
Evaluating Collaborative Filtering
Over Time

Neal Kiritkumar Lathia

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

June 14, 2010

2

To my parents

and their fervent passion for education

Abstract

Recommender systems have become essential tools for users to navigate the plethora of content in the

online world. Collaborative filtering—a broad term referring to the use of a variety, or combination,

of machine learning algorithms operating on user ratings—lies at the heart of recommender systems’

success. These algorithms have been traditionally studiedfrom the point of view of how well they can

predictusers’ ratings and howpreciselythey rank content; state of the art approaches are continuously

improved in these respects. However, a rift has grown between how filtering algorithms are investi-

gated and how they will operate when deployed in real systems. Deployed systems will continuously be

queried for personalised recommendations; in practice, this implies that system administrators will iter-

atively retrain their algorithms in order to include the latest ratings. Collaborative filtering research does

not take this into account: algorithms are improved and compared to each other from astaticviewpoint,

while they will be ultimately deployed in adynamicsetting. Given this scenario, two new problems

emerge: current filtering algorithms are neither (a) designed nor (b) evaluated as algorithms that must

account for time. This thesis addresses the divergence between research and practice by examining how

collaborative filtering algorithms behave over time. Our contributions include:

1. A fine grainedanalysisof temporal changes in rating data and user/item similaritygraphs that

clearly demonstrates how recommender system data is dynamic and constantly changing.

2. A novel methodologyand time-basedmetrics for evaluating collaborative filtering over time,

both in terms of accuracy and the diversity of top-N recommendations.

3. A set ofhybrid algorithms that improve collaborative filtering in a range of differentscenarios.

These include temporal-switching algorithms that aim to promote either accuracy or diversity;

parameter update methods to improve temporal accuracy; andre-ranking a subset of users’ rec-

ommendations in order to increase diversity.

4. A set of temporal monitors that secure collaborative filtering from a wide range of different

temporal attacks by flagging anomalous rating patterns.

We have implemented and extensively evaluated the above using large-scale sets of user ratings; we

further discuss how this novel methodology provides insight into dimensions of recommender systems

that were previously unexplored. We conclude that investigating collaborative filtering from a temporal

perspective is not only more suitable to the context in whichrecommender systems are deployed, but

also opens a number of future research opportunities.

Acknowledgements

Over the past years, I have been very lucky: I have been surrounded by brilliant, intelligent and inspiring

people. They contributed to this thesis with their questions, insights, encouragement, and support; I am

much indebted to them all. I will never be able to thank my supervisors, Steve Hailes and Licia Capra,

enough: being mentored by researchers of this calibre was often all the motivation I needed. Thanks to

Cecilia Mascolo, who was the first to suggest that I apply for aPhD (would I be writing this had it not

been for that suggestion?); Daniele Quercia, with his unrivalled and contagious passion for research (and

blogging); and all of the members of the MobiSys group. Thanks to EPSRC Utiforo, for the financial

support, and thanks to all the project partners for the colourful meetings. A special thanks to Torsten

Ackemann: the experiments I ran over the past few years wouldstill be running had it not been for his

invaluable help with the department’s Condor cluster.

A highlight of the recent years is the time I spent in Telefonica I+D’s Multimedia Group in

Barcelona. A big thanks to Xavier Amatriain, Josep M. Pujol and Jon Froehlich; I not only learned

a lot during these summer months, but made some great friendsand thoroughly enjoyed my time there.

I hope to one day finally manage to go hiking with Jon.

While all those with whom I worked with deserve my utmost thanks, I am even more indebted to

my family and friends, who were there to take my mind off of my PhD. Thanks to Paul, Usha, Fergal and

Preeya; to Pavle and Justin (we await your return to London),and Viktor (who always turned up at my

doorstep at the right time). Thanks to my sisters, Sheila andAnna (who has put up with living with me).

A special thanks to Yasmin, who has always been there for me. Lastly, thanks to the bands I have been a

part of over these years (The Hartes; Pavle, and The Jukebox Leans; Sean and Duncan), for allowing me

to keep nurturing my love for music.

This thesis is dedicated to my parents.

Contents

1 Introduction 13

1.1 Motivating Information Filtering 14

1.2 Brief History of Recommender Systems 15

1.3 Problem Statement and Contributions 16

1.3.1 Timeliness of Research 17

1.4 Publications Related To This Thesis 18

1.5 Summary .. 19

2 Computing Recommendations With Collaborative Filtering 20

2.1 Ratings And User Profiles 20

2.1.1 Implicit and Explicit Ratings 21

2.2 Collaborative Filtering Algorithms 22

2.2.1 Grouping the Algorithms 23

2.2.2 Baselines .. 24

2.2.3 k-Nearest Neighbours 24

2.2.4 Matrix Factorisation 27

2.2.5 Hybrid Algorithms 28

2.2.6 Online Algorithms 30

2.2.7 From Prediction to Recommendation 30

2.3 Trust and User Modelling 31

2.3.1 Motivating Trust in Recommender Systems 31

2.3.2 Using Trust For Neighbour Selection 32

2.3.3 Trust-Based Collaborative Filtering 36

2.4 Evaluating Recommendations 37

2.4.1 Rating Datasets 37

2.4.2 Methodology .. 37

2.4.3 Metrics .38

2.5 Open Problems 40

2.5.1 Ratings: Changing Over Time 40

2.5.2 Methodology & Evaluation 41

Contents 6

2.5.3 System Robustness 42

2.6 Summary .. 42

3 Temporal Analysis of Rating Datasets 44

3.1 Rating Datasets 44

3.2 Ratings Over Time 45

3.2.1 Dataset Growth .. . 45

3.2.2 Changing Summary Statistics 49

3.2.3 Temporal User Behaviour 52

3.2.4 Daily and Weekly Trends 53

3.3 Similarity Over Time 54

3.3.1 Similarity Measures 54

3.3.2 Static Similarity 55

3.3.3 Temporal Similarity 58

3.4 Summary .. 67

4 Temporal Accuracy of Collaborative Filtering 69

4.1 Measuring Temporal Performance 69

4.1.1 Simulating Temporal Updates 69

4.1.2 Metrics: Sequential, Continuous, Windowed 70

4.1.3 Case Study .70

4.1.4 Methodology .. 74

4.2 Results 76

4.2.1 Sequential Results 76

4.2.2 Time-Averaged Results 77

4.2.3 Discussion .. 78

4.3 Adaptive Temporal Collaborative Filtering 79

4.3.1 Adaptive CF .79

4.3.2 Adaptive kNN .80

4.3.3 Adaptive SVD .83

4.4 Related Work 83

4.5 Summary .. 84

5 Temporal Diversity in Recommender Systems 86

5.1 Why Temporal Diversity? 86

5.1.1 Changes Over Time .. 86

5.1.2 User Survey .. 87

5.2 Evaluating for Diversity 91

5.2.1 From Predictions to Rankings 91

5.2.2 Methodology .. 91

Contents 7

5.2.3 Measuring Diversity Over Time 92

5.2.4 Results and Analysis 94

5.2.5 Diversity vs. Profile Size 94

5.2.6 Diversity vs. Ratings Input 96

5.2.7 Diversity and Time Between Sessions 96

5.2.8 Lessons Learned .. . 97

5.3 Promoting Temporal Diversity 97

5.3.1 Temporal Switching 97

5.3.2 Temporal User-Based Switching 98

5.3.3 Re-Ranking Frequent Visitors’ Lists 99

5.4 Discussion 100

5.5 Summary .. 101

6 Temporal Defences for Robust Recommendations 102

6.1 Problem Setting 102

6.2 Defeating Non-Temporal Attacks 103

6.3 Temporal Attack Models 105

6.3.1 Measuring Attacks 106

6.4 A Temporal Defence 107

6.4.1 Global Thresholding 107

6.4.2 User Monitoring .. . 109

6.4.3 Item Monitoring .. . 111

6.5 Adaptive Attack Models 113

6.5.1 The Ramp-Up Attack .. . 114

6.6 Discussion & Related Work 115

6.7 Summary .. 117

7 Conclusion 118

7.1 Thesis Contributions 118

7.2 Future Work 119

7.2.1 Using a Temporal Methodology 120

7.2.2 Beyond Temporal Collaborative Filtering 121

Appendices 122

A Diversity Surveys 123

A.1 Pre-Survey Instructions and Demographics 123

A.2 Movie Recommendations 124

A.2.1 Recommendation Structure 125

A.2.2 Survey 1: No Diversity 126

Contents 8

A.2.3 Survey 2: Diversified Popular Movies 126

A.2.4 Survey 3: Diversified Random Movies 127

A.3 Post-Survey Questions 128

Bibliography 128

List of Figures

3.1 Number of Users Over Time (ML-1, ML-2, Netflix) 46

3.2 Number of Movies Over Time (ML-1, ML-2, Netflix) 46

3.3 Number of Total Ratings Over Time (ML-1, ML-2, Netflix) 46

3.4 Non-Cumulative Netflix Daily Growth: the spikes represent days when a lot of

users/movies/ratings were added 47

3.5 Non-Cumulative ML-1 Daily Growth 47

3.6 Sparsity Over Time For Each Dataset: Netflix is the most sparse dataset 48

3.7 Rating Distribution Over Time Of Each Dataset: Netflix isthe only dataset with no

consistent ordering between the rating values 49

3.8 Datasets’ Global Rating Mean Over Time, Again highlighting the stop in ML-2’s growth 49

3.9 Datasets’ Global Rating Variance Over Time 50

3.10 Netflix Rating Median and Mode Over Time 50

3.11 Users Binned By Profile Size Over Time 51

3.12 Average User and Item Mean Rating Over Time 52

3.13 Standard Deviation of Ratings Per User Per Day 52

3.14 MovieLens: Average Number of Ratings Per Week (With Standard Deviation) 53

3.15 MovieLens: Average Number of Ratings Per Hour (With Standard Deviation) 54

3.16 ML-1 PCC, Weighted-PCC & Constrained-PCC Similarity Distribution 56

3.17 ML-1 Jaccard & Cosine Similarity Distribution 56

3.18 Similarity Between User1 and30: Similarity depends on how you measure it 60

3.19 Evolution of Similarity for the Jaccard,wPCC, Cosine and PCC Similarity Masures,

Comparing User 1 to All Other Users in the System 61

3.20 ML-1 User 1: New Relationships Left Over Time 63

3.21 In-degree long tail ofwPCC-kNN k = 100 ML-1 Graph 65

3.22 Results When Excluding or Exclusively Using Power Users 67

4.1 User 407: Three Views of Temporal Error 71

4.2 ML-1 Dataset: Three Views of Temporal Error 72

4.3 Temporal Experiments With a Static Test Set (User/Item Mean) 73

4.4 Temporal Experiments With a Static Test Set (kNN/SVD) 73

List of Figures 10

4.5 Temporal Experiment Test Sets’ Characteristics: Size,and Distribution of Users Who

Rate Items First and Items that Are Rated First 75

4.6 Sequential RMSE Results for User Bias Model and SVD 76

4.7 Sequential RMSE Results forkNN Algorithm With k ∈ {20, 50} 76

4.8 Time-Averaged RMSE for User Bias Model and SVD 77

4.9 Time-Averaged RMSE forkNN Algorithm and Users With Fewer Than 10 Ratings . . . 78

4.10 Time-Averaged RMSE Comparingk = 50, the Bias Model, and Adaptive CF; Propor-

tions of Users Who Selected Each Algorithm Over Time, and Proportions of Users Who

Changed Method At Each Interval 80

4.11 Time-Averaged RMSE Comparingk = 50 and Adaptive (k = α) kNN, Proportions of

Users Who Selected Eachk Value Over Time, and Proportions of Users whosek Value

Changed At Each Interval 81

4.12 Time-Averaged RMSE Gain of Adaptive-SVD With Different Subsets of Parameters . . 82

4.13 Time-Averaged RMSE of kNN With Limited History 84

5.1 Survey Results for (S1) Popular Movies With No Diversity(S2) Popular Movies With

Diversity and (S3) Randomly Selected Movies 88

5.2 Boxplots of Each Week’s Ratings for the Three Surveys 89

5.3 Top-10 and 20 Temporal Diversity for Baseline, kNN and SVD CF 93

5.4 Top-10 and 20 Temporal Novelty for Baseline, kNN and SVD CF 93

5.5 Profile Size vs. Top-10 Temporal Diversity for Baseline,kNN and SVD CF 95

5.6 Ratings Added vs. Top-10 Temporal Diversity for Baseline, kNN and SVD CF 95

5.7 Time Passed vs. Top-10 Temporal Diversity for Baseline,kNN and SVD CF 95

5.8 Comparing Accuracy with Diversity 96

5.9 Diversity (a) and Accuracy (b) of Temporal Switching Method 98

5.10 Temporal Diversity and Accuracy vs. Diversity With User-Based Temporal Switching . . 99

5.11 Temporal Diversity and Accuracy vs. Diversity When Re-Ranking Frequent Visitors’ Lists 99

6.1 Time-Averaged RMSE Of One-Shot Attack, and Prediction Shift When Pruning New-

comer’s Ratings, and Injecting Attacks Over Varying Time Windows 104

6.2 Attack Types and Impact With No Defences 106

6.3 Netflix Ratings Per User Per Week; Global Thresholding Precision and Recall 108

6.4 Global Thresholding Impact 109

6.5 Example Ratings Per User (1 Week), Proportion of RatingsPer High Volume Raters and

High Volume Raters Over Time 110

6.6 User Monitor/Combined Impact Results, and Proportion of High Volume Raters Who

Have Been In The Group for Varying Lengths of Time 111

6.7 Item Monitor: Average Precision & Recall 113

List of Figures 11

6.8 Example Ramp-Up Attack: How it Affects the Monitor’s Values, the Optimal Ratings

Per Sybil and Prediction Shift 114

A.1 Example User Instructions from Survey 1 123

A.2 Demographic Data Questions: Gender, Age, Average Movies Per Month, Familiarity

and Use of Recommender Systems 124

A.3 Example Screen Shot: Survey 1, Week 1 125

A.4 Example Screen Shot: Survey 1, Buffer Screen 1 125

A.5 Example Screen Shot: Survey 1, Final Questions 129

List of Tables

2.1 A Sample of Open Problems in Recommender Systems 40

3.1 Users, Items, Ratings in Each Dataset 45

3.2 MAE Prediction Error, MovieLens u1 Subset 57

3.3 MAE Prediction Error For All MovieLens Subsets 57

3.4 Average Unique Recommenders in Users’ Neighbourhoods 62

3.5 wPCC-kNN Graph Properties . 64

3.6 Unused Proportions of the Dataset 66

5.1 ANOVA P-Values and Pairwise T-Test Values For The 5 Weeks. 89

A.1 S1 (All 5 Weeks): All Time Worldwide Box Office Ranking (December 2009) 126

A.2 S2 (Weeks 1, 2): Diversified All Time Worldwide Box Office Ranking 126

A.3 S2 (Weeks 3, 4, 5): Diversified All Time Worldwide Box Office Ranking 127

A.4 S3 (Weeks 1, 2, 3, 4, 5): Randomly Selected Movies 128

Chapter 1

Introduction

The birth and proliferation of the Internet has revolutionised the way people interact with and consume

information. Resources that were previously difficult and expensive to find are now instantly available;

where communication used to be slow, it is now instantaneousand effortless, and tantalising projects

such as group-edited encyclopedias are now easily crowdsourced to millions. However, the evolving

nature of the web—including the rise of social media—means that the paradigm shift in how people

interact online continues to this day. A recent example is the explosive growth of microblogging: the

content of web (and, in particular, social network) sites isconstantly growing. The single constant aspect

of this landscape is that it is ever-changing.

Two themes have emerged from this setting. The first iscooperation: many online tasks now take

full advantage of interactions between web users in order tohelp each of them accomplish their own

goals. Wikis, blogs, product reviews, and question/answersites are a handful of examples where users

can both contribute (produce) and gain (consume) information: the Internet has blurred the lines between

those who create and enjoy content. The second is a battle forusers’attention. There is now a plethora

of sources where content is available; keeping up to date with the latest (movies, news, music, etc) is an

established daily challenge.

Recommender systems have emerged in the last decade as powerful tools that people can use to

navigate large databases according to their own interests.The engine that underlies these tools is a

Collaborative Filtering (CF) algorithm, which is an automated means of ranking content “based on the

premise that people looking for information should be able to make use of what others have already found

and evaluated” [ME95]. In doing so, these systems capture both of the above themes: users implicitly

cooperateas the CF algorithm uses each of their ratings and can focus their attentionon the content that

is likely to be of most interest to them. The key insight here is that, while retrieving information from

the web tends to be a solitary task, the collective set of experiences can be used to help each individual:

recommender systems can evaluate information quality based on the preferences of others with a similar

point of view.

In this chapter, we introduce the motivations that seed recommender system research (Section 1.1)

and provide a brief overview of the history of recommender system research (Section 1.2); we then

define the scope and problem space that we will address in thisthesis and outline the contributions that

1.1. Motivating Information Filtering 14

all subsequent chapters will make (Section 1.3). We close this chapter by listing a set of publications

that are related to this thesis.

1.1 Motivating Information Filtering

The most widely discussed motivation for researching recommender systems has remained largely un-

modified throughout the 15 years that these systems have beenactively studied. It can be described

as follows. People’s ability to make meaningful use of information (for example, finding and reading

interesting news reports) is rapidly falling behind therate at which information is growing (i.e., the

number of news reports that are becoming available). The webitself is not only saturated with content,

but constantly growing and evolving; people now suffer fromthe effects ofinformation overload. Al-

though this term was first coined by Alvin Toffler in 1970 [Tof70], it continues to describe the difficulty

people have when trying to navigate large information repositories—regardless of whether they contain

web documents or research articles, e-commerce catalogue products, musicians, movies (and so forth).

Recommender systems come to the rescue by suggesting new content to users based on what they have

liked in the past [PM97].

Clay Shirky has recently provided an alternative perspective which also substantially motivates

research into information filtering [Shi09]. He claims that“we are to information overload as fish are to

water,” and argues that information abundance has become the norm rather than the problem. Instead,

he argues that our focus should be on identifying how we previously filtered information and why those

filters, in the face of the information age, are no longer appropriate. For example, publishers—who have

the means to produce any book of their choosing—filter their output based on an economic incentive:

they are unlikely to sell books of low quality. The advent of the web, however, removed the physical

cost of binding a book. In doing so, it eliminated the incentive to publish a narrower range of titles.

Furthermore, individuals can now circumvent the publishing houses altogether and directly publish their

content online at little to no cost. In other words, we used tofilter publications based on (a) money

(the economic incentive to sell what is published) and (b) convenience (it was simply too difficult to

self-publish). The web has broken the filters we used to rely on by removing these constraints: we now

need new ways of filtering published media, and using automated recommender systems to do so may

be the tool we are looking for.

The final motivation that we discuss here also takes a different stance to the general context of infor-

mation filtering. As above, a vast amount of available content is assumed to already exist; the motivation

to filter it is that doing so results in heightened user activity (which often translates to increased revenue

for web-based businesses). Building tools like recommender systems, that offer personalised views of a

web site’s content to visiting users, encourages people to actively engage with the site: two thirds of the

movies rented by Netflix.com were recommended, Google news recommendations result in 38% more

clickthroughs, and 35% of the product sales on Amazon.com were recommended items [CL07]. The

motivation to filter information is therefore the fact that tailoring what each user sees to their own needs

has been the secret to success of a number of online business.

1.2. Brief History of Recommender Systems 15

1.2 Brief History of Recommender Systems

Over the last decade, research into recommender systems hasevolved: the particular target scenarios

that have been explored have mirrored changes to the way people use the Internet. In the early 1990s,

the first filtering system, Tapestry, was developed at the Xerox Palo Alto Research Center [GNOT92].

This system, recognizing that simple mailing lists do not ensure that all users interested in an e-mail’s

content receive the message, allowed users to annotate e-mail messages so that others could filter them

by building queries. This was the first system to capture the power of combining human judgments

(expressed as message annotations) with automated filtering, in order to benefit all of the system’s users.

Similar concepts were later applied to Usenet news by the GroupLens research project, which extended

previous work by applying the same principles to the Internet discussion forum, which had become too

big for any single user to manage [KMM+97]. The GroupLens project subsequently implemented the

MovieLens movie recommender system; the valuable rating data from it was then made available to the

wider research community1, which subsequently shifted focus from news boards toward filtering movies.

The initial success that recommender systems experienced is reflected in the surge of e-commerce

businesses that implement them; Schaferet al. review and describe a number of mainstream examples

[SKR99, SKR01]. The cited sites, like Amazon.com and CDNow.com, implement recommenders to

build customer loyalty, increase profits, and boost item-cross selling. More recently, web sites like

Last.fm have reaped the benefits of collecting user-music listening habits, in order to provide customized

radio stations and music recommendations to their subscribers. The influence, presence, and importance

of the recommender system is not only well established, but continues to grow over time.

The widespread commercial applicability of recommender systems is mirrored in the research do-

main by the extensive breadth of fields that these systems have a presence in. Recommender systems are

researched in the context of statistics [AW97], machine learning [CS01], human-computer interaction

[PC06, HKR00], social network analysis [MY07], distributed and mobile systems [MKR05, LHC07],

agent-based artificial societies [WBS07], computational trust [LSE08, ARH97], and more: it is becom-

ing impossible to capture all of the contributions that are being made to recommender system research.

More recently, researchers have explored how content-annotations (tags) can be used to compute rec-

ommendations [ZC08], how mobility can be used to recommend social network connections [QC09],

disseminate content over mobile networks [QHC07], filter online news [DDGR07] and improve search

engine performance [SBCO09].

The most significant recent event related to recommender system research was the announcement

of the Netflix prize in late 2006. Netflix—an online DVD rentalcompany from the U.S.—released a

dataset of user-movie ratings which, to date, remains the largest publicly available set of user-ratings.

They challenged the broader community to outpredict their own system by at least 10% and offered a

million dollar reward to the team that was best able to do so. The competition’s award itself shows the

extent to which web-based businesses value their recommender systems; over 20,000 teams spent 3 years

tackling the prediction problem before the winners were announced [Kor09b, TJB09, PC09]. A variety

1http://www.grouplens.org/node/73

1.3. Problem Statement and Contributions 16

of lessons were learned throughout the course of the competition; we highlight three here:

• Matrix Factorisation emerged early in the competition as a powerful prediction algorithm for CF

[Pia07]; it subsequently was consistently used throughoutall the leading solutions.

• Ensemble Methods. The winning teams did not invest their time in designing accurate predictors;

instead, they combined hundreds of individual prediction methods thattogetherachieved the target

prediction accuracy.

• Temporal Dynamics. The Netflix dataset included the date when users input each rating; this data

was soon found to be very useful when predicting user tastes,since it reflects the changing bias

that users may have [Pot08] or can be incorporated into a wider set of classifiers [Kor09a].

The competition also raised a number of questions, which motivate the work in this thesis.

• Competition Structure. Does the structure of the competition (i.e., predicting a hidden set of

user ratings) reflect how recommender systems are used in practice? In this thesis, we discuss

and propose a novel methodology that more closely reflects the reality of deployed recommender

systems.

• Metrics. The focus of the competition was accuracy: is this the best way to measure the perfor-

mance of a recommender system? More importantly, while the leading solutions certainlypredict

ratings well, do they provide betterrecommendations? In this thesis, we examine these points by

evaluating collaborative filtering across a number of different dimensions (accuracy, diversity, and

robustness).

In the following section, we examine these questions by defining the scope of the research presented in

this thesis.

1.3 Problem Statement and Contributions

Recommender systems are built as navigational tools and widely deployed online. In practice, this means

that a CF algorithm is implemented and then trained with all the available ratings that the system has for

the current content; the algorithm can then be queried to produce recommendations for each user. This

process is repeated in a cyclical manner. Why? CF algorithmstend to suffer from very high latency;

training an algorithm with the ratings of (potentially millions of) users is a very expensive operation,

often requiring exponential space and time, and can thus notbe repeated at will (there are, however, a

few exceptions [GRGP00]). Recommender systems therefore tend to perform iterative, regular updates

(e.g., weekly [Mul06]). Users will not be consistently offered newly computed recommendations, and

will have to wait for a system update for their latest ratingsto be included in the CF training phase. Since

recommendations often elicit further ratings, CF algorithms are iteratively retrained in order for them to

have learned from all the data (including any that may have been input since they were last trained).

The traditional research methodology used to design and evaluate CF algorithms, instead, is a two-

phase process: researchers measure the performance of an algorithm by first training a given algorithm

with a set of ratings and then querying it for recommendations. The problem here is that the research

1.3. Problem Statement and Contributions 17

methodology is static, while deployed systems operate in a cyclical manner: there is a rift between how

CF algorithms are studied and how they will be used in practice.

In the following chapters, we address problems that revolvearound the central theme oftemporal

updates to a recommender system. The research in this thesis constitutes bothmethodologicalandal-

gorithmiccontributions; the former being supported by analysis of large scale rating datasets, and the

latter validated with empirical experiments. We decomposeproblems related to this into three groups:

those pertaining to the rating data, evaluating a system that is updated, and securing the robustness of an

updating system:

• Temporal Features of Rating Data. We report the results of an extensive temporal analysis of

three rating datasets (Chapter 3). We draw two main conclusions: (a) CF datasets are subject to a

variety of changes over time that are not accounted for when computing recommendations (ranging

from dataset growth to customer preference drift) and (b) state of the art similarity measures violate

the CF assumption that like mindedness persists between people: they do not produce values that

consistently reflect similar people.

• Evaluating Recommender Systems Over Time. We define a novel methodology for evaluating

the temporal performance of CF algorithms (Chapter 4), based on simulating a number of iterative

updates. We accompany this methodology with a number of novel metrics that we use to visualise

two facets of CF performance:

– Accuracy. We show how temporal accuracy results provide insight intoa facet of perfor-

mance that would otherwise go unnoticed: accuracy does not improve over time, or with

additional ratings. We then propose and evaluate a set of hybrid-switching CF algorithms

that keep track of and improve upon their own temporal performance. We show how the

same switching strategy can be applied to a mixed set of CF algorithms, or to select and

update thek-Nearest Neighbour or Singular Value Decomposition parameters.

– Diversity. We define a novel metric for temporal diversity and show how diversity relates

to accuracy. Based on the observations we make when analysing CF temporal diversity, we

propose and evaluate a set of algorithms that promote diversity over time (Chapter 5).

• Securing Recommender System Robustness. We examine the threats that CF algorithms face

from a temporal perspective, and show how attackers who do not factor time into their attack can

easily be defeated. We then define how temporal attacks may beconducted and show their effects

on a large scale dataset of user ratings. We design and evaluate a series of monitors that can

identify when a variety of attacks are taking place. We finally show how attackers may modify

their attacks in order to circumvent these defences, and discuss the additional difficulty they will

face when trying to do so (Chapter 6).

1.3.1 Timeliness of Research

With the completion of the Netflix prize, collaborative filtering research is reaching an interesting junc-

ture. Striving for accuracy, which has long been the focal point of CF evaluation, has now been pushed

1.4. Publications Related To This Thesis 18

to extreme limits [APO09]. New themes, such as context-aware [ASST05] and mobile [QC09] recom-

mender systems are beginning to emerge, and recommender system methods are now being applied to

new domains (such as large-scale software projects [LQF10]). However, the temporal aspect of recom-

mender systems has not been addressed, andall of the new application domains assume systems that

will be deployed over time. Furthermore:

• While recommender systems are widely used online, there is no insight into how these systems

perform as they are updated and users continue rating content.

• The importance oftimehas emerged from the Netflix prize. However, work to date onlyconsiders

the importance of time in terms of drifting customer preferences [Kor09a]. In this thesis, we

consider an alternative (though not mutually exclusive) perspective: how the system performs

over time.

We believe that the work in this thesis is timely since it proposes novel methods and metrics to evaluate

CF algorithms’ temporal performance and provides insightsbased on empirical evidence that cannot be

investigated with current research methods.

1.4 Publications Related To This Thesis

The following publications (and submissions) are related to this thesis:

1. [Lat08a] N. Lathia. Computing Recommendations With Collaborative Filtering. Chapter 2
in Collaborative and Social Information Retrieval and Access: Techniques for Improved User
Modeling. pp. 23–41. September 2008. IGI Global.

2. [LHC08c] N. Lathia, S. Hailes, L. Capra. Trust-Based Collaborative Filtering.
In Joint iTrust and PST Conferences on Privacy, Trust Management and Security (IFIPTM).
pp 119–134. July 2008. Trondheim, Norway.

3. N. Lathia, S. Hailes, L. Capra. The Role of Trust in Collaborative Filtering. Under Submission.

4. [LHC08b] N. Lathia, S. Hailes, L. Capra. The Effect of Correlation Coefficients on Communities
of Recommenders. InACM SAC TRECK. pp. 2000–2005. March 2008. Fortaleza, Brazil.

5. [LHC08a] N. Lathia, S. Hailes, L. Capra. kNN CF: A TemporalSocial Network.
In ACM Recommender Systems (RecSys). pp. 227–234. October 2008. Lausanne, Switzerland.

6. [LHC09b] N. Lathia, S. Hailes, L. Capra. Temporal Collaborative Filtering With Adaptive
Neighbourhoods. InACM SIGIR. pp. 796–797. July 2009. Boston, Massachusetts, USA.

7. [LHC09a] N. Lathia, S. Hailes, and L. Capra. Evaluating Collaborative Filtering Over Time.
In ACM SIGIR Workshop on the Future of IR Evaluation. pp. 41–42. July 2009.
Boston, Massachusetts, USA.

8. [LHC10b] N. Lathia, S. Hailes and L. Capra. Temporal Diversity in Recommender Systems.
In ACM SIGIR. July 2010. Geneva, Switzerland.

9. [LHC10a] N. Lathia, S. Hailes, L. Capra. Temporal Defenses for Robust Recommendations.
ECML/PKDD Workshop on Privacy and Security Issues in Data Mining and Machine Learning
September 2010. Barcelona, Spain.

These appear in this thesis as follows: [Lat08a, LHC08c] and[3] review state of the art approaches

to CF (Chapter 2), [LHC08b, LHC08a] investigate the temporal qualities of CF algorithms (Chapter

1.5. Summary 19

3), [LHC09b, LHC09a] propose novel metrics and algorithms for predicting ratings over time (Chapter

4), [LHC10b] analyses the diversity of recommendations andevaluates methods to augment temporal

diversity (Chapter 5), and [LHC10a] addresses the problem of system robustness (Chapter 6).

There are also a number of other publications that were completed during this time period; while

relevant to the broader topics of trust and collaborative filtering, they are not directly within the scope of

this thesis:

1. [LHC07] N. Lathia, S. Hailes, L. Capra. Private Distributed Collaborative Filtering Using
Estimated Concordance Measures. ACM RecSys 2007. Minneapolis, USA.

2. [Lat08b] N. Lathia. Learning to Trust on the Move. In JointTIME-SPACE Workshops (IFIPTM).
June 2008. Trondheim, Norway.

3. [ALP+09] X. Amatriain, N. Lathia, J.M. Pujol, H. Kwak, N. Oliver. The Wisdom of the Few:
A Collaborative Filtering Approach Based on Expert Opinions From the Web.
In ACM SIGIR. July 2009. Boston, Massachusetts, USA.

4. [LAP09] N. Lathia, X. Amatriain, J.M. Pujol. Collaborative Filtering With Adaptive Information
Sources. InIJCAI Workshop on Intelligent Techniques for Web Personalization and
Recommender Systems. July 2009. Pasadena, California, USA.

1.5 Summary
In this chapter, we have introduced the generic scenario that recommender systems are best suited to:

settings where thevolumeof available information is so great that it exceeds theability that users have to

find what they are looking for. Recommender systems are useful since they push content to users without

requiring them to formulate explicit queries. Instead, they use the implicitcooperationbetween users in

order to rank content for each one of them. We discussed the various motivations that may lie behind

building such systems: (a) coping with information overload, (b) replacing filters that no longer work,

and (c) making money by encouraging users to interact with their recommendations. We then briefly

reviewed the 15 years that recommender systems have been researched and the variety of fields that

contribute to it—ranging from statistics to human computerinteraction. We placed a particular emphasis

on the Netflix prize, since questions that arise from the competition’s structureandmetric of choice

motivated the work in the following chapters.

In this thesis, we focus on the temporal performance of CF algorithms: we aim to analyse and

measure how CF operates over time. In doing so, we endeavour to make both methodological and

algorithmic contributions, ranging from a variety of temporal analyses (ratings, similarity, prediction and

diversity performance) to a wide range of algorithms to address the accuracy, diversity, and robustness of

these algorithms over time. We begin in the following chapter by reviewing state of the art collaborative

filtering algorithms.

Chapter 2

Computing Recommendations With

Collaborative Filtering

Recommender systems, based on Collaborative Filtering (CF) algorithms, generate personalised con-

tent for their users by relying on a simple assumption: thosewho have had similar opinions in the past

will continue to share similar tastes in the future. This chapter serves as a review of the state of the

art in collaborative filtering. We first introduce the ratingdata, detailing how the ratings are collected

(Section 2.1). We then introduce the various approaches that have been adopted when designing CF al-

gorithms. In particular, we differentiate betweendata mining(Section 2.2) anduser modelling(Section

2.3) approaches: the focus of the former is on designing algorithms that augment the predictive power

of CF when applied to a set of ratings; the latter, on the otherhand, builds methods based on precon-

ceived models of trust between system users. We then explorehow these systems are evaluated (Section

2.4), including the methodology and metrics related to CF evaluation, and enumerate a number of open

problems (Section 2.5) that we will address in this thesis.

2.1 Ratings And User Profiles

The focal point of recommender systems is theuser-rating dataupon which the system operates. Before

introducing the underlying algorithms of recommender systems, we define the terms related to this data

that will be used throughout this thesis.

• User: the end user of the system, or the person we wish to provide with recommendations. The

entire set of users is referred to as the community.

• Item: a generic term used to denote the system’s content, which maybe a song, movie, product,

web page, etc.

• Rating: a numerical representation of a user’s preference for an item; these are considered in more

depth in Section 2.1.1.

• Profile: the set of ratings that a particular user has provided to the system. Equivalently, the profile

of an item is the set of ratings that have been input for that item by the users.

• User-Item Matrix: The ratings input by all users are often represented as a matrix, where columns

are individual items, and rows are users. Each matrix entryru,i is the rating (an numerical value

2.1. Ratings And User Profiles 21

on a given range, e.g. 1-5 stars) input by useru for item i.

Recommender systems revolve around the set of user profiles;by containing a collection of ratings of

the available content, this set is the focal source of information used when providing each user with

recommendations. Ratings can be collected eitherexplicitly or implicitly; in the following section we

describe and compare each of these methods.

2.1.1 Implicit and Explicit Ratings

Ratings (human opinions of the system’s content) can come from two separate sources. On the one hand,

the opinions could be in the form ofexplicit ratings: users may be asked to rate items on aN -point (e.g.,

five-star) Likert scale. In this case, the rating is a numericvalue that is input directly by the user. On

the other hand, opinions can be extracted from the user’simplicit behaviour. These include time spent

reading a web page, number of times a particular song or artist was listened to, or the items viewed or

purchased when browsing an online catalogue; logging implicit behaviour is an attempt to capture taste

by reasoning on how users interact with the content.

The most significant difference between explicit and implicit ratings is that, in the latter scenario,

users cannot tell the system that theydislikecontent: while an explicit scale allows users to input a low

score (or negative feedback), implicit ratings can only infer positive behaviour. Huet al [HKV08] further

this notion by describing how, in the implicit case, the system does not determine a user’spreferencefor

an item, but rather reasons on theconfidenceit has in a user’s affinity to the item, based on measured

behaviour. A consequence of this is the possibility of making noisy measurements. For example, Hu

et al [HKV08] mention that it is impossible to differentiate between a user who watches a television

program for a long period of time or is asleep in front of the television; this is a problem where simple

thresholding is not a sufficient solution. However, Amatriain et al [APO09] show that explicit ratings

are also prone to noise: users may be careless and irregular when they manually input ratings.

The art of collecting ratings thus seems to be context-specific: furthermore, Herlockeret al identi-

fied that the act of rating itself is motivated by different reasons, including self-expression and helping

or influencing others’ decisions [HKTR04]. For example, movie-recommender systems often prefer to

let users explicitly rate movies, since users may dislike a particular movie they have watched. Music

recommender systems tend to construct user profiles based onlistening habits, by collecting metadata

of the songs each user has listened to; these systems favour implicit ratings by assuming that users will

only listen to music they like. Implicit ratings can be converted to a numeric value with an appropriate

transpose function (the algorithms we describe next are hence equally applicable to both types of data).

Both implicit and explicit ratings share a common characteristic: the set of available judgments for

each user, compared to the total number of items that can be rated, will be very small. In particular, it is

impossible to determine whether an item remainsunratedbecause it is disliked or because the user has

simply not yet encountered the content to date. The lack of information is known as the problem ofdata

sparsity, and has a strong effect on the efficacy of any algorithms thatbase their recommendations on

this data. However, rating sparsity is a natural consequence of the problem that recommender systems

address: if it were feasible for users to find and rate all the content they were interested in, recommender

2.2. Collaborative Filtering Algorithms 22

systems would no longer be needed.

