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Abstract

Recommender systems have become essential tools for osmsitjate the plethora of content in the
online world. Collaborative filtering—a broad term refagito the use of a variety, or combination,
of machine learning algorithms operating on user ratingss-4t the heart of recommender systems’
success. These algorithms have been traditionally stddhedthe point of view of how well they can
predictusers’ ratings and hoyreciselythey rank content; state of the art approaches are contafyiou
improved in these respects. However, a rift has grown betviesv filtering algorithms are investi-
gated and how they will operate when deployed in real syst@maployed systems will continuously be
queried for personalised recommendations; in practiiejriplies that system administrators will iter-
atively retrain their algorithms in order to include theslsttratings. Collaborative filtering research does
not take this into account: algorithms are improved and amengbto each other fromsatic viewpoint,
while they will be ultimately deployed in dynamicsetting. Given this scenario, two new problems
emerge: current filtering algorithms are neither (a) designor (b) evaluated as algorithms that must
account for time. This thesis addresses the divergenceskatvesearch and practice by examining how

collaborative filtering algorithms behave over time. Ountributions include:

1. A fine grainedanalysisof temporal changes in rating data and user/item similayigphs that
clearly demonstrates how recommender system data is dgrsamdiconstantly changing.

2. A novel methodologyand time-basednetrics for evaluating collaborative filtering over time,
both in terms of accuracy and the diversity of tdprecommendations.

3. A set ofhybrid algorithms that improve collaborative filtering in a range of differexcsenarios.
These include temporal-switching algorithms that aim tonpote either accuracy or diversity;
parameter update methods to improve temporal accuracytearahking a subset of users’ rec-
ommendations in order to increase diversity.

4. A set oftemporal monitors that secure collaborative filtering from a wide range of efiéint

temporal attacks by flagging anomalous rating patterns.

We have implemented and extensively evaluated the abowg lmige-scale sets of user ratings; we
further discuss how this novel methodology provides insigto dimensions of recommender systems
that were previously unexplored. We conclude that invasitigy collaborative filtering from a temporal

perspective is not only more suitable to the context in whiedommender systems are deployed, but

also opens a number of future research opportunities.



Acknowledgements

Over the past years, | have been very lucky: | have been sualsmliby brilliant, intelligent and inspiring
people. They contributed to this thesis with their questjomsights, encouragement, and support; | am
much indebted to them all. | will never be able to thank my suisers, Steve Hailes and Licia Capra,
enough: being mentored by researchers of this calibre wan afl the motivation | needed. Thanks to
Cecilia Mascolo, who was the first to suggest that | apply f&h&® (would | be writing this had it not
been for that suggestion?); Daniele Quercia, with his afled and contagious passion for research (and
blogging); and all of the members of the MobiSys group. ThsatokEPSRC Utiforo, for the financial
support, and thanks to all the project partners for the efilibmeetings. A special thanks to Torsten
Ackemann: the experiments | ran over the past few years watillde running had it not been for his
invaluable help with the department’s Condor cluster.

A highlight of the recent years is the time | spent in Telefani+D’s Multimedia Group in
Barcelona. A big thanks to Xavier Amatriain, Josep M. Pujadl don Froehlich; | not only learned
a lot during these summer months, but made some great freardighoroughly enjoyed my time there.
| hope to one day finally manage to go hiking with Jon.

While all those with whom | worked with deserve my utmost tk&rl am even more indebted to
my family and friends, who were there to take my mind off of nhyDP Thanks to Paul, Usha, Fergal and
Preeya; to Pavle and Justin (we await your return to Londamg,Viktor (who always turned up at my
doorstep at the right time). Thanks to my sisters, Sheilafamth (who has put up with living with me).
A special thanks to Yasmin, who has always been there for m&tl\t, thanks to the bands | have been a
part of over these years (The Hartes; Pavle, and The Jukedemsl, Sean and Duncan), for allowing me
to keep nurturing my love for music.

This thesis is dedicated to my parents.



Contents

1

Introduction
1.1 Motivating Information Filtering . . . . . . . . . ... o o
1.2 Brief History of Recommender Systems . . . . . . . . . . ... oo
1.3 Problem Statement and Contributions . . . . . ... .. ... ... ...
1.3.1 Timelinessof Research . . . . . . . . . ... ... ... ...
1.4 Publications Related To This Thesis . . . . . . . .. ... .. .cooo oo
15 SUMMAary . . . . e
Computing Recommendations With Collaborative Filtering
2.1 Ratings And User Profiles . . . . . . . . . . ... e
2.1.1 Implicitand ExplicitRatings . . . . . . . .. ... ...
2.2 Collaborative Filtering Algorithms . . . . . . . . . . ... oo
2.2.1 Groupingthe Algorithms . . . . . . . .. .. . ... .
222 Baselines . . . . ...
2.2.3 k-NearestNeighbours . . .. ... ... ... ... .. .. .. ...
2.2.4 Matrix Factorisation . . . . . .. ...
2.2.5 Hybrid Algorithms . . . . . . . .. e
2.2.6 Online Algorithms . . . . . . . . . . . e
2.2.7 From Prediction to Recommendation . . . . . ... ... .. ... ...,
2.3 TrustandUserModelling . . . . . . . . . . e
2.3.1 Motivating Trust in Recommender Systems . . . . . . . . ... .. .. ..
2.3.2 Using Trust For Neighbour Selection . . . . ... ... .. .........
2.3.3 Trust-Based Collaborative Filtering . . . . . . . .. . ... .. ... ...
2.4 Evaluating Recommendations . . . . . . . . . . . . ...
241 RatingDatasets . . . . . . . . . ..
2.4.2 Methodology . . . . . . . . e
243 Metrics . . . . . e
25 OpenProblems . . . . . . . . e e
2.5.1 Ratings: ChangingOverTime . . . . . . . . .. . ...

2.5.2 Methodology & Evaluation. . . . ... ... ... ... ... . ...c....

13
14
15
16
17
18

19



253 SystemRobustness . . . . . .. ... .. e
2.6 SUMMANY . . . . . o e e e e
Temporal Analysis of Rating Datasets
3.1 RatingDatasets . . . . . . . . . . e
3.2 RatingsOverTime . . . . . . . . . . e
3.21 DatasetGrowth . . . . . . ...
3.2.2 Changing Summary Statistics . . . . . . .. ... ... .
3.2.3 Temporal User Behaviour . . . ... ... ... ... . . .. ... ua..
3.24 DailyandWeekly Trends . . . . . . . . . .. . . e
3.3 Similarity OverTime . . . . . . . . . . e
3.3.1 Similarity Measures . . . . . . .. e
3.3.2 Static Similarity . . . ... e
3.3.3 Temporal Similarity . . . . .. ... e
3.4 SUMMANY . . . . e e e
Temporal Accuracy of Collaborative Filtering
4.1 Measuring Temporal Performance . . . . . . . . . . . ... oo
4.1.1 Simulating TemporalUpdates . . . . . ... ... ... ... . ...
4.1.2 Metrics: Sequential, Continuous, Windowed
4.1.3 CaseStudy . . . . . . ..
4.1.4 Methodology . . . . . . . . e
4.2 Results. . . . . .
421 SequentialResults . . . . .. . ...
422 Time-AveragedResults . . . . . . . . .. e
4.23 DISCUSSION . . . . . . o
4.3 Adaptive Temporal Collaborative Filtering . . . . . . . . .. .. ... ... .. ...
4.3.1 Adaptive CF . . . . . . .
4.3.2 Adaptive KNN . . . . ..
4.3.3 Adaptive SVD . . . ..
4.4 Related Work . . . . . . e
45 SUMMArY . . . . . e e
Temporal Diversity in Recommender Systems
5.1 Why Temporal Diversity? . . . . . . . . . . . e
5.1.1 ChangesOverTime . . . . . . . . . . .. i
5.1.2 USerSurvey . . . . . . . e e
5.2 EvaluatingforDiversity . . . . . . . . . e
5.2.1 From Predictionsto Rankings . . . . . . ... ... .. .. ... ..
5.2.2 Methodology . . . . . . . . .

Contents

42
42

44
44
45
45
49
52
53
54
54
55
58
67

69
69
69
70

70

74
76
76
77
78
79
79
80
83
83
84



Contents 7

5.2.3 Measuring Diversity Over Time . . . . . . . . . . ... . . ... 92

5.2.4 Resultsand Analysis . . . . . . . e 94

5.2.5 Diversityvs. ProfileSize . . . . ... .. o 94

5.2.6 Diversityvs. RatingsInput . . . . . . . ... ... 96

5.2.7 Diversity and Time Between Sessions . . . . . . . . . ... ... 96

5.2.8 LessonslLearned . . ... . . . . ... 97

5.3 Promoting Temporal Diversity . . . . . . . . . ... . 97
5.3.1 Temporal Switching . . . . . . .. . .. ... ... 97

5.3.2 Temporal User-Based Switching . . . . . . . ... ... ... . ..., 98

5.3.3 Re-Ranking Frequent Visitors’Lists . . . . . . . . . ... ... ... .. .. 99

5.4 DISCUSSION . . . . . o o it e e e 100
55 Summary . ... 101

6 Temporal Defences for Robust Recommendations 102
6.1 ProblemSetting . . . . . . . .. e 102
6.2 Defeating Non-Temporal Attacks . . . . . . . . . .. . ... . e 103
6.3 Temporal Attack Models . . . . . . . . .. . .. ... e 105
6.3.1 Measuring Attacks . . . . . . .. e 106

6.4 ATemporalDefence . . . . . . . . . . ... e 107
6.4.1 Global Thresholding . . . .. ... ... ... .. ... ... .. ...... 107

6.4.2 UserMonitoring . . . . . . . . . . e 109

6.4.3 ItemMonitoring . . . . . . . . e 111

6.5 Adaptive Attack Models . . . . . . .. e e 113
6.5.1 TheRamp-UpAttack . . . . . . . . . . . . . . e 114

6.6 Discussion& RelatedWork . . . . . . . . ... e 115
6.7 SUMMANY . . . . . . e e 117

7 Conclusion 118
7.1 ThesisContributions . . . . . . . . .. e e 118
7.2 Future Work . . . . . o o e 119
7.2.1 Using a Temporal Methodology . . . . . .. .. ... ... ... . ..... 120

7.2.2 Beyond Temporal Collaborative Filtering . . . . . . ... ... ... .... 121
Appendices 122
A Diversity Surveys 123
A.1 Pre-Survey Instructions and Demographics . . . . . . .. .. oo 123
A.2 Movie Recommendations . . . . . . . . . . 124
A.2.1 Recommendation Structure.. . . . . . . ... e 125

A.2.2 Surveyl:NoDiversity . . . . . . . . .. e 126



Contents

A.2.3 Survey 2: Diversified PopularMovies . . . . . ... ... ... .......
A.2.4 Survey 3: Diversified RandomMovies . . . . . ... ... ... ... L.

A.3 Post-Survey QUESHiONS . . . . . . L e

Bibliography



List of Figures

3.1 Number of Users Over Time (ML-1, ML-2, Netflix) . . . .. .. ... ... ... ... 46
3.2 Number of Movies Over Time (ML-1, ML-2, Netflix) . . . . .. ... ... ... ... 46
3.3 Number of Total Ratings Over Time (ML-1, ML-2, Netflix) .... . . . ... ... ... 46

3.4 Non-Cumulative Netflix Daily Growth: the spikes repmeselays when a lot of

users/movies/ratingswereadded . . . . . .. ... e 47
3.5 Non-Cumulative ML-1 Daily Growth . . . . . . ... ... ... .. ..., 47
3.6 Sparsity Over Time For Each Dataset: Netflix is the mostsgpdataset . . . .. .. .. 48

3.7 Rating Distribution Over Time Of Each Dataset: Netflixtli® only dataset with no
consistent ordering between the ratingvalues . . . . . . . . ... ... L. 49

3.8 Datasets’ Global Rating Mean Over Time, Again highliggthe stop in ML-2's growth 49

3.9 Datasets’ Global Rating Variance OverTime . . . . . . . . ... oo oo oL 50
3.10 Netflix Rating Median and Mode Over Time . . . . . . . . . . . . . u. ... 50
3.11 Users Binned By Profile Size OverTime . . . . . . . . . . . .. . e v v .. 51
3.12 Average User and Iltem Mean RatingOverTime . . . . . . . . . oo oo oo 52
3.13 Standard Deviation of Ratings Per UserPerDay . . . . . . ... .. .. .. .... 52
3.14 MovielLens: Average Number of Ratings Per Week (Witm&&ad Deviation) . . . . . . 53
3.15 MovielLens: Average Number of Ratings Per Hour (Witm8gad Deviation) . . . . . . 54
3.16 ML-1 PCC, Weighted-PCC & Constrained-PCC SimilarifgtBbution . . . . . . . .. 56
3.17 ML-1 Jaccard & Cosine Similarity Distribution . . . . . ... ... ... ... .... 56
3.18 Similarity Between Usdrand30: Similarity depends on how you measureit . . . . . . 60

3.19 Evolution of Similarity for the Jaccard;PCC, Cosine and PCC Similarity Masures,

Comparing User 1 to All Other UsersintheSystem . . . . . ... ............ 61
3.20 ML-1 User 1: New Relationships LeftOver Time . . . . . . .. ... ... ..... 63
3.21 In-degree long tail abPCC4NN k£ = 100 ML-1 Graph . . . . . ... ... ... ... 65
3.22 Results When Excluding or Exclusively Using PowerWdser . . . . . . ... ... .. 67
4.1 User 407: Three Views of Temporal Error . . . . . . . . .. .. .. ... 71
4.2 ML-1 Dataset: Three Views of Temporal Error . . . . . . . . .o oo ... 72
4.3 Temporal Experiments With a Static Test Set (User/ltegah) . . . . . . . ... .. .. 73

4.4 Temporal Experiments With a Static Test Set (kKNN/SVD)..... . . .. ........ 73



4.5

4.6
4.7
4.8
4.9
4.10

4.11

4.12
4.13

51

5.2
53
5.4
55
5.6
5.7
5.8
5.9
5.10
5.11

6.1

6.2
6.3
6.4
6.5

6.6

6.7

List of Figures 10

Temporal Experiment Test Sets’ Characteristics: Sire, Distribution of Users Who

Rate ltems First and ltems that Are Rated First . . . . . .. . . ... ... .. .. 75
Sequential RMSE Results for User Bias ModelandSVD . . ............... 76
Sequential RMSE Results foBNN Algorithm With &k € {20,50} . . . . . . ... .. .. 76
Time-Averaged RMSE for User Bias ModelandSVD . . . . . . ...... . ... ... 77
Time-Averaged RMSE fateNN Algorithm and Users With Fewer Than 10 Ratings . . . 78
Time-Averaged RMSE Comparitig= 50, the Bias Model, and Adaptive CF; Propor-

tions of Users Who Selected Each Algorithm Over Time, angh®rions of Users Who
Changed Method At Each Interval . . . . . .. ... ... ... . ... . . .a... 80
Time-Averaged RMSE Comparikg= 50 and Adaptive k = «) kNN, Proportions of

Users Who Selected Eaéhvalue Over Time, and Proportions of Users whéséalue

Changed AtEachinterval . . . . . . . . . .. .. . . . e 81
Time-Averaged RMSE Gain of Adaptive-SVD With Diffet&Subsets of Parameters . . 82
Time-Averaged RMSE of kNN With Limited History . . . . . ... . ... ... ... 84

Survey Results for (S1) Popular Movies With No Diverg®?) Popular Movies With

Diversity and (S3) Randomly Selected Movies . . . . . . . . . . ... ... ... 88
Boxplots of Each Week’s Ratings for the Three Surveys .. .. .. . . ... ... .. .. 89
Top-10 and 20 Temporal Diversity for Baseline, kNNand>8% . . . . . .. ... .. 93
Top-10 and 20 Temporal Novelty for Baseline, kNNandSMBC . . . . ... .. .. 93
Profile Size vs. Top-10 Temporal Diversity for BaselikldN and SVDCF . . . . . .. 95
Ratings Added vs. Top-10 Temporal Diversity for BasglikNN and SVDCF . . . . . 95
Time Passed vs. Top-10 Temporal Diversity for Basekihdy and SVDCF . . . . . . . 95
Comparing Accuracy with Diversity . . . . . . . . . . e 96
Diversity (a) and Accuracy (b) of Temporal Switching ked . . . . . . ... ... .. 98
Temporal Diversity and Accuracy vs. Diversity With U8ased Temporal Switching . . 99

Temporal Diversity and Accuracy vs. Diversity WhenRanking Frequent Visitors’ Lists 99

Time-Averaged RMSE Of One-Shot Attack, and Predictibift$Vhen Pruning New-

comer’'s Ratings, and Injecting Attacks Over Varying Timendéws . . . . . .. .. .. 104
Attack Types and Impact With No Defences . . . . . . . . .. . ... o ... 106
Netflix Ratings Per User Per Week; Global ThresholdiregBion and Recall . . . . . . 108
Global Thresholding Impact . . . . . . .. . . ... ... ... . ... 109

Example Ratings Per User (1 Week), Proportion of RategHigh Volume Raters and
High Volume Raters Over Time . . . . . . . . . . . . . i 110
User Monitor/Combined Impact Results, and Proportibhligh Volume Raters Who
Have Been In The Group for Varying Lengths of Time . . . . . . ... ... .... 111

Item Monitor: Average Precision&Recall . . . ... ... .. ... ... ...... 113



6.8

A.l
A.2

A.3
A4
A5

List of Figures 11

Example Ramp-Up Attack: How it Affects the Monitor’s ek, the Optimal Ratings
Per Sybil and Prediction Shift. . . . . . ... .. ... ... ... ... ... ..., 114

Example User Instructions from Survey 1 . . . . . . . . . . .o 123

Demographic Data Questions: Gender, Age, Average MoRier Month, Familiarity

and Use of Recommender Systems . . . . . . . .. ... ... ... 0. 124
Example Screen Shot: Survey 1, Week 1 . . . . . . . . ... .. . .aa . 125
Example Screen Shot: Survey 1, BufferScreen1 . ... .. ... .........125

Example Screen Shot: Survey 1, Final Questions . . . . . ... ... ... .... 129



List of Tables

2.1

3.1
3.2
3.3
3.4
3.5
3.6

51

Al
A.2
A3
A4

A Sample of Open Problems in Recommender Systems . . . ........ . . ... .. 40
Users, Items, Ratingsin Each Dataset . . . . . .. ... ... ... ........ 45
MAE Prediction Error, MovieLensul Subset . . . . .. . . . . ... . ... ... 57
MAE Prediction Error For All MovieLens Subsets. . . . .. ... ... ... .... 57
Average Unique Recommenders in Users’ Neighbourhoads .. . . . . . . .. .. .. 62
wPCC%NN Graph Properties . . . . . . . . .. e 64
Unused ProportionsoftheDataset . . . . .. .. .. .. ... .« cuu ..., 66
ANOVA P-Values and Pairwise T-Test Values For The5Weeks . . . . . .. .. .. 89
S1 (All 5 Weeks): All Time Worldwide Box Office Ranking (Bember 2009) . . . . . . 126
S2 (Weeks 1, 2): Diversified All Time Worldwide Box OfficeaRking . . . . .. .. .. 126
S2 (Weeks 3, 4, 5): Diversified All Time Worldwide Box Offi®kanking . . . . . . . .. 127

S3 (Weeks 1, 2, 3, 4, 5): Randomly Selected Movies . . . . ... .........128



Chapter 1

Introduction

The birth and proliferation of the Internet has revolutasd the way people interact with and consume
information. Resources that were previously difficult argensive to find are now instantly available;
where communication used to be slow, it is now instantaneodseffortless, and tantalising projects
such as group-edited encyclopedias are now easily crowcksowo millions. However, the evolving
nature of the web—including the rise of social media—medaas the paradigm shift in how people
interact online continues to this day. A recent example ésakplosive growth of microblogging: the
content of web (and, in particular, social network) sitesaisstantly growing. The single constant aspect

of this landscape is that it is ever-changing.

Two themes have emerged from this setting. The firsbigperation many online tasks now take
full advantage of interactions between web users in ordéetp each of them accomplish their own
goals. Wikis, blogs, product reviews, and question/ansites are a handful of examples where users
can both contribute (produce) and gain (consume) infolwnathe Internet has blurred the lines between
those who create and enjoy content. The second is a battlséos’attention There is now a plethora
of sources where content is available; keeping up to datetiv latest (movies, news, music, etc) is an

established daily challenge.

Recommender systems have emerged in the last decade adyde@s that people can use to
navigate large databases according to their own interéitg engine that underlies these tools is a
Collaborative Filtering (CF) algorithm, which is an autaedmeans of ranking content “based on the
premise that people looking for information should be abimake use of what others have already found
and evaluated” [ME95]. In doing so, these systems captutie dfcthe above themes: users implicitly
cooperateas the CF algorithm uses each of their ratings and can foeirsathentionon the content that
is likely to be of most interest to them. The key insight hexr¢hiat, while retrieving information from
the web tends to be a solitary task, the collective set of expees can be used to help each individual:
recommender systems can evaluate information qualitydbas¢he preferences of others with a similar
point of view.

In this chapter, we introduce the motivations that seedmecender system research (Section 1.1)
and provide a brief overview of the history of recommendestam research (Section 1.2); we then

define the scope and problem space that we will address ithiisss and outline the contributions that
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all subsequent chapters will make (Section 1.3). We cloisectiapter by listing a set of publications

that are related to this thesis.

1.1 Motivating Information Filtering

The most widely discussed motivation for researching renender systems has remained largely un-
modified throughout the 15 years that these systems havedutienly studied. It can be described
as follows. People’s ability to make meaningful use of infation (for example, finding and reading
interesting news reports) is rapidly falling behind tta¢e at which information is growing (i.e., the
number of news reports that are becoming available). Theitsel is not only saturated with content,
but constantly growing and evolving; people now suffer fritra effects oinformation overload Al-
though this term was first coined by Alvin Toffler in 1970 [T617it continues to describe the difficulty
people have when trying to navigate large information régpaes—regardless of whether they contain
web documents or research articles, e-commerce catalogdagis, musicians, movies (and so forth).
Recommender systems come to the rescue by suggesting nesmctnusers based on what they have
liked in the past [PM97].

Clay Shirky has recently provided an alternative perspeatihich also substantially motivates
research into information filtering [Shi09]. He claims thae are to information overload as fish are to
water,” and argues that information abundance has becosneaim rather than the problem. Instead,
he argues that our focus should be on identifying how we presly filtered information and why those
filters, in the face of the information age, are no longer appate. For example, publishers—who have
the means to produce any book of their choosing—filter theipat based on an economic incentive:
they are unlikely to sell books of low quality. The advent loé tweb, however, removed the physical
cost of binding a book. In doing so, it eliminated the inceatio publish a narrower range of titles.
Furthermore, individuals can now circumvent the publigtiinuses altogether and directly publish their
content online at little to no cost. In other words, we useflter publications based on (a) money
(the economic incentive to sell what is published) and (bjvemience (it was simply too difficult to
self-publish). The web has broken the filters we used to religpyoremoving these constraints: we now
need new ways of filtering published media, and using autedhatcommender systems to do so may

be the tool we are looking for.

The final motivation that we discuss here also takes a diftestance to the general context of infor-
mation filtering. As above, a vast amount of available coriteassumed to already exist; the motivation
to filter it is that doing so results in heightened user atiivhich often translates to increased revenue
for web-based businesses). Building tools like recommesyitems, that offer personalised views of a
web site’s content to visiting users, encourages peopletioedy engage with the site: two thirds of the
movies rented by Netflix.com were recommended, Google nee@mmendations result in 38% more
clickthroughs, and 35% of the product sales on Amazon.cone wecommended items [CLO7]. The
motivation to filter information is therefore the fact thaildring what each user sees to their own needs

has been the secret to success of a number of online business.
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1.2 Brief History of Recommender Systems

Over the last decade, research into recommender systenevdlaed: the particular target scenarios
that have been explored have mirrored changes to the wayepesg the Internet. In the early 1990s,
the first filtering system, Tapestry, was developed at theX@&alo Alto Research Center [GNOT92].
This system, recognizing that simple mailing lists do naiuer that all users interested in an e-mail’s
content receive the message, allowed users to annotatd exessages so that others could filter them
by building queries. This was the first system to capture theegp of combining human judgments
(expressed as message annotations) with automated {jltariarder to benefit all of the system’s users.
Similar concepts were later applied to Usenet news by thei@rens research project, which extended
previous work by applying the same principles to the Intedigcussion forum, which had become too
big for any single user to manage [KM\7]. The GroupLens project subsequently implemented the
MovieLens movie recommender system; the valuable ratitg fdam it was then made available to the

wider research communitywhich subsequently shifted focus from news boards towhedifig movies.

The initial success that recommender systems experieaceflécted in the surge of e-commerce
businesses that implement them; Schateal. review and describe a number of mainstream examples
[SKR99, SKRO01]. The cited sites, like Amazon.com and CDNom, implement recommenders to
build customer loyalty, increase profits, and boost itegssrselling. More recently, web sites like
Last.fm have reaped the benefits of collecting user-mugierling habits, in order to provide customized
radio stations and music recommendations to their sulessriihe influence, presence, and importance
of the recommender system is not only well established, toticues to grow over time.

The widespread commercial applicability of recommendetesys is mirrored in the research do-
main by the extensive breadth of fields that these systemesapresence in. Recommender systems are
researched in the context of statistics [AW97], machinenieg [CS01], human-computer interaction
[PC06, HKROQO], social network analysis [MYOQ7], distribdtand mobile systems [MKRO5, LHCO7],
agent-based artificial societies [WBS07], computationatt{LSE08, ARH97], and more: it is becom-
ing impossible to capture all of the contributions that aeeb made to recommender system research.
More recently, researchers have explored how contenttatioes (tags) can be used to compute rec-
ommendations [ZC08], how mobility can be used to recommerihbnetwork connections [QC09],
disseminate content over mobile networks [QHCO7], filteirmnews [DDGRO07] and improve search
engine performance [SBCOOQ9].

The most significant recent event related to recommendé&syesearch was the announcement
of the Netflix prize in late 2006. Netflix—an online DVD rentadmpany from the U.S.—released a
dataset of user-movie ratings which, to date, remains ttge$a publicly available set of user-ratings.
They challenged the broader community to outpredict thein eystem by at least 10% and offered a
million dollar reward to the team that was best able to do dwe dompetition’s award itself shows the
extent to which web-based businesses value their recormrensystems; over 20,000 teams spent 3 years

tackling the prediction problem before the winners werecameed [Kor09b, TIB09, PC09]. A variety

http://www.grouplens.org/node/73
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of lessons were learned throughout the course of the cotigmetive highlight three here:

e Matrix Factorisation emerged early in the competition as a powerful predictigo@dhm for CF
[Pia07]; it subsequently was consistently used throughbtihe leading solutions.

e Ensemble Methods The winning teams did not invest their time in designinguaate predictors;
instead, they combined hundreds of individual predicti@thods thatogetherachieved the target
prediction accuracy.

e Temporal Dynamics The Netflix dataset included the date when users input edictyr this data
was soon found to be very useful when predicting user tastese it reflects the changing bias

that users may have [Pot08] or can be incorporated into argigteof classifiers [Kor09a].
The competition also raised a number of questions, whiclvatetthe work in this thesis.

e Competition Structure. Does the structure of the competition (i.e., predictingddéan set of
user ratings) reflect how recommender systems are used étigera In this thesis, we discuss
and propose a novel methodology that more closely refleetesthlity of deployed recommender
systems.

e Metrics. The focus of the competition was accuracy: is this the best o measure the perfor-
mance of a recommender system? More importantly, whileghdihg solutions certainfyredict
ratings well, do they provide bettescommendatior¥sin this thesis, we examine these points by
evaluating collaborative filtering across a number of défe dimensions (accuracy, diversity, and

robustness).

In the following section, we examine these questions by defithe scope of the research presented in

this thesis.

1.3 Problem Statement and Contributions

Recommender systems are built as navigational tools anelydgployed online. In practice, this means
that a CF algorithm is implemented and then trained withhaldavailable ratings that the system has for
the current content; the algorithm can then be queried tduwre recommendations for each user. This
process is repeated in a cyclical manner. Why? CF algoritlemd to suffer from very high latency;
training an algorithm with the ratings of (potentially nolhs of) users is a very expensive operation,
often requiring exponential space and time, and can thub@otpeated at will (there are, however, a
few exceptions [GRGPO00]). Recommender systems theredackto perform iterative, regular updates
(e.g., weekly [Mul06]). Users will not be consistently affel newly computed recommendations, and
will have to wait for a system update for their latest ratit@be included in the CF training phase. Since
recommendations often elicit further ratings, CF algonighare iteratively retrained in order for them to
have learned from all the data (including any that may haem ligput since they were last trained).
The traditional research methodology used to design arldaesCF algorithms, instead, is a two-
phase process: researchers measure the performance gbathat by first training a given algorithm

with a set of ratings and then querying it for recommendatiorhe problem here is that the research
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methodology is static, while deployed systems operate ychoal manner: there is a rift between how
CF algorithms are studied and how they will be used in practic

In the following chapters, we address problems that revateeind the central theme tédmporal
updates to a recommender systefte research in this thesis constitutes ho#thodologicabndal-
gorithmic contributions; the former being supported by analysis ajdascale rating datasets, and the
latter validated with empirical experiments. We decompmsdblems related to this into three groups:
those pertaining to the rating data, evaluating a systenighgdated, and securing the robustness of an

updating system:

e Temporal Features of Rating Data We report the results of an extensive temporal analysis of
three rating datasets (Chapter 3). We draw two main corarissi(a) CF datasets are subject to a
variety of changes over time that are not accounted for wherptiting recommendations (ranging
from dataset growth to customer preference drift) and @igsif the art similarity measures violate
the CF assumption that like mindedness persists betwegiepeabey do not produce values that
consistently reflect similar people.

e Evaluating Recommender Systems Over TimeWe define a nhovel methodology for evaluating
the temporal performance of CF algorithms (Chapter 4),dasesimulating a number of iterative
updates. We accompany this methodology with a number oflmogtics that we use to visualise

two facets of CF performance:

— Accuracy. We show how temporal accuracy results provide insight énfacet of perfor-
mance that would otherwise go unnoticed: accuracy doesnmmtoive over time, or with
additional ratings. We then propose and evaluate a set afdglvitching CF algorithms
that keep track of and improve upon their own temporal peréorce. We show how the
same switching strategy can be applied to a mixed set of Céridigns, or to select and
update thek-Nearest Neighbour or Singular Value Decomposition patarse

— Diversity. We define a novel metric for temporal diversity and show hoverdity relates
to accuracy. Based on the observations we make when aral@sitemporal diversity, we

propose and evaluate a set of algorithms that promote diyerser time (Chapter 5).

e Securing Recommender System Robustnes$Ve examine the threats that CF algorithms face
from a temporal perspective, and show how attackers who tfaotor time into their attack can
easily be defeated. We then define how temporal attacks megrizkicted and show their effects
on a large scale dataset of user ratings. We design and &valugeries of monitors that can
identify when a variety of attacks are taking place. We finathow how attackers may modify
their attacks in order to circumvent these defences, arisisthe additional difficulty they will

face when trying to do so (Chapter 6).

1.3.1 Timeliness of Research

With the completion of the Netflix prize, collaborative filteg research is reaching an interesting junc-

ture. Striving for accuracy, which has long been the focahipaf CF evaluation, has now been pushed
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to extreme limits [APOO09]. New themes, such as context-af@8ST05] and mobile [QC09] recom-
mender systems are beginning to emerge, and recommendemsygthods are now being applied to
new domains (such as large-scale software projects [LQFHgwever, the temporal aspect of recom-
mender systems has not been addressedatmd the new application domains assume systems that

will be deployed over time. Furthermore:

e While recommender systems are widely used online, there iasight into how these systems
perform as they are updated and users continue rating donten

e The importance ofimehas emerged from the Netflix prize. However, work to date aolysiders
the importance of time in terms of drifting customer preferes [Kor09a]. In this thesis, we
consider an alternative (though not mutually exclusivagpective: how the system performs

over time.

We believe that the work in this thesis is timely since it pre@s novel methods and metrics to evaluate
CF algorithms’ temporal performance and provides insighated on empirical evidence that cannot be

investigated with current research methods.

1.4 Publications Related To This Thesis

The following publications (and submissions) are relatethis thesis:

1. [LatO8a] N. Lathia. Computing Recommendations With &odirative Filtering. Chapter 2
in Collaborative and Social Information Retrieval and Acceischniques for Improved User
Modeling pp. 23-41. September 2008. I1GI Global.

2. [LHCO08c] N. Lathia, S. Hailes, L. Capra. Trust-Based @bdirative Filtering.
In Joint iTrust and PST Conferences on Privacy, Trust Manageared Security (IFIPTM)
pp 119-134. July 2008. Trondheim, Norway.

3. N. Lathia, S. Hailes, L. Capra. The Role of Trust in Colladive Filtering. Under Submission.

4. [LHCO8b] N. Lathia, S. Hailes, L. Capra. The Effect of Gaation Coefficients on Communities
of Recommenders. IACM SAC TRECKpp. 2000-2005. March 2008. Fortaleza, Brazil.

5. [LHCO08a] N. Lathia, S. Hailes, L. Capra. KNN CF: A Tempdsaicial Network.
In ACM Recommender Systems (Rec$ys)227-234. October 2008. Lausanne, Switzerland.

