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AbstractÐRegression testing is an important activity that can account for a large proportion of the cost of software maintenance. One

approach to reducing the cost of regression testing is to employ a selective regression testing technique that 1) chooses a subset of a

test suite that was used to test the software before the modifications, then 2) uses this subset to test the modified software. Selective

regression testing techniques reduce the cost of regression testing if the cost of selecting the subset from the test suite together with

the cost of running the selected subset of test cases is less than the cost of rerunning the entire test suite. Rosenblum and Weyuker

recently proposed coverage-based predictors for use in predicting the effectiveness of regression test selection strategies. Using the

regression testing cost model of Leung and White, Rosenblum and Weyuker demonstrated the applicability of these predictors by

performing a case study involving 31 versions of the KornShell. To further investigate the applicability of the Rosenblum-Weyuker

(RW) predictor, additional empirical studies have been performed. The RW predictor was applied to a number of subjects, using two

different selective regression testing tools, DejaVu and TestTube. These studies support two conclusions. First, they show that there

is some variability in the success with which the predictors work and second, they suggest that these results can be improved by

incorporating information about the distribution of modifications. It is shown how the RW prediction model can be improved to provide

such an accounting.

Index TermsÐSoftware maintenance, regression testing, selective retest, regression test selection.
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1 INTRODUCTION

R egression testing is an important activity that can
account for a large proportion of the cost of software

maintenance [5], [17]. Regression testing is performed on
modified software to provide confidence that the software
behaves correctly and that modifications have not adversely
impacted the software's quality. One approach to reducing
the cost of regression testing is to employ a selective
regression testing technique. A selective regression testing

technique chooses a subset of a test suite that was used to test
the software before modifications were made, and then uses
this subset to test the modified software.1 Selective
regression testing techniques reduce the cost of regression
testing if the cost of selecting the subset from the test suite

together with the cost of running the selected subset of test
cases is less than the cost of rerunning the entire test suite.

Empirical results obtained by Rothermel and Harrold on
the effectiveness of their selective regression testing algo-
rithms, implemented as a tool called DejaVu, suggest that
test selection can sometimes be effective in reducing the cost
of regression testing by reducing the number of test cases
that need to be rerun [24], [26]. However, these studies also
show that there are situations in which their algorithm is
not cost-effective. Furthermore, other studies performed
independently by Rosenblum and Weyuker with a different
selective regression testing algorithm, implemented as a
tool called TestTube [8], also show that such methods are
not always cost-effective [23]. When selective regression
testing is not cost-effective, the resources spent performing
the test case selection are wasted. Thus, Rosenblum and
Weyuker argue in [23] that it would be desirable to have a
predictor that is inexpensive to apply but could indicate
whether or not using a selective regression testing method
is likely to be worthwhile.

With this motivation, Rosenblum and Weyuker [23]
propose coverage-based predictors for use in predicting the
cost-effectiveness of selective regression testing strategies.
Their predictors use the average percentage of test cases that
execute covered entitiesÐsuch as statements, branches, or
functionsÐto predict the number of test cases that will be
selected when a change is made to those entities. One of
these predictors is used to predict whether a safe selective
regression testing strategy (one that selects all test cases that
cover affected entities) will be cost-effective. Using the
regression testing cost model of Leung and White [19],
Rosenblum and Weyuker demonstrate the usefulness of this
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1. A variety of selective regression testing techniques have been proposed
(e.g., [1], [3], [4], [6], [7], [8], [9], [10], [12], [13], [15], [16], [18], [21], [26], [27],
[28], [29], [30]). For an overview and analytical comparison of these
techniques, see [25].
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predictor by describing the results of a case study they
performed involving 31 versions of the KornShell [23]. In
that study, the predictor reported that, on average, it was
expected that 87.3 percent of the test cases would be selected.
Using the TestTube approach, 88.1 percent were actually
selected on average over the 31 versions. Since the difference
between these values is very small, the predictor was clearly
extremely accurate in this case. The authors explain,
however, that because of the way their selective regression
testing model employs averages, the accuracy of their
predictor might vary significantly in practice from version
to version. This is particularly an issue if there is a wide
variation in the distribution of changes among entities [23].
However, because their predictor is intended to be used for
predicting the long-term behavior of a method over multiple
versions, they argue that the use of averages is acceptable.

To further investigate the applicability of the Rosenblum-
Weyuker (RW) predictor for safe selective regression testing
strategies, we present in this paper the results of additional
studies. We applied the RW predictor to subjects developed
by researchers at Siemens Corporate Research for use in
studies to compare the effectiveness of certain software
testing strategies [14]. For the current paper, we used both
DejaVu and TestTube to perform selective regression
testing. In the following sections, we discuss the results of
our studies.

2 BACKGROUND: THE ROSENBLUM-WEYUKER

PREDICTOR

Rosenblum and Weyuker presented a formal model of
regression testing to support the definition and computa-
tion of predictors of cost-effectiveness [23]. Their model
builds on work by Leung and White on modeling the cost of
employing a selective regression testing method [19]. In
both models, the total cost of regression testing incorporates
two factors: the cost of executing test cases and the cost of
performing analyses to support test selection. A number of
simplifying assumptions are made in the representation of
the cost in these models:

1. The costs are constant on a per-test-case basis.
2. The costs represent a composite of the various costs

that are actually incurred; for example, the cost
associated with an individual test case is a composite
that includes the costs of executing the test case,
storing execution data, and validating the results.

3. The cost of the analyses needed to select test cases
from the test suite has a completely negative impact
on cost-effectiveness, in the sense that analysis
activities drain resources that could otherwise be
used to support the execution of additional test
cases.

4. Cost-effectiveness is an inherent attribute of test
selection over the complete maintenance life-cycle,
rather than an attribute of individual versions.