Rating data is related to the broader category of relevance feedback from the information retrieval

community [RL03, FO95]; in fact, recommender systems can bebroadly considered to be query-less

retrieval systems, that operate solely using user feedback, in order to both find and rank content. The

main goal of recommender systems is to filter content in orderto provide relevant and useful sugges-

tions to each user of the system. There are two methods to do so: thecontent-basedandcollaborative

approaches. Content-based algorithms formulate recommendations by matching descriptions of the sys-

tem’s items to those items in each user profile [PB07]. These systems, however, are not appropriately

or readily applied to the entire range of scenarios where users may benefit from recommendations: they

require content that can be described in terms of its attributes, which may not always be the case. Fur-

thermore, simply matching on attributes disregards what users think about the content, as the preference

data remains untouched. In the following section, we reviewthe alternative approach: collaborative

filtering algorithms.

2.2 Collaborative Filtering Algorithms

The task of a recommender system algorithm is to take as inputa set of user ratings and output person-

alised recommendations for each user. To do so, recommendersystems use a collaborative filtering (CF)

algorithm, which mines patterns within the ratings in orderto forecast each user’s preference for unrated

items. At the broadest level, the recommendations are generated by:

• Collecting Ratings. The system collects ratings from each user.

• Predicting Missing Values. Collected ratings are input to a CF algorithm: the algorithm is trained

with the available ratings, and asked topredict the values of the missing ratings.

• Ranking and Recommending. The predictions are used to create a personalised ranking of un-

rated items for each user; this tailored list is served to each user as a ranked list of recommenda-

tions.

Users can continue rating items, and the process of rate-predict-recommend continues. This process

highlights a number of features of CF. The founding assumption is thatlike-mindedness is persistent:

if users have shown similar interests in the past, they are likely to enjoy similar items in the future. In

other words, the ratings contain useful information to train learning algorithms. CF algorithms tend to

disregard any descriptive attributes of the items (or what the items actually are) in favour of the ratings,

and focus on generating recommendations based solely on theopinions that have been input. Embedded

in this is a fine-grained notion of similarity between items:two items are similar if they are enjoyed by

the same users, regardless of what they actually are.

The problem of generating recommendations, and the use of the data that is available to tackle

this task, has been approached from a very wide range of perspectives: in this section, we elaborate on

a number of widely-used algorithms. Each perspective applies different heuristics and methodologies

in order to create recommendations. Historically, the two broadest categories of collaborative filters

were the memory and model based approaches. In the followingsection, we define these categories and

2.2. Collaborative Filtering Algorithms 23

discuss whether this grouping of approaches reflects state of the art research.

2.2.1 Grouping the Algorithms

A range of literature partitions the CF algorithms into two groups: memory based and model based ap-

proaches. Memory-based CF has often been referred to as the dominant method of generating recommen-

dations due to both its clear structure and successful results, making it an easy choice for system develop-

ers. In essence, this group includes thek-Nearest Neighbour (kNN) algorithm and the range of variations

it has been subject to (we explore these further in Section 2.2.3). Model based approaches to CF, instead,

aim to apply any of a number of other classifiers developed in the field of machine learning, including the

use of singular value decomposition, neural net classifiers, Bayesian networks, support vector machines,

perceptrons, induction rule learning, and latent semanticanalysis [BHK98, YST+04, CS01] to the prob-

lem of information filtering. A complete introduction to allavailable machine learning algorithms is

beyond the scope of this thesis, and we point the reader to appropriate introductory texts [Alp04]. Each

differs in the method applied to learn how to generate recommendations, but they all share a similar

high-level solution: they are based on inferring rules and patterns from the available rating data.

ThekNN algorithm differentiates itself from members of the model based group by being alazy

or instance-based learning algorithm; it operates on a subset of ratings (or instances) when computing

predicted values. As we explore below, thekNN training phase consists of forming neighbourhoods for

each user (or item). In other words, this phase entails selecting asubsetof the user-item matrix for each

of the predictions that the algorithm will subsequently be asked to make. On the other hand, model based

approaches adopteager learningcharacteristics, and need not return to the training data when computing

predictions. Instead, they formulate amodel, or higher level abstraction, of the underlying relationships

between user preferences. For example, matrix factorisation (Section 2.2.4) approaches decompose the

user-item matrix into a set of user and item factors and compute recommendations with these, rather than

the ratings themselves.

These differences have motivated the grouping of CF algorithms into memory and model based ap-

proaches, and lead to studies comparing the relative performance of each group in different CF domains

[GFM05]. However, this partitioning is not clear-cut. For example, thekNN algorithmmodelsuser

preferences with user (or item) neighbourhoods; a user’s taste is represented by a sample of peers who

have exhibited similar preferences. Similarly, model based approaches learn from the available instances

(or memory) of user ratings; their efficacy is also strictly related to the training data.

Furthermore, grouping algorithms in this way fails to acknowledge the diversity of research ap-

proaches used when designing and evaluating CF algorithms.Broadly speaking, these approaches tend

to be based ondata mining, where the focus is on extrapolating predictive power from the available rating

data, oruser modelling, that designs algorithms using preconceived notions of howthe system’s users

will interact with (or, for example, trust) each other. Should a user-modelling perspective, which uses a

kNN algorithm, be a memory or model based approach? Is trust a memory or model based character-

istic? Due to these shortcomings, in the following sectionswe review a set of CF algorithms (baseline,

k-Nearest Neighbour, matrix factorisation, and hybrid methods) that reflect the contributions of both the

2.2. Collaborative Filtering Algorithms 24

mining and modelling approaches without strictly adheringto the memory/model dichotomy.

2.2.2 Baselines

The first set of approaches we examine arebaselines. These are the simplest predictions that can be

made, and include the user mean (or mean of itemsi rated by useru). Given a useru, with profileRu,

predictionŝru,t for each target itemt are assigned the same value:

r̂u,t =
1

|Ru|
×
∑

i∈Ru

ru,i (2.1)

Similarly, given a target itemt with profileRi, item mean values are computed as:

r̂u,t =
1

|Ri|
×
∑

u∈Ri

ru,i (2.2)

In general, the item-mean method is preferred to the user-mean, since the latter is not conducive to

ranking any of the content (since all predictions for a user will have the same value). Similarly, if the

item-mean method is coupled with thefrequencyof ratings for an item, this method corresponds to

recommending a non-personalised popularity-sorted ranking of items.

Thebias model, as described by Potter [Pot08], builds on the above by predicting useru’s rating

for an itemi usingu’s mean rating (bias,bu) and the average deviation from each user’s mean for item

i (preference,pi). Overall, this method is highly dependent on each user’s mean to predict the ratings;

we elected to investigate it since user means will change over time. For a set of usersU and itemsI, the

biases and preferences are initialised as zeroes and then computed by iterating over the following:

∀i ∈ I : pi =
1

|Ru|
×
∑

u∈Ri

(ru,i − bu) (2.3)

∀u ∈ U : bu =
1

|Ri|
×
∑

i∈Ru

(ru,i − pi) (2.4)

The iteration continues until the difference in the Root Mean Squared Error (RMSE) achieved on the

training set is less than a pre-defined valueδ. The predicted ratinĝru,i for a user-item pair is computed

as:

r̂u,i = bu + pi

The main role of these and similar [BK07] baseline methods (sometimes referred to as “global effects”)

has been to normalise data prior to applying other classifiers. Further amendment to the method scales

each rating by the user’s variance, if that variance is non-zero [Pot08].

2.2.3 k-Nearest Neighbours

Thek-Nearest Neighbour (kNN) algorithm has enjoyed enourmous popularity in the domain of recom-

mender systems; it appeared in early research efforts [HKBR99] and continues to be applied in state of

the art solutions [BK07]. Two flavours of the algorithm exist: the user-based [HKBR99] and item-based

[SKKR01, LSY03] approaches. The two approaches differ in how they view the underlying rating data:

the user-based approach views the data as a collection ofuserswho have rated items, while the item-

based approach views the same data as a collection ofitemsthat have been rated by users. It is important

2.2. Collaborative Filtering Algorithms 25

to note, however, that the techniques described here can be equally applied to both user or item pro-

files. In the interest of consistency, we adopt the terminology of the user-based approach throughout this

section.

In general, it is impossible to claim with any authority thatone method will always outperform

the other. However, the item-based approach is often preferred since available CF datasets tend to have

many more users than items. In this section, we elaborate on how the algorithm works by decomposing

it into two stages: neighbourhood formation and opinion aggregation.

Neighbourhood Formation

This first step aims to find a unique subset of the community foreach user by identifying others with

similar interests to act as recommenders. To do so, every pair of user profiles is compared, in order

to measure the degree of similaritywa,b shared between all user pairsa andb. In general, similarity

values range from1 (perfect similarity) to−1 (perfect dissimilarity), although different measures may

only return values on a limited range. If a pair of users have no profile overlap, there is no means of

comparing how similar they are, and thus the similarity is set to zero.

Similarity can be measured in a number of ways, but the main goal of this measure remains that of

modelling the potential relationship between users with a numeric value. The simplest means of mea-

suring the strength of this relationship is to count the proportion of co-rated items, or Jaccard similarity,

shared by the pair of users [Cha02]:

wa,b =
|Ra,i ∩i Rb,i|

|Ra,i ∪i Rb,i|
(2.5)

This similarity measure disregards the values of the ratings input by each user, and instead only considers

what each user has rated; it is the size of the intersection ofthe two users’ profiles over the size of

the union. The underlying assumption is that two users who continuously rate the same items share a

common characteristic: their choice to rate those items.

The most cited method of measuring similarity is the PearsonCorrelation Coefficient (PCC), which

aims at measuring the degree of linearity that exists on the intersection of the pair of users’ profiles

[BHK98, HKBR99]:

wa,b =
ΣN

i=1(ra,i − r̄a)(rb,i − r̄b)
√

ΣN
i=1(ra,i − r̄a)2ΣN

i=1(rb,i − r̄b)2
(2.6)

Each rating above is normalised by subtracting the user’s mean rating (e.g.,̄ra), computed using Equation

2.3. The PCC similarity measure has been subject to a number of improvements. For example, if the

intersection between the pair of user’s profiles is very small, the resulting similarity measure is highly

unreliable, as it may indicate a very strong relationship between the two users (who have only co-rated

very few items). To address this, Herlockeret al [HKBR99] introduced significance weighting: if the

number of co-rated itemsn is less than a threshold valuex, the similarity measure is multiplied byn
x

.

This modification reflects the fact that similarity measuresbecome more reliable as the number of co-

rated items increases, and has positive effects on the predictive power of the filtering algorithm. The

same researchers also cite the constrained Pearson correlation coefficient, which replaces the user means

in the above equation with the rating scale midpoint.

2.2. Collaborative Filtering Algorithms 26

Similarity measures are also often coupled with other heuristics that aim at improving the reliability

and power of the derived measures. For example, Yuet al [YWXE01] introduced variance weighting;

when comparing user profiles, items that have been rated by the community with greater variance receive

a higher weight. The aim here is to capture the content that, being measurably more “controversial” (and

eliciting greater disagreement amongst community members) is a better descriptor of taste. Measuring

similarity, however, remains an open issue; to date, there is little that can be done other than compar-

ing prediction accuracy in order to demonstrate that one similarity measure outperforms another on a

particular dataset.

There are a number of other ways of measuring similarity thathave been applied in the past. These

include the Spearman Rank correlation, the Vector Similarity (or cosine angle between the two user

profiles), Euclidean and Manhattan distance, and other methods aimed at capturing the proportion of

agreement between users, such as those explored by Agresti and Winner [AW97]. Each method differs

in the operations it applies in order to derive similarity, and may have a strong effect on the power the

algorithm has to generate predicted ratings.

Opinion Aggregation

Once comparisons between the user and the rest of the community of recommenders (regardless of the

method applied) are complete, predicted ratings of unratedcontent can be computed. As above, there

are a number of means of computing these predictions. Here wepresent two [HKBR99, BK07]. Both

equations share a common characteristic: a predicted rating pa,i of item i for usera is computed as a

weighted average of neighbour ratingsrb,i. The first is a weighted average of neighbour ratings:

pa,i =
Σbrb,i × wa,b

Σwa,b

(2.7)

The second subtracts each recommender’s mean from the relative rating; the aim of this normalisation

step is to minimize the differences between different recommenders’ rating styles, by considering how

much ratings deviate from each recommender’s mean rather than the rating itself.

pa,i = r̄a +
Σb(rb,i − r̄b)× wa,b

Σwa,b

(2.8)

The weightswa,b may come from one of two sources. They may be the similarity measures we found

in the first step; neighbours who are more similar will have greater influence on the prediction. On the

other hand, recent work [BK07] uses similarity weights toselectneighbours, and then re-weights the

selected group simultaneously via a linear set of equationsin order to maximise the accuracy of the

selected group on the user’s profile.

The natural question to ask at this step is: which recommender ratings are chosen to contribute to the

predicted rating? A variety of choices is once again available, and has a direct impact on the performance

that can be achieved. In some cases, only the top-k most similar neighbours are allowed to contribute

ratings, thus guaranteeing that only the closest ratings create the prediction. However, it is often the

case that none of the top-k neighbours have rated the item in question, and thus the prediction coverage,

or the number of items that can be successfully predicted, isnegatively impacted. A straightforward

2.2. Collaborative Filtering Algorithms 27

alternative, therefore, is to consider the top-k recommenders who can give rating information about the

item in question. This method guarantees that all predictions will be made; on the other hand, predictions

may now be made according to ratings provided by only modestly-similar users, and may thus be less

accurate. A last alternative is to only select users above a pre-determined similarity threshold. Given

that different similarity measures will produce differentsimilarity values, generating predictions this

way may also prevent predictions from being covered. All methods, however, share a common decision:

what should the threshold value, or value ofk, be? This question remains unanswered and dependent on

the available dataset; research in the area tends to publishresults for a wide range of values.

In general, while the process of selecting neighbours is a focal point ofkNN approaches, selecting

the best neighbours is an inexact science. Rafteret al [ROHS09] examined the effect that neighbours

(selected with the methods described above) have on prediction accuracy, and found that neighbours are

oftendetrimentalin this process. Instead, [LAP09] reports on the potential massive gains in accuracy if

an optimal set of neighbours is selected. The problem of neighbour selection, and approaches designed

according to user models, will be further addressed in the Section 2.3.

Up to this point, we have considered the process of generating recommendations strictly from the

so-called memory based, nearest-neighbour approach. In the following section, we review another of the

most prominent CF algorithms, which is based on matrix factorisation.

2.2.4 Matrix Factorisation

Recommender systems connectlarge communities of users tolarge repositories of content; the rating

data that they contain is thus invariably sparse. A powerfultechnique to address this problem is that of

matrix factorisation, based on Principle Component Analysis (PCA) or Singular Value Decomposition

(SVD) [Pat06, MKL07, KBC07]; in this section we focus on SVD.

As detailed by Amatriainet al [AJOP09], the core function of an SVD is to use the sparse rating

data in order to generate twodescriptivematrices that can be used to approximate the original matrix. In

other words, given a matrix of user-item ratingsR, with n users andm items, the task of an SVD is to

compute matricesU andV such that:

R = UλV T (2.9)

U is an(n × r) matrix, andV is an(r × m) matrix, for a given number of required featuresr, andλ

is a diagonal matrix containing the singular values. Each matrix contains important information. For

example,V describes the system content in terms of affinity to each feature: in fact, this information can

be used to describe the implicit relations among the system’s content by showing how each item relates

to others in the computed feature space.

Once the decomposed matrices have been computed, the ratingfor a user-item pair is approximated

as the dot product between the user’s feature vector (fromU) and the item’s feature vector (fromV). In

other words, for a useru and itemi, the predicted ratinĝru,i is:

r̂u,i =
r
∑

f=0

Uu,f × Vf,i (2.10)

2.2. Collaborative Filtering Algorithms 28

Based on the above, theU andV matrices themselves can be approximated iteratively: after initialising

each matrix, the features can be updated in order to minimisethe squared error between the computed

predictions and ratings for the available data instances. This process is bounded by using an appropriate

learning rate (to avoid overfitting) and a number of rounds that should be dedicated to each feature

[Pia07].

Although factorisation addresses data sparsity, it does not overcome it: computing the SVD itself is

challenging when data is missing. Sarwaret al [SKKR00] address this by replacing the missing values

with item mean ratings. Factorisation serves many purposes: it may be used as both a preprocessing

or prediction mechanism; in the next section, we explore howit has been used in the context ofhybrid

algorithms.

2.2.5 Hybrid Algorithms

As we have seen above, there is a wide range of algorithms suitable for the CF context. Each algorithm

offers a different method of reasoning on the rating data, produces different results, and has different

shortcomings. This range of differences between these methods motivates using more than one recom-

mendation algorithm in unison, in order to reap the benefits of each method (and, hopefully, overcome

the limitation that each one suffers when used alone). In [Bur02], Burke provides a comprehensive re-

view of hybrid algorithms: in this section, we review popular approaches, which we decompose into two

groups:preprocessingandensemble methods. Each group need not be implemented alone. In fact, there

is no limit as to how hybrid algorithms may be designed; it is simply the case that CF methods become

hybrid when they are designed using more than a single classifier.

Preprocessing

The purpose of preprocessing is either tomodifyor partition the raw data, in order to apply one of the

above classification algorithms. Two widely used approaches arenormalisinguser ratings (as discussed

in Section 2.2.2), andclusteringthe data into smaller groups. The former tends to transform the integer

ratings into a set of residuals, by subtracting user biases [Pot08, BK07]; these account for the different

ways that users interpret the rating scale (e.g., some usersconsistently rate higher than others). There is a

variety of techniques available for the latter purpose, includingk-means, hierarchical, and density based

clustering [AJOP09, JMF99]. For example, Rashidet al [RLKR06] proposed a filtering algorithm suit-

able for extremely large datasets that combines a clustering algorithm with thekNN prediction method.

The aim was to cluster similar users together first, in order to overcome the costly operation of mea-

suring the similarity between all user pairs in the system, and then apply a nearest-neighbour technique

to make predictions. Much like the work presented by Li and Kim [LK03], clustering methods can be

implemented to replace the “neighbourhood formation” stepof thekNN approach. The Yoda system,

designed by Shahabiet al [SBKCM01], is an example of a system that performs similar functions: clus-

tering is implemented to address the scalability issues that arise as the community of users and available

items grows.

Similarly, a sequence of classification algorithms can be designed, where the output of each method

is the input to the next; each algorithm preprocesses the data for the subsequent method. For example,

2.2. Collaborative Filtering Algorithms 29

the rating matrix can be factorised first and each user’sk-nearest neighbours can then be computed using

the feature matrix, rather than the raw data itself [Kor08].The aim of this is to compute neighbours

using thedensefeature matrix, rather than the extremely sparse rating data—-the hope being that more

reliable neighbours can be found this way.

Ensemble Methods

The second set of hybrid techniques we review differentiatethemselves from the above by focusing on

combining output rather than refining it over sequential steps [Die00, Pol06]. In other words, classifi-

cation algorithms are run independently of one another, andthe output of each is then collapsed into a

unified set of predictions and recommendations. There are two options here: hybrid-switchingor weight-

ing. Switching entails selecting individual predictions fromeach classifier, based on the assumption that

some classifiers will be more accurate on a subset of instances than others [LAP09]. Weighting, on the

other hand, combines the predictions of each classifier as a set of linear equations [ZWSP08]; weights

are typically found by means of regression. First, the training data is further split intotraining andprobe

subsets. The algorithms are then given the training subset and queried with the probe instances.

Given a setP = [a, b, ..., z] of predictors weighted by a vectorw = [wa...wz], a vector of probe

ratingsr ∈ [r1...rn], and predictionŝrx,n by classifierx for itemn, predictions of each probe rating can

be formulated as a linear combination of each classifier’s prediction:

r̂n =
∑

c∈P

(r̂c,n × wc) (2.11)

If the set of predictions from each classifier is combined into a single matrixX , the problem of finding

a classifier weight vector can be expressed in matrix form:
















r̂a,1 r̂b,1 ... r̂z,1

r̂a,2 r̂b,2 ... r̂z,2

...

r̂a,n r̂b,n ... r̂z,n

































wa

wb

...

wz

















=

















r1

r2

...

rn

















(2.12)

The idea is to minimise the error between the weighted predictions matrixX and the vector of

ratingsr by simultaneously solving a set of linear equations. To solve for the weightsw, each side of the

equation must be multiplied by the inverseXT of X :

(

XTX
)

w =
(

XT r
)

(2.13)

The same weights that have been learned are then applied to the full training set in order to predict any

unrated items.

There are other techniques available for blending, based ongradient boosted decision trees

[Kor09b], neural networks [PC09], and kernel ridge regression [TJB09]; it is beyond the scope of this

thesis to cover all of these in detail. In the context of the Netflix prize, hundreds of predictors were

blended together to produce the final solution. However, this is where the border between using CF

to solve apredictionproblem or build a recommender system lies. In fact, the chief product officer at

Netflix stated1 in an interview that:
1http : //www.appscout.com/2009/09/netflix 1m prize winners inclu.php

2.2. Collaborative Filtering Algorithms 30

“There are several hundred algorithms that contribute to the overall 10 percent improvement

- all blended together,” Hunt said.“In order to make the computation feasible to generate the

kinds of volumes of predictions that we needed for a real system we’ve selected just a small

number, two or three, of those algorithms for direct implementation.”

2.2.6 Online Algorithms

All of the above algorithms share a common trait: they are alltrained and queried offline; thus rein-

forcing why system administrators need to iteratively retrain their system in order to include the latest

ratings. However, there is a separate class of techniques—online algorithms—that dynamically update

as ratings are introduced into the system. Online algorithms are usually decomposed into four steps:

(a) receiving an instance to predict (e.g., a user-movie pair), (b) predicting the value (rating) of that in-

stance, (c) receiving the true rating input by the user, and finally (d) updating itself according to some

predetermined loss function. There are a number of exampleswhere online algorithms have been ap-

plied to collaborative filtering contexts. These range fromslope one approaches [LM05] to online matrix

factorisation feature update [RST08].

One of the main challenges facing online algorithms is that the way they work is not a perfect

match with how recommender systems work. First, algorithmsare not given asingleinstance to predict

at any time; they are given a (large)setof instances—all the items that a particular user has not rated.

Predictions of this set will then be used to generate a rankedlist of recommendations. They will also

only receive feedback on a subset of these predictions; there are no guarantees governing if and when

they will receive the true rating for an item, and how the update will be biased by the predictions that it

has made itself. Lastly, since items need to be ranked, the algorithm will need to be queried prior to the

user interacting with the system; it may also be excessive tore-predict all instances when the user inputs

a single rating. In fact, at this point it becomes difficult todistinguish between how online algorithms

will be used differently to the offline ones explored above.

2.2.7 From Prediction to Recommendation

Once predicted ratings have been generated for the items, and sorted according to predicted value, the

top-N items can be proposed to the end user as recommendations. This step completes the process

followed by recommender systems, which can now elicit feedback from the user. User profiles will

grow, and the recommender system can begin cycling through the process again: re-computing user

similarity measures, predicting ratings, and offering recommendations.

It is important to note that the user interface of the system plays a vital role in this last step. The

interface not only determines the ability the system has to present generated recommendations to the end

user in a clear, transparent way, but will also have an effecton the response that the user gives to received

recommendations. Wu and Huberman [WH07b] conducted a studyinvestigating the temporal evolution

of opinions of products posted on the web. They concluded that if the aggregate rating of an item is

visible to users and the cost of expressing opinions for users is low (e.g. one click of a mouse), users will

tend to express either neutral ratings or reinforce the viewset by previous ratings. On the other hand, if

the cost is high (such as requiring users to write a full review), users tended to offer opinions when they

2.3. Trust and User Modelling 31

felt they could offset the current trend. Changing the visibility of information and the cost imposed on

users to express their opinions, both determined by the interface provided to end users, will thus change

the rating trend of the content, and the data that feeds into the filtering algorithm.

2.3 Trust and User Modelling

The previous section highlighted the data mining approaches to CF; what follows is a review of state of

the art research that aims to augment these techniques by incorporatinguser modelsinto collaborative

filtering. In particular, we focus on the use oftrust in recommender systems. However, before we

proceed, we explore trust itself: what is trust? How has it been formalised as a computational concept?

A wide range of research [ARH98, JIB07, AH08] stems from sociologist Gambetta’s definition of

trust [Gam90]. Gambetta states:

“trust (or, symmetrically, distrust) is a particular levelof the subjective probability with

which an agent will perform a particular action”

Trust is described as the level of belief established between two entities in a given context. Discussing

trust as a probability paved the way for computational models of trust to be developed, as first explored

by Marsh [Mar94] and subsequently by a wide range of researchers [Gol08]. The underlying assumption

of trust models is that users’ (or agents’, peers’, etc) historical behaviour is representative of how they

will act in the future: much like CF, the common theme is one oflearning. The differences between the

two emerges from the stance they adopt toward their target scenarios; unlike CF, trust models are often

adopted as a control mechanism (by, for example, rewarding good behaviour in commerce sites with

reputation credit) and are user-centred techniques that are both aware and responsive to the particular

characteristics desired of the system (such as, in the previous example, reliable online trade).

Trust models have been applied to a wide range of contexts, ranging from online reputation systems

(e.g. eBay.com) to dynamic networks [CNS03] and mobile environments [QHC06]; a survey of trust in

online service provision can be found in [JIB07]. Due to its widespread use, trust modelling may draw

strong criticism with regards to its name: it is arguable that, in many of these contexts, “trust” is a vague

synonym of “reliability,” “competence,” “predictability,” or “security.” However, encapsulating these

scenarios under the guise of trust emphasises the common themes that flow between them; namely, that

researchers are developing mechanisms for users to operatein computational environments that mimic

the way humans interact with each other outside of the realm of information technology.

2.3.1 Motivating Trust in Recommender Systems

The motivations for using a notion of trust in collaborativefiltering can be grouped into three categories:

1. In order to accommodate theexplainability required by system users. Both Tintarev [TM07] and

Herlockeret al [HKR00] discuss the effect explainability has on users’ perceptions of the recom-

mendations that they receive, especially those recommendations that are significantly irrelevant or

disliked by the users. Chen and Pu [PC06] further investigate this issue by building explanation

interfaces that are linked to, and based on, a formal model oftrust. Although a major compo-

2.3. Trust and User Modelling 32

nent of these works revolve around presenting information to the end users, they recognise that

building an explainable algorithm is a key component of transparency: it converts a “black-box”

recommendation engine into something to which users can relate.

2. To addressdata sparsity. The volume of missing data has a two-fold implication. First, new users

cannot be recommended items until the system has elicited preferences from them [RAC+02].

Even when ratings are present, each of a pair of users who may actually share commoninterests

will never be cited in each other’s neighbourhood unless they shareratingsfor items: information

cannot be propagated beyond each user’s neighbourhood. Second, computed similarity will be

incomplete, uncertain, and potentially unreliable.

3. To improve the robustnessof CF to malicious attacks. Since recommender systems are often

deployed in an e-commerce environment, there are many parties who may be interested in trying

to exploit the system for their benefit, using what are known as shilling attacks [MBW07]. From

the point of view of the ratings themselves, it is difficult todifferentiate between what was input

by honest users and the ratings that have been added in order to perform an attack. Trust models

come to the rescue: by augmenting traditional collaborative filtering with a notion of how users

interact, the robustness of recommender systems can be improved.

A consequence of incorporating trust models into CF is also often a measurable benefit in terms of

prediction accuracy; however, state of the art algorithms that areonly tuned for accuracy [BK07] do not

mention trust models at all.

2.3.2 Using Trust For Neighbour Selection

One of the central roles that trust modelling has served in CFis to address the problem ofneighbour

selection, by replacing thekNN neighbourhood formationstep above. Traditional approaches to CF are

based on populating users’kNN neighbourhood with others who share the highest measurable amount

of similarity with them [HKBR99]. However, these methods donot guarantee that the right neighbours

will be selected; the aim of using trust is thus to capture information that resides outside of each user’s

localsimilarity neighbourhood in a transparent, robust and accurate way.

Two main approaches have been adopted:implicit methods, which aim to infer trust values be-

tween users based on item ratings, andexplicit methods, that draw trust values from pre-established (or

manually input) social links between users. Both methods share a common vision: the underlying rela-

tionships (whether inferred or pre-existing) can be described and reasoned upon in a web of trust, a graph

where users are nodes and the links are weighted according tothe extent that users trust each other.

Computing Implicit Trust

The first perspective of trust in CF considers values that canbe inferred from the rating data: a web of

trust between users is built from how each user has rated the system’s content. In these cases, trust is

used to denotepredictabilityand to allow the different ways that users interact with the recommender

system; in fact, many of these measures build upon error measures, such as the mean absolute error.

For example, Pitsilis and Marshall focus on deriving trust by measuring the uncertainty that sim-

2.3. Trust and User Modelling 33

ilarity computations include [PM04, PM05]. To do so, they quantify the uncertaintyu(a, b) between

usersa andb, which is computed as the average absolute difference of theratings in the intersection of

the two user’s profiles. The authors scale each difference bydividing it by the maximum possible rating,

max(r):

u(a, b) =
1

|Ra ∩Rb|

∑

i∈(Ra∩Rb)

(

|ra,i − rb,i|

max(r)

)

(2.14)

The authors then use this uncertainty measure in conjunction with the Pearson correlation coefficient to

quantify how much a user shouldbelieveanother. In other words, trust is used to scale similarity, rather

than replace it. Similarly, O’Donovan and Smyth define a trust metric based on the recommendation

error generated if a single user were to predict the ratings of another [OS05, OS06]. The authors first

define a rating’s correctness as a binary function. A ratingrb,i is correctrelative to a target user’s rating

ra,i if the absolute difference between the two falls below a thresholdǫ:

correct(ra,i, rb,i) ⇐⇒ |ra,i − rb,i| ≤ ǫ (2.15)

The notion of correctness has two applications. The first is at the profile level, TrustP : the amount

of trust that usera bestows on another userb is equivalent to the proportion of times thatb generates

correct recommendations. Formally, ifRecSet(b) represents the set ofb’s ratings used to generate

recommendations, andCorrectSet(b) is the number of those ratings that arecorrect, then profile-level

trust is computed as:

TrustP (b) =
|CorrectSet(b)|

|RecSet(b)|
(2.16)

The second application of Equation 2.15 is item-level trust, TrustI ; this maps to the reputation a user

carries as being a good predictor for itemi, and is a finer-grained form of Equation 2.16, as discussed in

[OS05]. Both applications rely on an appropriate value ofǫ: setting it too low hinders the formation of

trust, while setting it too high will give the same amount of trust to neighbours who co-rate items with

the current user, regardless of how the items are rated (since correct is a binary function). Similar to

Pitsilis and Marshall, this metric also operates on the intersection of user profiles, and does not consider

what has not been rated when computing trust.

In [LHC08c], the authors approach trust inference from a similar perspective, but extend it from a

binary to continuous scale and include ratings that fall outside of the profile intersection of a user pair.

Rather than quantifying the correctness of a neighbour’s rating, thevaluethatb’s rating of itemi would

have provided toa’s prediction, based ona’s rating:

value(a, b, i) = 1− ρ|ra,i − rb,i| (2.17)

This equation returns1 if the two ratings are the same, and0 if user b has not rated itemi; otherwise,

its value depends on thepenalisingfactorρ ∈ [0, 1]. The role of the penalising factor is to moderate

the extent to which large differences between input ratingsare punished; even though the two ratings

may diverge, they share the common feature of having been input to the system, which is nevertheless

relevant in sparse environments such as CF. A low penalisingfactor will therefore have the effect of

populating neighbourhoods with profiles that are very similar in terms of what was rated, whereas a high

2.3. Trust and User Modelling 34

penalising factor places the emphasis on how items are rated. In [LHC08c], the authors useρ = 1
5 . The

trust between two users is computed as the average valueb’s ratings provide toa:

trust(a, b) =
1

|Ra|

(

∑

i∈Ra

value(a, b, i)

)

(2.18)

This trust metric differs from that of O’Donovan and Smyth bybeing a pairwise measure, focusing on

the value that userb gives to usera. Unlike the measures explored above, the value sum is divided by

the size of the target user’s profile,|Ra|, which is greater than or equal to the size of the pair’s profile

intersection,|Ra ∩ Rb|, depending on whethera has rated more or fewer items thanb. This affects the

trust that can be awarded to those who have the sparsest profiles: it becomes impossible for a user who

rates a lot of content to trust highly those who do not, while not preventing the inverse from happening.

The three methods we have presented here are not the only proposals for trust inference between

users in CF contexts. For example, Wenget al [WMG06] liken the CF web of trust structure to a

distributed peer-to-peer network overlay and describe a model that updates trust accordingly. Hwang and

Chen [HC07] proposed another model that again marries trustand similarity values, taking advantage of

both trust propagation and local similarity neighbourhoods. Papageliset al [PPK05] do not differentiate

between similarity and trust, by defining the trust between apair of users as the correlation their profiles

share; they then apply a propagation scheme in order to extend user neighbourhoods.

Many of the problems of computed trust values are akin to those of similarity; for example, it

is difficult to set a neighbourhood for a new user who has not rated any items [RAC+02]. However,

the characteristics of trust modelling allow for solutionsthat would not emerge from similarity-centric

CF. For example, [LHC08c] includes a constantbootstrappingvalueβ for users who have rated no

items, which translates to initial recommendations that are based on popularity, and would become more

personalised as the user inputs ratings.

All of the methods we have explored share the common theme of using error between profiles as

an indication of trust. Similarly, there is a broad literature on similarity estimation that does not adopt

the language of trust modelling, such as the “horting” approach by Aggarwalet al [AWWY99] and the

probabilistic approach by Blanzieri and Ricci [BR99]. In all of the above, each user pair is evaluated

independently; the significant differences appear in how each method reflects an underlying user model

of trust.

Selecting Neighbours Explicitly

The alternative to computing trust values between users is to transfer pre-existing social ties to the rec-

ommender system. There are two approaches that have been followed here: on the one hand, users may

be asked explicitly to select trustworthy neighbours. On the other hand, social ties may be drawn from

online social networks where it is possible to identify eachuser’s friends.

Massa and Avesani describe trust-awarerecommender systems [MB04, MA07]. In this scenario,

users are asked to rate both items andother users. Doing so paves the way to the construction of an

explicit web of trust between the system users. Since users cannot rate a significant portion of the other

users, the problem of sparsity remains. However, assuming that user-input trust ratings for other users are

2.3. Trust and User Modelling 35

more reliable than computed values, trust can then be propagated to broaden each user’s neighbourhood.

Trust propagation is a highlyexplainableprocess: ifa trustsb, andb trustsc, then it is likely thata

will trust c. However, this transparency is obscured as the propagationextends beyond a two-hop rela-

tionship. The validity of propagation rests on the assumption that trust is transitive, an assumption that

can be challenged once the propagation extends beyond “reasonable” limits. In small-world scenarios

(such as social networks), this limit is likely to be less than the famed six-degrees of separation, since it

is apparent that people do not trust everyone else in an entire social network. Much like similarity and

computed trust, the efficiency of trust propagation is therefore dependent on the method used and the

characteristics of the underlying data.

A range of other works centre their focus on the social aspectof recommendations. For example,

Bonhard and Sasse [Bon04, PBH07] perform a series of experiments that analyse users’ perception of

recommendations: they conclude that participants overwhelmingly prefer recommendations from famil-

iar (as opposed to similar) recommenders. The experiments reflect the ongoing asymmetry between

algorithmic approaches to CF, which tend to focus on predictive accuracy, and user studies that mainly

consider recommender system interfaces. It is difficult to evaluate one independently of the other, and

Bonhard’s motivations for the use of social networks echo those used to motivate the use of trust models

in Section 2.3.1: in order to reconcile the end users’ mentalmodel of the system and the system’s model

of the users.

Golbeck explored the power of social networking in the FilmTrust system [Gol06], showing that

these systems produce comparable accuracy to similarity-based CF. The application of social networks

can also be beneficial to CF since relationships in the web of trust can be augmented from simple

weighted links to annotated, contextual relationships (i.e.,b is my sister,c is my friend). Context-aware

recommender systems is a nascent research area; Amodaviciuset al [ASST05] provide a first view into

this subject by looking at multi dimensional rating models.Full coverage of this falls beyond the scope

of this chapter; however, it is apparent how network ties canbe fed into mechanisms that include who

and where the users are before providing recommendations.

The main criticism of many of these approaches is that they require additional explicit input from

the end user; in effect, they move against the fully automated view of recommender systems that original

collaborative filtering proposed. However, social networks are on the rise, and users proactively dedicate

a significant portion of time to social networking. The implementation of these methods therefore aims

to harness the information that users input in order to servethem better.