6. [LHCO09b] N. Lathia, S. Hailes, L. Capra. Temporal Collgdtive Filtering With Adaptive
Neighbourhoods. IACM SIGIR pp. 796—797. July 2009. Boston, Massachusetts, USA.

7. [LHCO09a] N. Lathia, S. Hailes, and L. Capra. Evaluatindl&wrative Filtering Over Time.
In ACM SIGIR Workshop on the Future of IR Evaluatipp. 41-42. July 2009.
Boston, Massachusetts, USA.

8. [LHC10b] N. Lathia, S. Hailes and L. Capra. Temporal Déigrin Recommender Systems.
In ACM SIGIR July 2010. Geneva, Switzerland.

9. [LHC104a] N. Lathia, S. Hailes, L. Capra. Temporal Defenfee Robust Recommendations.
ECML/PKDD Workshop on Privacy and Security Issues in Datailkty and Machine Learning
September 2010. Barcelona, Spain.

These appear in this thesis as follows: [Lat08a, LHCO08c] @jdeview state of the art approaches

to CF (Chapter 2), [LHC08b, LHCO08a] investigate the tempgralities of CF algorithms (Chapter
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3), [LHCO9b, LHCO09a] propose novel metrics and algoritharsgredicting ratings over time (Chapter
4), [LHC10b] analyses the diversity of recommendations eveluates methods to augment temporal
diversity (Chapter 5), and [LHC10a] addresses the problesggiem robustness (Chapter 6).

There are also a number of other publications that were aategblduring this time period; while
relevant to the broader topics of trust and collaboratiterfitg, they are not directly within the scope of

this thesis:

1. [LHCO7] N. Lathia, S. Hailes, L. Capra. Private DistribdtCollaborative Filtering Using
Estimated Concordance Measures. ACM RecSys 2007. MintisapS8A.

2. [LatO8b] N. Lathia. Learning to Trust on the Move. In JOIWMME-SPACE Workshops (IFIPTM).
June 2008. Trondheim, Norway.

3. [ALPT09] X. Amatriain, N. Lathia, J.M. Pujol, H. Kwak, N. Oliver.he Wisdom of the Few:
A Collaborative Filtering Approach Based on Expert Opirgémom the Web.
In ACM SIGIR. July 2009. Boston, Massachusetts, USA.

4. [LAPO9] N. Lathia, X. Amatriain, J.M. Pujol. Collaboraé Filtering With Adaptive Information
Sources. IHJCAI Workshop on Intelligent Techniques for Web Persaatiibn and
Recommender Systendsily 2009. Pasadena, California, USA.

1.5 Summary

In this chapter, we have introduced the generic scenariorftammender systems are best suited to:
settings where theolumeof available information is so great that it exceedsahéity that users have to
find what they are looking for. Recommender systems are Lsiafte they push content to users without
requiring them to formulate explicit queries. Insteadythee the implicittooperatiorbetween users in
order to rank content for each one of them. We discussed theugamotivations that may lie behind
building such systems: (a) coping with information ovedpéb) replacing filters that no longer work,
and (c) making money by encouraging users to interact wighr tecommendations. We then briefly
reviewed the 15 years that recommender systems have besaraiesd and the variety of fields that
contribute to it—ranging from statistics to human computéraction. We placed a particular emphasis
on the Netflix prize, since questions that arise from the ceflitipn’s structureand metric of choice
motivated the work in the following chapters.

In this thesis, we focus on the temporal performance of Cerélgns: we aim to analyse and
measure how CF operates over time. In doing so, we endeavauake both methodological and
algorithmic contributions, ranging from a variety of tenngleanalyses (ratings, similarity, prediction and
diversity performance) to a wide range of algorithms to addthe accuracy, diversity, and robustness of
these algorithms over time. We begin in the following chaptereviewing state of the art collaborative

filtering algorithms.



Chapter 2

Computing Recommendations With

Collaborative Filtering

Recommender systems, based on Collaborative Filtering &gforithms, generate personalised con-
tent for their users by relying on a simple assumption: thelse have had similar opinions in the past
will continue to share similar tastes in the future. Thisptiea serves as a review of the state of the
art in collaborative filtering. We first introduce the ratidgta, detailing how the ratings are collected
(Section 2.1). We then introduce the various approachestwe been adopted when designing CF al-
gorithms. In particular, we differentiate betwed#ta mining(Section 2.2) andiser modellingSection
2.3) approaches: the focus of the former is on designingritihgos that augment the predictive power
of CF when applied to a set of ratings; the latter, on the offaed, builds methods based on precon-
ceived models of trust between system users. We then expborehese systems are evaluated (Section
2.4), including the methodology and metrics related to Cilueation, and enumerate a number of open

problems (Section 2.5) that we will address in this thesis.

2.1 Ratings And User Profiles

The focal point of recommender systems istiser-rating dataupon which the system operates. Before
introducing the underlying algorithms of recommenderayst, we define the terms related to this data

that will be used throughout this thesis.

e User: the end user of the system, or the person we wish to provider@tommendations. The
entire set of users is referred to as the community.

e Item: a generic term used to denote the system’s content, whichbeaysong, movie, product,
web page, etc.

e Rating: a numerical representation of a user’s preference for am itgese are considered in more
depth in Section 2.1.1.

e Profile: the set of ratings that a particular user has provided toytstes). Equivalently, the profile
of anitemis the set of ratings that have been input for that item by Hezsi

e User-Item Matrix: The ratings input by all users are often represented as a&nalrere columns

are individual items, and rows are users. Each matrix entryis the rating (an numerical value
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on a given range, e.g. 1-5 stars) input by uséor itemi.

Recommender systems revolve around the set of user prdfifesyntaining a collection of ratings of
the available content, this set is the focal source of infdiom used when providing each user with
recommendations. Ratings can be collected eigxgticitly or implicitly; in the following section we

describe and compare each of these methods.

2.1.1 Implicit and Explicit Ratings

Ratings (human opinions of the system’s content) can coame fwo separate sources. On the one hand,
the opinions could be in the form ekplicitratings: users may be asked to rate items dfrpoint (e.g.,
five-star) Likert scale. In this case, the rating is a numeaicie that is input directly by the user. On
the other hand, opinions can be extracted from the usapticit behaviour. These include time spent
reading a web page, number of times a particular song ot ardis listened to, or the items viewed or
purchased when browsing an online catalogue; logging oitfehaviour is an attempt to capture taste
by reasoning on how users interact with the content.

The most significant difference between explicit and impliatings is that, in the latter scenario,
users cannot tell the system that th#glike content: while an explicit scale allows users to input a low
score (or negative feedback), implicit ratings can onlginffositive behaviour. Het al[HKVO08] further
this notion by describing how, in the implicit case, the spstdoes not determine a usepi®ferencdor
an item, but rather reasons on tbenfidencet has in a user’s affinity to the item, based on measured
behaviour. A consequence of this is the possibility of mgkimisy measurements. For example, Hu
et al [HKV08] mention that it is impossible to differentiate beten a user who watches a television
program for a long period of time or is asleep in front of thiewssion; this is a problem where simple
thresholding is not a sufficient solution. However, Amaitriat al [APO09] show that explicit ratings
are also prone to noise: users may be careless and irregudar tivey manually input ratings.

The art of collecting ratings thus seems to be context-fipefurthermore, Herlockeet al identi-
fied that the act of rating itself is motivated by differendasens, including self-expression and helping
or influencing others’ decisions [HKTRO04]. For example, ri@eskecommender systems often prefer to
let users explicitly rate movies, since users may dislikedigular movie they have watched. Music
recommender systems tend to construct user profiles baskstaming habits, by collecting metadata
of the songs each user has listened to; these systems fanplicit ratings by assuming that users will
only listen to music they like. Implicit ratings can be corteel to a numeric value with an appropriate
transpose function (the algorithms we describe next areénequally applicable to both types of data).

Both implicit and explicit ratings share a common charastier. the set of available judgments for
each user, compared to the total number of items that cartéxa r&ill be very small. In particular, it is
impossible to determine whether an item remainsatedbecause it is disliked or because the user has
simply not yet encountered the content to date. The lackfofrimation is known as the problem dé&ta
sparsity and has a strong effect on the efficacy of any algorithmslihaeé their recommendations on
this data. However, rating sparsity is a natural consecuehthe problem that recommender systems

address: if it were feasible for users to find and rate all treéent they were interested in, recommender
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systems would no longer be needed.

Rating data is related to the broader category of relevaeegtfack from the information retrieval
community [RLO3, FO95]; in fact, recommender systems cabroadly considered to be query-less
retrieval systems, that operate solely using user feedlaakder to both find and rank content. The
main goal of recommender systems is to filter content in oragrovide relevant and useful sugges-
tions to each user of the system. There are two methods to:dbeoontent-basedndcollaborative
approaches. Content-based algorithms formulate recomhatiens by matching descriptions of the sys-
tem’s items to those items in each user profile [PBO7]. Thgseems, however, are not appropriately
or readily applied to the entire range of scenarios wheresusay benefit from recommendations: they
require content that can be described in terms of its ategyuwhich may not always be the case. Fur-
thermore, simply matching on attributes disregards whatsuthink about the content, as the preference
data remains untouched. In the following section, we revieevalternative approach: collaborative

filtering algorithms.

2.2 Collaborative Filtering Algorithms

The task of a recommender system algorithm is to take as @pat of user ratings and output person-
alised recommendations for each user. To do so, recommsystems use a collaborative filtering (CF)
algorithm, which mines patterns within the ratings in ordefiorecast each user’s preference for unrated

items. At the broadest level, the recommendations are geateby:

e Collecting Ratings The system collects ratings from each user.

e Predicting Missing Values Collected ratings are input to a CF algorithm: the algoniik trained
with the available ratings, and askedai@dictthe values of the missing ratings.

e Ranking and Recommending The predictions are used to create a personalised rankimg-o
rated items for each user; this tailored list is served thhemer as a ranked list of recommenda-

tions.

Users can continue rating items, and the process of ratigpmeecommend continues. This process
highlights a number of features of CF. The founding assurngs thatlike-mindedness is persistent
if users have shown similar interests in the past, they &edylito enjoy similar items in the future. In
other words, the ratings contain useful information tortdaiarning algorithms. CF algorithms tend to
disregard any descriptive attributes of the items (or whatitems actually are) in favour of the ratings,
and focus on generating recommendations based solely apihiens that have been input. Embedded
in this is a fine-grained notion of similarity between iterhso items are similar if they are enjoyed by
the same users, regardless of what they actually are.

The problem of generating recommendations, and the useeodidta that is available to tackle
this task, has been approached from a very wide range ofgaigps: in this section, we elaborate on
a number of widely-used algorithms. Each perspective apglifferent heuristics and methodologies
in order to create recommendations. Historically, the twoaldest categories of collaborative filters

were the memory and model based approaches. In the follaseictipn, we define these categories and
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discuss whether this grouping of approaches reflects st#te art research.

2.2.1 Grouping the Algorithms

A range of literature partitions the CF algorithms into twogps: memory based and model based ap-
proaches. Memory-based CF has often been referred to asrttinaht method of generating recommen-
dations due to both its clear structure and successfultsesudking it an easy choice for system develop-
ers. In essence, this group includesthidearest Neighbou&{NN) algorithm and the range of variations
it has been subject to (we explore these further in Sect@i3R.Model based approaches to CF, instead,
aim to apply any of a number of other classifiers developelerfield of machine learning, including the
use of singular value decomposition, neural net classifBagesian networks, support vector machines,
perceptrons, induction rule learning, and latent semamigtysis [BHK98, YST 04, CS01] to the prob-
lem of information filtering. A complete introduction to alailable machine learning algorithms is
beyond the scope of this thesis, and we point the reader tmppate introductory texts [Alp04]. Each
differs in the method applied to learn how to generate recendations, but they all share a similar
high-level solution: they are based on inferring rules aatigons from the available rating data.

The kNN algorithm differentiates itself from members of the mbldased group by being lazy
or instance-based learning algorithrit operates on a subset of ratings (or instances) when ctingpu
predicted values. As we explore below, €N training phase consists of forming neighbourhoods for
each user (or item). In other words, this phase entails thie¢pasubsebf the user-item matrix for each
of the predictions that the algorithm will subsequently blesal to make. On the other hand, model based
approaches adopager learningharacteristics, and need not return to the training datnvwebmputing
predictions. Instead, they formulaterade| or higher level abstraction, of the underlying relatiapsh
between user preferences. For example, matrix factariséBection 2.2.4) approaches decompose the
user-item matrix into a set of user and item factors and caemgeommendations with these, rather than
the ratings themselves.

These differences have motivated the grouping of CF alyostinto memory and model based ap-
proaches, and lead to studies comparing the relative pegioce of each group in different CF domains
[GFMO5]. However, this partitioning is not clear-cut. Fotaenple, thekNN algorithm modelsuser
preferences with user (or item) neighbourhoods; a usests ia represented by a sample of peers who
have exhibited similar preferences. Similarly, model beeggproaches learn from the available instances
(or memory of user ratings; their efficacy is also strictly relatedttie training data.

Furthermore, grouping algorithms in this way fails to ackiexlge the diversity of research ap-
proaches used when designing and evaluating CF algoritBrnosdly speaking, these approaches tend
to be based odata mining where the focus is on extrapolating predictive power frbendvailable rating
data, oruser modellingthat designs algorithms using preconceived notions of th@system’s users
will interact with (or, for example, trust) each other. Shiba user-modelling perspective, which uses a
kNN algorithm, be a memory or model based approach? Is trustraary or model based character-
istic? Due to these shortcomings, in the following sectiweseview a set of CF algorithms (baseline,

k-Nearest Neighbour, matrix factorisation, and hybrid roég) that reflect the contributions of both the
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mining and modelling approaches without strictly adhetmthe memory/model dichotomy.

2.2.2 Baselines
The first set of approaches we examine lbaselines These are the simplest predictions that can be
made, and include the user mean (or mean of ittraged by user;). Given a usek, with profile R,,,

predictionsr,, , for each target itemh are assigned the same value:

1
'Fu,t = | X Z Tu,i (21)

L

Similarly, given a target itemwith profile R;, item mean values are computed as:

R 1

Tut = m X u;i Tui (2.2)
In general, the item-mean method is preferred to the usanm&nce the latter is not conducive to
ranking any of the content (since all predictions for a usi#rhvave the same value). Similarly, if the
item-mean method is coupled with tfiequencyof ratings for an item, this method corresponds to
recommending a non-personalised popularity-sorted rantd items.

The bias modelas described by Potter [Pot08], builds on the above by gtiadiuseru’s rating

for an itemi usingu’s mean rating (bias,,) and the average deviation from each user’s mean for item
i (preferencep;). Overall, this method is highly dependent on each useramte predict the ratings;
we elected to investigate it since user means will changetowe. For a set of usells and items/, the

biases and preferences are initialised as zeroes and thgguted by iterating over the following:

1
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The iteration continues until the difference in the Root KM&xguared Error (RMSE) achieved on the
training set is less than a pre-defined vaiud he predicted rating,, ; for a user-item pair is computed
as:

The main role of these and similar [BKO7] baseline methodmtimes referred to as “global effects”)
has been to normalise data prior to applying other classifiearther amendment to the method scales

each rating by the user’s variance, if that variance is rneno-§ot08].

2.2.3 k-Nearest Neighbours

The k-Nearest NeighboursNN) algorithm has enjoyed enourmous popularity in the denorecom-
mender systems; it appeared in early research efforts [HRIBBNnd continues to be applied in state of
the art solutions [BKO7]. Two flavours of the algorithm exisgte user-based [HKBR99] and item-based
[SKKRO1, LSYO03] approaches. The two approaches differ i Hwey view the underlying rating data:
the user-based approach views the data as a collectioees$who have rated items, while the item-

based approach views the same data as a collectitenadthat have been rated by users. It is important
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to note, however, that the techniques described here canuae applied to both user or item pro-
files. In the interest of consistency, we adopt the termigylaf the user-based approach throughout this
section.

In general, it is impossible to claim with any authority theate method will always outperform
the other. However, the item-based approach is often peafaince available CF datasets tend to have
many more users than items. In this section, we elaborat®wartte algorithm works by decomposing

it into two stages: neighbourhood formation and opinionraggtion.

Neighbourhood Formation

This first step aims to find a unique subset of the communityeémh user by identifying others with
similar interests to act as recommenders. To do so, everyopaiser profiles is compared, in order
to measure the degree of similarity, , shared between all user pairsandb. In general, similarity
values range from (perfect similarity) to—1 (perfect dissimilarity), although different measures may
only return values on a limited range. If a pair of users haverofile overlap, there is no means of
comparing how similar they are, and thus the similarity tteeero.

Similarity can be measured in a number of ways, but the maéh gfchis measure remains that of
modelling the potential relationship between users witlumeric value. The simplest means of mea-
suring the strength of this relationship is to count the prtipn of co-rated items, or Jaccard similarity,

shared by the pair of users [Cha02]:
| Rai i Ry
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This similarity measure disregards the values of the ratingut by each user, and instead only considers
what each user has rated; it is the size of the intersectidheofwo users’ profiles over the size of
the union. The underlying assumption is that two users whicoously rate the same items share a
common characteristic: their choice to rate those items.

The most cited method of measuring similarity is the Pea@amelation Coefficient (PCC), which
aims at measuring the degree of linearity that exists onrterdection of the pair of users’ profiles
[BHK98, HKBR99]:

Efvzl(ra,i - 7:a)(Tb,i - 7:b)
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Each rating above is normalised by subtracting the usersreting (e.g#,), computed using Equation

(2.6)

Wa, b

2.3. The PCC similarity measure has been subject to a nunfld@poovements. For example, if the
intersection between the pair of user’s profiles is very §rttad resulting similarity measure is highly
unreliable, as it may indicate a very strong relationshipvieen the two users (who have only co-rated
very few items). To address this, Herloclatral [HKBR99] introduced significance weighting: if the
number of co-rated items is less than a threshold valug the similarity measure is multiplied by.
This modification reflects the fact that similarity measuresome more reliable as the number of co-
rated items increases, and has positive effects on thegtixedpower of the filtering algorithm. The
same researchers also cite the constrained Pearson tiorrelzefficient, which replaces the user means

in the above equation with the rating scale midpoint.
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Similarity measures are also often coupled with other Istios that aim at improving the reliability
and power of the derived measures. For exampleetyal [YWXEOQ1] introduced variance weighting;
when comparing user profiles, items that have been ratedslyoiimmunity with greater variance receive
a higher weight. The aim here is to capture the content teatgimeasurably more “controversial” (and
eliciting greater disagreement amongst community menpligesbetter descriptor of taste. Measuring
similarity, however, remains an open issue; to date, thefigtle that can be done other than compar-
ing prediction accuracy in order to demonstrate that ondasiity measure outperforms another on a
particular dataset.

There are a number of other ways of measuring similarityhlage been applied in the past. These
include the Spearman Rank correlation, the Vector Sinyigar cosine angle between the two user
profiles), Euclidean and Manhattan distance, and otheradethimed at capturing the proportion of
agreement between users, such as those explored by Agrdaianer [AW97]. Each method differs
in the operations it applies in order to derive similaritygdanay have a strong effect on the power the

algorithm has to generate predicted ratings.

Opinion Aggregation

Once comparisons between the user and the rest of the comyrofinecommenders (regardless of the
method applied) are complete, predicted ratings of unretedent can be computed. As above, there
are a number of means of computing these predictions. Hemgregznt two [HKBR99, BKO7]. Both
equations share a common characteristic: a predictedyragin of item ¢ for usera is computed as a

weighted average of neighbour ratingg. The first is a weighted average of neighbour ratings:

_ 2pThi X Wab

pa,i - (27)
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The second subtracts each recommender’s mean from thigeeatating; the aim of this normalisation
step is to minimize the differences between different rec@mders’ rating styles, by considering how

much ratings deviate from each recommender’s mean rathprttte rating itself.

So(rpi — T) X Wa b

Pai = Ta + (2.8)

Zwmb

The weightsw, , may come from one of two sources. They may be the similaritgsuees we found
in the first step; neighbours who are more similar will haveager influence on the prediction. On the
other hand, recent work [BKO7] uses similarity weightssadectneighbours, and then re-weights the
selected group simultaneously via a linear set of equafiorsder to maximise the accuracy of the
selected group on the user’s profile.

The natural question to ask at this step is: which recommeatiags are chosen to contribute to the
predicted rating? A variety of choices is once again avigland has a direct impact on the performance
that can be achieved. In some cases, only thektapsst similar neighbours are allowed to contribute
ratings, thus guaranteeing that only the closest ratingaterthe prediction. However, it is often the
case that none of the tdpneighbours have rated the item in question, and thus thégticedcoverage,

or the number of items that can be successfully predictedegmtively impacted. A straightforward
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alternative, therefore, is to consider the topecommenders who can give rating information about the
item in question. This method guarantees that all predistwill be made; on the other hand, predictions
may now be made according to ratings provided by only mogksathilar users, and may thus be less
accurate. A last alternative is to only select users abovwe-aetermined similarity threshold. Given
that different similarity measures will produce differesimilarity values, generating predictions this
way may also prevent predictions from being covered. Allhods, however, share a common decision:
what should the threshold value, or valuekpbe? This question remains unanswered and dependent on
the available dataset; research in the area tends to pubsstts for a wide range of values.

In general, while the process of selecting neighbours isalfeoint of kNN approaches, selecting
the best neighbours is an inexact science. Rafte [ROHS09] examined the effect that neighbours
(selected with the methods described above) have on pi@datcuracy, and found that neighbours are
oftendetrimentalin this process. Instead, [LAPQ9] reports on the potentiadsive gains in accuracy if
an optimal set of neighbours is selected. The problem ofhiigr selection, and approaches designed
according to user models, will be further addressed in thoti@e2.3.

Up to this point, we have considered the process of gengregitommendations strictly from the
so-called memory based, nearest-neighbour approache foltbwing section, we review another of the

most prominent CF algorithms, which is based on matrix fasadion.

2.2.4 Matrix Factorisation

Recommender systems connkatje communities of users ttarge repositories of content; the rating
data that they contain is thus invariably sparse. A poweeftihnique to address this problem is that of
matrix factorisation, based on Principle Component Anal{BCA) or Singular Value Decomposition
(SVD) [Pat06, MKLO7, KBCO7]; in this section we focus on SVD.

As detailed by Amatriairet al [AJOP09], the core function of an SVD is to use the sparsagati
data in order to generate tvd@scriptivematrices that can be used to approximate the original mairix
other words, given a matrix of user-item ratingswith n users andn items, the task of an SVD is to

compute matrice&” andV such that:

R=UXVT (2.9)

U is an(n x r) matrix, andV is an(r x m) matrix, for a given number of required featungsand\
is a diagonal matrix containing the singular values. Eackrimnaontains important information. For
exampleV describes the system content in terms of affinity to eaclufeatn fact, this information can
be used to describe the implicit relations among the systenritent by showing how each item relates
to others in the computed feature space.

Once the decomposed matrices have been computed, thefaatangser-item pair is approximated
as the dot product between the user’s feature vector (f/dmnd the item'’s feature vector (froiy). In

other words, for a user and itemy, the predicted rating,, ; is:

Fui =Y Uuygx Vii (2.10)
f=0
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Based on the above, tlieandV matrices themselves can be approximated iterativelyr adfitéalising
each matrix, the features can be updated in order to minithessquared error between the computed
predictions and ratings for the available data instanchis grocess is bounded by using an appropriate
learning rate (to avoid overfitting) and a number of rounds $hould be dedicated to each feature
[Pia07].

Although factorisation addresses data sparsity, it doeevercome it: computing the SVD itself is
challenging when data is missing. Sarneaial [SKKROO] address this by replacing the missing values
with item mean ratings. Factorisation serves many purpasesay be used as both a preprocessing
or prediction mechanism; in the next section, we explore hdwas been used in the contexttofbrid

algorithms.

2.2.5 Hybrid Algorithms

As we have seen above, there is a wide range of algorithnabdeiifor the CF context. Each algorithm
offers a different method of reasoning on the rating datadpces different results, and has different
shortcomings. This range of differences between theseadetimotivates using more than one recom-
mendation algorithm in unison, in order to reap the benefiesach method (and, hopefully, overcome
the limitation that each one suffers when used alone). Im(B}) Burke provides a comprehensive re-
view of hybrid algorithms: in this section, we review pomu@proaches, which we decompose into two
groups:preprocessingndensemble methodEach group need not be implemented alone. In fact, there
is no limit as to how hybrid algorithms may be designed; ity the case that CF methods become

hybrid when they are designed using more than a single classifier.

Preprocessing
The purpose of preprocessing is eithentodifyor partition the raw data, in order to apply one of the
above classification algorithms. Two widely used approaetienormalisinguser ratings (as discussed
in Section 2.2.2), andlusteringthe data into smaller groups. The former tends to transfomnirtteger
ratings into a set of residuals, by subtracting user biaBet)B, BK07]; these account for the different
ways that users interpret the rating scale (e.g., some csessstently rate higher than others). Thereis a
variety of techniques available for the latter purposdyiding k-means, hierarchical, and density based
clustering [AJOP09, JMF99]. For example, Rasticl| [RLKRO6] proposed a filtering algorithm suit-
able for extremely large datasets that combines a clugtaigorithm with thekNN prediction method.
The aim was to cluster similar users together first, in ordesvercome the costly operation of mea-
suring the similarity between all user pairs in the systemd, then apply a nearest-neighbour technique
to make predictions. Much like the work presented by Li anthKiLKO03], clustering methods can be
implemented to replace the “neighbourhood formation” sitthe kNN approach. The Yoda system,
designed by Shahabkt al[SBKCMO01], is an example of a system that performs similaictions: clus-
tering is implemented to address the scalability issudsatise as the community of users and available
items grows.

Similarly, a sequence of classification algorithms can lségted, where the output of each method

is the input to the next; each algorithm preprocesses ttefdathe subsequent method. For example,
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the rating matrix can be factorised first and each ugerigarest neighbours can then be computed using
the feature matrix, rather than the raw data itself [KorOBhe aim of this is to compute neighbours
using thedensefeature matrix, rather than the extremely sparse rating-dathe hope being that more

reliable neighbours can be found this way.

Ensemble Methods

The second set of hybrid techniques we review differenttz¢enselves from the above by focusing on
combining output rather than refining it over sequentighst®ie00, Pol06]. In other words, classifi-
cation algorithms are run independently of one anotherthadutput of each is then collapsed into a
unified set of predictions and recommendations. There ar@ptions here: hybridgwitchingor weight-
ing. Switching entails selecting individual predictions freach classifier, based on the assumption that
some classifiers will be more accurate on a subset of instahee others [LAP09]. Weighting, on the
other hand, combines the predictions of each classifier as @ §inear equations [ZWSP08]; weights
are typically found by means of regression. First, the tngjnlata is further split intéraining andprobe
subsets. The algorithms are then given the training subskeqaeried with the probe instances.

Given a setP = [a, b, ..., z] of predictors weighted by a vectar = [w,...w,], a vector of probe
ratingsr € [r1...r,,], and predictions,, ,, by classifierz for itemn, predictions of each probe rating can
be formulated as a linear combination of each classifiegsligtion:

P = (e X We) (2.11)
ceP
If the set of predictions from each classifier is combined msingle matrixX, the problem of finding

a classifier weight vector can be expressed in matrix form:

Ta, 1 Th1 - Tz Wq 1
TA’a72 72(,72 7A’272 Wy T2

= (2.12)
Tamn Tbn - Tzn Wy Tn

The idea is to minimise the error between the weighted ptiedic matrix X and the vector of
ratingsr by simultaneously solving a set of linear equations. Toes&dv the weightsv, each side of the

equation must be multiplied by the inverd€” of X:
(XTX)w=(X"r) (2.13)

The same weights that have been learned are then applied tolltkraining set in order to predict any
unrated items.

There are other techniques available for blending, basedjradient boosted decision trees
[Kor09b], neural networks [PC09], and kernel ridge regia@s$TJIB09]; it is beyond the scope of this
thesis to cover all of these in detail. In the context of theflidkeprize, hundreds of predictors were
blended together to produce the final solution. Howeves ithiwhere the border between using CF
to solve apredictionproblem or build a recommender system lies. In fact, thefgieduct officer at

Netflix stated in an interview that:

Lhttp @ / Jwww.appscout.com/2009/09/net fliz_1m_prize_winners_inclu.php
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“There are several hundred algorithms that contributegatrerall 10 percent improvement
- all blended together,” Hunt said.“In order to make the catagion feasible to generate the
kinds of volumes of predictions that we needed for a reaksgste’ve selected just a small

number, two or three, of those algorithms for direct implatagon.”

2.2.6 Online Algorithms

All of the above algorithms share a common trait: they ardralhed and queried offline; thus rein-
forcing why system administrators need to iterativelyaigttheir system in order to include the latest
ratings. However, there is a separate class of techniquebrealgorithms—that dynamically update
as ratings are introduced into the system. Online algostane usually decomposed into four steps:
(a) receiving an instance to predict (e.g., a user-movig @i predicting the value (rating) of that in-
stance, (c) receiving the true rating input by the user, amallyi (d) updating itself according to some
predetermined loss function. There are a number of examyiese online algorithms have been ap-
plied to collaborative filtering contexts. These range fdape one approaches [LMO05] to online matrix
factorisation feature update [RSTO08].

One of the main challenges facing online algorithms is thatway they work is not a perfect
match with how recommender systems work. First, algoritaresnot given aingleinstance to predict
at any time; they are given a (largggtof instances—all the items that a particular user has netlrat
Predictions of this set will then be used to generate a ratikedf recommendations. They will also
only receive feedback on a subset of these predictionse tirer no guarantees governing if and when
they will receive the true rating for an item, and how the updaill be biased by the predictions that it
has made itself. Lastly, since items need to be ranked, gogitim will need to be queried prior to the
user interacting with the system; it may also be excessive-firedict all instances when the user inputs
a single rating. In fact, at this point it becomes difficultdistinguish between how online algorithms

will be used differently to the offline ones explored above.

2.2.7 From Prediction to Recommendation

Once predicted ratings have been generated for the iterdssated according to predicted value, the
top-N items can be proposed to the end user as recommendations.st€pi completes the process
followed by recommender systems, which can now elicit feedfrom the user. User profiles will
grow, and the recommender system can begin cycling througlptocess again: re-computing user
similarity measures, predicting ratings, and offeringoramendations.

It is important to note that the user interface of the systésmsa vital role in this last step. The
interface not only determines the ability the system hasdegnt generated recommendations to the end
user in a clear, transparent way, but will also have an effiethe response that the user gives to received
recommendations. Wu and Huberman [WHO7b] conducted a stivdgtigating the temporal evolution
of opinions of products posted on the web. They concludetlithbhe aggregate rating of an item is
visible to users and the cost of expressing opinions forslisdow (e.g. one click of a mouse), users will
tend to express either neutral ratings or reinforce the gietby previous ratings. On the other hand, if

the cost is high (such as requiring users to write a full iyjeisers tended to offer opinions when they
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felt they could offset the current trend. Changing the viisybof information and the cost imposed on
users to express their opinions, both determined by thefamte provided to end users, will thus change

the rating trend of the content, and the data that feedshetdiltering algorithm.

2.3 Trust and User Modelling

The previous section highlighted the data mining approath€F; what follows is a review of state of
the art research that aims to augment these techniques daporatinguser modelsnto collaborative
filtering. In particular, we focus on the use wfist in recommender systems. However, before we
proceed, we explore trust itself: what is trust? How hasérb®rmalised as a computational concept?
A wide range of research [ARH98, JIBO7, AHO08] stems from slmgist Gambetta’s definition of

trust [Gam90]. Gambetta states:

“trust (or, symmetrically, distrust) is a particular levafl the subjective probability with

which an agent will perform a particular action”

Trust is described as the level of belief established beiviwe entities in a given context. Discussing
trust as a probability paved the way for computational medétrust to be developed, as first explored
by Marsh [Mar94] and subsequently by a wide range of reseasdf®0l08]. The underlying assumption
of trust models is that users’ (or agents’, peers’, etc)ohisal behaviour is representative of how they
will act in the future: much like CF, the common theme is onéafning The differences between the
two emerges from the stance they adopt toward their targeissos; unlike CF, trust models are often
adopted as a control mechanism (by, for example, rewardiogl dpehaviour in commerce sites with
reputation credit) and are user-centred techniques tleab@th aware and responsive to the particular
characteristics desired of the system (such as, in thequs\éxample, reliable online trade).

Trust models have been applied to a wide range of contexigirra from online reputation systems
(e.g. eBay.com) to dynamic networks [CNS03] and mobile mmrhents [QHCO6]; a survey of trust in
online service provision can be found in [JIBO7]. Due to iisl@spread use, trust modelling may draw

strong criticism with regards to its name: it is arguabld,tremany of these contexts, “trust” is a vague

synonym of “reliability,” “competence,” “predictabili}y or “security.” However, encapsulating these
scenarios under the guise of trust emphasises the commuiesttbat flow between them; namely, that
researchers are developing mechanisms for users to ojfre@mputational environments that mimic

the way humans interact with each other outside of the re&infarmation technology.