As in Rosenblum and Weyuker's model [23], we let P
denote the system under test and let T denote the
regression test suite for P , with jT j denoting the number
of individual test cases in T . Let M be the selective
regression testing method used to choose a subset of T for

testing a modified version of P and let E be the set of
entities of the system under test that are considered by M. It
is assumed that T and E are nonempty and that every
syntactic element of P belongs to at least one entity in E.

The Rosenblum-Weyuker (RW) model defined
coversM�t; e� as the coverage relation induced by method
M for P and defined over T � E, with coversM�t; e� true
if and only if the execution of P on test case t causes
entity e to be exercised at least once. Rosenblum and
Weyuker specify meanings for ªexercisedº for several
kinds of entities of P . For example, if e is a function or
module of P , e is exercised whenever it is invoked; if e is
a simple statement, statement condition, definition-use
association, or other kind of execution subpath of P , e is
exercised whenever it is executed.

Letting EC denote the set of covered entities, the
RW model defined EC as follows:

EC � fe 2 E j 9t 2 T �coversM�t; e�� g;
with jECj denoting the number of covered entities. Further-
more, coversM�t; e� can be represented by a 0-1 matrix C,
whose rows represent elements of T and whose columns
represent elements of E. Then, element Ci;j of C is defined
to be:

Ci;j � 1 if coversM�i; j�
0 otherwise.

�
Finally, CC was the cumulative coverage achieved by T

(i.e., the total number of ones in the 0-1 matrix):

CC �
XjT j
i�1

XjEj
j�1

Ci;j:

As a first step in computing a predictor for safe strategies
when a single entity had been changed, Rosenblum and
Weyuker considered the expected number of test cases that
would have to be rerun. Calling this average NM , they
defined:

NM � CCjEj :

Rosenblum and Weyuker emphasized that this predictor
was only intended to be used when the selective regression
testing strategy's goal was to rerun all affected test cases.

A slightly refined variant of NM was defined using EC

rather than E as the universe of entities.

NCM �
CC

jECj :

Then, the fraction of the test suite that must be rerun was
denoted �M , the predictor for jTM j=jT j:

�M � N
C
M

jT j
� CC

jECjjT j :

Rosenblum and Weyuker discussed results of a case
study in which test selection and prediction results were
compared for 31 versions of the KornShell using
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the TestTube selective regression testing method. As
mentioned above, in this study, the test selection
technique chose an average of 88.1 percent of the test
cases in the test suite over the 31 versions, while the
predicted value was 87.3 percent. They concluded that,
because the difference between these values was very
small, their results indicated the usefulness of their
predictor as a way of predicting cost-effectiveness.

3 TWO NEW EMPIRICAL STUDIES OF THE

ROSENBLUM-WEYUKER PREDICTOR

The results of the Rosenblum-Weyuker case study were
encouraging for two reasons:

1. The difference between the predicted and actual
values was insignificant.

2. Because a large proportion of the test set would have
to be rerun for regression testing, and it could be
quite expensive to perform the analysis necessary to
determine which test cases did not need to be rerun;
it would often be cost-effective to use the predictor
to discover this and then simply rerun the entire test
suite rather than selecting a subset of the test suite.

Nevertheless, this study involved a single selective regression
testing method applied to a single subject program, albeit a
large and widely-used one for which there were a
substantial number of actual production versions. In order
to obtain a broader picture of the usefulness of the
RW predictor, we conducted additional studies with other
subject software and other selective regression testing
methods. In particular, we performed two new studies
with two methods, DejaVu and TestTube, applied to a
suite of subject programs that have been used in other
studies in the testing literature.

3.1 Statement of Hypothesis

The hypothesis we tested in our new studies is the
hypothesis of the Rosenblum-Weyuker study:

Hypothesis. Given a system under test P , a regression test suite
T for P , and a selective regression testing method M, it is
possible to use information about the coverage relation
coversM induced by M over T and the entities of P to predict
whether or not M will be cost-effective for regression testing
future versions of P .

The previous and current studies test this hypothesis under
the following assumptions:

1. The prediction is based on a cost metric that is
appropriate for P and T . Certain simplifying
assumptions are made about costs, as described in
Section 2.

2. The prediction is performed using data from a single
version of P to predict cost-effectiveness for all
future versions of P .

3. ªCost-effectiveº means that the cumulative cost
over all future versions of P of applying M and
executing the test cases in T selected by M is less
than the cumulative cost over all future versions of
P of running all test cases in T (the so-called
retest-all method).

3.2 Subject Programs

As subjects for our new studies, we used seven C programs
that had been previously used in a study by researchers at
Siemens Corporate Research [14]. Because the researchers at
Siemens sought to study the fault-detecting effectiveness of
different coverage criteria, they created faulty modified
versions of the seven base programs by manually seeding
the programs with faults, usually by modifying a single line
of code in the base version, and never modifying more than
five lines of code. Their goal was to introduce faults that
were as realistic as possible, based on their experience. Ten
people performed the fault seeding, working ªmostly
without knowledge of each other's workº [14, p. 196].

For each base program, Hutchins et al. created a large
test pool containing possible test cases for the program. To
populate these test pools, they first created an initial set of
black-box test cases ªaccording to good testing practices,
based on the tester's understanding of the program's
functionality and knowledge of special values and bound-
ary points that are easily observable in the codeº [14, p. 194],
using the category partition method and the Siemens Test
Specification Language tool [2], [20]. They then augmented
this set with manually-created white-box test cases to ensure
that each executable statement, edge, and definition-use
pair in the base program or its control flow graph was
exercised by at least 30 test cases. To obtain meaningful
results with the seeded versions of the programs, the
researchers retained only faults that were ªneither too easy
nor too hard to detectº [14, p. 196], which they defined as
being detectable by at least three and at most 350 test cases
in the test pool associated with each program.

Table 1 presents information about these subjects. For
each program, the table lists its name, the number of lines of
code in the program, the number of functions in the
program, the number of modified (i.e., fault seeded)
versions of the program, the size of the test pool, the
average number of test cases in each of the 1,000 coverage-
based test suites we generated for our studies, and a brief
description of the program's function. We describe the
generation of the 1,000 coverage-based test suites in greater
detail below.

