where XL is the mass fraction of the large particle size range within the test sample 

with subscripts t and b denoting the top and bottom of the bed respectively. XL is 

calculated from: 

 

i

i
X Li

section in powder  of mass Total

section in powder  range size large of Mass
  

(7.2) 

 

where i denotes Top, Middle or Bottom section. 

 

When Cs is zero, no segregation is observed and perfect mixing occurs. On the other 

hand Cs equal to unity indicates complete segregation. 

 

Two poly-dispersed samples namely A and B are used in these experiments. Sample 

A is made up of 150 – 300 µm and 425 – 600 µm sieve cuts. Sample B on the other 

hand comprises 180 – 355 µm with 850 – 1180 µm sieve cuts.  

 

The segregation coefficient is determined as a function of pulse air frequency (0, 0.5, 

1, 2 and 5 Hz) and fluidisation duration (1, 4, 7 and 10 minutes).  

 

Given the very large number of possible test combinations, the segregation results 

relating to only a selected number of test conditions as indicated in table 7.1 are 

presented and discussed in the following. Segregation patterns presented in terms of 

the variation of mass fraction of the large powder with bed height for the poly-

dispersed sample A for fluidisation durations of 4, 7 and 10 minutes at 0 – 5 Hz are 
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shown in the appendix. The corresponding segregation patterns for sample B for 4 

minutes fluidisation duration at 0 – 5 Hz are also shown in the same appendix.  

Table 7.1: Experimental conditions used for particle segregation studies. 

 Powder A 

(150 – 300 µm and 425 – 

600 µm) 

Powder B 

(180 – 355 µm and 850 – 

1180 µm) 

Frequency (Hz) 0, 0.5, 1, 2, 5 0, 0.5, 1, 2, 5 

Fluidisation duration 

(mins) 

1, 4, 7, 10 1, 4 

Fluidisation pressure 

(kPa) 

103.4 41.4 

 

Figures 7.7 – 7.11 illustrate the segregation patterns at various pulse frequencies of 5, 

2, 1, 0.5 and 0 Hz respectively for the poly-dispersed sample A.  The respective air 

pressure and total fluidisation time are 103.4 kPa and 1 minute.   

 

XLP shown in the figures corresponds to the mass fraction of the large powder size 

range in the entire sample when the bed is perfectly mixed.  

 

The data in figure 7.7 is for two identical runs in order to demonstrate the degree of 

reproducibility of the results using the fluidised bed test arrangement. The good 

agreement between the two sets of measurements demonstrates the efficacy of the 

technique.  

 

Returning to figures 7.7 – 7.11, as expected (Rowe et al., 1972) it is clear that in all 

cases, the mass fraction of the large particles (425 – 600 µm) decreases with bed 

height. This indicates the migration of the large particles towards the bed’s base and 

the percolation of the smaller size range towards the top. 

 

Interestingly, for the conditions tested, much the same as the spring data (figures 7.1 – 

7.4), the pulsation frequency has a complex albeit small impact on the particle 

segregation behaviour.  
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Figure 7.7: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm). Run 1 and Run 2 correspond to two separate test runs using 

exactly the same conditions in order to demonstrate the degree of reproducibility 

in the data.   

Pulse frequency = 5 Hz  

Fluidisation duration = 1 min 

Air pressure = 103.4 kPa  
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Figure 7.8: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm).  

Pulse frequency = 2 Hz  

Fluidisation duration = 1 min 

Air pressure = 103.4 kPa 
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Figure 7.9: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm).  

Pulse frequency = 1 Hz  

Fluidisation duration = 1 min 

Air pressure = 103.4 kPa  
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Figure 7.10: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm).  

Pulse frequency = 0.5 Hz  

Fluidisation duration = 1 min 

Air pressure = 103.4 kPa 
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Figure 7.11: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm).  

Pulse frequency = 0 Hz (continuous air) 

Fluidisation duration = 1 min 

Air pressure = 103.4 kPa  
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Figures 7.12 – 7.16 show the corresponding segregation patterns at various pulse 

frequencies for the poly-dispersed sample B made up of 180 – 355 µm and 850 – 

1180 µm particles. The respective air pressure and total fluidisation time are 41.4 kPa 

and 1 minute respectively.  

As it may be observed with the exception of the data at 2 Hz, all cases indicate the 

migration of the large particles to the base of the bed, with the effect becoming 

significantly more pronounced as the vibration frequency is decreased. Also, as 

compared to sample A, the sample B data indicate a significantly higher degree of 

segregation.   
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Figure 7.12: Segregation patterns for poly-dispersed sample B (180 – 355 µm and 

850 – 1000 µm).  

Pulse frequency = 5 Hz  

Fluidisation duration = 1 min 

Air pressure = 41.4 kPa  
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Figure 7.13: Segregation patterns for poly-dispersed sample B (180 – 355 µm and 

850 – 1000 µm).  

Pulse frequency = 2 Hz  

Fluidisation duration = 1 min 

Air pressure = 41.4 kPa 
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Figure 7.14: Segregation patterns for poly-dispersed sample B (180 – 355 µm and 

850 – 1000 µm).  

Pulse frequency = 1 Hz  

Fluidisation duration = 1 min 

Air pressure = 41.4 kPa 
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Figure 7.15: Segregation patterns for poly-dispersed sample B (180 – 355 µm and 

850 – 1000 µm).  

Pulse frequency = 0.5 Hz  

Fluidisation duration = 1 min 

Air pressure = 41.4 kPa 
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Figure 7.16: Segregation patterns for poly-dispersed sample B (180 – 355 µm and 

850 – 1000 µm).  

Pulse frequency = 0 Hz (continuous air) 

Fluidisation duration = 1 min 

Air pressure = 41.4 kPa 
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Figure 7.17 shows the variation of the segregation coefficient versus pulse frequency 

for the poly-dispersed sample A (150 – 600 µm). The data is obtained for various 

fluidisation durations of 1, 4, 7 and 10 minutes using a fixed air pressure of 103.4 kPa.  

 

Close examination of the data reveals that with exception of the data at 4 minutes 

(curve B), in general the segregation coefficient initially decreases (hence more 

mixing) with vibration frequency up to 2 Hz before increasing again. Also, the 

fluidisation time has relatively little impact on the data. Interestingly, the data at 4 

minutes fluidisation time indicate the largest degree of segregation as compared to the 

rest. 