2.3.1 Motivating Trust in Recommender Systems

The motivations for using a notion of trust in collaboratiering can be grouped into three categories:

1. In order to accommodate tle&plainability required by system users. Both Tintarev [TM07] and
Herlockeret al[HKROQ] discuss the effect explainability has on userscggtions of the recom-
mendations that they receive, especially those recomntienddhat are significantly irrelevant or
disliked by the users. Chen and Pu [PCO06] further investitfais issue by building explanation

interfaces that are linked to, and based on, a formal modehlef. Although a major compo-
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nent of these works revolve around presenting informatiothé end users, they recognise that
building an explainable algorithm is a key component of $garency: it converts a “black-box”
recommendation engine into something to which users caterel

2. To addresdata sparsity. The volume of missing data has a two-fold implication. £ingw users
cannot be recommended items until the system has eliciefgénences from them [RAD2].
Even when ratings are present, each of a pair of users who otaglly share commoimterests
will never be cited in each other’s neighbourhood unlesg sareratingsfor items: information
cannot be propagated beyond each user’'s neighbourhoodn@&emmputed similarity will be
incomplete, uncertain, and potentially unreliable.

3. Toimprove the robustnessof CF to malicious attacks. Since recommender systems &a of
deployed in an e-commerce environment, there are manyepartio may be interested in trying
to exploit the system for their benefit, using what are knowatdlling attacks [MBWO7]. From
the point of view of the ratings themselves, it is difficultdifferentiate between what was input
by honest users and the ratings that have been added in orderform an attack. Trust models
come to the rescue: by augmenting traditional collaboediltering with a notion of how users

interact, the robustness of recommender systems can bevethr

A consequence of incorporating trust models into CF is afsena measurable benefit in terms of
prediction accuracy; however, state of the art algorithmas &reonly tuned for accuracy [BKO7] do not

mention trust models at all.

2.3.2 Using Trust For Neighbour Selection

One of the central roles that trust modelling has served insGB address the problem agighbour
selection by replacing thésNN neighbourhood formatiostep above. Traditional approaches to CF are
based on populating usersNN neighbourhood with others who share the highest meakuaabount

of similarity with them [HKBR99]. However, these methodsmm guarantee that the right neighbours
will be selected; the aim of using trust is thus to capturerimiation that resides outside of each user's
local similarity neighbourhood in a transparent, robust and accurate way.

Two main approaches have been adoptieaplicit methods, which aim to infer trust values be-
tween users based on item ratings, arglicit methods, that draw trust values from pre-established (or
manually input) social links between users. Both methodsesh common vision: the underlying rela-
tionships (whether inferred or pre-existing) can be désdiand reasoned upon in a web of trust, a graph

where users are nodes and the links are weighted accordihg extent that users trust each other.

Computing Implicit Trust

The first perspective of trust in CF considers values thatbeaimferred from the rating data: a web of
trust between users is built from how each user has ratedysiters’s content. In these cases, trust is
used to denoteredictability and to allow the different ways that users interact with tsa@ommender
system; in fact, many of these measures build upon errorunegssuch as the mean absolute error.

For example, Pitsilis and Marshall focus on deriving truginfieasuring the uncertainty that sim-
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ilarity computations include [PM04, PMO05]. To do so, theyaqtify the uncertainty:(a, b) between
usersa andb, which is computed as the average absolute difference ahtivegs in the intersection of
the two user’s profiles. The authors scale each differenaiviging it by the maximum possible rating,

maz(r):

_ 1 Ta,i — b,
u(a,b) = R Rl Z (W) (2.14)

1€(RaNRy)
The authors then use this uncertainty measure in conjungiithh the Pearson correlation coefficient to
quantify how much a user shoutelieveanother. In other words, trust is used to scale similaréther
than replace it. Similarly, O'Donovan and Smyth define attrustric based on the recommendation
error generated if a single user were to predict the ratifigsmother [OS05, OS06]. The authors first
define a rating’s correctness as a binary function. A ratings correctrelative to a target user’s rating

4, If the absolute difference between the two falls below aghoéde:
correct(ra,isToi) < |rai — i <€ (2.15)

The notion of correctness has two applications. The first theprofile level, Trust”: the amount
of trust that user bestows on another uséiis equivalent to the proportion of times thiagenerates
correct recommendations. Formally, HecSet(b) represents the set ofs ratings used to generate
recommendations, arorrectSet(b) is the number of those ratings that a@rect then profile-level

trust is computed as:
_ |CorrectSet(b)|

Trust? (b) =
rust(b) = e Set)
The second application of Equation 2.15 is item-level trilist.st!; this maps to the reputation a user

(2.16)

carries as being a good predictor for iténand is a finer-grained form of Equation 2.16, as discussed in
[OS05]. Both applications rely on an appropriate value:dfetting it too low hinders the formation of
trust, while setting it too high will give the same amountmfst to neighbours who co-rate items with
the current user, regardless of how the items are ratede(sreectis a binary function). Similar to
Pitsilis and Marshall, this metric also operates on therg@etion of user profiles, and does not consider
what has not been rated when computing trust.

In [LHCO08c], the authors approach trust inference from alainperspective, but extend it from a
binary to continuous scale and include ratings that falsiolet of the profile intersection of a user pair.
Rather than quantifying the correctness of a neighboutilsgathevaluethatb’s rating of item: would

have provided ta's prediction, based oa's rating:
value(a,b,i) =1 — plre; — 1.4 (2.17)

This equation returns if the two ratings are the same, afdf userb has not rated iteny, otherwise,

its value depends on thgenalisingfactor p € [0,1]. The role of the penalising factor is to moderate
the extent to which large differences between input ratergspunished; even though the two ratings
may diverge, they share the common feature of having been toghe system, which is nevertheless
relevant in sparse environments such as CF. A low penalisicigr will therefore have the effect of

populating neighbourhoods with profiles that are very @imiit terms of what was rated, whereas a high
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penalising factor places the emphasis on how items are. ret¢ldHCO8c], the authors use = % The

trust between two users is computed as the average ¥altegings provide ta:

trust(a,b) = ﬁ <Z value(a,b,i)) (2.18)

1€ER,
This trust metric differs from that of O’Donovan and Smythlising a pairwise measure, focusing on
the value that usdr gives to user. Unlike the measures explored above, the value sum is divige
the size of the target user’s profilg?, |, which is greater than or equal to the size of the pair's ofil
intersection| R, N R,|, depending on whether has rated more or fewer items thanThis affects the
trust that can be awarded to those who have the sparseseprdfibecomes impossible for a user who
rates a lot of content to trust highly those who do not, whaepreventing the inverse from happening.

The three methods we have presented here are not the onlggadsgdor trust inference between
users in CF contexts. For example, Wegigal [WMGO6] liken the CF web of trust structure to a
distributed peer-to-peer network overlay and describe dattbat updates trust accordingly. Hwang and
Chen [HCO7] proposed another model that again marriesandgsimilarity values, taking advantage of
both trust propagation and local similarity neighbourhmdehpagelist al[PPKO05] do not differentiate
between similarity and trust, by defining the trust betweeaiaof users as the correlation their profiles
share; they then apply a propagation scheme in order to@éusssr neighbourhoods.

Many of the problems of computed trust values are akin toehafssimilarity; for example, it
is difficult to set a neighbourhood for a new user who has ni@drany items [RAC02]. However,
the characteristics of trust modelling allow for solutidghat would not emerge from similarity-centric
CF. For example, [LHCO08c] includes a constéabtstrappingvalue 5 for users who have rated no
items, which translates to initial recommendations thatesed on popularity, and would become more
personalised as the user inputs ratings.

All of the methods we have explored share the common themein§error between profiles as
an indication of trust. Similarly, there is a broad litera&wn similarity estimation that does not adopt
the language of trust modelling, such as the “horting” apphoby Aggarwaét al[AWWY99] and the
probabilistic approach by Blanzieri and Ricci [BR99]. I @f the above, each user pair is evaluated
independently; the significant differences appear in hosheaethod reflects an underlying user model

of trust.

Selecting Neighbours Explicitly
The alternative to computing trust values between usestimhsfer pre-existing social ties to the rec-
ommender system. There are two approaches that have bemwefdlhere: on the one hand, users may
be asked explicitly to select trustworthy neighbours. Gndther hand, social ties may be drawn from
online social networks where it is possible to identify easkbr’s friends.

Massa and Avesani describe trastarerecommender systems [MB04, MAQ7]. In this scenario,
users are asked to rate both items atiter users Doing so paves the way to the construction of an
explicit web of trust between the system users. Since usensat rate a significant portion of the other

users, the problem of sparsity remains. However, assurhatgiser-input trust ratings for other users are
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more reliable than computed values, trust can then be padeddp broaden each user’s neighbourhood.

Trust propagation is a highlxplainableprocess: ifa trustsb, andb trustsc, then it is likely thata
will trust ¢. However, this transparency is obscured as the propagattends beyond a two-hop rela-
tionship. The validity of propagation rests on the assuonptiat trust is transitive, an assumption that
can be challenged once the propagation extends beyonaftrale” limits. In small-world scenarios
(such as social networks), this limit is likely to be lessrthiae famed six-degrees of separation, since it
is apparent that people do not trust everyone else in areestiial network. Much like similarity and
computed trust, the efficiency of trust propagation is tfweedependent on the method used and the

characteristics of the underlying data.

A range of other works centre their focus on the social asple@commendations. For example,
Bonhard and Sasse [Bon04, PBHO7] perform a series of expatsithat analyse users’ perception of
recommendations: they conclude that participants ovdmihgly prefer recommendations from famil-
iar (as opposed to similar) recommenders. The experimefiect the ongoing asymmetry between
algorithmic approaches to CF, which tend to focus on pragi@ccuracy, and user studies that mainly
consider recommender system interfaces. It is difficuliviaeate one independently of the other, and
Bonhard’s motivations for the use of social networks ecloséused to motivate the use of trust models
in Section 2.3.1: in order to reconcile the end users’ mantalel of the system and the system’s model

of the users.

Golbeck explored the power of social networking in the Fitonst system [Gol06], showing that
these systems produce comparable accuracy to similaaggebCF. The application of social networks
can also be beneficial to CF since relationships in the webyust tan be augmented from simple
weighted links to annotated, contextual relationshipes,{i.is my sisterc is my friend). Context-aware
recommender systems is a nascent research area; AmodatiaelJASSTO05] provide a first view into
this subject by looking at multi dimensional rating modéisll coverage of this falls beyond the scope
of this chapter; however, it is apparent how network tieslwarfied into mechanisms that include who

and where the users are before providing recommendations.

The main criticism of many of these approaches is that thgyire additional explicit input from
the end user; in effect, they move against the fully autotheitew of recommender systems that original
collaborative filtering proposed. However, social netvgmaike on the rise, and users proactively dedicate
a significant portion of time to social networking. The implentation of these methods therefore aims

to harness the information that users input in order to st better.

Itis important to note that both the computed and explicithods of finding trustworthy neighbours
are not in conflict; in fact, they can be implemented side big sBoth require users to be rating items
in order to provide recommendations, while the latter aksguires social structure. Popular social
networking sites, such as Facebédakclude a plethora of applications for which users are retgeeto

rate items, making the conjunction of the two methods eveieea

2http://www.facebook.com/apps/
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2.3.3 Trust-Based Collaborative Filtering

Once neighbours have been chosen, content can be filteredievidn there are a range of choices
available to do so; in this section we outline the methoddemgnted by the researchers we discussed
in the previous section. The approaches revolve aroundgratjgregations; in other words, taking a
set of neighbour ratings for an item and predicting the gsaiting using Equation 2.8. The difference
between each method is (a) what neighbours are selectedpyhadw the ratings from each neighbour
are weighted. We split the methods into three strategiast-trasediltering, weighting and social

filtering.

1. Trust-Based Filtering. In this case, neighbours are selected (filtered) using coeagrust values.
The ratings they contribute are then weighted accordingtodimilar they are with the target user.

2. Trust-Based Weightingdeparts fully from similarity-based CF: neighbours arens#lected and
their contributions weighted according to the trust thegrstwith the target user.

3. Social Filtering. Neighbours are selected based on the social ties they wfitarthe target user.
Ratings can then be weighted according to either their shsireilarity or trust with the target

user.

All of these methods assume that users will be using thega&tales symmetrically, i.e. if two users
predict each other perfectly, then the differerieg; — 7,) will be the same a$r, ; — 7 ), regardless

of what each user’s mean rating actually is. In practices ihinot always the case: predictions often
need to be changed to fit the rating scale, since users eadhissale differently. This notion was
first explored in the aforementioned work by Agganealal [AWWY99], who aimed to find a linear
mapping between different users’ ratings. However, [LHEGXtends this notion to encompass what
they refer to asemantic distancéy learning a non-linear mapping between user profilescdoasdhe
rating contingency table between the two profiles. The tesiffer accuracy benefits in the MovieLens
dataset, but do not hold in all cases: translating from otiregacheme to another is thus another research

area that has yet to be fully explored.

The above work further assumes that the underlying classsfi@ NN algorithm. Recent work,
however, has been moving away frégrtNN-based recommender systems. In fact, the data derived fro
users telling the system whom they trust can also be inpoatiter algorithms, such as matrix factorisa-
tion techniques [MYLKO08, MKL09]. In these works, Mat al describe matrix factorisation models that
account for both what users rate (their preferences) anthtmmthey explicitly connect (who they trust).
While certainly beneficial to cold-start users, introdgrtrust data into factorisation models reignites
the problem otransparency how will users understand how their input trust values dbate to their
recommendations? A potential avenue for research liesaretfect that hybrid trust models have on
users. For example, Koren describes how a neighbourhooébatatisation model can be combined
[Kor08], and this work may begin to bridge the chasm betwéerfactorisation-based aindtNN-based

use of trust in recommender systems.
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2.4 Evaluating Recommendations

In order to design and evaluate CF algorithms, researckqrsre three components: (adatasetof
user ratings to which to apply the algorithm, (b)reethodologyto conduct repeatable experiments,
and (c) appropriatenetricsto measure system performance. In this section, we revieWw ehthese

components.

2.4.1 Rating Datasets

The rise of Web 2.0 sites equipped with developer appliogiimgramming interfaces (APIs) to access
user data is improving both threase of accesandwealth of dataavailable to CF research. Dell’Amico
and Capra [DCO08] are but one example of researchers who tdlested and experimented with a
dataset of music preferences from Lastfmmatriainet al [ALP+09] gathered movie rating datasets
from Rotten Tomatoésand Flixste?. However, requiring researchers to each crawl the web fataset

is not only an unnecessary overhead, but does not allow fultseto be compared between different
researchers’ experiments if the dataset is not shared.eTihalso a number of pre-packaged rating

datasets. In this thesis we focus on two; the largest and widsty studied datasets of ratings:

o Netflix Prize Dataset The largest of the available datasets, this set of moviegsatonsists of
100 million ratings, by480, 189 users who have rated one or more of tfie770 moviesond —5
star scale.

e MovieLens Dataset There are currently three movie-rating datasets avaléiom the Grou-
pLens websité The first includesl00, 000 ratings of1, 682 movies by943 users; the second
has1 million ratings for3, 900 movies by6, 040 users; the last include®) million ratings and
100, 000 tags for10, 681 movies by71, 567 users. As with the Netflix dataset, items are rated on
al — 5 star scale. In this thesis, we have used the first two datsisets the third dataset was only
released in 2009.

Other available datasets include thesterjoke-rating dataset, and tigook-Crossinglataset of book
ratings. This is by no means an exhaustive list of datasatexdample, Github(an online collection of
source code repositories) released a dataset of the repesitwatched” by each of its members, and

ran a competition that also aimed at designing an algorithre¢commend repositories to its users.

2.4.2 Methodology

The aim of an experiment with user data is to manipulate ttiegsin a way that (a) reflects assumptions
of how the users will interact with the end system, and (bdpoes measurable results that mirror the
users’ experience.

The assumptions that researchers make with regards tortheifgoal are twofold: first, that users

will have already providedt leastone rating to the system. Given that only the ratings aredbein

Shttp://www.last.fm
4http://www.rottentomatoes.com
Shttp://www.flixster.com
Bhttp://www.grouplens.org
"http://contest.github.com
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used to generate recommendations (demographic or iteibudét data is unavailable), then lack of any
rating data does not allow CF algorithms to produce perssethlesults. Second, if a user’s preferences
were already known, then ranking items according to the'sisatings would provide the most useful
recommendations. Therefore, the main focus of CF evaludi&s historically been that giredicting

the ratings of items that users have not rated.

To evaluate how well an algorithm is accomplishing the takskroviding recommendations, re-
searchers use one of the available rating datasets. Theetiidirst partitioned into two subsets; the
first acts as #raining set that will be available for the algorithm to learn from.el$econd subset is the
testset, with rating values that remain hidden to the algoritm.evaluation will query the algorithm
to make predictions on all the items in the test set. Restdtsheen cross-validated by repeating experi-
ments on multiple partitionings of the data. Hidden in thetegs is an assumption that the performance
of adeployedalgorithm (with an online recommender system) will be corapée to that of the selected
training and test sets.

However, one of the fundamental problems with this methoglpls related to the second goal: the
extent to which each useriualitative experience with the system can be translated into measyrabl
guantitativeresults is questionable. In effect, researchers reducprdidem of generating interesting,
serendipitous, and useful recommendations into one ofratepreference prediction. In the following

section, we review the metrics used for this task and disitiessontroversy surrounding their use.

2.4.3 Metrics

The most widely adopted metrics used to evaluate the effiohGF algorithms deal with prediction
accuracy. Available measures of statistical accuracyaethe mean absolute error (MAE) and the root

mean squared error (RMSE):

MAE = 2=n[lwi ~ Fa] |T“]§* P (2.19)
A )2
RMSE = \/X:N(r‘”#r‘”) (2.20)

Both of the above measures focus on the difference betweating of items by usera, 7, ;, and the
prediction for the same user and itefg,;. In general, both metrics measure the same thing and will
thus behave similarly; the difference lies in the degreehéactvdifferent mistakes are penalised. There
are a number of modified mean error metrics that aim to intwedairer representations of the system
users. For example, Massa uses the mean abasdeteerror in order to compensate for the fact that
more predictions are often made for some users rather ttensofMAO07] and O’Donovan and Smyth
compare algorithm performance by looking at how often omadse accurate than another [OS05].

Coverage metrics complement accuracy results: they aimaotey the breadth of predictions that
are possible using a given method. They compare the propasfithe dataset that is uncovered to the
size of the test set, in order to measure the extent thatgtieol were made possible using the current
algorithm and parameters.

While prediction accuracy continues to receive significaténtion, due to it being the metric of

choice of the Netflix prize, the focus on accuracy in recomtieemesearch continues to be disputed.
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While we already described the difficulty of translating lifaéive experience into quantitative values,

there are a number of further reasons for this:

e Accuracy Metrics Focus on Predictionsthat have been produced, regardless of whether the
prediction was at all possible or not. Massa and Avesani [WlAhow that prediction accuracy
continues to perform well when pre-defined values are retliriror example, if each prediction
simply returned the current user mean (thus not allowingerdrto be ranked and converted into
recommendations), accuracy metrics would still not reech poor behaviour.

e Test Set Items Have Already Been RatedAn evaluation method that only makes predictions on
items in the test set (items that the user has rated) may ¢esttbtv good performance, especially
if there is low variance in the way users rate. Real systemas$ Have to provide recommendations
based on making predictions ail unrated items, may have much worse performance.

e Predictions vs. RecommendationsMcLaughlin and Herlocker [MHO04] argue that striving for
low mean errors biases recommender systems towardsmgedittorsrather thanmecommenders
In other words, an error in a prediction affects the meanréne@same way, regardless of whether

the prediction enabled the entry to qualify as a recomméorat not.

Mean errors will therefore not tend to reflect the end useedgpce. Concerns over accuracy-centric
research continues; McNegeal[MRKO06] even argued that striving for accuracy is detrinad i recom-
mender system research, and propose that evaluationgigieoett to user-centric methods. Accuracy
metrics persist, however, due to the need for empiricaluatadns of filtering algorithms that can com-
pare the relative performance of different techniquesauitlincluding the subjective views of a limited
(and, more often than not, inaccessible) group of test stj&urthermore, while it remains difficult to
understand exactly how accurate predictions translatetis¢fully ranked recommendations, accuracy
is a useful metric for understanding the extent to which gorthm is approximating the preference
values input by the system users.

Examining an algorithm from the point of view of tag-recommendations provides an alternative
means of evaluation; rather than considering the predisttbemselves, information retrieval metrics
(i.e., precision and recall) are used on a list of items sluténg the predictions. However, sorting a list
of recommendations often relies on more than predictedgatifor example, how should one sort two
items that both have the highest possible rating predickéol? large should the list siz& be? These
kinds of design decisions affect the items that appear inNdjsts, and has motivated some to change
from deterministic recommendation lists to looking at wWiegtitems are “recommendable” (i.e., their
prediction falls over a predefined threshold) or not [AL0®)].

Other error measures have been applied when analyzing thesay of a filtering algorithm, in-
cluding receiver-operating characteristic (ROC) sevigitfHKBR99]. This metric aims at measuring
how effectively predicted ratings helped a user selectgigdlity items. Recommendations are therefore
reduced to a binary decision: either the user “consumedtdment (i.e., watched the movie, listened
to the song, read the article) and rated it, or did not. By cammg the number of false-positives, or

items that should have been recommended that were not, ledrfegatives, or not recommending an
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Source Problems Example Resources
Data Sparsity [MKLO7]
Noise [APOO09, HKV08]
Cold-Start [NDBO7, PPM"06, RACT02]
Privacy [LHCO7, Can02, BEKRO7]
Popularity Bias [CCO08]
Algorithm Accuracy [BKO7]
Latency [GRGPOO]
Scalability [BKO7]
System Robustness [MBWO7, LR0O4]
Distributed [Zie05]
User Explainability [HKROO, PCO06]
Context [ASSTO5]
Implicit Trust [MAO7]
Explicit Trust [Bon04, Gol06]
Evaluation Metrics [HKTRO4, BHK98]
Accuracy [MRKO6]
User Experience [MHO4]

Table 2.1: A Sample of Open Problems in Recommender Systems

item that should have been, this metric aims at measuringxtesnt to which the recommender system
is helping users making good decisions. However, this ntetblies on a prediction score threshold that
determines whether the item was recommended or not, whieln dibes not translate to the way that
users are presented with recommendations. A comprehenmesiesv of metrics used when evaluating

CF can be found in [HKTRO04].

2.5 Open Problems

There is a wide variety of problems that state of the art renender systems face. These range from
user-centric issuefpoor recommendation explainability, users distrustisgpmmendations), tdata-
related problemgnamely, the adverse consequences of data spaaigyyithm-related challengea-
tency, scalability, accuracyyystem-wide weakness@siinerability to attack), an@valuation-related
issues(or, how to best evaluate CF). A summary of these open issl@sg with pointers to relevant
research in each direction, is provided in Table 2.1. Eatdpcay that we have enumerated, however, is
intertwined with the others: for examplgatacold-start issues are relateduserpreference elicitation,
and affect thealgorithnis accuracy. This section enumerates the open researckeprsipertaining to

recommender systems that we addressed in this thesis.

2.5.1 Ratings: Changing Over Time

Given the number of users and items in a typical recommendserm, the rating matrix tends to be
extremely sparse. The problem of data sparsity highliglesiependence that filtering algorithms have

on the altruism of the community of users making use of themaunender system; if users do not rate
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items then the cyclical process of generating recommenakatiannot be completed. Both current state
of the art algorithms and evaluation techniques are awatii®thortcoming; however, they both also
view the matrix as ataticdata collection. In doing so, they assume that (a) changbeidata over time
are not relevant when predicting user preferences, andégurrent data is sufficient for computing
appropriate recommendations (e.g., to find simildiN neighbourhoods).

The relationship between the assumption of persistingrikededness and the reality of neigh-
bourhood patterns over time in recommender systems renwigpsly unexplored. We thus explore
ratings over time: delving into how datasets change over 8imd the different patterns of behaviour that
emerge. We show that observing a snapshot of similarity &etvall the system users is both subjec-
tive to how the similarity is computed, unreliable, and diifi to differentiate from a random process.
By modelling neighbourhood-based CF as a graph that igiteha updated, we highlight a significant
break between the assumptions and operation of CF. Analf/gis ratings over time lays the foundation
for our proposed methodology that modifies traditional C&#lation by including a notion of temporal

updates.

2.5.2 Methodology & Evaluation

In Section 2.4.2, we recounted how CF algorithms are evadliadatasets are split and algorithms are
queried about a test set, after learning from the traininig Repeating this process provides a cross-
validated snapshot of the expected performance of an gigorhen trained with a dataset with those
particular characteristics. However, deployed recomraesgistems do not handle unchanging datasets:
they are iteratively updated agrowing sets of user ratings. Deployed systems need to cope with a
growing set of both users and items; unfortunately, thotiygy are not evaluated as such. In Chapter 4
we propose a novel method to perform CF experiments thatdiesl the notion of temporal updates. We
extend current accuracy-based metrics onto the temporardiion, and evaluate the performance of a
series of CF algorithms over time. Lastly, we show that idtring an awareness of temporal updates
into the algorithm’s operation can offer improved tempa@uracy.

While accuracy remains a crucial focal point of recommersystem evaluation, the controversy
that surrounds its use reflects the fact that it only high$ighsingle dimension of performance: how close
the predictions are to the user input values. There are anaiuge of qualities that may be desired of a
recommender system, such as diversity. The problem of glitydras already been explored by Smyth
and McLave [SMO1]. If a user rates an item (for example, tagin album by The Beatles), loading the
user’s recommendations with extremely similar items ,(edl. of the other albums by The Beatles) is
often not helpful at all; the user has not been pointed tosvamlv information, and is only inundated
with recommendations towards content that is probably knalneady. The question therefore becomes:
to what extent do filtering algorithms generate diverse maoendations? The temporal dimension to
this problem considers the sequence of recommendatiohswhith users are provided as they interact
with the system: to what extent does the system computsaheerecommendations over and over?
In Chapter 5, we explore the temporal diversity of CF aldonis and the relationship they share with

temporal accuracy. We then design and evaluate a hybriditdgothat increases temporal diversity.
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2.5.3 System Robustness

The last problem we consider here relatesystem vulnerabilitiesAttackers may aim to modify the
recommendations that are output by a system for any numbsglfiéh reasons. They may wish arti-
ficially to promote a piece of content, to demote contenti{pps since it competes with the attacker’s
content), or to target a specific audience of users. Themekattire aided by the near-anonymity of users
participating in the recommender system. In some casesingigip to an e-service that uses recom-
mender system technology only requires an email addregsati@g a number of fake accounts is thus
not beyond the realms of possibility; furthermore, if eaflthese fake accounts is treated as an honest

user, it becomes possible to change the output of recommsystems at will.

Research in the field of recommender system vulnerabitteshe divided into two categories. On
the one hand, system administrators require a means offidegtattacks by being able to recognise
both when an attack is occurring and which users are malci@un the other hand, the vulnerabilities
themselves are addressed; how can these attacks be pd®/eHtav can the cost or effect be min-
imise? A comprehensive review of the vulnerabilities ofl@obrative recommender systems and their

robustness to attack can be found in Mobagted [MBWO7].

The growing body of literature addressing CF attacks takesary view of the rating matrix: either
it has been attacked, or it has not. The former is createdtlsalatter along with an appropriate attack
model, and the objective of attack detection algorithms isgparate the honest and dishonest profiles.
However, as recommender systems are updated over timsc#nario is unlikely to appear in deployed
systems: sybils’ profiles may be budwer time and may be able to inflict damage prior to being in
the detectable state that they are when evaluated by résesrdn Chapter 6, we address this problem
by designing and evaluating a series of monitors that @tevihe impact of these attacks by detecting

behavioural shifts in the system that indicate ongoing aadoos activity.

2.6 Summary

In this chapter, we have introduced the data, algorithnts ogren problems related to CF recommender
systems. CF automates the process of generating recomtizersday drawing from its assumption of
like-mindedness between its users. In other words, peoptehave displayed a degree of similarity in
the past will continue sharing the same tastes in the fuflihe. model of users held by these systems
therefore focuses on the set of preferences that eachdiudivhas expressed, and interactions between
users can be determined according to values derived byt the information available in users’
profiles.

The approaches themselves, however, originate from a wddety of backgrounds, and include
content-based methods, which infer recommendations ftem attributes and machine-learning in-
spired solutions; we discussed baselihBIN, matrix factorisation, and hybrid approaches. Nearest
neighbour algorithms follow a three-stage process: findirsgt of recommenders for each user based
on a pre-defined measure of similarity, computing predicegthgs based on the input of these rec-

ommenders, and serving recommendations to the user, htipghey will be accurate and useful
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suggestions. The choice of what method to implement reliea fine balance between accuracy and
performance, and is also dependent on the specific contxtebommendations need to be made for.
Each method has its own strengths and weaknesses, and mgditlidds attempt to reap the best of both
worlds by combining a variety of methods.

The general problems faced by recommender systems rengegathe, regardless of the approach
used to build the filtering algorithm. These problems weged into a set of categories: problems
originating from the data, algorithm, system, users, aradiugtion. In this thesis, we tackle a fundamen-
tal issue underlying all approaches that have been propgmdede: that is, how to model and evaluate a

system that will be deployed over time.



Chapter 3

Temporal Analysis of Rating Datasets

The previous chapter highlighted an important problem wétommender systems: CF evaluation does
not take into account that the data used to compute reconatiend is subject to change over time.
In this chapter, we analyse this phenomenon. We begin bgdaoting the rating datasets we use for
this study in Section 3.1. We then split our analysis into paots: in Section 3.2, we perform an in-
depth analysis of the ratings that recommender systemiveede Section 3.3, we investigate how these
changes affect theimilarity between users over time (and, consequently, the recomrienslahat
CF computes). These observations lay the foundations df werpresent in the following chapters;
namely, how to use temporal information to improve the aacyjraugment the diversity, and secure the

robustness of recommender systems.

3.1 Rating Datasets

We focus on three explicit-rating datasets: two MovieLegts gwhich we refer to as ML-1 and ML-2)
and the Netflix prize set. These datasets have been at tharfultf CF research for a number of years,

and can be described as collectiond gfiples:
[u, ’L', Tu,is tu,i] (31)

Each tuple contains: a userdgla movie idi, the ratingr,, ; given by the user to the movie, and the time
t.,; when this rating was input. The motivation behind compathwse datasets extends beyond their
popularity. They all provide users rating the same typeaftent(movies) with the samscale(1-5
stars)—thus allowing a direct comparison of each datasstiporal rating characteristics. However, we
still expect to identify temporal differences between thess there are significant differences in each
set’s size in terms of users, items, and ratings. We sumentinése differences in Table 3.1. In addition
to each set'’s relative size, there are a number of implieisoes why temporal differences may emerge,

including:

¢ Motivation: The MovieLens data is sampled from a system built for regepurpose’s Netflix,

instead, is a commercial systéimcentivised by financial targets. The system users themsel

http://Awww.movielens.org/login
2http://www.netflix.com/
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Dataset Users | Movies Ratings Time (Days)
MovieLens-1| 943 1,682 100,000 215
MovieLens-2| 6,040 | 3,706 1,000,209 1,036
Netflix 480,189| 17,770| 100,480,507 2,243

Table 3.1: Users, Items, Ratings in Each Dataset

have different relationships with each system: in the farreey arecontributingto research by
rating; in the latter, they areustomersvho are requesting and receiving DVDs when subscribed.
e Interface: We assume that users are more likely to rate content to whiehare exposed; how
and what people rate may thus be dependent on the designahitityef each system’s interface.
e Algorithm : Similarly, we assume that there may be a relationship batwehat users amecom-
mendedand what theyate. The datasets therefore become subject to the CF algoritahwias

in operation when the data was collected.

The rating data alone is not sufficient to understand whidhede forces is at play; we are also unaware
of any changes to which each system'’s interface or algonittay have been subject to during the time
span of ratings available. We cannot therefore explicitbgdss the causality of changes we observe in
the data. This point is aggravated by the uncertainty as tthen time was taken into account when
sampling each system'’s ratings. The ML-1 documentatiotesttnat the dataset has been “cleaned-
up:” users with fewer thaR0 ratings or incomplete demographic information were pruineah the set.
However, there is no further mention of the subsamplingriggke used.

These uncertainties challenge the accuracy of hypothésdéshave been verified using these
datasets; in particular, it is difficult to claim that algbrns that yield improved accuracy on one of
these sets will produce similar results once deployed. Mew®ne point remains: recommender sys-
tems aresubject to change over timas new users join the system, new ratings are input, and resiem
are released. The purpose of the following sections is tavshat these changes occur, see how they are
visible (in the available data), and examine their impactonclusions drawn using current evaluative

techniques that do not take them into account.

3.2 Ratings Over Time

We divide our analysis into four groups: we look at the groeftthe number of users, items and ratings
over time (Section 3.2.1), how this growth affects summaayistics derived from the ratings (Section
3.2.2), how user rating behaviour changes with time (Se@i@.3), and the seasonal trends that emerge

when users rate content (Section 3.2.4).