3.3 Design of the New Studies

In both studies, our analysis was based on measurements of
the following variables:

Independent Variable. For each subject program P , test
suite T for P , and selective regression testing method M,
the independent variable is the relation coversM�t; e�
defined in Section 2.

Dependent Variables. For each subject program P , test
suite T for P , and selective regression testing method M,
there are two dependent variables: 1) the cost of applying
M to P and T and 2) the cost of executing P on the test
cases selected by M from T .

We then used the model described in Section 2 plus our
measurements of the dependent variables to perform
analyses of cost-effectiveness. Each study involved different
kinds of analysis, as described in the following:
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For both studies, we used the Siemens test pools from
which we selected smaller test suites. In particular, we
randomly generated 1,000 branch-coverage-based test suites
for each base program from its associated test pool.2 To
create each test suite Ti; 1 � i � 1; 000, for program P , we
applied the following algorithm:

1. Initialize Ti to �.
2. While uncovered coverable branches remain,

a. randomly select an element t from T using a
uniform distribution,

b. execute P with t, recording coverage,
c. add t to Ti if it covered branches in P not

previously covered by the other test cases in Ti,
3. If Ti differs from all other previously generated test

suites, keep Ti, and increment i; otherwise, generate
a new Ti.

Step 3 of the procedure ensures that there are no duplicate
test suites for a program, although two different test suites
may have some test cases in common.

For both of our studies, we computed the cost measures
(dependent variables) for both DejaVu and TestTube, and
we compared this information to test selection predictions
computed using the RW predictor. To gather this informa-
tion, we considered each base program P with each
modified version Pi and each test suite Tj. For each P and
each Tj, we computed the following:

�DejaVuj : The percentage of test cases of Tj that the
RW predictor predicts will be selected by DejaVu when
an arbitrary change is made to P .

�TestTubej : The percentage of test cases of Tj that the
RW predictor predicts will be selected by TestTube

when an arbitrary change is made to P .

SDejaVui;j : The percentage of test cases of Tj actually selected
by DejaVu for the changes made to create Pi from P .

STestTubei;j : The percentage of test cases of Tj actually selected
by TestTube for the changes made to create Pi from P .

Finally, we used these values to evaluate the accuracy of
the RW predictor, as described in detail in the following
sections.

3.3.1 Study 1

The goal of our first study was to determine the accuracy,

on average, of the RW predictor for the subject programs,

modified versions, and test suites for each of the selective

regression testing approaches we considered. Therefore, we

used the regression test selection information described

above to compute the average percentages of test cases

selected by DejaVu and TestTube over all versions Pi of

P . For each P and each Tj, we computed the following:

SDejaVuj �
Pjversions of P j

i�1 SDejaVui;j

jversions of P j ; �1�

STestTubej �
Pjversions of P j

i�1 STestTubei;j

jversions of P j : �2�

The first step in our investigation was to see how much

the percentage of test cases actually selected by each of the

methods differed from the predicted percentage of test

cases. For this analysis, we needed the following two

additional pieces of data, which we computed for each P

and each Tj:

DDejaVuj � �DejaVuj ÿ SDejaVuj ; �3�

DTestTubej � �TestTubej ÿ STestTubej : �4�
DDejaVuj and DTestTubej represent the deviations of the

percentages of the test cases predicted by the RW predictor

for Tj from the average of the actual percentages of test

cases selected by the respective method for all versions Pi of

P . Because it is possible for DDejaVuj and DTestTubej to lie

anywhere in the range of [-100, 100], we wanted to

determine the ranges into which the values for DDejaVuj

and DTestTubej actually fell. Thus, we rounded the values of

DDejaVuj and DTestTubej to the nearest integer I and

computed, for each I (such that ÿ100 � I � 100), the

percentage of the rounded D values with value I. For each

P , using each of its DDejaVuj values, the result was a set

HDejaVu:

HDejaVu � f�r; prd�j r is the range value;ÿ100 � r � 100;

prd is the percentage of rounded DDejaVuj values at rg:
�5�
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Summary of Subject Programs

2. Because our studies focused on the cost-effectiveness of selective
regression testing methods rather than the fault-detecting effectiveness of
coverage criteria, the realism of the modifications made to the Siemens
programs is not a significant issue. What is more important is that they were
made independently by people not involved in our study, thereby reducing
the potential for bias in our results.
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Similarly, for each P , using each of its DTestTubej values, the
result was a set HTestTube:

HTestTube � f�r; prd�j r is the range value;ÿ100 � r � 100;

prd is the percentage of rounded DTestTubejvalues at rg:
�6�

These sets essentially form a histogram of the deviation
values. In the ideal case of perfect prediction, all deviations
would be zero and, therefore, each graph would consist of
the single point (0, 100 percent).

3.3.2 Study 2

In Study 1, we treated the RW predictor as a general
predictor in an attempt to determine how accurate it is for
predicting test selection percentages for all future versions of
a program. In the earlier KornShell study [23], it was
determined that the relation coversM�t; e� changes very little
during maintenance. In particular, Rosenblum and Weyu-
ker found that the coverage relation was extraordinarily
stable over the 31 versions of KornShell that they included
in their study: with an average of only one-third of
one percent of the elements in the relation changing from
version to version and only two versions for which the
amount of change exceeded one percent. For this reason,
Rosenblum and Weyuker argued that coverage information
from a single version might be usable to guide test selection
over several subsequent new versions, thereby saving the
cost of redoing the coverage analysis on each new version.

However, in circumstances where the coverage relation
is not stable, it may be desirable to make predictions about
whether or not test selection is likely to be cost-effective for
a particular version, using version-specific information.
Therefore, the goal of our second study was to examine
the accuracy of the RW predictor as a version-specific
predictor for our subject programs, modified versions,
and test suites. In some cases, the intuition is that it might
be important to utilize information that is known about the
specific changes made to produce a particular version.