It is important to note that both the computed and explicit methods of finding trustworthy neighbours

are not in conflict; in fact, they can be implemented side by side. Both require users to be rating items

in order to provide recommendations, while the latter also requires social structure. Popular social

networking sites, such as Facebook2 include a plethora of applications for which users are requested to

rate items, making the conjunction of the two methods ever easier.

2http://www.facebook.com/apps/

2.3. Trust and User Modelling 36

2.3.3 Trust-Based Collaborative Filtering

Once neighbours have been chosen, content can be filtered. However, there are a range of choices

available to do so; in this section we outline the methods implemented by the researchers we discussed

in the previous section. The approaches revolve around rating aggregations; in other words, taking a

set of neighbour ratings for an item and predicting the user’s rating using Equation 2.8. The difference

between each method is (a) what neighbours are selected, and(b) how the ratings from each neighbour

are weighted. We split the methods into three strategies, trust-basedfiltering, weighting, and social

filtering.

1. Trust-Based Filtering. In this case, neighbours are selected (filtered) using computed trust values.

The ratings they contribute are then weighted according to how similar they are with the target user.

2. Trust-Based Weightingdeparts fully from similarity-based CF: neighbours are both selected and

their contributions weighted according to the trust they share with the target user.

3. Social Filtering. Neighbours are selected based on the social ties they sharewith the target user.

Ratings can then be weighted according to either their shared similarity or trust with the target

user.

All of these methods assume that users will be using the rating scales symmetrically, i.e. if two users

predict each other perfectly, then the difference(ra,i − r̄a) will be the same as(rb,i − r̄b), regardless

of what each user’s mean rating actually is. In practice, this is not always the case: predictions often

need to be changed to fit the rating scale, since users each usethis scale differently. This notion was

first explored in the aforementioned work by Aggarwalet al [AWWY99], who aimed to find a linear

mapping between different users’ ratings. However, [LHC08c] extends this notion to encompass what

they refer to assemantic distance, by learning a non-linear mapping between user profiles based on the

rating contingency table between the two profiles. The results offer accuracy benefits in the MovieLens

dataset, but do not hold in all cases: translating from one rating scheme to another is thus another research

area that has yet to be fully explored.

The above work further assumes that the underlying classifier is akNN algorithm. Recent work,

however, has been moving away fromkNN-based recommender systems. In fact, the data derived from

users telling the system whom they trust can also be input into other algorithms, such as matrix factorisa-

tion techniques [MYLK08, MKL09]. In these works, Maet aldescribe matrix factorisation models that

account for both what users rate (their preferences) and to whom they explicitly connect (who they trust).

While certainly beneficial to cold-start users, introducing trust data into factorisation models reignites

the problem oftransparency: how will users understand how their input trust values contribute to their

recommendations? A potential avenue for research lies in the effect that hybrid trust models have on

users. For example, Koren describes how a neighbourhood andfactorisation model can be combined

[Kor08], and this work may begin to bridge the chasm between the factorisation-based andkNN-based

use of trust in recommender systems.

2.4. Evaluating Recommendations 37

2.4 Evaluating Recommendations

In order to design and evaluate CF algorithms, researchers require three components: (a) adatasetof

user ratings to which to apply the algorithm, (b) amethodologyto conduct repeatable experiments,

and (c) appropriatemetricsto measure system performance. In this section, we review each of these

components.

2.4.1 Rating Datasets

The rise of Web 2.0 sites equipped with developer application programming interfaces (APIs) to access

user data is improving both theease of accessandwealth of dataavailable to CF research. Dell’Amico

and Capra [DC08] are but one example of researchers who have collected and experimented with a

dataset of music preferences from Last.fm3. Amatriainet al [ALP+09] gathered movie rating datasets

from Rotten Tomatoes4 and Flixster5. However, requiring researchers to each crawl the web for a dataset

is not only an unnecessary overhead, but does not allow for results to be compared between different

researchers’ experiments if the dataset is not shared. There is also a number of pre-packaged rating

datasets. In this thesis we focus on two; the largest and mostwidely studied datasets of ratings:

• Netflix Prize Dataset: The largest of the available datasets, this set of movie ratings consists of

100 million ratings, by480, 189 users who have rated one or more of the17, 770 movies on a1−5

star scale.

• MovieLens Dataset: There are currently three movie-rating datasets available from the Grou-

pLens website6. The first includes100, 000 ratings of1, 682 movies by943 users; the second

has1 million ratings for3, 900 movies by6, 040 users; the last includes10 million ratings and

100, 000 tags for10, 681 movies by71, 567 users. As with the Netflix dataset, items are rated on

a1− 5 star scale. In this thesis, we have used the first two datasetssince the third dataset was only

released in 2009.

Other available datasets include theJesterjoke-rating dataset, and theBook-Crossingdataset of book

ratings. This is by no means an exhaustive list of datasets; for example, Github7 (an online collection of

source code repositories) released a dataset of the repositories “watched” by each of its members, and

ran a competition that also aimed at designing an algorithm to recommend repositories to its users.

2.4.2 Methodology

The aim of an experiment with user data is to manipulate the ratings in a way that (a) reflects assumptions

of how the users will interact with the end system, and (b) produces measurable results that mirror the

users’ experience.

The assumptions that researchers make with regards to the former goal are twofold: first, that users

will have already providedat leastone rating to the system. Given that only the ratings are being

3http://www.last.fm
4http://www.rottentomatoes.com
5http://www.flixster.com
6http://www.grouplens.org
7http://contest.github.com

2.4. Evaluating Recommendations 38

used to generate recommendations (demographic or item-attribute data is unavailable), then lack of any

rating data does not allow CF algorithms to produce personalised results. Second, if a user’s preferences

were already known, then ranking items according to the user’s ratings would provide the most useful

recommendations. Therefore, the main focus of CF evaluation has historically been that ofpredicting

the ratings of items that users have not rated.

To evaluate how well an algorithm is accomplishing the task of providing recommendations, re-

searchers use one of the available rating datasets. The dataset is first partitioned into two subsets; the

first acts as atraining set that will be available for the algorithm to learn from. The second subset is the

testset, with rating values that remain hidden to the algorithm.An evaluation will query the algorithm

to make predictions on all the items in the test set. Results are then cross-validated by repeating experi-

ments on multiple partitionings of the data. Hidden in thesesteps is an assumption that the performance

of adeployedalgorithm (with an online recommender system) will be comparable to that of the selected

training and test sets.

However, one of the fundamental problems with this methodology is related to the second goal: the

extent to which each user’squalitativeexperience with the system can be translated into measurable,

quantitativeresults is questionable. In effect, researchers reduce theproblem of generating interesting,

serendipitous, and useful recommendations into one of accurate preference prediction. In the following

section, we review the metrics used for this task and discussthe controversy surrounding their use.

2.4.3 Metrics

The most widely adopted metrics used to evaluate the efficacyof CF algorithms deal with prediction

accuracy. Available measures of statistical accuracy include the mean absolute error (MAE) and the root

mean squared error (RMSE):

MAE =

∑

N |ra,i − r̂a,i|

N
(2.19)

RMSE =

√

∑

N (ra,i − r̂a,i)2

N
(2.20)

Both of the above measures focus on the difference between a rating of itemi by usera, ra,i, and the

prediction for the same user and item,r̂a,i. In general, both metrics measure the same thing and will

thus behave similarly; the difference lies in the degree to which different mistakes are penalised. There

are a number of modified mean error metrics that aim to introduce fairer representations of the system

users. For example, Massa uses the mean absoluteusererror in order to compensate for the fact that

more predictions are often made for some users rather than others [MA07] and O’Donovan and Smyth

compare algorithm performance by looking at how often one ismore accurate than another [OS05].

Coverage metrics complement accuracy results: they aim to quantify the breadth of predictions that

are possible using a given method. They compare the proportion of the dataset that is uncovered to the

size of the test set, in order to measure the extent that predictions were made possible using the current

algorithm and parameters.

While prediction accuracy continues to receive significantattention, due to it being the metric of

choice of the Netflix prize, the focus on accuracy in recommender research continues to be disputed.

2.4. Evaluating Recommendations 39

While we already described the difficulty of translating qualitative experience into quantitative values,

there are a number of further reasons for this:

• Accuracy Metrics Focus on Predictionsthat have been produced, regardless of whether the

prediction was at all possible or not. Massa and Avesani [MA07] show that prediction accuracy

continues to perform well when pre-defined values are returned. For example, if each prediction

simply returned the current user mean (thus not allowing content to be ranked and converted into

recommendations), accuracy metrics would still not reflectsuch poor behaviour.

• Test Set Items Have Already Been Rated. An evaluation method that only makes predictions on

items in the test set (items that the user has rated) may tend to show good performance, especially

if there is low variance in the way users rate. Real systems, that have to provide recommendations

based on making predictions onall unrated items, may have much worse performance.

• Predictions vs. Recommendations. McLaughlin and Herlocker [MH04] argue that striving for

low mean errors biases recommender systems towards goodpredictorsrather thanrecommenders.

In other words, an error in a prediction affects the mean error the same way, regardless of whether

the prediction enabled the entry to qualify as a recommendation or not.

Mean errors will therefore not tend to reflect the end user experience. Concerns over accuracy-centric

research continues; McNeeet al[MRK06] even argued that striving for accuracy is detrimental to recom-

mender system research, and propose that evaluations should revert to user-centric methods. Accuracy

metrics persist, however, due to the need for empirical evaluations of filtering algorithms that can com-

pare the relative performance of different techniques without including the subjective views of a limited

(and, more often than not, inaccessible) group of test subjects. Furthermore, while it remains difficult to

understand exactly how accurate predictions translate into usefully ranked recommendations, accuracy

is a useful metric for understanding the extent to which an algorithm is approximating the preference

values input by the system users.

Examining an algorithm from the point of view of top-N recommendations provides an alternative

means of evaluation; rather than considering the predictions themselves, information retrieval metrics

(i.e., precision and recall) are used on a list of items sorted using the predictions. However, sorting a list

of recommendations often relies on more than predicted ratings: for example, how should one sort two

items that both have the highest possible rating predicted?How large should the list sizeN be? These

kinds of design decisions affect the items that appear in top-N lists, and has motivated some to change

from deterministic recommendation lists to looking at whether items are “recommendable” (i.e., their

prediction falls over a predefined threshold) or not [ALP+09].

Other error measures have been applied when analyzing the accuracy of a filtering algorithm, in-

cluding receiver-operating characteristic (ROC) sensitivity [HKBR99]. This metric aims at measuring

how effectively predicted ratings helped a user select high-quality items. Recommendations are therefore

reduced to a binary decision: either the user “consumed” thecontent (i.e., watched the movie, listened

to the song, read the article) and rated it, or did not. By comparing the number of false-positives, or

items that should have been recommended that were not, and false-negatives, or not recommending an

2.5. Open Problems 40

Source Problems Example Resources

Data Sparsity [MKL07]
Noise [APO09, HKV08]

Cold-Start [NDB07, PPM+06, RAC+02]
Privacy [LHC07, Can02, BEKR07]

Popularity Bias [CC08]

Algorithm Accuracy [BK07]
Latency [GRGP00]

Scalability [BK07]

System Robustness [MBW07, LR04]
Distributed [Zie05]

User Explainability [HKR00, PC06]
Context [ASST05]

Implicit Trust [MA07]
Explicit Trust [Bon04, Gol06]

Evaluation Metrics [HKTR04, BHK98]
Accuracy [MRK06]

User Experience [MH04]

Table 2.1: A Sample of Open Problems in Recommender Systems

item that should have been, this metric aims at measuring theextent to which the recommender system

is helping users making good decisions. However, this method relies on a prediction score threshold that

determines whether the item was recommended or not, which often does not translate to the way that

users are presented with recommendations. A comprehensivereview of metrics used when evaluating

CF can be found in [HKTR04].

2.5 Open Problems

There is a wide variety of problems that state of the art recommender systems face. These range from

user-centric issues(poor recommendation explainability, users distrusting recommendations), todata-

related problems(namely, the adverse consequences of data sparsity),algorithm-related challenges(la-

tency, scalability, accuracy),system-wide weaknesses(vulnerability to attack), andevaluation-related

issues(or, how to best evaluate CF). A summary of these open issues,along with pointers to relevant

research in each direction, is provided in Table 2.1. Each category that we have enumerated, however, is

intertwined with the others: for example,datacold-start issues are related touserpreference elicitation,

and affect thealgorithm’s accuracy. This section enumerates the open research problems pertaining to

recommender systems that we addressed in this thesis.

2.5.1 Ratings: Changing Over Time

Given the number of users and items in a typical recommender system, the rating matrix tends to be

extremely sparse. The problem of data sparsity highlights the dependence that filtering algorithms have

on the altruism of the community of users making use of the recommender system; if users do not rate

2.5. Open Problems 41

items then the cyclical process of generating recommendations cannot be completed. Both current state

of the art algorithms and evaluation techniques are aware ofthis shortcoming; however, they both also

view the matrix as astaticdata collection. In doing so, they assume that (a) changes inthe data over time

are not relevant when predicting user preferences, and (b) the current data is sufficient for computing

appropriate recommendations (e.g., to find similarkNN neighbourhoods).

The relationship between the assumption of persisting like-mindedness and the reality of neigh-

bourhood patterns over time in recommender systems remainslargely unexplored. We thus explore

ratings over time: delving into how datasets change over time and the different patterns of behaviour that

emerge. We show that observing a snapshot of similarity between all the system users is both subjec-

tive to how the similarity is computed, unreliable, and difficult to differentiate from a random process.

By modelling neighbourhood-based CF as a graph that is iteratively updated, we highlight a significant

break between the assumptions and operation of CF. Analysisof the ratings over time lays the foundation

for our proposed methodology that modifies traditional CF evaluation by including a notion of temporal

updates.

2.5.2 Methodology & Evaluation

In Section 2.4.2, we recounted how CF algorithms are evaluated: datasets are split and algorithms are

queried about a test set, after learning from the training set. Repeating this process provides a cross-

validated snapshot of the expected performance of an algorithm when trained with a dataset with those

particular characteristics. However, deployed recommender systems do not handle unchanging datasets:

they are iteratively updated ongrowing sets of user ratings. Deployed systems need to cope with a

growing set of both users and items; unfortunately, though,they are not evaluated as such. In Chapter 4

we propose a novel method to perform CF experiments that includes the notion of temporal updates. We

extend current accuracy-based metrics onto the temporal dimension, and evaluate the performance of a

series of CF algorithms over time. Lastly, we show that introducing an awareness of temporal updates

into the algorithm’s operation can offer improved temporalaccuracy.

While accuracy remains a crucial focal point of recommendersystem evaluation, the controversy

that surrounds its use reflects the fact that it only highlights a single dimension of performance: how close

the predictions are to the user input values. There are a widerange of qualities that may be desired of a

recommender system, such as diversity. The problem of diversity has already been explored by Smyth

and McLave [SM01]. If a user rates an item (for example, rating an album by The Beatles), loading the

user’s recommendations with extremely similar items (i.e., all of the other albums by The Beatles) is

often not helpful at all; the user has not been pointed towards new information, and is only inundated

with recommendations towards content that is probably known already. The question therefore becomes:

to what extent do filtering algorithms generate diverse recommendations? The temporal dimension to

this problem considers the sequence of recommendations with which users are provided as they interact

with the system: to what extent does the system compute thesamerecommendations over and over?

In Chapter 5, we explore the temporal diversity of CF algorithms and the relationship they share with

temporal accuracy. We then design and evaluate a hybrid algorithm that increases temporal diversity.

2.6. Summary 42

2.5.3 System Robustness

The last problem we consider here relates tosystem vulnerabilities. Attackers may aim to modify the

recommendations that are output by a system for any number ofselfish reasons. They may wish arti-

ficially to promote a piece of content, to demote content (perhaps since it competes with the attacker’s

content), or to target a specific audience of users. These attacks are aided by the near-anonymity of users

participating in the recommender system. In some cases, signing up to an e-service that uses recom-

mender system technology only requires an email address. Creating a number of fake accounts is thus

not beyond the realms of possibility; furthermore, if each of these fake accounts is treated as an honest

user, it becomes possible to change the output of recommender systems at will.

Research in the field of recommender system vulnerabilitiescan be divided into two categories. On

the one hand, system administrators require a means of identifying attacks by being able to recognise

both when an attack is occurring and which users are malicious. On the other hand, the vulnerabilities

themselves are addressed; how can these attacks be prevented? How can the cost or effect be min-

imise? A comprehensive review of the vulnerabilities of collaborative recommender systems and their

robustness to attack can be found in Mobasheret al [MBW07].

The growing body of literature addressing CF attacks takes abinary view of the rating matrix: either

it has been attacked, or it has not. The former is created using the latter along with an appropriate attack

model, and the objective of attack detection algorithms is to separate the honest and dishonest profiles.

However, as recommender systems are updated over time, thisscenario is unlikely to appear in deployed

systems: sybils’ profiles may be builtover time, and may be able to inflict damage prior to being in

the detectable state that they are when evaluated by researchers. In Chapter 6, we address this problem

by designing and evaluating a series of monitors that alleviate the impact of these attacks by detecting

behavioural shifts in the system that indicate ongoing anomalous activity.

2.6 Summary

In this chapter, we have introduced the data, algorithms, and open problems related to CF recommender

systems. CF automates the process of generating recommendations by drawing from its assumption of

like-mindedness between its users. In other words, people who have displayed a degree of similarity in

the past will continue sharing the same tastes in the future.The model of users held by these systems

therefore focuses on the set of preferences that each individual has expressed, and interactions between

users can be determined according to values derived by operating on the information available in users’

profiles.

The approaches themselves, however, originate from a wide variety of backgrounds, and include

content-based methods, which infer recommendations from item attributes and machine-learning in-

spired solutions; we discussed baseline,kNN, matrix factorisation, and hybrid approaches. Nearest

neighbour algorithms follow a three-stage process: findinga set of recommenders for each user based

on a pre-defined measure of similarity, computing predictedratings based on the input of these rec-

ommenders, and serving recommendations to the user, hopingthat they will be accurate and useful

2.6. Summary 43

suggestions. The choice of what method to implement relies on a fine balance between accuracy and

performance, and is also dependent on the specific context that recommendations need to be made for.

Each method has its own strengths and weaknesses, and hybridmethods attempt to reap the best of both

worlds by combining a variety of methods.

The general problems faced by recommender systems remain the same, regardless of the approach

used to build the filtering algorithm. These problems were grouped into a set of categories: problems

originating from the data, algorithm, system, users, and evaluation. In this thesis, we tackle a fundamen-

tal issue underlying all approaches that have been proposedbefore: that is, how to model and evaluate a

system that will be deployed over time.

Chapter 3

Temporal Analysis of Rating Datasets

The previous chapter highlighted an important problem withrecommender systems: CF evaluation does

not take into account that the data used to compute recommendations is subject to change over time.

In this chapter, we analyse this phenomenon. We begin by introducing the rating datasets we use for

this study in Section 3.1. We then split our analysis into twoparts: in Section 3.2, we perform an in-

depth analysis of the ratings that recommender systems receive. In Section 3.3, we investigate how these

changes affect thesimilarity between users over time (and, consequently, the recommendations that

CF computes). These observations lay the foundations of work we present in the following chapters;

namely, how to use temporal information to improve the accuracy, augment the diversity, and secure the

robustness of recommender systems.

3.1 Rating Datasets

We focus on three explicit-rating datasets: two MovieLens sets (which we refer to as ML-1 and ML-2)

and the Netflix prize set. These datasets have been at the fulcrum of CF research for a number of years,

and can be described as collections of4-tuples:

[u, i, ru,i, tu,i] (3.1)

Each tuple contains: a user idu, a movie idi, the ratingru,i given by the user to the movie, and the time

tu,i when this rating was input. The motivation behind comparingthese datasets extends beyond their

popularity. They all provide users rating the same type ofcontent(movies) with the samescale(1-5

stars)—thus allowing a direct comparison of each dataset’stemporal rating characteristics. However, we

still expect to identify temporal differences between the sets: there are significant differences in each

set’s size in terms of users, items, and ratings. We summarise these differences in Table 3.1. In addition

to each set’s relative size, there are a number of implicit reasons why temporal differences may emerge,

including:

• Motivation : The MovieLens data is sampled from a system built for research purposes1. Netflix,

instead, is a commercial system2 incentivised by financial targets. The system users themselves

1http://www.movielens.org/login
2http://www.netflix.com/

3.2. Ratings Over Time 45

Dataset Users Movies Ratings Time (Days)

MovieLens-1 943 1,682 100,000 215
MovieLens-2 6,040 3,706 1,000,209 1,036
Netflix 480,189 17,770 100,480,507 2,243

Table 3.1: Users, Items, Ratings in Each Dataset

have different relationships with each system: in the former, they arecontributingto research by

rating; in the latter, they arecustomerswho are requesting and receiving DVDs when subscribed.

• Interface: We assume that users are more likely to rate content to whichthey are exposed; how

and what people rate may thus be dependent on the design and usability of each system’s interface.

• Algorithm : Similarly, we assume that there may be a relationship between what users arerecom-

mendedand what theyrate. The datasets therefore become subject to the CF algorithm that was

in operation when the data was collected.

The rating data alone is not sufficient to understand which ofthese forces is at play; we are also unaware

of any changes to which each system’s interface or algorithmmay have been subject to during the time

span of ratings available. We cannot therefore explicitly discuss the causality of changes we observe in

the data. This point is aggravated by the uncertainty as to whether time was taken into account when

sampling each system’s ratings. The ML-1 documentation states that the dataset has been “cleaned-

up:” users with fewer than20 ratings or incomplete demographic information were prunedfrom the set.

However, there is no further mention of the subsampling technique used.

These uncertainties challenge the accuracy of hypotheses that have been verified using these

datasets; in particular, it is difficult to claim that algorithms that yield improved accuracy on one of

these sets will produce similar results once deployed. However, one point remains: recommender sys-

tems aresubject to change over time, as new users join the system, new ratings are input, and new movies

are released. The purpose of the following sections is to show that these changes occur, see how they are

visible (in the available data), and examine their impact onconclusions drawn using current evaluative

techniques that do not take them into account.

3.2 Ratings Over Time
We divide our analysis into four groups: we look at the growthof the number of users, items and ratings

over time (Section 3.2.1), how this growth affects summary statistics derived from the ratings (Section

3.2.2), how user rating behaviour changes with time (Section 3.2.3), and the seasonal trends that emerge

when users rate content (Section 3.2.4).

3.2.1 Dataset Growth

In Figures 3.1, 3.2 and 3.3 we visualise the cumulative growth of the number of users, movies, and total

ratings over time for each dataset. In these plots we measuredaily changes, since the Netflix timestamp

data only reports the date that users input ratings. The MovieLens datasets’ timestamps would allow for a

finer grained analysis; however, we opt for daily views in order to consider all three sets simultaneously.

3.2. Ratings Over Time 46

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.1: Number of Users Over Time (ML-1, ML-2, Netflix)

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.2: Number of Movies Over Time (ML-1, ML-2, Netflix)

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.3: Number of Total Ratings Over Time (ML-1, ML-2, Netflix)

Since we do not have sign-up data, we consider that users “join” the system the moment they make their

first rating. Similarly, a movie appears in the system when itis first rated, since we do not know when it

was actually added to the movie database. We assume this to bea justifiable measure of dataset growth

since CF algorithms (that do not include content information) can only compute predictions for movies

that have been rated and users that have rated at least once.

3.2. Ratings Over Time 47

(a) New Users Per Day (b) New Movies Per Day (c) New Ratings Per Day

Figure 3.4: Non-Cumulative Netflix Daily Growth: the spikesrepresent days when a lot of

users/movies/ratings were added

(a) New Users Per Day (b) New Movies Per Day (c) New Ratings Per Day

Figure 3.5: Non-Cumulative ML-1 Daily Growth

Each dataset shows varying rates of growth. The number of Netflix users and ratings grow exponen-

tially, while the movies appear in the system at a near-linear pace. The ML-1 set also displays near-linear

growth: the number of users, items, and ratings continues toincrease over each time step. The ML-2

dataset distinguishes itself from the other two by being theonly one that shows a sharp change in growth

over time. In fact, the majority of the users appear within the first half of the dataset; after this phase

of accelerated growth, user growth halts and the rate at which new ratings and items are added to the

system sharply declines. The ML-1 and Netflix sets, instead,do not exhibit this anomaly and continue

to grow over time, but appear to do so at different rates.

One of the reasons for this apparent difference is the time that each dataset covers: the ML-1 set,

ranging over215 days, is less than one tenth of the time that the Netflix set (2, 243 days) spans. In

order to account for this difference, we examined how much each dataset grows per day. In Figures 3.4

and 3.5 we plot how many new users, movies, and ratings appearin each day of each dataset. From

this perspective, the two datasets look more similar (differences between them may be explained by

the relative size of each set). Both have peaks, where a largevolume of users appears in the system.

Similarly, both item plots (Figures 3.4(b) and 3.5(b)) spike in the early days of the dataset, when the

3.2. Ratings Over Time 48

Figure 3.6: Sparsity Over Time For Each Dataset: Netflix is the most sparse dataset

incoming ratings are going to items that have not been rated before. The Netflix data, however, continues

to display accelerating growth: Figures 3.4(a) and 3.4(c) shows that the volume of incoming users and

ratings tends to increase over time.

A changing volume of users, movies, and ratings will affect each dataset’s sparsity and rating dis-

tribution. In Figure 3.6, we plot the sparsity over time after normalising the number of days in each

dataset. All of the datasets are consistently over 90% sparse—less than 10% of the potential user-movie

ratings exist—but the Netflix dataset remains the sparsest,with a maximum value near 99%. The ML-1

set, while being the smallest, is also the least sparse (potentially due to the pruning of users with fewer

than20 ratings). In Figure 3.7, we show how the rating distributions vary with time. If we consider the

datasets in their entirety, the absolute ordering of ratings is equal throughout all datasets: there are more

4 star than3-star ratings, more3 stars than5 star ratings, and a very small proportion of1 and2 star

ratings. This seems to imply that people tend to rate what they already like, but tend to also avoid the

“extreme” ratings (1 and5 stars). However, the Netflix dataset’s distribution (in Figure 3.7(c)) changes:

in the early days of the dataset, there are more3 stars than4 stars. Roughly1000 days into the dataset, the

4 star rating overtakes the3 star rating. It seems that, at this point, users are responding more positively

to their recommendations; in doing so, they shift the entiredistribution of ratings towards the positive

end. However, as we do not have data to know what recommendations users were given, we cannot em-

pirically justify this claim. The main conclusion we make from these observations is that viewing rating

sets from a static viewpoint does not account for the changesthat real systems’ data actually undergoes.

In particular, user, item, and rating growth over time implies that the amount of information available to

create recommendations (and thus thevaluethat different users can draw from the system, and potential

accuracy) at different times will be quite large. Many users, who rate items that have not been rated be-

fore, are not simply responding to recommendations but are proactively seeking to rate items, set rating

trends, and respond to rating incentives [HJAK05, WH07a, BLW+04].

3.2. Ratings Over Time 49

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.7: Rating Distribution Over Time Of Each Dataset: Netflix is the only dataset with no consistent

ordering between the rating values

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.8: Datasets’ Global Rating Mean Over Time, Again highlighting the stop in ML-2’s growth

3.2.2 Changing Summary Statistics

While new ratings are added, any summary statistics computed from the available data may fluctuate. In

this section, we consider bothglobalandper-useror itemsummary statistics. We begin with the global

rating means, in Figure 3.8. The means are computed daily using the entire history of available ratings

to date; we weight all ratings equally, regardless of when they were input (i.e., there is no time decay).

All of the means consistently fall between3 and4 stars, but vary quite widely within this range. For

the Netflix dataset, the most notable time segments are before the first500 days, where the global mean

rises sharply, falls, and then once again rises, and after the first1, 500 days have passed, where the mean

begins to grow again. The ML-2 set (Figure 3.8(b)) emphasises the relationship betweengrowth and

change: when the dataset stops receiving new users (as we saw in the previous section), its global mean

stabilises as well.

The standard deviations are shown in Figure 3.9. The Netflix plot (Figure 3.9(c))—like its global

mean—suffers from high fluctuation in the initial days of thedataset, and then decreases from1.14

to 1.08 in a near-linear fashion. In other words, the ratings becomeless dispersed around the mean

over time. Given that the mean is between3 and4 stars, this translates to a tendency to rate more

3.2. Ratings Over Time 50

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.9: Datasets’ Global Rating Variance Over Time

(a) Global Median (b) Global Mode

Figure 3.10: Netflix Rating Median and Mode Over Time

positively. Similarly, the ML-2 standard deviation stops changing when its mean flattens. The ML-1

dataset standard deviation is consistently higher than those we observed in the other datasets; however,

excluding the edges of the215 days, it remains relatively flat. The peak in the plot coincides with the

dip in the temporal mean.

The problem here is that state of the art research does not factor in this feature of the data. For

example, consider the BellKor solution to the Netflix prize competition [Kor09b]; the foundation of the

ensemble of techniques they used successfully to win the competition was abaselinepredictor, which

includes theglobal rating average: a value that, as we have seen, will change over time. Although

[Kor09b] does account for temporal changes at the user and item level (by binning the data into sequential

windows of varying size), the global baseline prediction isused as a fixed starting value from which to

build predictions. If we consider the range of values that this global mean takes over time, it seems that

the accuracy of this baseline would vary significantly.

To understand why the mean and variance display such change,consider Figure 3.10, which shows

the rating median and mode (i.e. the most frequent rating value) of the Netflix dataset over time. We do

not plot the ML-1 and ML-2 temporal medians and modes, since they do not change: they all remain

3.2. Ratings Over Time 51

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.11: Users Binned By Profile Size Over Time

constant at4 stars. The initial fluctuation in the Netflix mean is mirroredby a change of the rating mode

from 2 to 4 stars. The mode then reverts and stabilises at3 stars, until it again changes, and remains,

at 4 stars—accounting for the rise of the rating average. The rating median behaves very similarly to

the mode: days after the mode jumps to 4 stars, the median increases from3 stars to4 stars, reflecting

the surge in the4 and5 star ratings that are input in this time, and accounting for the changes observed

in both the mean and mode. A median of4 tells us thathalf of the ratings in the system are4 and5

stars; however, more importantly, thechangethe median displays over time reflects that the distribution

of ratings does not remain consistent. As above, it is impossible to deduce from the data why the global

behaviour changed as we see here; changes to the Netflix interface, recommendation algorithm, user

base, or combinations of these may be, but cannot be confirmedto be, the cause.

While it is possible to explore CF datasets from a global perspective, it is important to remember

that the datasets represent acollectionof individuals’ profiles, and that the global state of the dataset can

mask the state and changes that single profiles undergo. For example, as shown in Figure 3.11, if we first

split the users into groups according to each user’s number of ratings, we can then see how the group

sizes fluctuate over time. In Figure 3.11, we bin users into four groups: (black) those with fewer than10

ratings (excluding those who have yet to rate for the first time), (dark grey) those with10 − 50 ratings,

(grey) those with50 − 100 ratings, and (light grey) those with more than100 ratings. We then plot the

relative group sizes as each dataset grows. These plots highlight the skewed distribution of profile sizes

over time. In fact, the group of users with fewer than10 ratings each may even be under represented in

the data, although we do see that the Netflix prize data includes the highest proportion of this group.

The above analysis shows that global summary values fluctuate over time, reflecting how the overall

distribution of ratings shifts as more users interact with the system. However, many algorithms that are

used for CF do not use global summary statistics, but rather prefer to formulate predictions using either

the item or user mean rating values. These values are also subject to change, as we show in Figure

3.12, where we plot the average item and user mean ratings over time. Each perspective (item-based

or user-based) of the average means falls into a different range over time. Interestingly, the average

user mean rating is consistently higher than the averagemoviemean rating; while users tend to rate

3.2. Ratings Over Time 52

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.12: Average User and Item Mean Rating Over Time

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.13: Standard Deviation of Ratings Per User Per Day

positively, there are items that are not liked (and thus rated lower), which pulls down the average item

mean rating. The datasets not only remain sparse, but also donot stabilise (with the exception of ML-

2, which stops growing); recommender systems continuouslyhave to make decisions based on both

incomplete, inaccurate, andchangingdata, and the range of the changes we observe in the Netflix data

are likely to have a strong impact on the predictability of ratings.

3.2.3 Temporal User Behaviour

Thus far, our focus has been on the data: how the volume of users, items, and ratings grow and how

summary statistics derived from them will change. Since we are dealing with explicit rating datasets, the

mere act of rating also reveals how users are interacting with the system. To explore how user behaviour

will vary over time, we plotted the standard deviation of thenumber of ratings input by returning users

(i.e., users who have previously visited the sytem and inputratings at least once) per day in Figure 3.13.

The plots show the high variability in how users interact with the recommender system. Both the ML-2

(Figure 3.13(b)) and Netflix (Figure 3.13(c)) datasets havehigh initial fluctuation in average user ratings

per week; following this, the mean value flattens out. The ML-1 dataset, instead, has a more steady

stream of average ratings per user, with small peaks corresponding to days that users (on average) rated

more. Both of the MovieLens datasets have a much higher dispersion—many of the bars are over 100—

3.2. Ratings Over Time 53

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.14: MovieLens: Average Number of Ratings Per Week (With Standard Deviation)

while the Netflix data (after the initial high period) falls below 50: it seems that users are proactively

rating more in the MovieLens system.

3.2.4 Daily and Weekly Trends

In the previous section, we observed how user rating behaviour fluctuates over time, by looking at the

entire window available for each dataset. However, this same rating behaviour can be further summarised

by relating it to the day of the week when the ratings are input. In Figure 3.14 we plot the average number

of ratings input per day for each dataset. Netflix sees its highest activity at the end of the week, as more

ratings tend to be input on Thursdays, Fridays, and Saturdays than the other days. However, as the two

MovieLens datasets show us, these results are again dependent on the subset of ratings available in the

dataset: both ML datasets come from the samesystem, yet display very different rating activity. ML-1

rating trends tend to be lower during the weekend, with most ratings being input Wednesdays-Fridays,

while the ML-2 dataset shows us the opposite, where more ratings are received on Mondays than any

other day of the week.

Since the MovieLens timestamps allow us to know the precise moment when each rating was sub-

mitted, we can extract a finer-grained view of user activity over an average day in the system. Instead

of binning ratings according to the day they were input, we binned them by hour, and plot the results in

Figure 3.15. Unlike Figure 3.14, the two datasets now show very similar activity patterns: users tend

to rate movies in the evenings, and the lowest volume of ratings appear roughly between 8am and 3pm;

we assume this may be the cause since the majority of the system users would otherwise be occupied at

work during these hours.

This analysis reflects an important aspect of recommender systems: the data is being produced by

people, who tend to exhibit regular patterns of behaviour. The factthat people are behind the data input

process also bounds the number of ratings we can expect to be input by a single person in a particular

period of time. For example, it seems unlikely for a person tobe able to rate100 movies in less than

a minute; moreover, if they were able to input this number of ratings, we could question the extent to

which this person is providing honest (and thus, not noisy [APO09]) values. We will revisit this result

and use this conclusion when we address the problem of recommender system robustness (Chapter 6).

3.3. Similarity Over Time 54

(a) ML-1 Dataset (b) ML-2 Dataset

Figure 3.15: MovieLens: Average Number of Ratings Per Hour (With Standard Deviation)

Regardless of how collective behaviour changes over time, the focus of a recommender system is

to harvest user ratings in order to then generate personalised recommendations for each user. As we

have seen before, this operation relies on the assumption ofpersistinglike-mindednessbetween users. In

other words, changes to the data over time are only importantif they affect the quality and accuracy of

ranked recommendations. We begin to explore this facet in the following sections, where we investigate

the extent to which measurable similarity persists over time.

3.3 Similarity Over Time

The various algorithms that have been applied to collaborative filtering contexts operate in different ways,

but all focus on capturing thesimilarity between users or items as content is rated. For example, nearest-

neighbour algorithms focus on similarity by using explicitsimilarity metrics and making predictions

with the most similar items (or users), and factorisation methods project item pairs into feature spaces

where the similar pairs will be near one another. In this section, we explore how measurable similarity

changes over time. In Section 3.3.1, we redefine the similarity metrics on which we will focus. We

then look at similarity from two perspectives: thestatic case (Section 3.3.2), allowing us to visualise

the effects of different similarity weights, and thetemporalcase (Section 3.3.3), which explores how

similarity changes over time and the consequences of it doing so.