3.2.1 Dataset Growth

In Figures 3.1, 3.2 and 3.3 we visualise the cumulative gnafithe number of users, movies, and total
ratings over time for each dataset. In these plots we meadsiisechanges, since the Netflix timestamp
data only reports the date that users input ratings. The él@vris datasets’ timestamps would allow for a

finer grained analysis; however, we opt for daily views inesrtb consider all three sets simultaneously.
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Figure 3.1: Number of Users Over Time (ML-1, ML-2, Netflix)
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Figure 3.2: Number of Movies Over Time (ML-1, ML-2, Netflix)
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Figure 3.3: Number of Total Ratings Over Time (ML-1, ML-2, tiie)

Since we do not have sign-up data, we consider that users' ffué system the moment they make their
first rating. Similarly, a movie appears in the system whesfirst rated, since we do not know when it
was actually added to the movie database. We assume thisatqub#fiable measure of dataset growth
since CF algorithms (that do not include content inform@tican only compute predictions for movies

that have been rated and users that have rated at least once.
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Figure 3.4: Non-Cumulative Netflix Daily Growth: the spikespresent days when a lot of

users/movies/ratings were added
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Figure 3.5: Non-Cumulative ML-1 Daily Growth

Each dataset shows varying rates of growth. The number dlixNeters and ratings grow exponen-
tially, while the movies appear in the system at a near-fipaae. The ML-1 set also displays near-linear
growth: the number of users, items, and ratings continu@screase over each time step. The ML-2
dataset distinguishes itself from the other two by beingoiilg one that shows a sharp change in growth
over time. In fact, the majority of the users appear withia finst half of the dataset; after this phase
of accelerated growth, user growth halts and the rate athwindev ratings and items are added to the
system sharply declines. The ML-1 and Netflix sets, instdadyot exhibit this anomaly and continue
to grow over time, but appear to do so at different rates.

One of the reasons for this apparent difference is the tiraeglach dataset covers: the ML-1 set,
ranging over215 days, is less than one tenth of the time that the Netflix 36243 days) spans. In
order to account for this difference, we examined how mudih eataset grows per day. In Figures 3.4
and 3.5 we plot how many new users, movies, and ratings appeach day of each dataset. From
this perspective, the two datasets look more similar (difiees between them may be explained by
the relative size of each set). Both have peaks, where a lamigene of users appears in the system.

Similarly, both item plots (Figures 3.4(b) and 3.5(b)) spik the early days of the dataset, when the
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Figure 3.6: Sparsity Over Time For Each Dataset: Netflix ésrttost sparse dataset

incoming ratings are going to items that have not been regéat®. The Netflix data, however, continues
to display accelerating growth: Figures 3.4(a) and 3.4tons that the volume of incoming users and

ratings tends to increase over time.

A changing volume of users, movies, and ratings will affexttedataset’s sparsity and rating dis-
tribution. In Figure 3.6, we plot the sparsity over time aft@rmalising the number of days in each
dataset. All of the datasets are consistently over 90% spdess than 10% of the potential user-movie
ratings exist—but the Netflix dataset remains the sparggétsta maximum value near 99%. The ML-1
set, while being the smallest, is also the least sparser{piallg due to the pruning of users with fewer
than20 ratings). In Figure 3.7, we show how the rating distribusi@ary with time. If we consider the
datasets in their entirety, the absolute ordering of ratisgqual throughout all datasets: there are more
4 star than3-star ratings, mor@ stars tharb star ratings, and a very small proportionlond?2 star
ratings. This seems to imply that people tend to rate what aiready like, but tend to also avoid the
“extreme” ratings { and5 stars). However, the Netflix dataset’s distribution (inu¥ig 3.7(c)) changes:
in the early days of the dataset, there are m3atars thanr stars. Roughly 000 days into the dataset, the
4 star rating overtakes thestar rating. It seems that, at this point, users are respgndore positively
to their recommendations; in doing so, they shift the erdistribution of ratings towards the positive
end. However, as we do not have data to know what recommendatsers were given, we cannot em-
pirically justify this claim. The main conclusion we makeffin these observations is that viewing rating
sets from a static viewpoint does not account for the chatiggseal systems’ data actually undergoes.
In particular, user, item, and rating growth over time iraplthat the amount of information available to
create recommendations (and thusythkiethat different users can draw from the system, and potential
accuracy) at different times will be quite large. Many usenso rate items that have not been rated be-
fore, are not simply responding to recommendations but aragbively seeking to rate items, set rating

trends, and respond to rating incentives [HJAK05, WHO7aMB104].
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Figure 3.7: Rating Distribution Over Time Of Each Datasegtflix is the only dataset with no consistent

ordering between the rating values
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Figure 3.8: Datasets’ Global Rating Mean Over Time, Agaghlighting the stop in ML-2's growth

3.2.2 Changing Summary Statistics

While new ratings are added, any summary statistics cordgtden the available data may fluctuate. In
this section, we consider botfiobal andper-useror itemsummary statistics. We begin with the global
rating means, in Figure 3.8. The means are computed daitg tise entire history of available ratings
to date; we weight all ratings equally, regardless of whay tlere input (i.e., there is no time decay).
All of the means consistently fall betwednand4 stars, but vary quite widely within this range. For
the Netflix dataset, the most notable time segments ared#ferfirst;00 days, where the global mean
rises sharply, falls, and then once again rises, and a#diri1, 500 days have passed, where the mean
begins to grow again. The ML-2 set (Figure 3.8(b)) emphasise relationship betweegrowth and
change when the dataset stops receiving new users (as we saw imghi@ps section), its global mean
stabilises as well.

The standard deviations are shown in Figure 3.9. The Netltix(Figure 3.9(c))—like its global
mean—suffers from high fluctuation in the initial days of tti@aset, and then decreases frond
to 1.08 in a near-linear fashion. In other words, the ratings bectese dispersed around the mean

over time. Given that the mean is betwegmand 4 stars, this translates to a tendency to rate more
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Figure 3.9: Datasets’ Global Rating Variance Over Time
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Figure 3.10: Netflix Rating Median and Mode Over Time

positively. Similarly, the ML-2 standard deviation stoggaaging when its mean flattens. The ML-1
dataset standard deviation is consistently higher thasetie observed in the other datasets; however,
excluding the edges of thal5 days, it remains relatively flat. The peak in the plot coiesidvith the
dip in the temporal mean.

The problem here is that state of the art research does rtot facthis feature of the data. For
example, consider the BellKor solution to the Netflix prizerpetition [Kor09b]; the foundation of the
ensemble of techniques they used successfully to win thepettion was abaselinepredictor, which
includes theglobal rating average a value that, as we have seen, will change over time. Althoug
[Kor09b] does account for temporal changes at the user amddével (by binning the data into sequential
windows of varying size), the global baseline predictionsed as a fixed starting value from which to
build predictions. If we consider the range of values thi ¢fiobal mean takes over time, it seems that
the accuracy of this baseline would vary significantly.

To understand why the mean and variance display such chemggider Figure 3.10, which shows
the rating median and mode (i.e. the most frequent ratingeyalf the Netflix dataset over time. We do

not plot the ML-1 and ML-2 temporal medians and modes, siheg tlo not change: they all remain
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Figure 3.11: Users Binned By Profile Size Over Time

constant at stars. The initial fluctuation in the Netflix mean is mirrot®gda change of the rating mode
from 2 to 4 stars. The mode then reverts and stabilises stars, until it again changes, and remains,
at 4 stars—accounting for the rise of the rating average. Thegahedian behaves very similarly to
the mode: days after the mode jumps to 4 stars, the mediagsises fron3 stars tod stars, reflecting
the surge in the and5 star ratings that are input in this time, and accountinglierachanges observed
in both the mean and mode. A mediandofells us thathalf of the ratings in the system adeand5
stars; however, more importantly, tbbangethe median displays over time reflects that the distribution
of ratings does not remain consistent. As above, it is imptesto deduce from the data why the global
behaviour changed as we see here; changes to the Netflifacgerecommendation algorithm, user

base, or combinations of these may be, but cannot be conftortes the cause.

While it is possible to explore CF datasets from a global pectve, it is important to remember
that the datasets represerdalectionof individuals’ profiles, and that the global state of theadat can
mask the state and changes that single profiles undergox&mpe, as shown in Figure 3.11, if we first
split the users into groups according to each user’'s numhbtiogs, we can then see how the group
sizes fluctuate over time. In Figure 3.11, we bin users into fpoups: (black) those with fewer that
ratings (excluding those who have yet to rate for the firsejinjdark grey) those with0 — 50 ratings,
(grey) those withtb0 — 100 ratings, and (light grey) those with more th&00 ratings. We then plot the
relative group sizes as each dataset grows. These plotighigthhe skewed distribution of profile sizes
over time. In fact, the group of users with fewer thidnratings each may even be under represented in

the data, although we do see that the Netflix prize data iedltice highest proportion of this group.

The above analysis shows that global summary values flectwat time, reflecting how the overall
distribution of ratings shifts as more users interact wlith $ystem. However, many algorithms that are
used for CF do not use global summary statistics, but rattefepto formulate predictions using either
the item or user mean rating values. These values are al$ecstb change, as we show in Figure
3.12, where we plot the average item and user mean ratinggiowe® Each perspective (item-based
or user-based) of the average means falls into a differegeraver time. Interestingly, the average

user mean rating is consistently higher than the avenag@iemean rating; while users tend to rate
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Figure 3.13: Standard Deviation of Ratings Per User Per Day

positively, there are items that are not liked (and thusdré&eser), which pulls down the average item
mean rating. The datasets not only remain sparse, but alsotdsiabilise (with the exception of ML-

2, which stops growing); recommender systems continudoaie to make decisions based on both
incompleteinaccurate andchangingdata, and the range of the changes we observe in the Netféix dat

are likely to have a strong impact on the predictability diimgs.

3.2.3 Temporal User Behaviour

Thus far, our focus has been on the data: how the volume o$ugems, and ratings grow and how
summary statistics derived from them will change. Since reedaaling with explicit rating datasets, the
mere act of rating also reveals how users are interactirtgtivét system. To explore how user behaviour
will vary over time, we plotted the standard deviation of thember of ratings input by returning users
(i.e., users who have previously visited the sytem and irgirigs at least once) per day in Figure 3.13.
The plots show the high variability in how users interactwte recommender system. Both the ML-2
(Figure 3.13(b)) and Netflix (Figure 3.13(c)) datasets Hagaé initial fluctuation in average user ratings
per week; following this, the mean value flattens out. The MHataset, instead, has a more steady
stream of average ratings per user, with small peaks camelépg to days that users (on average) rated

more. Both of the MovieLens datasets have a much higher digge—many of the bars are over 100—
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Figure 3.14: MovieLens: Average Number of Ratings Per W&dikh Standard Deviation)

while the Netflix data (after the initial high period) fallelow 50: it seems that users are proactively

rating more in the MovieLens system.

3.2.4 Daily and Weekly Trends

In the previous section, we observed how user rating behafliactuates over time, by looking at the
entire window available for each dataset. However, thisesaating behaviour can be further summarised
by relating it to the day of the week when the ratings are inppuFigure 3.14 we plot the average number
of ratings input per day for each dataset. Netflix sees itadsgactivity at the end of the week, as more
ratings tend to be input on Thursdays, Fridays, and Satartiean the other days. However, as the two
MovielLens datasets show us, these results are again depgenmdthe subset of ratings available in the
dataset: both ML datasets come from the saystemyet display very different rating activity. ML-1
rating trends tend to be lower during the weekend, with matshgs being input Wednesdays-Fridays,
while the ML-2 dataset shows us the opposite, where momegatare received on Mondays than any
other day of the week.

Since the MovieLens timestamps allow us to know the precisment when each rating was sub-
mitted, we can extract a finer-grained view of user activitgroan average day in the system. Instead
of binning ratings according to the day they were input, wenbd them by hour, and plot the results in
Figure 3.15. Unlike Figure 3.14, the two datasets now shawy sinilar activity patterns: users tend
to rate movies in the evenings, and the lowest volume ofgatappear roughly between 8am and 3pm;
we assume this may be the cause since the majority of thensysters would otherwise be occupied at
work during these hours.

This analysis reflects an important aspect of recommendtesg: the data is being produced by
people who tend to exhibit regular patterns of behaviour. The flaat people are behind the data input
process also bounds the number of ratings we can expect tgphehy a single person in a particular
period of time. For example, it seems unlikely for a persobeable to ratd 00 movies in less than
a minute; moreover, if they were able to input this numberatihgs, we could question the extent to
which this person is providing honest (and thus, not noisy@®9]) values. We will revisit this result

and use this conclusion when we address the problem of reeoihen system robustness (Chapter 6).
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Regardless of how collective behaviour changes over tieefdcus of a recommender system is
to harvest user ratings in order to then generate persedalecommendations for each user. As we
have seen before, this operation relies on the assumptipersistingike-mindednesketween users. In
other words, changes to the data over time are only impoiftémy affect the quality and accuracy of
ranked recommendations. We begin to explore this facefidliowing sections, where we investigate

the extent to which measurable similarity persists oveetim

3.3 Similarity Over Time

The various algorithms that have been applied to collaberfittering contexts operate in different ways,
but all focus on capturing th&@milarity between users or items as content is rated. For examplestear
neighbour algorithms focus on similarity by using explisiinilarity metrics and making predictions
with the most similar items (or users), and factorisatiorthods project item pairs into feature spaces
where the similar pairs will be near one another. In thisieacive explore how measurable similarity
changes over time. In Section 3.3.1, we redefine the siyilametrics on which we will focus. We
then look at similarity from two perspectives: thtic case (Section 3.3.2), allowing us to visualise
the effects of different similarity weights, and tkemporalcase (Section 3.3.3), which explores how

similarity changes over time and the consequences of itgdsin

3.3.1 Similarity Measures

We focus on three metrics: the Pearson Correlation Coeffi¢iegCC), the Vector (or Cosine) Similar-
ity, and the Jaccard distance. The simplest similarity mesbetween two user profiles—the Jaccard
distance—can be derived using information that disregdrelsictual ratings themselves, but considers
two other factors. The act of rating an item is a consciougst@tmade by human users, and represents
a judgmenton a product that has been “consumed” (vieweenksl to, etc.). Therefore, when two users
have selected the same product, they already share a conframacteristic: their choice to consume

and rate that product. This similarity measure disregaagh @ser’s judgment of the item, and weights
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users according to the proportion of co-rated items:
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The Cosine similarity measure works by comparing the ieftetisn of two users’ profiles as vectors of

ratings:
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The PCC aims to measure the degree of agreement betweendvgdaysaneasuring the extent to which

a linear relationship exists between the two users’ hisébratings [HKBR99].
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We also include two variations of the PCC—tiveightedPCC, where users who have co-rateilems

Wa,b =

(fewer than a threshold value= 50 [HKBR99]) have their similarity scaled b¥, and theconstrained
PCC, where user ratings are normalised with the rating socalgoint (2.5 stars) rather than each users’

mean rating—making a total of five similarity measures.

3.3.2 Static Similarity

The intuition behind similarity metrics is that if they arelvsuited to the problem at hand (i.e., finding
good neighbours for users or items) then they will lead téen&NN predictions and, as a consequence,
better recommendations. However, there is a problem witliasiity measures that is best demonstrated
with an example. If Alice’s rating history for five items, orfige-point rating scale, i, 3,1, 5, 3], and
Bob’s rating history for the same items|i§ 1, 3, 2, 3], then the Cosine similarity will be abo0t76.
The PCC will return—0.50, while adding significance-weighting will produee).05. Other methods
will result in equally different values. There is no consaenbetween the different methods as to how
similar Alice and Bob are. Just as the relationship betwelareAand Bob will change from good to bad
depending on how they compute their similarity, selectiiffgoent coefficients will alter the weightings
of all the user-pairs in the community. The relative ordgrir similarity will also change: given three
users ¢, b, ¢), with w, , < w,, . When using the PCC doestimply thatw, ; < w, . Will remain true
when using the Cosine similarity. The similarity valueslwii turn, affect the prediction accuracy and
coverage of the CF process.

We investigated the nature of these different similarityasweres by looking at their distribution over
the full range of available neighbours in the MovieLens-tiadat. We focus on this dataset since, as we
found in Figure 3.6, it is consistently the least sparseijlaiity values derived from this dataset are thus
assumed to be more reliable. We first computed all the cosfiisibetween every pair of users, using all
available profile information. We then plotted the propamtof the total number of coefficients that fell
within a given range (in bins of siZe05) to be able to see how these coefficients are shared out arthong a
the available user pairs in Figure 3.16 and 3.17. The PCdlHliibn has two interesting peaks: one in
the range 0f0, 0.05), and the other betwedn-1.0, —0.95). In other words, a relatively high proportion

of coefficients fall between the two ranges covered by theggs many users are either not similar or
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very dissimilar to one another. Applying significance weigf to the coefficient changes the distribution
drastically, by increasing the frequency of neighbours Wwaee very low correlation. Nearly half of the
user pairs are valued withif0, 0.05), which implies that a high proportion of recommendatiore ar
weighted extremely lightly. The constrained-PCC skewsathiire distribution toward the positive end;
it seems thus that this variation of the PCC will increasesih@larity between pairs of users that may

otherwise have been deemed minimally similar with the saeah&@CC.

On the other hand, the similarity distributions based onJ#eeard distance peakdafor the num-
ber of users who do not share any rated items. The rest of #repadrs all share a positive similarity.
Since this coefficient is derived using the number of coerdtiems that the user-pair share, this coeffi-
cient cannot be negative, and thus a community of recommgindthis scenario will only have positive
links. The Cosine distribution had the largest number offa@ents within a very high range).78, or
nearly 80%, of the community is weighted betwéethand1.0. This is the result of summing the pro-
portion of coefficients betwee(®.9, 0.95), 0.32, and(0.95, 1.0), 0.46. In other words, vector-similarity
weights will favour neighbour recommendations much highan, for example, the Jaccard distance.

Finding that the majority of the population share similaefficients may imply that the population is
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neighbourhood Co-Rated| PCC | Weighted-PCC| R(0.5,1.0)| R(-1.0,1.0)| Constant(1.0)
1 0.9449 | 1.1150 0.9596 1.0665 1.0341 1.0406
10 0.8498 | 1.0455 0.8277 0.9595 0.9689 0.9495
30 0.7979 | 0.9464 0.7847 0.8903 0.8848 0.9108
50 0.7852 | 0.9007 0.7733 0.8584 0.8498 0.8922
100 0.7759 | 0.8136 0.7647 0.8222 0.8153 0.8511
153 0.7725 | 0.7817 0.7638 0.8053 0.8024 0.8243
229 0.7717 | 0.7716 0.7679 0.7919 0.8058 0.7992
459 0.7718 | 0.8073 0.8025 0.7773 0.7812 0.7769

Table 3.2: MAE Prediction Error, MovieLens ul Subset

Dataset| Co-Rated| PCC | Weighted-PCC| R(0.5,1.0)| R(-1.0,1.0)| Constant(1.0
ul 0.7718 | 0.8073 0.8025 0.7773 0.7812 0.7769
u2 0.7559 | 0.7953 0.7903 0.7630 0.7666 0.7628
u3 0.7490 | 0.7801 0.7775 0.7554 0.7563 0.7551
ud 0.7463 | 0.7792 0.7747 0.7534 0.7554 0.7531
us 0.7501 | 0.7824 0.7784 0.7573 0.7595 0.7573

Average| 0.7548 | 0.7889 0.7847 0.7613 0.7638 0.7610

Table 3.3: MAE Prediction Error For All MovieLens Subsets

full of very similar users, but following this same analysgng the PCC yielded quite opposing results.
Once again, we found that the distribution given by eachlanity measure does not agree with any of
the others. There does not seem to be any unifying behavialeseriptive characteristics, in terms of
coefficient distribution, of the dataset, as the method éonguting the coefficients is varied.

Any attempt at finding the “best” user weighting, to date, oaty be done by conducting an anal-
ysis on comparative results of different techniques appieethe same dataset of user ratings; there
is no way of measuring how close these algorithms are to amapanswer. We can, however, pro-
duce a worst-case scenario: we construct a similarity snbised omandom valuesand observe how
accurately this scenario can generate predicted ratingad®tn-based similarity does not use any in-
formation from the dataset to find like-minded peers; it dimp a set of uniformly distributed random
values on a pre-defined range. We thus expected that therepanted on the prediction set would be
devastatingly worse than when any similarity measures wseel, since use of random numbers does
not consider how much users have co-rated items or how meahr#tings agree with each other.

In order to see how accurate predictions are with differentlarity metrics, we measured the
mean absolute error (MAE) of the predicted ratilogdy in the case when a prediction was made. If no
information was available, typical experiments will simpéturn the user mean, and this value is not
used when finding the MAE of the predictions. Since MAE meeastine mean absolute deviation from
the actual ratings, and the MovielLens dataset uses a five-fading scale, the error measures can be

expected to fall betweeh or perfect prediction, andl

We experimented with three ranges of random-similarjty1.0, 1.0), or randomly assigning re-
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lationships so that the distribution of coefficients ovénaler pairs is uniform over the full similarity
scale;(0.5,1.0), i.e. giving all the user-pairs high similarity relationgé; and all1.0, giving all user
pairs perfect correlation.

Table 3.2 shows the prediction error result&@sincreased, when using a subset of the MovieLens
data (named:1). However, as we have seen, prediction results are depeadehe data that is being
used. We therefore cross-validate our results by averabimgrediction error across five subsets of
the ML-1 dataset (namedl, u2, u3, u4,u5). The most accurate results were obtained when predicted
ratings were derived using all of the community member&gast; Table 3.3 shows the prediction results
for all subsets, when using this value.

To our surprise, the results of the experiments using ranrdaloed and constant relationships were
not only comparable to the performance of the correlaticeffaents, but on average they also per-
formed slightly better than the tested similarity measuB2sch results would be expected if there were
a certain degree of homogeneity amongst the community mesniegardless of whether the specific
correlation values agreed or not. A simple popularity-dasEommender, which returns the average
rating of an item (using all available ratings of it) also guoces comparable performance. The average
MAE over all data subsets, in this case0i8182, which is0.04 less than the weighted-PCC's accuracy.

The datasets may be to blame for the results; they may be tal, #mnot representative enough
of a heterogeneous set of users. The MovieLens dataset wedoss comply with the “long-tailed”
characteristic of user-ratings; however, little more isWn of what qualifies a rating dataset as appro-
priate. Repeating the above experiments with the Netfliagkttproduced different results. Nearly all
predictions were not covered, since randomly assigninghieiurs to each user did not produce useful
neighbourhoods. However, if we tune the experiment to atcfuw the larger dataset size by selecting
neighbours randomly from the pool of users who have ratedehethat needs to be predicted, we again
see similar results to the above. These results are anagretist the dominant error measures used
to compare collaborative filtering algorithms may not bdisigint. Traditional similarity-base@NN
cannot be differentiated from the output of random-sinitiyatNN. The results further highlight the fact
that the current similarity measures are not strong enoaghlect the best neighbours. In the following

section we will see that this result persists over time.

3.3.3 Temporal Similarity

An analysis of the distribution of correlation coefficieiftshe community of recommenders may, at first
glance, seem inappropriate, since the coefficient valuk€hange over time, as they are recomputed
with growing user profiles. In this section, we examiraav they got thereby looking at how similarity
between users changes over time.

A useful means of analysing how similarity changes over figni® consider the act of computing
similarity between all users as a process that generategph gn this case, each user is a node. Links to
other nodes are weighted according to how similar the uagrig and (in the case &fNN prediction)
the algorithm imposes the restriction that each node canlimid itself to thek most similar neighbours;

the out-degree of each node is limited. From this perspeatimilarity graphs are @onstrained implicit
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social networkbetween the users in the system. The networkndicit since the users are not actively
involved in selecting who they want to link to, andcisnstrainedsince thek parameter places an upper
bound on the number of neighbours each user can have.

Observing similarity computation as a graph-generatirgg@ss paves the way for a wide range
of analysis that can be performed on recommender systeasjrdy from methods described in graph
theory and previous work on (explicit) social network as&yBA02, MAAQ0S8]. The aim of analysing
the graph generated by a filtering algorithm is to understenvdthe rating data is being manipulated in
order to derive predictions. Furthermore, iterative updaif a recommender system can be viewed as
re-generating the user graph. Changes in the graph whenasmt@ computed will highlight how these
systems perform over time, and give insight into why the peat@rs and methods that can be used to
produce different accuracy results.

In the following sections, we explore the emergent propemif dynamic, temporal user-user simi-

larity graphs, by decomposing the analysis into four sepatages:

e Node Pairs Drawing from the growth of both nodes and rating informatiove explore how
similarity between a pair of nodes evolves over time. Thilygsis allows us to classify similarity
measures into three groups, based on how they evolve th@nslhip between a pair of nodes:
incremental, corrective, and near-random measures.

e Node Neighbourhoods We have already mentioned thatBIN algorithm imposes restrictions
on the graph, by allowing nodes to point to a pre-defined nurabeeighbours. We project this
restriction onto the temporal scale, and observe the litfadif user neighbourhoods as profiles
grow and similarities are re-computed.

e Community Graphs: The last section of our analysis considers the entire conityof users.
We computed properties such as connectness, average pgth, land the in-degree distribution
of links, to find that similarity graphs display the smallweh scale-free characteristic that is
common to social networks. In other words, CF algorithmsdristcally favour some users over
others; we refer to these pswer usersand perform experiments that aim to collect the influence

they exert on the predictive accuracy of #¢N algorithm.

User Pairs Over Time

Based on the way the datasets change over time, we first turat@mntion to how the relationship
between gair of nodes will evolve. The primary concern of collaborativtefing, based on the user
profiles explored above, is to predict how much users wik iggms, in order to offer the top- of
these predictions as recommendations. As reviewed in €ha@ppredictions are often computed as a

weighted average of deviations from neighbour means [HK$R9

Z(’I‘b,i — 7717) X Wgq, b

Paji = Ta + (3.5)

Ewayb

In other words, a predictiop, ; of item ¢ for usera is an average of the set of deviatiops; — 7)

from each neighbour’s mean rating weighted according to the similarity, , between the user, and
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User 1 vs User 30
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Figure 3.18: Similarity Between Usérand30: Similarity depends on how you measure it

neighboum. All methods share the fact that they weight the contributibeach neighbour according to
the degree of similarity shared with the current user: sintj} is central to this process.

As we saw in Section 3.3.2, various similarity metrics offédferent ways of computing similarity
and will equally produce differing values. Despite thisadjreement between similarity measures, one
would expect the similarity between pairs of userctmverge As ratings are added to one of the
two profiles, the similarity measure is computed on morerimfation and should become more refined.
However, some similarity measures do not display this bielayv

We can consider a small example: usérand30 from the ML-1 dataset. We chose this pair of
users since their profiles have a large overlap over time (E38), allowing for an extended view of
their similarity’s progression. If we order their profileentporally, and then iteratively re-compute the
similarity between the two as each user inputs a rating, weotmserve how similarity evolves over
time. Figure 3.18 shows the results of this experiment;im¢hse all measures return positive similarity
between the users. The similarity for all measures begizem@, when there is no overlap between
the two users’ profiles. Once they begin to co-rate itemsQbsine measure skyrockets to nédr,
or perfect similarity. Over time, it very gradually degradeThe PCC measure also displays a large
shift away from zero when the profile overlap begins and thath keturns toward zero and jumps back
up as the overlap increases. Only theCC and Jaccard measures grow slowly, without large shifts i
similarity from one measurement to the next.

This example displays how the similarity between this patér pair of users progresses. In order to
be able to generalise these results, we next aimed to artaysthe similarity of uset’s profile evolves
relative to any other user in the system. There are a numbeays this evolution can be visualised; in
this work we plot the similarity at time, sim(¢) against the similarity at the time of the next update,
sim(t+1). This way we disregard thectualtime between one update and the next, and favour focusing
on how the similarity itself between a pair of users evolvébis method also allowed us to plot the
similarity of one user compared to all others in the datesetye have done in Figure 3.19. These four
images show the similarity of usérin the ML-1 dataset compared to the rest of the communitygisi

different similarity measures. These results are simdahbse we observed between the pair of users
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Figure 3.19: Evolution of Similarity for the JaccardPCC, Cosine and PCC Similarity Masures, Com-
paring User 1 to All Other Users in the System

we examined before.

The first point to notice is that the range of values returngdhle different similarity measures
is not the same; some measures return values betvéemd 1.0, while others report values between
—1.0 and1.0. However, the more important aspect of these plots is thamwee the points have from
the diagonal, or the ling = z. If a point is on the diagonal it means that the similarityen the pair
of users at timét + 1) is the same as it was at timenothing has changed. Similarly, if the point is
below the diagonal then the pair is less similar that it wésitee and a point above the diagonal implies
that the measured similarity has grown. Therefore, thewdcst that these points have from the diagonal
represents the extent to which similarity between the gaanged from one update to the next. As is
visible in the plots of Figure 3.19, the greatest distanoenfthe diagonal is reported in both the Cosine
and PCC measures. These reflect the observations that weeewteen we compared usérand 30.
Furthermore, they are representative of plots we createatfier members of the community; these are
not included here due to lack of space. The way that theseaugtwvolve similarity between a pair of
users follows one of three patterns. This allows for sintyaneasures to be classified according to their

temporal behaviour:
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k COR wPCC PCC Cosine
ML-1 Dataset: 943 Users
1 2.48+£2.3 2.54£2.3 4.94+6.5 10.59+-16.8
10 22.22+16.3 22.18+16.2 25.15+19.9 35.80+41.4
20 42.06+28.6 42.12£27.9 41.73:£26.4 49.88+45.3
100 | 171.80:87.9 | 168.99:83.9 | 156.27467.4 | 159.03:69.9
150 | 237.86:109.4| 230.23t104.9| 216.94:88.6 | 221.16:87.1
ML-2 Dataset: 6040 Users
1 1.69+1.1 1.74+1.2 3.514+3.8 3.16+£5.1
10 16.75+9.3 16.85+:9.4 22.75:19.0 34.68+36.2
20 33.22+17.7 33.33t18.1 40.08£28.2 60.02:54.6
100 | 160.26:79.1 | 160.93:79.9 | 161.68:t77.4 | 187.02:118.3
150 | 236.974-113.6| 237.99:114.5| 231.35:102.6| 255.23:142.9
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Table 3.4: Average Unique Recommenders in Users’ Neightomds

e Incremental: In this case, as we observed with the JaccardieP@C methods, similarity begins
at zero and slowly converges towards the final value. Themiffce between one step and the next
is minimal, and therefore the relationship between a paoafes can be described as growing.

e Corrective: The Cosine method is noteworthy because similarity “jutrfpsm zero to near-
perfect. However, once it has made this jump, the simildréween the pair tends to degrade, as
can be observed by number of datapoints that fall below thgatial on the graph. Therefore, this
measure corrects its result after the initial jump.

¢ Near-random: The last class of similarity measures includes the PCCdisplays an exceeding
amount of near-random behaviour. In other words, if sirtifeat time+¢ is 0.0, or incomparable,
and at time(t 4 1) there is measurable similarity, the PCC returns values theeentire range
of similarity. Once it has made this jump from zero in eitheedtion, it is not guaranteed to be

well-behaved; as the plot shows, it may very well make a largg again.

Dynamic Neighbourhoods
Now that we have observed how similarity evolves betweeniagianodes, we can widen the scope
of our analysis and considesser neighbourhoodsThe importance of measuring similarity of all user
pairs is to be able to create a subjective ranking for eachaigeryone else, and then to pick the top-
to form the user neighbourhood. The often-cited assumpti@ollaborative filtering is that users who
have been like-minded in the past will continue sharing igpis in the future; this assumption has thus
paved the way for learning algorithms to be applied to thélemm of predicting ratings. If we project
this assumption onto a longer time period, we would expeatigs of users to naturally emerge from
the data. In particular, when applying user-ugMiN CF, as we do in this work, we would expect each
user’s neighbourhood to converge on a fixed set of neighlmnstime.

To measure this property, we ran a modified CF experimenirtbiaides the idea of system updates.

The system begins at the time of the first rating in the dataisétis updated daily. While this value
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User 1 Neighbourhood Convergence

Time

Figure 3.20: ML-1 User 1: New Relationships Left Over Time

perhaps corresponds to more frequent updates than mostmesder systems can allow themselves to
perform, it gives a finer-grained insight into the behaviolthe CF algorithm. At each update time, all
user neighbourhoods are re-computed. In this chapter, wetoonsider temporal accuracy, as we are
focusing on the dynamic graph properties imposed by theridgo.

As the users’ profiles grow and neighbourhoods are recordptlie users will be connected to a
varying number of other users. The actual number of neigidibat a user will be connected to depends
on both the similarity measure and neighbourhood size thaséd. If, for examplg; = 1, the user’s
profile is updated 0 times, and at each time step a different neighbour beconeesstr’s top recom-
mender, then the user will me&d unique neighbours: the higher the number of unique recordersn
the higher the volatility of the user’s neighbourhood. EBl4 displays the average unique neighbours
for all users in the datasets.

The first point to note is that the number of uniqgue recommenidenot close td:; in most cases it
is nearly double the size of the allowed neighbourhood. heiotvords, even though a particular value
of k represents the number of neighbours to use when making &poadthe fluctuation of neighbours
over time will be such that about double this value will beenaicted with. For most values &f the
COR andwPCC similarity measures assign fewer unique recommenadesch user, a result that is not
immediately visible when using the average number of neighbacross all users that Table 3.4 does.

