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Abstract

The interaction of oxygen with metal surfaces can lead to various struc-
tures; these include surface oxide films, oxygen penetration in the sub-
surface region and bulk oxides, at certain partial pressures and temper-
atures. This research focuses on the oxygen reduction reaction (ORR)
within the proton exchange membrane fuel cell (PEMFC).

PEMFC are believed to be kinetically limited for the ORR due to a loss
of surface area at the cathode as a result of oxidation. One explanation
for this phenomenon is the “so called place exchange mechanism” which
leads to a thin surface oxide being formed. In an attempt to understand and
verify this hypothesis, Pt and Pt/Ni alloys have been modelled in order to
determine the relative propensity of surface oxide film formation.

Density functional theory (DFT) has been used to model various facets of
the catalyst particles, in particular the (111) and (100) surfaces. In addition,
a range of oxygen coverages at high symmetry sites and oxide thin films
have also been modelled as intermediates in the place exchange mecha-
nism. The DFT data obtained from these calculations have been used in a
statistical thermodynamics model. This allows one to bridge the tempera-
ture and pressure gap between the technological relevant conditions of the
PEMFC and the electronic structure calculations.
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Chapter 1

Introduction

The world’s energy consumption has been increasing continually for many years,

and it is expected to increase by a further 50 % by the year 2035.1 Fossil fuels such

as oil, coal and natural gas are currently the main sources of the world’s energy

demand. However, there are two major issues associated with fossil fuels, which

are a) the depletion of natural resources and b) the emission of green house gases

that causes global warming.2 In order to solve these issues, cleaner sources of en-

ergy are required to conserve the natural resources and reduce the pollution. This

has led to the research and development of alternative energy generation applica-

tions such as fuel cells. Fuel cells have emerged as a promising new technology

due to their use of non-depleting, non-fossil and clean sources of fuel.

1.1 Fuel Cells

The discovery of the fuel cell began in 1839 by a Swiss scientist Christian Schoen-

berg. However, his friend William Grove constructed the first working fuel cell.3

A fuel cell is an electrochemical device that requires a source of fuel to produce
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electricity. The electricity is produced from a direct conversion of chemical en-

ergy4 that takes place within the cell as long as there is a constant supply of fuel.

A wide variety of fuels can be used to directly or indirectly generate the elec-

tricity. In addition to the generated electricity, other by-products including water

and heat are also produced as the output. A fuel cell is an efficient system that

does not require any moving part to function. It is, however, very expensive to

manufacture on a large scale. For this reason, research was slowed down until

the last twenty years where interest was dramatically increased with the aim of

commercialisation in the near future.5

A fuel cell works similarly to a battery and so can be used for a number of ap-

plications that require current. Some of these applications are stationary power

(e.g. power generating stations and auxiliary units), transportation (e.g. buses and

cars) and portable electronics (e.g. laptops and mobile phones).6 The key com-

ponents in a fuel cell are two electrodes embedded with catalysts and separated

by an electrolyte. The electrodes are electrical conductors that allow current to

flow through the cell, and are classified as the negatively charged cathode (where

reduction takes place) and the positively charged anode (where oxidation takes

place). The electrolyte is an ion-conducting material which transports charged

particles from one electrode to the other while the catalyst is coated onto the elec-

trode to speed up the electrochemical half-cell reactions. The key components

are then placed between a pair of flow field plates to give a single cell, known

as a membrane electrode assembly (MEA).7 This MEA can generate a limited

amount of power. However, to achieve a higher voltage output, several MEAs are

electrically connected in series to form a so called fuel cell stack.

There are different types of fuel cells, which are classified by the type of elec-

trolyte and fuel employed. This electrolyte and fuel also determines the working

operating temperature of the system. Generally, all the different types of fuel cell

can be grouped into three main operating temperature regimes: high, medium and

low temperatures. The high temperature fuel cells operate between 800-1000 °C,

the medium temperature fuel cells operate between 120-250 °C and the low tem-
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perature fuel cells operate between 80-120 °C.8 Table 1.1 gives an overview of the

various kinds of fuel cells and their associated reactions, operating temperature,

electrolyte types, fuels and their applications.