We considered each base program P , with each modified
version Pi and test suite Tj, as we had done in Study 1,
except that we did not compute averages over the
percentages of test cases selected over all versions of a
program. Instead, the data sets for this study contain one
deviation for each test suite and each version of a program.

As in Study 1, the first step in our investigation was to
see how much the percentage of test cases actually selected
by each of the methods differed from the predicted
percentage of test cases. For this analysis, we needed the
following additional pieces of data, which we computed for
each P , Pi, and Tj:

DDejaVui;j � �DejaVuj ÿ SDejaVui;j ; �7�

DTestTubei;j � �TestTubej ÿ STestTubei;j : �8�
DDejaVui;j and DTestTubei;j represent the deviations of the

percentages of the test cases predicted by the RW predictor
for Tj from the actual percentages of test cases selected by
the respective method for the versions Pi of P . As in Study 1,
to determine the ranges into which the values for DDejaVui;j

and DTestTubei;j actually fell, we rounded the values of

DDejaVui;j and DTestTubei;j to the nearest integer I and
computed, for each I (such that ÿ100 � I � 100), the
percentage of the rounded D values with value I. For each
P , using each of its DDejaVui;j values, the result was a set
HDejaVu:

HDejaVu � f�r; prd�j r is the range value;ÿ100 � r � 100;

prd is the percentage of rounded DDejaVui;j values at rg:
�9�

Similarly, for each P , using each of its DTestTubei;j values, the
result was a set HTestTube:

HTestTube � f�r; prd�j r is the range value;ÿ100 � r � 100;

prd is the percentage of rounded DTestTubei;jvalues at rg:
�10�

3.4 Threats to Validity

There are three types of potential threats to the validity of
our studies: 1) threats to construct validity, which concern
our measurements of the constructs of interest (i.e., the
phenomena underlying the independent and dependent
variables), 2) threats to internal validity, which concern our
supposition of a causal relation between the phenomena
underlying the independent and dependent variables, and
3) threats to external validity, which concern our ability to
generalize our results.

3.4.1 Construct Validity

Construct validity deals directly with the issue of whether
or not we are measuring what we purport to be measuring.
The RW predictor relies directly on coverage information. It
is true that our measurements of the coverage relation are
highly accurate, but the coverage relation is certainly not
the only possible phenomenon that affects the cost-
effectiveness of selective regression testing. Therefore,
because this measure only partially captures that potential,
we need to find other phenomena that we can measure for
purposes of prediction.

Furthermore, we have relied exclusively on the number
of test cases selected as the measure of cost reduction. Care
must be taken in the counting of test cases deemed to be
ªselected,º since there are other reasons a test case may not
be selected for execution (such as the testing personnel
simply lacking the time to run the test case). In addition,
whereas this particular measure of cost reduction has been
appropriate for the subjects we have studied, there may be
other testing situations for which the expense of a test lab
and testing personnel might be significant cost factors. In
particular, the possibility of using spare cycles might affect
the decision of whether or not it is worthwhile to use a
selective regression testing method at all in order to
eliminate test cases and, therefore, whether or not a
predictor is meaningful.

3.4.2 Internal Validity

The basic premises underlying Rosenblum and Weyuker's
original predictor were that 1) the cost-effectiveness of a
selective regression testing method and, hence, our ability
to predict cost-effectiveness, are directly dependent on the
percentage of the test suite that the selective regression
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testing method chooses to run, and that 2) this percentage in
turn is directly dependent on the coverage relation. In this
experiment, we take the first premise as an assumption and
investigate whether the relation between percentage of tests
selected and coverage exists and is appropriate as a basis
for prediction. The new data presented in this paper reveal
that coverage explains only part of the cost-effectiveness of
a method and the behavior of the RW predictor. Future
studies should therefore attempt to identify the other
factors that affect test selection and cost effectiveness.

3.4.3 External Validity

The threats to external validity of our studies are centered
around the issue of how representative the subjects of our
studies are. All of the subject programs in our new studies
are small, and the sizes of the selected test suites are small.
This means that even a selected test suite whose size differs
from the average or the predicted value by one or two
elements would produce a relatively large percentage
difference. (Therefore, the results of Study 1 are particularly
interesting because they show small average deviations for
most of the subject programs.)

For the studies involving the Siemens programs, the test
suites were chosen from the test pools using branch
coverage, which is much finer granularity than TestTube

uses, suggesting that there is a potential ªmismatchº in
granularity that may somehow skew the results. More
generally, it is reasonable to ask whether our results are
dependent upon the method by which the test pools and
test suites were generated and the way in which the
programs and modifications were designed. We view the
branch coverage suites as being reasonable test suites that
could be generated in practice, if coverage-based testing of
the programs were being performed. Of course there are
many other ways that testers could and do select test cases,
but because the test suites we have studied are a type of
suite that could be found in practice, results about
predictive power with respect to such test suites are
valuable.

The fact that the faults were synthetic (in the sense that
they were seeded into the Siemens programs) may also
affect our ability to investigate the extent to which change
information can help us predict future changes. In a later
section, we will introduce a new predictor that we call the
weighted predictor. This predictor depends on version-
specific change information. Because it seemed likely that
conclusions drawn using synthetic changes would not
necessarily hold for naturally occurring faults, we did not
attempt to use the Siemens programs and their faulty
versions to empirically investigate the use of the weighted
predictor. Nevertheless, the predictor itself is not dependent
on whether the changes are seeded or naturally occurring
and, thus, our results provide useful data points.

4 DATA AND RESULTS

4.1 Study 1

Fig. 1 presents data for DDejaVuj (3) and DTestTubej (4), with
one graph for each subject program P : The Appendix gives
details of the computation of this data using one of the
subject programs, printtokens2, as an example.