Figure 3.20 shows the number of unique neighbours that us@s yet to meet over time when
k = 150; it thus visualises how quickly the change within the usaggghbourhood will play out. As
with the similarity plots, it is the shape of the plotted krthat gives insight into how neighbourhoods are
changing over time: the steeper they are, the faster thasisereting other recommenders. If the lines
were step-shaped, the user would be meeting recommendestaing connected to them for some
time. Steeper lines, however, mean that the user’s neighbod is converging faster, since the number
of unigue neighbours that have yet to be seen is decreaginigct, the Jaccard andPCC similarity

measures also converge to a fixed set of known recommendéegs fa

Nearest-Neighbour Graphs
The last perspective we consider is the broadest view pessiite entire graph of user profiles. We have

already seen that the volatility of each user’s neighboodhie quite large: this implies that the entire
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k Edges | Connected? Max Path| Avg Path| Reciprocity

ML-1 Dataset: 943 Users

1 1750 No 3 1.78 0.08
10 16654 Yes 4 2.63 0.13
100 | 148608 Yes 3 1.83 0.27
150 | 213260 Yes 2 1.76 0.33
200 | 272970 Yes 2 1.69 0.38

ML-2 Dataset: 6040 Users
1 11406 No 5 2.58 0.06

10 | 109438 Yes 5 3.29 0.10
100 | 1055188 Yes 3 2.01 0.14
150 | 1568576 Yes 3 1.96 0.16
200 | 2076112 Yes 3 1.94 0.16

Table 3.5:wPCC+4NN Graph Properties

graph is being “re-wired” each time an update is performdutréfore, in this section, we mainly focus
on non-temporal characteristics of the dataset repredasta graph instead. Since thdN algorithm
determines where the links between users in the graph withiedink positioning gives us the clearest
insight into how the algorithm is manipulating the useingtdataset. Table 3.5 shows a number of
properties of thavPCC+4NN graph, for various values df; we do not include results for the other
similarity measures since they are very similar.

Path Length Table 3.5 reports the maximum and average path length batarey two nodes. These
values were computed using Floyd’s algorithm, based on dirested representation of tA&IN graph.

In other words, we assume that if a link between the pair xisgardless of its direction), then so does
some measurable quantity of similarity. Another curiouarelteristic of the values reported in Table
3.5 is that whilek increases, the maximum and average path between any pade$memains small,
ranging froml.4 to 2.9 hops; in fact, the graph demonstrates small-world progettiat are very similar
to those measured in explicit social networks.

ConnectednessAn analysis of the entire graph, generated using only pesgtimilarity links,
shows that the clusters of users appear depending on thiebreeithood size parametgrthat is used.
Whenk = 1, a number of small clusters of users emerge, regardlessatfsirilarity measure is used.
The different methods only vary on average intra-clustén fength (as explored above); this reflects the
way that these small clusters are shaped. In some casegstidwPCC graph, the clusters are formed
of a group of nodes that all point to the same top-neighbauather cases, such as in the COR graph,
the clusters form small chains of nodes, which accountdi®tdnger intra-cluster path length between
users. The majority of these characteristics disappeav@s &sk is incremented above one. As soon
as users are allowed to point to more than their single moslzsineighbour, the graph collapses in on
itself: clusters are lost and, in most cases, the graph besuly connected.

Reciprocity We counted the number of edges as the number of links beta@das, whether they

be directed or not. In fact, whelh = 1, the number of edges igss thanthe 1x the total number



3.3. Similarity Over Time 65

WPCC: User In Degree k = 100
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Figure 3.21: In-degree long tail @PCC%NN k& = 100 ML-1 Graph

of nodes. This is due to the fact that in some cases, a pairdgspoint to each other; two directed
links turn into a single undirected link, and the pair haveseiprocal relationship. Reciprocity is a
characteristic of graphs explored in social network anslf§NTO06]; in our context it translates to the
proportion of users who are in each other’s fap-On the one hand, reciprocity may be regarded as
a desirable characteristic, since it implies that the geteergraph really does pair very similar users
together. On the other hand, high reciprocity can have dinsequences, as it will prevent information
from being propagated over the similarity graph. The indereciprocity that we use in Table 3.5 is the
number of bi-directional links between nodes over the totmhber of links. The value ranges framor

no reciprocity, tol, where all nodes pairs have reciprocal relationships. Addble shows, reciprocity
grows as the allowed number of neighbours increases, angimsrminimal wherk = 1. However,

it does not grow very much: adding a large number of links whesa incremented froni0 to 100
does very little to increase the measured reciprocity betwesers. This reflects the fact that although
measured similarity is symmetric, this does not imply tratteuser will also have the same rank in the
other’s top#; and this will matter when computing recommendations.

In Degree Distribution We can further observe this phenomenon by consideringrtitegree
distribution of the nodes in the graph. The in-degree of @i@dar noden is the number of directed
links that end on this node; in the context of collaboratiltering this equates to the number of users
who place usen in their top£. Figure 3.21 shows the in-degree of each user intRECENN graph,
whenk = 100. The distribution follows a power-law, much like the dibtition that compares the
number of ratings between different movies [LHCO08b].

The in-degree distribution amongst users brings to lighéw nharacteristic okNN algorithms.
Given a CF dataset and a nearest neighbour pararhetiiere may be some users who a@ in
any other’s topk. Their ratings are therefore inaccessible and, although will be considered when
estimating the similarity between a pair of users, they ndt be used in any prediction. To highlight
this factor, we rarkNN prediction algorithms using the four similarity measivee are focusing on in
this work on the ML-1 MovieLens subsets. Each rating in tlaning sets was coupled with a boolean

flag, which would be set to true if the rating was used in making prediction. We were thus able to
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ML-1 Dataset
k COR | wPCC | PCC| VS

1 | 092| 091 | 0.99| 0.99
10 | 0.59 | 0.59 | 0.95]| 0.95
100 | 0.23| 0.25 | 0.81| 0.85
150 | 0.12| 0.16 | 0.59 | 0.71
200| 0.05| 0.05 | 0.18| 0.42

Table 3.6: Unused Proportions of the Dataset

count how much of the training set remained unused aftenalptedictions had been completed.

Table 3.6 reports the proportions of the ML-1 dataset thahat used for varying values &f The
table does not reflect how many times individual ratings mayehbeen used; it only counts whether
the rating has ever been used or not. As the table shows, ivkewery low, overd0% of the ratings
are not used. In fact, these valuescafenerate predictions based on a very small subset of tméngai
data, which may thus account for why they suffer from lowerumacy and impoverished coverage. As
k increases, so does the use of the training datawiére set to the total number of users in the system
then the only ratings that would not be used would be thoseuseawho has no measurable similarity
to any other in the system. However, a difference betweehétter-performing COR/PCC and lower-
accuracy PCC/VS similarity measures emerges once agakinaseases the former quickly use more
of the dataset in predictions. Whén= 200, only 5% of the training ratings are not used in predictions,
while the VS similarity measure has barely made use of mae tialf of the ratings. The intuitive
benefit of the COR/PCC similarity measures may very well emerge here: they bffeader access to

the ratings in the training set.

The Influence of Power Users

Another observation from Figure 3.21 is that some usershaie an exceptionally high in-degree. We
call this grouppowerusers; by being a frequently selected neighbour, they wileha stronger influence
on the predictions that are made for others. These usergerfrem the use of all the above similarity
measures irkNN graphs. This is a characteristic that appears in othevar&s like the World Wide
Web, movie actor collaboration graphs, and cellular neltaioand is explained in terms pfeferential
attachmen{BAO2]. In other words, when a new node connects to the gréph probability that it
connects to another node is proportional to the in-degrebatfnode. In the context of collaborative
filtering, therefore, it it important to understand the effihat generating a nearest-neighbour graph with
power users has on the performance of the algorithm. Weftirerean two separate experiments. In the
first, we forced all users’ similarity with the top-power users to b@: in effect, removing their ability
to contribute to predictions.

Figures 3.22(a) and 3.22(b) are the 5-fold cross validatiean absolute error and coverage results
when removing a varying number of power users, for diffevafies ofk. As power users are removed,

both accuracy and coverage worsen, although even We(out of 943) profiles are made inaccessible
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Figure 3.22: Results When Excluding or Exclusively UsingvBoUsers

accuracy is still within0.78. It seems, therefore, that the remaining non-power usersstith make
significant contributions to each user’s predictions. Bhesults reflect the dependency that accuracy
has on the number of users in a system, another relatiortghtipdmains unexplored.

We followed this experiment by performing the inverse. Fag.22(c) and 3.22(d) show the 5-fold
cross validation accuracy and coverage results vaméythe top+ power users are allowed to contribute
to predicted ratings; if a neighbour is not a power user, a senilarity value is set between the pair.
The early spike in the plot is explained as follows: makingdictions by simply returning each users’
mean rating outperforms using only the topmost power usarealbut accuracy quickly returns to the
same as when no users have been removed from the datasePwhereases; in other words, there are
some user profiles in the dataset that do not contribute &b &tle overall performance. The coverage
plot shows a potential reason why these users are power. tisers) topmost power users hold access

to over50% of the dataset.

3.4 Summary

In this chapter, we have examined the temporal charadtarist recommender system data, from the

perspective of the ratings, users, and items. We have odxséow the way people use recommender
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systems changes over time: new users and items are addedjitiuedistribution and both global and
per-user/item summary statistics change. In other wall$eatures of the data that are used to make
predictions in state of the art algorithms will vary with &#m

We also performed a graph analysis of inter-user similafitgluding the changes that appear
throughout these graphs as time passes. The evolution dastynbetween any pair of users is dom-
inated by the method that is used to measure similarity, hadfdur measures we explored can be
classified into three categorida¢remental, corrective, near-randgrbased on the temporal properties
they show. The number of unique neighbours that a particiger will be given over time also depends
on both the similarity measured and paraméteised; furthermore, the rate at which they meet these
new neighbours will vary for different similarity measurédeasures that are known to perform better
display the same behaviour: they @ameremental connect each user quicker and to fewer unique neigh-
bours, and offer broader access to the ratings in the tis@t. The focus here, therefore, is on the
emergenstructureof the graph using the MovieLens dataset.

In the following chapters, we shift our focus toward the temgbperformanceof CF algorithms.
Collaborative filtering algorithms have traditionally Imeevaluated by: (1) splitting a dataset of user
ratings into training and test sets, (2) feeding the trajisiet into the learning algorithm, and (3) querying
the algorithm for predictions of items in the test set. Ea#ibns are then conducted by comparing the
predictions to the actual ratings that were withheld in #st $et. There are two problems with this setup:
both themetricsandmethodologyin their current form, are not suited to a context in whiclkeguence
of updates is required. We therefore first define a methogdtogperforming temporal experiments and
examine how the changes to the data observed here affect¢beaay of rating predictions (Chapter
4). We then evaluate the temporal diversity in recommendatproduced by changing data using novel
metrics (Chapter 5). Lastly, we use the regularity in useesiaviour to construct systems that are robust
to attack (Chapter 6).



Chapter 4

Temporal Accuracy of Collaborative Filtering

The primary task of a recommender system is to take usegsaéind predict the values that users would
attribute to content they have not rated, in order to gergratsonalised ranked lists of recommenda-
tions. Intuitively, the changes in the rating datasets Wahave observed in the previous chapter will
affect the performance of any learning algorithm that isaitieely retrained with the user ratings. In this
chapter, we explore the extent to which this intuition istrwe first define a methodology for perform-
ing collaborative filtering temporal experiments and dgsca variety of design decisions that we made
by reporting the results of two case study experiments {@edt1). We then perform and analyse a set
of cross-validated temporal experiments with the Netfltad&ection 4.2). The key observation that we
make is that state of the art filtering algorithms that areilady batch-updated are not aware of their
own temporal performance; we thus hypothesise that intioduthis feature will improve an algorithm’s
temporal accuracy. We test this hypothesis in Section 4c&Rigning and evaluating a hybrid-switching

CF algorithm that modifies how it predicts user ratings adirgy to its performance to date.

4.1 Measuring Temporal Performance

At the broadest level we consider a scenario where, givemattiwe will train the CF algorithm with

all ratings that have been input priort@nd want to predict the ratings (or a subset theoreof) thiait wi
be inputaftert. We then require a means of tracking performance over timthi$ section, we examine
the range of choices available when designing an experithahinimics recommender systems that are

updated.

4.1.1 Simulating Temporal Updates

Our generic description above prescribed a method fortitetyg retraining CF algorithms. The simu-
lated recommender system begins at tiérend will be updated at different timés When an update
occurs, the CF algorithm is retrained with the currentlyilatéde ratings and then it derives predicted
ratings of unrated items in order to present each user witbopalised recommendations. There are a

number of challenges that we face:

1. Starting Point: When should we begin the train-test cycle? If we begin afiteavailable date
in the dateset, we will be making predictions with no ratitg$earn from. In other words, how

many ratings are enough to bootstrap a recommender system?
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2. Updates how often should the system be updated? Should we retraimlgorithm with all
ratings input prior to the one we would like to predict? Orusldcahe system be updated at some
predefined regular interval (daily, weekly, monthly)?

3. Test Sets how are they to be defined? By retraining CF algorithms wighaaving dataset, we are
simply performing a sequence of updates where the traireb@as been augmented. However,
what should we be predicting? The test set could Iséatic set of ratings that will be input in
some arbitrary time in the future, orchangingset of ratings based on what will be rated after the
current update. Unlike the traditional methodology, we rabsp encounter a situation in which
multiple predictions can be made for a user-item pair betfoeeuser rates the item. For example,
if we are updating the system weekly, predicting all unrétieyahs, and a user will rate an item one
month after the current update, then we will make four priéoiis of the same rating prior to the
user rating the item. Should they all be included in error sneaments? If not, which one is the

mostrelevan®

We explore these questions in Section 4.1.3 by comparingethéts of different experiments; however,

we first define the options available to measure temporakacgu

4.1.2 Metrics: Sequential, Continuous, Windowed

In terms of prediction error, there are three ways that a fsetammmender systems’ temporal updates
can be evaluated. The first issequentialview, where we compute the RMSE on each experiment
separately. The alternative is thentinuougime-averaged RMSE metric. To observe the dependence
of prediction error on time, we modified the RMSE calculationa manner akin to that of the Time
Averaged Rank Loss that is described in [CS01]. If we defipas the set of predictions made up to

timet, then the time-averaged error is simply the RMSE achievetti@predictions made so far:

Ao 'Fu,i — Tu,i 2
RMSE; = \/ Z’“”'ER‘|(R | ) (4.1)
t

Similarly, we can define the time-averaged mean absolube VIAE):

Yi=o|fui — Tuil

MAE, = T
t

(4.2)

The last possibility is thevindowedview. Error is accumulated and tracked using the contineous-
tions above, but once an update has been performed, we hhesetror count to zero. This allows us
to see how prediction error is distributed within a singlelat@: are predictions more accurate imme-
diately after the update? Do they become less accurate aptsses (since new ratings have not been

accounted for in the CF algorithm)?

4.1.3 Case Study

Prior to committing to a particular methodology, we expltre options available by running a number
of experiments. In the first, we focus on a single user fromMiogieLens dataset; we then expand our
analysis to include all of the MovieLens users. These erpanis allow us to reason about what choices

to make regarding the experimental starting point, upd&guiency, and predictions. Lastly, we run a
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Figure 4.1: User 407: Three Views of Temporal Error

group of experiments that look at temporal updates wititagic test set and conclude that, while this
form of experiment does not reflect the reality of recommegistems, they provide important insight

into the influence of rating data on prediction performance.

Single User

We begin with a single user; we picked the ratings of U$&rfrom the ML-1 dataset since they span a

relatively lengthy time scale. We also make the followingLamptions:

e The system will be updatediaily; at each update user similarity is recomputed with all ggin
input to date and predictions are made for any ratings thihteiinput before the next update.
The first update occurs exactly one day after the first rasnigput to the system. This allows
us to (a) minimise how far into the future we have to predicti$t minimising any bias that may
result from this) and (b) have a very fine-grained view of t&team.

¢ Predictions will be made by a user-basedN algorithm, wherek = 10 and user-similarity is
computed with the Pearson Correlation Coefficient. We foeeeuse a simple algorithm which

has been extensively studied in the past [HKBR99].

We plot three temporal perspectives of the error in preaictiser407’s ratings in Figure 4.1. Vertical
gray lines in Figures 4.1(a) and 4.1(b) denote when the systas updated; each point represents the

input of a successive rating. From these, we can make a nushbbservations:

e The user does not rate items consistently; for example,uh&er of items that were rated before
the first update are far greater than those input before tunse

¢ All ratings input prior to the first update have a distinclyde error. From the algorithm'’s per-
spective, there is no data to use to predict this user'saater Thecold-startproblem is often
described as an issue that users Vi@ ratings face; what we observe here, where the user has
no historical profile, is an extreme version of it (i.e., hadratings to generate a neighbourhood at
the previous update and no mean rating value to provide amppate baseline prediction). Fig-
ures 4.1(c) and 4.1(b) show that the cold start region lagikthe next update; unfortunately, the
time-averaged results in Figure 4.1(a) are skewed thrauighe entire duration of the predictions

by these initial predictions (the plotted error is on thegaj2.5, 4]).
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Figure 4.2: ML-1 Dataset: Three Views of Temporal Error

e Prediction error does not improve over time for this useke filme-averaged results seem to imply
that predictions are improving; however, as stated abtng jg due to the skew from the initial
predictions. After the cold-start day, the error of preidics made in any given window range lies

between slightly above 0 to just under 2.

We thus find that the time-averaged metric will only be appaip if we do not include cold-start
predictions. The windowed and sequential metrics do ndesfriom this problem; in fact, they have

already highlighted the large variability in predictiorcacacy as time passes.

Groups of Users
Based on the observations above, we broadened the scope@fghriment and included all the ML-1
users. This way we can view the same results as above foreadangp of users: we plot these in Figure

4.2. The results highlight a number of points:

e Again, the time-Averaged RMSE is of little value if we inckidold-start predictions. As above,
users face the cold-start problem when they have no hislaiétings; they thus have no mean
rating value or neighbours. Our options here are to (a) ryaulif prediction algorithm in order
to return an appropriate non-zero prediction for coldtstsers, or to (b) disregard cold-start
predictions. Since the cold-start problem has been appeshfrom a variety of perspectives
[NDBO7, PPM06] we opt for the latter in this work rather than limit ounses to a single available
solution.

e The windowed perspective (Figure 4.2(c)) shows that imtieidow behaviour does not follow a
single pattern. There are some windows that, as they pregresome ever more accurate; there
are also windows that become less accurate as time passesvétoeach window is distinctly
different from the others: how many ratings are input, aleth what items are being rated,
continuously changes.

e The sequential view (Figure 4.2(b)) is a summarised formhefwindowed perspective; each
point represents thaverageerror of each window. In fact, since our prediction modelpslated
iteratively, the windowed results (Figure 4.2(c)) will bebgect to the order that ratings are input.

The static and time-averaged views, instead, are both mjgcLto this limitation and useful for
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measuring performance across updates.

Predicting Static Test Sets
How should we define our test set? We can either keep the tefiks# and only change the train-
ing set, or update both as the simulated temporal updatgseafermed. In the context of a deployed
recommender system, we assume that the prediction thahbageatest impact (in terms of the rec-
ommendations generated for each user) is the last one méate bige rating is input. Why? Changes
in the predictions as they are updated will affect each sasecommendations: when users rate items,
only their current recommendations (i.e., ranked prealictialues) will be influencing their decisions.
Therefore, at time (with update frequency), we decided to only make predictions for ratings that will
be input int + u; no predictions are recomputed or updated for ratings Heatisers have already input
or will input aftert + u. In other words, predictions are only made once. This mégdifom deployed
recommender systems, that do not knetvenusers will rate items, and will therefore not be able to
update predictions until the user inputs a rating. Howeadescribed above, this allows us to focus on
the predictions that will have the greatestimpact on a usemahey are rating an item. In the following
chapters, we will remove this assumption when we evaluaéo-V lists created over time.

The alternative to the above would be to keegtatic test set. In other words, we define an (un-

changing) set of ratings that we would like to predict, andesie the prediction error as we add more
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data to the training set. This allows us to explore how préaticquality varies with time from the op-
posite point of view of the above: we can see the performamagectory of the system as it approaches
the state where the user will rate the predicted item. Wel titiées setup with the Netflix dataset: we
first made a static test set, consisting of all ratings inpthe first fifty days of the dataset, and reserved
the rest as training data. We selected the ratings from the(fither than last) fifty days since this
guaranteed that the items we are predicting will alreadylibe system and will continue to be rated in
the training data. We selected four CF algorithms: two hasgirediction methods (the user and item
mean), an item-basgdeNN with &£ = 50 neighbours, and a SVD witbd user and item features; this
range of choices both reflects state-of-the-art CF and eactipmlate the rating data in different ways.
We then iteratively trained each algorithm with a growintpdat, incrementing it with one week’s worth
of ratings at each round. The choice of one week incremeitbirary; in our case, it allows for a rel-
atively high number of ratings to be added to the training &éten that we used the Netflix dataset for
these experiments (which spans a longer time frame), thigelalso requires fewer iterations of the
algorithms to be run. After each training phase, we quehedtgorithms for predictions of the test set,
and plot the time-averaged RMSE results in Figures 4.3 ahdAl of the results share common traits:
on the left side of the plots, where very little training dstavailable, RMSE values are very high. These
results hint at the fact that when more training data is alséél CF algorithms will be able to make better
predictions. Each prediction method’s results shows wififeamounts of variability; the most notable
is the user mean, which has very clear changes in perfornveinee the test set users add more ratings
to their profile. However, all of the methods’ best predinsavere made prior to the full training data
being made available to the algorithms. Even the SVD, withSBMesults that seem to decrease mono-
tonically over time, hits a minimum value before all the dates been given to it. All of the minimum
values occur at different times, highlighting how prediatalgorithms will each be affected in different
ways by the available data, and any noise within it [APOOQ9].

The purpose of these experiments was to see how CF accuiaéydted by a growing training set,
from the point of view of a fixed set of ratings that need to bedpsted. In practice, these results show
us how accuracy will vary as predictions for unrated itenestgpdated. For example, assume that a user
does not rate a movie for one month after it becomes availalie system does not know when the
user will rate the item and will thus continue updating itegiction until the true rating is input. These
results show us that the prediction (which determines wérath not the movie will be recommended)
may suffer from high variability and will not necessarilypnove as time passes. Deployed recommender
systems, however, do not have the luxury of having a clostdé&t: as we saw in Chapter 3, the available
items will continue to grow over time. Real systems will tthesve to face alynamictest set: they
continuously have to predict the future. In the followingtiens, we perform experiments reflecting this

context; we begin by explicitly defining how we will do so.

4.1.4 Methodology

Based on the exploratory work we reported above, we define imw we conducted temporal experi-

ments. Given a dataset of timestamped user ratings, aistar¢ and update frequengy, we define:
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1. Starting Point: we define the starting time asnd elected to wait for an arbitrary number of days
before beginning the train-test cycle; this allowed us tsesbe a system that (in terms of number
of ratings) is not suffering from system-wide cold startlgeoms. We denoted this number of days
as the “edge.” In the Netflix experiments below these are atiggs input in the firs500 days of
the dataset; our data thus allows 56 temporal updates.

2. Updates we elected to update the system based on accounts of ddéoge-scale recommender
systems [Mul06]; the system will be updated weekly. Whes itijpdated, it will train with all
ratings input up to the current time.

3. Test Sets After each update, the system will be queried for preditiooncerning ratings that
will be entered before the next update, only if both the usel i'em have at least historical
rating. We thus still expect to see how our algorithms copé thie cold start problem; however,
this assumption will remove the need to define a default ptiedi to return in the case of no

history.

This setup has two implications, due to the temporal streafithe dataset: on the one hand, the number
of historical ratings (or training set) will grow @sncreases. On the other hand, the number of ratings in
t+ u (the test set) will also increase, as plotted in Figure 4.5.ihteresting to note that pruning the test
sets of items and users who have no history tends to exclude ssers more than others. Figure 4.5
includes two plots that highlight this feature. Figure #)xhows the average number of ratings pruned
per user; these ratings are pruned from the test set sineesénés rating movies that have no historical
ratings. Figure 4.5(c) shows the equivalent distributmrtfie movies; these show ratings excluded from
the test set because they are the first ratings input by eachliss highlights an important characteristic
of the data set: there are certain users who are consistatitlg items that have never been rated before
(items that have no data available for them to be recommé@neead seem to be exhibiting behaviour
that extends beyond merely responding to recommendati®i$R04]. There are also movies that
consistently appear as users'’ first rating, which may gis@im into what recommendations Netflix was

offering to new users.
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4.2 Results

We now evaluate CF algorithnower time as they are iteratively applied to a growing dataset onggti
In order to cross-validate our results, we subsampled thigidNeataset. To do so, we split the users into
50 bins (according to profile size) and randomly selecte@b0 users from each bin; by repeating this
process, we produced five subset$@f000 users. We then selected all ratings belonging to these users
and any rating input before time Our final subsets have abdift, 000 users: setting thevalue as we
did is equivalent to bootstrapping a recommender systemWit000 users.

We focus on three algorithms: Potter's bias model [Pot08],itam-basediNN (with & €
{20, 35, 50}), and a SVD with64 user and item features. In doing so, we cdwaselinenodels, the ever-
popularnearest-neighboumethod and dactorisationbased approach, which represent three different

and important state-of-the-art algorithms.

4.2.1 Sequential Results

The sequential results for the bias model, KNN witk- 20, 50, and the SVD are in Figures 4.6 and 4.7.
From these we can observe that CF algorithm performanceti@sangeof values. The = 50 results
fall in [0.9193, 1.034], while the range fok = 20 is slightly worse,0.9383, 1.0608]; nevertheless, the
ranges overlap significantly. However, while the bias mangperformed bottkNN methods on the

probe [LHCO9b], its temporal performance is betwd®ehl 86 and1.0637: at best, it shows a minor
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improvement ovek = 50, while in other cases is outperformed by= 20. Similarly, the SVD val-

ues range betwedf.8907, 1.0061]; while achieving the best minimum, that values are not ciestly
lower than the other algorithms. The performance acrossielhods falls by approximately.02 be-
tween the218th and219th update, highlighting a change in tatathat results in all methods degrading

in performance. While the trend between the different potsughly similar, the precise moments that
each algorithm performs best (or worst) differs betweemeaethod. BothkNN methods achieve their
lowest RMSE on thé86th update; howevek; = 50 yields its worst performance on tid0th update,
while the equivalent fok = 20 happens at thé2nd update. The bias model achieves both the best and
worst performance within the fird updates. The SVD, instead, hits its minimum on &tfe update,

and maximum at it89th update.

What do we learn from these results? Viewing the sequenceMBRresults emphasises the
difficulty of identifying which algorithm outperforms thetlters. Ranking the algorithms according to
performance is dependent on what snapshot of the data isntiyrbeing trained with. However, the
k = 50 parameter was more accurate thkas: 20 in 248 (of the 250) iterations. Similarly, the SVD is
more accurate than thie= 50 kNN for 245 updates. The balance betwder- 50 and the bias model is
not as one-sided: the bias model is more accurate in abotthtves of the updated §8), while in the
other91 cases thé&NN model is more accurate. In other words, while it is pogstbl deduce relative

performance based on a set of results, the best performitigpohan anyindividualtime segment varies.

4.2.2 Time-Averaged Results

The time-averaged results Bffold cross validated experiments are shown in Figure 4B4f. This
visualisation provides a different perspective on the @rpental results, and there are a number of
observations that can be made. Figure 4.9(a) shows:that0 tends to outperform = 20 over time.

We also tried experiments with = 0; in this case the current item mean is returned. All values of
k # 0 consistently outperformed this baseline; this resultipers$f the currenuser (rather than item)
mean rating is returned. The difference in time-averagefbpaance of eackNN parameter setting is

less thar0.02, and remains approximately constant afteribh system update. The performance itself
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varies: after th&0th update predictive accuracy wanes. However, aftedfiteh update performance
once again improves, falling sharply by 3% in the casé ef 50. This highlights the dependence that
these methods have on the data they train on.

Figure 4.8(a) plots the time-averaged performance of the fmiodel. The bias model with variance
scaling is consistently outperformed by the model that lagamiance adjustment. The differences in
performance are in the ran¢®03, 0.1]: scaling user ratings with dynamicvariance introduces more
error to the predictions. Why do the probe and temporal tegliffer? One indicative factor is the
difference in the rating distribution over time; users wighver thanl0 ratings make up more than half
of the dataset for most of the interval we consider. Howewely 3% of the users remain in this group
when considering the entire dataset. The majority of the wesgance values, in the temporal case, are
therefore computed with incredibly sparse data.

Comparing Figures 4.9(a) and 4.8(a): although the bias hmdperformsiNN when predicting
the Netflix probe, it does not consistently outperfatMN on the temporal scale. For example, in the
4th update, the bias model time-averaged result@4, while the kNN result is0.964. From these
results, kNN with k£ = 50 emerges as the most temporally accurate method. Howevedsovexplored
how prediction error is distributed across a communitindividualsby, once again, splitting users into
groups according to profile size and plotting the groupfeld cross-validated time-averaged perfor-
mance. As expected, group performance is proportionaldaahge of ratings that defines the group:
the group of users who have fewer thHhratings also have the least accurate predictions, compared
the groups with more ratings. However, as shown in Figuré, ¢hek value performance in the group
with fewer than10 ratings is the opposite of what we observed when all groupe weerged: larger

neighbourhoods leads tessaccurate results.

4.2.3 Discussion

The above results provide insight into a number of chareties of recommender systems. The fore-
most observation to be made is that recommender systemetdreitt to beawareof their own temporal
performance. Each update is treated independently of 8ie alyorithms are retrained with all of the

available data, and no changes are made based on the temppdoamance to date. The experiments
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also show the range of results that algorithms produce: glesenapshot of algorithm performance is
not sufficient to conclude that one algorithm is indeed memieate than another. In fact, there is often
no consensus between the method that produces theglobst performance and that which best suits
each user

These conclusions led us to formulate the following hypsithecollaborative filtering algorithms
that modify how they predict user ratings (®yitchingalgorithm [Bur02] orupdatingparameters) based
on their temporal performance will be more accurate thaordlgns that do not. In the following

sections, we test this hypothesis by designing and evalyisgimporal hybrid switching algorithms.

4.3 Adaptive Temporal Collaborative Filtering

Currently, prediction methods are applied iterativelytees data grows; the only change from one step
to the next is ratinglata that is input to the algorithm. In particular, no information the current
performance is fed forward to the next iteration of the alfpon. We therefore propose temporally
adaptivecollaborative filtering, which will make use of this infortia@n to change the algorithm that is
used at each iteration. There are two adaptive methods thaxplore and evaluate. The first selects
between different algorithms (Section 4.3.1), while theosel is based on only adaptiafjlN (Section
4.3.2) or SVD (Section 4.3.3) parameters.

4.3.1 Adaptive CF

To implement temporally adaptive CF, we begin with a prerdefisetP of CF algorithms. In this work,

the setincludesNN, with k = {0, 20, 35, 50}, and the bias model. A = 0 value disregards neighbour-
hoods completely; in this case we can either return a basiédim ¢(¢)) or user §(u)) mean rating (there

are six candidate methods altogether). Each udsrassigned a labdl,, ; denoting which algorithm

L best predicts their preferences at timeAt each time step, each user also has a corresponding error
valuee,, ; denoting the time-averaged RMSE achieved on the pred&titade to date otie individual
profile. We therefore aim to minimise the per-usgr; value by selecting thé < P that would have

DLyt &= u.t — M Eu t 43
vu L Jt+ max (6 R R S R ) ( )

Although the previous analysis binned users according ¢dilprsize, and demonstrated that relative
performance varies depending on the group being consideredid not opt to adapt based on which
“group” users belonged to. We did this for two reasons: fite, grouping was done with pre-defined
values that could themselves benefit from fine-tuning; salgothis form of grouping continues to mask
the predictive performance andividual profiles, and the aim we envisage for adaptive filtering i€bas
on addressing users’ profiles individually. In doing so, @ algorithm that provides personalised
recommendations becomes itself personalised.

The five-fold cross-validated time-averaged RMSE resultstie adaptive method are plotted in
Figure 4.10(a), compared to the two best individual methétN with £ = 50 and the bias model. As
the plot shows, the adaptive method begins by following tiraes pattern as theNN curve, but then
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(as the bias model becomes more accurate) departs fromatiesrpand becomes more accurate than
either model alone. In fact, adapting on a per-user basisffetter temporal accuracy than if we simply
selected the minimum of the two methods. We also plottedgaéi 4.10(b) the proportion of users who
select each method over time. The results show that, wtelbittss model dominates the others (in terms
of the proportion of users that the algorithm selects the biadel for), it is selected for less than 30%
of the users: no single model ‘best’ predicts the majoritgd users.

To gain insight into how often the algorithm needs to chandedasion it had previously made, we
plotted the proportion of users who, during the update, ghdralgorithm from the one used during the
previous window (Figure 4.10(c)). Overall, very few of theging population of users changes method
from one update to the next; the change is consistently leetwie3% and 14.3% of the growing user

community, and on averagedsl + 1.6%.

4.3.2 Adaptive KNN

While the above method offers greater accuracy, it has twaebmings. First, it iexpensivemultiple
CF algorithms must be implemented and independently tdaiteeach update on the growing data.
Given the volume of data that large scale recommender sgstarst handle and the time it takes to train
CF algorithms [Mul06], repeating this process with mukigllgorithms may be prohitive and difficult
to scale. However, if the cost can be incurred, and the godbofg so is to heighten accuracy, then
blending the predictors (rather than switching betweemihgill offer better results. In fact, one of the
first lessons to be learned from the Netflix prize is that gmeatcuracy can be achieved by blending a
wide variety of predictors; the grand prize solutions cameli hundreds of predictors in order to surpass
the 10% improvement goal [Kor09b, TIB09, PCO09].