Table 1.1: Comparison of different fuel cells and their operating characteristics.
Data from9

This thesis focuses solely on the proton exchange membrane fuel cell (PEMFC)
a and therefore, the following discussions will be limited to this type of fuel cell

system. For a more detailed overview of the other types of fuel cell systems

summarised in Table 1.1, the reader is referred to numerous textbooks.9–13

aProton exchange membrane fuel cell (PEMFC) also known as polymer electrolyte
membrane fuel cells.
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1.2 Proton exchange membrane fuel cells (PEM-
FCs)

Proton exchange membrane fuel cells (PEMFCs), developed by General Electric

Company, were the first type of fuel cell to find an application-power source, used

in the NASA’s Gemini space flights in the 1960’s.9 They have now become one of

the most promising technologies for the future, as a replacement for combustion

powered engines, e.g. vehicles. The PEMFC is a low temperature fuel cell, op-

erating at a temperature range of 80-100 °C and requires a short warm-up before

use and cool-down after use.14 It has high power density and energy conversion

efficiency.15

PEMFCs use hydrogen as fuel, oxygen (usually air) as the oxidant and hydrogen

protons (H+) from the fuel act as the mobile charge carrier. The membrane is a

solid polymer electrolyte layer which is bound to the catalysed porous electrodes

(anode and cathode) placed on each side. The membrane is thin (20-200 µm),

flexible and transparent, and it is both chemically and thermally stable.16 Both

the anode and the cathode are usually composed of a platinum (Pt) containing

catalyst on conductive carbon support. Figure 1.1 shows a schematic diagram of a

PEMFC. The oxidation of hydrogen at the anode splits the molecule into protons

and electrons. The protons drift through the electrolyte to the cathode, and the

electrons flow around the external circuit to generate electricity. The protons and

electrons then combine at the cathode to reduce the oxygen. Water and heat are

produced as the waste products.
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Figure 1.1: Schematic diagram of a proton exchange membrane fuel cell
(PEMFC). Adapted from.17

1.3 Performance loss in PEMFCs

The maximum work other than the pressure-volume work that can be obtained

from any system is given by the change in free energy (also called Gibbs energy,

∆G). In a PEMFC, ideally, all the free energy change is available in the form of

electrical energy. Thus, the maximum electrical work obtained is defined as:

∆G = −nFEo (1.1)
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where n is the number of electrons in the electrochemical reaction, F is the Fara-

day constant (F=96485.34 C mol−1) andEo is the standard reversible open circuit

voltage potential.

The standard reversible open circuit voltage is given by:

Eo = −∆Go

nF
(1.2)

where ∆Go is the Gibbs free energy change of the reaction at standard tempera-

ture and pressure (STP; T = 298.15 K, p=1 atm) which is also dependent on the

change in enthalpy and entropy.

∆Go = ∆H − T∆S (1.3)

where ∆H is the reaction enthalpy change and ∆S is the reaction entropy change.

At STP, the maximum theoretical voltage potential for a reversible open circuit

cell is 1.23 V. In an ideal (reversible) fuel cell, the cell voltage is independent of

the current drawn. However, a voltage drop is experienced in practice even under

open-circuit (zero current) conditions due to various irreversible loss mechanisms.

At a given current density, the difference between the maximum voltage potential

and the generated operating potential is commonly referred to as the potential loss

or overpotential. Generally, the overpotential can be classified into three cate-

gories: (a) ohmic loss, (b) concentration loss, and (c) activation loss. Figure 1.2

shows how these main contributions can affect the overpotential.
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Figure 1.2: The main contributions associated with the PEMFC overpotential.18

a) Ohmic loss, ηohm is caused by the internal resistance of the fuel cell compo-

nents such as the flow of ions in the electrolyte, flow of electrons through the

electrodes and the various interconnections. These losses can be reduced by

using electrolytes with high ionic conductivity, electrodes with high electronic

conductivity and reducing the space between the electrodes. This loss can be

expressed mathematically as

ηohm = IR (1.4)

where, I is the current flowing through the cell and R is the total internal

resistance.

b) Concentration loss, ηconc occurs due to a decrease in the concentration of the

reactants at the electrode-electrolyte interface. A steady supply of the reactants

is required at the electrode-electrolyte interface to maintain the flow of electric

current. However, due to diffusion in the electrolyte, the concentration of the

reactants is not maintained at the initial level. Reaction product accumulation
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can also cause dilution of reactants. This mass transport loss can be described

as

ηconc =
RT

nF
ln

(
1− I

IL

)
(1.5)

where IL is the limiting current, the maximum rate at which a reactant can be

supplied to an electrode.

c) Activation loss, ηact is mainly due to charge transfer within the catalysts. This

occurs from the sluggish oxygen reduction kinetics at the cathode surface.