3.3.1 Similarity Measures

We focus on three metrics: the Pearson Correlation Coefficient (PCC), the Vector (or Cosine) Similar-

ity, and the Jaccard distance. The simplest similarity measure between two user profiles—the Jaccard

distance—can be derived using information that disregardsthe actual ratings themselves, but considers

two other factors. The act of rating an item is a conscious decision made by human users, and represents

a judgment on a product that has been “consumed” (viewed, listened to, etc.). Therefore, when two users

have selected the same product, they already share a common characteristic: their choice to consume

and rate that product. This similarity measure disregards each user’s judgment of the item, and weights

3.3. Similarity Over Time 55

users according to the proportion of co-rated items:

wa,b =
|Ra,i ∩i Rb,i|

|Ra,i ∪i Rb,i|
(3.2)

The Cosine similarity measure works by comparing the intersection of two users’ profiles as vectors of

ratings:

wa,b =
Ra •Rb

||Ra||||Rb||
=

∑

i ra,i × rb,i
√

∑

r2a,i

√

∑

r2b,i

(3.3)

The PCC aims to measure the degree of agreement between two users by measuring the extent to which

a linear relationship exists between the two users’ historical ratings [HKBR99].

wa,b =
ΣN

i=1(ra,i − r̄a)(rb,i − r̄b)
√

ΣN
i=1(ra,i − r̄a)2ΣN

i=1(rb,i − r̄b)2
(3.4)

We also include two variations of the PCC—theweightedPCC, where users who have co-ratedn items

(fewer than a threshold valuex = 50 [HKBR99]) have their similarity scaled byn
x

, and theconstrained

PCC, where user ratings are normalised with the rating scalemid point (2.5 stars) rather than each users’

mean rating—making a total of five similarity measures.

3.3.2 Static Similarity

The intuition behind similarity metrics is that if they are well-suited to the problem at hand (i.e., finding

good neighbours for users or items) then they will lead to betterkNN predictions and, as a consequence,

better recommendations. However, there is a problem with similarity measures that is best demonstrated

with an example. If Alice’s rating history for five items, on afive-point rating scale, is[2, 3, 1, 5, 3], and

Bob’s rating history for the same items is[4, 1, 3, 2, 3], then the Cosine similarity will be about0.76.

The PCC will return−0.50, while adding significance-weighting will produce−0.05. Other methods

will result in equally different values. There is no consensus between the different methods as to how

similar Alice and Bob are. Just as the relationship between Alice and Bob will change from good to bad

depending on how they compute their similarity, selecting different coefficients will alter the weightings

of all the user-pairs in the community. The relative ordering of similarity will also change: given three

users (a, b, c), with wa,b < wa,c when using the PCC doesnot imply thatwa,b < wa,c will remain true

when using the Cosine similarity. The similarity values will, in turn, affect the prediction accuracy and

coverage of the CF process.

We investigated the nature of these different similarity measures by looking at their distribution over

the full range of available neighbours in the MovieLens-1 dataset. We focus on this dataset since, as we

found in Figure 3.6, it is consistently the least sparse; similarity values derived from this dataset are thus

assumed to be more reliable. We first computed all the coefficients between every pair of users, using all

available profile information. We then plotted the proportion of the total number of coefficients that fell

within a given range (in bins of size0.05) to be able to see how these coefficients are shared out among all

the available user pairs in Figure 3.16 and 3.17. The PCC distribution has two interesting peaks: one in

the range of(0, 0.05), and the other between(−1.0,−0.95). In other words, a relatively high proportion

of coefficients fall between the two ranges covered by these points: many users are either not similar or

3.3. Similarity Over Time 56

(a) PCC Distribution (b) Weighted-PCC Distribution (c) Constrained-PCC Distribution

Figure 3.16: ML-1 PCC, Weighted-PCC & Constrained-PCC Similarity Distribution

(a) Jaccard Distribution (b) Cosine Distribution

Figure 3.17: ML-1 Jaccard & Cosine Similarity Distribution

very dissimilar to one another. Applying significance weighting to the coefficient changes the distribution

drastically, by increasing the frequency of neighbours whohave very low correlation. Nearly half of the

user pairs are valued within(0, 0.05), which implies that a high proportion of recommendations are

weighted extremely lightly. The constrained-PCC skews theentire distribution toward the positive end;

it seems thus that this variation of the PCC will increase thesimilarity between pairs of users that may

otherwise have been deemed minimally similar with the standard PCC.

On the other hand, the similarity distributions based on theJaccard distance peaks at0, for the num-

ber of users who do not share any rated items. The rest of the user-pairs all share a positive similarity.

Since this coefficient is derived using the number of co-rated items that the user-pair share, this coeffi-

cient cannot be negative, and thus a community of recommenders in this scenario will only have positive

links. The Cosine distribution had the largest number of coefficients within a very high range:0.78, or

nearly 80%, of the community is weighted between0.9 and1.0. This is the result of summing the pro-

portion of coefficients between(0.9, 0.95), 0.32, and(0.95, 1.0), 0.46. In other words, vector-similarity

weights will favour neighbour recommendations much higherthan, for example, the Jaccard distance.

Finding that the majority of the population share similar coefficients may imply that the population is

3.3. Similarity Over Time 57

neighbourhood Co-Rated PCC Weighted-PCC R(0.5, 1.0) R(-1.0,1.0) Constant(1.0)

1 0.9449 1.1150 0.9596 1.0665 1.0341 1.0406
10 0.8498 1.0455 0.8277 0.9595 0.9689 0.9495
30 0.7979 0.9464 0.7847 0.8903 0.8848 0.9108
50 0.7852 0.9007 0.7733 0.8584 0.8498 0.8922
100 0.7759 0.8136 0.7647 0.8222 0.8153 0.8511
153 0.7725 0.7817 0.7638 0.8053 0.8024 0.8243
229 0.7717 0.7716 0.7679 0.7919 0.8058 0.7992
459 0.7718 0.8073 0.8025 0.7773 0.7812 0.7769

Table 3.2: MAE Prediction Error, MovieLens u1 Subset

Dataset Co-Rated PCC Weighted-PCC R(0.5,1.0) R(-1.0,1.0) Constant(1.0)

u1 0.7718 0.8073 0.8025 0.7773 0.7812 0.7769
u2 0.7559 0.7953 0.7903 0.7630 0.7666 0.7628
u3 0.7490 0.7801 0.7775 0.7554 0.7563 0.7551
u4 0.7463 0.7792 0.7747 0.7534 0.7554 0.7531
u5 0.7501 0.7824 0.7784 0.7573 0.7595 0.7573

Average 0.7548 0.7889 0.7847 0.7613 0.7638 0.7610

Table 3.3: MAE Prediction Error For All MovieLens Subsets

full of very similar users, but following this same analysisusing the PCC yielded quite opposing results.

Once again, we found that the distribution given by each similarity measure does not agree with any of

the others. There does not seem to be any unifying behaviour or descriptive characteristics, in terms of

coefficient distribution, of the dataset, as the method for computing the coefficients is varied.

Any attempt at finding the “best” user weighting, to date, canonly be done by conducting an anal-

ysis on comparative results of different techniques applied to the same dataset of user ratings; there

is no way of measuring how close these algorithms are to an optimal answer. We can, however, pro-

duce a worst-case scenario: we construct a similarity matrix based onrandom values, and observe how

accurately this scenario can generate predicted ratings. Random-based similarity does not use any in-

formation from the dataset to find like-minded peers; it simply is a set of uniformly distributed random

values on a pre-defined range. We thus expected that the errorreported on the prediction set would be

devastatingly worse than when any similarity measures wereused, since use of random numbers does

not consider how much users have co-rated items or how much their ratings agree with each other.

In order to see how accurate predictions are with different similarity metrics, we measured the

mean absolute error (MAE) of the predicted ratingsonly in the case when a prediction was made. If no

information was available, typical experiments will simply return the user mean, and this value is not

used when finding the MAE of the predictions. Since MAE measures the mean absolute deviation from

the actual ratings, and the MovieLens dataset uses a five-point rating scale, the error measures can be

expected to fall between0, or perfect prediction, and4.

We experimented with three ranges of random-similarity:(−1.0, 1.0), or randomly assigning re-

3.3. Similarity Over Time 58

lationships so that the distribution of coefficients over all user pairs is uniform over the full similarity

scale;(0.5, 1.0), i.e. giving all the user-pairs high similarity relationships; and all1.0, giving all user

pairs perfect correlation.

Table 3.2 shows the prediction error results ask is increased, when using a subset of the MovieLens

data (namedu1). However, as we have seen, prediction results are dependent on the data that is being

used. We therefore cross-validate our results by averagingthe prediction error across five subsets of

the ML-1 dataset (namedu1, u2, u3, u4, u5). The most accurate results were obtained when predicted

ratings were derived using all of the community members’ ratings; Table 3.3 shows the prediction results

for all subsets, when using this value.

To our surprise, the results of the experiments using random-valued and constant relationships were

not only comparable to the performance of the correlation coefficients, but on average they also per-

formed slightly better than the tested similarity measures. Such results would be expected if there were

a certain degree of homogeneity amongst the community members, regardless of whether the specific

correlation values agreed or not. A simple popularity-based recommender, which returns the average

rating of an item (using all available ratings of it) also produces comparable performance. The average

MAE over all data subsets, in this case, is0.8182, which is0.04 less than the weighted-PCC’s accuracy.

The datasets may be to blame for the results; they may be too small, or not representative enough

of a heterogeneous set of users. The MovieLens dataset we used does comply with the “long-tailed”

characteristic of user-ratings; however, little more is known of what qualifies a rating dataset as appro-

priate. Repeating the above experiments with the Netflix dataset produced different results. Nearly all

predictions were not covered, since randomly assigning neighbours to each user did not produce useful

neighbourhoods. However, if we tune the experiment to account for the larger dataset size by selecting

neighbours randomly from the pool of users who have rated theitem that needs to be predicted, we again

see similar results to the above. These results are another sign that the dominant error measures used

to compare collaborative filtering algorithms may not be sufficient. Traditional similarity-basedkNN

cannot be differentiated from the output of random-similarity kNN. The results further highlight the fact

that the current similarity measures are not strong enough to select the best neighbours. In the following

section we will see that this result persists over time.

3.3.3 Temporal Similarity

An analysis of the distribution of correlation coefficientsin the community of recommenders may, at first

glance, seem inappropriate, since the coefficient values will change over time, as they are recomputed

with growing user profiles. In this section, we examinehow they got there, by looking at how similarity

between users changes over time.

A useful means of analysing how similarity changes over timeis to consider the act of computing

similarity between all users as a process that generates a graph. In this case, each user is a node. Links to

other nodes are weighted according to how similar the user-pair is, and (in the case ofkNN prediction)

the algorithm imposes the restriction that each node can only link itself to thek most similar neighbours;

the out-degree of each node is limited. From this perspective, similarity graphs are aconstrained implicit

3.3. Similarity Over Time 59

social networkbetween the users in the system. The network isimplicit since the users are not actively

involved in selecting who they want to link to, and isconstrainedsince thek parameter places an upper

bound on the number of neighbours each user can have.

Observing similarity computation as a graph-generating process paves the way for a wide range

of analysis that can be performed on recommender systems, drawing from methods described in graph

theory and previous work on (explicit) social network analysis [BA02, MAA08]. The aim of analysing

the graph generated by a filtering algorithm is to understandhow the rating data is being manipulated in

order to derive predictions. Furthermore, iterative updates of a recommender system can be viewed as

re-generating the user graph. Changes in the graph when updates are computed will highlight how these

systems perform over time, and give insight into why the parameters and methods that can be used to

produce different accuracy results.

In the following sections, we explore the emergent properties of dynamic, temporal user-user simi-

larity graphs, by decomposing the analysis into four separate stages:

• Node Pairs: Drawing from the growth of both nodes and rating information, we explore how

similarity between a pair of nodes evolves over time. This analysis allows us to classify similarity

measures into three groups, based on how they evolve the relationship between a pair of nodes:

incremental, corrective, and near-random measures.

• Node Neighbourhoods: We have already mentioned that akNN algorithm imposes restrictions

on the graph, by allowing nodes to point to a pre-defined number of neighbours. We project this

restriction onto the temporal scale, and observe the volatility of user neighbourhoods as profiles

grow and similarities are re-computed.

• Community Graphs: The last section of our analysis considers the entire community of users.

We computed properties such as connectness, average path length, and the in-degree distribution

of links, to find that similarity graphs display the small-world, scale-free characteristic that is

common to social networks. In other words, CF algorithms intrinsically favour some users over

others; we refer to these aspower users, and perform experiments that aim to collect the influence

they exert on the predictive accuracy of thekNN algorithm.

User Pairs Over Time

Based on the way the datasets change over time, we first turn our attention to how the relationship

between apair of nodes will evolve. The primary concern of collaborative filtering, based on the user

profiles explored above, is to predict how much users will rate items, in order to offer the top-N of

these predictions as recommendations. As reviewed in Chapter 2, predictions are often computed as a

weighted average of deviations from neighbour means [HKBR99]:

pa,i = r̄a +
Σ(rb,i − r̄b)× wa,b

Σwa,b

(3.5)

In other words, a predictionpa,i of item i for usera is an average of the set of deviations(rb,i − r̄b)

from each neighbour’s mean ratingr̄b, weighted according to the similaritywa,b between the usera, and

3.3. Similarity Over Time 60

Figure 3.18: Similarity Between User1 and30: Similarity depends on how you measure it

neighbourb. All methods share the fact that they weight the contribution of each neighbour according to

the degree of similarity shared with the current user: similarity is central to this process.

As we saw in Section 3.3.2, various similarity metrics offerdifferent ways of computing similarity

and will equally produce differing values. Despite this disagreement between similarity measures, one

would expect the similarity between pairs of users toconverge. As ratings are added to one of the

two profiles, the similarity measure is computed on more information and should become more refined.

However, some similarity measures do not display this behaviour.

We can consider a small example: users1 and30 from the ML-1 dataset. We chose this pair of

users since their profiles have a large overlap over time (126days), allowing for an extended view of

their similarity’s progression. If we order their profiles temporally, and then iteratively re-compute the

similarity between the two as each user inputs a rating, we can observe how similarity evolves over

time. Figure 3.18 shows the results of this experiment; in this case all measures return positive similarity

between the users. The similarity for all measures begins atzero, when there is no overlap between

the two users’ profiles. Once they begin to co-rate items, theCosine measure skyrockets to near1.0,

or perfect similarity. Over time, it very gradually degrades. The PCC measure also displays a large

shift away from zero when the profile overlap begins and then both returns toward zero and jumps back

up as the overlap increases. Only thewPCC and Jaccard measures grow slowly, without large shifts in

similarity from one measurement to the next.

This example displays how the similarity between this particular pair of users progresses. In order to

be able to generalise these results, we next aimed to analysehow the similarity of user1’s profile evolves

relative to any other user in the system. There are a number ofways this evolution can be visualised; in

this work we plot the similarity at timet, sim(t) against the similarity at the time of the next update,

sim(t+1). This way we disregard theactualtime between one update and the next, and favour focusing

on how the similarity itself between a pair of users evolves.This method also allowed us to plot the

similarity of one user compared to all others in the dataset,as we have done in Figure 3.19. These four

images show the similarity of user1 in the ML-1 dataset compared to the rest of the community, using

different similarity measures. These results are similar to those we observed between the pair of users

3.3. Similarity Over Time 61

(a) Jaccard (b) Weighted Pearson

(c) Cosine (d) Pearson

Figure 3.19: Evolution of Similarity for the Jaccard,wPCC, Cosine and PCC Similarity Masures, Com-

paring User 1 to All Other Users in the System

we examined before.

The first point to notice is that the range of values returned by the different similarity measures

is not the same; some measures return values between0.0 and1.0, while others report values between

−1.0 and1.0. However, the more important aspect of these plots is the variance the points have from

the diagonal, or the liney = x. If a point is on the diagonal it means that the similarity between the pair

of users at time(t + 1) is the same as it was at timet; nothing has changed. Similarly, if the point is

below the diagonal then the pair is less similar that it was before, and a point above the diagonal implies

that the measured similarity has grown. Therefore, the distance that these points have from the diagonal

represents the extent to which similarity between the pair changed from one update to the next. As is

visible in the plots of Figure 3.19, the greatest distance from the diagonal is reported in both the Cosine

and PCC measures. These reflect the observations that were made when we compared user1 and30.

Furthermore, they are representative of plots we created for other members of the community; these are

not included here due to lack of space. The way that these methods evolve similarity between a pair of

users follows one of three patterns. This allows for similarity measures to be classified according to their

temporal behaviour:

3.3. Similarity Over Time 62

k COR wPCC PCC Cosine

ML-1 Dataset: 943 Users

1 2.48±2.3 2.54±2.3 4.94±6.5 10.59±16.8
10 22.22±16.3 22.18±16.2 25.15±19.9 35.80±41.4
20 42.06±28.6 42.12±27.9 41.73±26.4 49.88±45.3
100 171.80±87.9 168.99±83.9 156.27±67.4 159.03±69.9
150 237.86±109.4 230.23±104.9 216.94±88.6 221.16±87.1

ML-2 Dataset: 6040 Users

1 1.69±1.1 1.74±1.2 3.51±3.8 3.16±5.1
10 16.75±9.3 16.85±9.4 22.75±19.0 34.68±36.2
20 33.22±17.7 33.33±18.1 40.08±28.2 60.02±54.6
100 160.26±79.1 160.93±79.9 161.68±77.4 187.02±118.3
150 236.97±113.6 237.99±114.5 231.35±102.6 255.23±142.9

Table 3.4: Average Unique Recommenders in Users’ Neighbourhoods

• Incremental: In this case, as we observed with the Jaccard andwPCC methods, similarity begins

at zero and slowly converges towards the final value. The difference between one step and the next

is minimal, and therefore the relationship between a pair ofnodes can be described as growing.

• Corrective: The Cosine method is noteworthy because similarity “jumps” from zero to near-

perfect. However, once it has made this jump, the similaritybetween the pair tends to degrade, as

can be observed by number of datapoints that fall below the diagonal on the graph. Therefore, this

measure corrects its result after the initial jump.

• Near-random: The last class of similarity measures includes the PCC, anddisplays an exceeding

amount of near-random behaviour. In other words, if similarity at timet is 0.0, or incomparable,

and at time(t + 1) there is measurable similarity, the PCC returns values overthe entire range

of similarity. Once it has made this jump from zero in either direction, it is not guaranteed to be

well-behaved; as the plot shows, it may very well make a largejump again.

Dynamic Neighbourhoods

Now that we have observed how similarity evolves between a pair of nodes, we can widen the scope

of our analysis and consideruser neighbourhoods. The importance of measuring similarity of all user

pairs is to be able to create a subjective ranking for each user of everyone else, and then to pick the top-k

to form the user neighbourhood. The often-cited assumptionof collaborative filtering is that users who

have been like-minded in the past will continue sharing opinions in the future; this assumption has thus

paved the way for learning algorithms to be applied to the problem of predicting ratings. If we project

this assumption onto a longer time period, we would expect groups of users to naturally emerge from

the data. In particular, when applying user-userkNN CF, as we do in this work, we would expect each

user’s neighbourhood to converge on a fixed set of neighboursover time.

To measure this property, we ran a modified CF experiment thatincludes the idea of system updates.

The system begins at the time of the first rating in the datasetand is updated daily. While this value

3.3. Similarity Over Time 63

Figure 3.20: ML-1 User 1: New Relationships Left Over Time

perhaps corresponds to more frequent updates than most recommender systems can allow themselves to

perform, it gives a finer-grained insight into the behaviourof the CF algorithm. At each update time, all

user neighbourhoods are re-computed. In this chapter, we donot consider temporal accuracy, as we are

focusing on the dynamic graph properties imposed by the algorithm.

As the users’ profiles grow and neighbourhoods are recomputed, the users will be connected to a

varying number of other users. The actual number of neighbours that a user will be connected to depends

on both the similarity measure and neighbourhood size that is used. If, for example,k = 1, the user’s

profile is updated10 times, and at each time step a different neighbour becomes the user’s top recom-

mender, then the user will meet10 unique neighbours: the higher the number of unique recommenders,

the higher the volatility of the user’s neighbourhood. Table 3.4 displays the average unique neighbours

for all users in the datasets.

The first point to note is that the number of unique recommenders is not close tok; in most cases it

is nearly double the size of the allowed neighbourhood. In other words, even though a particular value

of k represents the number of neighbours to use when making a prediction, the fluctuation of neighbours

over time will be such that about double this value will be interacted with. For most values ofk, the

COR andwPCC similarity measures assign fewer unique recommenders to each user, a result that is not

immediately visible when using the average number of neighbours across all users that Table 3.4 does.

Figure 3.20 shows the number of unique neighbours that user1 has yet to meet over time when

k = 150; it thus visualises how quickly the change within the user’sneighbourhood will play out. As

with the similarity plots, it is the shape of the plotted lines that gives insight into how neighbourhoods are

changing over time: the steeper they are, the faster the useris meeting other recommenders. If the lines

were step-shaped, the user would be meeting recommenders and staying connected to them for some

time. Steeper lines, however, mean that the user’s neighbourhood is converging faster, since the number

of unique neighbours that have yet to be seen is decreasing. In fact, the Jaccard andwPCC similarity

measures also converge to a fixed set of known recommenders faster.

Nearest-Neighbour Graphs

The last perspective we consider is the broadest view possible: the entire graph of user profiles. We have

already seen that the volatility of each user’s neighbourhood is quite large: this implies that the entire

3.3. Similarity Over Time 64

k Edges Connected? Max Path Avg Path Reciprocity

ML-1 Dataset: 943 Users

1 1750 No 3 1.78 0.08
10 16654 Yes 4 2.63 0.13
100 148608 Yes 3 1.83 0.27
150 213260 Yes 2 1.76 0.33
200 272970 Yes 2 1.69 0.38

ML-2 Dataset: 6040 Users

1 11406 No 5 2.58 0.06
10 109438 Yes 5 3.29 0.10
100 1055188 Yes 3 2.01 0.14
150 1568576 Yes 3 1.96 0.16
200 2076112 Yes 3 1.94 0.16

Table 3.5:wPCC-kNN Graph Properties

graph is being “re-wired” each time an update is performed. Therefore, in this section, we mainly focus

on non-temporal characteristics of the dataset represented as a graph instead. Since thekNN algorithm

determines where the links between users in the graph will be, the link positioning gives us the clearest

insight into how the algorithm is manipulating the user-rating dataset. Table 3.5 shows a number of

properties of thewPCC-kNN graph, for various values ofk; we do not include results for the other

similarity measures since they are very similar.

Path Length. Table 3.5 reports the maximum and average path length between any two nodes. These

values were computed using Floyd’s algorithm, based on an undirected representation of thekNN graph.

In other words, we assume that if a link between the pair exists (regardless of its direction), then so does

some measurable quantity of similarity. Another curious characteristic of the values reported in Table

3.5 is that whilek increases, the maximum and average path between any pair of nodes remains small,

ranging from1.4 to 2.9 hops; in fact, the graph demonstrates small-world properties that are very similar

to those measured in explicit social networks.

Connectedness. An analysis of the entire graph, generated using only positive similarity links,

shows that the clusters of users appear depending on the neighbourhood size parameterk that is used.

Whenk = 1, a number of small clusters of users emerge, regardless of what similarity measure is used.

The different methods only vary on average intra-cluster path length (as explored above); this reflects the

way that these small clusters are shaped. In some cases, suchas thewPCC graph, the clusters are formed

of a group of nodes that all point to the same top-neighbour. In other cases, such as in the COR graph,

the clusters form small chains of nodes, which accounts for the longer intra-cluster path length between

users. The majority of these characteristics disappear as soon ask is incremented above one. As soon

as users are allowed to point to more than their single most similar neighbour, the graph collapses in on

itself: clusters are lost and, in most cases, the graph becomes fully connected.

Reciprocity. We counted the number of edges as the number of links betweennodes, whether they

be directed or not. In fact, whenk = 1, the number of edges isless thanthe 1× the total number

3.3. Similarity Over Time 65

Figure 3.21: In-degree long tail ofwPCC-kNN k = 100 ML-1 Graph

of nodes. This is due to the fact that in some cases, a pair of nodes point to each other; two directed

links turn into a single undirected link, and the pair have a reciprocal relationship. Reciprocity is a

characteristic of graphs explored in social network analysis [KNT06]; in our context it translates to the

proportion of users who are in each other’s top-k. On the one hand, reciprocity may be regarded as

a desirable characteristic, since it implies that the generated graph really does pair very similar users

together. On the other hand, high reciprocity can have dire consequences, as it will prevent information

from being propagated over the similarity graph. The index of reciprocity that we use in Table 3.5 is the

number of bi-directional links between nodes over the totalnumber of links. The value ranges from0, or

no reciprocity, to1, where all nodes pairs have reciprocal relationships. As the table shows, reciprocity

grows as the allowed number of neighbours increases, and remains minimal whenk = 1. However,

it does not grow very much: adding a large number of links whenk is incremented from10 to 100

does very little to increase the measured reciprocity between users. This reflects the fact that although

measured similarity is symmetric, this does not imply that each user will also have the same rank in the

other’s top-k; and this will matter when computing recommendations.

In Degree Distribution. We can further observe this phenomenon by considering the in-degree

distribution of the nodes in the graph. The in-degree of a particular noden is the number of directed

links that end on this node; in the context of collaborative filtering this equates to the number of users

who place usern in their top-k. Figure 3.21 shows the in-degree of each user in thewPCCkNN graph,

whenk = 100. The distribution follows a power-law, much like the distribution that compares the

number of ratings between different movies [LHC08b].

The in-degree distribution amongst users brings to light a new characteristic ofkNN algorithms.

Given a CF dataset and a nearest neighbour parameterk, there may be some users who arenot in

any other’s top-k. Their ratings are therefore inaccessible and, although they will be considered when

estimating the similarity between a pair of users, they willnot be used in any prediction. To highlight

this factor, we rankNN prediction algorithms using the four similarity measures we are focusing on in

this work on the ML-1 MovieLens subsets. Each rating in the training sets was coupled with a boolean

flag, which would be set to true if the rating was used in makingany prediction. We were thus able to

3.3. Similarity Over Time 66

ML-1 Dataset

k COR wPCC PCC VS

1 0.92 0.91 0.99 0.99
10 0.59 0.59 0.95 0.95
100 0.23 0.25 0.81 0.85
150 0.12 0.16 0.59 0.71
200 0.05 0.05 0.18 0.42

Table 3.6: Unused Proportions of the Dataset

count how much of the training set remained unused after all the predictions had been completed.

Table 3.6 reports the proportions of the ML-1 dataset that are not used for varying values ofk. The

table does not reflect how many times individual ratings may have been used; it only counts whether

the rating has ever been used or not. As the table shows, whenk is very low, over90% of the ratings

are not used. In fact, these values ofk generate predictions based on a very small subset of the training

data, which may thus account for why they suffer from lower accuracy and impoverished coverage. As

k increases, so does the use of the training data; ifk were set to the total number of users in the system

then the only ratings that would not be used would be those of auser who has no measurable similarity

to any other in the system. However, a difference between thebetter-performing COR/wPCC and lower-

accuracy PCC/VS similarity measures emerges once again: ask increases the former quickly use more

of the dataset in predictions. Whenk = 200, only 5% of the training ratings are not used in predictions,

while the VS similarity measure has barely made use of more than half of the ratings. The intuitive

benefit of the COR/wPCC similarity measures may very well emerge here: they offer broader access to

the ratings in the training set.

The Influence of Power Users

Another observation from Figure 3.21 is that some users willhave an exceptionally high in-degree. We

call this grouppowerusers; by being a frequently selected neighbour, they will have a stronger influence

on the predictions that are made for others. These users emerge from the use of all the above similarity

measures inkNN graphs. This is a characteristic that appears in other networks like the World Wide

Web, movie actor collaboration graphs, and cellular networks, and is explained in terms ofpreferential

attachment[BA02]. In other words, when a new node connects to the graph,the probability that it

connects to another node is proportional to the in-degree ofthat node. In the context of collaborative

filtering, therefore, it it important to understand the effect that generating a nearest-neighbour graph with

power users has on the performance of the algorithm. We therefore ran two separate experiments. In the

first, we forced all users’ similarity with the top-P power users to be0: in effect, removing their ability

to contribute to predictions.

Figures 3.22(a) and 3.22(b) are the 5-fold cross validationmean absolute error and coverage results

when removing a varying number of power users, for differentvalues ofk. As power users are removed,

both accuracy and coverage worsen, although even when750 (out of943) profiles are made inaccessible

3.4. Summary 67

(a) Accuracy, Removing Power Users (b) Coverage, Removing Power Users

(c) Accuracy, Only Power Users (d) Coverage, Only Power Users

Figure 3.22: Results When Excluding or Exclusively Using Power Users

accuracy is still within0.78. It seems, therefore, that the remaining non-power users can still make

significant contributions to each user’s predictions. These results reflect the dependency that accuracy

has on the number of users in a system, another relationship that remains unexplored.

We followed this experiment by performing the inverse. Figures 3.22(c) and 3.22(d) show the 5-fold

cross validation accuracy and coverage results whenonlythe top-P power users are allowed to contribute

to predicted ratings; if a neighbour is not a power user, a zero similarity value is set between the pair.

The early spike in the plot is explained as follows: making predictions by simply returning each users’

mean rating outperforms using only the topmost power user alone, but accuracy quickly returns to the

same as when no users have been removed from the dataset whenP increases; in other words, there are

some user profiles in the dataset that do not contribute at allto the overall performance. The coverage

plot shows a potential reason why these users are power users: the10 topmost power users hold access

to over50% of the dataset.

3.4 Summary

In this chapter, we have examined the temporal characteristics of recommender system data, from the

perspective of the ratings, users, and items. We have observed how the way people use recommender

3.4. Summary 68

systems changes over time: new users and items are added, therating distribution and both global and

per-user/item summary statistics change. In other words,all features of the data that are used to make

predictions in state of the art algorithms will vary with time.

We also performed a graph analysis of inter-user similarity, including the changes that appear

throughout these graphs as time passes. The evolution of similarity between any pair of users is dom-

inated by the method that is used to measure similarity, and the four measures we explored can be

classified into three categories (incremental, corrective, near-random) based on the temporal properties

they show. The number of unique neighbours that a particularuser will be given over time also depends

on both the similarity measured and parameterk used; furthermore, the rate at which they meet these

new neighbours will vary for different similarity measures. Measures that are known to perform better

display the same behaviour: they areincremental, connect each user quicker and to fewer unique neigh-

bours, and offer broader access to the ratings in the training set. The focus here, therefore, is on the

emergentstructureof the graph using the MovieLens dataset.

In the following chapters, we shift our focus toward the temporal performanceof CF algorithms.

Collaborative filtering algorithms have traditionally been evaluated by: (1) splitting a dataset of user

ratings into training and test sets, (2) feeding the training set into the learning algorithm, and (3) querying

the algorithm for predictions of items in the test set. Evaluations are then conducted by comparing the

predictions to the actual ratings that were withheld in the test set. There are two problems with this setup:

both themetricsandmethodology, in their current form, are not suited to a context in which a sequence

of updates is required. We therefore first define a methodology for performing temporal experiments and

examine how the changes to the data observed here affect the accuracy of rating predictions (Chapter

4). We then evaluate the temporal diversity in recommendations produced by changing data using novel

metrics (Chapter 5). Lastly, we use the regularity in users’behaviour to construct systems that are robust

to attack (Chapter 6).

Chapter 4

Temporal Accuracy of Collaborative Filtering

The primary task of a recommender system is to take user ratings and predict the values that users would

attribute to content they have not rated, in order to generate personalised ranked lists of recommenda-

tions. Intuitively, the changes in the rating datasets thatwe have observed in the previous chapter will

affect the performance of any learning algorithm that is iteratively retrained with the user ratings. In this

chapter, we explore the extent to which this intuition is true: we first define a methodology for perform-

ing collaborative filtering temporal experiments and discuss a variety of design decisions that we made

by reporting the results of two case study experiments (Section 4.1). We then perform and analyse a set

of cross-validated temporal experiments with the Netflix data (Section 4.2). The key observation that we

make is that state of the art filtering algorithms that are regularly batch-updated are not aware of their

own temporal performance; we thus hypothesise that introducing this feature will improve an algorithm’s

temporal accuracy. We test this hypothesis in Section 4.3 bydesigning and evaluating a hybrid-switching

CF algorithm that modifies how it predicts user ratings according to its performance to date.

4.1 Measuring Temporal Performance
At the broadest level we consider a scenario where, given a timet, we will train the CF algorithm with

all ratings that have been input prior tot and want to predict the ratings (or a subset theoreof) that will

be inputafter t. We then require a means of tracking performance over time. In this section, we examine

the range of choices available when designing an experimentthat mimics recommender systems that are

updated.

4.1.1 Simulating Temporal Updates

Our generic description above prescribed a method for iteratively retraining CF algorithms. The simu-

lated recommender system begins at timeǫ and will be updated at different timest. When an update

occurs, the CF algorithm is retrained with the currently available ratings and then it derives predicted

ratings of unrated items in order to present each user with personalised recommendations. There are a

number of challenges that we face:

1. Starting Point: When should we begin the train-test cycle? If we begin at thefirst available date

in the dateset, we will be making predictions with no ratingsto learn from. In other words, how

many ratings are enough to bootstrap a recommender system?

4.1. Measuring Temporal Performance 70

2. Updates: how often should the system be updated? Should we retrain the algorithm with all

ratings input prior to the one we would like to predict? Or should the system be updated at some

predefined regular interval (daily, weekly, monthly)?

3. Test Sets: how are they to be defined? By retraining CF algorithms with agrowing dataset, we are

simply performing a sequence of updates where the training set has been augmented. However,

what should we be predicting? The test set could be astatic set of ratings that will be input in

some arbitrary time in the future, or achangingset of ratings based on what will be rated after the

current update. Unlike the traditional methodology, we mayalso encounter a situation in which

multiple predictions can be made for a user-item pair beforethe user rates the item. For example,

if we are updating the system weekly, predicting all unrateditems, and a user will rate an item one

month after the current update, then we will make four predictions of the same rating prior to the

user rating the item. Should they all be included in error measurements? If not, which one is the

mostrelevant?

We explore these questions in Section 4.1.3 by comparing theresults of different experiments; however,

we first define the options available to measure temporal accuracy.

4.1.2 Metrics: Sequential, Continuous, Windowed

In terms of prediction error, there are three ways that a set of recommender systems’ temporal updates

can be evaluated. The first is asequentialview, where we compute the RMSE on each experiment

separately. The alternative is thecontinuoustime-averaged RMSE metric. To observe the dependence

of prediction error on time, we modified the RMSE calculation, in a manner akin to that of the Time

Averaged Rank Loss that is described in [CS01]. If we defineRt as the set of predictions made up to

time t, then the time-averaged error is simply the RMSE achieved onthe predictions made so far:

RMSEt =

√

∑

r̂u,i∈Rt
(r̂u,i − ru,i)2

|Rt|
(4.1)

Similarly, we can define the time-averaged mean absolute error (MAE):

MAEt =
Σi=0|r̂u,i − ru,i|

|Rt|
(4.2)

The last possibility is thewindowedview. Error is accumulated and tracked using the continuousequa-

tions above, but once an update has been performed, we reset the error count to zero. This allows us

to see how prediction error is distributed within a single update: are predictions more accurate imme-

diately after the update? Do they become less accurate as time passes (since new ratings have not been

accounted for in the CF algorithm)?

4.1.3 Case Study

Prior to committing to a particular methodology, we explorethe options available by running a number

of experiments. In the first, we focus on a single user from theMovieLens dataset; we then expand our

analysis to include all of the MovieLens users. These experiments allow us to reason about what choices

to make regarding the experimental starting point, update frequency, and predictions. Lastly, we run a

4.1. Measuring Temporal Performance 71

(a) Time-Averaged RMSE (b) Windowed RMSE (c) Sequential RMSE

Figure 4.1: User 407: Three Views of Temporal Error

group of experiments that look at temporal updates with astatic test set and conclude that, while this

form of experiment does not reflect the reality of recommender systems, they provide important insight

into the influence of rating data on prediction performance.

Single User

We begin with a single user; we picked the ratings of user407 from the ML-1 dataset since they span a

relatively lengthy time scale. We also make the following assumptions:

• The system will be updateddaily; at each update user similarity is recomputed with all ratings

input to date and predictions are made for any ratings that will be input before the next update.

The first update occurs exactly one day after the first rating is input to the system. This allows

us to (a) minimise how far into the future we have to predict (thus minimising any bias that may

result from this) and (b) have a very fine-grained view of the system.

• Predictions will be made by a user-basedkNN algorithm, wherek = 10 and user-similarity is

computed with the Pearson Correlation Coefficient. We therefore use a simple algorithm which

has been extensively studied in the past [HKBR99].

We plot three temporal perspectives of the error in predicting user407’s ratings in Figure 4.1. Vertical

gray lines in Figures 4.1(a) and 4.1(b) denote when the system was updated; each point represents the

input of a successive rating. From these, we can make a numberof observations:

• The user does not rate items consistently; for example, the number of items that were rated before

the first update are far greater than those input before the second.

• All ratings input prior to the first update have a distinctly large error. From the algorithm’s per-

spective, there is no data to use to predict this user’s interests. Thecold-startproblem is often

described as an issue that users withfew ratings face; what we observe here, where the user has

no historical profile, is an extreme version of it (i.e., had no ratings to generate a neighbourhood at

the previous update and no mean rating value to provide an appropriate baseline prediction). Fig-

ures 4.1(c) and 4.1(b) show that the cold start region lasts until the next update; unfortunately, the

time-averaged results in Figure 4.1(a) are skewed throughout the entire duration of the predictions

by these initial predictions (the plotted error is on the range[2.5, 4]).