In the interest of scalability, we therefore also exploredethod that only tunes tHeNN parame-
ters. To do so, we first select a subset of potertighluesP C N. In this work, P = {0, 20, 35, 50}.
We then proceed to set a valkg, € P for each user at timet. When new users enter the system,

their k,, ; value is bootstrapped to a pre-determined membé?.cofhe idea is for each,, ; to be set to



4.3. Adaptive Temporal Collaborative Filtering 81

Adaptive Temporal RMSE Strategy Selection Users Changing Parameter

3 b(i) 3

k20

o WM

T T T T T T T T T T T T T
0 0 100 180 200 280 0 50 100 180 200 250 0 50 100 180 200 250

Time-Averaged RMGE
Proportion Per Strateny

Proportion Ghanging k

System Update Syster Update Systern Update

(a) AdaptivekNN (b) Userk-Value Proportions (c) User Change Proportions

Figure 4.11: Time-Averaged RMSE Comparihg= 50 and Adaptive kK = «) kNN, Proportions of
Users Who Selected EaghValue Over Time, and Proportions of Users whaés¥alue Changed At

Each Interval

that which would have provided the steepest improvemenhemserse,, ; value in the last time step,

just as shown in Equation 4.3:
Vu: ky i1 = Il?ealg( (eut — RMSEy+) (4.4)

It is important to note that this parameter update methoddependent of the particular flavour of
kNN that is implemented. In other words, it is equally appbiesto both the user-based and item-based
approaches; for example, if the item-based approach iscimghted (as we have experimented with
above), then a predictiofy, ; of item ¢ for userv is done by aggregating ratings ysimilar items

It could also be applied to the user-based approach, whedigtions would aggregate ratings fram
similar users We still aim to optimise performance on a per-user basis.

The results are plotted in Figure 4.11. Figure 4.11(a) coewptoe five-fold cross validated time-
averaged RMSE results of the bedbbal parameter settings(= 50) and the adaptive technique. The
results highlight a number of benefits of adaptive CF. Inipaldr, the adaptive strategy at first rivals
the performance of = 50, but then improves the overall time-averaged RMSE, withiequiring any
manual parameter tuning. In these runs we opted for the trappsng setting to bé = 50, since it
performedwvorstwhen predicting users with very small profiles, as plotteBigure 4.9(b) (we thus are
considering a worst case scenario). It will thus tend todliaatage new entrants to the system; however,
we still can see an improvement in temporal accuracy. Clatmthe bootstrapping value affected the
first number of updates, but, after a number of updates, @aVatues we tested differed in performance
by less thar).001; they all outperformed = 50.

To explore how the different parameter settings are disteith amongst members of the system
over time, we plotted the proportions of current users wheetedopted each setting, shown in Figure
4.11(b). From this, we see that users do not converge to &egdagameter and moreover, the dominant
strategy (selected by up to 40% of the current users) is tbelina item mean, followed by = 50, the
user meank = 20, and lastly35. The most selected method, when operating alone, was temys

outperformed by all othek values. However, it plays an important role in providingages temporal
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Figure 4.12: Time-Averaged RMSE Gain of Adaptive-SVD Wittif€rent Subsets of Parameters

accuracy to the adaptive case.

The method we have outlined allows thevalue for each user to be updateceaeryinterval. The
k value is changed if a different value would have yieldeddygiredictions at the current time; it is
possible, therefore, that thisvalue would continuously fluctuate without finding a stabiéue. To
explore this possibility, we graphed the proportion of ssghochangeneighbourhood size over time
in Figure 4.11(c), and found that only a very small propartid the user neighbourhood sizes are being
changed at any given update. On average, only 2% of the ¢wsens change neighbourhood size; at
most, 6% adopt a new size for the next interval. While thissdwoat imply that users are converging and
remaining on the optimal strategy, it highlights the prdjmorof users with parameten®t set to the best

member of P.

The improved accuracy of adaptik®N comes at little cost: the computational overhead is min-
imal. The cost of computing predictions remains the sanmmeesifor example, the computations for
both thek = 20 and35 predictions for a user-item pair are contained within thespiired to compute
k = 50. User profiles need to be augmented to inclugehe error achieved to date, and a set of error

values that each has achieved in the current time step.

While the notion of adaptive-CF has been applied heremaporalcollaborative filtering, it can
also be applied to the static case. In the latter contextptbblem is that of determining appropriate
k values in a single step. We leave a full analysis of adaptivénChe static case as a topic of future
work; however, here we explore the potential for improvenisnreporting the results of theptimal
case. GivenP = {0, 20, 35,50}, if we select the optimal parameter setting for each usesuaig
full knowledge of the RMSE each method produces for each) user probe RMSE would be.8158.
This error lies below the threshold for the Netflix prize, dadichieved by adaptively selecting from
5 technigues thatlone come nowhere close to this mafurthermore, there is no single method that
dominates over the other@2% selectk = 20, 12% opt for k = 35, 14% selectk = 50, 24% the
item mean, an@6% the user mean rating. Interestingly, the two baseline (mating) based methods

together compose half of the users in the dataset.
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4.3.3 Adaptive SVD

In the previous section, we showed that the neighbourham sarametek can be selected from a
predefined subset of candidates and updated over time im wré@prove the system’s time-averaged
performance. A natural question to ask is whether this tiggtenis bound to how th&€NN algorithm
works, and whether the general principle of parameter @pdased on temporal performance can be
applied to other CF algorithms as well.

In order to investigate this question, we turned to SVD-H&3E. As introduced in Chapter 2 (Sec-
tion 2.2.4), SVDs are given a paramefethat denotes how many features will be used to describe the
users and movies once they are projected to a lower dimeaisSpace. While nonparametric versions
of this algorithm have been explored recently [YZLGO09], weds on the family of SVDs that are ini-
tialised with a predefined value ¢f In our case, we ran an experiment wh¢re- 96. We also output
all predictions for anyf in P € {56,64,72,80,88,96}); a number of arbitrary parameters, selected
S0 as to be evenly spaced from each other (they are, in fachudtiples of eight). Note that we do
not recompute the user and movie feature values with a nesnper, but simply output a number of
predictions, where each uses a varying subset of the fesatoraputed withf = 96. We then repeat the
same update process that we implemented above; this tisteah we select (for each user) a futgire

value based on the one that is currently performing best:
Vu i fur41 = max (eyt — RMSE, ) (4.5)
, ey

In this case, we take our baseline to be the predictions ctedpusing the full (96) user and movie
features, since any hybrid switching approach will selectmove away from the full feature matrix
toward lower valued parameters. We also varied the rangevalues we allowed in the full s€?, in
order to test the effect of excluding the smaller memberB.ofVe tried P, € {56, 64, 72,80, 88,96}),

P, € {72,80,88,96}), P; € {88,96}): the results from these three experiments are plotted iarEig
4.12. In order to highlight how much we gain from the baselime plotted the difference between
the baseline and each method’s time-averaged RMSE. As hathNN in the previous section, alp;
consistently improve the time-averaged RMSE of the baseliowever, we observe in this case that
broadening the range of availabfevalues does not always help. In fact, the group that achithes

highest gain from the baseline is the one with only tivcandidates.

4.4 Related Work

Adaptive-CF differs from hybrid methods since, rather tfacusing on merging different predictive
models, individual methods are selected based on currefdarpgnce. To that extent, adaptive-CF
is independent of the particular set of selected classifiextit alternates between, and falls under the
broader category of available meta-learners [VDO02], altfowe strictly consider the temporal scenario.
It is therefore also possible to widen the set of choiceslai in order to further improve accuracy;
for example, some users’ ratings may be best predicted grp@ng a SVD with a varying number of
features. We have notincluded this possibility here sirieglso may well also introduce the potentially

prohibitive cost of computing many models in a deployedeyst
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Figure 4.13: Time-Averaged RMSE of kNN With Limited History

Previous work that highlights the importance of time in Cd/@ related fields, such as information
retrieval [AG06]) tends to focus on the data, rather tharstguential application of an algorithm. For
example, Potter [Pot08] (whose bias model we explored gtaovedBell & Koren [BKO7] also consider
the temporal nature of ratings, by looking at the variapitif individual user ratings across different
days of the week in order to improve predictive performaf@mporality has also been explored from
the point of view of changing user tastes [Kor09a, DLO5];liistcase, ratings are scaled according to
when they were input. The aim is to capture the melgvantratings that represent current user tastes.

Both our adaptive-CF and this method could be merged; invibik we focus on the algorithm
rather than modifying the set of ratings we train with. Hoesthere are a number of questions to be
addressed in future research. One of them is the influendeeaffidate intervak. In this section, we
highlight a different example: the balance between timeraged accuracy and how long the ratings that
are being trained with have been in the system.

We repeated our temporaNN experiments, but limited the algorithm to computing iteeigh-
bours using only ratings that were input within the last {1, 5,10, 25,50} updates. In other words,
if w = 1, then item similarity is computed using only the ratingsuihijn the previous week; a potential
majority of the ratings are excluded. Any ratings input befthe allowed ‘window’ were only used to
compute item means. The results, along with the baseliner@wll historical data is used), are plotted
in Figure 4.13. The figure can be roughly divided into threetisas: in the beginning, the baseline
performance degrades over time. Then, after a period wherbdseline is relatively flat, performance
improves for majority of the final updates. During the perigldere performance degrades, all of the
limited/windowedikNNs are more accurate. However, when the baseline perfaerizegins improv-
ing, the baseline overtakes the windowedNs, although they = 50 is remarkably close (considering
the difference in data that each method has available).aguse found a relation between thecuracy
and the CRalgorithm, in order to design our hybrid method, there is also a raiatigp betweeaccuracy
and thedata

4.5 Summary

This chapter departs from traditional CF research by exteritie analysis of prediction performance to

incorporate a sequence of classification iterations tlaanl&om a growing (and changing) set of ratings.
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The contributions we made can be summarised as follows:

e Methodology and Metrics. We defined a novel approach with which to examine CF’s tealpor

predictions, using three variations (continuous, seqaemtindowed) of accuracy metrics.

e Evaluation of State-of-the-Art Algorithms. We ran a variety of experiments that evaluated CF
algorithms’ temporal accuracy from two perspectives, a@gtlifghted thevariability of both static

and dynamic sets of predictions as training sets are auguevith new ratings.

e Adaptive Algorithms for Improved Temporal Accuracy . We implemented and evaluated two
adaptive algorithms that improve temporal accuracy oveetia method to switch between CF
algorithms and a computationally cheap technique to auioaily tune parameters to provide

greater temporal accuracy.

The focus of this chapter has revolved around optimisingmenender system prediction performance
from the point of view of RMSE. The results show that thes@atms do not output consistent error,
and it becomes difficult to claim that one algorithm outpcgslanother when only a static case is investi-
gated (and especially when the static difference in peréoree is relatively small). For example, the bias
model was more accurate than raw-datéN on the Netflix probe, but did not maintain this advantage
when a range of datasets (of varying size) were tested iregatiite set of cross-validated experiments.
We have focused on the temporal performance of CF algorithritisout considering (a) the extent to
which user preferences and interests will vary over lange tintervals, and (b) the temporal effect of
malicious ratings [MBWO7]. In particular, as the experintsein Section 4.2 highlight, performance does
not necessarily improve as the available training data grow

However, this observation also motivates research thatrtiefrom traditional mean-error based
evaluations of CF algorithms. These kinds of evaluationstai explore theankingthat emerges from
rating prediction, and the utility that users draw from tissl of recommendations they are offered. A
further evaluation of temporal CF would therefore also emgass the variation in recommendations that
results from the changing data; we begin in the followingpthaby shifting our focus to CF’s temporal

diversity.



Chapter 5

Temporal Diversity in Recommender Systems

As we explored in the previous chapter, CF algorithms arencoétvaluated according to haecurately
they predict user ratings [HKTRO04]. However, as recommesgstems grow dynamically, a problem
arises: current evaluation techniques do not investiditéemporal characteristics of the producedt
ommendationsResearchers have no means of knowing whether, for exathplsystem recommends
the same itemt users over and over again, or whether the maselcontent is finding its way into
recommendations. The danger here is that, as results may toegfagnate, users may lose interest in
interacting with the recommender system.

In this chapter, we investigate one dimension of temporaimemendations: the diversity of recom-
mendation lists over time. We first examine why temporal idiilg may be important in recommender
system research (Section 5.1) by considering tempatadg patternsand the results of an extensive
user survey. Based on these observations, we evaluateGkrreggorithms’ temporal diversity from 3
perspectives (Section 5.2): by comparing the interseafmequential topV lists, by examining how
diversity is affected by the number of ratings that usersiingnd by weighting-in the trade-off between
accuracy and diversity over time. We finaligsignand evaluatea mechanism to promote temporal
diversity (Section 5.3), comparing its performance to gyeaaf baseline techniques. We conclude in

Section 5.4 by discussing future research directions.

5.1 Why Temporal Diversity?

We explore the importance of temporal diversity from twogperctives: changes that CF data undergoes
over time (Section 5.1.1) and how surveyed users respodeddémmendations with varying levels of

diversity (Section 5.1.2).

5.1.1 Changes Over Time
In Chapter 3, we performed an extensive analysis of how ttatiey datasets changed over time. In this
section, we briefly summarise the main conclusions of thidyeis, and how they relate to the direction

we examine in this chapter.

1. Data Growth. Recommender systems grow over time: new users join themystd new content
is added as it is released. Pre-existing users can updatetbles by rating previously unrated

content; the overall volume afatathus grows over time. Section 3.2.1 shows the movie and user
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growth across rating datasets; from these we see that thaeintinuous arrival of both new users
and movies.

2. Summary Statistics Change As a consequence of the continuous influx of ratings, any samym
statisticsrelated to the recommender system’s content may also chahgese changes affect
the ratings’ summary statistics: in [Kor09a], Koren shovesvtglobal summary statistics vary
over time. Similarly, Section 3.2.2 looks at how changesarther reflected in the global rating
mean, median and mode. All the summary values fluctuate ower teflecting how the overall
distribution of ratings shifts as more users interact wlith $ystem.

3. User Interaction. Lastly, Section 3.2.3 looked at the rating frequency: theets show the high
variability in how users interact with the recommenderegstSome users appear more frequently

than others, and there is a large variance in the volume ed iggms.

What do we learn from observing these changes? The dataseistconly remain incredibly
sparse, but they also do not stabilise; recommender systenmtimuously have to make decisions based
on incompleteand changingdata, and the range of the changes we observe in the Netfixhdae a
strong impact on the predictability of ratings. Furthermydhe continuous rating of content means that
the data that an algorithm will be trained with at any patdctime is likely to be different than data it
trained with previously. The question we explore in thispieais: does the influx of new data translate

to new content being recommended?

5.1.2 User Survey

In order to determine whether temporal diversity is impott@r recommender systemsers we de-
signed three surveys thsimulatesystems that produgmpular movieeecommendations over the course
of five “weeks.” We opted to recommend popular movies in otdeavoid a variety of confounds that
would emerge had we selected a personalised CF algoritlym {f@e quality of the algorithm itself and
the cumbersome process of asking users to rate films). Sar¢8%) and Survey 2 (S2) both recom-
mended popular movies drawn from a list of the 100 all time tnposfitable box office moviés S1,
however, hacho diversity it consistently recommended the top-10 box office hits.s$8tommen-
dations, instead, did change over time. Each week, appaigignseven of the previous week’s ten
recommendations would be replaced by other movies in thel@fpbox office list. Lastly, Survey 3
(S3) recommended movies that were randomly selected frenN#tflix dataset: the recommendation
process included full diversity, but was very unlikely teoenmend popular movies, given the size of
the dataset.

Each survey was structured as folldw3 he users were first queried for demographic data. They
were then offered the first week’s recommendations, reptedeas a list of ten movie titles (and the
relative DVD covers and IMDB links) and asked to rate thege 16 recommendations on a 1-5 star
scale. After submitting their rating, they were presentét & buffer screen containing thirty DVD cov-

ers, and had to click to continue to the subsequent weekatimed at diverting users’ attention before

http://mww.imdb.com/boxoffice/alltimegross
2Full description and reproduction of the surveys is foundjapendix A
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Figure 5.1: Survey Results for (S1) Popular Movies With Nedbsity (S2) Popular Movies With Di-
versity and (S3) Randomly Selected Movies

presenting them with the next week’s recommendations. rAétng all five week’s worth of recom-
mendations, they were asked to comment on the recommenddtiemselves and answer a number of
questions relating to diversity over time. Users were guito participate in one or more of the surveys
via departmental mailing lists and posts on social netwofs was completed 41 times, S2 had 34
responses, and S3 was completed 29 times. Due to the suareysymity, we do not know how many
users completed more than one survey. We therefore trehtossepleted survey individually. Of the
104 total responses, 74% of the users were male, 10% weré $8a2s old, 66% were 22-30 years old,
and 24% were between 31 and 50 years of age. On average, tiseclsmed to watch 6.0% 6.12
movies per month, and while 61% of them said they were familith recommender systems, over half
of them claimed they used them less than once a month. On liee lband, 29% use recommender
systems weekly or daily: our respondents therefore inciud@le variety of movie enthusiasts and both
people who do and do not use recommender systems.

We averaged the users’ ratings for each week’s recommemdatind plot the results in Figure
5.1. The S2 results (popular movies with diversity) achighehighest scores: on average, these five
weeks of recommendations were rated 3£10.08 stars. The low temporal standard deviation reflects
the fact that the rating trend remains relatively flat; therage for each week is about 3 stars. S3's
results (randomly selected movies), were consistentlykdik the average rating peaks at 2.34 stars
for week 5. In fact, some users commented on the fact thanmemndations “appeared to be very
random,” “varied wildly” and the system “avoid[ed] box ofidits.” The main result of our surveys is
reflected in S1's results (popular movies with no diversig the same recommendations are offered
week after week, the average ratimgsnotonicallydecrease. The average for week 1 was 2.9, which
falls within the range of values measured in S2, while by wethke average score is 2.3, which is lower
than the average score for the random movies that same wextkallNisers commented on the lack of
recommendations diversity; however, most of them modifidrtratings for the recommendations as
the lack of diversity persisted. This shows that when usaesthey are not only expressing their tastes

or preferences; they are also responding to the impredseynhave of the recommender system. In the
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Week | P-Value | S1vs. S2| S1vs. S3| S2vs. S3

3.209e-6 0.32 7.4e-5 5.7e-6
0.003699 | 0.3003 0.0277 0.0033
0.002241| 0.0881 0.0881 0.0015
0.0006937| 0.0302 0.0943 0.0005
0.04879 0.07 0.88 0.10

ga b~ ownN PP

Table 5.1: ANOVA P-Values and Pairwise T-Test Values For $ivgeeks

survey 1: No Diversity survey 2: Diversity survey 3: Random

i A

(a) Survey 1 (b) Survey 2 (c) Survey 3

Figure 5.2: Boxplots of Each Week’s Ratings for the Threev8ys

case of S1, users commented on the fact that the algorithmta@asaive” or “not working,” and the
lack of diversity “decreased [the respondent’s] intefest.

The final part of the surveys asked users about qualities ¢baght in recommendations: they
had to give a rating reflecting how important they believeat #iccuracy, diversity, and novelty are in
their recommendations. Overall, 74% said it was importantécommender systems to provide results
thataccuratelymatched their taste (23% selected the ‘neutral’ option ® gluestion). 86% said it is
important for recommendations tthange over timein fact, 95% stated it is important that they are
offered new recommendations. It thus quickly becomes apahat temporal diversity is a highly
important facet of recommender systems, both in terms oflifeet responses and rating behaviour of
the surveyed users. In the following sections, we evallegegdmporal diversity of three state of the art

CF algorithms.

Analysis of Variance
In order to test the statistical significance of the thretediint survey’s results, we performed an analysis
of variance (ANOVA): in this case, the null hypothesis istttee ratings for each survey are of the same
distribution. We can reject the null hypothesis with 99% faence with p-values less than 0.01: the
p-value we measured for the three methods is 9.72e -14. Avisait-test between each survey further
shows that the ratings input for each survey cannot be atéihto the sampling of the study.

We also performed an ANOVA on each week’s data, in order t@ndesthe change that S1 went
through as it was rated. The null hypothesis, in this casejldvstate that the differences in ratings

are consistent throughout all weeks; the p-value tells uatwihe chances are of randomly sampled
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users providing the ratings we have collected. The p-vadwesshown in Table 5.1; they all remain
lower than the 95% confidence threshold. The table also sipaivaiise t-test p-value results, week
by week. We expected to observe three patterns: (a) a segjuén@lues that reflected S1 and S2
divergingfrom each other (as users punish S1 for having no diversiiy s sequence of values reflecting
a convergence between S2 and S3, as the survey with no tiMeesomes rated as highly as the random
recommendations, and (c) values depicting a continuirfgréifice between S2 and S3. In other words,
given the rating distributions of S2 and S3, that are difiefeom each other, we expected to observe
S1’s distribution change from being similar to S2’s to besimilar to S3’s. The boxplots in Figure 5.2
reflect these changes: they show the per-week distribufiostings for each survey. Most notably, the
distributions in S2 (Figure 5.2(b)) remain relatively ctsnt over the weeks and S1 (Figure 5.2(a))
decreases over time.

Over the first four weeks of data, we observed the pattern wea&d. The p-value between S1
and S2 begins high (0.32) and monotonically decreaseswagk four (0.03). The p-value between
S1 and S3, instead, begins low (7.4e-5) and monotonicathgases to 0.09. Lastly, the p-value shared
between S2 and S3 remains consistently below 0.01 (the 998idleace threshold). However, in week
five there is an abrupt change in our results: not only is threxallp-value now found at the border of
the 95% confidence threshold, but all t-test values becomehigh. Most worryingly, the divergence
between S1 and S2 is no more, and S2 and S3 now share a very-thiadhep There are a number of
factors that may have skewed our experimental results. Téterdlates to why S3 may have been rated

more positively in week 5:

e Random Recommendations.Survey 3 recommended random movies; however, as the surveys
were pregenerated, all users were given the same (albéibmanrecommendations in S3. One
of the potential problems here is that this particular sesedécted movies may elicit the same
response from many users. In other words, the factors tHaeimce users’ responses (i.e., selec-
tion of movies) remained constant to all users. In week fivenated that some of the randomly
selected movies were less unknown than movies selecteceinopis weeks (for example, the
first recommendation was the movie CrdjshThe problem here is that S3's distribution in week
five (as can be observed in Figure 5.2(c)) changes, thus imgaany comparisons between the
distributions of the three surveys.

e Edge Effect. The survey instructions told users that they would be rdiiregweeks’ recommen-
dations. By the time they reached week 5, they thus knew Heat had nearly completed the
survey—their rating behaviour may have changed at thistp@milarly, they may also be re-
sponding more positively in week 5 due to the heavily negatdsponse that was given for week
4. If we consider the rating mode of each week, then S3'steshbw that the weeks that receive
a majority of 1* ratings (week 1 and week 4) are always follavay a week with a higher mode.

e Lack of Data. One of the reasons we may be seeing these results is the &authsurveys

have not been answered by many people. In fact, one of thdgunglthat we noted was that

Shttp://www.imdb.comt/title/tt0375679/
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many users would abandon the surveys, possibly since, asthbrs noted, they did not like the
recommendations (or thought the system was not workingw&ilvisisted 122 times, yet only

completed 41 times: overall, all the surveys were fully ctetgrl by fewer than 1 in 2 visitors.

There are thus a number of factors that influence our abdibpserve a five week trend when comparing
the three surveys. However, these do not detract from the reault of the survey: users who are faced
with non-changing recommendations tend not to only loseré@st, but also to reflect their impatience
with the system in the ratings that they input. Temporal diitg is therefore an important quality that

all recommender systems should provide.

5.2 Evaluating for Diversity

Given the above, we now aim to examine how diverse CF alguostare over time. We focus on CF al-
gorithms; abaseline where a prediction for an item is that item’s mean rating,ittm-based k-Nearest
Neighbour (kNN)lgorithm, and anatrix factorisationapproach based on Singular Value Decomposi-
tion (SVD), as reviewed in Chapter 2. We chose these algostkince they not only reflect state-of-
the-art CF, but also each manipulate the rating data in aréift way and may thus produce varying

recommendations.

5.2.1 From Predictions to Rankings

All of the algorithms share a common theme: they produceipted ratings that can then be used to
recommend content. The idea is to use the predictions irr twdgenerate a personalised ranking of the
system’s content for each user. However, it may be the cagéti¢ims share the same predicted rating.
For example, a number of items may all havstar predictions. In this case, the predicted rating ailene
not conducive to a meaningful ranking. We solve this probbgnntroducing ascoring functiorto rank
items, regardless of the model used to generate predidiadsaThe scoring function uses two pieces
of information: the predicted rating, and tbenfidencén the prediction (i.e., number of data points used
to derive it) as used in [MLGO03]. Assuming &-star rating scale, we first subtract the scale mid-point

(3 stars) from the prediction and then multiply by the confidenc
Su,i = (T, — 3.0) X confidence(ty, ;) (5.1)

This scoring function ensures that items with high predittand confidence are promoted, and low
prediction with high confidence are demoted (i.e., we us@ ialbpredictions and not simply as a tie-
breaker). For example, an item with a predictedtar rating, derived from ratings, will be ranked
lower than another item with & star prediction based div ratings. If two items had the same score,
then we differentiated them based on their respective geerating date: the item that had been rated
more recently is ranked higher. The greatest advantagesofitbthod, as detailed in [ML&03], is the

heighteneaxplainabilityof recommendations.

5.2.2 Methodology

In order to examine the sequence of recommendations prddiyca system, we explore CF algorithms

that iteratively re-train on growing datasetGiven a dataset at timeand a window size: (how often
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the system will be updated), we train the algorithm with aayadnput prior tot and therpredictand
rank all of the unrated items for each user. Theariable is then incremented hy, and the entire
process is repeated, except that now the latest ratingsri@otorporated into the training data. In
other words, at timeé we generate a set of tap-lists—corresponding to the tofy-recommendations
each user would receive—in order to examine how the sequemeaked items that we produce will
vary as the system is updated. The main difference betwéepribhcess and the one we used in Chapter
4 is that we predicall unrated items for each user (rather than only predictingstéhat will be rated in
the next time window); this allows us to produce ranked lisiecommendations. This method includes
a number of advantages: we test the algorithms as data geswisview more than a single iteration
of this process), making predictions based only on ratihgsare currently available. We simulate the
iterative update of deployed systems, and stay true to tter aisers input ratings.

Since users do not necessarily log-in consistently to tistesy, we cannot be certain that each
top-N list would have been viewed by each user. We therefore onigigte a topV list for the users
who will rate at least one item in timg + 1); we assume that if the user is rating an item then they
have logged into the system and are likely to have seen teearmmendations. The benefit of this
is that we compare the current recommendations to thosausieas are likely to have seen before. It
remains possible that users viewed their recommendati¢hswt rating any content; however, given
this uncertainty in the data, we only consider the scenahiere/there is evidence that the users have
interacted with the system. In this chapter, we continuagitiie same subsamples of the Netflix

dataset (as used in Chapter 4) for cross-validation pugpose

5.2.3 Measuring Diversity Over Time

We define a way to measure the diversity between two rankeddssfollows. Assume that, at tinte
a user is offered a set df) recommendations. The next time the user interacts with yeee only
1 of the 10 recommendations is different. Therefore, the diversityveen the two lists isl% = 0.1.

More formally, given two seté; andL,, the set theoretic difference (or relative complementhefdets

denotes the members bf that are notinL;:
LQ\Ll = {$ S L2|£17 ¢ Ll} (52)

In our example above, only of the 10 recommendations was not the same: the set theoretic differe
of the two recommendation lists has sizeWe thus define the diversity between two lists (at depth N)

as the size of their set theoretic difference divided\oy

Lo\ L
diversity(Ly, Lo, N) = ﬁN” (5.3)

If L; and L, are exactly the same, there is no diversitjversity(L1, L2, N) = 0. If the lists are
completely different, thediversity(Li, Lo, N) = 1. This measure disregards the actual ordering of
the items: if a pair of lists are re-shuffled copies of eaclentthen there continues to be no diversity.
However, we can measure the extent that recommendationgelas a result of the same content being

promoted or demoted by measuring diversity at varying degth).
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One of the limitations of this metric is that it measures theiity between two lists only; it thus
highlights the extent that users are begeguentiallyofferered the same recommendations. In order to
see how recommendations change, in termsesfitems appearing in the lists, we define a typlist’'s
novelty Rather than, as above, comparing the currentllisto the previous list.;, we compare it to
the set ofall items that have been recommended to ddtg:(

novelty(L1,N) = ij (5.4)
In this case, a list’s novelty will be high if all of the itemseneverbeen recommended before, and
low if all of the items have been recommended at some poittitérpast (not just in the last update). We
further define thaverage diversity; andaverage novelty that is generated by a given CF algorithm
(at timet) as the average of the values computed between all the ttioefV lists and the respective

previous list for all users.
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5.2.4 Results and Analysis

We computed; andr, for each of the 3 algorithms over @ll9 simulated system updates outlined in
Section 5.2.2, and plotted the results for the t@pand top20 recommendations in Figure 5.3. These
results provide a number of insights into recommender systanporal diversity. As expected, the
baseline algorithm produces little to no diversity. On aggr, users’ top-10 recommendations differ
by (at most) one item compared to the previous recommenuatiBoth the factorisation and nearest
neighbour approaches increment diversity; furthermdwekNN algorithm is, on average, consistently
more diverse than the sequence of recommendations protydhd SVD.

The novelty values (Figures 5.4(a) and 5.4(b)) are lowen tha average diversity values. This
means that, when a different recommendation appears, ibis wften a recommendation that has ap-
peared at some point in the past, rather than somethingdlsatdt appeared before. There are a variety
of factors that may cause this; for example, new items maypasecommended because they lack suf-
ficient ratings: the CF algorithm cannzinfidentlyecommend them. However, this metric does not tell
us whether the new recommendations are new items to thensystesimply content that has (to date)
not been recommended. A full analysis of the novelty of rex@mdation warrants a closer inspection of
when items join the system and when they are recommeneddén tw focus our analysis, we thus sep-
arate the problems of recommendimgw contenfrom that ofdiversifyingsequential recommendations:
in this chapter, we focus on the latter.

Both Figure 5.3(a) and 5.3(b) also look very similar: theedsity values for the top-10 and top-20
recommendations are nearly the same. In order for this tpdrafi.e., for a comparison between two
top-10 lists and two top-20 lists to produce the same valueet must benore diversity between the
larger lists. For example, if only 1 item changes in the t@pthe diversity isll—0 = 0.1, and the pair of
top-20 lists will only produce this diversity value if 2 itenave changedj—o. What this means is that
not all of the changes in the item rankings are occuring intdipel0: new items are also being ranked
between thd 1th and20th positions.

At the broadest level, we thus observe that (a) both the in@sahd SVD produce less temporal
diversity than thetNN approach, and (b) across all CF algorithms, diversityeigen higher than app-
proximately0.4. However, these are averaged results across many userspaghbe each behaving in
very different ways: we now perform a finer grained analy§iemporal diversity to explore the relation

between users and the diversity they experience.

5.2.5 Diversity vs. Profile Size

The metric in Section 5.2.3 does not factor in the fact thatdlstribution of ratings per user is not
uniform. Some users have rated a lot of items, while otheve lary sparse profiles. Usenstofile
size(i.e., the number of ratings per user) may affect their reb@mdation diversity. We thus binned
the above temporal results according to users’ currentlersifie and then averaged the diversity of
each group. We plot the results in Figure 5.5. The baselifgu(€ 5.5(a)) continues to show next to
no diversity, regardless of how many items users have rdfthd.rationale behind this is that the only

profile information that the baseline factors in when it cangs recommendations is whether the user
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Figure 5.7: Time Passed vs. Top-10 Temporal Diversity faseliae, KNN and SVD CF

has rated one of the popular items; results will only be digef the user rates all the popular content.
ThekNN (Figure 5.5(b)) and SVD (Figure 5.5(c)) results, instesttbw a negative trend: diversity tends

to reduce as users’ profile size increases. These resultseciaerpreted as follows: as users augment
the set of ratings that represent their tastes, the breddltnos that are recommended to them via CF

reduces, and they will be exposed to less and less new content
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5.2.6 Diversity vs. Ratings Input

Our temporal diversity metric is based pairwisecomparisons; we compare each sequential pair of top-
N lists. One factor that may thus play an important role whearneining how diverse a pair of lists will

be from one another isow muclthe user rates in a given session. For example, one user gayand

rate two items while another may log in and rate fifty; the tenapdiversity that each user subsequently
experiences may be affected by these new ratings. We thiereiloned users according to how many
new ratings they input, and plot the results in Figure 5.6.ba&fore, the baseline remains unaffected
by how many new ratings each user inputs. EMNN (Figure 5.6(b)) and SVD (Figure 5.6(c)), instead,
show a positive trend. These results can be interpretedllasvéo the more you rate now, the more

diverse youmnextrecommendations will be.