Each graph contains a solid curve and a dashed curve.
The solid curve consists of the connected set of points

HDejaVuj (5), whereas the dashed curve consists of the
connected set of points HTestTubej (6). Points to the left of the
ª0º deviation label on the horizontal axes represent cases in
which the percentage of test cases predicted was less than
the percentage of test cases selected by the tool, whereas
points to the right of the ª0º represent cases in which the
percentage of test cases predicted was greater than the
percentage of test cases selected by the tool. To facilitate a
display of the values, a logarithmic transformation has been
applied to the y axes. No smoothing algorithms were
applied to the curves.

For all P and Tj, the DDejaVuj were in the range of [-20,33]
and the DTestTubej were in the range of [-24,28]. However, as
we shall see in Fig. 2, these ranges are a bit misleading
because there are rarely any significant number of values
outside the range of (-10,0] or [0,10), particularly for
TestTube.

The graphs show that, for our subjects, the RW predictor
was quite successful for both the DejaVu and TestTube

selection methods. The predictor was least successful for the
printtokens2 program for which it predicted an average
of 23 percent more test cases than DejaVu actually selected.
This was the only deviation that exceeded 10 percent using
the DejaVu approach. For schedule1, the prediction was
roughly 9 percent higher, on average, compared to the
DejaVu-selected test suite. DejaVu selected an average of
roughly 10 percent more test cases than predicted for
schedule2, 7 percent more for totinfo, 7 percent more
for tcas, 3 percent more for printtokens1, and 4 percent
fewer for replace than the RW predictor predicted.

For TestTube, the predictor also almost always pre-
dicted within 10 percent of the actual average number of test
cases that were actually selected. The only exception was for
the totinfo program, for which the average deviation was
under 12 percent. For the other programs, the average
deviations were 5 percent for the printtokens1 program,
5 percent for the printtokens2 program, 4 percent for the
replace program, 7 percent for the tcas program,
10 percent for schedule1, and 1 percent for schedule2.
We consider these results encouraging, although not as
successful as the results described by Rosenblum and
Weyuker for the KornShell case study. Recall that, in that
study, there were a total of 31 versions of KornShell, a large
program with a very large user base, with all changes made
to fix real faults or modify functionality. None of the changes
were made for the purpose of the study.

Another way to view the data for this study is to consider
deviations of the predicted percentage from the actual
percentage without considering whether the predicted
percentage was greater or less than the actual percentage
selected. These deviations constitute the absolute value
deviation. To compute the absolute value deviation, we
performed some additional computations:

For each P and each Tj, we first computed AbsDDejaVuj �
jDDejaVuj j and AbsDTestTubej � jDTestTubej j. We then tabu-
lated the percentage of the AbsDDejaVuj and the AbsDTestTubej

that fell in each of the ranges [0 percent, 10 percent],
[10 percent, 20 percent], . . ., [90 percent, 100 percent].

Fig. 2 depicts these results as segmented bar graphs. The
figure contains two bars for each subject program: The left
bar of each pair represents the absolute value deviation of
DejaVu results from the RW predictor, and the right bar
represents the absolute value deviation of TestTube
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results from the RW predictor. For each program P , these
numbers are averages over all versions Pi of P . Each bar
represents 100 percent of the test suites Tj, with shading
used to indicate the percentage of test suites whose
deviations fell within the corresponding range. For instance,

in the case of printtokens2, 100 percent of the test suites
showed less than 10 percent deviation for TestTube,
whereas for DejaVu, 14 percent of the test suites showed
deviations between 10 percent and 20 percent, 82 percent
showed deviations between 20 percent and 30 percent, and
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Fig. 1. Deviation between predicted and actual test selection percentages for application of DejaVu and TestTube to the subject programs. The

figure contains one graph for each subject program. In each graph, the solid curve represents deviations for DejaVu, and the dashed curve

represents deviations for TestTube.
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4 percent showed deviations between 30 percent and
40 percent.

The results of this study show that, for many of the
subject programs, modified versions, and test suites, the
absolute value deviation for both DejaVu and TestTube

was less than 10 percent. In these cases, the RW model
explains a significant portion of the data. However, in a few
cases, the absolute value deviation was significant. For
example, as mentioned above, for printtokens2, the
absolute value deviation from the predictor for DejaVu was
between 20 percent and 30 percent for more than 80 percent
of the versions.

One additional feature of the data displayed in Fig. 1 bears
discussion. For all programs other than printtokens2, the
curves that represent deviations for DejaVu and TestTube

are (relatively) close to one another. For printtokens2, in
contrast, the two curves are disjoint and (relatively) widely
separated. Examination of the code coverage data and
locations of modifications for the programs reveals reasons
for this difference.

Sixteen of the nineteen printtokens2 functions are
executed by a large percentage (on average over 95 percent)
of the test cases in the program's test pool; the remaining
three functions are executed by much lower percentages
(between 20 percent and 50 percent) of the test cases in that

test pool. All modifications of printtokens2 occur in the
sixteen functions that are executed by nearly all test cases.
Thus, the actual test selections by TestTube, on average,
include most test cases. The presence of the latter three
functions, and the small number of test cases that reach
them, however, causes a reduction in the average number of
test cases per function, and causes the function-level
predictor to under-predict by between 0 percent and
10 percent the number of test cases selected by TestTube.

Even though nearly all test cases enter nearly all
functions in printtokens2, several of these functions
contain branches that significantly partition the paths taken
by test cases that enter the functions. Thus, many of the
statements in printtokens2 are actually executed by
fewer than 50 percent of the test cases that enter their
enclosing functions. When modifications occur in these less-
frequently executed statements, DejaVu selects much
smaller test suites than TestTube. (For further empirical
comparison of TestTube and DejaVu, see [22].) This is the
case for approximately half of the modified versions of
printtokens2 utilized in this study. However, the
presence of a large number of statements that are executed
by a larger proportion of the test cases causes the average
number of test cases per statement to exceed the number of
test cases through modified statements. The end result is
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Fig. 2. Absolute value deviation between predicted and actual test selection percentages for application of DejaVu and TestTube to the subject
programs. The figure contains two bars for each subject program: the left bar of each pair represents the absolute value deviation of DejaVu results
from the RW predictor and the right bar represents the absolute value deviation of TestTube results from the RW predictor. For each program P ,
these numbers are averages over all versions Pi of P . Each bar represents 100 percent of the test suites Tj, with shading used to indicate the
percentage of test suites whose deviations fell within the corresponding range.
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that the statement-level predictor overpredicts the number
of test cases selected by DejaVu by between 5 percent and
27 percent. Of course, the precise locations of modifications
in the subjects directly affect the results. Therefore, the fact
that all changes were synthetic is of concern when trying to
generalize these results.