4.1. Measuring Temporal Performance 72

(a) Time-Averaged RMSE (b) Sequential RMSE (c) Windowed RMSE

Figure 4.2: ML-1 Dataset: Three Views of Temporal Error

• Prediction error does not improve over time for this user. The time-averaged results seem to imply

that predictions are improving; however, as stated above, this is due to the skew from the initial

predictions. After the cold-start day, the error of predictions made in any given window range lies

between slightly above 0 to just under 2.

We thus find that the time-averaged metric will only be appropriate if we do not include cold-start

predictions. The windowed and sequential metrics do not suffer from this problem; in fact, they have

already highlighted the large variability in prediction accuracy as time passes.

Groups of Users

Based on the observations above, we broadened the scope of the experiment and included all the ML-1

users. This way we can view the same results as above for a large group of users: we plot these in Figure

4.2. The results highlight a number of points:

• Again, the time-Averaged RMSE is of little value if we include cold-start predictions. As above,

users face the cold-start problem when they have no historical ratings; they thus have no mean

rating value or neighbours. Our options here are to (a) modify our prediction algorithm in order

to return an appropriate non-zero prediction for cold-start users, or to (b) disregard cold-start

predictions. Since the cold-start problem has been approached from a variety of perspectives

[NDB07, PPM+06] we opt for the latter in this work rather than limit ourselves to a single available

solution.

• The windowed perspective (Figure 4.2(c)) shows that inter-window behaviour does not follow a

single pattern. There are some windows that, as they progress, become ever more accurate; there

are also windows that become less accurate as time passes. However each window is distinctly

different from the others: how many ratings are input, alongwith what items are being rated,

continuously changes.

• The sequential view (Figure 4.2(b)) is a summarised form of the windowed perspective; each

point represents theaverageerror of each window. In fact, since our prediction model is updated

iteratively, the windowed results (Figure 4.2(c)) will be subject to the order that ratings are input.

The static and time-averaged views, instead, are both not subject to this limitation and useful for

4.1. Measuring Temporal Performance 73

(a) Item Mean (b) User Mean

Figure 4.3: Temporal Experiments With a Static Test Set (User/Item Mean)

(a) kNN, k = 50 (b) SVD, f = 64

Figure 4.4: Temporal Experiments With a Static Test Set (kNN/SVD)

measuring performance across updates.

Predicting Static Test Sets

How should we define our test set? We can either keep the test set fixed and only change the train-

ing set, or update both as the simulated temporal updates areperformed. In the context of a deployed

recommender system, we assume that the prediction that has the greatest impact (in terms of the rec-

ommendations generated for each user) is the last one made before the rating is input. Why? Changes

in the predictions as they are updated will affect each user’s recommendations: when users rate items,

only their current recommendations (i.e., ranked prediction values) will be influencing their decisions.

Therefore, at timet (with update frequencyµ), we decided to only make predictions for ratings that will

be input int+ µ; no predictions are recomputed or updated for ratings that the users have already input

or will input aftert+ µ. In other words, predictions are only made once. This may differ from deployed

recommender systems, that do not knowwhenusers will rate items, and will therefore not be able to

update predictions until the user inputs a rating. However,as described above, this allows us to focus on

the predictions that will have the greatest impact on a user when they are rating an item. In the following

chapters, we will remove this assumption when we evaluate the top-N lists created over time.

The alternative to the above would be to keep astatic test set. In other words, we define an (un-

changing) set of ratings that we would like to predict, and observe the prediction error as we add more

4.1. Measuring Temporal Performance 74

data to the training set. This allows us to explore how prediction quality varies with time from the op-

posite point of view of the above: we can see the performance trajectory of the system as it approaches

the state where the user will rate the predicted item. We tried this setup with the Netflix dataset: we

first made a static test set, consisting of all ratings input in the first fifty days of the dataset, and reserved

the rest as training data. We selected the ratings from the first (rather than last) fifty days since this

guaranteed that the items we are predicting will already be in the system and will continue to be rated in

the training data. We selected four CF algorithms: two baseline prediction methods (the user and item

mean), an item-basedkNN with k = 50 neighbours, and a SVD with64 user and item features; this

range of choices both reflects state-of-the-art CF and each manipulate the rating data in different ways.

We then iteratively trained each algorithm with a growing dataset, incrementing it with one week’s worth

of ratings at each round. The choice of one week increments isarbitrary; in our case, it allows for a rel-

atively high number of ratings to be added to the training set. Given that we used the Netflix dataset for

these experiments (which spans a longer time frame), this choice also requires fewer iterations of the

algorithms to be run. After each training phase, we queried the algorithms for predictions of the test set,

and plot the time-averaged RMSE results in Figures 4.3 and 4.4. All of the results share common traits:

on the left side of the plots, where very little training datais available, RMSE values are very high. These

results hint at the fact that when more training data is available CF algorithms will be able to make better

predictions. Each prediction method’s results shows different amounts of variability; the most notable

is the user mean, which has very clear changes in performancewhen the test set users add more ratings

to their profile. However, all of the methods’ best predictions were made prior to the full training data

being made available to the algorithms. Even the SVD, with RMSE results that seem to decrease mono-

tonically over time, hits a minimum value before all the datahas been given to it. All of the minimum

values occur at different times, highlighting how prediction algorithms will each be affected in different

ways by the available data, and any noise within it [APO09].

The purpose of these experiments was to see how CF accuracy isaffected by a growing training set,

from the point of view of a fixed set of ratings that need to be predicted. In practice, these results show

us how accuracy will vary as predictions for unrated items are updated. For example, assume that a user

does not rate a movie for one month after it becomes available. The system does not know when the

user will rate the item and will thus continue updating its prediction until the true rating is input. These

results show us that the prediction (which determines whether or not the movie will be recommended)

may suffer from high variability and will not necessarily improve as time passes. Deployed recommender

systems, however, do not have the luxury of having a closed test set: as we saw in Chapter 3, the available

items will continue to grow over time. Real systems will thushave to face adynamictest set: they

continuously have to predict the future. In the following sections, we perform experiments reflecting this

context; we begin by explicitly defining how we will do so.

4.1.4 Methodology

Based on the exploratory work we reported above, we define here how we conducted temporal experi-

ments. Given a dataset of timestamped user ratings, a start time ǫ and update frequencyµ, we define:

4.1. Measuring Temporal Performance 75

(a) Test Set Size Over Time (b) Users Ratings Removed (c) Items Ratings Removed

Figure 4.5: Temporal Experiment Test Sets’ Characteristics: Size, and Distribution of Users Who Rate

Items First and Items that Are Rated First

1. Starting Point: we define the starting time asǫ and elected to wait for an arbitrary number of days

before beginning the train-test cycle; this allowed us to observe a system that (in terms of number

of ratings) is not suffering from system-wide cold start problems. We denoted this number of days

as the “edge.” In the Netflix experiments below these are any ratings input in the first500 days of

the dataset; our data thus allows for250 temporal updates.

2. Updates: we elected to update the system based on accounts of deployed large-scale recommender

systems [Mul06]; the system will be updated weekly. When it is updated, it will train with all

ratings input up to the current time.

3. Test Sets: After each update, the system will be queried for predictions concerning ratings that

will be entered before the next update, only if both the user and item have at least1 historical

rating. We thus still expect to see how our algorithms cope with the cold start problem; however,

this assumption will remove the need to define a default prediction to return in the case of no

history.

This setup has two implications, due to the temporal structure of the dataset: on the one hand, the number

of historical ratings (or training set) will grow ast increases. On the other hand, the number of ratings in

t+µ (the test set) will also increase, as plotted in Figure 4.5. It is interesting to note that pruning the test

sets of items and users who have no history tends to exclude some users more than others. Figure 4.5

includes two plots that highlight this feature. Figure 4.5(b) shows the average number of ratings pruned

per user; these ratings are pruned from the test set since theuser is rating movies that have no historical

ratings. Figure 4.5(c) shows the equivalent distribution for the movies; these show ratings excluded from

the test set because they are the first ratings input by each user. This highlights an important characteristic

of the data set: there are certain users who are consistentlyrating items that have never been rated before

(items that have no data available for them to be recommended), and seem to be exhibiting behaviour

that extends beyond merely responding to recommendations [HKTR04]. There are also movies that

consistently appear as users’ first rating, which may give insight into what recommendations Netflix was

offering to new users.

4.2. Results 76

(a) Bias Model (b) SVD

Figure 4.6: Sequential RMSE Results for User Bias Model and SVD

(a) kNN, k = 20 (b) kNN, k = 50

Figure 4.7: Sequential RMSE Results forkNN Algorithm With k ∈ {20, 50}

4.2 Results

We now evaluate CF algorithmsover time, as they are iteratively applied to a growing dataset of ratings.

In order to cross-validate our results, we subsampled the Netflix dataset. To do so, we split the users into

50 bins (according to profile size) and randomly selected1, 000 users from each bin; by repeating this

process, we produced five subsets of50, 000 users. We then selected all ratings belonging to these users

and any rating input before timeǫ. Our final subsets have about60, 000 users: setting theǫ value as we

did is equivalent to bootstrapping a recommender system with 10, 000 users.

We focus on three algorithms: Potter’s bias model [Pot08], an item-basedkNN (with k ∈

{20, 35, 50}), and a SVD with64 user and item features. In doing so, we coverbaselinemodels, the ever-

popularnearest-neighbourmethod and afactorisation-based approach, which represent three different

and important state-of-the-art algorithms.

4.2.1 Sequential Results

The sequential results for the bias model, kNN withk = 20, 50, and the SVD are in Figures 4.6 and 4.7.

From these we can observe that CF algorithm performance lieson arangeof values. Thek = 50 results

fall in [0.9193, 1.034], while the range fork = 20 is slightly worse,[0.9383, 1.0608]; nevertheless, the

ranges overlap significantly. However, while the bias modeloutperformed bothkNN methods on the

probe [LHC09b], its temporal performance is between0.9186 and1.0637: at best, it shows a minor

4.2. Results 77

(a) Bias Model (b) kNN For Users With|Ru| ∈ [0, 10)

Figure 4.8: Time-Averaged RMSE for User Bias Model and SVD

improvement overk = 50, while in other cases is outperformed byk = 20. Similarly, the SVD val-

ues range between[0.8907, 1.0061]; while achieving the best minimum, that values are not consistently

lower than the other algorithms. The performance across allmethods falls by approximately0.02 be-

tween the218th and219th update, highlighting a change in thedatathat results in all methods degrading

in performance. While the trend between the different plotsis roughly similar, the precise moments that

each algorithm performs best (or worst) differs between each method. BothkNN methods achieve their

lowest RMSE on the186th update; however,k = 50 yields its worst performance on the140th update,

while the equivalent fork = 20 happens at the42nd update. The bias model achieves both the best and

worst performance within the first10 updates. The SVD, instead, hits its minimum on the8th update,

and maximum at its39th update.

What do we learn from these results? Viewing the sequence of RMSE results emphasises the

difficulty of identifying which algorithm outperforms the others. Ranking the algorithms according to

performance is dependent on what snapshot of the data is currently being trained with. However, the

k = 50 parameter was more accurate thank = 20 in 248 (of the250) iterations. Similarly, the SVD is

more accurate than thek = 50 kNN for 245 updates. The balance betweenk = 50 and the bias model is

not as one-sided: the bias model is more accurate in about two-thirds of the updates (158), while in the

other91 cases thekNN model is more accurate. In other words, while it is possible to deduce relative

performance based on a set of results, the best performing method in anyindividual time segment varies.

4.2.2 Time-Averaged Results

The time-averaged results of5-fold cross validated experiments are shown in Figure 4.8 and 4.9. This

visualisation provides a different perspective on the experimental results, and there are a number of

observations that can be made. Figure 4.9(a) shows thatk = 50 tends to outperformk = 20 over time.

We also tried experiments withk = 0; in this case the current item mean is returned. All values of

k 6= 0 consistently outperformed this baseline; this result persists if the currentuser(rather than item)

mean rating is returned. The difference in time-averaged performance of eachkNN parameter setting is

less than0.02, and remains approximately constant after the50th system update. The performance itself

4.2. Results 78

(a) kNN k = {20, 35, 50} (b) kNN For Users With|Ru| ∈ [0, 10)

Figure 4.9: Time-Averaged RMSE forkNN Algorithm and Users With Fewer Than 10 Ratings

varies: after the50th update predictive accuracy wanes. However, after the150th update performance

once again improves, falling sharply by 3% in the case ofk = 50. This highlights the dependence that

these methods have on the data they train on.

Figure 4.8(a) plots the time-averaged performance of the bias model. The bias model with variance

scaling is consistently outperformed by the model that has no variance adjustment. The differences in

performance are in the range[0.03, 0.1]: scaling user ratings with adynamicvariance introduces more

error to the predictions. Why do the probe and temporal results differ? One indicative factor is the

difference in the rating distribution over time; users withfewer than10 ratings make up more than half

of the dataset for most of the interval we consider. However,only 3% of the users remain in this group

when considering the entire dataset. The majority of the user variance values, in the temporal case, are

therefore computed with incredibly sparse data.

Comparing Figures 4.9(a) and 4.8(a): although the bias model outperformskNN when predicting

the Netflix probe, it does not consistently outperformkNN on the temporal scale. For example, in the

4th update, the bias model time-averaged result is1.004, while thekNN result is0.964. From these

results,kNN with k = 50 emerges as the most temporally accurate method. However, wealso explored

how prediction error is distributed across a community ofindividualsby, once again, splitting users into

groups according to profile size and plotting the group’s5-fold cross-validated time-averaged perfor-

mance. As expected, group performance is proportional to the range of ratings that defines the group:

the group of users who have fewer than10 ratings also have the least accurate predictions, comparedto

the groups with more ratings. However, as shown in Figure 4.9(b), thek value performance in the group

with fewer than10 ratings is the opposite of what we observed when all groups were merged: larger

neighbourhoods leads tolessaccurate results.

4.2.3 Discussion

The above results provide insight into a number of characteristics of recommender systems. The fore-

most observation to be made is that recommender systems are not built to beawareof their own temporal

performance. Each update is treated independently of the rest: algorithms are retrained with all of the

available data, and no changes are made based on the temporalperformance to date. The experiments

4.3. Adaptive Temporal Collaborative Filtering 79

also show the range of results that algorithms produce: a single snapshot of algorithm performance is

not sufficient to conclude that one algorithm is indeed more accurate than another. In fact, there is often

no consensus between the method that produces the bestglobal performance and that which best suits

each user.

These conclusions led us to formulate the following hypothesis: collaborative filtering algorithms

that modify how they predict user ratings (byswitchingalgorithm [Bur02] orupdatingparameters) based

on their temporal performance will be more accurate than algorithms that do not. In the following

sections, we test this hypothesis by designing and evaluating temporal hybrid switching algorithms.

4.3 Adaptive Temporal Collaborative Filtering

Currently, prediction methods are applied iteratively as the data grows; the only change from one step

to the next is ratingdata that is input to the algorithm. In particular, no information on the current

performance is fed forward to the next iteration of the algorithm. We therefore propose temporally

adaptivecollaborative filtering, which will make use of this information to change the algorithm that is

used at each iteration. There are two adaptive methods that we explore and evaluate. The first selects

between different algorithms (Section 4.3.1), while the second is based on only adaptingkNN (Section

4.3.2) or SVD (Section 4.3.3) parameters.

4.3.1 Adaptive CF

To implement temporally adaptive CF, we begin with a pre-defined setP of CF algorithms. In this work,

the set includeskNN, with k = {0, 20, 35, 50}, and the bias model. Ak = 0 value disregards neighbour-

hoods completely; in this case we can either return a baseline item (b(i)) or user (b(u)) mean rating (there

are six candidate methods altogether). Each useru is assigned a labelLu,t denoting which algorithm

L best predicts their preferences at timet. At each time step, each user also has a corresponding error

valueeu,t denoting the time-averaged RMSE achieved on the predictions made to date onthe individual

profile. We therefore aim to minimise the per-usereu,t value by selecting theL ∈ P that would have

maximised the improvement on the current error:

∀u : Lu,t+1 = max
L∈P

(eu,t −RMSEu,t) (4.3)

Although the previous analysis binned users according to profile size, and demonstrated that relative

performance varies depending on the group being considered, we did not opt to adapt based on which

“group” users belonged to. We did this for two reasons: first,the grouping was done with pre-defined

values that could themselves benefit from fine-tuning; secondly, this form of grouping continues to mask

the predictive performance onindividualprofiles, and the aim we envisage for adaptive filtering is based

on addressing users’ profiles individually. In doing so, theCF algorithm that provides personalised

recommendations becomes itself personalised.

The five-fold cross-validated time-averaged RMSE results for the adaptive method are plotted in

Figure 4.10(a), compared to the two best individual methods: kNN with k = 50 and the bias model. As

the plot shows, the adaptive method begins by following the same pattern as thekNN curve, but then

4.3. Adaptive Temporal Collaborative Filtering 80

(a) Adaptive CF (b) User Proportions Per Algorithm (c) User Change Proportions

Figure 4.10: Time-Averaged RMSE Comparingk = 50, the Bias Model, and Adaptive CF; Proportions

of Users Who Selected Each Algorithm Over Time, and Proportions of Users Who Changed Method At

Each Interval

(as the bias model becomes more accurate) departs from this pattern and becomes more accurate than

either model alone. In fact, adapting on a per-user basis offers better temporal accuracy than if we simply

selected the minimum of the two methods. We also plotted in Figure 4.10(b) the proportion of users who

select each method over time. The results show that, while the bias model dominates the others (in terms

of the proportion of users that the algorithm selects the bias model for), it is selected for less than 30%

of the users: no single model ‘best’ predicts the majority ofend users.

To gain insight into how often the algorithm needs to change adecision it had previously made, we

plotted the proportion of users who, during the update, changed algorithm from the one used during the

previous window (Figure 4.10(c)). Overall, very few of the growing population of users changes method

from one update to the next; the change is consistently between 1.3% and 14.3% of the growing user

community, and on average is3.1± 1.6%.

4.3.2 Adaptive kNN

While the above method offers greater accuracy, it has two shortcomings. First, it isexpensive: multiple

CF algorithms must be implemented and independently trained at each update on the growing data.

Given the volume of data that large scale recommender systems must handle and the time it takes to train

CF algorithms [Mul06], repeating this process with multiple algorithms may be prohitive and difficult

to scale. However, if the cost can be incurred, and the goal ofdoing so is to heighten accuracy, then

blending the predictors (rather than switching between them) will offer better results. In fact, one of the

first lessons to be learned from the Netflix prize is that greater accuracy can be achieved by blending a

wide variety of predictors; the grand prize solutions combined hundreds of predictors in order to surpass

the 10% improvement goal [Kor09b, TJB09, PC09].

In the interest of scalability, we therefore also explored amethod that only tunes thekNN parame-

ters. To do so, we first select a subset of potentialk valuesP ⊂ N. In this work,P = {0, 20, 35, 50}.

We then proceed to set a valueku,t ∈ P for each useru at timet. When new users enter the system,

their ku,t value is bootstrapped to a pre-determined member ofP . The idea is for eachku,t to be set to

4.3. Adaptive Temporal Collaborative Filtering 81

(a) AdaptivekNN (b) Userk-Value Proportions (c) User Change Proportions

Figure 4.11: Time-Averaged RMSE Comparingk = 50 and Adaptive (k = α) kNN, Proportions of

Users Who Selected Eachk Value Over Time, and Proportions of Users whosek Value Changed At

Each Interval

that which would have provided the steepest improvement on the users’eu,t value in the last time step,

just as shown in Equation 4.3:

∀u : ku,t+1 = max
k∈P

(eu,t −RMSEu,t) (4.4)

It is important to note that this parameter update method is independent of the particular flavour of

kNN that is implemented. In other words, it is equally applicable to both the user-based and item-based

approaches; for example, if the item-based approach is implemented (as we have experimented with

above), then a prediction̂ru,i of item i for useru is done by aggregating ratings byk similar items.

It could also be applied to the user-based approach, where predictions would aggregate ratings fromk

similarusers. We still aim to optimise performance on a per-user basis.

The results are plotted in Figure 4.11. Figure 4.11(a) compares the five-fold cross validated time-

averaged RMSE results of the bestglobal parameter setting (k = 50) and the adaptive technique. The

results highlight a number of benefits of adaptive CF. In particular, the adaptive strategy at first rivals

the performance ofk = 50, but then improves the overall time-averaged RMSE, withoutrequiring any

manual parameter tuning. In these runs we opted for the bootstrapping setting to bek = 50, since it

performedworstwhen predicting users with very small profiles, as plotted inFigure 4.9(b) (we thus are

considering a worst case scenario). It will thus tend to disadvantage new entrants to the system; however,

we still can see an improvement in temporal accuracy. Changes to the bootstrapping value affected the

first number of updates, but, after a number of updates, all the values we tested differed in performance

by less than0.001; they all outperformedk = 50.

To explore how the different parameter settings are distributed amongst members of the system

over time, we plotted the proportions of current users who have adopted each setting, shown in Figure

4.11(b). From this, we see that users do not converge to a single parameter and moreover, the dominant

strategy (selected by up to 40% of the current users) is the baseline item mean, followed byk = 50, the

user mean,k = 20, and lastly35. The most selected method, when operating alone, was consistently

outperformed by all otherk values. However, it plays an important role in providing greater temporal

4.3. Adaptive Temporal Collaborative Filtering 82

(a) P1 ∈ (56, 64, 72, 80, 88, 96) (b) P2 ∈ (72, 80, 88, 96) (c) P3 ∈ (88, 96)

Figure 4.12: Time-Averaged RMSE Gain of Adaptive-SVD With Different Subsets of Parameters

accuracy to the adaptive case.

The method we have outlined allows thek value for each user to be updated ateveryinterval. The

k value is changed if a different value would have yielded better predictions at the current time; it is

possible, therefore, that thisk value would continuously fluctuate without finding a stable value. To

explore this possibility, we graphed the proportion of users whochangeneighbourhood size over time

in Figure 4.11(c), and found that only a very small proportion of the user neighbourhood sizes are being

changed at any given update. On average, only 2% of the current users change neighbourhood size; at

most, 6% adopt a new size for the next interval. While this does not imply that users are converging and

remaining on the optimal strategy, it highlights the proportion of users with parametersnotset to the best

member of P.

The improved accuracy of adaptive-kNN comes at little cost: the computational overhead is min-

imal. The cost of computing predictions remains the same, since, for example, the computations for

both thek = 20 and35 predictions for a user-item pair are contained within thoserequired to compute

k = 50. User profiles need to be augmented to includeei, the error achieved to date, and a set of error

values that eachk has achieved in the current time step.

While the notion of adaptive-CF has been applied here totemporalcollaborative filtering, it can

also be applied to the static case. In the latter context, theproblem is that of determining appropriate

k values in a single step. We leave a full analysis of adaptive CF in the static case as a topic of future

work; however, here we explore the potential for improvement by reporting the results of theoptimal

case. GivenP = {0, 20, 35, 50}, if we select the optimal parameter setting for each user (assuming

full knowledge of the RMSE each method produces for each user), the probe RMSE would be0.8158.

This error lies below the threshold for the Netflix prize, andis achieved by adaptively selecting from

5 techniques thatalone come nowhere close to this mark. Furthermore, there is no single method that

dominates over the others:22% selectk = 20, 12% opt for k = 35, 14% selectk = 50, 24% the

item mean, and26% the user mean rating. Interestingly, the two baseline (meanrating) based methods

together compose half of the users in the dataset.

4.4. Related Work 83

4.3.3 Adaptive SVD

In the previous section, we showed that the neighbourhood size parameterk can be selected from a

predefined subset of candidates and updated over time in order to improve the system’s time-averaged

performance. A natural question to ask is whether this technique is bound to how thekNN algorithm

works, and whether the general principle of parameter update based on temporal performance can be

applied to other CF algorithms as well.

In order to investigate this question, we turned to SVD-based CF. As introduced in Chapter 2 (Sec-

tion 2.2.4), SVDs are given a parameterf that denotes how many features will be used to describe the

users and movies once they are projected to a lower dimensional space. While nonparametric versions

of this algorithm have been explored recently [YZLG09], we focus on the family of SVDs that are ini-

tialised with a predefined value off . In our case, we ran an experiment wheref = 96. We also output

all predictions for anyf in P ∈ {56, 64, 72, 80, 88, 96}); a number of arbitrary parameters, selected

so as to be evenly spaced from each other (they are, in fact, all multiples of eight). Note that we do

not recompute the user and movie feature values with a new parameter, but simply output a number of

predictions, where each uses a varying subset of the features computed withf = 96. We then repeat the

same update process that we implemented above; this time, instead, we select (for each user) a futuref

value based on the one that is currently performing best:

∀u : fu,t+1 = max
f∈P

(eu,t −RMSEu,t) (4.5)

In this case, we take our baseline to be the predictions computed using the full (96) user and movie

features, since any hybrid switching approach will select to move away from the full feature matrix

toward lower valued parameters. We also varied the range off values we allowed in the full setP , in

order to test the effect of excluding the smaller members ofP . We triedP1 ∈ {56, 64, 72, 80, 88, 96}),

P2 ∈ {72, 80, 88, 96}), P3 ∈ {88, 96}): the results from these three experiments are plotted in Figure

4.12. In order to highlight how much we gain from the baseline, we plotted the difference between

the baseline and each method’s time-averaged RMSE. As with thekNN in the previous section, allPi

consistently improve the time-averaged RMSE of the baseline. However, we observe in this case that

broadening the range of availablef values does not always help. In fact, the group that achievesthe

highest gain from the baseline is the one with only twof candidates.

4.4 Related Work
Adaptive-CF differs from hybrid methods since, rather thanfocusing on merging different predictive

models, individual methods are selected based on current performance. To that extent, adaptive-CF

is independent of the particular set of selected classifiersthat it alternates between, and falls under the

broader category of available meta-learners [VD02], although we strictly consider the temporal scenario.

It is therefore also possible to widen the set of choices available in order to further improve accuracy;

for example, some users’ ratings may be best predicted by performing a SVD with a varying number of

features. We have not included this possibility here since doing so may well also introduce the potentially

prohibitive cost of computing many models in a deployed system.

4.5. Summary 84

Figure 4.13: Time-Averaged RMSE of kNN With Limited History

Previous work that highlights the importance of time in CF (and in related fields, such as information

retrieval [AG06]) tends to focus on the data, rather than thesequential application of an algorithm. For

example, Potter [Pot08] (whose bias model we explored above) and Bell & Koren [BK07] also consider

the temporal nature of ratings, by looking at the variability of individual user ratings across different

days of the week in order to improve predictive performance.Temporality has also been explored from

the point of view of changing user tastes [Kor09a, DL05]; in this case, ratings are scaled according to

when they were input. The aim is to capture the mostrelevantratings that represent current user tastes.

Both our adaptive-CF and this method could be merged; in thiswork we focus on the algorithm

rather than modifying the set of ratings we train with. However, there are a number of questions to be

addressed in future research. One of them is the influence of the update intervalµ. In this section, we

highlight a different example: the balance between time-averaged accuracy and how long the ratings that

are being trained with have been in the system.

We repeated our temporalkNN experiments, but limited the algorithm to computing itemneigh-

bours using only ratings that were input within the lastw ∈ {1, 5, 10, 25, 50} updates. In other words,

if w = 1, then item similarity is computed using only the ratings input in the previous week; a potential

majority of the ratings are excluded. Any ratings input before the allowed ‘window’ were only used to

compute item means. The results, along with the baseline (where all historical data is used), are plotted

in Figure 4.13. The figure can be roughly divided into three sections: in the beginning, the baseline

performance degrades over time. Then, after a period where the baseline is relatively flat, performance

improves for majority of the final updates. During the periodwhere performance degrades, all of the

limited/windowedkNNs are more accurate. However, when the baseline performance begins improv-

ing, the baseline overtakes the windowedkNNs, although thew = 50 is remarkably close (considering

the difference in data that each method has available). Justas we found a relation between theaccuracy

and the CFalgorithm, in order to design our hybrid method, there is also a relationship betweenaccuracy

and thedata.

4.5 Summary
This chapter departs from traditional CF research by extending the analysis of prediction performance to

incorporate a sequence of classification iterations that learn from a growing (and changing) set of ratings.

4.5. Summary 85

The contributions we made can be summarised as follows:

• Methodology and Metrics. We defined a novel approach with which to examine CF’s temporal

predictions, using three variations (continuous, sequential, windowed) of accuracy metrics.

• Evaluation of State-of-the-Art Algorithms . We ran a variety of experiments that evaluated CF

algorithms’ temporal accuracy from two perspectives, and highlighted thevariability of both static

and dynamic sets of predictions as training sets are augmented with new ratings.

• Adaptive Algorithms for Improved Temporal Accuracy . We implemented and evaluated two

adaptive algorithms that improve temporal accuracy over time: a method to switch between CF

algorithms and a computationally cheap technique to automatically tune parameters to provide

greater temporal accuracy.

The focus of this chapter has revolved around optimising recommender system prediction performance

from the point of view of RMSE. The results show that these algorithms do not output consistent error,

and it becomes difficult to claim that one algorithm outpredicts another when only a static case is investi-

gated (and especially when the static difference in performance is relatively small). For example, the bias

model was more accurate than raw-datakNN on the Netflix probe, but did not maintain this advantage

when a range of datasets (of varying size) were tested in an iterative set of cross-validated experiments.

We have focused on the temporal performance of CF algorithms, without considering (a) the extent to

which user preferences and interests will vary over large time intervals, and (b) the temporal effect of

malicious ratings [MBW07]. In particular, as the experiments in Section 4.2 highlight, performance does

not necessarily improve as the available training data grows.

However, this observation also motivates research that departs from traditional mean-error based

evaluations of CF algorithms. These kinds of evaluations aim to explore therankingthat emerges from

rating prediction, and the utility that users draw from the lists of recommendations they are offered. A

further evaluation of temporal CF would therefore also encompass the variation in recommendations that

results from the changing data; we begin in the following chapter by shifting our focus to CF’s temporal

diversity.

Chapter 5

Temporal Diversity in Recommender Systems

As we explored in the previous chapter, CF algorithms are often evaluated according to howaccurately

they predict user ratings [HKTR04]. However, as recommender systems grow dynamically, a problem

arises: current evaluation techniques do not investigate the temporal characteristics of the producedrec-

ommendations. Researchers have no means of knowing whether, for example,the system recommends

the same itemsto users over and over again, or whether the mostnovelcontent is finding its way into

recommendations. The danger here is that, as results may begin to stagnate, users may lose interest in

interacting with the recommender system.

In this chapter, we investigate one dimension of temporal recommendations: the diversity of recom-

mendation lists over time. We first examine why temporal diversity may be important in recommender

system research (Section 5.1) by considering temporalrating patternsand the results of an extensive

user survey. Based on these observations, we evaluate threeCF algorithms’ temporal diversity from 3

perspectives (Section 5.2): by comparing the intersectionof sequential top-N lists, by examining how

diversity is affected by the number of ratings that users input, and by weighting-in the trade-off between

accuracy and diversity over time. We finallydesignandevaluatea mechanism to promote temporal

diversity (Section 5.3), comparing its performance to a range of baseline techniques. We conclude in

Section 5.4 by discussing future research directions.

5.1 Why Temporal Diversity?
We explore the importance of temporal diversity from two perspectives: changes that CF data undergoes

over time (Section 5.1.1) and how surveyed users responded to recommendations with varying levels of

diversity (Section 5.1.2).

5.1.1 Changes Over Time

In Chapter 3, we performed an extensive analysis of how threerating datasets changed over time. In this

section, we briefly summarise the main conclusions of this analysis, and how they relate to the direction

we examine in this chapter.

1. Data Growth. Recommender systems grow over time: new users join the system and new content

is added as it is released. Pre-existing users can update their profiles by rating previously unrated

content; the overall volume ofdatathus grows over time. Section 3.2.1 shows the movie and user

5.1. Why Temporal Diversity? 87

growth across rating datasets; from these we see that there is a continuous arrival of both new users

and movies.

2. Summary Statistics Change.As a consequence of the continuous influx of ratings, any summary

statisticsrelated to the recommender system’s content may also change. These changes affect

the ratings’ summary statistics: in [Kor09a], Koren shows how global summary statistics vary

over time. Similarly, Section 3.2.2 looks at how changes arefurther reflected in the global rating

mean, median and mode. All the summary values fluctuate over time, reflecting how the overall

distribution of ratings shifts as more users interact with the system.

3. User Interaction. Lastly, Section 3.2.3 looked at the rating frequency: theseplots show the high

variability in how users interact with the recommender system. Some users appear more frequently

than others, and there is a large variance in the volume of rated items.

What do we learn from observing these changes? The datasets do not only remain incredibly

sparse, but they also do not stabilise; recommender systemscontinuously have to make decisions based

on incompleteandchangingdata, and the range of the changes we observe in the Netflix data have a

strong impact on the predictability of ratings. Furthermore, the continuous rating of content means that

the data that an algorithm will be trained with at any particular time is likely to be different than data it

trained with previously. The question we explore in this chapter is: does the influx of new data translate

to new content being recommended?

5.1.2 User Survey

In order to determine whether temporal diversity is important for recommender systemusers, we de-

signed three surveys thatsimulatesystems that producepopular movierecommendations over the course

of five “weeks.” We opted to recommend popular movies in orderto avoid a variety of confounds that

would emerge had we selected a personalised CF algorithm (e.g., the quality of the algorithm itself and

the cumbersome process of asking users to rate films). Survey1 (S1) and Survey 2 (S2) both recom-

mended popular movies drawn from a list of the 100 all time most profitable box office movies1. S1,

however, hadno diversity: it consistently recommended the top-10 box office hits. S2’s recommen-

dations, instead, did change over time. Each week, approximately seven of the previous week’s ten

recommendations would be replaced by other movies in the top-100 box office list. Lastly, Survey 3

(S3) recommended movies that were randomly selected from the Netflix dataset: the recommendation

process included full diversity, but was very unlikely to recommend popular movies, given the size of

the dataset.

Each survey was structured as follows2. The users were first queried for demographic data. They

were then offered the first week’s recommendations, represented as a list of ten movie titles (and the

relative DVD covers and IMDB links) and asked to rate these top-10 recommendations on a 1-5 star

scale. After submitting their rating, they were presented with a buffer screen containing thirty DVD cov-

ers, and had to click to continue to the subsequent week; thisaimed at diverting users’ attention before

1http://www.imdb.com/boxoffice/alltimegross
2Full description and reproduction of the surveys is found inAppendix A

5.1. Why Temporal Diversity? 88

Figure 5.1: Survey Results for (S1) Popular Movies With No Diversity (S2) Popular Movies With Di-

versity and (S3) Randomly Selected Movies

presenting them with the next week’s recommendations. After rating all five week’s worth of recom-

mendations, they were asked to comment on the recommendations themselves and answer a number of

questions relating to diversity over time. Users were invited to participate in one or more of the surveys

via departmental mailing lists and posts on social networks: S1 was completed 41 times, S2 had 34

responses, and S3 was completed 29 times. Due to the surveys’anonymity, we do not know how many

users completed more than one survey. We therefore treat each completed survey individually. Of the

104 total responses, 74% of the users were male, 10% were 18-21 years old, 66% were 22-30 years old,

and 24% were between 31 and 50 years of age. On average, the users claimed to watch 6.01± 6.12

movies per month, and while 61% of them said they were familiar with recommender systems, over half

of them claimed they used them less than once a month. On the other hand, 29% use recommender

systems weekly or daily: our respondents therefore includea wide variety of movie enthusiasts and both

people who do and do not use recommender systems.

We averaged the users’ ratings for each week’s recommendations and plot the results in Figure

5.1. The S2 results (popular movies with diversity) achievethe highest scores: on average, these five

weeks of recommendations were rated 3.11± 0.08 stars. The low temporal standard deviation reflects

the fact that the rating trend remains relatively flat; the average for each week is about 3 stars. S3’s

results (randomly selected movies), were consistently disliked: the average rating peaks at 2.34 stars

for week 5. In fact, some users commented on the fact that recommendations “appeared to be very

random,” “varied wildly” and the system “avoid[ed] box office hits.” The main result of our surveys is

reflected in S1’s results (popular movies with no diversity): as the same recommendations are offered

week after week, the average ratingsmonotonicallydecrease. The average for week 1 was 2.9, which

falls within the range of values measured in S2, while by week5 the average score is 2.3, which is lower

than the average score for the random movies that same week. Not all users commented on the lack of

recommendations diversity; however, most of them modified their ratings for the recommendations as

the lack of diversity persisted. This shows that when users rate they are not only expressing their tastes

or preferences; they are also responding to the impression they have of the recommender system. In the

5.1. Why Temporal Diversity? 89

Week P-Value S1 vs. S2 S1 vs. S3 S2 vs. S3

1 3.209e-6 0.32 7.4e-5 5.7e-6
2 0.003699 0.3003 0.0277 0.0033
3 0.002241 0.0881 0.0881 0.0015
4 0.0006937 0.0302 0.0943 0.0005
5 0.04879 0.07 0.88 0.10

Table 5.1: ANOVA P-Values and Pairwise T-Test Values For The5 Weeks

(a) Survey 1 (b) Survey 2 (c) Survey 3

Figure 5.2: Boxplots of Each Week’s Ratings for the Three Surveys

case of S1, users commented on the fact that the algorithm was“too naive” or “not working,” and the

lack of diversity “decreased [the respondent’s] interest.”