5.2.7 Diversity and Time Between Sessions

The previous analysis was concerned with how diversity fisémced by asingleuser rating content.
However, users do not rate alone: an entire community ofsusge content over extended periods
of time. We highlight this point with an example: some usees/monsistently log in and rate items
every week; others may rate a few items now and not returnrfotheer month (and, in their absence,
other users will have continued rating). In other wordsgedsity may be subject to théme that has
passed from when one list and the next are served to the userdér to verify this, we binned our
diversity results according to the number of weeks that resded between each pair of lists, and plot
the results in Figure 5.7. In this case, all three of our athors show a positive trend: the longer the
user does not return to the system, the more diversity isesedven the baseline diversity increases: if
a user does not enter the system for a protracted period ef the popular content will have changed.
However, web businesses tend to use recommender systantgdaseuser engagement and activity
(e.g. clickthroughs, rented movies), and the natural difieation of recommendations because of time

will only be useful for the least active members of the system
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5.2.8 Lessons Learned

Overall, average temporal diversitis low. Ranking content based on popularity offers next taliro
versity, while thekNN method produces the largest average temporal diverkityger profile sizes
negatively affect diversity; it seems that users who haveaaly rated extensively will see the least di-
verse recommendations over time. Pairwise diversity betvgequential lists is largest when users rate
many items before receiving their next recommendatiores;sushould be encouraged to rate in order to
change what they will be recommended next. Diversity witlunally improve as users extend thime
betweersessions when they interact with the system (even poputdenbeventually changes).

A fundamental question to ask is how diversity relates tagaty, the metric of choice in traditional
CF research. To do so, we take the predictions we made at galettel and compute the Root Mean
Squared Error (RMSE) between them and the ratings thengsitsers will input. We then plot RMSE
against average diversity in Figure 5.8. A plot of this kirastour distinct regions: low accuracy with
low diversity (bottom right), high accuracy with low divéss (bottom left), low accuracy with high
diversity (top right), and high accuracy with high diveysjtop left). We find that the results for each
algorithm cluster into different regions of the plot, capending to the different diversity results that
they obtain. In terms of RMSE, different algorithms ofteredap; for example, th&NN results sit
between the two others—in terms of accuracy—and above thieem wonsidering diversity. However,
kNN CF is sometimes less accurate than the baseline. Tharms#b toward the bottom right of the
plot: it offers neither accuracy nor diversity. The SVD, be bther hand, tends to be more accurate than
the baseline, although there is little diversity gain.

Coupling the low diversity that we have observed in CF altpons and the high importance users
place on temporally diverse recommendations implies thptdving the temporal diversity of a recom-
mender system is an important task for system developerthelfollowing section, we describe and
evaluate a number of techniques that meet this goal: thegase temporally diversity, without signif-
icantly impacting recommendation accuracy. We then distus potential implications that modifying

top-N lists may have to promote diversity.

5.3 Promoting Temporal Diversity

The easiest way of ensuring the recommendations will bersiais to do away with predicted ratings and
simply rank items randomly. Howevativersitythen comes at the cost aEcuracy recommendations
are no longer personalised to users’ tastes. The randomys(Bection 5.1.2) showed that this is not
a viable option, since the recommendations were rated wsvy We can thus anticipate that, when
promoting diversity, we must continue to take into accousgre’ preferences. We do so with two
methods: temporal hybrid switching, from a system (Seddi@nl) and user (Section 5.3.2) perspective,

and re-ranking individual users’ recommendations (Sedig.3).

5.3.1 Temporal Switching

Many state of the art approaches to CF combine a variety afrithgns in order to bolster prediction

accuracy [AT05]. However, as described by Burke [BurO2pther approach to building hybrid CF
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Figure 5.9: Diversity (a) and Accuracy (b) of Temporal Stwitgy Method

algorithms is teswitchbetween them. Instead of combining prediction output, alraeism is defined to
select one of them. The rationale behind this approach igllasvs: a given a set of CF algorithms, that
each operate in a different way, are likely to proddiderentrecommendations for the same user; the
top-N produced by &NN may not be the same as that produced by an SVD. We thus dvétaleen the

two algorithms: we cycle between giving uséféN-based recommendations one week, and SVD-based
recommendations the following week.

We plot the top-10 diversity over time for this switching med in Figure 5.9(a). Diversity has
now been incremented to approximatélg: on average, 8 of the top-10 recommendations ranked for
each user is something that was not recommended the weelebdfiow does this affect accuracy?
Intuitively, the overall accuracy that the system will ashé will be somewhere between the accuracy of
each individual algorithm. We compare the accuracy andsiityeof our switching technique in Figure
5.9(b). The results for the switching method now clusteo imto groups; each group liesbovethe
candidate algorithms we selected. In other words, accutaciuates between the values we reported
for kNN and SVD CF, but the fact that we are switching between thwsetechniques ensures that

diversity has been greatly increased.

5.3.2 Temporal User-Based Switching

The method described in the previous section is very stii@mighard: the system changes the CF algo-
rithm that is used from one week to the next in order to favduerdity. However, this method does
not take into account how users behave; in particular, weigusly noted that not all users haveg-
ular sessions with the recommender system. In fact, if their@essvere every other week, then the
switching technique described in the previous section dbel of no use at all. We therefore also tested
a user-based switching algorithm. It works as follows: th&tem keeps track affhena user last ap-
peared, anavhatalgorithm was used to recommend content to that user dunm¢ast session. When
the user reappears, the system simply picks a differentitigoto that which it used previously. As
before, we switched between using an item-bddéN and an SVD-based approach in our experiments.

The results are shown in Figure 5.10.
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Figure 5.11: Temporal Diversity and Accuracy vs. Diversifnen Re-Ranking Frequent Visitors’ Lists

The temporal diversity (Figure 5.10(a)) is now near 1: orrage, users are being offered different
recommendations to those that they were shown the last timeibteracted with the system. On the
other hand, accuracy (Figure 5.10(b)) now falls betweerkiid and SVD results. In other words, we
sacrifice the low-RMSE of the SVD, but still do better than giynusing thekNN approach: in return,
the average diversity has been greatly amplified.

The only overhead imposed by user-based switching is aesiadlie per user that identifies which
algorithm was last used to compute recommendations; haywewike the temporal switching method
in the previous section, we are now required to compute bNtN and SVD at every update, albeit for
a subset of users. We do not consider this to be an unsurnieimzerhead, given that state of the art

algorithms already tend to ensemble the results of mul@belgorithms.

5.3.3 Re-Ranking Frequent Visitors’ Lists

An immediate problem with a temporal switching approactt it requires multiple CF algorithm
implementations. In this section, we provide a means ofrdifygng recommendations to any desired

degree of diversity when only a single CF algorithm is used.
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One of the observations we made above is that users who hayveegilar sessions with the rec-
ommender system have low tdptemporal diversity. One way of improving overall averagaperal
diversity thus entails catering to the diversity needs of ¢itoup. To do so, we take advantage of the fact
that they areegular visitors, and only re-rank their top* recommendations.

The re-ranking works in a very straightforward manner: giadist that we wish to diversify with
depthN (e.g., N = 10), we selea, with N < M (e.g., M = 20). Then, in order to introduce diversity
d into the top&, we replaced x N) items in the top with randomly selected items from positions
[(N+1)...M]. Inthe case offl = 1, all elements in the firdt.... N] positions are replaced with elements
from positions[(V + 1)...M]. This is the method that we used to diversify the recomménasin the
user survey S2 (Section 5.1.2); in that caSe= 10 and M = 100 (the 100 all time box office hits).

In our experiments, we opted to re-rank the top-10 resuitarfiy users who had previously visited
the system less than two weeks before (recall that our syistapdated weekly). The temporal diversity
results, shown in Figure 5.11(a), clearly improves the aVarverage. Furthermore, the accuracy (Figure
5.11(b)) remains the same: the diversity has simply bedteshn the positive direction. However, how
does this not hurt accuracy? There are three points to keeynic: (a) we are only reranking the lists
for frequent visitors, others’ recommendations are urftedg (b) the items in the top- are there due
to both high prediction value and high confidence (there is@ghance the user will like those items);
and (c) we do not promote items that are likely to be dislikgthe user (by only re-ranking the tapF).

How do these techniques affect recommendation noveltyalRbat we defined novelty (Section
5.2.3) as proportional to the number of items being recontteérthat havaeverbeen recommended
before. If we aggregate the temporal results of Figure }.4(a find that the baseline top-10 recom-
mends, on average, 13.532.86 items over time; the SVD top-10 suggests 26t172.51 items over
time, and thekNN top-10 recommends the highest number of items over tin®e86/+ 59.33. This
ensures thatNN will also produce the highest number méwrecommendations. Weekly switching
slightly lowerskNN'’s average, to 75.36 53.98 because repeatedly visiting the SVD recommendations
reduces the number of total items that can be recommendesleo, user based switching maintains
the average number of recommended items over time at 79.86.12; it highly promotes temporal
diversity without impacting the number of new items thategrthe top-10 list over time. However, re-
ranking bolsters both the average and standard deviati®n.g8+ 78.82; re-ranking thus seems like a

promising approach to solving the related problem of teralmovelty in recommendation.

5.4 Discussion

Diversity is a theme that extends beyond recommender sgstEtmexample, Radlinski and Dumais
examine how it can be used in the context of personalisedis¢RDO06]. In other cases, diversifying
search results is done in order to reduce the risk of queryntairpretation [AGHI09]. Similarly, diversity
relates to user satisfaction; more specifically, to usengatience with duplicate results [HRT09]. We
have observed similar ‘impatience’ in our survey: users wbmpleted the survey with no diversity
began to rate recommendations lower as they saw that theyneéchanging.

It is certainly possible to envisage a finer grained notiodieérsity that takes semantic data into
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account—by measuring, for example, the extent that the gganee or category of items are being
recommended. To that end, diversity may also be measurdihvétsingletop-N list, rather than a
pair or sequence of recommendations; such a metric mayxémgple, take into account the number
of highly related items (such as a movie and its sequels, diipteualbums by the same artist) that
are being simultaneously recommended. For example, SmgiMaClave [SMO1] apply strategies to
improve recommender systems based on case-based reastin@ngity, in this case, is viewed as the
complement of similarity. Zhang and Hurley [ZH08] also feaun intra-list diversity, and optimize the
trade off between users’ preferences and the diversityeofap-V results. In this chapter, we focus on
the temporal dimension (inter-list diversity) and whetter exact same items are being offered to users
more than once; we do not take semantic relationships battteerecommended items into account
nor improve the diversity of individual top¥ lists. However, both lines of research are not in conflict:
ideally, one would like a recommender system that offereidie results thathangeover time to suit
each users’ tastes.

There is one limitation to the work we have performed here. d&enot know what users were
actuallyrecommended: in fact, we do not know if users are clickingh@mirtrecommendations or are
selecting movies to rate by other means. Assuming that Ketéis not simply recommending popular
content, this limitation may explain why the baseline resghow so little diversity. While the results
certainly show what one may expect from providing popwabiased recommendations, it is also possi-
ble to envisage higher diversity for the baseline casepifekample, users dislike their recommendations
so much that they are giving them all 1 star (in the next upithgwill be shown different results). How-
ever, this limitation is a widespread problem with CF reskain fact, to date the relationship between

what people areecommendednd what theyate remains largely unexplored.

5.5 Summary

This chapter focuses on temporal diversity: how recommioikachange over time. In doing so, we
have extended how CF can be evaluated over time; in Chaptex fhcused on the accuracy of predic-
tions; here we added the diversity and novelty of recommigmaléists over time. We found that state
of the art CF algorithms generally produce low temporal ditg; they repeatedly recommend the same
top-N items to a given user. We then defined a metric to measure tagiversity, based on the set
theoretic difference of two sequential tép4ists, and performed a fine-grained analysis of the factors
that may influence diversity. We found that, while users atige profiles suffer from lower diversity,
those who rate a lot of content in one session are likely toavegediverse results the next time. We also
observed that diversity will naturally improve over timee\thien designed and evaluated three methods
of improving temporal diversity without extensively peisalg recommendation accuracy. Two were
based orswitchingCF algorithm over time; users are first given recommendatmnduced with (for
example) &NN approach, and then offered the results of an SVD algoriffine last method was based

on re-ranking the results of frequent visitors to the system



Chapter 6

Temporal Defences for Robust

Recommendations

Recommender systems are vulnerable to attack: malicioais uinsay deploy a set of sybils to inject
ratings in order to damage or modify the output of CF algamngh Previous work focuses on designing
sybil profile classification algorithms, which operate independentlZBf and aim to find the current
sybils each time they are run. These methods, however, asthanthe full sybil profiles have already
been input to the system. As previously observed, deplogedmmender systems, on the other hand,
operate over time: recommendations may be damaged asisybdsprofiles (rather than only when all
the malicious ratings have been input), and system admatiss may not know when their system is
under attack. In this chapter, we address the probleieroporalsybil attacks, and propose and evaluate
methods for monitoringylobal, useranditem behaviour over time in order to detect rating anomalies
that reflect arongoingattack. We conclude by discussing the consequences of imyotal defences,

and how attackers may desigamp-up attack#n order to circumvent them.

6.1 Problem Setting

When CF algorithms compute recommendations for web ugerg do so assuming that the ratings they
manipulate ardéonestdepictions of user preferences. Unfortunately, this maybeahe case: any sys-
tem that invites participation is also vulnerable to malits abuse, and the ratings input to CF algorithms
may have been fabricated to damage or modify the recommendadhe system outputs. Abusing rec-
ommender systems this way is often referred tehalling, profile injectionor sybil attacks; Mobashest

al. provide an in-depth review of this problem [MBWO07]. All oféke terms are synonymous: attackers
deploy a set of pseudonymous entities (e.g., automatedl thatisrate content in a manner that serves
the attacker’s goals. These attacks are further categldassed on the intent of the attackeraadom
attack aims to disrupt the system by injecting noise, wisitgettedattacks aim to promote or demote
the ranking (and thus, the recommendability) of individiterins. There is a growing body of research
that addresses the problem of identifying malicious prsfifer example, Williamst al. evaluate the
potential that a variety of classifiers have to find sybils [B08]. In other words, given a matrix of

user-item ratings that contains a set of sybil profiles, ttoblem to be solved is how to divide the hon-
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est from the malicious profiles in order to exclude the sybilhe underlying assumption here is that
thefull sybil profilesare already contained within the user-item matrix: all thieils have rated all the
items that they intend to in order to perform their attackwideer, recommender systems are subject to
change over time, as users input more ratings and CF algwgiine retrained in order to serve the most
up-to-date recommendations. This reality of deployed meuender systems presents two challeges to

the assumptions held by attack detection algorithms:

1. The sybil profiles may not be fully inserted or may be irsgrver an extended period of time;
thus reducing their immediate detectability, while noteesarily reducing the damage they may
inflict on the system.

2. As the system is updated, the problenwbien to runexpensive detection algorithms arises: how

can system administrators know that their system is paytinder attack?

In this chapter, we address these challenges by designihgwatuating algorithms for monitoring rec-

ommender system users’ behaviour over time. To do so, we thakellowing contributions:

e We preface this chapter in Section 6.2 by showing how norpteai profile injection attacks
(where the sybils appear, dump malicious ratings over a rurabdays, and dissapear) can be
defeated easily; attackers therefore have an incentivdéné the time taken to inject profiles. We
explore this incentive with experiments comparing randoofile injection attacks over varying
time lengths.

e Based on the previous experiments, we describe the rangatefital temporal sybil attacks in
Section 6.3. In doing so, we relate the number of sybils amdbar of ratings input per sybil over
time to previously defined (random/targetted) attack madeighlighting the relation between
how an attack is carried out and the intent of the attacker.

e In Section 6.4 we describe and evaluate methods of monggtimbal, user and item activity over
time and identifying anomalies that reflect and flag an ongaitack.

e Based on the defences we construct, we analyse how attankgrsespond, and propose direc-
tions for future research by defining adaptive attack modefection 6.5. We close by discussing

related work and concluding in Sections 6.6 and 6.7.

6.2 Defeating Non-Temporal Attacks

We use the same model of recommender system temporal updatesdid in previous chapters: given
a dataset at timg and a window size: (reflecting how often the system will be updated), we train th
algorithm with any data input prior tband predict any ratings input betweeand (¢ + ). We also use
the same five subsamples of Netflix user profiles we examinedaqarsly. However, in this chapter we
reduce the breadth of CF algorithms we consider; we focusamthe item-base&dNN algorithm, with

thek = 50 neighbours weighted as described in [LHC08c] and Sectidr22.

|R1 | <Z value(a,b,i)) (6.1)

i€R,

w(a,b) =
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Figure 6.1: Time-Averaged RMSE Of One-Shot Attack, and texh Shift When Pruning Newcomer’s

Ratings, and Injecting Attacks Over Varying Time Windows

Where thevalueof two ratings is defined as:
value(a,b,i) =1 — plre; — 1.4 (6.2)

We made this decision for two reasons: (a) comparisonsef-gigorithm attack robustness have already
been done [MBWO07], and (b) our goal is to design algorithilejpendent mechanisms for identifying
temporal attacks.

A non-temporal attack would operate as follows: betweeretirand (¢t + ), a set of sybilsS
would input a set of ratingX; the non-temporal characteristic of this attack is thatted malicious
ratings are input within a single window (while tlaetual time taken to operate the attack may span
the size of the entire window). We can then measure the chentiee temporal performance with
the time-averaged RMSE metric. We visualise the tempofatef of a non-temporal attack with the
following example. During thé25¢h week-long window in the Netflix data, we insert&@D sybils who
each rated approximatelp, 000 selected items. In this example, we limit ourselves to exipipthe
temporal effect of aandomattack: each sybil randomly picks one of the available itesmsl then rates
it with a random value drawn uniformly from the rating scakégure 6.1(a) plots the impact that these
ratings have on the time-averaged RMSE.

The random attack has a pronounced effect on the time-asgmalyISE: performance is consis-
tently degraded over the rest of the updates. However, tfaiskais simple: sybils appear, rate within the
window length, and disappear (a “one-shot” attack). Furttoge, at each update the system re-trains
using all historic data, regardless of whether the usershalve input that data continue to reappear. The
natural response is therefored@strust newcomersany ratings from new users asespect In Figure
6.1(b) we repeated the previous experiment, but excludguoest ratings from the item-similarity com-
putation step of th&NN algorithm. By excluding suspect ratings this way, we rtaiimed our ability to
formulate recommendations for all users (including syhid aew honest users- should they reappear),
while removing the influence that suspect ratings exert eritdm neighbourhoods. We plptediction
shiftvalues, i.e., the difference between the baseline (pied&with no sybils inserted) and the attack

and newcomer-filtered scenarios. While we certainly prusedy the ratings of non-sybil users, the
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technique not only eliminates the effect of the attack, et enprovesupon the baseline RMSE in a
number of windows prior to the attack taking place (i.e.,ghediction shift is negative). Removing the
ratings of users who appear, rate, and do not return thudsweoie-shot attacks and seems to take small
steps towards de-noising the data [APTOOQ9].

Given this situation, an attacker may simply respond by wiidg the number of windows taken
to inject ratings. Sybils under the attacker’s control vebtilerefore appear in multiple windows and,
after the first appearance, no longer be suspect. In ordesplore the incentives that attackers have to
rate-limit their own sybils, we performed a number of randattacks, where a set af0 sybils rated
the same number of items over a varying number of sequenialows W, € {10, 20, 50,100}. In
each case, theumberof malicious ratings remained the same, the only differdraing thetimetaken
to insert them; we compare attacks of the same magnitudeliffet only in temporal spread (i.e., the
ratings per sybil per window varies, as does the number oflowrs). The results in Figure 6.1(c) show
that injecting ratings over longer time periods deviatesRMSE from the baseline less. This is likely
to be an effect of the balance between sybil and non-syliiigst longer attacks have less of an effect
since, during the time taken to operate the attack, theréaigar influx of non-sybil ratings.

We draw two conclusions from the above experiments: theemigcentive for attackers to (a)
inject ratings over more than one window (in order to not hiéar ratings be suspect), and (b) inject
as much data as possible, in order to have the greatest |gos#ict (since higher volumes of sybil
ratings per window has a more pronounced effect). With thisind, we describe temporal attacks by

considering the choices attackers must make when desigrsggil attack.

6.3 Temporal Attack Models

Previous work [MBWO07] examines different regions of sybibfiles, looking at what items sybils must
rate in order to define different attacks. This structudélsbids on the temporal scale; the difference is
how long it takes the attacker to construct the sybil profilashis chapter, we do not assume that the
profiles are populated in the same order (i.e., all sybis madviemn, first, mo second, etc), or that they
even all contain the same items; instead, we assume thedtthat which they are populated is roughly
similar (in Section 6.5 we discuss the consequences of imgéhe latter assumption).

There are a number of factors that attackers control whenithglement a temporal attackiow
manysybils should rate content, thate at which sybils should inject ratings, ahdw longthey should
continue rating for. Attacks can thus be classified accgrtbrhow attackers calibrate these factors, and
whether they hit the system witin@ny, fewsybils rating (nany, fewitems per window, for a predefined
sequence of windows. Figure 6.2(a) summarises this viewh faadrant represents a combination of
these two variables; a third dimension (not pictured hera)ld/ represent the rate of attack. This is
important because these variables reflect the rationaleeodigoing attack. For example, many sybils
rating many items translates to inputting a high volume oficius data, and may reflect an ongoing
random attack.

The relation we have outlined above is important since itags how an intelligent attacker would

go about achieving particular goals when attacking a recenttar system. However, there are a number
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Figure 6.2: Attack Types and Impact With No Defences

of factors that attackers cannot control, related to hownthre-sybil users behave: how mangn-sybil
users there are, the numberrafingsthat they input per windowyhatthey rate, anthowthey rate. We
will leverage this information in order to construct a defeno temporal attacks, which we introduce in

the next section.

6.3.1 Measuring Attacks

There are a number of ways of measuring the effect of attaakgjng from prediction shift, to hit ratio,
and average rank [MBWO07]; each aims to measure changeslimed by malicious ratings. In this
chapter, we are interested in measuring how well our defedetect ongoing attacks (rather than how
the attacks change recommendations); we thus focus on teetidaprecision recall and the potential
attackimpact Given a windowt, and a set of sybil$; who rateX, items each during the window, the
impact of the attack is simply the number of sybil ratingsuinat the current window, or S; x X,
divided by the total number of rating®; input in that window:

S:xXe - if attack is undetected
: 6.3)

impact; =
0, otherwise

In measuring attacks this way, we assume that, if a systeningtrator can be told that the system is
under attack, then one of the many sybil-identifying cliss that are described in the literature can
be used to prune the actual sybil ratings. If no attack is #dgghen we measure the relative size of
the attack. This metric gives higher weight to attacks thggdt more ratings; Figure 6.2(b) plots the
attack impact for varying sizes of sybil groups and ratingsavhen no defences are in place. While
it is certainly possible to envisage attacks that, by cdlgetfuning what the sybils rate, cause more
damage with fewer ratings than higher volume equivalentshis chapter we are not concerned with
comparing attacks to each other. Instead, we use the metsieet how many ratings attackers can slip
into the system without causing behavioural anomalies. M measure the number of true positives
(TP, attacks that were flagged), false positives (FP, ntatld that are flagged), and false negatives (FN,

attacks that were not flagged). Precision and recall aredbewputed as:

TP TP
precision = W, recall = m (64)



6.4. A Temporal Defence 107

All these metrics, however, are related: the precision acdll relate the proportions of false positives
and negatives to the true positives, while the impact, bpdpe@ion-zero when an attack slips through,
displays the false negatives in a manner that takes intouatdtbe size of the attack that failed to be
detected. In effect, we have two metrics that explore fagkfalse negatives. The emphasis we place
on false negatives throughout this chapter is motivateakmafs: we cannot know (and only assume)
that the data we experiment with is the fruit of honest, vimtintioned users; similarly, we can only
know that an attack is taking place when we manually insei/é therefore place a higher importance
on reducing false negatives (i.e., finding all the attackswe insert) within the data that we have: false
positives in the real data may very well be attacks that ptedanomalous behaviour, and are likely to
deserve further inspection. However, we note here thatefendes described below produced no false

positives when run on the temporal rating data with no agac&nually injected.

6.4 A Temporal Defence

In the above section we outlined the factors that attacketsrohine: theime (number of windows),
size(number of sybils)rate (number of ratings per sybil per window), asttategy(which items need
to be rated: random/targetted) when implementing an attdckhis section, we describe a method
of detecting different forms of attacks, based on moniwtime global behaviour (Section 6.4.1), user
behaviour (Section 6.4.2), and item behaviour (Sectior8%fér anomalies. The key to our proposal is

that attacks may be identifiable by finding consistent anmsahused by the sybil group’s behaviour.

6.4.1 Global Thresholding

The first perspective of system behaviour that we considat ieeglobal, or aggregate, level. While
the number of ratings that users input varies over time, Weeage ratings per user per window (in the
Netflix data) remains relatively flat: Figure 6.3(a) plotsthalue over time. From this, we see that the
average user will rate betweén- 15 movies per week. Since the mean is derived from a long-tailed
distribution, it is a skewed representation of the “avetageer. However, an attacker, by deploying
a group of sybils who inject ratings at a pre-defined rate| midify this aggregate value; the first
dimension of our defence thus aims at monitoring changebea@verage ratings per uskfU, over
time. Given a window, the current mean ratings per usdt;, standard deviation;, the R, ratings
input by U, users an alarm is raised if the volume of incoming ratingsadsgrom the mean measured

to date by an amount determined with a global threshgld- 1:

Bt > (MU, + (0 x ) (6.5)

t
Otherwise, we update the currehfU; value as an exponentially weighted moving average (with a
weighting factors,):

MUt = (ﬁt X MUt—;,L) + ((1 — Bt) X %) (66)

MU, is updatecconservativelyif an attack is flagged, then it is not updated. We also upbatie the
ay and 5, variables. Thes, variable determines the weight that is given to historieghd relying too

heavily on historical data will not capture current fluctoas, while weighting current values too highly
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Figure 6.3: Netflix Ratings Per User Per Week; Global Threihg Precision and Recall

will disperse temporal trends. We therefore determine the walues, ., with the standard deviation

measured to date:
Bt = min(|oy—,, — o, 1) (6.7)

The value is capped at thus ensuring that when there is high variability in theagd#t gives higher
preference to current values, while smaller standard tewiahifts3; to give higher weight to historical
values. Thex; variable determines the extent to which the currﬁhtvalue can deviate from/U,
before an attack is flagged. When an attack is flagged, we eeduin effect, making it more difficult
for attackers to learn the appropriate threshold. Wexséb jump between pre-specified valuéss(and
1.5):

1.5, if no attack detected
Qttp (6.8)

0.5, otherwise

Monitoring incoming ratings at the aggregate level is daresio two factors: how naturally variable
the incoming ratings are, and the amount of variance thatldtintroduce. In other words, a mechanism
like this may not work if there is already high variance in &verage ratings per user and sybils do not
displace the mean value. We therefore evaluated this tggbnvith two methods: in the first, we
simulatea stream of incoming ratings (in order to control both thearaze and size of attack); we then
turned toreal datawhere we could explore the effects of varying attacks in aamealistic setting.

In order to simulate a stream of incoming ratings, we drawcmerce of% values from a normal
distribution with (fixed) mean/U and standard deviation € [0, MU]. Then, at random moments,
we simulate an injected attack where a group of sybils stii#sncoming value by the attaeknplitude
~v € [0, (2 x MU)J; in other words, at an attack timiethe window’s value i:{’g—tf + 7). We then note
whether an attack was flagged, and can compute the detectoisipn and recall with the results.

When running the simulation, we assumed that, after a lnégfihg phase, the system could be
attacked at any time during a periodigf000 windows, for a pre-determined numhén) of sequential
attack windows. We re-ran each simulation parameter gelttin000 times and present averaged results.
Figure 6.3(b) shows the resulting precision, which fades axreases, but is otherwise dependent on

o (the variability in the ratings per user per window) rathert the attack amplitude In other words,
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the number of false positives depends on how naturally bbrithe data is, and, given that the real data
displays low spread, the number of false positives is likelpe low. Figure 6.3(c), instead, displays
the detection recall. This plot highlights the trade-offeeens and~: the best recall is when a small
o is modified with a largey, while the worst values are found when a larges deviated by a smaf}.
However, we note that the minimum precision is slightly etb90, while the minimum recall remains

above approximatel§.95.

We returned to the Netflix subsets in order to test this methiti real data. To do so, we trained
our monitor with all ratings per window until the attack tirend then measure the attack impact after
injecting the attack. Since the attacker may unleash thigssatany time, we repeated our experiments,
starting attacks at each possible window, and plot averag@ts across all windows. As Figure 6.4
shows, this method catches attacks where large groups it gyjlect their profiles at a very high rate;
the top right corner of the plot is flattened to zero impactwieer, two sensitive areas remain: first,
wheremanysybils injectfewratings, and whefewsybils injectmanyratings. Attackers can thus respond
by either reducing the size of the sybil group, or the thelsytdate. However, this plays into our hands:
in Section 6.4.2 we address the former, while Section 6.ds8ribes how the latter attacks can also be

monitored.

6.4.2 User Monitoring

One of the shortcomings of the Global Thresholding detaatiechanism is whefew sybils ratemany
items each. We address this pitfall by designing a user mgnithich aims to detect this particular
scenario. Figure 6.5(a) plots an example distribution thgs input in a single window; we find that
majority of the users input a low number of ratings per weekileva minority of outliers rate a high
volume of movies. An attack in this context would thus ensailting a group of sybils to rate a high
volume of content over a number of windows; detecting thisdv@ur focuses on examinirigw many

high volume raters there are ahdw muctthese outliers are rating.

(a) How Much High Volume Raters Rate. Given the current mean value of ratings per user per

window M U, we differentiatenigh from low volume raters based on the difference between the ratings



6.4. A Temporal Defence 110

Incoming Ratings Histogram Ratings Per User High Volume User Proportion

High Volume Users

Proportion of Users

- U pee. o -

T T T T T T T
50 180 300 450 EO0 750 900 1080 1400 500 1000 1500 2000 500 1000 1500 2000

Ratings Input Days Passed Days Passed

(a) Static Ratings Per User (b) Temporal Ratings Per User (c) Proportion High Volume Raters
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that they have input in the current window amtl/;:

true if Uy— MU; >0

falsg otherwise
The mean ratings per high volume udéll; can then be monitored, in a similar way that we monitored
the entire distribution in the previous section: an expdia#ip weighted moving average is regularly
updated, and large deviations from the expected value flagegoing attack. In Figure 6.5(b) we plot
the ratings per high volume user over time.

(b) How Many High Volume Raters. Given the high volume raters found with Equation 6.9, we
also keep track of how many usetd/; there are relative to all the users who have rated in the gurre
window. In other words, a user is suspect if they are at thiedsgend of the user-rating distribution, and
both thesizeof this group androlumeof ratings they input may indicate an ongoing attack. As v pl
in Figure 6.5(c), the size of this group of users, divided ey total number of high volume raters per
window, tends to be relatively stable; injecting differémtms of attacks upsets both this and the mean
ratings per high volume user values.

We take advantage of both pieces of information in order tpléynour detection mechanism: we
create acombined scor@er window by multiplying theHM, value by the proportion of suspect users
HU;. This way, we aim to capture fluctuations in both treup sizeandrate that a potential group of
sybils will inflict when performing their attack.

We evaluated the user monitor with the Netflix subsets fosenalidated results with real data. We
did so in two steps. First, Figure 6.6(a) shows the resultimgact if only part (a) of the above is used
to defend the system: this defence can overcome similarasicasrthat we addressed in the previous
section or while lessening the threat of smaller groups gifitvolume rating sybils. This threat is not
fully eliminated: the top-left of the plot shows a remainimgn-zero impact section. This is the effect
of the false negatives of our monitor: sybils who rate at highume but are not flagged. In Figure
6.6(b), we plot the impact of theombineddefences. Overall, it reduces the impact of random attacks:

Figure 6.6(a) reports attack impacts between approximgtg).25], while the combined defences range
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between approximatel@, 0.12]. Nevertheless, the attacks that have the highest impactcavehose
wheremanysybils ratefewitems. In the next section, we consider the scenario whéséyhe of attack
now dominates.

Future Developments One aspect that may aid the user monitor, but we leave afwturk, is the
consistencyf membership to the high-volume raters group. In Figurédj.@e plot the proportion of
high-volume raters who have been in this group/fer {1, 2, 3} number of consecutive windows, after
pruning the newcomers’ first ratings. We find that og@¥; of the high-volume raters are appearing in
this group for the first time; asis incremented, the relative group size falls sharply: asth2% of the
group members are making their second appearaficare making their third. Sybils who are injecting
a lot of noise for an extended period of time would become llamfaces in the high-rating group.
Furthermore, the extent that honest users who rate largeneobf movies per week input valuable data

is questionable.