4.2 Study 2

Like Fig. 1, Fig. 3 contains one graph for each subject
program. The graphs also use the same notation as was
used in Fig. 1, using a solid curve to represent the
percentage of occurrences of DDejaVui;j over deviations for
all test suites Tj and using a dashed curve to represent the
percentage of occurrences of DTestTubei;j over deviations for
all test suites Tj. Again, a logarithmic transformation has
been applied to the y axes. Fig. 4 depicts these results as a
segmented bar graph, in the manner of Fig. 2.

The results of this study show that, for the subject
programs, modified versions, and test cases, the deviations
and absolute value deviations for individual versions for
both DejaVu and TestTube are much greater than in
Study 1. This is not surprising because in this study, the
results are not averaged over all versions as they were in
Study 1. For example, consider tcas, printtokens1, and
replace. In Study 1, the average absolute value deviation
from the predicted percentage for each of these programs is
less than 10 percent using either DejaVu or TestTube.
However, when individual versions are considered, the
percentage of test cases selected by DejaVu for these
programs varies significantly, up to 64 percent, from the
percentages predicted. Deviations and absolute value
deviations for the other subjects show similar differences.
In Fig. 3, the range of deviations can be seen. In most cases,
there are at least a few versions that have a small number of
instances for which the deviations are significant. The bar
graphs in Fig. 4 show more clearly how frequently these
large absolute value deviations occur.

In Fig. 3, the data for printtokens2 is again
particularly interesting. In this case, the curve for
TestTube is peaked and relatively narrow, whereas the
curve for DejaVu is nearly flat and relatively wide. As
discussed in the preceding section, for both techniques,
these differences reflect differences in the degree of variance
in the coverage relations at the statement and function level,
as well as differences in the location of modifications. In this
case, however, considering prediction on a version-specific
basis causes the deviation in prediction at the statement
level, where the variance in coverage is large, to be flat.
Lack of variance in coverage at the function level prevents
the TestTube curve from being flat.

5 IMPROVED PREDICTORS

As discussed in Section 3.4, the assumptions underlying our
measurement of costs may pose threats to the validity of our
conclusions about predictions of cost-effectiveness using the
RW predictor. Furthermore, in some of the subject programs
of our studies, there was significant absolute deviation of
the results of the selective regression testing tools (DejaVu
and TestTube) with respect to test selection values
predicted by the RW predictor. Therefore, we believe that
there may be factors affecting cost-effectiveness that are not
being captured by the RW predictor. These factors, if added

to the model, could improve the accuracy of both general
and version-specific predictors. The RW predictor accounts
for test coverage but does not account for the locations of
modifications. Therefore, one obvious refinement would be
to incorporate information about modifications into the
predictor. We saw in Study 2 that the specific changes made
to create a particular version may have significant effects on
the accuracy of prediction in practice. Thus, we believe that
an extended weighted predictor might be more accurate for
both general and version-specific prediction. Such a
predictor would incorporate information about the locations
of the changes and weight the predictor accordingly.

To this end, in this section, we extend the RW predictor

by adding weights that represent the relative frequency of

changes to the covered entities. For each element ej 2 EC, wj
is the relative frequency with which ej is modified, and it is

defined such that
PjECj

j�1 wj � 1. The original, unweighted

RW model, discussed in Section 2, computes the expected

number of test cases that would be rerun if a single change

is made to a program. To do this, the model uses the

average number of test cases that cover each covered entity

ej 2 EC. This average is referred to as NCM . The weighted

analogue of NCM is a weighted average, WNCM , which we

define as follows:

WNCM �
XjECj
j�1

wj
XjT j
i�1

Ci;j;

where Ci;j is defined as before:

Ci;j � 1 if coversM�i; j�
0 otherwise.

�
Note that the inner sum represents the total number of test
cases covered by ej; multiplying that sum by wj provides
ej's weighted contribution to the total number of test cases
selected overall.

For this weighted average, the fraction of the test suite T
that must be rerun, denoted by �M , is given as follows:

�M �WNCM
jT j :

Note that the original, unweighted RW predictor, �M , is a
version of this weighted predictor in which wj is 1

jECj for all
ej (which represents an assumption that each entity is
equally likely to be changed):

�M �WNCM
jT j

�
PjECj

j�1
1
jECj
PjT j

i�1 Ci;j

jT j

�
PjECj

j�1

PjT j
i�1 Ci;j

jECjjT j
� CC

jECjjT j
� �M:
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To see the impact of the difference between �M and �M ,

consider coverage patterns A and B, shown respectively in

Figs. 5 and 6, where each dot represents an entity and each

closed curve a test case. Assume that the patterns are

generalized over a large number of entities, n. As discussed

by Rosenblum and Weyuker [23], the value of �M predicted
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Fig. 3. Version-specific absolute value deviation between predicted and actual test selection percentages for application of DejaVu and TestTube

to the subject programs. The figure contains one graph for each subject program. In each graph, the solid curve represents deviations for DejaVu

and the dashed curve represents deviations for TestTube.
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for each pattern is 2=n. In Pattern A, the test cases are
distributed evenly over the entities and, thus, �M and �M
are the same and yield the exact number of test cases that
would be selected by either DejaVu or TestTube,
regardless of the relative frequency of changes (and, hence,
regardless of the values assigned to the wj).