 

The curves do not provide a clear trend which can be used to analyse the results. 

However, 4 minutes of fluidisation produces the highest segregation coefficient for all 

pulse frequencies. 

 

The highest segregation coefficient is ca. 0.17, achieved at four minutes of 

fluidisation duration with continuous air flow (0 Hz).  

 

Figure 7.18 shows the variation of the segregation coefficient versus pulse frequency 

for the poly-dispersed sample B (180 – 1180 µm). The data is obtained for fluidisation 

durations of 1 and 4 minutes using a fixed air pressure of 41.4 kPa. The results show a 

considerably high segregation coefficient at 0.89 and 0.85 for 1 and 4 minute 

fluidisation durations respectively when using 0 Hz frequency. Figure 7.18 shows a 

general decrease in the segregation coefficient with frequency. In this case, the 

segregation coefficient increases again beyond 2 Hz as with sample A.  
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Figure 7.17: Variation of the segregation coefficient  with air fluidisation 

frequency for 110 g poly-dispersed sample A (150 – 300 µm and  425 – 600 µm) 

at various fluidising durations using 103.4 kPa air pressure.  

Curve A: 1 min  

Curve B: 4 mins 

Curve C: 7 mins 

Curve D: 10 mins 
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Figure 7.18: Variation of the segregation coefficient with air fluidisation 

frequency for 116 g poly-dispersed sample A (180 – 355 µm and 850 – 1180 µm) 

at various fluidising durations using 41.4 kPa air pressure.  

Curve A: 1 min  

Curve B: 4 mins 

 

1 min 

4 mins 



  

126 

CHAPTER 7: Fluidisation 

 

Clearly, the investigation of any correlation between the segregation behaviour shown 

in figure 7.17 and the sample discharge time from the spring is important. Since 41.4 

kPa is too low a pressure to discharge sample B particles from the spring, sample A 

will be the main focus of the study. 

 

Figure 7.19 shows the variation of the cumulative mass discharge from the spring 

against the discharge time at different pulse frequencies for the same sample A used 

in the above segregation fluidisation test (figure 7.17) using the same air pressure of 

103.4 kPa.  

 

Figure 7.20 on the other hand shows the corresponding variations of the segregation 

coefficient (extracted from figure 7.17) and the time for 95 % discharge (extracted 

from figure 7.19), chosen as an example, plotted vs. the fluidisation frequency. As it 

may be observed with the exception of the data at 1 Hz, there is a good correlation 

between the segregation coefficient and the sample discharge rate. In general as the 

degree of mixing increases (lower segregation coefficient) the duration for sample 

discharge decreases. 

 

 



  

127 

CHAPTER 7: Fluidisation 

 

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80

C
u

m
u

la
ti

v
e 

D
is

ch
ar

g
ed

 M
as

s 
(%

)

Time (mins)

Curve A

Curve B

Curve C

Curve D

Curve E

 

Figure 7.19: Cumulative discharged mass (%) from PSPS against analysis time 

for 110 g of sample A (150 – 300 µm and 425 – 600 µm) at various air pulse 

frequencies using 103.4 kPa air pressure. 

Curve A: 0 Hz (continuous air) 

Curve B: 0.5 Hz 

Curve C: 1 Hz 

Curve D: 2 Hz 

Curve E: 5 Hz 
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Figure 7.20: Variation of the segregation coefficient and time for 95 % discharge 

110 of sample A (150 – 300 µm and 425 – 600 µm) with frequency at 103.4 kPa. 

Curve A: Segregation coefficient, Cs 

Curve B: Time required for 95 % sample discharge.  
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7.4 Conclusions 

 

One of the important factors affecting the efficacy of the PSPS particularly for on-line 

operations is the sample analysis time, which in turn is directly governed by the rate 

of discharge of the particles from the spring.  

 

This chapter initially investigated the impacts of the sample poly-dispersity and 

fluidisation pulse frequency on the sample discharge time. This was then followed by 

a study of the particle migration patterns using a pulsating fluidised bed system of 

similar overall dimensions as the spring in order to elucidate the mechanism 

responsible for the observed trends. In all cases Ballotini glass spheres of various size 

ranges at air pressures of 103.4 kPa and 41.4 kPa were employed.  

 

The pulse frequency experiments using the PSPS revealed that  

 

i) for the same sample size range, the discharge time was a complex function 

of the pulsation frequency where the dependency, albeit relatively small, 

became more significant with increase in the average particle size 

 

ii) for the same air pulse frequency, in general, the sample discharge time 

increased with the degree of sample poly-dispersity and the average 

particle size.   

 

The fluidised bed experiments were conducted to elucidate the mechanisms 

responsible for the above observed trends. These involved determining the particle 

migration profiles, expressed in terms of the segregation coefficient, following 

pulsation at the various frequencies.  The results indicated  

 

i) the expected migration of the large particles towards the bed’s base and the 

percolation of the smaller size range towards the top 
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ii) much the same as the variation of the pulse frequency with sample 

discharge time, the pulsation frequency had a complex albeit small impact 

on the particle segregation behaviour 

 

iii) a direct correlation between the sample discharge time and the degree of 

segregation within the fluidised bed existed. In general as the degree of 

mixing increased (lower segregation coefficient) the duration for sample 

discharge decreased.  

 

Based on the above findings it is clear that any operating or design parameter that 

promotes the degree of mixing within the spring will improve the system’s efficacy 

through a reduction in the sample analysis time. The analysis time also increases with 

increase in the sample’s poly-dispersity. 
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CHAPTER 8 HANDHELD SPRING PARTICLE SIZER 

 

The following chapter describes the performance evaluation of the handheld Spring Particle 

Sizer (handheld SPS). This includes the comparison of PSD measurement with standard 

sieves when using different test powders, as well as the development of volume to mass 

calibration curves for direct mass measurement from the unit. Finally, an investigation on the 

effect of agitation mode on system response is also presented. Section 4.4 gives a brief 

description of the handheld SPS design.  

 

8.1 Spring Aperture Calibration 

 

The following describes the results obtained for a series of tests conducted to calibrate the 

handheld SPS using glass Ballotini particles and three size ranges of calcium carbonate 

(CaCO3) particles. The latter were supplied by Omya UK Limited (2011) hereby referred to 

as LG800, LG12 and L400 particles.  