The nature of the surface, the species formed during the reaction and the in-

trinsic characteristics of the catalyst also influence the activation. The increase

in temperature and the active surface area of the catalyst improves the cell

performance. The corresponding voltage drop can be expressed by the Tafel

equation defined as

ηact =
RT

αnF
ln

(
I

Io

)
(1.6)

where, Io is the exchange current density, which is the maximum current that

can be extracted at negligible polarisation (η = ηo) and α is the electron trans-

fer coefficient of the reaction at the electrode being studied.

The combined contributions of these overpotential losses cause the cell voltage

output to decrease at low and high current densities. At the low current density, the

activation loss is predominant while at the high current density, the concentration

loss is the major cause. In an operating PEMFC, the voltage attained is 0.9 V.
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1.4 PEMFC issues and challenges

1.4.1 Polymer electrolyte membrane

The polymer electrolyte membrane is an important component of the PEMFC and

has two main functions: proton conduction from the anode to the cathode and the

effective separation of the anode and cathode gases.19 In addition it must have the

following criteria to be an effective membrane.

• Good thermal stability (preferred temperature >100 °C for ∼5000 hours)

• High protonic conductivity under high-humidity conditions

• High mechanical strength

• Good chemical stability (especially the oxidative stability)

Currently, the most common polymer electrolyte membrane employed is Nafion®,

a solid ion conducting perfluorinated polymer. It consists of a hydrophobic poly

(tetrafluoroethylene) (PTFE) backbone that is sulphonated with side chains of per-

fluorinated vinyl ethers terminated by sulfonic acid groups (Figure 1.3).20 The

ionic nature of the sulphonic acid group makes it highly hydrophilic. It fulfills

most of the above criteria but requires constant hydration. Another limitation

of Nafion® is the operating temperature: when the temperature increases above

100 °C, without increasing the pressure, the polymer membrane dehydrates and

thus loses proton conductivity. Further research has been performed to develop

a well equipped polymer electrolyte membrane that can achieve all the above

criteria. One of the membrane materials proposed is a non-fluorinated poly-

mer made from sulfonated aromatic hydrocarbon.21 Several different polymers

have been proposed but the most promising is poly [2,2’-(m-phenylene)-5,5’-

bibenzimidazole]/sulphuric acid (PBI/H2SO4), an acid-base complex that oper-

ates at a high temperature and can be manufactured cheaply.19,22
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Figure 1.3: Chemical structure of Nafion ®.

1.4.2 Catalyst

The catalyst layer is responsible for the half-cell reactions that occur within the

fuel cell. It is a thin surface (∼3µm) that is located between the membrane and the

gas diffusion layer. This gives the catalyst particles (platinum or platinum alloys)

easy access to the membrane. The particle loading on the surface, reactant diffu-

sion, ionic and electrical conductivity and the diffusion path must all be balanced

to achieve maximum operation.23

Often the catalyst employed for both the cathode and anode is platinum, an ex-

pensive metal. Higher loading of platinum particles is required for the cathode

because the oxygen reduction reaction (ORR) has slower kinetics than the hydro-

gen oxidation reaction (HOR).24 On the contrary to the high platinum loading,

carbon monoxide poisoning occurs at the anode when reformed hydrogen is em-

ployed for the hydrogen fuel. This is due to traces of carbon monoxide (∼4 ppm)

generated along with the required hydrogen fuel. For these reasons, it is necessary

to find alternative materials that can increase the oxygen reaction kinetics at the

cathode and tolerate the carbon monoxide poisoning at the anode. This has led

to the development of platinum alloys, especially carbon supported alloys. The

carbon support allows full dispersion of the metals onto the catalyst surface, lead-
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ing to increased reactant contact.9 It has been reported that platinum-chromium

or platinum-nickel supported on carbon for the cathode and platinum-ruthenium

for the anode, are able to demonstrate high reaction activity, stability and tolerate

the carbon monoxide respectively.7,25,26

1.5 Oxygen Reduction Reaction

A major problem identified from the overpotential of the PEMFC, is the relatively

slow kinetics of the oxygen reduction reaction (ORR) at the cathode. This has

led to extensive studies performed for the last 40 years to ascertain the funda-

mental complexity of the ORR and sensitivity to the electrode surface. The ORR

is a complex multi-electron process involving several reaction intermediates and

a number of elementary steps, which further depend on the electrode material,

catalyst and the electrolyte. In an acid electrolyte, the most accepted overall reac-

tion may proceed via one of two reaction pathways (Figure 1.4).27 These reaction

pathways are either the direct four-electron process, where oxygen is reduced to

water (Eq. 1.7) or the indirect two-electron process, where oxygen initially re-

duces to hydrogen peroxide, followed by the formation of water (Eq. 1.8 and 1.9).