The final part of the surveys asked users about qualities theysought in recommendations: they

had to give a rating reflecting how important they believed that accuracy, diversity, and novelty are in

their recommendations. Overall, 74% said it was important for recommender systems to provide results

that accuratelymatched their taste (23% selected the ‘neutral’ option to this question). 86% said it is

important for recommendations tochange over time; in fact, 95% stated it is important that they are

offered new recommendations. It thus quickly becomes apparent that temporal diversity is a highly

important facet of recommender systems, both in terms of thedirect responses and rating behaviour of

the surveyed users. In the following sections, we evaluate the temporal diversity of three state of the art

CF algorithms.

Analysis of Variance

In order to test the statistical significance of the three different survey’s results, we performed an analysis

of variance (ANOVA): in this case, the null hypothesis is that the ratings for each survey are of the same

distribution. We can reject the null hypothesis with 99% confidence with p-values less than 0.01: the

p-value we measured for the three methods is 9.72e -14. A pairwise t-test between each survey further

shows that the ratings input for each survey cannot be attributed to the sampling of the study.

We also performed an ANOVA on each week’s data, in order to observe the change that S1 went

through as it was rated. The null hypothesis, in this case, would state that the differences in ratings

are consistent throughout all weeks; the p-value tells us what the chances are of randomly sampled

5.1. Why Temporal Diversity? 90

users providing the ratings we have collected. The p-valuesare shown in Table 5.1; they all remain

lower than the 95% confidence threshold. The table also showspairwise t-test p-value results, week

by week. We expected to observe three patterns: (a) a sequence of values that reflected S1 and S2

divergingfrom each other (as users punish S1 for having no diversity),(b) a sequence of values reflecting

a convergence between S2 and S3, as the survey with no diversity becomes rated as highly as the random

recommendations, and (c) values depicting a continuing difference between S2 and S3. In other words,

given the rating distributions of S2 and S3, that are different from each other, we expected to observe

S1’s distribution change from being similar to S2’s to beingsimilar to S3’s. The boxplots in Figure 5.2

reflect these changes: they show the per-week distribution of ratings for each survey. Most notably, the

distributions in S2 (Figure 5.2(b)) remain relatively consistent over the weeks and S1 (Figure 5.2(a))

decreases over time.

Over the first four weeks of data, we observed the pattern we expected. The p-value between S1

and S2 begins high (0.32) and monotonically decreases untilweek four (0.03). The p-value between

S1 and S3, instead, begins low (7.4e-5) and monotonically increases to 0.09. Lastly, the p-value shared

between S2 and S3 remains consistently below 0.01 (the 99% confidence threshold). However, in week

five there is an abrupt change in our results: not only is the overall p-value now found at the border of

the 95% confidence threshold, but all t-test values become very high. Most worryingly, the divergence

between S1 and S2 is no more, and S2 and S3 now share a very high p-value. There are a number of

factors that may have skewed our experimental results. The first relates to why S3 may have been rated

more positively in week 5:

• Random Recommendations.Survey 3 recommended random movies; however, as the surveys

were pregenerated, all users were given the same (albeit random) recommendations in S3. One

of the potential problems here is that this particular set ofselected movies may elicit the same

response from many users. In other words, the factors that influence users’ responses (i.e., selec-

tion of movies) remained constant to all users. In week five, we noted that some of the randomly

selected movies were less unknown than movies selected in previous weeks (for example, the

first recommendation was the movie Crash3). The problem here is that S3’s distribution in week

five (as can be observed in Figure 5.2(c)) changes, thus impacting any comparisons between the

distributions of the three surveys.

• Edge Effect.The survey instructions told users that they would be ratingfive weeks’ recommen-

dations. By the time they reached week 5, they thus knew that they had nearly completed the

survey—their rating behaviour may have changed at this point. Similarly, they may also be re-

sponding more positively in week 5 due to the heavily negative response that was given for week

4. If we consider the rating mode of each week, then S3’s results show that the weeks that receive

a majority of 1* ratings (week 1 and week 4) are always followed by a week with a higher mode.

• Lack of Data. One of the reasons we may be seeing these results is the fact that our surveys

have not been answered by many people. In fact, one of the problems that we noted was that

3http://www.imdb.com/title/tt0375679/

5.2. Evaluating for Diversity 91

many users would abandon the surveys, possibly since, as other users noted, they did not like the

recommendations (or thought the system was not working). S1was visisted 122 times, yet only

completed 41 times: overall, all the surveys were fully completed by fewer than 1 in 2 visitors.

There are thus a number of factors that influence our ability to observe a five week trend when comparing

the three surveys. However, these do not detract from the main result of the survey: users who are faced

with non-changing recommendations tend not to only lose interest, but also to reflect their impatience

with the system in the ratings that they input. Temporal diversity is therefore an important quality that

all recommender systems should provide.

5.2 Evaluating for Diversity
Given the above, we now aim to examine how diverse CF algorithms are over time. We focus on CF al-

gorithms; abaseline, where a prediction for an item is that item’s mean rating, the item-based k-Nearest

Neighbour (kNN)algorithm, and amatrix factorisationapproach based on Singular Value Decomposi-

tion (SVD), as reviewed in Chapter 2. We chose these algorithms since they not only reflect state-of-

the-art CF, but also each manipulate the rating data in a different way and may thus produce varying

recommendations.

5.2.1 From Predictions to Rankings

All of the algorithms share a common theme: they produce predicted ratings that can then be used to

recommend content. The idea is to use the predictions in order to generate a personalised ranking of the

system’s content for each user. However, it may be the case that items share the same predicted rating.

For example, a number of items may all have5-star predictions. In this case, the predicted rating aloneis

not conducive to a meaningful ranking. We solve this problemby introducing ascoring functionto rank

items, regardless of the model used to generate predicted ratings. The scoring function uses two pieces

of information: the predicted rating, and theconfidencein the prediction (i.e., number of data points used

to derive it) as used in [MLG+03]. Assuming a5-star rating scale, we first subtract the scale mid-point

(3 stars) from the prediction and then multiply by the confidence:

su,i = (r̂u,i − 3.0)× confidence(r̂u,i) (5.1)

This scoring function ensures that items with high prediction and confidence are promoted, and low

prediction with high confidence are demoted (i.e., we use it on all predictions and not simply as a tie-

breaker). For example, an item with a predicted5 star rating, derived from2 ratings, will be ranked

lower than another item with a4 star prediction based on50 ratings. If two items had the same score,

then we differentiated them based on their respective average rating date: the item that had been rated

more recently is ranked higher. The greatest advantage of this method, as detailed in [MLG+03], is the

heightenedexplainabilityof recommendations.

5.2.2 Methodology

In order to examine the sequence of recommendations produced by a system, we explore CF algorithms

that iteratively re-train on agrowing dataset. Given a dataset at timet and a window sizeµ (how often

5.2. Evaluating for Diversity 92

the system will be updated), we train the algorithm with any data input prior tot and thenpredictand

rank all of the unrated items for each user. Thet variable is then incremented byµ, and the entire

process is repeated, except that now the latest ratings become incorporated into the training data. In

other words, at timet we generate a set of top-N lists—corresponding to the top-N recommendations

each user would receive—in order to examine how the sequenceof ranked items that we produce will

vary as the system is updated. The main difference between this process and the one we used in Chapter

4 is that we predictall unrated items for each user (rather than only predicting items that will be rated in

the next time window); this allows us to produce ranked listsof recommendations. This method includes

a number of advantages: we test the algorithms as data grows (and view more than a single iteration

of this process), making predictions based only on ratings that are currently available. We simulate the

iterative update of deployed systems, and stay true to the order users input ratings.

Since users do not necessarily log-in consistently to the system, we cannot be certain that each

top-N list would have been viewed by each user. We therefore only generate a top-N list for the users

who will rate at least one item in time(t + µ); we assume that if the user is rating an item then they

have logged into the system and are likely to have seen their recommendations. The benefit of this

is that we compare the current recommendations to those thatusers are likely to have seen before. It

remains possible that users viewed their recommendations without rating any content; however, given

this uncertainty in the data, we only consider the scenario where there is evidence that the users have

interacted with the system. In this chapter, we continue using the same5 subsamples of the Netflix

dataset (as used in Chapter 4) for cross-validation purposes.

5.2.3 Measuring Diversity Over Time

We define a way to measure the diversity between two ranked lists as follows. Assume that, at timet,

a user is offered a set of10 recommendations. The next time the user interacts with the system only

1 of the10 recommendations is different. Therefore, the diversity between the two lists is110 = 0.1.

More formally, given two setsL1 andL2, the set theoretic difference (or relative complement) of the sets

denotes the members ofL2 that are not inL1:

L2\L1 = {x ∈ L2|x /∈ L1} (5.2)

In our example above, only1 of the10 recommendations was not the same: the set theoretic difference

of the two recommendation lists has size1. We thus define the diversity between two lists (at depth N)

as the size of their set theoretic difference divided byN :

diversity(L1, L2, N) =
|L2\L1|

N
(5.3)

If L1 andL2 are exactly the same, there is no diversity:diversity(L1, L2, N) = 0. If the lists are

completely different, thendiversity(L1, L2, N) = 1. This measure disregards the actual ordering of

the items: if a pair of lists are re-shuffled copies of each other, then there continues to be no diversity.

However, we can measure the extent that recommendations change as a result of the same content being

promoted or demoted by measuring diversity at varying depths (N).

5.2. Evaluating for Diversity 93

(a) Top-10 Diversity (b) Top-20 Diversity

Figure 5.3: Top-10 and 20 Temporal Diversity for Baseline, kNN and SVD CF

(a) Top-10 Novelty (b) Top-20 Novelty

Figure 5.4: Top-10 and 20 Temporal Novelty for Baseline, kNNand SVD CF

One of the limitations of this metric is that it measures the diversity between two lists only; it thus

highlights the extent that users are beingsequentiallyofferered the same recommendations. In order to

see how recommendations change, in terms ofnewitems appearing in the lists, we define a top-N list’s

novelty. Rather than, as above, comparing the current listL2 to the previous listL1, we compare it to

the set ofall items that have been recommended to date (At):

novelty(L1, N) =
|L1\At|

N
(5.4)

In this case, a list’s novelty will be high if all of the items haveneverbeen recommended before, and

low if all of the items have been recommended at some point in the past (not just in the last update). We

further define theaverage diversityδt andaverage noveltyηt that is generated by a given CF algorithm

(at timet) as the average of the values computed between all the current top-N lists and the respective

previous list for all users.

5.2. Evaluating for Diversity 94

5.2.4 Results and Analysis

We computedδt andηt for each of the 3 algorithms over all249 simulated system updates outlined in

Section 5.2.2, and plotted the results for the top-10 and top-20 recommendations in Figure 5.3. These

results provide a number of insights into recommender system temporal diversity. As expected, the

baseline algorithm produces little to no diversity. On average, users’ top-10 recommendations differ

by (at most) one item compared to the previous recommendations. Both the factorisation and nearest

neighbour approaches increment diversity; furthermore, thekNN algorithm is, on average, consistently

more diverse than the sequence of recommendations producedby the SVD.

The novelty values (Figures 5.4(a) and 5.4(b)) are lower than the average diversity values. This

means that, when a different recommendation appears, it is more often a recommendation that has ap-

peared at some point in the past, rather than something that has not appeared before. There are a variety

of factors that may cause this; for example, new items may notbe recommended because they lack suf-

ficient ratings: the CF algorithm cannotconfidentlyrecommend them. However, this metric does not tell

us whether the new recommendations are new items to the system, or simply content that has (to date)

not been recommended. A full analysis of the novelty of recommendation warrants a closer inspection of

when items join the system and when they are recommened. In order to focus our analysis, we thus sep-

arate the problems of recommendingnew contentfrom that ofdiversifyingsequential recommendations:

in this chapter, we focus on the latter.

Both Figure 5.3(a) and 5.3(b) also look very similar: the diversity values for the top-10 and top-20

recommendations are nearly the same. In order for this to happen (i.e., for a comparison between two

top-10 lists and two top-20 lists to produce the same value) there must bemorediversity between the

larger lists. For example, if only 1 item changes in the top-10, the diversity is1
10 = 0.1, and the pair of

top-20 lists will only produce this diversity value if 2 items have changed,220 . What this means is that

not all of the changes in the item rankings are occuring in thetop-10: new items are also being ranked

between the11th and20th positions.

At the broadest level, we thus observe that (a) both the baseline and SVD produce less temporal

diversity than thekNN approach, and (b) across all CF algorithms, diversity is never higher than app-

proximately0.4. However, these are averaged results across many users, whomay be each behaving in

very different ways: we now perform a finer grained analysis of temporal diversity to explore the relation

between users and the diversity they experience.

5.2.5 Diversity vs. Profile Size

The metric in Section 5.2.3 does not factor in the fact that the distribution of ratings per user is not

uniform. Some users have rated a lot of items, while others have very sparse profiles. Users’profile

size(i.e., the number of ratings per user) may affect their recommendation diversity. We thus binned

the above temporal results according to users’ current profile size and then averaged the diversity of

each group. We plot the results in Figure 5.5. The baseline (Figure 5.5(a)) continues to show next to

no diversity, regardless of how many items users have rated.The rationale behind this is that the only

profile information that the baseline factors in when it computes recommendations is whether the user

5.2. Evaluating for Diversity 95

(a) Baseline (b) kNN (c) SVD

Figure 5.5: Profile Size vs. Top-10 Temporal Diversity for Baseline, kNN and SVD CF

(a) Baseline (b) kNN (c) SVD

Figure 5.6: Ratings Added vs. Top-10 Temporal Diversity forBaseline, kNN and SVD CF

(a) Baseline (b) kNN (c) SVD

Figure 5.7: Time Passed vs. Top-10 Temporal Diversity for Baseline, kNN and SVD CF

has rated one of the popular items; results will only be diverse if the user rates all the popular content.

ThekNN (Figure 5.5(b)) and SVD (Figure 5.5(c)) results, instead, show a negative trend: diversity tends

to reduce as users’ profile size increases. These results canbe interpreted as follows: as users augment

the set of ratings that represent their tastes, the breadth of items that are recommended to them via CF

reduces, and they will be exposed to less and less new content.

5.2. Evaluating for Diversity 96

Figure 5.8: Comparing Accuracy with Diversity

5.2.6 Diversity vs. Ratings Input

Our temporal diversity metric is based onpairwisecomparisons; we compare each sequential pair of top-

N lists. One factor that may thus play an important role when determining how diverse a pair of lists will

be from one another ishow muchthe user rates in a given session. For example, one user may log in and

rate two items while another may log in and rate fifty; the temporal diversity that each user subsequently

experiences may be affected by these new ratings. We therefore binned users according to how many

new ratings they input, and plot the results in Figure 5.6. Asbefore, the baseline remains unaffected

by how many new ratings each user inputs. ThekNN (Figure 5.6(b)) and SVD (Figure 5.6(c)), instead,

show a positive trend. These results can be interpreted as follows: the more you rate now, the more

diverse yournextrecommendations will be.

5.2.7 Diversity and Time Between Sessions

The previous analysis was concerned with how diversity is influenced by asingleuser rating content.

However, users do not rate alone: an entire community of users rate content over extended periods

of time. We highlight this point with an example: some users may consistently log in and rate items

every week; others may rate a few items now and not return for another month (and, in their absence,

other users will have continued rating). In other words, diversity may be subject to thetime that has

passed from when one list and the next are served to the user. In order to verify this, we binned our

diversity results according to the number of weeks that had passed between each pair of lists, and plot

the results in Figure 5.7. In this case, all three of our algorithms show a positive trend: the longer the

user does not return to the system, the more diversity increases. Even the baseline diversity increases: if

a user does not enter the system for a protracted period of time, the popular content will have changed.

However, web businesses tend to use recommender systems toincreaseuser engagement and activity

(e.g. clickthroughs, rented movies), and the natural diversification of recommendations because of time

will only be useful for the least active members of the system.

5.3. Promoting Temporal Diversity 97

5.2.8 Lessons Learned

Overall,average temporal diversityis low. Ranking content based on popularity offers next to nodi-

versity, while thekNN method produces the largest average temporal diversity.Larger profile sizes

negatively affect diversity; it seems that users who have already rated extensively will see the least di-

verse recommendations over time. Pairwise diversity between sequential lists is largest when users rate

many items before receiving their next recommendations; users should be encouraged to rate in order to

change what they will be recommended next. Diversity will naturally improve as users extend thetime

betweensessions when they interact with the system (even popular content eventually changes).

A fundamental question to ask is how diversity relates to accuracy, the metric of choice in traditional

CF research. To do so, we take the predictions we made at each update, and compute the Root Mean

Squared Error (RMSE) between them and the ratings the visiting users will input. We then plot RMSE

against average diversity in Figure 5.8. A plot of this kind has four distinct regions: low accuracy with

low diversity (bottom right), high accuracy with low diversity (bottom left), low accuracy with high

diversity (top right), and high accuracy with high diversity (top left). We find that the results for each

algorithm cluster into different regions of the plot, corresponding to the different diversity results that

they obtain. In terms of RMSE, different algorithms often overlap; for example, thekNN results sit

between the two others—in terms of accuracy—and above them when considering diversity. However,

kNN CF is sometimes less accurate than the baseline. The baseline sits toward the bottom right of the

plot: it offers neither accuracy nor diversity. The SVD, on the other hand, tends to be more accurate than

the baseline, although there is little diversity gain.

Coupling the low diversity that we have observed in CF algorithms and the high importance users

place on temporally diverse recommendations implies that improving the temporal diversity of a recom-

mender system is an important task for system developers. Inthe following section, we describe and

evaluate a number of techniques that meet this goal: they increase temporally diversity, without signif-

icantly impacting recommendation accuracy. We then discuss the potential implications that modifying

top-N lists may have to promote diversity.

5.3 Promoting Temporal Diversity

The easiest way of ensuring the recommendations will be diverse is to do away with predicted ratings and

simply rank items randomly. However,diversitythen comes at the cost ofaccuracy: recommendations

are no longer personalised to users’ tastes. The random survey (Section 5.1.2) showed that this is not

a viable option, since the recommendations were rated very low. We can thus anticipate that, when

promoting diversity, we must continue to take into account users’ preferences. We do so with two

methods: temporal hybrid switching, from a system (Section5.3.1) and user (Section 5.3.2) perspective,

and re-ranking individual users’ recommendations (Section 5.3.3).

5.3.1 Temporal Switching

Many state of the art approaches to CF combine a variety of algorithms in order to bolster prediction

accuracy [AT05]. However, as described by Burke [Bur02], another approach to building hybrid CF

5.3. Promoting Temporal Diversity 98

(a) Switching Temporal Diversity (b) Switching RMSE vs Diversity

Figure 5.9: Diversity (a) and Accuracy (b) of Temporal Switching Method

algorithms is toswitchbetween them. Instead of combining prediction output, a mechanism is defined to

select one of them. The rationale behind this approach is as follows: a given a set of CF algorithms, that

each operate in a different way, are likely to producedifferentrecommendations for the same user; the

top-N produced by akNN may not be the same as that produced by an SVD. We thus switchbetween the

two algorithms: we cycle between giving userskNN-based recommendations one week, and SVD-based

recommendations the following week.

We plot the top-10 diversity over time for this switching method in Figure 5.9(a). Diversity has

now been incremented to approximately0.8: on average, 8 of the top-10 recommendations ranked for

each user is something that was not recommended the week before. How does this affect accuracy?

Intuitively, the overall accuracy that the system will achieve will be somewhere between the accuracy of

each individual algorithm. We compare the accuracy and diversity of our switching technique in Figure

5.9(b). The results for the switching method now cluster into two groups; each group liesabovethe

candidate algorithms we selected. In other words, accuracyfluctuates between the values we reported

for kNN and SVD CF, but the fact that we are switching between thesetwo techniques ensures that

diversity has been greatly increased.

5.3.2 Temporal User-Based Switching

The method described in the previous section is very straightforward: the system changes the CF algo-

rithm that is used from one week to the next in order to favour diversity. However, this method does

not take into account how users behave; in particular, we previously noted that not all users havereg-

ular sessions with the recommender system. In fact, if their sessions were every other week, then the

switching technique described in the previous section would be of no use at all. We therefore also tested

a user-based switching algorithm. It works as follows: the system keeps track ofwhena user last ap-

peared, andwhatalgorithm was used to recommend content to that user during the last session. When

the user reappears, the system simply picks a different algorithm to that which it used previously. As

before, we switched between using an item-basedkNN and an SVD-based approach in our experiments.

The results are shown in Figure 5.10.

5.3. Promoting Temporal Diversity 99

(a) Temporal Diversity (b) RMSE vs. Diversity

Figure 5.10: Temporal Diversity and Accuracy vs. DiversityWith User-Based Temporal Switching

(a) Temporal Diversity (b) RMSE vs. Diversity

Figure 5.11: Temporal Diversity and Accuracy vs. DiversityWhen Re-Ranking Frequent Visitors’ Lists

The temporal diversity (Figure 5.10(a)) is now near 1: on average, users are being offered different

recommendations to those that they were shown the last time they interacted with the system. On the

other hand, accuracy (Figure 5.10(b)) now falls between thekNN and SVD results. In other words, we

sacrifice the low-RMSE of the SVD, but still do better than simply using thekNN approach: in return,

the average diversity has been greatly amplified.

The only overhead imposed by user-based switching is a single value per user that identifies which

algorithm was last used to compute recommendations; however, unlike the temporal switching method

in the previous section, we are now required to compute bothkNN and SVD at every update, albeit for

a subset of users. We do not consider this to be an unsurmountable overhead, given that state of the art

algorithms already tend to ensemble the results of multipleCF algorithms.

5.3.3 Re-Ranking Frequent Visitors’ Lists

An immediate problem with a temporal switching approach is that it requires multiple CF algorithm

implementations. In this section, we provide a means of diversifying recommendations to any desired

degree of diversity when only a single CF algorithm is used.

5.4. Discussion 100

One of the observations we made above is that users who have very regular sessions with the rec-

ommender system have low top-N temporal diversity. One way of improving overall average temporal

diversity thus entails catering to the diversity needs of this group. To do so, we take advantage of the fact

that they areregularvisitors, and only re-rank their top-N recommendations.

The re-ranking works in a very straightforward manner: given a list that we wish to diversify with

depthN (e.g., N = 10), we selectM , with N < M (e.g., M = 20). Then, in order to introduce diversity

d into the top-N , we replace(d × N) items in the top-N with randomly selected items from positions

[(N +1)...M]. In the case ofd = 1, all elements in the first[1...N] positions are replaced with elements

from positions[(N + 1)...M]. This is the method that we used to diversify the recommendations in the

user survey S2 (Section 5.1.2); in that case,N = 10 andM = 100 (the 100 all time box office hits).

In our experiments, we opted to re-rank the top-10 results for any users who had previously visited

the system less than two weeks before (recall that our systemis updated weekly). The temporal diversity

results, shown in Figure 5.11(a), clearly improves the overall average. Furthermore, the accuracy (Figure

5.11(b)) remains the same: the diversity has simply been shifted in the positive direction. However, how

does this not hurt accuracy? There are three points to keep inmind: (a) we are only reranking the lists

for frequent visitors, others’ recommendations are untouched; (b) the items in the top-N are there due

to both high prediction value and high confidence (there is a good chance the user will like those items);

and (c) we do not promote items that are likely to be disliked by the user (by only re-ranking the top-M).

How do these techniques affect recommendation novelty? Recall that we defined novelty (Section

5.2.3) as proportional to the number of items being recommended that haveneverbeen recommended

before. If we aggregate the temporal results of Figure 5.4(a), we find that the baseline top-10 recom-

mends, on average, 13.53± 2.86 items over time; the SVD top-10 suggests 26.17± 12.51 items over

time, and thekNN top-10 recommends the highest number of items over time: 79.86± 59.33. This

ensures thatkNN will also produce the highest number ofnew recommendations. Weekly switching

slightly lowerskNN’s average, to 75.36± 53.98 because repeatedly visiting the SVD recommendations

reduces the number of total items that can be recommended. However, user based switching maintains

the average number of recommended items over time at 79.86± 55.12; it highly promotes temporal

diversity without impacting the number of new items that enter the top-10 list over time. However, re-

ranking bolsters both the average and standard deviation to97.93± 78.82; re-ranking thus seems like a

promising approach to solving the related problem of temporal novelty in recommendation.

5.4 Discussion
Diversity is a theme that extends beyond recommender systems; for example, Radlinski and Dumais

examine how it can be used in the context of personalised search [RD06]. In other cases, diversifying

search results is done in order to reduce the risk of query misinterpretation [AGHI09]. Similarly, diversity

relates to user satisfaction; more specifically, to users’ impatience with duplicate results [HRT09]. We

have observed similar ‘impatience’ in our survey: users whocompleted the survey with no diversity

began to rate recommendations lower as they saw that they were not changing.

It is certainly possible to envisage a finer grained notion ofdiversity that takes semantic data into

5.5. Summary 101

account—by measuring, for example, the extent that the samegenre or category of items are being

recommended. To that end, diversity may also be measured within a single top-N list, rather than a

pair or sequence of recommendations; such a metric may, for example, take into account the number

of highly related items (such as a movie and its sequels, or multiple albums by the same artist) that

are being simultaneously recommended. For example, Smyth and McClave [SM01] apply strategies to

improve recommender systems based on case-based reasoning; diversity, in this case, is viewed as the

complement of similarity. Zhang and Hurley [ZH08] also focus on intra-list diversity, and optimize the

trade off between users’ preferences and the diversity of the top-N results. In this chapter, we focus on

the temporal dimension (inter-list diversity) and whetherthe exact same items are being offered to users

more than once; we do not take semantic relationships between the recommended items into account

nor improve the diversity of individual top-N lists. However, both lines of research are not in conflict:

ideally, one would like a recommender system that offers diverse results thatchangeover time to suit

each users’ tastes.

There is one limitation to the work we have performed here. Wedo not know what users were

actually recommended: in fact, we do not know if users are clicking on their recommendations or are

selecting movies to rate by other means. Assuming that Netflix was not simply recommending popular

content, this limitation may explain why the baseline results show so little diversity. While the results

certainly show what one may expect from providing popularity-based recommendations, it is also possi-

ble to envisage higher diversity for the baseline case, if, for example, users dislike their recommendations

so much that they are giving them all 1 star (in the next updatethey will be shown different results). How-

ever, this limitation is a widespread problem with CF research; in fact, to date the relationship between

what people arerecommendedand what theyrate remains largely unexplored.

5.5 Summary
This chapter focuses on temporal diversity: how recommendations change over time. In doing so, we

have extended how CF can be evaluated over time; in Chapter 4,we focused on the accuracy of predic-

tions; here we added the diversity and novelty of recommendation lists over time. We found that state

of the art CF algorithms generally produce low temporal diversity; they repeatedly recommend the same

top-N items to a given user. We then defined a metric to measure temporal diversity, based on the set

theoretic difference of two sequential top-N lists, and performed a fine-grained analysis of the factors

that may influence diversity. We found that, while users withlarge profiles suffer from lower diversity,

those who rate a lot of content in one session are likely to seevery diverse results the next time. We also

observed that diversity will naturally improve over time. We then designed and evaluated three methods

of improving temporal diversity without extensively penalising recommendation accuracy. Two were

based onswitchingCF algorithm over time; users are first given recommendations produced with (for

example) akNN approach, and then offered the results of an SVD algorithm. The last method was based

on re-ranking the results of frequent visitors to the system.

Chapter 6

Temporal Defences for Robust

Recommendations

Recommender systems are vulnerable to attack: malicious users may deploy a set of sybils to inject

ratings in order to damage or modify the output of CF algorithms. Previous work focuses on designing

sybil profileclassification algorithms, which operate independently ofCF, and aim to find the current

sybils each time they are run. These methods, however, assume that the full sybil profiles have already

been input to the system. As previously observed, deployed recommender systems, on the other hand,

operate over time: recommendations may be damaged as sybilsinject profiles (rather than only when all

the malicious ratings have been input), and system administrators may not know when their system is

under attack. In this chapter, we address the problem oftemporalsybil attacks, and propose and evaluate

methods for monitoringglobal, userand item behaviour over time in order to detect rating anomalies

that reflect anongoingattack. We conclude by discussing the consequences of our temporal defences,

and how attackers may designramp-up attacksin order to circumvent them.

6.1 Problem Setting

When CF algorithms compute recommendations for web users, they do so assuming that the ratings they

manipulate arehonestdepictions of user preferences. Unfortunately, this may not be the case: any sys-

tem that invites participation is also vulnerable to malicious abuse, and the ratings input to CF algorithms

may have been fabricated to damage or modify the recommendations the system outputs. Abusing rec-

ommender systems this way is often referred to asshilling, profile injectionor sybilattacks; Mobasheret

al. provide an in-depth review of this problem [MBW07]. All of these terms are synonymous: attackers

deploy a set of pseudonymous entities (e.g., automated bots) that rate content in a manner that serves

the attacker’s goals. These attacks are further categorised based on the intent of the attacker: arandom

attack aims to disrupt the system by injecting noise, whiletargettedattacks aim to promote or demote

the ranking (and thus, the recommendability) of individualitems. There is a growing body of research

that addresses the problem of identifying malicious profiles; for example, Williamset al. evaluate the

potential that a variety of classifiers have to find sybils [WMB09]. In other words, given a matrix of

user-item ratings that contains a set of sybil profiles, the problem to be solved is how to divide the hon-

6.2. Defeating Non-Temporal Attacks 103

est from the malicious profiles in order to exclude the sybils. The underlying assumption here is that

the full sybil profilesare already contained within the user-item matrix: all the sybils have rated all the

items that they intend to in order to perform their attack. However, recommender systems are subject to

change over time, as users input more ratings and CF algorithms are retrained in order to serve the most

up-to-date recommendations. This reality of deployed recommender systems presents two challeges to

the assumptions held by attack detection algorithms:

1. The sybil profiles may not be fully inserted or may be inserted over an extended period of time;

thus reducing their immediate detectability, while not necessarily reducing the damage they may

inflict on the system.

2. As the system is updated, the problem ofwhen to runexpensive detection algorithms arises: how

can system administrators know that their system is potentially under attack?

In this chapter, we address these challenges by designing and evaluating algorithms for monitoring rec-

ommender system users’ behaviour over time. To do so, we makethe following contributions:

• We preface this chapter in Section 6.2 by showing how non-temporal profile injection attacks

(where the sybils appear, dump malicious ratings over a number of days, and dissapear) can be

defeated easily; attackers therefore have an incentive to extend the time taken to inject profiles. We

explore this incentive with experiments comparing random profile injection attacks over varying

time lengths.

• Based on the previous experiments, we describe the range of potential temporal sybil attacks in

Section 6.3. In doing so, we relate the number of sybils and number of ratings input per sybil over

time to previously defined (random/targetted) attack models, highlighting the relation between

how an attack is carried out and the intent of the attacker.

• In Section 6.4 we describe and evaluate methods of monitoring global, user and item activity over

time and identifying anomalies that reflect and flag an ongoing attack.

• Based on the defences we construct, we analyse how attackersmay respond, and propose direc-

tions for future research by defining adaptive attack modelsin Section 6.5. We close by discussing

related work and concluding in Sections 6.6 and 6.7.

6.2 Defeating Non-Temporal Attacks

We use the same model of recommender system temporal updatesas we did in previous chapters: given

a dataset at timet, and a window sizeµ (reflecting how often the system will be updated), we train the

algorithm with any data input prior tot and predict any ratings input betweent and(t+ µ). We also use

the same five subsamples of Netflix user profiles we examined previously. However, in this chapter we

reduce the breadth of CF algorithms we consider; we focus only on the item-basedkNN algorithm, with

thek = 50 neighbours weighted as described in [LHC08c] and Section 2.3.2:

w(a, b) =
1

|Ra|

(

∑

i∈Ra

value(a, b, i)

)

(6.1)

6.2. Defeating Non-Temporal Attacks 104

(a) One-Shot Random Attack (b) Effect of Filtering Newcomers (c) Different Attack Lengths

Figure 6.1: Time-Averaged RMSE Of One-Shot Attack, and Prediction Shift When Pruning Newcomer’s

Ratings, and Injecting Attacks Over Varying Time Windows

Where thevalueof two ratings is defined as:

value(a, b, i) = 1− ρ|ra,i − rb,i| (6.2)

We made this decision for two reasons: (a) comparisons of inter-algorithm attack robustness have already

been done [MBW07], and (b) our goal is to design algorithm-independent mechanisms for identifying

temporal attacks.

A non-temporal attack would operate as follows: between time t and (t + µ), a set of sybilsS

would input a set of ratingsX ; the non-temporal characteristic of this attack is that allthe malicious

ratings are input within a single window (while theactual time taken to operate the attack may span

the size of the entire window). We can then measure the changeto the temporal performance with

the time-averaged RMSE metric. We visualise the temporal effects of a non-temporal attack with the

following example. During the125th week-long window in the Netflix data, we inserted100 sybils who

each rated approximately10, 000 selected items. In this example, we limit ourselves to exploring the

temporal effect of arandomattack: each sybil randomly picks one of the available items, and then rates

it with a random value drawn uniformly from the rating scale.Figure 6.1(a) plots the impact that these

ratings have on the time-averaged RMSE.

The random attack has a pronounced effect on the time-averaged RMSE: performance is consis-

tently degraded over the rest of the updates. However, this attack is simple: sybils appear, rate within the

window length, and disappear (a “one-shot” attack). Furthermore, at each update the system re-trains

using all historic data, regardless of whether the users whohave input that data continue to reappear. The

natural response is therefore todistrust newcomers: any ratings from new users aresuspect. In Figure

6.1(b) we repeated the previous experiment, but excluded suspect ratings from the item-similarity com-

putation step of thekNN algorithm. By excluding suspect ratings this way, we maintained our ability to

formulate recommendations for all users (including sybil and new honest users- should they reappear),

while removing the influence that suspect ratings exert on the item neighbourhoods. We plotprediction

shift values, i.e., the difference between the baseline (predictions with no sybils inserted) and the attack

and newcomer-filtered scenarios. While we certainly prunedaway the ratings of non-sybil users, the

6.3. Temporal Attack Models 105

technique not only eliminates the effect of the attack, but also improvesupon the baseline RMSE in a

number of windows prior to the attack taking place (i.e., theprediction shift is negative). Removing the

ratings of users who appear, rate, and do not return thus avoids one-shot attacks and seems to take small

steps towards de-noising the data [APTO09].

Given this situation, an attacker may simply respond by widening the number of windows taken

to inject ratings. Sybils under the attacker’s control would therefore appear in multiple windows and,

after the first appearance, no longer be suspect. In order to explore the incentives that attackers have to

rate-limit their own sybils, we performed a number of randomattacks, where a set of100 sybils rated

the same number of items over a varying number of sequential windowsWa ∈ {10, 20, 50, 100}. In

each case, thenumberof malicious ratings remained the same, the only differencebeing thetime taken

to insert them; we compare attacks of the same magnitude thatdiffer only in temporal spread (i.e., the

ratings per sybil per window varies, as does the number of windows). The results in Figure 6.1(c) show

that injecting ratings over longer time periods deviates the RMSE from the baseline less. This is likely

to be an effect of the balance between sybil and non-sybil ratings: longer attacks have less of an effect

since, during the time taken to operate the attack, there is alarger influx of non-sybil ratings.

We draw two conclusions from the above experiments: there isan incentive for attackers to (a)

inject ratings over more than one window (in order to not havetheir ratings be suspect), and (b) inject

as much data as possible, in order to have the greatest possible effect (since higher volumes of sybil

ratings per window has a more pronounced effect). With this in mind, we describe temporal attacks by

considering the choices attackers must make when designinga sybil attack.

6.3 Temporal Attack Models
Previous work [MBW07] examines different regions of sybil profiles, looking at what items sybils must

rate in order to define different attacks. This structure still holds on the temporal scale; the difference is

how long it takes the attacker to construct the sybil profiles. In this chapter, we do not assume that the

profiles are populated in the same order (i.e., all sybils rate moviem1 first,m2 second, etc), or that they

even all contain the same items; instead, we assume that therate at which they are populated is roughly

similar (in Section 6.5 we discuss the consequences of breaking the latter assumption).