 

The standard test powder used was a 3 g sample of glass Ballotini. The size ranges tested 

were 212 – 300, 300 – 425, 425 – 500, 500 – 600, 600 – 710, 710 – 850 and 850 – 1000 µm. 

 

The initial test involved loading the handheld SPS with 3 g of glass Ballotini with the size 

range 212 – 300 µm. The unit was held horizontally to ensure a uniform distribution of the 

test powder over the length of the spring. The screw cap was rotated by half a turn, to extend 

the spring. Based on the assumption of uniform spring extension, the above corresponded to a 

coil opening of 20 µm. The unit was hand shaken and manually tapped to enhance particle 

discharge. The discharged powder collected in the measuring cylinder attached to the base of 

the unit was weighed after 1 minute. The handheld SPS was shaken for a minute each time 

until the discharged powder mass remained unchanged by ± 1 % (0.03 g). The screw cap was 

rotated by further half turn intervals and the procedure was repeated until the test powder was 

fully discharged. 

 

Figures 8.1 and 8.2 show PSDs for glass Ballotini in terms of the percentage cumulative 

discharged mass against the number of turns of the handheld SPS screw cap for seven 
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individual standard sieve size fractions (i.e. 212 – 300, 300 – 425, 425 – 500, 500 – 600, 600 

– 710, 710 – 850 and 850 – 1000 µm). The results present seven sets of data. Each test was 

repeated to demonstrate reproducibility for all size fractions used. All tests showed good 

reproducibility with a maximum deviation between any two runs of ± 0.23 g. 

 

Data extracted from figures 8.1 and 8.2 are plotted in figure 8.3 as the number of turns of the 

screw cap against the equivalent aperture size. Figure 8.3 shows the upper and lower size 

limits (curve A) and mean spring aperture data (curve B). The corresponding fitted curves 

based on polynomial regression are given by:  

 

Upper & lower sizes (curve C) xxy 887.733068.1 2   (8.1) 

Mean sizes (curve D) xxy 95.733267.1 2   (8.2) 

 

Where, y is the spring aperture size and x is the number of turns of the handheld SPS screw 

cap. The above correlations gave coefficients of determination, R
2
 of 0.9864 and 0.9949 

respectively.  

 

It can also be seen from figure 8.3 that both curves C and D are in very good agreement, with 

a maximum deviation of ± 0.24 turns for any two points between 212 – 1000 µm, this 

computes to ca. ± 10 µm. Therefore, either of the two calibration curves may be utilised. 
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Figure 8.1: Calibration data handheld SPS using 3 g of glass Ballotini in size ranges 212 

– 300, 300 – 425, 425 – 500 and 500 – 600 µm. 

 

Curve A: 212 – 300 µm Run 1 

Curve B: 212 – 300 µm Run 2 

Curve C: 300 – 425 µm Run 1 

Curve D: 300 – 425 µm Run 2 

Curve E: 425 – 500 µm Run 1 

Curve F: 425 – 500 µm Run 2 

Curve G: 500 – 600 µm Run 1 

Curve H: 500 – 600 µm Run 2 
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Figure 8.2: Calibration data handheld SPS using 3 g of glass Ballotini in size ranges 600 

– 710, 710 – 850 and 850 – 1000 µm. 

 

Curve A: 600 – 710 µm Run 1 

Curve B: 600 – 710 µm Run 2 

Curve C: 710 – 850 µm Run 1 

Curve D: 710 – 850 µm Run 2 

Curve E: 850 – 1000 µm Run 1 

Curve F: 850 – 1000 µm Run 2 
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Figure 8.3: Handheld SPS calibration curve correlating number of turns of screw cap 

with aperture size using glass Ballotini of size range 212 – 1000 µm. 

 

Curve A: Upper and lower size limits 

Curve B: Mean sizes   

Curve C: Correlated data using upper and lower size limits 

Curve D: Correlated data using mean sizes  
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Figure 8.4 shows the performance evaluation of the handheld SPS using the correlated data 

obtained from equation 8.2. A 21 g glass Ballotini test powder with size range 212 – 1000 µm 

was placed into the handheld SPS for analysis. The correlation in equation 8.2 was used as a 

guide to separate the test powder into seven different size ranges. Each size range was 

weighed to produce a PSD as shown in figure 8.4.  The figure shows the percentage 

cumulative discharged mass against aperture size. Curve A was obtained using the handheld 

unit. Curves B and C are repeat runs to demonstrate reproducibility. The corresponding data 

obtained using sieving is shown by curve D. As it may be observed the data show good 

agreement with the maximum deviation between the sieve and the spring data being ± 3.5 % 

of the total sample mass.   
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Figure 8.4: Performance evaluation using calibration curve obtained on the handheld 

SPS for glass Ballotini of size range 212 – 1000 µm. 

 

Curve A: Run 1 

Curve B: Run 2 

Curve C: Run 3 

Curve D: Sieve data 
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Figures 8.5 to 8.7 show the calibration curves obtained for the three CaCO3 test powders 

namely LG800 (250 – 1000 µm), LG12 (250 – 1000 µm) and L400 (250 – 600 µm) 

respectively using the same procedure as described above for the glass Ballotini particles. 

The sample mass used for each size fraction was 3 g.   

 

The correlations developed for the CaCO3 test powders are given in table 8.1. The maximum 

deviations between the curves C and D in figures 8.5 to 8.7 are ± 11 µm, ± 5 µm, and ± 13 

µm respectively. This therefore shows a very good agreement between the upper/lower size 

limit and mean size calibration curves in all cases. Hence, either correlation may be used in 

each case.  

 

Table 8.1: Regression analysis results for calibration of handheld SPS using CaCO3 test 

powders, LG800, LG12 and L400. 