In Pattern B, the test cases are not distributed evenly
over the entities and, in contrast with Pattern A, the
RW predictor never predicts the exact fraction selected for
any changed entity, and it is significantly inaccurate for a
change to the ªcoreº element of that pattern. Suppose,
however, that instead of assuming that the frequency of
change is equal for all entities, we had information about
the relative frequency of modifications to individual
entities. In this case, using the weighted predictor, we
could compute a more accurate estimate of the fraction of
the test suite that would be selected. For example, if we
knew that changes are always made to two of the noncore
entities (with one changed exactly as often as the other) and
that no other entities are ever changed, then the weights
would be 1=2 for the two changed entities and 0 for all other
entities. And, thus, we would predict that (for the case of a
single entity change) 1=n of the test suite would be selected,
rather than 2=n as predicted by the unweighted predictor.

5.1 Improved General Prediction

Provided we can obtain values for weights that accurately

model the distribution of future modifications to a program,

we can use the weighted predictor, �M , to improve general

prediction. One approach is to utilize change history

information about the program, often available from

configuration management systems. Assuming that the

change histories do accurately model the pattern of future

modifications (a result suggested by the work of Harrison

and Cook [11]), we can use this information to compute

weights for �M . If the change histories are recorded at the

module level, �M can also be used to predict the percentage

of test cases selected on average by a tool, such as

TestTube, that considers module-level changes to the

system. If the change histories are recorded at the statement

level, �M can be used to predict the percentage of test cases

selected on average by a tool, such as DejaVu, that

considers statement-level changes to the system. In either

case, the weighted predictor can be used to incorporate data

that may account for change-location information, without

performing full change analysis. Thus, it can be used to

assess whether it will be worthwhile to perform all of the

analysis needed by a selective regression testing tool.
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Fig. 4. Version-specific absolute value deviation between predicted and actual test selection percentages for application of DejaVu and TestTube

to the subject programs. The figure contains two bars for each subject program: The left bar of each pair represents the absolute value deviation of
DejaVu results from the RW predictor and the right bar represents the absolute value deviation of TestTube results from the RW predictor. Each
bar represents 100 percent of the test suites Tj, with shading used to indicate the percentage of test suites whose deviations fell within the
corresponding range.
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In practice, weights may be collected and assumed to be

fixed over a number of subsequent versions of a program,

or they may be adjusted as change history information

becomes available. In this context, an important considera-

tion involves the extent to which weights collected at a

particular time in the history of a program can continue to

predict values for future versions of that program and the

extent to which the accuracy of predictions based on those

weights may decrease over time. Future empirical study of

this issue is necessary.

5.2 Improved Version-Specific Prediction

We can also use the weighted predictor, �M , as a version-

specific predictor. For this version-specific predictor, one

approach computes the wi using the configuration manage-

ment system. We assign a weight of 1=k to each entity that

has been changed (where k is the total number of entities

changed), and we assign a weight of 0 to all other entities in

the system. Using these weights, �M computes the exact

percentage of test cases that will be selected by a test

selection tool that selects at the granularity of the entities.

For example, if the entities are modules, then �M will

predict the exact percentage of test cases that will be

selected by a test selection tool, such as TestTube, that

considers changes at the module level. If the entities are

statements, then �M will predict the exact percentage of test

cases that will be selected by a test selection tool, such as

DejaVu, that considers changes at the statement level. If the

cost of determining the number of test cases that will be

selected is cheaper than the cost of actually selecting the test

cases, this approach can be cost-effective.
It is worth noting that Rosenblum and Weyuker found,

in their experiments with KornShell, that it was typically

not necessary to recompute the coverage relation fre-

quently, because it remained very stable over the 31 versions

they studied. If this is typical of the system under test, then

this should make version-specific predictors extremely

efficient to use and, therefore, provide valuable information

about whether or not the use of a selective regression testing

strategy is likely to be cost-effective for the current version of

the system under test.
An alternative approach assumes that method M can be

supplemented with an additional change analysis capability

that is more efficient but less precise than M's change

analysis. This supplementary change analysis is used

during the critical phase of regression testingÐafter all

modifications have been made to create P 0, the new version

of P .3 The results of the supplementary change analysis can

be used to assign weights to the entities in the system,

which are then used for prediction as described above.
Using the weighted predictor, �M , as a version-specific

predictor will be especially appropriate for test suites
whose test cases are not evenly distributed across the
entities, such as the case illustrated by Pattern B, where test
selection results for specific versions may differ widely
from average test selection results over a sequence of
versions.

6 CONCLUSIONS

In this paper, we presented results from new empirical
studies that were designed to evaluate the effectiveness and
accuracy of the Rosenblum-Weyuker (RW) model for
predicting cost-effectiveness of a selective regression testing
method. The RW model was originally framed solely in
terms of code coverage information and evaluated empiri-
cally using the TestTube method and a sequence of
31 versions of KornShell. In the new studies, two selective
regression testing methods were used (TestTube and
DejaVu), and seven different programs were used as
subjects. For the experimental subjects we used in the new
studies, the original RW model frequently predicted the
average overall effectiveness of the two test selection
techniques with an accuracy that we believe is acceptable
given that the cost assumptions underlying the RW model
are quite realistic for our subjects. However, the predictions
of the model occasionally deviated significantly from
observed test selection results. Moreover, when this model
was applied to the problem of predicting test selection
results for particular modified versions of the subject
programs, its predictive power decreased substantially,
particularly for DejaVu. These results suggest that the
distribution of modifications made to a program can play a
significant role in determining the accuracy of a predictive
model of test selection. Therefore, we conclude that to
achieve improved accuracy both in general and when
applied in a version-specific manner, prediction models
must account for both code coverage and modification
distribution.