6.4.3 Item Monitoring

The last scenario that we address is the attacks thanhsegsybils ratefewitems each. This form of
attack overcomes the previously outline defences: thdssgibinot rate enough items each to be detected
by the user monitor, and there are enough of them to not $ieiftting per user temporal mean and flag
their presence. To attempt to detect this kind of attack, igeréason on what items the group of sybils
may be rating, and then design and evaluati&eamnmonitor to identify ongoing anomalous behaviour.
CF algorithms, that will be affected by injected profileseogte on vectors of ratings. It thus seems
intuitive that, in order to have the greatest impact possiploups of sybils who inject very sparse profiles
(by rating few items each) will tend to be rating a similar gtdup of items, rather than dispersing the
ratings over a broad range of items, which would have a smeffiect. This strategy recalls the structure
of targettedattacks [MBWOQ7], where injected profiles contdilter, selected andtargetitem ratings.
These profile regions correspond to the ratings that syhiistranter in order to construct an attack;
for example, if an attack aims to promote a fantasy moviesttils may rate famouselectedantasy

movies, along with a number diller items to disguise each profile as a “normal” user profile. The
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difference between a random and targetted attack is thesndieted by thestrategyof how to populate
the profiles: what theelected, fillerandtargetitems are (in the case of a random attack, there is no
target item) and how they are rated; furthermore, the comsoatgroup of items that all sybils rate is
theselectechndtargetitem. On a temporal scale, this form of attack would entadirgé group of sybils
rating items amongst this subgroup within a number of winsl¢pvoportional to the attack length). We
therefore turn to monitoring the items in a system to deteese kinds of attacks. We further assume
that it is very unlikely for an item that iglreadypopular to be subject to an attack that aims to promote
it; similarly, it is unlikely that unpopular items be demdtdn other words, we assume that the purpose
of attackers is to maliciously reverse an ongoing trenchémathan reinforce a pre-existing one). Given
this, we design an item monitor to identify the target of ettaby focusing on three factors: tamount
that each item is being rated, the distancerti@anof the incoming ratings for each item has from an
“average” item mean, and a temporal meaange detector

(a) The Item Is Rated By Many Users At each timet, with R, ratings input forl; items, the
average ratings per ited? I, (with standard deviation; ;) can be computed. We can then select, from
the available items, those that have been rated the mos icutinent window by selecting all those that
received!; ratings greater than the mean number of ratings per itéfu

true if I, > MI + (a4 X 0y,
high(I,, M1I,) = ! e+ (o x o) (6.10)

false otherwise

(b) The Item is Rated With Extreme Ratings Using only the ratings input in the current window
w, we determine theneanscorer; for each itemi, and then average these to produce the expected mean
scorev per item:

v = Iit ; i (6.11)
If an item has been targetted for attack (and either demat@domoted by a group of sybils simulta-
neously), then the correspondingwill reflect this by being an outlier of the global averageritenean
V.

(c) The Item Mean Rating Shifts We compare the item mean computed with historical ratings
and ther; value determined from the ratings in the current window. A&cgssful attack will shift this
value by some distancg in this work, since we are operating on the Netflistar ratings scale, we set
0 to slightly below2.

An attack is flagged for an item if the above three conditioesnaet: it is rated more than average,
and the mean of the incoming ratings shows that it is both eotgorated in the same way as other
items are, and a change from the historical value is beimgdniced. Our monitor therefore focuses
on identifying the moments when groups (or subgroups) ofisyhte thetargetitem. We therefore
modified our evaluation mechanism to test how well we find #emmen they are attacked, depending
on how many sybils push in the target rating at the same tineeWdluated the monitor as follows: at
time ¢, a group of sybils rates a randomly chosen target item. Thissgemote the item if it is popular

(it has mean greater tha&), and promote it otherwise. We do not discriminate on the Ioemof ratings
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Figure 6.7: Item Monitor: Average Precision & Recall

that movies currently have when determining whether to rarkgromote it; however, previous work
shows that it is harder to protect sparsely rated items fribacla[LR04], and our item selection process
is biased toward selecting these items. We then check td #ee monitor flags any suspicious items,
and measure the number of true/false positives and falsatineg. We repeat the same run (i.e., group
size and attack window) fdi0 different items, and measure the resulting precision acalteHowever,
since an attack may begin in any of the available windows h&a tepeat this process for each possible
window, and average the results across time. Finally, weaethis entire process with each Netflix
subset to produce cross-validated results. The resultsftre take into account the differences between
sybil group size, target item, attack time, and honest uskatiour.

The average precision and recall values are plotted in E&6I7(a) and 6.7(b). They highlight that
these methods work best wheranysybils are rating the same item, with recall n@8% and precision
near70%. The fact that the precision is not performing as well as &valt implies that there are a higher
proportion of false positives rather than false negativésen an item is under attack, it is likely to be
flagged as such, but few items that are not attacked may beslaagywell. As with the user monitor, it
remains unclear how to deal with items that are being ratedhatously by users who are not the sybils
that we explicitly control in our experiment. In fact, we canly be certain that users are malicious if
we explicitly injected them: otherwise, we have assumed tthe users in the dataset are honest and
well-intentioned, which may not be the case. It is therefmeferable, in this case, to have a monitor

with higher recall than precision, since we are sure thasitds we inject are being found.

6.5 Adaptive Attack Models

The previous sections describe methods to detect difféoemis of automated sybil attacks by spotting
anomalies in user behaviour. One of the natural limits o¢hechniques is when honest users’ be-
haviour deviates from what was previously learned to be m@irarecent example is the vast numbers of
web users who searched for news relating to the death of Midaaksort (a news article recommender
system may thus see these articles being read in an anonyahigis volume). On the other hand, at-

tackers may modify their methods in order to overcome themntas. In this section, we switch to the

http://itech.slashdot.org/story/09/06/29/003214/Geddistook-Jackson-Searches-For-Net-Attack
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point of view of the attackers: we describe how attackers av@ycome these defences, and evaluate the

effect that such attacks have on the Netflix data.

6.5.1 The Ramp-Up Attack

In Section 6.4.1, we described a method of curbing randcexlegtby means of monitoring an exponen-
tially weighted moving average of the ratings per user pedaw; the user- and item- monitors had a
similar flavour. An attack was flagged if the current ratings pser value exceeded a threshold above
the moving mean, determined by the historical values’ vexgsand a weighty,. The key insight of
this detection mechanism is that an attack silddenlyandnoticeablyshift the moving mean, and can
thus be detected. Similarly, our evaluation assumed tleattie at which sybils inject ratings remained
constant.

Attackers may attempt to overcome this defencabyementally}changing the sybils’ rate of attack.
In the best case, the attacker would know what the curreashioid is, and could set a group of sybils
to inject at a rate that would push the mean up to (but not bdyitnis value. Doing so would allow the
attacker to then increase the rate in the following windoswthee moving mean increases (along with the
threshold), the attacker may be free to unleash evermohehigtes of profile injection. We call this a
ramp-up attack

The ramp-up attack can be used to defeat all three of the alefeaces; we experiment with this
by considering the scenario of a system that only has theaghabnitor in place, and an attacker who
would like to inject as much noise as possible into it duriqpeod of10 consecutive windows, starting
roughly halfway through the dataset’s timespan. Furtheemee only consider the optimal case, where
attackers knova priori what the incoming ratings per user per window values are candhus deduce
what the threshold will be and tune sybils’ rates accordinigi doing so, we give attackers an advantage
that they are unlikely to have; we discuss this further below

In Figure 6.8(a) we plot the exponentially weighted movingrage of the global threshold over
time, both with and without a ramp-up attack. The effect eftamp-up attack is to shift the mean, which

then remains parallel to the original. Longer ramp-up &dagould shift the mean even further. Based
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on this mean (and corresponding threshold), we computeththémum ratings per sybil per window
that avoids detection throughout the course of the ramptaplg we plot this sequence in Figure 6.8(b).
An interesting point to note is that, since the mean relieh@n both the honest and sybil users are
behaving, the optimal values do not increase monotonictilgre are windows where the honest users
collectively rate less, which would thus highlight the dgbimisbehaviour unless their rate is reduced.
Lastly, we measured the prediction shift when sybils infatings in this fashion, and compare it to the
original attack (with the same duration) that we examine8eation 6.2. The results, in Figure 6.8(c),
highlight the importance of our defences: forcing attaskerramp-up rather than simply dump ratings
into the system affects the prediction shift much less.

The results we show here are the best-case scenario fortdoleat since they knew the current
threshold and ratings per user value. In practice, it iskehlithat the attackers know the current thresh-

old, for a number of reasons:

1. The incoming ratings per user value (that we assumed ttaakars knew) is computed at end of
the current window. Attackers who may monitor all users trethe precise value would then

have no time to inject ratings.

2. The current threshold varies as the exponentially weijimoving average is updated; even if
attackers knew the previous window’s threshold there isusrgntee that the attacker can inject

the maximum number of undetectable ratings in the currendo.

3. Experimenting, in order to discover the threshold, wdwgddifficult since, as we saw in Figure
6.8(b), avoiding detection in one window does not guarathi@ethe same rate will avoid detection

in the next.

4. Furthermore, attempting to discover the threshold waijlithpact the threshold itself, sinceis
updated, and (b) reveal a set of sybils once the thresholthéwas surpassed, requiring attackers

to then restart their efforts from scratch.

Similar ramp-up attacks may be performed to overcome thendes in Sections 6.4.2 and 6.4.3.
However, the main insight from the above experiments is thatp-up attacks are more difficult and
require more time to execute than attacks on an unmonitoreteéra. This therefore highlights that,
while the temporal monitors that we describe above are fiatiivie, they provide a significantly difficult

obstacle that attackers now need to overcome.

6.6 Discussion & Related Work

Anomaly detection algorithms have been used when secunivigerange of systems, in order to, for
example, defend against financial fraud [WBO08] or defend a@ivers from denial of service attacks
[SP06]. These techniques are readily applicable to recamdaresystems; the only problem being how
to define what an anomaly is, and how to monitor the large velofrusers and items. In this chapter,
we have introduced novel methods that detect anomaliesrinugaspects of rating behaviour while

learning what normal user behaviour is, thus liberatingesysadministrators from these challenges.
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To do so, we leveraged the effect that honest users have derttporal dynamics of the system. For
example, we used the fact that a majority of users rate verytéams in order to identify the sybils who
are rating a lot. The only way that sybils may dodge pushiegtionitored variables over the detection
thresholds is byot rating our defences acts as an incentive for attackers to dravhedéngth of their

attack, thus reducing its overall effect (as seen in Se@&igh

The monitors that we described above each address diffemens of attack: the global monitor
detects large groups with high rates of profile injectiom, tiser monitor detects the few users who are
injecting large volumes of ratings, and the item monitoedet when many users are rating a target item
in an anomalous fashion. We thus evaluated each one sdpanateder to highlight each monitor's
strengths and weaknesses. However, we already saw thatthzorene monitor may flag the same
attack; for example, the user monitor detected many of theesattacks as did the global monitor. In
the future, we plan to evaluate how multiple defences opavaen combined, and the overlap between

user, item, and global behaviour as different attacks &iadelace.

Anomaly detection has also been seen before in recommeystens research. Bhaumit al.
[BWMBO06] propose a method to monititemsas they are under attack, by looking at changes to an
item’s mean rating over time. Similarly, Yarg al [YSKY09] infer user trust values based on modeling
the signal of incoming ratings. They use these techniquetottitor wherreal users who each control
50 sybils, are attacking a system. To that extent, their syséaemder a variety of potentially conflicting
attacks. Our work differs on two main points: first, we evédua system that iteratively updates and
computes personalised recommendations for each user.sd/prapose methods that assume a large set
of users and items, and flag attacks while monitoring allsiaed items (rather than simply monitoring
users/items individually). We evaluate attacks that maydemonstrate anomalies within a single time
window, but appear between system updates, and may betéatdetaffect particular users’ recom-
mendations. We also explore a wide variety of attacks, rapfjom therandomto targettedscenarios,
where a key aspect of the attacks is the fact that gybilpsof varying size are rating items. There are a
number of other particular strategies that attackers maptgduch as the bandwagon or average attacks
strategies [MBWO07]) when unleashing a set of sybils that @weetot explored above. Our detection
mechanisms, in focusing on complementary dimensions afkdt(thegroup sizeandrate of sybils as

they attack) hope to detect attacks regardless of the adieprtegy.

The idea of temporality in attacks has also been explored fhe point of view of user reputation;
Resnick and Sami [RS07] prove a variety of properties ofrthegutation system, which takes into
account the order in which ratings are input. It remains esicchow these systems would work in
practice: many reputation or trust-based systems assuwahéhthratings input by users are the ground
truth, without taking into account that users are both relyiinconsistent when they rate [APTO09] and
what they rate will be influenced by what they are recommenBetthermore, one of the most troubling
problems that both monitoring techniques and reputatigtesys suffer from i®ootstrappingsystems
can be easily abused when the variables that monitor or reféec behaviour have had little to no data.

We use all ratings input prior to a pre-specified tiate bootstrap each monitor. System administrators
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may opt to ask a controlled, closed group of trusted useratéofor varying lengths of time in order to
bootstrap [ALP 09]. Alternatively, if the system also offers social netkiag functionality, defences
that identify sybils according to their location on the sd@raph can be applied [DCO08]; in this work
we assumed that no such graph was present.

While it is often the case that designing security mechasiisnsontext-sensitive, there are lessons
that we learn here that may be applicable to other scendrmsexample, Yiet al. [YSK+09] design a
method for recommender systems with binary-voting liked)ignd demonstrate the ability to fend off
attacks where the number of sybils greatly exceeds the nuaibe@nest users. While our work focuses
on the ordinal-scale rating-based Netflix data, the siityldretween the two contexts is the need for
sybils to outweigh honest user behaviour in order to achieakcious goals, and doing so in tandem is

a key insight into detecting their misbehaviour.

6.7 Summary

In this chapter, we have confronted the problem of sybilckao recommender systems. The focal
point of the contributions we make here is that sybils areatable not only viavhatthey rate (as state
of the art sybil classifiers learn from) but also bywthey insert these malicious ratings. In fact, the
mere act of casting the problem of recommender system nobssbnto a temporal scale already makes
it harder for attackers to meet their goals: they can no losgeply dump ratings into a system and
expect these to have any effect. Furthermore, the actioheafystem’s honest users can be leveraged in
order to identify the automated attacks. We introduced awawed-view of temporal behaviour, defined
the notion of temporal attacks, and then designed and eealwsglobal, user,anditem monitor that
flags when different forms of attack are taking place: whetsl groups (of varying size) inject item
ratings (at varying rates) over time in order to either di¢the system’s recommendations (vimadom
attack) or modify the recommendations of a particular itenith( a targettedattack).

Lastly, we paved the way for future research by describing httackers may overcome these
defences; namely, by performingramp-upattack that can fool the defences into believing that no
attack is taking place. We compared the effects of a ramptapla when the system is defended by
our algorithms, and a one-shot attack on a system with nandefg and concluded that the ramp-up
attack is not as immediately effective as an attack on anfended system: our methods thus increase
the time and effort that attackers require to accomplish theals. Future work should thus investigate
how recommender systems can identify an ongoing ramp-aglatind adapt the system'’s defences

accordingly.



Chapter 7

Conclusion

This thesis is grounded on an important observation: tiseaelisparity between how collaborative filter-
ing is reseached and how it is deployed. The majority of nesetaeats the scenario astatic problem:
given a dataset, the quality of a particular algorithm’'soramendations (measured as accuracy or pre-
cision) can be evaluated by training and testing the algorivith partitions of all the data. Deployed
recommender systems, instead, have to cope with a consrinfbux of ratings, users, and content. The
underlying data changes in size, sparsity, and may evemieedistributed differently; changes occur
that affect performance and can neither be reproduced raoniexed under static conditions.

Once the assumption of a static context has been removeagtimdology used to investigate CF
needs to be redefined. In Chapter 4, we introduced a novelsreatioing so, based on partitioning
the data according to rating timestamps and simulating éoge@ system by iteratively retraining CF
algorithms with incrementally larger portions of the datdnere are then a number of novel directions
and uncovered results that can be examined when reseawatilagorative filtering. We have focused
on three aspects: recommender systems’ temporal acculigeysity, and robustness. Each aspect is
highly significant: while accuracy has been the focal poin€B evaluation (and the primary tool for
comparing algorithms), temporal experiments show thatg accuracy varies with time undermines
the usefulness of work comparing algorithms solely on theeinds. Temporal diversity could not
be explored from a static perspective, yet (especially éndise where it is missing) elicits passionate
responses from surveyed users. Lastly, we determinedaaatihg temporal behaviour and monitoring
it for anomalies not only wards off a humber of recommendstesy attacks, but forces attackers to
select strategies that are both more costly (in terms of titken to execute the attack) and less efficient.

In the following section, we summarise the contributionshage made.

7.1 Thesis Contributions

At the broadest level, the contributions of this thesisifaib one of three categories:

e Analysis. We have shown, through extensive analysis of real usergstimow CF data changes,
including how summary statistics, similarity, and userdabur fluctuate over time. While dif-
ferent datasets grow at varying rates, they all grow: olisgrthese changes strongly motivates

research into how the systesms a wholgperforms over time.
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e Methodology. We have designed a novel methodology for performing tempmiaborative
filtering experiments. This method relies on partitionihg tlata according to the ratings’ times-

tamps and incrementally growing the size of the training set

e Algorithms. We have designed and evaluated hybrid CF algorithms tha¢egase the tempo-
ral accuracy, (b) bolster temporal diversity, and (c) seaecommender systems from temporal

attacks.

The contributions of this thesis are relevant to iggearcherswho are now challenged to build
algorithms that stand the test of time (as well as those iegby traditional evaluation metrics), and
(b) practicioners who may wish to augment their systems with features of thuigkwby, for example,
overlaying a re-ranking algorithm on their CF predictiorthoel. Recent work by Burke [Burl0] furthers
the call for dynamic, temporal evaluations of CF by propgsimmethodology that is similar, yet finer-
grained, than the one we used throughout this thesis.

A general theme emerges from the algorithmic proposals we imade: whether we were focusing
on improving accuracy, diversity, or robustness, our sohst proposed to treat users differently from
one another. For example, the user-based switching algoi(Chapter 4) improved overall accuracy
by trying to improve each user’s accuracy independentihefdthers; a similar solution was adopted
to improve temporal diversity. When it came to defending @nemender system (Chapter 6), part
of our proposal was monitoring users and comparing how tkeaabed with respect to the rest of the
community, in order to identify misbehaving sybils. The tality of users in our proposals reflects the
variety of roles that users adopt when interacting with @nmemender system: while some users are
purely consuming content with the goal of obtaining bett®ommendations for themselves, other users
are actually driven by a desire to help others’ recommendafHKTRO04]. The key insight here is that
there is a difference between the various system users;atteegiot all the same. CF research, on the
other hand, has ignored this insight and designed “onefig&all” solutions. In this thesis, we have
departed from this approach by testing algorithms that amy they compute predictions for different
users.

The work we have done here is inherently limited by the dash wWe have used. Recommender
systems may span a variety of different domains (both on #rttie@web and for a wide range of dif-
ferent types of items); however, our datasets only reflehemovie rental web sites. Our work has
therefore focused on scenarios where usggicitly rate content (we do not use any implicit data). The
assumption we hold is that these datasets are sufficimpthgsentativef large scale recommender sys-
tems, and conclusions that we draw when analysing themraikady applicable to other recommender

system domains.

7.2 Future Work

As we saw in Table 2.1 (Chapter 2), the research problemsmgleo recommender systems are not
limited to those we have addressed in this thesis. In thisssgonve discuss opportunities for future

research. We divide them into two categories: the direcsequences of the methodology we have used
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throughout this thesis and broader considerations on-efetee-art CF research.

7.2.1 Using a Temporal Methodology

In this thesis, we focused on accuracy, diversity and rotasst from a temporal perspective. Tapg
proachthat we have defined, however, also offers a novel persgamtivnany other research challenges:
attempting to solve them using a temporal methodology &\ilko offer insights that were previously
unavailable. Examples include:

The Cold-Start Problem. We explored the effect that highly connected users haveredigtive
accuracy and coverage and validated that only using thdhachiieves comparable accuracy results
(Chapter 3). Cold-start users, who have no profile, may fbexébe given a neighbourhood of these
users until their profiles are sufficiently large to computarailarity-based neighbourhood. Can these
highly connected users be identified as they rate? To whanhesb they vary over time and what effect
does any variation have on system performance?

Serendipity. Being able to identify users who consistently seek out atelmew content may help
finding the sources dferendipitousnformation. On the other hand, serendipitous ratings neagnbre
prevalent in the sparser profiles. Herein lies a two-foléaesh problem: first, how can serendipity be
measured? Second, is it possible to identify those who aredtirce of new ratings, trends, and who first
rate what will later become popular content? Richer dasasety also offer finer-grained insights. In
particular, recent work on multidimensional recommengsteams may show why power-users emerge,
and how they can best be used [ASSTO05].

Scalability. The mainstream approaches used to tackle the large nurhbseis involves dimen-
sionality reduction techniques [BKO7]. Temporal patteimseighbourhoods, however, can be taken
advantage of to reduce the complexity of recomputing thdaiity between every user pair. Identifying
the active users in a particular moment can potentially leel i3 reduce the time complexity of comput-
ing recommendations. Furthermore, as discussed in Chayptds often the case that large proportions
of the dataset are not used to generate predictions at @htifging and requiring only a small set of
power users to generate accurate predictions would vastlyce the scalability issues that recommender
systems face [ALP09].

Combining Multiple Goals. CF research has traditionally placed a high value on acguirathis
thesis we designed mechanisms to augment accuracy over lHowever, we also noted that both di-
versity and robustness are equally important. While ouppsal regarding temporal monitors to secure
recommender system robustness does not interfere withraderlying prediction or ranking algorithm,
the diversity and accuracy algorithms may conflict with onether. Future work thus calls for design-
ing and evaluating CF algorithms that meet a variety of negoents; for example, that they produce
recommendations that are both (temporally) accurate arets#i. A simple approach to this particular
example may entail using the switching algorithm (Chap)etodimprove accuracy, while re-ranking
the top/V recommendations (Chapter 5) in order to diversify the tesuhis approach ensures both
properties without interfering with one another. Howetleere are likely to be more qualities that users

seek from their recommendations, and it is likely that thexyrot all be optimised independently of one
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7.2.2 Beyond Temporal Collaborative Filtering

The themes that emerge from this thesis call for a focus @etkey areas in future recommender system
research: thaesers the systentontext and thesocialaspect of recommender systems.

The methodology that we have used throughout this thesisctefbprocessthat occurs when
recommender systems are deployed: usergéitstontent; the ratings are used to compurtedictions
predictions are ranked to forrecommendationsand recommendations incentivise users to rate more
content. In general, CF research has tended to focus onwalgftthese three steps. The majority of
research (along with the Netflix prize) is dedicated to thebjpegm of computing predictions using ratings.
More recently, the importance of ranking (and thus the seéstep—converting predictions into a ranked
list) has emerged, and recommender systems have beentedalsang a variety of information retrieval
metrics [ALPT09, Kor08]. However, the last step remains unexplored:rgiveet of recommendations,
why do people rate as they do? Do they rate their recommeamdatr seek out different content? What
affects the way they rate? When confronting the problem wipieral diversity (Chapter 5), we began
to see how ratings are not simply reflections of what eachthagks of themoviespresented to them;
the ratings also reflect the users’ response to the reconemspstem and their impression of how well
the recommendations are tailored to their needs. A majolirgagcommender system research is the
focus on the end users’ behaviour. While CF has been, for thet part, interesting from the machine
learning perspective, it is ultimately an algorithm thas i@ provide recommendations to people, and
further understanding of how the people behave will feekIzatl improve the algorithms themselves.

Arelated problem that persists in CF research is that otiat@in: how can researchers demonstrate
that their systems are producing “good” results? To datehae done so by making assumptions of
what “good” means: accurate predictions and high preciaimhrecall. In this thesis, we extend that
to include, for example, temporally diverse recommendatioWe motivated this addition by asking
users what they thought of a system that was not temporalgrst. However, what else do users want
from their recommendations? The evaluation criteria thedwes may be subject to the context in which
the recommender system is operating: temporal diversity make complete sense for a web-based
movie recommender system, but may be inappropriate fortersythat recommends travel routes to a
commuter, unless the diversity is motivated with furtheis@ns (e.g., the current route is congested). On
a broader level, systems can be better evaluated if we uadéera/here they will be operating. If future
recommender system research focusesantext novel evaluation methods will emerge: for example,
to what extent does a travel recommender system on userslanaffect their mobility patterns? In
other words, are the computed recommendations turningiseéul actions?

A final consideration we include is tremcialaspect. There is an overlap between social networks
and collaborative filtering; in fact, we were able to drawnfrgocial network analysis techniques in
order to examine how similarity graphs are structured (@vap). In doing so, we claimed that CF
rating data represents amplicit social network between the system users, because what os@npe

rates affects others’ recommendations. The implicatioa fethat CF ratings are related to one another;
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in fact, there may be a causal relationship between usdisgga These relationships are difficult to
understand since the links between users remain hiddergveswfuture research based on combined
(social network/content ratings) datasets will be abletestigate this link further and use it to improve
the recommendations each user is given. Recent web-basgzhoges are already gathering data that
will serve this purpose: for example, Rummbtgathers userssocial networkandratings on different

locations around the world.

Ihttp://www.rummble.com



Appendix A

Diversity Surveys

The surveys in Chapter 5 were created using Zooméradgers were recruited via Twitter, Facebook
and departmental mailing lists and directed to a web p#ug allowed them to either (a) be taken to a

randomly selected survey or (b) access each survey indilidu

A.1 Pre-Survey Instructions and Demographics

The users were first given a set of instructions about theesurVhese were the same across all three

surveys. Figure A.1 show an example screen shot from Survey 1
Five Weeks of Recommendations (Survey 1)

In this survey, we are interested in collecting your ratings about a
series of movie recommendations. We have developed a system
that produces ten popular movie recommendations per
"week", over a period of five "weeks."

In this survey, we will show you each sequence of ten movie
recommendations, and ask you to rate what you think about
them. On each page, you will see (a) the list of ten movies, (b)
links to their respective IMDB pages, and (c) a set of images with
the movies' DVD covers. You will then be asked to rate the
recommendations on a scale of one to five stars; when you
submit your answer your will move on to the next week.

There are five (5) sets of recommendations to rate (5 weeks):
this survey should take you between five and fifteen minutes. All
answers and collected data will remain completely anonymous.
Remember, you are not rating the individual movies, but the
overall quality of the recommendations. Many thanks for your
help!

=

Figure A.1: Example User Instructions from Survey 1

The users were then asked to input some demographic dataguBséions related to gender, age,
number of movies watched per month, and familiarity withoramender systems.

Users were not asked for any personally identifiable infdiona(e.g., email address), in order to

http://www.zoomerang.com
2http://www.cs.ucl.ac.uk/staff/n.lathia/survey.html



A.2. Movie Recommendations 124

Five Weeks of Recommendations (Survey 1)

Are you male or female?

D Male
@ Female

What is your age range?

18-21
22-25
26- 30
31-40
41-50
51-60
Over 60

CO0OCEOe

How many movies do you watch, on average, each month?

How familiar are you with web recommender systems?

@ Very Unfamiliar
& Slightly Unfamilliar
@ Familiar

@ Very Familiar

How often do you use recommender systems?

@ Never

@ Less Than Once A Month
@ Monthly

QD Weekly

@ Daily

o

Figure A.2: Demographic Data Questions: Gender, Age, Ayeidovies Per Month, Familiarity and

Use of Recommender Systems

guarantee full anonymity. A consequence of this decisios tiat we were unable to know how many

users completed more than one survey.

A.2 Movie Recommendations

Since all surveys were similarly structured, we first ddésetiow the movie recommendations were
presented to the users (Section A.2.1). We then specifyghgent of each survey: Survey 1, the non-
diversified popular movies (Section A.2.2), Survey 2, thediified popular movies (Section A.2.3) and

Survey 3, the diversified randomly-selected movies (Se&i@.4).
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A.2.1 Recommendation Structure

As described in the instructions, the users were first showage with (a) a list of movie titles, (b)
links to each movies’ IMDB information pages and (c) a setno&ges of the movies’ DVD covers: an
example screen shot is shown in Figure A.2.1. The users \wereasked to rate how interesting they

found the week’s recommendations on a 1-5 star Likert scale.

Five Weeks of Recommendations (Survey 1)

agortnm1-Week ONE of FIVE

1. Titanic [IMDB]

2. The Dark Knight [IMDB]

3. Star Wars (Episode V) [IMDB]

4. Shrek 2 [IMDB]

5. E.T. The Extra-Terrestrial [IMDB]

6. Star Wars (Episode |): The Phantom Menace [IMDB]
7. Pirates of the Caribbean: Dead Man's Chest [IMDB]
8. Spider Man [IMDB]

9. Transformers: Revenge of the Fallen [IMDB

10. Star Wars (Episode Ill): Revenge of the Sith [IMDB

Figure A.3: Example Screen Shot: Survey 1, Week 1

After rating the recommendations, the users would clickuigh to a buffer screen, which contained
a number of DVD covers. An example buffer screen is shown guie A.2.1. They would then click

through into the next “week’s” recommendations, struaiuae above in Figure A.2.1.

Click submit to continue!

Figure A.4: Example Screen Shot: Survey 1, Buffer Screen 1



A.2. Movie Recommendations 126

A.2.2 Survey 1: No Diversity

Survey 1 presented the users with anerecommendations for each week. The movies were selected
from the IMDB? list of all-time worldwide box office hits (accessed Decen?@09) and are summarised
in Table A.1.

Rank Movie

[EnY

Titanic
The Dark Knight
Star Wars (Episode V)

Schrek 2
E.T. The Extra Terrestrial
Star Wars Episode |: The Phantom Menage
Pirates of the Caribbean: Dead Man’s Chest

Spiderman

Transformers: Revenge of the Fallen
Star Wars Episode Ill: Revenge of the Sith

© 00N O~ WN

Ay
o

Table A.1: S1 (All 5 Weeks): All Time Worldwide Box Office Raimg (December 2009)

A.2.3 Survey 2: Diversified Popular Movies

Survey 2 also contained popular movies from IMDB,; this setsdruffled as described in Chapter 5.

Rank Movie

Week One

The Lord of the Rings: The Return of the King
Spider-Man 2
The Passion of the Christ
Jurassic Park
Finding Nemo
The Lion King
Forrest Gump
Pirates of the Caribbean: Dead Man’s Chest
Transformers: Revenge of the Fallen
Iron Man

©O© 0O ~NO UL~ WN P

Ay
o

Week Two

Titanic
The Dark Knight
Star Wars (Episode V)
Home Alone

The Bourne Ultimatum

Finding Nemo

The Da Vinci Code

Forrest Gump
Pirates of the Caribbean: Dead Man’s Chest
Kung Fu Panda

© 0N O~ WN P

[y
o

Table A.2: S2 (Weeks 1, 2): Diversified All Time Worldwide B®ffice Ranking

3http://www.imdb.com/boxoffice/alltimegross?region=idewide
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Rank Movie

Week Three

Pirates of the Caribbean: Dead Man’s Chest
E.T. The Extra-Terrestrial
Independence Day
The Sixth Sense
Wedding Crashers
Terminator 2
300
Titanic
The Dark Knight
Shrek 2

©O© 0O ~NO UL~ WN P
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Week Four

300
Jurassic Park
Forrest Gump
Spider-Man
The Lord of the Rings: The Return of the King
The Lion King
The Passion of the Christ
The Sixth Sense
Iron Man
Wedding Crashers

© 00N UL~ WN P
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Week Five

Iron Man
Finding Nemo
Wedding Crashers
The Sixth Sense
Transformers: Revenge of the Fallen
Terminator 2
300
Forrest Gump
The Lion King
Shrek 2

©O© 0O ~NO UL~ WN P

Ay
o

Table A.3: S2 (Weeks 3, 4, 5): Diversified All Time WorldwideBOffice Ranking

Note thatdiversity does not necessarily imply no repetition of recommendatiam this set of
movies, a number of entries appear more than once (in diffesmks). For exampléPirates of the

Caribbean: Dead Man’s Chestippears in the first three weeks, in ranks 8, 9, and 1 respictiv

A.2.4 Survey 3: Diversified Random Movies

The last set of movies were selected uniformly at random fteenNetflix prize dataset. The only
condition to be met when selecting a set of movies was thatah®ee movie may not appear twice in the

sametop-10 list. The 5 weeks of recommendations are listed iferabs.
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A.3. Post-Survey Questions 128
Movie Movie
Week One Week Two
Woman of the Year Nightbreed

Cujo
Birdman of Alcatraz
The Rundown
Shadow of Doubt
In Dreams
The Marksman
The Way We Live Now
Baby Van Gogh
Nicholas Nickleby

© 0O ~NO O~ WN P
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Predator Island
Bad Company
Holiday Heart

Jurassic Park 11l
Devo Live
Pursued
Lionheart
Antibody

It Came From Outer Space

Week Three

Week Four

© 00N U WN P
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G-Men From Hell
The Marriage Circle
Harry Potter and the Sorcerer’s Stone
Baby Einstein: Baby Da Vinci
Island of Dr. Moreau
My Voyage to Italy
Koma
The Toy
Bulletproof

The Englishman Who Went Up a Hill but Came Down a Mount

© 00N U WN P

[y
o

A Stranger Among Us
Soul Assassin
Jane Eyre
Annie Lennox: Live in Central Park
The Magic Flute
The Hills Have Eyes 2
A Better Tomorrow I
Atomic Train
Speed Racer
Vampires: The Turning

Week Five

© 0N OB~ WNPE

=
o

Crash
Riding the Bullet
Kicked in the Head
Diary of a Serial Killer
Oh God!
French Twist
Degrassi Junior High
Black Adder
Red Dirt
Frequency

Table A.4: S3 (Weeks 1, 2, 3, 4, 5): Randomly Selected Movies

Post-Survey Questions

the recommendations. A screen shot of the questions is simoltigure A.3.

After completing the 5 weeks of recommendations, the users asked to comment on the quality of



1"

12

13

14

A.3. Post-Survey Questions 129

Do you have any comments about this algorithm's
recommendations?

How important is it for recommendations to be accurate?

Very Unimporiant  Unimportant Meutral Important Very Important

£ 2 3 “ 5

How impartant is it for recommendations to change over

time?
Very Unimportant  Unimportant Neutral Important Very Imporiant
1 2 3 4 5

How important is it for the system to provide new
recommendations?

Very Unimportant  Unimportant Meutral Impartant Wery Important

) 2 3 e 3

Figure A.5: Example Screen Shot: Survey 1, Final Questions
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