Material 

(CaCO3) 

Upper & lower size limit 

correlation (curve C) 

R
2
 Mean size correlation 

(curve D)  

R
2
 

LG800 xxy 491.701479.1 2   0.9867 xxy 741.701726.1 2   0.9973 

LG12 xxy 131.679042.0 2   0.9816 xxy 972.668875.0 2   0.9966 

L400 xxy 608.763107.2 2   0.9610 xxy 199.739763.1 2   0.9915 

 

Figures 8.8 to 8.10 show results of the performance evaluation for the CaCO3 test powders 

using their respective mean size calibration curves. The results are shown in terms of 

percentage cumulative discharged mass from the unit against aperture size, all samples are 

also analysed using sieves and PSDs are generated to make a comparison. The experiments 

show a good reproducibility with a maximum deviation ≤ ± 5 % of the total mass in all three 

cases. The CaCO3 particles do not exhibit a specific shape and do not readily flow like the 

spherically shaped glass Ballotini particles. The most brittle of the CaCO3 samples was the 

L400 sample, it had the inclination to crumble and subsequently coagulate during agitation.  

 

A maximum deviation of ± 21 %, between the sieve data and the handheld SPS is exhibited 

by sample L400 (250 – 600 µm). The corresponding deviations for samples LG800 (250 – 

1000 µm) and LG12 (250 – 1000 µm) in terms of the total mass, are ± 8 % and ± 5 % 

respectively.   
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The main reason for the observed discrepancy between the sieve and the spring data is due to 

the irregular shape of the CaCO3 particles as compared to the spherical glass Ballotini. 

Particle attrition during testing may be discounted as a cause given the very good 

reproducibility of the data.  It is postulated that the L400 sample exhibits the maximum 

deviation against sieve data as compared to the LG800 and LG12 particles due to its highly 

irregular shape.  
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Figure 8.5: Handheld SPS calibration curve for CaCO3 LG800 sample of size range 250 

– 1000 µm. 

 

Curve A: Upper and lower size limits 

Curve B: Mean sizes 

Curve C: Correlated data using upper and lower size limits 

Curve D: Correlated data using mean sizes 
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Figure 8.6: Handheld SPS calibration curve for CaCO3 LG12 sample of size range 250 – 

1000 µm. 

 

Curve A: Upper and lower size limits 

Curve B: Mean sizes 

Curve C: Correlated data using upper and lower size limits 

Curve D: Correlated data using mean sizes 
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Figure 8.7 Handheld SPS calibration curve for CaCO3 L400 sample of size range 250 – 

600 µm. 

 

Curve A: Upper and lower size limits 

Curve B: Mean sizes 

Curve C: Correlated data using upper and lower size limits 

Curve D: Correlated data using mean sizes 
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Figure 8.8: Handheld SPS performance evaluation for CaCO3 sample LG800 for size 

range 212 – 1000 µm. 

 

Curve A: Run 1 

Curve B: Run 2 

Curve C: Run 3 

Curve D: Sieve data 

 



  

144 

CHAPTER 8: Handheld Spring Particle Sizer 

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

C
u

m
u

la
ti

v
e 

M
as

s 
D

is
ch

ar
g

ed
 (

%
)

Particle Size (µm)

Curve A

Curve B

Curve C

Curve D

 

Figure 8.9: Handheld SPS Performance Evaluation for CaCO3 Sample LG12 (212 – 

1000µm). 

 

Curve A: Run 1 

Curve B: Run 2 

Curve C: Run 3 

Curve D: Sieve data 
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Figure 8.10: Handheld SPS Performance Evaluation for CaCO3 Sample L400 (250 – 600 

µm). 

 

Curve A: Run 1 

Curve B: Run 2 

Curve C: Run 3 

Curve D: Sieve data 
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8.2 Volume to Mass Calibration  

 

The following describes the results of a series of experiments for directly determining the 

particle discharged mass from the handheld SPS, by recording the bed height or volume of 

the test powder collected in the graduated sample collector (see figure 4.7).  

 

Glass Ballotini test powders of different size ranges, i.e. 212 – 300, 300 – 425, 425 – 500, 

500 – 600, 600 – 710, 710 – 850 and 850 – 1000 µm are used in the study. 

 

Figure 8.11 shows the variation of sample mass measured using a laboratory mass balance-

(OHAUS Explorer E1RW60: with ±0.01g resolution), plotted against sample volume for 212 

– 300 μm glass Ballotini using the handheld SPS. The test is repeated twice to verify its 

reproducibility as shown by curves A, B and C. Excellent agreement between the three sets of 

data is obtained producing a maximum mass irreproducibility of ± 0.24 g.  

 

Curve D shows the correlated data obtained from the average of the three runs. The 

corresponding fitted line equation is given by:  

 

xy 7095.1  (8.3) 

 

Where, y is the mass of the test powder from the spring (g) and x is the volume of the test 

powder collected (cm
3
). The corresponding correlation coefficient is 0.9998.  

 

To verify the correlation obtained from figure 8.11, various masses of up to 15 g of powder 

discharged from the spring were weighed and the volumes were recorded. The test was 

repeated to confirm its reproducibility. Figure 8.12 shows the results obtained, illustrating the 

variation of volume with mass for glass Ballotini of size range 212 – 300 μm. Figure 8.13 

shows the predicted data using the correlation obtained (i.e. equation 8.1) and the average of 

the actual data obtained for glass Ballotini (212 – 300 μm) extracted from figure 8.12. The 

maximum deviation between the predicted data and actual data is ± 0.1 g.  
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The same tests were carried out for other size ranges 300 – 425, 425 – 500, 500 – 600, 600 – 

710, 710 – 850 and 850 – 1000 µm. Table 8.2 shows the correlations developed for all size 

ranges tested. Figures 8.14 to 8.19 show the comparison of predicted data and actual data for 

each size range mentioned above. It can be seen that there is a very small deviation between 

the predicted and actual data in all cases. 

 

Table 8.2: Correlations for volume to mass conversions in handheld SPS for glass 

Ballotini of different size ranges 

Size Range (µm) Correlation  R
2
 

212 – 300 xy 7095.1  0.9998 

300 – 425 xy 7206.1  0.9993 

425 – 500 xy 7394.1  0.9996 

500 – 600 xy 5999.1  0.9996 

600 – 710 xy 6162.1  0.9994 

710 – 850 xy 5897.1  0.9997 

850 – 1000 xy 6483.1  0.9985 

 

Table 8.3 shows the average and maximum deviations between the predicted data obtained 

using the correlation developed for each size range and the actual observed data. It is clear 

that the correlated data is in close agreement to the observed data, the overall average 

deviation is ± 0.12 g, which is almost negligible in comparison to the overall mass used (15 

g), ca. ± 0.8 %. The overall maximum deviation of ± 0.48 g was observed for 425 – 500 µm, 

which may be due to experimental errors, e.g. human errors, optical errors (e.g. incorrect 

reading of graduation on Perspex tube). 