In response to this result, we showed how to extend the

Rosenblum-Weyuker predictor to incorporate information
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3. Rothermel and Harrold divide regression testing into two phases for
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customers [25].
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on the distribution of modifications. However, to judge the

efficacy of this extended predictive model in practice, we

require additional experimentation. For this purpose, the

subjects used in the studies reported in this paper will not

suffice. Rather, we require versions of a program that form

a succession of changes over their base versions, as the

versions of KornShell did. We are currently building a

repository of such programs and versions that, when

complete, will provide subjects suitable for further empiri-

cal investigation of predictive models for regression testing

in general and of our weighted predictor in particular.
Future studies must be directed not only toward further

validation of the RW predictor and the improved predictors

described in this paper, but toward the development of a

more realistic cost model for regression testing. This will

require extensive field studies of existing large systems in

order to create a better picture of the different factors

driving cost-effectiveness, such as test suite size, test case

execution times, testing personnel costs, and the availability

of spare machine cycles for regression testing.

APPENDIX

DETAILS OF THE COMPUTATION

OF DATA FOR FIGS. 1 AND 3

To compute the data used for the graphs in Fig. 1, we used a
procedure described in Section 3.3.1. As further explana-
tion, we give details of the computation of that data for one
subject program, printtokens2.

For our experiments, we used 1,000 coverage-based test

suites, T1; :::T1000. Table 2 shows data for a subset of these

test suites: T1 ÿ T7 and T1000. For each test suite Tj, we used

the RW predictor to predict the number of test cases that

would be selected by DejaVu when an arbitrary change

is made to printtokens2. We then used this number to

determine �DejaVuj , the percentage of test cases that the

RW predictor predicts will be selected by DejaVu when an

arbitrary change is made to printtokens2. The first row

of Table 2 gives these percentages for T1 ÿ T7 and T1000.
We had ten versions of printtokens2 (see Table 1).

Next, we ran DejaVu on these ten versions, with each of

the 1,000 test suites and, for each version i and test suite j,

recorded the number of test cases selected. We then used

this number to compute, for each i and j, SDejaVui;j , the

percentage of test cases selected. The ten rows for

Versions 1-10 in Table 2 give these percentages. For

example, from the table, we can see that, for T1, SDejaVui;1

ranges from 8.3 percent to 66.7 percent. Using (1), we then

computed the SDejaVuj for each test suite Tj. Table 2 gives

these percentages for each Tj.
We then used (3) to compute, for each Tj, the difference

between the percentage predicted by the RW predictor and

the average percentage selected by DejaVu (i.e., DDejaVuj ).

Table 2 shows that, for T1 ÿ T7 and T1000, the DDejaVujrange

from 18.9 percent to 26.1 percent.
Finally, we created the set, HDejaVu (5). The ordered pairs

in this set are obtained by first rounding the percentages of

the DDejaVuj , then determining the number of those rounded

percentages that have range value ÿ100 � r � 100, and then

determining the percentage of those percentages that occur

for each value of r. Thus, for printtokens2, DDejaVu6

rounds to 19, DDejaVu3
, DDejaVu5

, and DDejaVu7
round to 21,

DDejaVu1
rounds to 22, DDejaVu4

rounds to 23, DDejaVu1000

rounds to 24, and DDejaVu2
rounds to 26. Thus, there will be

ordered pairs in HDejaVu with first coordinates 19, 21, 22, 21,

24, and 26, and the number of rounded percentages for

T1:::T1000 are used to compute the percentage of times

(among the 1,000 test suites) each percentage occurs, which

is then used in the computation of the second coordinates of

the ordered pairs. We used these ordered pairs to plot the

solid curve for printtokens2 in Fig. 1.
We used a similar approach to obtain the data for Fig. 3

except that we did not compute the averages of the
deviations. To compute the data used for the graphs in
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Partial Data Used in the Computation of Graphs in Fig. 1
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Fig. 3, we used a procedure described in Section 3.3.2. As
further explanation, we give details of the computation of
that data for one subject program, printtokens2.

Table 3 shows data for a subset of the 1,000 coverage-
based test suites: T1 ÿ T7 and T1000. For each test suite Ti,
we used the RW predictor to predict the number of test
cases that would be selected by DejaVu when an
arbitrary change is made to printtokens2. We then
used this number to determine �DejaVuj , the percentage of
test cases that the RW predictor predicts will be selected
by DejaVu when an arbitrary change is made to
printtokens2. The first row of Table 3 gives these
percentages for T1 ÿ T7 and T1000.

Next, we ran DejaVu on the ten versions of
printtokens2 and, for each version, recorded the
number of test cases selected. We then used this number
to compute SDejaVui;j ; j � 1:::10, the percentage of test cases
selected. The ten rows for Versions 1-10 in Table 3 give
these percentages.

We then used (7) to compute, for each version i and each

Tj, DDejaVui;j , the difference between the percentage pre-
dicted by the RW predictor and the percentage selected by

DejaVu. Table 3 shows that, for T1 ÿ T7 and T1000, these
percentages range from -26.6 percent to 52.5 percent.

Finally, we created the set, HDejaVu (9). These ordered

pairs are obtained by first rounding the percentages of the
DDejaVui;j , determining the number of those rounded

percentages that have range value ÿ100 � r � 100, and
then determining the percentage of those percentages that

occur for each value of r. For example, for printtokens2,

DDejaVu1;2
, DDejaVu8;2

, and DDejaVu8;6
round to ÿ20 and

DDejaVu4;5
, DDejaVu7;5

, DDejaVu9;5
, DDejaVu4;7

, DDejaVu7;7
, DDejaVu9;7

,

and DDejaVu10;7
round to 20. Thus, HDejaVu contains ordered

pairs with ÿ20 and 20 as the first coordinates, and the

number of rounded percentages for T1:::T1000 are used to

compute the percentage of times (among the 1,000 * 10 test-

suite/version pairs) each percentage occurs and is used in

the computation of the second coordinates of the ordered

pairs.
We used this procedure to obtain the data for the rest of

the graphs in Fig. 3 for DejaVu and used a similar

procedure to obtain the data for the graphs for TestTube.
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