There are a number of factors that attackers control when they implement a temporal attack:how

manysybils should rate content, therateat which sybils should inject ratings, andhow longthey should

continue rating for. Attacks can thus be classified according to how attackers calibrate these factors, and

whether they hit the system with (many, few) sybils rating (many, few) items per window, for a predefined

sequence of windows. Figure 6.2(a) summarises this view. Each quadrant represents a combination of

these two variables; a third dimension (not pictured here) would represent the rate of attack. This is

important because these variables reflect the rationale of the ongoing attack. For example, many sybils

rating many items translates to inputting a high volume of malicious data, and may reflect an ongoing

random attack.

The relation we have outlined above is important since it explores how an intelligent attacker would

go about achieving particular goals when attacking a recommender system. However, there are a number

6.3. Temporal Attack Models 106

(a) Attack Classification (b) Attack Impact With No Defences

Figure 6.2: Attack Types and Impact With No Defences

of factors that attackers cannot control, related to how thenon-sybil users behave: how manynon-sybil

users there are, the number ofratingsthat they input per window,what they rate, andhowthey rate. We

will leverage this information in order to construct a defence to temporal attacks, which we introduce in

the next section.

6.3.1 Measuring Attacks

There are a number of ways of measuring the effect of attacks,ranging from prediction shift, to hit ratio,

and average rank [MBW07]; each aims to measure changes introduced by malicious ratings. In this

chapter, we are interested in measuring how well our defences detect ongoing attacks (rather than how

the attacks change recommendations); we thus focus on the detectionprecision, recall and the potential

attackimpact. Given a windowt, and a set of sybilsSt who rateXt items each during the window, the

impact of the attack is simply the number of sybil ratings input at the current windowt, or St × Xt,

divided by the total number of ratingsRt input in that window:

impactt =











St×Xt

Rt
, if attack is undetected

0, otherwise
(6.3)

In measuring attacks this way, we assume that, if a system administrator can be told that the system is

under attack, then one of the many sybil-identifying classifiers that are described in the literature can

be used to prune the actual sybil ratings. If no attack is flagged, then we measure the relative size of

the attack. This metric gives higher weight to attacks that inject more ratings; Figure 6.2(b) plots the

attack impact for varying sizes of sybil groups and rating rates when no defences are in place. While

it is certainly possible to envisage attacks that, by carefully tuning what the sybils rate, cause more

damage with fewer ratings than higher volume equivalents, in this chapter we are not concerned with

comparing attacks to each other. Instead, we use the metric to see how many ratings attackers can slip

into the system without causing behavioural anomalies. We also measure the number of true positives

(TP, attacks that were flagged), false positives (FP, non-attacks that are flagged), and false negatives (FN,

attacks that were not flagged). Precision and recall are thencomputed as:

precision =
TP

TP + FP
; recall =

TP

TP + FN
(6.4)

6.4. A Temporal Defence 107

All these metrics, however, are related: the precision and recall relate the proportions of false positives

and negatives to the true positives, while the impact, by being non-zero when an attack slips through,

displays the false negatives in a manner that takes into account the size of the attack that failed to be

detected. In effect, we have two metrics that explore facetsof false negatives. The emphasis we place

on false negatives throughout this chapter is motivated as follows: we cannot know (and only assume)

that the data we experiment with is the fruit of honest, well-intentioned users; similarly, we can only

know that an attack is taking place when we manually insert it. We therefore place a higher importance

on reducing false negatives (i.e., finding all the attacks that we insert) within the data that we have: false

positives in the real data may very well be attacks that produce anomalous behaviour, and are likely to

deserve further inspection. However, we note here that the defences described below produced no false

positives when run on the temporal rating data with no attacks manually injected.

6.4 A Temporal Defence

In the above section we outlined the factors that attackers determine: thetime (number of windows),

size(number of sybils),rate (number of ratings per sybil per window), andstrategy(which items need

to be rated: random/targetted) when implementing an attack. In this section, we describe a method

of detecting different forms of attacks, based on monitoring the global behaviour (Section 6.4.1), user

behaviour (Section 6.4.2), and item behaviour (Section 6.4.3) for anomalies. The key to our proposal is

that attacks may be identifiable by finding consistent anomalies caused by the sybil group’s behaviour.

6.4.1 Global Thresholding

The first perspective of system behaviour that we consider isat theglobal, or aggregate, level. While

the number of ratings that users input varies over time, the average ratings per user per window (in the

Netflix data) remains relatively flat: Figure 6.3(a) plots this value over time. From this, we see that the

average user will rate between5 − 15 movies per week. Since the mean is derived from a long-tailed

distribution, it is a skewed representation of the “average” user. However, an attacker, by deploying

a group of sybils who inject ratings at a pre-defined rate, will modify this aggregate value; the first

dimension of our defence thus aims at monitoring changes to the average ratings per userMUt over

time. Given a windowt, the current mean ratings per userMUt, standard deviationσt, theRt ratings

input byUt users an alarm is raised if the volume of incoming ratings departs from the mean measured

to date by an amount determined with a global thresholdαg ≥ 1:

Rt

Ut

≥ (MUt + (αg × σt)) (6.5)

Otherwise, we update the currentMUt value as an exponentially weighted moving average (with a

weighting factorβt):

MUt = (βt ×MUt−µ) + ((1 − βt)×
Rt

Ut

) (6.6)

MUt is updatedconservatively: if an attack is flagged, then it is not updated. We also updateboth the

αt andβt variables. Theβt variable determines the weight that is given to historical data: relying too

heavily on historical data will not capture current fluctuations, while weighting current values too highly

6.4. A Temporal Defence 108

(a) Avg Ratings Per User (b) Simulation Precision (c) Simulation Recall

Figure 6.3: Netflix Ratings Per User Per Week; Global Thresholding Precision and Recall

will disperse temporal trends. We therefore determine the next valueβt+µ with the standard deviation

measured to date:

βt+µ = min(|σt−µ − σt|, 1) (6.7)

The value is capped at1, thus ensuring that when there is high variability in the data, βt gives higher

preference to current values, while smaller standard deviation shiftsβt to give higher weight to historical

values. Theαt variable determines the extent to which the currentRt

Ut
value can deviate fromMUt

before an attack is flagged. When an attack is flagged, we reduceαt, in effect, making it more difficult

for attackers to learn the appropriate threshold. We setαt to jump between pre-specified values (0.5 and

1.5):

αt+µ











1.5, if no attack detected

0.5, otherwise
(6.8)

Monitoring incoming ratings at the aggregate level is sensitive to two factors: how naturally variable

the incoming ratings are, and the amount of variance that attacks introduce. In other words, a mechanism

like this may not work if there is already high variance in theaverage ratings per user and sybils do not

displace the mean value. We therefore evaluated this technique with two methods: in the first, we

simulatea stream of incoming ratings (in order to control both the variance and size of attack); we then

turned toreal datawhere we could explore the effects of varying attacks in a more realistic setting.

In order to simulate a stream of incoming ratings, we draw a sequence ofRt

Ut
values from a normal

distribution with (fixed) meanMU and standard deviationσ ∈ [0,MU]. Then, at random moments,

we simulate an injected attack where a group of sybils shiftsthe incoming value by the attackamplitude

γ ∈ [0, (2 × MU)]; in other words, at an attack timet, the window’s value is(Rt

Ut
+ γ). We then note

whether an attack was flagged, and can compute the detection precision and recall with the results.

When running the simulation, we assumed that, after a brief training phase, the system could be

attacked at any time during a period of1, 000 windows, for a pre-determined number(50) of sequential

attack windows. We re-ran each simulation parameter setting 10, 000 times and present averaged results.

Figure 6.3(b) shows the resulting precision, which fades asσ increases, but is otherwise dependent on

σ (the variability in the ratings per user per window) rather than the attack amplitudeγ. In other words,

6.4. A Temporal Defence 109

Figure 6.4: Global Thresholding Impact

the number of false positives depends on how naturally variable the data is, and, given that the real data

displays low spread, the number of false positives is likelyto be low. Figure 6.3(c), instead, displays

the detection recall. This plot highlights the trade-off betweenσ andγ: the best recall is when a small

σ is modified with a largeγ, while the worst values are found when a largeσ is deviated by a smallγ.

However, we note that the minimum precision is slightly below 0.90, while the minimum recall remains

above approximately0.95.

We returned to the Netflix subsets in order to test this methodwith real data. To do so, we trained

our monitor with all ratings per window until the attack time, and then measure the attack impact after

injecting the attack. Since the attacker may unleash the sybils at any time, we repeated our experiments,

starting attacks at each possible window, and plot average results across all windows. As Figure 6.4

shows, this method catches attacks where large groups of sybils inject their profiles at a very high rate;

the top right corner of the plot is flattened to zero impact. However, two sensitive areas remain: first,

wheremanysybils injectfewratings, and whenfewsybils injectmanyratings. Attackers can thus respond

by either reducing the size of the sybil group, or the the sybil’s rate. However, this plays into our hands:

in Section 6.4.2 we address the former, while Section 6.4.3 describes how the latter attacks can also be

monitored.

6.4.2 User Monitoring

One of the shortcomings of the Global Thresholding detection mechanism is whenfewsybils ratemany

items each. We address this pitfall by designing a user monitor, which aims to detect this particular

scenario. Figure 6.5(a) plots an example distribution of ratings input in a single window; we find that

majority of the users input a low number of ratings per week, while a minority of outliers rate a high

volume of movies. An attack in this context would thus entailsetting a group of sybils to rate a high

volume of content over a number of windows; detecting this behaviour focuses on examininghow many

high volume raters there are andhow muchthese outliers are rating.

(a) How Much High Volume Raters Rate. Given the current mean value of ratings per user per

windowMUt, we differentiatehigh from low volume raters based on the difference between the ratings

6.4. A Temporal Defence 110

(a) Static Ratings Per User (b) Temporal Ratings Per User (c) Proportion High Volume Raters

Figure 6.5: Example Ratings Per User (1 Week), Proportion ofRatings Per High Volume Raters and

High Volume Raters Over Time

that they have input in the current window andMUt:

high(Ut,MUt) =











true, if Ut −MUt > 0

false, otherwise
(6.9)

The mean ratings per high volume user,HMt can then be monitored, in a similar way that we monitored

the entire distribution in the previous section: an exponentially weighted moving average is regularly

updated, and large deviations from the expected value flags an ongoing attack. In Figure 6.5(b) we plot

the ratings per high volume user over time.

(b) How Many High Volume Raters. Given the high volume raters found with Equation 6.9, we

also keep track of how many usersHUt there are relative to all the users who have rated in the current

window. In other words, a user is suspect if they are at the highest end of the user-rating distribution, and

both thesizeof this group andvolumeof ratings they input may indicate an ongoing attack. As we plot

in Figure 6.5(c), the size of this group of users, divided by the total number of high volume raters per

window, tends to be relatively stable; injecting differentforms of attacks upsets both this and the mean

ratings per high volume user values.

We take advantage of both pieces of information in order to amplify our detection mechanism: we

create acombined scoreper window by multiplying theHMt value by the proportion of suspect users

HUt. This way, we aim to capture fluctuations in both thegroup sizeandrate that a potential group of

sybils will inflict when performing their attack.

We evaluated the user monitor with the Netflix subsets for cross-validated results with real data. We

did so in two steps. First, Figure 6.6(a) shows the resultingimpact if only part (a) of the above is used

to defend the system: this defence can overcome similar scenarios that we addressed in the previous

section or while lessening the threat of smaller groups of high-volume rating sybils. This threat is not

fully eliminated: the top-left of the plot shows a remainingnon-zero impact section. This is the effect

of the false negatives of our monitor: sybils who rate at highvolume but are not flagged. In Figure

6.6(b), we plot the impact of thecombineddefences. Overall, it reduces the impact of random attacks:

Figure 6.6(a) reports attack impacts between approximately [0, 0.25], while the combined defences range

6.4. A Temporal Defence 111

(a) User Thresholding (b) Combined Threshold (c) Size of Repeat Offenders

Figure 6.6: User Monitor/Combined Impact Results, and Proportion of High Volume Raters Who Have

Been In The Group for Varying Lengths of Time

between approximately[0, 0.12]. Nevertheless, the attacks that have the highest impact arenow those

wheremanysybils ratefew items. In the next section, we consider the scenario where this type of attack

now dominates.

Future Developments. One aspect that may aid the user monitor, but we leave as future work, is the

consistencyof membership to the high-volume raters group. In Figure 6.6(c) we plot the proportion of

high-volume raters who have been in this group forr ∈ {1, 2, 3} number of consecutive windows, after

pruning the newcomers’ first ratings. We find that over80% of the high-volume raters are appearing in

this group for the first time; asr is incremented, the relative group size falls sharply: at most12% of the

group members are making their second appearance,3% are making their third. Sybils who are injecting

a lot of noise for an extended period of time would become familiar faces in the high-rating group.

Furthermore, the extent that honest users who rate large volume of movies per week input valuable data

is questionable.

6.4.3 Item Monitoring

The last scenario that we address is the attacks that seemanysybils ratefew items each. This form of

attack overcomes the previously outline defences: the sybils do not rate enough items each to be detected

by the user monitor, and there are enough of them to not shift the rating per user temporal mean and flag

their presence. To attempt to detect this kind of attack, we first reason on what items the group of sybils

may be rating, and then design and evaluate anitem-monitor to identify ongoing anomalous behaviour.

CF algorithms, that will be affected by injected profiles, operate on vectors of ratings. It thus seems

intuitive that, in order to have the greatest impact possible, groups of sybils who inject very sparse profiles

(by rating few items each) will tend to be rating a similar subgroup of items, rather than dispersing the

ratings over a broad range of items, which would have a smaller effect. This strategy recalls the structure

of targettedattacks [MBW07], where injected profiles containfiller, selected, andtarget item ratings.

These profile regions correspond to the ratings that sybils must enter in order to construct an attack;

for example, if an attack aims to promote a fantasy movie, thesybils may rate famousselectedfantasy

movies, along with a number offiller items to disguise each profile as a “normal” user profile. The

6.4. A Temporal Defence 112

difference between a random and targetted attack is thus determined by thestrategyof how to populate

the profiles: what theselected, filler,and target items are (in the case of a random attack, there is no

target item) and how they are rated; furthermore, the commonsubgroup of items that all sybils rate is

theselectedandtarget item. On a temporal scale, this form of attack would entail a large group of sybils

rating items amongst this subgroup within a number of windows (proportional to the attack length). We

therefore turn to monitoring the items in a system to detect these kinds of attacks. We further assume

that it is very unlikely for an item that isalreadypopular to be subject to an attack that aims to promote

it; similarly, it is unlikely that unpopular items be demoted. In other words, we assume that the purpose

of attackers is to maliciously reverse an ongoing trend (rather than reinforce a pre-existing one). Given

this, we design an item monitor to identify the target of attacks by focusing on three factors: theamount

that each item is being rated, the distance themeanof the incoming ratings for each item has from an

“average” item mean, and a temporal meanchange detector.

(a) The Item Is Rated By Many Users. At each timet, with Rt ratings input forIt items, the

average ratings per itemMIt (with standard deviationσi,t) can be computed. We can then select, from

the available items, those that have been rated the most in the current window by selecting all those that

receivedIt ratings greater than the mean number of ratings per itemMIt:

high(It,MIt) =











true, if It > MIt + (αt × σi,t)

false, otherwise
(6.10)

(b) The Item is Rated With Extreme Ratings. Using only the ratings input in the current window

w, we determine themeanscorer̄i for each itemi, and then average these to produce the expected mean

scorev per item:

v =
1

It

∑

i∈It

r̄i (6.11)

If an item has been targetted for attack (and either demoted or promoted by a group of sybils simulta-

neously), then the correspondingr̄i will reflect this by being an outlier of the global average item mean

v.

(c) The Item Mean Rating Shifts. We compare the item mean computed with historical ratings

and ther̄i value determined from the ratings in the current window. A successful attack will shift this

value by some distanceδ: in this work, since we are operating on the Netflix5-star ratings scale, we set

δ to slightly below2.

An attack is flagged for an item if the above three conditions are met: it is rated more than average,

and the mean of the incoming ratings shows that it is both not being rated in the same way as other

items are, and a change from the historical value is being introduced. Our monitor therefore focuses

on identifying the moments when groups (or subgroups) of sybils rate thetarget item. We therefore

modified our evaluation mechanism to test how well we find items when they are attacked, depending

on how many sybils push in the target rating at the same time. We evaluated the monitor as follows: at

time t, a group of sybils rates a randomly chosen target item. The sybils demote the item if it is popular

(it has mean greater than3), and promote it otherwise. We do not discriminate on the number of ratings

6.5. Adaptive Attack Models 113

(a) Avg Precision (b) Avg Recall

Figure 6.7: Item Monitor: Average Precision & Recall

that movies currently have when determining whether to nukeor promote it; however, previous work

shows that it is harder to protect sparsely rated items from attack [LR04], and our item selection process

is biased toward selecting these items. We then check to see if the monitor flags any suspicious items,

and measure the number of true/false positives and false negatives. We repeat the same run (i.e., group

size and attack window) for50 different items, and measure the resulting precision and recall. However,

since an attack may begin in any of the available windows, we then repeat this process for each possible

window, and average the results across time. Finally, we repeat this entire process with each Netflix

subset to produce cross-validated results. The results therefore take into account the differences between

sybil group size, target item, attack time, and honest user behaviour.

The average precision and recall values are plotted in Figures 6.7(a) and 6.7(b). They highlight that

these methods work best whenmanysybils are rating the same item, with recall near99% and precision

near70%. The fact that the precision is not performing as well as the recall implies that there are a higher

proportion of false positives rather than false negatives:when an item is under attack, it is likely to be

flagged as such, but few items that are not attacked may be flagged as well. As with the user monitor, it

remains unclear how to deal with items that are being rated anomalously by users who are not the sybils

that we explicitly control in our experiment. In fact, we canonly be certain that users are malicious if

we explicitly injected them: otherwise, we have assumed that the users in the dataset are honest and

well-intentioned, which may not be the case. It is thereforepreferable, in this case, to have a monitor

with higher recall than precision, since we are sure that thesybils we inject are being found.

6.5 Adaptive Attack Models

The previous sections describe methods to detect differentforms of automated sybil attacks by spotting

anomalies in user behaviour. One of the natural limits of these techniques is when honest users’ be-

haviour deviates from what was previously learned to be normal; a recent example is the vast numbers of

web users who searched for news relating to the death of Michael Jackson1 (a news article recommender

system may thus see these articles being read in an anomalously high volume). On the other hand, at-

tackers may modify their methods in order to overcome the defences. In this section, we switch to the

1http://tech.slashdot.org/story/09/06/29/003214/Google-Mistook-Jackson-Searches-For-Net-Attack

6.5. Adaptive Attack Models 114

(a) Global Monitor (b) Optimal Ratings Per Sybil (c) Prediction Shift

Figure 6.8: Example Ramp-Up Attack: How it Affects the Monitor’s Values, the Optimal Ratings Per

Sybil and Prediction Shift

point of view of the attackers: we describe how attackers mayovercome these defences, and evaluate the

effect that such attacks have on the Netflix data.

6.5.1 The Ramp-Up Attack

In Section 6.4.1, we described a method of curbing random attacks by means of monitoring an exponen-

tially weighted moving average of the ratings per user per window; the user- and item- monitors had a

similar flavour. An attack was flagged if the current ratings per user value exceeded a threshold above

the moving mean, determined by the historical values’ variance and a weightαg. The key insight of

this detection mechanism is that an attack willsuddenlyandnoticeablyshift the moving mean, and can

thus be detected. Similarly, our evaluation assumed that the rate at which sybils inject ratings remained

constant.

Attackers may attempt to overcome this defence byincrementallychanging the sybils’ rate of attack.

In the best case, the attacker would know what the current threshold is, and could set a group of sybils

to inject at a rate that would push the mean up to (but not beyond) this value. Doing so would allow the

attacker to then increase the rate in the following window; as the moving mean increases (along with the

threshold), the attacker may be free to unleash evermore higher rates of profile injection. We call this a

ramp-up attack.

The ramp-up attack can be used to defeat all three of the abovedefences; we experiment with this

by considering the scenario of a system that only has the global monitor in place, and an attacker who

would like to inject as much noise as possible into it during aperiod of10 consecutive windows, starting

roughly halfway through the dataset’s timespan. Furthermore, we only consider the optimal case, where

attackers knowa priori what the incoming ratings per user per window values are, andcan thus deduce

what the threshold will be and tune sybils’ rates accordingly. In doing so, we give attackers an advantage

that they are unlikely to have; we discuss this further below.

In Figure 6.8(a) we plot the exponentially weighted moving average of the global threshold over

time, both with and without a ramp-up attack. The effect of the ramp-up attack is to shift the mean, which

then remains parallel to the original. Longer ramp-up attacks would shift the mean even further. Based

6.6. Discussion & Related Work 115

on this mean (and corresponding threshold), we computed themaximum ratings per sybil per window

that avoids detection throughout the course of the ramp-up attack; we plot this sequence in Figure 6.8(b).

An interesting point to note is that, since the mean relies onhow both the honest and sybil users are

behaving, the optimal values do not increase monotonically: there are windows where the honest users

collectively rate less, which would thus highlight the sybils’ misbehaviour unless their rate is reduced.

Lastly, we measured the prediction shift when sybils injectratings in this fashion, and compare it to the

original attack (with the same duration) that we examined inSection 6.2. The results, in Figure 6.8(c),

highlight the importance of our defences: forcing attackers to ramp-up rather than simply dump ratings

into the system affects the prediction shift much less.

The results we show here are the best-case scenario for the attacker, since they knew the current

threshold and ratings per user value. In practice, it is unlikely that the attackers know the current thresh-

old, for a number of reasons:

1. The incoming ratings per user value (that we assumed that attackers knew) is computed at end of

the current window. Attackers who may monitor all users to learn the precise value would then

have no time to inject ratings.

2. The current threshold varies as the exponentially weighted moving average is updated; even if

attackers knew the previous window’s threshold there is no guarantee that the attacker can inject

the maximum number of undetectable ratings in the current window.

3. Experimenting, in order to discover the threshold, wouldbe difficult since, as we saw in Figure

6.8(b), avoiding detection in one window does not guaranteethat the same rate will avoid detection

in the next.

4. Furthermore, attempting to discover the threshold will (a) impact the threshold itself, sinceα is

updated, and (b) reveal a set of sybils once the threshold hasbeen surpassed, requiring attackers

to then restart their efforts from scratch.

Similar ramp-up attacks may be performed to overcome the defences in Sections 6.4.2 and 6.4.3.

However, the main insight from the above experiments is thatramp-up attacks are more difficult and

require more time to execute than attacks on an unmonitored system. This therefore highlights that,

while the temporal monitors that we describe above are not infallible, they provide a significantly difficult

obstacle that attackers now need to overcome.

6.6 Discussion & Related Work
Anomaly detection algorithms have been used when securing awide range of systems, in order to, for

example, defend against financial fraud [WB08] or defend webservers from denial of service attacks

[SP06]. These techniques are readily applicable to recommender systems; the only problem being how

to define what an anomaly is, and how to monitor the large volume of users and items. In this chapter,

we have introduced novel methods that detect anomalies in various aspects of rating behaviour while

learning what normal user behaviour is, thus liberating system administrators from these challenges.

6.6. Discussion & Related Work 116

To do so, we leveraged the effect that honest users have on thetemporal dynamics of the system. For

example, we used the fact that a majority of users rate very few items in order to identify the sybils who

are rating a lot. The only way that sybils may dodge pushing the monitored variables over the detection

thresholds is bynot rating: our defences acts as an incentive for attackers to draw out the length of their

attack, thus reducing its overall effect (as seen in Section6.2).

The monitors that we described above each address differentforms of attack: the global monitor

detects large groups with high rates of profile injection, the user monitor detects the few users who are

injecting large volumes of ratings, and the item monitor detects when many users are rating a target item

in an anomalous fashion. We thus evaluated each one separately in order to highlight each monitor’s

strengths and weaknesses. However, we already saw that morethan one monitor may flag the same

attack; for example, the user monitor detected many of the same attacks as did the global monitor. In

the future, we plan to evaluate how multiple defences operate when combined, and the overlap between

user, item, and global behaviour as different attacks are taking place.

Anomaly detection has also been seen before in recommender system research. Bhaumiket al.

[BWMB06] propose a method to monitoritemsas they are under attack, by looking at changes to an

item’s mean rating over time. Similarly, Yangat al [YSKY09] infer user trust values based on modeling

the signal of incoming ratings. They use these techniques tomonitor whenreal users, who each control

50 sybils, are attacking a system. To that extent, their systemis under a variety of potentially conflicting

attacks. Our work differs on two main points: first, we evaluate a system that iteratively updates and

computes personalised recommendations for each user. We also propose methods that assume a large set

of users and items, and flag attacks while monitoring all users and items (rather than simply monitoring

users/items individually). We evaluate attacks that may not demonstrate anomalies within a single time

window, but appear between system updates, and may be targetted to affect particular users’ recom-

mendations. We also explore a wide variety of attacks, ranging from therandomto targettedscenarios,

where a key aspect of the attacks is the fact that sybilgroupsof varying size are rating items. There are a

number of other particular strategies that attackers may adopt (such as the bandwagon or average attacks

strategies [MBW07]) when unleashing a set of sybils that we have not explored above. Our detection

mechanisms, in focusing on complementary dimensions of attacks (thegroup sizeandrate of sybils as

they attack) hope to detect attacks regardless of the adopted strategy.

The idea of temporality in attacks has also been explored from the point of view of user reputation;

Resnick and Sami [RS07] prove a variety of properties of their reputation system, which takes into

account the order in which ratings are input. It remains unclear how these systems would work in

practice: many reputation or trust-based systems assume that the ratings input by users are the ground

truth, without taking into account that users are both naturally inconsistent when they rate [APTO09] and

what they rate will be influenced by what they are recommended. Furthermore, one of the most troubling

problems that both monitoring techniques and reputation systems suffer from isbootstrapping; systems

can be easily abused when the variables that monitor or reflect user behaviour have had little to no data.

We use all ratings input prior to a pre-specified timeǫ to bootstrap each monitor. System administrators

6.7. Summary 117

may opt to ask a controlled, closed group of trusted users to rate for varying lengths of time in order to

bootstrap [ALP+09]. Alternatively, if the system also offers social networking functionality, defences

that identify sybils according to their location on the social graph can be applied [DC08]; in this work

we assumed that no such graph was present.

While it is often the case that designing security mechanisms is context-sensitive, there are lessons

that we learn here that may be applicable to other scenarios.For example, Yuet al. [YSK+09] design a

method for recommender systems with binary-voting like Digg, and demonstrate the ability to fend off

attacks where the number of sybils greatly exceeds the number of honest users. While our work focuses

on the ordinal-scale rating-based Netflix data, the similarity between the two contexts is the need for

sybils to outweigh honest user behaviour in order to achievemalicious goals, and doing so in tandem is

a key insight into detecting their misbehaviour.

6.7 Summary
In this chapter, we have confronted the problem of sybil attacks to recommender systems. The focal

point of the contributions we make here is that sybils are detectable not only viawhat they rate (as state

of the art sybil classifiers learn from) but also byhow they insert these malicious ratings. In fact, the

mere act of casting the problem of recommender system robustness onto a temporal scale already makes

it harder for attackers to meet their goals: they can no longer simply dump ratings into a system and

expect these to have any effect. Furthermore, the actions ofthe system’s honest users can be leveraged in

order to identify the automated attacks. We introduced a windowed-view of temporal behaviour, defined

the notion of temporal attacks, and then designed and evaluated aglobal, user,and item monitor that

flags when different forms of attack are taking place: where sybil groups (of varying size) inject item

ratings (at varying rates) over time in order to either disrupt the system’s recommendations (via arandom

attack) or modify the recommendations of a particular item (with a targettedattack).

Lastly, we paved the way for future research by describing how attackers may overcome these

defences; namely, by performing aramp-upattack that can fool the defences into believing that no

attack is taking place. We compared the effects of a ramp-up attack, when the system is defended by

our algorithms, and a one-shot attack on a system with no defences, and concluded that the ramp-up

attack is not as immediately effective as an attack on an undefended system: our methods thus increase

the time and effort that attackers require to accomplish their goals. Future work should thus investigate

how recommender systems can identify an ongoing ramp-up attack and adapt the system’s defences

accordingly.

Chapter 7

Conclusion

This thesis is grounded on an important observation: there is a disparity between how collaborative filter-

ing is reseached and how it is deployed. The majority of research treats the scenario as astaticproblem:

given a dataset, the quality of a particular algorithm’s recommendations (measured as accuracy or pre-

cision) can be evaluated by training and testing the algorithm with partitions of all the data. Deployed

recommender systems, instead, have to cope with a continuous influx of ratings, users, and content. The

underlying data changes in size, sparsity, and may even become distributed differently; changes occur

that affect performance and can neither be reproduced nor examined under static conditions.

Once the assumption of a static context has been removed, themethodology used to investigate CF

needs to be redefined. In Chapter 4, we introduced a novel means of doing so, based on partitioning

the data according to rating timestamps and simulating a deployed system by iteratively retraining CF

algorithms with incrementally larger portions of the data.There are then a number of novel directions

and uncovered results that can be examined when researchingcollaborative filtering. We have focused

on three aspects: recommender systems’ temporal accuracy,diversity, and robustness. Each aspect is

highly significant: while accuracy has been the focal point of CF evaluation (and the primary tool for

comparing algorithms), temporal experiments show that theway accuracy varies with time undermines

the usefulness of work comparing algorithms solely on thesegrounds. Temporal diversity could not

be explored from a static perspective, yet (especially in the case where it is missing) elicits passionate

responses from surveyed users. Lastly, we determined that learning temporal behaviour and monitoring

it for anomalies not only wards off a number of recommender system attacks, but forces attackers to

select strategies that are both more costly (in terms of timetaken to execute the attack) and less efficient.

In the following section, we summarise the contributions wehave made.

7.1 Thesis Contributions

At the broadest level, the contributions of this thesis fallinto one of three categories:

• Analysis. We have shown, through extensive analysis of real user ratings, how CF data changes,

including how summary statistics, similarity, and user behaviour fluctuate over time. While dif-

ferent datasets grow at varying rates, they all grow: observing these changes strongly motivates

research into how the systemas a wholeperforms over time.

7.2. Future Work 119

• Methodology. We have designed a novel methodology for performing temporal collaborative

filtering experiments. This method relies on partitioning the data according to the ratings’ times-

tamps and incrementally growing the size of the training set.

• Algorithms. We have designed and evaluated hybrid CF algorithms that (a)increase the tempo-

ral accuracy, (b) bolster temporal diversity, and (c) secure recommender systems from temporal

attacks.

The contributions of this thesis are relevant to (a)researchers, who are now challenged to build

algorithms that stand the test of time (as well as those imposed by traditional evaluation metrics), and

(b) practicioners, who may wish to augment their systems with features of this work, by, for example,

overlaying a re-ranking algorithm on their CF prediction method. Recent work by Burke [Bur10] furthers

the call for dynamic, temporal evaluations of CF by proposing a methodology that is similar, yet finer-

grained, than the one we used throughout this thesis.

A general theme emerges from the algorithmic proposals we have made: whether we were focusing

on improving accuracy, diversity, or robustness, our solutions proposed to treat users differently from

one another. For example, the user-based switching algorithm (Chapter 4) improved overall accuracy

by trying to improve each user’s accuracy independently of the others; a similar solution was adopted

to improve temporal diversity. When it came to defending a recommender system (Chapter 6), part

of our proposal was monitoring users and comparing how they behaved with respect to the rest of the

community, in order to identify misbehaving sybils. The centrality of users in our proposals reflects the

variety of roles that users adopt when interacting with a recommender system: while some users are

purely consuming content with the goal of obtaining better recommendations for themselves, other users

are actually driven by a desire to help others’ recommendations [HKTR04]. The key insight here is that

there is a difference between the various system users; theyare not all the same. CF research, on the

other hand, has ignored this insight and designed “one-sizefits all” solutions. In this thesis, we have

departed from this approach by testing algorithms that varyhow they compute predictions for different

users.

The work we have done here is inherently limited by the data that we have used. Recommender

systems may span a variety of different domains (both on and off the web and for a wide range of dif-

ferent types of items); however, our datasets only reflect online movie rental web sites. Our work has

therefore focused on scenarios where usersexplicitly rate content (we do not use any implicit data). The

assumption we hold is that these datasets are sufficientlyrepresentativeof large scale recommender sys-

tems, and conclusions that we draw when analysing them are similarly applicable to other recommender

system domains.

7.2 Future Work

As we saw in Table 2.1 (Chapter 2), the research problems relating to recommender systems are not

limited to those we have addressed in this thesis. In this section, we discuss opportunities for future

research. We divide them into two categories: the direct consequences of the methodology we have used

7.2. Future Work 120

throughout this thesis and broader considerations on state-of-the-art CF research.

7.2.1 Using a Temporal Methodology

In this thesis, we focused on accuracy, diversity and robustness from a temporal perspective. Theap-

proachthat we have defined, however, also offers a novel perspective on many other research challenges:

attempting to solve them using a temporal methodology is likely to offer insights that were previously

unavailable. Examples include:

The Cold-Start Problem. We explored the effect that highly connected users have on predictive

accuracy and coverage and validated that only using them still achieves comparable accuracy results

(Chapter 3). Cold-start users, who have no profile, may therefore be given a neighbourhood of these

users until their profiles are sufficiently large to compute asimilarity-based neighbourhood. Can these

highly connected users be identified as they rate? To what extent do they vary over time and what effect

does any variation have on system performance?

Serendipity. Being able to identify users who consistently seek out and rate new content may help

finding the sources ofserendipitousinformation. On the other hand, serendipitous ratings may be more

prevalent in the sparser profiles. Herein lies a two-fold research problem: first, how can serendipity be

measured? Second, is it possible to identify those who are the source of new ratings, trends, and who first

rate what will later become popular content? Richer datasets may also offer finer-grained insights. In

particular, recent work on multidimensional recommender systems may show why power-users emerge,

and how they can best be used [ASST05].

Scalability. The mainstream approaches used to tackle the large number of users involves dimen-

sionality reduction techniques [BK07]. Temporal patternsin neighbourhoods, however, can be taken

advantage of to reduce the complexity of recomputing the similarity between every user pair. Identifying

the active users in a particular moment can potentially be used to reduce the time complexity of comput-

ing recommendations. Furthermore, as discussed in Chapter3, it is often the case that large proportions

of the dataset are not used to generate predictions at all. Identifying and requiring only a small set of

power users to generate accurate predictions would vastly reduce the scalability issues that recommender

systems face [ALP+09].

Combining Multiple Goals. CF research has traditionally placed a high value on accuracy; in this

thesis we designed mechanisms to augment accuracy over time. However, we also noted that both di-

versity and robustness are equally important. While our proposal regarding temporal monitors to secure

recommender system robustness does not interfere with any underlying prediction or ranking algorithm,

the diversity and accuracy algorithms may conflict with one another. Future work thus calls for design-

ing and evaluating CF algorithms that meet a variety of requirements; for example, that they produce

recommendations that are both (temporally) accurate and diverse. A simple approach to this particular

example may entail using the switching algorithm (Chapter 4) to improve accuracy, while re-ranking

the top-N recommendations (Chapter 5) in order to diversify the results: this approach ensures both

properties without interfering with one another. However,there are likely to be more qualities that users

seek from their recommendations, and it is likely that they cannot all be optimised independently of one

7.2. Future Work 121

another.

7.2.2 Beyond Temporal Collaborative Filtering

The themes that emerge from this thesis call for a focus on three key areas in future recommender system

research: theusers, the systemcontext, and thesocialaspect of recommender systems.

The methodology that we have used throughout this thesis reflects aprocessthat occurs when

recommender systems are deployed: users firstratecontent; the ratings are used to computepredictions;

predictions are ranked to formrecommendations, and recommendations incentivise users to rate more

content. In general, CF research has tended to focus on only two of these three steps. The majority of

research (along with the Netflix prize) is dedicated to the problem of computing predictions using ratings.

More recently, the importance of ranking (and thus the second step—converting predictions into a ranked

list) has emerged, and recommender systems have been evaluated using a variety of information retrieval

metrics [ALP+09, Kor08]. However, the last step remains unexplored: given a set of recommendations,

why do people rate as they do? Do they rate their recommendations or seek out different content? What

affects the way they rate? When confronting the problem of temporal diversity (Chapter 5), we began

to see how ratings are not simply reflections of what each userthinks of themoviespresented to them;

the ratings also reflect the users’ response to the recommender system and their impression of how well

the recommendations are tailored to their needs. A major gapin recommender system research is the

focus on the end users’ behaviour. While CF has been, for the most part, interesting from the machine

learning perspective, it is ultimately an algorithm that has to provide recommendations to people, and

further understanding of how the people behave will feed back and improve the algorithms themselves.