 

It is therefore clear that using the volume occupied in the sample collector is an excellent tool 

for direct mass determination in the handheld SPS. 
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Table 8.3: Deviations from the predicted data obtained from correlations and actual 

observed data for volume to mass conversions in handheld SPS using glass Ballotini. 

Size Range 

(µm) 

Average deviation between 

predicted and actual data (g) 

Maximum deviation between 

predicted and actual data (g) 

212 – 300 ± 0.08 ± 0.19 

300 – 425 ± 0.07 ± 0.12 

425 – 500 ± 0.28 ± 0.48 

500 – 600 ± 0.03 ± 0.19 

600 – 710 ± 0.11 ± 0.17 

710 – 850 ± 0.08 ± 0.16 

850 – 1000 ± 0.22 ± 0.41 



  

149 

CHAPTER 8: Handheld SPS 

 

y = 1.7905x

R
2
 = 0.9998

0

5

10

15

20

25

30

0 5 10 15 20

Volume (cm
3
)

M
as

s 
(g

)

Curve A

Curve B

Curve C

Curve D

 

Figure 8.11: Variation of mass with volume for glass Ballotini of size range 212 – 300 

µm in the handheld SPS. 

 

Curve A: Run 1 

Curve B: Run 2  

Curve C: Run 3  

Curve D: Correlated data obtained from the average of runs 1, 2 and 3 
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Figure 8.12: Variation of volume with mass for glass Ballotini of size range 212 – 300 

µm in the handheld SPS. 

 

Curve A: Run 1 

Curve B: Run 2 
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Figure 8.13: Variation of volume with mass in handheld SPS, a comparison of predicted 

data and actual data obtained for volume to mass calibration using glass Ballotini of 

size range 212 – 300 µm. 

 

Curve A: Actual data  

Curve B: Predicted data from correlation 



  

152 

CHAPTER 8: Handheld SPS 

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

V
o

lu
m

e 
(c

m
3
)

Mass (g)

Curve A

Curve B

 

Figure 8.14: Variation of volume with mass in handheld SPS, a comparison of predicted 

data and actual data obtained for volume to mass calibration using glass Ballotini of 

size range 300 – 425 µm. 

 

Curve A: Actual data  

Curve B: Predicted data from correlation 
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Figure 8.15: Variation of volume with mass in handheld SPS, a comparison of predicted 

data and actual data obtained for volume to mass calibration SPS using glass Ballotini 

of size range 425 – 500 µm. 

 

Curve A: Actual data  

Curve B: Predicted data from correlation 
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Figure 8.16: Variation of volume with mass in handheld SPS, a comparison of predicted 

data and actual data obtained for volume to mass calibration SPS using glass Ballotini 

of size range 500 – 600 µm. 

 

Curve A: Actual data  

Curve B: Predicted data from correlation 
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Figure 8.17: Variation of volume with mass in handheld SPS, a comparison of predicted 

data and actual data obtained for volume to mass calibration using glass Ballotini of 

size range 600 – 710 µm. 

 

Curve A: Actual data  

Curve B: Predicted data from correlation 

 



  

156 

CHAPTER 8: Handheld SPS 

 

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

V
o

lu
m

e 
(c

m
3
)

Mass (g)

Curve A

Curve B

 

Figure 8.18: Variation of volume with mass in handheld SPS, a comparison of predicted 

data and actual data obtained for volume to mass calibration using glass Ballotini of 

size range 710 – 850 µm. 

 

Curve A: Actual data  

Curve B: Predicted data from correlation 
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Figure 8.19: Variation of volume with mass in handheld SPS, a comparison of predicted 

data and actual data obtained for volume to mass calibration using glass Ballotini of 

size range 850 – 1000 µm. 

 

Curve A: Actual data  

Curve B: Predicted data from correlation 
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8.3 Effect of Agitation Mode on Analysis Time and PSD Accuracy 

 

The following describes the results obtained from experiments aimed at studying the effect of 

agitation mode on analysis time and PSD accuracy using the handheld SPS. The agitation 

modes tested include hand shaking and the use of a specially designed variable speed tumbler 

as shown in figure 8.20. The tumbler consists of a 12 V geared DC motor (2947/GS38 

supplied by RS Components Limited, 2011) producing an output speed of approx. 260 

revolutions per minute (rpm), a driving wheel (87 mm o.d), and four idler wheels (75 mm 

o.d), on which the unit was placed upon. The test powder used in the investigation was a 10 g 

sample of glass Ballotini in the size range of 300 – 425 µm. To discharge the sample, the 

spring was stretched by 6.5 turns to create a spring aperture size of 425 µm. The handheld 

SPS was then placed on the variable speed tumbler between the idler wheels and driving 

wheel. A flange was placed on the handheld SPS to prevent the unit from sliding off the 

tumbler. The rotational speed was set to 100 rpm and the discharged sample mass was 

recorded every minute. The test was repeated for various rotational speeds of 200, 300, 400 

and 500 rpm and using manual hand shaking. 

 

Figure 8.21 shows the variation of percentage cumulative discharged mass from the handheld 

SPS with time for various rotational speeds. The data taken from 100 rpm and manual 

shaking give the slowest end-point at 27 and 16 minutes respectively. 500 rpm resulted in the 

fastest end-point of 3 minutes, while a constant time of 6 minutes was observed for 300 and 

400 rpm. It is clear that the analysis time is dependent on the rotational speed employed, 

where the discharge rate increases with revolutions per minute.  

 

The objective of the second test was to determine the effect of rotational speed on the PSD 

accuracy. The test involved the use of a 10 g sample of glass Ballotini test powder, containing 

5 g of 300 – 425 µm and 425 – 500 µm each. The spring is extended to an equivalent aperture 

size of 425 µm and rotated at 100 rpm using the variable speed tumbler. In this case, the time 

taken to discharge 5 g of 300 – 425 µm was recorded. The test was again repeated for various 

voltage settings of 200, 300, 400 and 500 rpm and using manual hand shaking. 
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Figure 8.22 shows the variation of percentage cumulative discharged mass from the handheld 

SPS with time for various rotational speeds. The thick line at 100 % corresponds to when the 

particles ≤ 425 µm (the handheld SPS apertures at 6.5 turns of the screw cap) are expected to 

discharge. Based on the data, 400 rpm and 500 rpm discharge the test powder the quickest. 

However, rotating the handheld SPS at these settings for over 3 minutes, results in early 

discharge of particles (i.e. particles coming out at a smaller aperture size than they should), 

leading to PSD inaccuracy. Rotational speeds below 400 rpm and manual shaking exhibit no 

PSD inaccuracies due to early discharge, with 200 – 300 rpm reaching the target line in 3 – 5 

minutes. On the other hand, 100 rpm and manual shaking demonstrate extended analysis 

times of 13 and 9 minutes respectively. Hence, it may be concluded that the analysis time and 

PSD accuracy is significantly dependent on the rotational speed employed. The fastest and 

easiest method without causing early discharge is the use of the variable speed tumbler at a 

speed setting between 200 – 300 rpm. 
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Figure 8.20: Photograph illustrating the tumbler unit used to rotate the handheld SPS 

for particle size analysis. 
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Figure 8.21: Variation of percentage discharged mass with time for different modes of 

agitating the handheld SPS using glass Ballotini of size range of 300 – 425 µm  
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Figure 8.22: Variation of percentage discharged mass with time for different modes of 

agitating the handheld SPS to demonstrate PSD accuracy using glass Ballotini of size 

range of 300 – 500 µm. 
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8.4 Conclusions 

 

The handheld SPS is primarily aimed for quality control applications where a relatively rapid 

manual PSD measurement is required during the powder production process. 

 

In this chapter, an experimental evaluation of the handheld SPS was carried out using 

different size ranges of glass Ballotini and CaCO3 samples. This involved the development of 

a correlation for the spring aperture size as a function of the number of turns of the handheld 

SPS screw cap. This was based on a polynomial regression of the cumulative mass of a 

certain size range discharged from the spring. Using the correlation developed a performance 

evaluation was carried out for each powder type and compared to sieve data. Results for glass 

Ballotini show an excellent reproducibility and good agreement with sieve data with a 

maximum deviation of ± 3.5 % in terms of the total mass. For the CaCO3 powders, the largest 

deviation from sieve data is exhibited by L400 with a deviation of ± 21 %, while for LG800 

and LG12 ± 8 % and ± 5 % respectively. In addition, all tests for the CaCO3 powders show a 

reproducibility of ≤ ± 5 %.  

 

To eliminate the need to weigh each discharged sample from the handheld SPS, a direct 

volumetric method of mass measurement is required from the Perspex collection tube. 

Volume to mass conversions were carried out to develop calibration curves for glass Ballotini 

powder of different size ranges. All predicted data obtained using calibration curves 

developed are in good agreement to actual observed data, with an average deviation of ± 0.12 

g. Therefore, this method may be used for direct mass measurement in the handheld SPS. 

  

The effect of rotational speed using a tumbler and manual shaking on sample analysis time 

and PSD accuracy were presented. Based on the data it was concluded that the analysis time 

and PSD accuracy are significantly dependent on the rotational speed employed. The fastest 

and easiest method, without causing early discharge, is the use of the variable speed tumbler 

at a speed between 200 – 300 rpm.  
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CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

 

9.1 Conclusions 

 

The testing and optimisation of two analytical instruments, a pneumatic device and a 

handheld unit for Particle Size Distribution (PSD) analysis were presented. Both instruments 

share the same basic principle of operation involving the use of a spring for the PSD analysis 

of dry powders in the size range of 100 – 2000 µm. 

 

During the past decade, Mahgerefteh and his co-workers at UCL developed the Pneumatic 

Spring Particle Sizer (PSPS) in response to a need for a simple to operate and robust 

inexpensive automated instrument primarily aimed at addressing some of the drawbacks of 

commonly used PSD instruments. The handheld SPS on the other hand is a portable device 

designed to provide on the spot analysis for quality control purposes. 

 

The PSPS has encountered a number of fundamentally important design and operational 

limitations, which have hindered its commercial success. Major problems include sample 

retention primarily through static charge build up by the fluidising air stream in addition to 

accumulation of particles in crevices and joints along the structure of the PSPS. This 

consequently leads to errors in the PSD due to sample loss. The lack of an in-situ mass 

measurement system has limited its use for on-line applications. Other weaknesses include 

non-uniform spring coil openings, relatively low size resolution, inability to fabricate spring 

with the same extension characteristics thus requiring specific calibration and long analysis 

time.  

 

This thesis presented the results of a series of experiments and fundamental design 

modifications aimed at addressing the above limitations. 

 

Chapter 2 discussed a number of definitions used to characterise particles. The knowledge of 

particulate characteristics is essential for the manufacturing, handling and application of all 

particulate-based materials. Most particulate materials consist of irregular shaped particles 

thus, giving rise to complications in classifying individual particles into certain sizes. Several 
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methods are used to specify an equivalent diameter, based on volume, mass, surface or linear 

dimensions. As shown in chapter 2, for most practical applications, a particle size distribution 

can be used to characterise the range of particle sizes within a test powder. 

 

Chapter 3 reviewed some of the most common techniques used for PSD analysis together 

with their advantages and limitations. It was concluded that none of the existing techniques 

are capable of on-line particle size analysis at low cost, while the rest are either non-robust, 

require complicated operating procedures or capable of handling only small amounts of 

sample which may not be representative of the bulk material. To address these issues, the 

Vibro-spring Particle Sizer (Mark I), was first developed by Mahgerefteh and Shaeri (2000). 

This was followed by its improved versions (next generation prototypes) including the Vibro-

spring Particle Sizer (Mark II), the Pneumatic Spring Particle Sizer (Mark III) and finally the 

Handheld SPS as reviewed in chapter 4. 

 

In order to test spring reproducibility, in chapter 5, two identically manufactured springs, A1 

and A2 were evaluated by comparing the mean and the standard deviation of the spring coil 

apertures following extension. The coil apertures were measured from images of the extended 

springs obtained using digital photography for spring extensions ranging from 2 mm to 10 

mm. Following analysis of the aperture data, both springs demonstrated a wide range of 

spring coil aperture sizes at any given extension in this range. The difference between the 

standard deviations of the apertures of the two equivalently extended springs was found to ± 

2.2 μm. This difference decreases with aperture size and practically vanishes for apertures 

greater than 250 μm. In addition, the largest difference between the mean for both springs 

was 17.5 μm. 