A related problem that persists in CF research is that of evaluation: how can researchers demonstrate

that their systems are producing “good” results? To date, wehave done so by making assumptions of

what “good” means: accurate predictions and high precisionand recall. In this thesis, we extend that

to include, for example, temporally diverse recommendations. We motivated this addition by asking

users what they thought of a system that was not temporally diverse. However, what else do users want

from their recommendations? The evaluation criteria themselves may be subject to the context in which

the recommender system is operating: temporal diversity may make complete sense for a web-based

movie recommender system, but may be inappropriate for a system that recommends travel routes to a

commuter, unless the diversity is motivated with further reasons (e.g., the current route is congested). On

a broader level, systems can be better evaluated if we understand where they will be operating. If future

recommender system research focuses oncontext, novel evaluation methods will emerge: for example,

to what extent does a travel recommender system on users’ mobiles affect their mobility patterns? In

other words, are the computed recommendations turning intouseful actions?

A final consideration we include is thesocialaspect. There is an overlap between social networks

and collaborative filtering; in fact, we were able to draw from social network analysis techniques in

order to examine how similarity graphs are structured (Chapter 3). In doing so, we claimed that CF

rating data represents animplicit social network between the system users, because what one person

rates affects others’ recommendations. The implication here is that CF ratings are related to one another;

7.2. Future Work 122

in fact, there may be a causal relationship between users’ ratings. These relationships are difficult to

understand since the links between users remain hidden; however, future research based on combined

(social network/content ratings) datasets will be able to investigate this link further and use it to improve

the recommendations each user is given. Recent web-based companies are already gathering data that

will serve this purpose: for example, Rummble1 gathers users’social networkandratingson different

locations around the world.

1http://www.rummble.com

Appendix A

Diversity Surveys

The surveys in Chapter 5 were created using Zoomerang1. Users were recruited via Twitter, Facebook

and departmental mailing lists and directed to a web page2 that allowed them to either (a) be taken to a

randomly selected survey or (b) access each survey individually.

A.1 Pre-Survey Instructions and Demographics

The users were first given a set of instructions about the survey. These were the same across all three

surveys. Figure A.1 show an example screen shot from Survey 1.

Figure A.1: Example User Instructions from Survey 1

The users were then asked to input some demographic data. Thequestions related to gender, age,

number of movies watched per month, and familiarity with recommender systems.

Users were not asked for any personally identifiable information (e.g., email address), in order to

1http://www.zoomerang.com
2http://www.cs.ucl.ac.uk/staff/n.lathia/survey.html

A.2. Movie Recommendations 124

Figure A.2: Demographic Data Questions: Gender, Age, Average Movies Per Month, Familiarity and

Use of Recommender Systems

guarantee full anonymity. A consequence of this decision was that we were unable to know how many

users completed more than one survey.

A.2 Movie Recommendations

Since all surveys were similarly structured, we first describe how the movie recommendations were

presented to the users (Section A.2.1). We then specify the content of each survey: Survey 1, the non-

diversified popular movies (Section A.2.2), Survey 2, the diversified popular movies (Section A.2.3) and

Survey 3, the diversified randomly-selected movies (Section A.2.4).

A.2. Movie Recommendations 125

A.2.1 Recommendation Structure

As described in the instructions, the users were first shown apage with (a) a list of movie titles, (b)

links to each movies’ IMDB information pages and (c) a set of images of the movies’ DVD covers: an

example screen shot is shown in Figure A.2.1. The users were then asked to rate how interesting they

found the week’s recommendations on a 1-5 star Likert scale.

Figure A.3: Example Screen Shot: Survey 1, Week 1

After rating the recommendations, the users would click through to a buffer screen, which contained

a number of DVD covers. An example buffer screen is shown in Figure A.2.1. They would then click

through into the next “week’s” recommendations, structured as above in Figure A.2.1.

Figure A.4: Example Screen Shot: Survey 1, Buffer Screen 1

A.2. Movie Recommendations 126

A.2.2 Survey 1: No Diversity

Survey 1 presented the users with thesamerecommendations for each week. The movies were selected

from the IMDB3 list of all-time worldwide box office hits (accessed December 2009) and are summarised

in Table A.1.

Rank Movie

1 Titanic
2 The Dark Knight
3 Star Wars (Episode IV)
4 Schrek 2
5 E.T. The Extra Terrestrial
6 Star Wars Episode I: The Phantom Menace
7 Pirates of the Caribbean: Dead Man’s Chest
8 Spiderman
9 Transformers: Revenge of the Fallen
10 Star Wars Episode III: Revenge of the Sith

Table A.1: S1 (All 5 Weeks): All Time Worldwide Box Office Ranking (December 2009)

A.2.3 Survey 2: Diversified Popular Movies

Survey 2 also contained popular movies from IMDB; this set are shuffled as described in Chapter 5.

Rank Movie

Week One

1 The Lord of the Rings: The Return of the King
2 Spider-Man 2
3 The Passion of the Christ
4 Jurassic Park
5 Finding Nemo
6 The Lion King
7 Forrest Gump
8 Pirates of the Caribbean: Dead Man’s Chest
9 Transformers: Revenge of the Fallen
10 Iron Man

Week Two

1 Titanic
2 The Dark Knight
3 Star Wars (Episode IV)
4 Home Alone
5 The Bourne Ultimatum
6 Finding Nemo
7 The Da Vinci Code
8 Forrest Gump
9 Pirates of the Caribbean: Dead Man’s Chest
10 Kung Fu Panda

Table A.2: S2 (Weeks 1, 2): Diversified All Time Worldwide BoxOffice Ranking

3http://www.imdb.com/boxoffice/alltimegross?region=world-wide

A.2. Movie Recommendations 127

Rank Movie

Week Three

1 Pirates of the Caribbean: Dead Man’s Chest
2 E.T. The Extra-Terrestrial
3 Independence Day
4 The Sixth Sense
5 Wedding Crashers
6 Terminator 2
7 300
8 Titanic
9 The Dark Knight
10 Shrek 2

Week Four

1 300
2 Jurassic Park
3 Forrest Gump
4 Spider-Man
5 The Lord of the Rings: The Return of the King
6 The Lion King
7 The Passion of the Christ
8 The Sixth Sense
9 Iron Man
10 Wedding Crashers

Week Five

1 Iron Man
2 Finding Nemo
3 Wedding Crashers
4 The Sixth Sense
5 Transformers: Revenge of the Fallen
6 Terminator 2
7 300
8 Forrest Gump
9 The Lion King
10 Shrek 2

Table A.3: S2 (Weeks 3, 4, 5): Diversified All Time Worldwide Box Office Ranking

Note thatdiversity does not necessarily imply no repetition of recommendations; in this set of

movies, a number of entries appear more than once (in different ranks). For example,“Pirates of the

Caribbean: Dead Man’s Chest”appears in the first three weeks, in ranks 8, 9, and 1 respectively.

A.2.4 Survey 3: Diversified Random Movies

The last set of movies were selected uniformly at random fromthe Netflix prize dataset. The only

condition to be met when selecting a set of movies was that thesame movie may not appear twice in the

sametop-10 list. The 5 weeks of recommendations are listed in Table A.4.

A.3. Post-Survey Questions 128

Rank Movie Rank Movie

Week One Week Two

1 Woman of the Year 1 Nightbreed
2 Cujo 2 Predator Island
3 Birdman of Alcatraz 3 Bad Company
4 The Rundown 4 Holiday Heart
5 Shadow of Doubt 5 Jurassic Park III
6 In Dreams 6 Devo Live
7 The Marksman 7 Pursued
8 The Way We Live Now 8 Lionheart
9 Baby Van Gogh 9 Antibody
10 Nicholas Nickleby 10 It Came From Outer Space

Week Three Week Four

1 G-Men From Hell 1 A Stranger Among Us
2 The Marriage Circle 2 Soul Assassin
3 Harry Potter and the Sorcerer’s Stone 3 Jane Eyre
4 Baby Einstein: Baby Da Vinci 4 Annie Lennox: Live in Central Park
5 Island of Dr. Moreau 5 The Magic Flute
6 My Voyage to Italy 6 The Hills Have Eyes 2
7 Koma 7 A Better Tomorrow II
8 The Toy 8 Atomic Train
9 Bulletproof 9 Speed Racer
10 The Englishman Who Went Up a Hill but Came Down a Mountain 10 Vampires: The Turning

Week Five

1 Crash
2 Riding the Bullet
3 Kicked in the Head
4 Diary of a Serial Killer
5 Oh God!
6 French Twist
7 Degrassi Junior High
8 Black Adder
9 Red Dirt
10 Frequency

Table A.4: S3 (Weeks 1, 2, 3, 4, 5): Randomly Selected Movies

A.3 Post-Survey Questions
After completing the 5 weeks of recommendations, the users were asked to comment on the quality of

the recommendations. A screen shot of the questions is shownin Figure A.3.

A.3. Post-Survey Questions 129

Figure A.5: Example Screen Shot: Survey 1, Final Questions

Bibliography

[AG06] O. Alonso and M. Gertz. Clustering of Search Results Using Temporal Attributes. InACM

SIGIR, pages 597–598, Seattle, USA, August 2006.

[AGHI09] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying Search Results. In

ACM WSDM, pages 5–14, Barcelona, Spain, 2009.

[AH08] M. Ahmed and S. Hailes. A Game Theoretic Analysis of the Utility of Reputation Manage-

ment. Technical Report RN/08/05, Department of Computer Science, University College

London, January 2008.

[AJOP09] X. Amatriain, A. Jaimes, N. Oliver, and J.M. Pujol.Data Mining Methods for Recom-

mender Systems. In Kantor, Ricci, Rokach, and Shapira, editors,Recommender Systems

Handbook. Springer, August 2009.

[Alp04] E. Alpaydin. Introduction to Machine Learning. MIT Press, Massachusetts, USA, 2004.

[ALP+09] X. Amatriain, N. Lathia, J.M. Pujol, H. Kwak, and N. Oliver. The Wisdom of the Few:

A Collaborative Filtering Approach Based on Expert Opinions from the Web. InACM

SIGIR, pages 532–539, Boston, USA, July 2009.

[APO09] X. Amatriain, J.M. Pujol, and N. Oliver. I Like It...I Like it Not: Evaluating User Ratings

Noise in Recommender Systems. InUser Modeling, Adaptation, Personalization (UMAP),

pages 247–258, Trento, Italy, 2009.

[APTO09] X. Amatriain, J.M. Pujol, N. Tintarev, and N. Oliver. Rate it Again: Increasing Recom-

mendation Accuracy by User Re-Rating. InACM RecSys, pages 173–180, New York,

USA, 2009.

[ARH97] A. Abdul-Rahman and S. Hailes. Using recommendations for managing trust in distributed

systems. InProceedings of IEEE Malaysia International Conference on Communication,

November 1997.

[ARH98] A. Abdul-Rahman and S. Hailes. A Distributed Trust Model. InNew Security Paradigms

Workshop, pages 48–60, Langdale, United Kingdom, 1998.

Bibliography 131

[ASST05] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin. Incorporating Contex-

tual Information in Recommender Systems Using a Multidimensional Approach.ACM

Transactions on Information Systems, 23(1):103–145, January 2005.

[AT05] G. Adomavicius and A. Tuzhilin. Towards the Next Generation of Recommender Systems:

A Survey of the State-of-the-Art and Possible Extensions.IEEE TKDE, 17(6):734–749,

June 2005.

[AW97] A. Agresti and L. Winner. Evaluating Agreement and Disagreement Among Movie Re-

viewers.Chance, 10:10–14, 1997.

[AWWY99] C. Aggarwal, J.L. Wolf, K. Wu, and P.S. Yu. Horting Hatches and Egg: A New Graph

Theoretic Approach to Collaborative Filtering. InACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 201–212, San Diego, California, USA,

1999.

[BA02] A. Barabasi and R. Albert. Statistical mechanics of complex networks.Reviews of Modern

Physics, 74:47–97, 2002.

[BEKR07] S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci. Enhancing Privacy and Preserving Ac-

curacy of Distributed Collaborative Filtering. InProceedings of Recommender Systems

(RecSys ’07), pages 9–16, Minneapolis, USA, 2007.

[BHK98] J.S. Breese, D. Heckerman, and C. Kadie. Empirical Analysis of Predictive Algorithms for

Collaborative Filtering. InTech Rep. No. MSR-TR-98-12, Microsoft Research, Redmond,

WA, USA, 1998.

[BK07] R. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighborhood

interpolation weights. InIEEE International Conference on Data Mining (ICDM), pages

43–52. IEEE, 2007.

[BLW+04] G. Beenen, K. Ling, X. Wang, K. Chang, D. Frankowski, P. Resnick, and R.E. Kraut.

Using Social Psychology to Motivate Contributions to Online Communities. InComputer

Supported Cooperative Work (CSCW), pages 212–221, Chicago, USA, November 2004.

[Bon04] P. Bonhard. Improving Recommender Systems with Social Networking. InAddendum of

CSCW, Chicago, USA, November 2004.

[BR99] E. Blanzieri and F. Ricci. A Minimum Risk Metric for Nearest Neighbour Classification.

In Sixteenth International Conference on Machine Learning, pages 22–31, Bled, Slovenia,

June 1999.

[Bur02] R. Burke. Hybrid Recommender Systems: Survey and Experiments.User Modeling and

User-Adapted Interaction, 12:331–370, 2002.

Bibliography 132

[Bur10] R. Burke. Evaluating the Dynamic Properties of Recommendation Algorithms. InACM

Recommender Systems (RecSys), Barcelona, Spain, 2010.

[BWMB06] R. Bhaumik, C. Williams, B. Mobasher, and R. Burke.Securing Collaborative Filtering

Against Malicious Attacks Through Anomaly Detection. InAAAI Workshop on Intelligent

Techniques for Web Personalization, Boston, July 2006.

[Can02] J. Canny. Collaborative Filtering With Privacy ViaFactor Analysis. InACM SIGIR, pages

238–245, Tampere, Finland, 2002.

[CC08] O. Celma and P. Cano. From Hits to Niches? Or How Popular Artists Can Bias Music

Recommendation and Discovery. InProceedings of the2nd Netflix-KDD Workshop, Last

Vegas, USA, August 2008.

[Cha02] M. Charikar. Similarity Estimation Techniques From Rounding Algorithms. InAnnual

ACM Symposium on Theory of Computing, pages 380–388, Montreal, Canada, 2002. ACM

Press.

[CL07] O. Celma and P. Lamere. Music Recommendation Tutorial. In Presented at the 8th Inter-

national Conference on Music Information Retrieval, Vienna, Austria, September 2007.

[CNS03] M. Carbone, M. Nielsen, and V. Sassone. A formal model for trust in dynamic networks.

In Int. Conference on Software Engineering and Formal Methods(SEFM), pages 54–63,

Brisbane, Australia, September 2003.

[CS01] K. Crammer and Y. Singer. Pranking with Ranking. InNeural Information Processing

Systems (NIPS), pages 641–647, Vancouver, Canada, 2001.

[DC08] M. Dell’Amico and L. Capra. SOFIA: Social Filtering for Robust Recommendations. In

Joint iTrust and PST Conferences on Privacy, Trust Management and Security (IFIPTM),

Trondheim, Norway, 2008.

[DDGR07] A. Das, M. Datar, A. Garg, and S. Rajaram. Google News Personalization: Scalable On-

line Collaborative Filtering. InProceedings of WWW Industrial Practice and Experience

Track, pages 271–280, Banff, Alberta, Canada, May 2007.

[Die00] T. Dietterich. Ensemble Methods in Machine Learning. In 1st International Workshop on

Multiple Classifier Systems, Cagliari, Italy, 2000.

[DL05] Y. Ding and X. Li. Time Weight Collaborative Filtering. In ACM CIKM, pages 485–492,

Bremen, Germany, November 2005.

[FO95] C. Faloutsos and D. Oard. A Survey of Information Retrieval and Filtering Methods. In

Tech. Rep. No. CS-TR-3514, Department of Computer Science, University of Maryland,

Maryland, USA, 1995.

Bibliography 133

[Gam90] D. Gambetta. Can We Trust Trust?Trust: Making and Breaking Cooperative Relations,

pages 213–238, 1990.

[GFM05] M. Grcar, B. Fortuna, and D. Mladenic. KNN versus SVMin the Collaborative Filtering

Framework. InWorkshop on Knowledge Discovery on the Web, Chicago, USA, August

2005.

[GNOT92] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry. Using Collaborative Filtering to Weave

an Information Tapestry.Communications of the ACM, 35:61–70, 1992.

[Gol06] J. Golbeck. Generating Predictive Movie Recommendations from Trust in Social Net-

works. In Fourth International Conference on Trust Management, pages 93–104, Pisa,

Italy, May 2006.

[Gol08] J. Golbeck, editor.Computing With Social Trust. Springer, 2008.

[GRGP00] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A Constant Time Col-

laborative Filtering Algorithm. InTech Rep. No. UCB/ERL M00/41, EECS Department,

University of California, Berkeley, California, USA, 2000.

[HC07] C-S. Hwang and Y-P. Chen. Using Trust in Collaborative Filtering Recommendation. In

New Trends in Applied Artificial Intelligence, pages 1052–1060, 2007.

[HJAK05] F. M. Harper and Y. Chen J. A. Konstan, X. Li. User Motivations and Incentive Structures

in an Online Recommender System. InIncentive Mechanisms in Online Systems, Group

2005 Workshop, 2005.

[HKBR99] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An Algorithmic Framework for Per-

forming Collaborative Filtering. InACM SIGIR, pages 230–237, Berkley, CA, USA, 1999.

[HKR00] J. Herlocker, J.A. Konstan, and J. Riedl. Explaining collaborative filtering recommenda-

tions. In In proceedings of ACM 2000 Conference on Computer SupportedCooperative

Work, 2000.

[HKTR04] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl.Evaluating Collaborative Filtering

Recommender Systems.ACM Transactions on Information Systems, 22:5–53, 2004.

[HKV08] Y. Hu, Y. Koren, and C. Volinsky. Collaborative Filtering For Implicit Feedback Datasets.

In ICDM, pages 263–272, Pisa, Italy, 2008. IEEE.

[HRT09] D. Hawking, T. Rowlands, and P. Thomas. C-TEST: Supporting Novelty and Diversity in

Testfiles for Search Evaluation. InACM SIGIR Workshop on Redundancy, Diversity and

Interdependent Document Relevance, Boston, USA, 2009.

[JIB07] A. Josang, R. Ismail, and C. Boyd. A Survey of Trust and Reputation Systems for Online

Service Provision.Decision Support Systems, 43(2):618–644, 2007.

Bibliography 134

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. ACM Computing

Surveys, 31:264–323, 1999.

[KBC07] M. Kurucz, A. A. Benczur, and K. Csalogany. Methdodsfor Large Scale SVD With

Missing Values. InProceedings KDD Cup and Workshop, San Jose, California, August

2007.

[KMM +97] J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon,and J. Riedl. GroupLens: Ap-

plying Collaborative Filtering to Usenet News.Communications of the ACM, 40:77–87,

1997.

[KNT06] R. Kumar, J. Novak, and A. Tomkins. Structure and Evolution of Online Social Networks.

In International Conference on Knowledge Discovery and Data Mining, pages 611–617,

2006.

[Kor08] Y. Koren. Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering

Model. InACM KDD, pages 426–434, 2008.

[Kor09a] Y. Koren. Collaborative Filtering with Temporal Dynamics. InACM KDD, pages 89–97,

Paris, France, 2009.

[Kor09b] Y. Koren. The BellKor Solution to the Netflix Grand Prize. InNetflix Prize Report, August

2009.

[LAP09] N. Lathia, X. Amatriain, and J.M. Pujol. Collaborative Filtering With Adaptive Informa-

tion Sources. InIJCAI Workshop on Intelligent Techniques for Web Personalisation and

Recommender Systems, Pasadena, USA, July 2009.

[Lat08a] N. Lathia.Computing Recommendations With Collaborative Filtering,Collaborative and

Social Information Retrieval and Access: Techniques for Improved User Modeling, chap-

ter 2. IGI-Global, September 2008.

[Lat08b] N. Lathia. Learning to Trust on the Move. InJoint TIME and SPACE Workshops (IFIPTM),

Trondheim, Norway, 2008.

[LHC07] N. Lathia, S. Hailes, and L. Capra. Private Distributed Collaborative Filtering Using Es-

timated Concordance Measures. InACM Recommender Systems (RecSys), pages 1–8,

Minneapolis, USA, 2007.

[LHC08a] N. Lathia, S. Hailes, and L. Capra. kNN CF: A Temporal Social Network. InACM

Recommender Systems (RecSys), pages 227–234, Lausanne, Switzerland, 2008.

[LHC08b] N. Lathia, S. Hailes, and L. Capra. The Effect of Correlation Coefficients on Communities

of Recommenders. InACM Symposium on Applied Computing (TRECK track), pages

2000–2005, Fortaleza, Brazil, March 2008.

Bibliography 135

[LHC08c] N. Lathia, S. Hailes, and L. Capra. Trust-Based Collaborative Filtering. InJoint iTrust

and PST Conferences on Privacy, Trust Management and Security (IFIPTM), Trondheim,

Norway, 2008.

[LHC09a] N. Lathia, S. Hailes, and L. Capra. Evaluating Collaborative Filtering Over Time. InACM

SIGIR Workshop on the Future of IR Evaluation, Boston, USA, July 2009.

[LHC09b] N. Lathia, S. Hailes, and L. Capra. Temporal Collaborative Filtering With Adaptive Neigh-

bourhoods. InACM SIGIR, pages 796–797, Boston, USA, July 2009.

[LHC10a] N. Lathia, S. Hailes, and L. Capra. Temporal Defenses for Robust Recommendations.

In ECML PKDD Workshop on Privacy and Security Issues in Data Mining and Machine

Learning, Barcelona, Spain, September 2010.

[LHC10b] N. Lathia, S. Hailes, and L. Capra. Temporal Diversity in Recommender Systems. InACM

SIGIR, pages 210–217, Geneva, Switzerland, July 2010.

[LK03] Q. Li and B.M. Kim. Clustering Approach for Hybrid Recommender System. In

IEEE/WIC International Conference on Web Intelligence, page 33, Beijing, China, 2003.

IEE Press.

[LM05] D. Lemire and A. Maclachlan. Slope One Predictors forOnline Rating-Based Collab-

orative Filtering. InSIAM Data Mining Conference, Newport Beach, California, April

2005.

[LQF10] S.L. Lim, D. Quercia, and A. Finkelstein. StakeNet:Using Social Networks to Analyse the

Stakeholders of Large-Scale Software Projects. InInternational Conference on Software

Engineering, pages 295–304, Cape Town, South Africa, May 2010.

[LR04] S.K. Lam and J. Riedl. Shilling Recommender Systems for Fun and Profit. In13th Inter-

national World Wide Web Conference, pages 393–402, New York, NY, USA, 2004.

[LSE08] G. Lenzini, N. Sahli, and H. Eertink. Trust Model forHigh Quality Recommendation. In

International Conference on Security and Cryptography (SECRYPT), July 2008.

[LSY03] G. Linden, B. Smith, and J. York. Amazon.com Recommendations: Item-to-Item Collab-

orative Filtering.IEE Internet Computing, 7:76–80, 2003.

[MA07] P. Massa and P. Avesani. Trust-aware Recommender Systems. InACM Recommender

Systems (RecSys), pages 17–24, Minneapolis, USA, 2007.

[MAA08] M. Maia, J. Almeida, and V. Almeida. Identifying user profiles in online social networks.

In 1st International Workshop on Social Network Systems (EuroSys). ACM Press, 2008.

[Mar94] S. Marsh. Formalising trust as a computational concept. PhD Thesis, Department of

Mathematics and Computer Science University of Stirling UK, 1994.

Bibliography 136

[MB04] P. Massa and B. Bhattacharjee. Using Trust in Recommender Systems: An Experimental

Analysis. IniTrust International Conference, pages 221–235, 2004.

[MBW07] B. Mobasher, R. Burke, and C. Williams. Towards Trustworthy Recommender Systems:

An Analysis of Attack Models and Algorithm Robustness.Transactions on Internet Tech-

nology (TOIT), 7(4), 2007.

[ME95] D. Maltz and K. Ehrlick. Pointing the Way: Active Collaborative Filtering. InACM CHI,

pages 202–209, Denver, Colorado, United States, 1995.

[MH04] M.R. McLaughlin and J. Herlocker. A Collaborative Filtering Algorithm and Evaluation

Metric that Accurately Model the User Experience. InProceedings of ACM SIGIR, pages

329–336, Sheffield, United Kingdom, 2004.

[MKL07] H. Ma, I. King, and M.R. Lyu. Effective Missing Data Prediction for Collaborative Filter-

ing. In Proceedings of ACM SIGIR, pages 39–46, Amsterdam, Holland, 2007.

[MKL09] H. Ma, I. King, and M.R. Lyu. Learning to Recommend With Social Trust Ensemble. In

ACM SIGIR, pages 203–210, Boston, MA, USA, July 2009.

[MKR05] B. Miller, J.A. Konstan, and J. Riedl. PocketLens: Toward a Personal Recommender

System.ACM Transactions on Information Systems, 22(3):437–476, July 2005.

[MLG+03] S.M. McNee, S.K. Lam, C. Guetzlaff, J.A. Konstan, and J. Riedl. Confidence Displays and

Training in Recommender System. InINTERACT IFIP TC13 International Conference on

Human-Computer Interaction, pages 176–183, September 2003.

[MRK06] S.M. McNee, J. Riedl, and J.A. Konstan. Being Accurate is Not Enough: How Accuracy

Metrics Have Hurt Recommender Systems. InExtended Abstracts of ACM CHI, pages

1097–1101, Montreal, Canada, April 2006.

[Mul06] M. Mull. Characteristics of High-Volume Recommender Systems. InRecommenders

Workshop, Bilbao, Spain, September 2006.

[MY07] Y. Matsuo and H. Yamamoto. Diffusion of Recommendation through a Trust Network. In

Proceedings of ICWSM, Boulder, Colorado, USA, 2007.

[MYLK08] H. Ma, H. Yang, M.R. Lyu, and I. King. SoRec: Social Recommendation Using Prob-

abilistic Matrix Factorization. InACM CIKM, pages 931–940, Napa Valley, California,

USA, October 2008.

[NDB07] A. Nguyen, N. Denos, and C. Berrut. Improving New User Recommendations With Rule-

Based Induction on Cold User Data. InACM Recommender Systems (RecSys), Minneapo-

lis, USA, 2007.

Bibliography 137

[OS05] J. O’Donovan and B. Smyth. Trust in Recommender Systems. In 10th International

Conference on Intelligent User Interfaces, pages 167–174. ACM Press, 2005.

[OS06] J. O’Donovan and B. Smyth. Eliciting Trust Values from Recommendation Errors.Inter-

national Journal of Artificial Intelligence Tools, 15(6):945–962, 2006.

[Pat06] A. Paterek. Improving Regularized Singular Value Decomposition For Collaborative Fil-

tering. InACM KDD, Philadelphia, USA, 2006.

[PB07] M.J. Pazzani and D. Billsus. Content-Based Recommendation Systems.The Adaptive

Web, 4321:325–341, 2007.

[PBH07] M.A Sasse P. Bonhard and C. Harries. The Devil You Know Knows Best: The Case for

Integrating Recommender and Social Networking Functionality. In Proceedings of the

21st British HCI Group Annual Conference, Lancaster, UK, September 2007.

[PC06] P. Pu and L. Chen. Trust Building with Explanation Interfaces. InInternational Conference

on Intelligent User Interfaces, pages 93–100, Sydney, Australia, 2006. ACM.

[PC09] M. Piotte and M. Chabbert. The Pragmatic Theory Solution to the Netflix Grand Prize. In

Netflix Prize Report, August 2009.

[Pia07] G. Piatetsky. Interview With Simon Funk.ACM SIGKDD Explorations Newsletter, 9:38–

40, 2007.

[PM97] R. Procter and A. McKinley. Social Affordances and Implicit Ratings for Social Filtering

on the Web. InDELOS Workshop on Collaborative Filtering, Budapest, Hungary, 1997.

[PM04] G. Pitsilis and L. Marshall. A Model of Trust Derivation from Evidence for Use in Rec-

ommendation Systems. InTechnical Report Series, CS-TR-874. University of Newcastle

Upon Tyne, 2004.

[PM05] G. Pitsilis and L. Marshall.Trust as a Key to Improving Recommendation Systems, Trust

Management, pages 210–223. Springer Berlin / Heidelberg, 2005.

[Pol06] R. Polikar. Ensemble Based Systems in Decision Making. IEEE Circuits and Systems,

6(3):21–345, 2006.

[Pot08] G. Potter. Putting the Collaborator Back Into Collaborative Filtering. InProceedings of

the2nd Netflix-KDD Workshop, Last Vegas, USA, August 2008.

[PPK05] M. Papagelis, D. Plexousakis, and T. Kutsuras. Alleviating the Sparsity Problem of Col-

laborative Filtering Using Trust Inferences. InProceedings of the 3rd International Con-

ference on Trust Management (iTrust), Paris, France, 2005.

[PPM+06] S. Park, D. Pennock, O. Madani, N. Good, and D. DeCoste. Naive Filterbots for Robust

Cold-start Recommendations. InACM KDD, Philadelphia, USA, 2006.

Bibliography 138

[QC09] D. Quercia and L. Capra. FriendSensing: Recommending Friends Using Mobile Phones.

In ACM Recommender Systems (RecSys), pages 273–276, New York, USA, October 2009.

[QHC06] D. Quercia, S. Hailes, and L. Capra. B-trust: Bayesian Trust Framework for Pervasive

Computing. In4th International Conference on Trust Management. LNCS, pages 298–

312, Pisa, Italy, May 2006.

[QHC07] Daniele Quercia, Stephen Hailes, and Licia Capra. Lightweight Distributed Trust Propa-

gation. InIEEE International Conference on Data Mining, Omaha, USA, October 2007.

[RAC+02] A.M. Rashid, I. Albert, D. Cosley, S.K. Lam, S.M. McNee, J. Konstan, and J. Rieldl. Get-

ting to Know You: Learning New User Preferences in Recommender Systems. InInter-

national Conference on Intelligent User Interfaces (IUI), pages 127–134, Miami, Florida,

2002.

[RD06] F. Radlinski and S. Dumais. Improving Personalized Web Search Using Result Diversifi-

cation. InACM SIGIR, pages 691–692, Seattle, USA, 2006.

[RL03] I. Ruthven and M. Lalmas. A Survey on the Use of Relevance Feedback for Information

Access Systems.The Knowledge Engineering Review, 18:95–145, 2003.

[RLKR06] A.M. Rashid, S.K. Lam, G. Karypis, and J. Riedl. ClustKNN: A Highly Scalable Hybrid

Model- Memory-Based CF Algorithm. InACM KDD, Philadelphia, Pennsylvania, USA,

August 2006.

[ROHS09] R. Rafter, M. O’Mahony, N.J. Hurley, and B. Smyth. What Have the Neighbours Ever

Done For Us? A Collaborative Filtering Perspective. InUser Modeling, Adaptation,

Personalization (UMAP), Trento, Italy, June 2009.

[RS07] P. Resnick and R. Sami. The Influence Limiter: Provably Manipulation Resistant Rec-

ommender Systems. InACM Recommender Systems (RecSys), Minneapolis, USA, 2007.

ACM Press.

[RST08] S. Rendle and L. Schmidt-Thieme. Online-Updating Regularized Kernel Matrix Factor-

ization Models for Large-Scale Recommender Systems. InACM Recommender Systems

(RecSys), Lausanne, Switzerland, 2008.

[SBCO09] B. Smyth, P. Briggs, M. Coyle, and M. O’Mahoney. Google Shared. A Case Study in

Social Search. InProceedings of User Modeling and Personalization(UMAP), pages 283–

294, Trento, Italy, 2009.

[SBKCM01] C. Shahabi, F. Banaei-Kashani, Y.S Chen, and D. McLeod. Yoda: An Accurate and Scal-

able Web-based Recommendation System. In6th International Conference on Coopera-

tive Information Systems, pages 418–432, Trento, Italy, 2001. Springer.

Bibliography 139

[Shi09] C. Shirky. It’s Not Information Overload. It’s Filter Failure. Web 2.0 Expo NY Presenta-

tion, November 2009.

[SKKR00] B.M. Sarwar, G. Karypis, J.A. Konstan, and J. Riedl. Application of Dimensionality Re-

duction in Recommender Systems: A Case Study. InACM WebKDD Workshop, 2000.

[SKKR01] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based Collaborative Filtering Rec-

ommendation Algorithms. InProceedings of the 10th International World Wide Web Con-

ference, Hong Kong, China, 2001.

[SKR99] J.B. Schafer, J. Konstan, and J. Riedl. RecommenderSystems in E-Commerce. InACM

Electronic Commerce, pages 158–166, Denver, Colorado, USA, 1999.

[SKR01] J. Schafer, J. Konstan, and J. Riedl. E-Commerce Recommendation Applications.The

Knowledge Engineering Review, 5:115–153, 2001.

[SM01] B. Smyth and P. McClave. Similarity vs. Diversity. InProceedings of the 4th International

Conference on Case-Based Reasoning, pages 347–361, Vancouver, Canada, 2001.

[SP06] V. A. Siris and F. Papagalou. Application of Anomaly Detection Algorithms for Detecting

SYN Flooding Attacks.Computer Communications, 29:1433–1442, May 2006.

[TJB09] A. Toscher, M. Jahrer, and R.M. Bell. The Big Chaos Solution to the Netflix Grand Prize.

In Netflix Prize Report, August 2009.

[TM07] N. Tintarev and J. Masthoff. Effective explanationsof recommendations: User-centered

design. InACM Recommender Systems (RecSys ’08), Minneapolis, USA, 2007.

[Tof70] A. Toffler. Future Shock. Random House, 1970.

[VD02] R. Vilalta and Y. Drissi. A Perspective View and Survey of Meta-Learning. Artificial

Intelligence Review, 18(2), October 2002.

[WB08] S. X. Wu and W. Banzhaf. Combatting Financial Fraud: ACoevolutionary Anomaly De-

tection Approach. In10th Annual Conference on Genetic and Evolutionary Computation,

pages 1673–1680, Atlanta, GA, USA, 2008.

[WBS07] F. E. Walter, S. Battiston, and F. Schweitzer. A Model of a Trust-Based Recommendation

System On a Social Network.Autonomous Agents and Multi-Agent Systems, 16(1):57–74,

February 2007.

[WH07a] F. Wu and B. A. Huberman. Follow the Trend or Make a Difference: The Evolution of

Collective Opinions. InResearch Note: Information Dynamics Laboratory, Palo Alto,

CA, USA, 2007. HP Labs.

[WH07b] F. Wu and B.A. Huberman. Public Discourse in the Web Does Not Exhibit Group Polar-

ization. InTechnical Report, HP Labs Research, Palo Alto, CA, USA, 2007.

Bibliography 140

[WMB09] C. Williams, B. Mobasher, and R. Burke. Defending Recommender Systems: Detection

of Profile Injection Attacks.Journal of Service Oriented Computing and Applications,

1(3):157–170, August 2009.

[WMG06] J. Weng, C. Miao, and A. Goh. Improving Collaborative Filtering With Trust-Based Met-

rics. InACM Symposium on Applied Computing, pages 1860–1864, Dijon, France, 2006.

[YSK+09] H. Yu, C. Shi, M. Kaminsky, P. Gibbons, and F. Xiao. DSybil: Optimal Sybil-Resistance

for Recommendation Systems. InIEEE Symposium on Security and Privacy, pages 283–

298, Oakland, CA, USA, 2009.

[YSKY09] Y. Yang, Y. Sun, S. Kay, and Q. Yang. Defending Online Reputation Systems against

Collaborative Unfair Raters through Signal Modeling and Trust. InACM SAC TRECK,

pages 1308–1315, Waikiki Beach, Honolulu, Hawaii, USA, 2009.

[YST+04] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H. Kriegel. Probabilistic Memory-Based

Collaborative Filtering.IEEE Transactions on Knowledge and Data Engineering, 16:56–

69, 2004.

[YWXE01] K. Yu, Z. Wen, X. Xu, and M. Ester. Feature Weightingand Instance Selection for Col-

laborative Filtering. InProceedings of the 12th International Workshop on Databaseand

Expert Systems Applications, Munich, Germany, 2001.

[YZLG09] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast Nonparametric Matrix Factorisation for

Large-Scale Collaborative Filtering. InProceedings of the 32nd ACM SIGIR Conference,

pages 211–218, Boston, MA, USA, 2009. ACM Press.

[ZC08] V. Zanardi and L. Capra. Social Ranking: Filtering Relevant Content in Web 2.0. InACM

Recommender Systems (RecSys), pages 51–58, Lausanne, Switzerland, October 2008.

[ZH08] M. Zhang and N. Hurley. Avoiding Monotony: Improvingthe Diversity of Recommenda-

tion Lists. InProceedings of ACM RecSys, Lausanne, Switzerland, 2008.

[Zie05] C. Ziegler. Towards Decentralised Recommender Systems (PhD Thesis). Department of

Computer Science, Freiburg University, Freiburg, Germany, 2005.

[ZWSP08] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-Scale Parallel Collaborative Fil-

tering for the Netflix Prize. InProceedings of the 4th International Conference on Algo-

rithmic Aspects in Information and Management, 2008.