 

Comparisons of A1 and A2 at various extensions against sieve data showed that both springs 

exhibited standard deviations considerably greater than that for a sieve of the same aperture 

size. Thus, the results indicated that the springs were reproducible, due to the small difference 

in the between the means and standard deviations for both springs. It was however also found 

that that the precision of the apertures (in terms of their uniformity) at extensions between 2 

mm to 10 mm was smaller compared to standard sieves.  
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Chapter 6 reviews two methods developed to address the sample loss issue in the PSPS. 

These included the use of a full-bridge strain gauge circuit and fluidisation principles to 

measure the mass of sample in the PSPS in-situ. The first method involved the development 

of a correlation for the mass of sample as a function of the strain gauge output voltage. This 

correlation was obtained using linear regression analysis of the voltage recorded as a function 

of the mass added to the test spring. The coefficient of determination, R
2
 obtained for the 

correlation was 0.9917. The data show that the experiments were reproducible with 95 % 

confidence with a maximum deviation of ± 13.05 g, which was experienced for masses above 

200 g. This may be as a result of hysteresis. The strain gauge was found to produce a mass 

resolution of ± 2.6 g for a 280 g sample corresponding to a mass resolution of ca. ± 1 %. The 

relatively high mass resolution coupled with the linear response established the principle of 

using the strain gauge as a promising method for in-situ mass measurement in the spring. A 

number of design modifications aimed at achieving the above were subsequently proposed.  

 

The second part of the study involved the use of fluidisation principles for in-situ mass 

measurement capability by investigating the correlation between minimum fluidisation 

velocity and sample mass within the PSPS. The study using glass Ballotini of various size 

ranges was performed for a range of sample masses and air flowrates. The data showed that 

the bed followed a characteristic slugging flow regime, with a general increase in the pressure 

drop across the bed with increase in air flowrate. For the 212 – 300 µm size range, the 

pressure drop across the bed increased with sample mass, this relationship was not observed 

for other sizes tested. Based on the data, it was concluded that the variation of the pressure 

drop versus air flowrate could not be used as a method for determining sample mass within 

the spring. 

 

Chapter 7 first investigated the impacts of the sample poly-dispersity and fluidisation pulse 

frequency on the sample discharge time. This was followed by a study of the particle 

migration patterns using a pulsating fluidised bed system of similar overall dimensions as the 

spring in order to elucidate the mechanism responsible for the observed trends. Ballotini glass 

spheres of various size ranges at air pressures of 103.4 kPa and 41.4 kPa were employed.  

 

The pulse frequency experiments using the PSPS revealed that for the same sample size 

range, the discharge time was a complex function of the pulsation frequency, where the small 
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dependency, became more significant with average particle size. The data also revealed that 

for the same air pulse frequency, there was a general increase in sample discharge time with 

sample poly-dispersity and average particle size. 

 

Fluidised bed experiments investigated the particle migration profiles at various frequencies 

to elucidate the mechanisms responsible for the above observed trends. The results indicated 

the expected migration of the large particles towards the bed’s base and the percolation of the 

smaller size range towards the top. Additionally, the pulsation frequency also had a complex 

albeit small impact on the particle segregation behaviour. A direct correlation between the 

sample discharge time and the degree of segregation within the fluidised bed was established, 

where an increased degree of mixing reduced the sample discharge duration. Based on the 

above observations it was concluded that any operating or design parameter that promoted 

the degree of mixing (e.g. increasing the fluidising air pulse frequency) within the spring 

improved the system’s efficacy through a reduction in the sample analysis time.  

 

In chapter 8, an experimental evaluation of the handheld SPS using glass Ballotini and three 

CaCO3 samples (namely LG800, LG12 and L400) of size range 250 – 1000 µm was 

presented. A correlation for the spring aperture size as a function of the number of turns of 

the handheld SPS screw cap was developed for each powder type. A performance evaluation 

was carried out for each powder using the correlation obtained, by comparing to sieve data. 

Results for glass Ballotini showed an excellent reproducibility and good agreement with sieve 

data with a maximum deviation of ± 3.5 % in terms of the total mass. For the CaCO3 

powders, the largest deviation from sieve data was exhibited by L400 with a deviation of ± 

21 %, while for LG800 and LG12 ± 8 % and ± 5 % respectively. Additionally, all tests 

showed a reproducibility of ≤ ± 5 %. All data demonstrate the applicability of the handheld 

SPS for PSD analysis of various powders of size range 250 – 1000 µm. It was postulated that 

the L400 sample demonstrated the maximum deviation against sieve data due to its highly 

irregular shape.  

 

A calibration was carried out to determine if sample mass discharged from the handheld SPS, 

could be directly related to the volume of the sample in the sample collection tube. Glass 

Ballotini particles of various size ranges were employed. A linear relationship between the 

discharged sample volume and its mass for all size ranges tested. All predicted data obtained 
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using calibration curves developed for each size range, were in good agreement to actual 

observed data, with an average deviation of ± 0.12 g. Therefore, the method may be used as a 

direct mass measurement method in the handheld SPS. 

  

The effect of rotational speed when using a rotary tumbler on sample analysis time and PSD 

accuracy in comparison to manual shaking for the handheld SPS were presented. Based on 

the data it was concluded that the analysis time and PSD accuracy were significantly 

dependent on the rotational speed employed. From the study, it was concluded that the use of 

a rotary tumbler was an effective method to decrease analysis time. Additionally, the 

optimum range of rotational speeds between 200 – 300 rpm guaranteed a rapid analysis time 

without causing early discharge.  

 

9.2 Future Work 

 

9.2.1 Spring Design 

 

It is commercially important that the springs in the PSPS demonstrate reproducible features 

to avoid individual calibrations, as mentioned in chapter 5. From the investigations in chapter 

5 it was observed that attaining springs with uniform opening coils was challenging with 

springs made from stainless steel (a common spring material). Hence, springs with a unique 

material composition (i.e. a mixture of several spring materials) need to be specially 

fabricated to ideally optimise the uniformity of the spring openings. Another recommendation 

is the use of fiber-reinforced plastic springs, which are a recent development in spring 

engineering. They have several advantages over wire springs, which include being, 

lightweight, rustproof, non-conductive, and are fully recyclable and could be a solution to the 

uniformity problem (Advanex, 2009).  

 

9.2.2 Control Software 

 

Improvements on the computer program could be added to enhance the systems capability 

and reliability. Auto-calibration, data logging, mass and extension measurement inclusion 

would aid re-calibration of the system when operating conditions change, save results and 
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obtain size distributions via the computer. This will make data retrieval easier and improve 

efficiency.  

 

9.2.3 Particle Segregation in the PSPS 

 

Based on the studies carried out to determine the impact of particle segregation on sample 

discharge rate from the PSPS, further studies may be suggested to continue this investigation. 

The studies carried out as shown in chapter 7 are based on axial segregation within the 

spring. It would be advantageous to conduct further studies to determine the radial 

segregation within the PSPS. This would reveal whether larger particles are blocking smaller 

particles by adhering to the spring walls. Measurements may be taken at different radial 

positions in a bed. 

 

9.2.4 In-Situ Mass Measurement in PSPS 

 

One of the major problems associated with the PSPS is the loss of sample mass due to the 

particle retention inside the surface of the unit. Therefore, an in-situ mass measurement 

system needs to be employed in place of the current weighing mechanism, which consists of 

a large pan below the unit. Figures 6.5 and 6.6 illustrate a proposed design for the use of a 

strain gauge on the pneumatic SPS.  

 

An alternative is to use a force sensitive resistor, which is a material that changes resistance 

following application of force to its surface (Crowder, 1998). This may be used in place of 

the metal film and strain gauge proposed in figures 6.5 and 6.6. A force-sensing resistor is 

made up of two parts, which include a resistive material applied to a film and a set of 

digitating contacts applied to another film. The resistive material serves to make an electrical 

path between the two sets of conductors on the second film. When a force is applied to this 

sensor, a better connection is made between the contacts; hence, the conductivity is increased 

and is approximately a linear function of force (Webster, 1999; Stilson, 1996). 
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Figure A.1: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm). 

Pulse frequency = 5 Hz  

Fluidisation duration = 4 min 

Air pressure = 103.4 kPa  
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Figure A.2: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm). 

Pulse frequency = 2 Hz  

Fluidisation duration = 4 min 

Air pressure = 103.4 kPa  
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Figure A.3: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm).  

Pulse frequency = 1 Hz  

Fluidisation duration = 4 min 

Air pressure = 103.4 kPa  
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Figure A.4:  Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm).  

Pulse frequency = 0.5 Hz  

Fluidisation duration = 4 min 

Air pressure = 103.4 kPa  
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Figure A.5: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm).  

Pulse frequency = 0 Hz  

Fluidisation duration = 4 min 

Air pressure = 103.4 kPa  
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Figure A.6: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm).  

Pulse frequency = 5 Hz  

Fluidisation duration = 7 min 

Air pressure = 103.4 kPa  
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Figure A.7: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm).  

Pulse frequency = 2 Hz  

Fluidisation duration = 7 min 

Air pressure = 103.4 kPa  
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Figure A.8: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm).  

Pulse frequency = 1 Hz  

Fluidisation duration = 7 min 

Air pressure = 103.4 kPa  
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Figure A.9: Segregation patterns for poly-dispersed sample A (150 – 300 µm and 

425 – 600 µm).  

Pulse frequency = 0.5 Hz  

Fluidisation duration = 7 min 

Air pressure = 103.4 kPa  
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Figure A.10: Segregation patterns for poly-dispersed sample A (150 – 300 µm 

and 425 – 600 µm).  

Pulse frequency = 0 Hz  

Fluidisation duration = 7 min 

Air pressure = 103.4 kPa  
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Figure A.11: Segregation patterns for poly-dispersed sample A (150 – 300 µm 

and 425 – 600 µm).  

Pulse frequency = 5 Hz  

Fluidisation duration = 10 min 

Air pressure = 103.4 kPa  
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Figure A.12: Segregation patterns for poly-dispersed sample A (150 – 300 µm 

and 425 – 600 µm).  

Pulse frequency = 2 Hz  

Fluidisation duration = 10 min 

Air pressure = 103.4 kPa  
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Figure A.13: Segregation patterns for poly-dispersed sample A (150 – 300 µm 

and 425 – 600 µm).  

Pulse frequency = 1 Hz  

Fluidisation duration = 10 min 

Air pressure = 103.4 kPa  
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Figure A.14: Segregation patterns for poly-dispersed sample A (150 – 300 µm 

and 425 – 600 µm).  

Pulse frequency = 0.5 Hz  

Fluidisation duration = 10 min 

Air pressure = 103.4 kPa  
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Figure A.15: Segregation patterns for poly-dispersed sample A (150 – 300 µm 

and 425 – 600 µm).  

Pulse frequency = 0 Hz  

Fluidisation duration = 10 min 

Air pressure = 103.4 kPa  
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Figure A.16: Segregation patterns for poly-dispersed sample B (180 – 355 µm 

and 850 – 1000 µm).  

Pulse frequency = 5 Hz  

Fluidisation duration = 4 min 

Air pressure = 41.4 kPa 
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Figure A.17: Segregation patterns for poly-dispersed sample B (180 – 355 µm 

and 850 – 1000 µm).  

Pulse frequency = 2 Hz  

Fluidisation duration = 4 min 

Air pressure = 41.4 kPa 
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Figure A.18: Segregation patterns for poly-dispersed sample B (180 – 355 µm 

and 850 – 1000 µm).  

Pulse frequency = 1 Hz  

Fluidisation duration = 4 min 

Air pressure = 41.4 kPa 
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Figure A.19: Segregation patterns for poly-dispersed sample B (180 – 355 µm and 850 – 

1000 µm).  

Pulse frequency = 0.5 Hz  

Fluidisation duration = 4 min 

Air pressure = 41.4 kPa 
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Figure A.20: Segregation patterns for poly-dispersed sample B (180 – 355 µm and 850 – 

1000 µm).  

Pulse frequency = 0 Hz (continuous air) 

Fluidisation duration = 4 min 

Air pressure = 41.4 kPa 

 

 