Figure 1.4: The reaction pathways for oxygen reduction reaction.28 ∗ denotes as
the surface site.
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The reaction pathways can be written as:27

Direct four-electron process:

O2 + 4H+ + 4e− → 2H2O E0
(O2/H2O) = 1.23V (1.7)

Indirect two-electron process:

O2 + 2H+ + 2e− → H2O2 E0
(O2/H2O2) = 0.67V (1.8)

H2O2 + 2H+ + 2e− → 2H2O E0
(H2O2/H2O) = 1.77V (1.9)

The standard potentials correspond to the values vs the normal hydrogen elec-

trode at 25 °C.29 A desired feature for a PEMFC ORR catalyst, is to reduce the

oxygen molecules through the direct four-electron process. This is because the

indirect two-electron process generates hydrogen peroxide (H2O2) which causes

damage to the polymer membrane leading to low energy conversion efficiency.

Using an experimental technique called the rotating ring-disk electrode (RRDE),

studies have shown that the direct four-electron process dominates on noble metal

catalysts such as Pt27,30 while the indirect two-electron process prevails on less

active metals like Au and non-metals like carbon.

1.6 Platinum Catalysts

An effective catalyst must be selective to the intermediate reaction and can follow

the Sabatier’s principle.31 Sabatier’s principle is when the catalyst is reaction spe-

cific and its interaction with intermediates are neither too strong nor too weak. If

the interaction is too weak, the intermediate will fail to bind to the catalyst, and

no reaction will take place. On the other hand, if the interaction is too strong, the

catalyst gets blocked by the intermediate and further catalytic reactions are im-
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peded.32 In order to find an efficient catalyst for the ORR, a correlation between

pure transition metal catalyst surfaces and its maximal catalytic activities were

established theoretically by Nørskov.33 The results generated a volcano curve of

activity as a function of oxygen adsorption energies (Figure 1.5).

Figure 1.5: Trends in oxygen reduction activity plotted as a function of the oxygen
binding energy.33

In good agreement with experiment, Figure 1.5 shows that Pt is the preferred

metal catalyst because it sits on top of the volcano and has the highest catalytic

activity under the operating conditions. Pt catalysts will adsorb oxygen with an

optimal strength to generate intermediates when combined with hydrogen from

the anode to form the final product, water (H2O). As mentioned earlier, the direct

four-electron reaction pathway is favoured on Pt but the exact reaction mechanism

is still under debate.34 Theoretical calculations based on density functional theory

(DFT) have, however, been used to investigate the reaction mechanism and two

accepted mechanisms were proposed.33–35
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The first is the dissociative mechanism:

1

2
O2 + ∗ → O ∗ (1.10)

O ∗ + H+ + e− → HO ∗ (1.11)

HO ∗ + H+ + e− → H2O + ∗ (1.12)

and the second is the associative mechanism:

O2 + ∗ → O2 ∗ (1.13)

O2 ∗ + (H+ + e−) → HO2 ∗ (1.14)

HO2 ∗ + (H+ + e−) → H2O + O ∗ (1.15)

O ∗ + (H+ + e−) → HO ∗ (1.16)

HO ∗ + (H+ + e−) → H2O + ∗ (1.17)

where * denotes a site on the surface. Both mechanisms illustrate the direct four-

electron process. However, the associative mechanism is capable of generating

the H2O2 if the O-O bond is not broken when O2 is adsorbed on the surface

(Eq. 1.14). In the dissociative mechanism, the molecular oxygen dissociates to

form adsorbed atomic O, which further gains two electrons in the two consecutive

steps, forming water (Eq. 1.10 - 1.12).10 The dissociation of O2 is believed to be

the rate-limiting step (rls) in the dissociative mechanism, and the proton transfer

is thought to follow rather than being involved in the rls.36 On the other hand,

in the associative mechanism, the adsorption of molecular oxygen and the pro-

ton/electron transfer in the rls occur simultaneously (Eq. 1.13 - 1.17).24 Accord-

ing to general views, the sluggish kinetics of ORR may be due to the following

reasons:
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i. the strong O-O bond and the formation of strongly bound Pt-O or Pt-OH

intermediates, causing an accumulation on the surface and the blockage of

active sites37–39

ii. the possible formation of a partially oxidised H2O2 intermediates and

iii. the difficulty in determining the rate-limiting step for the reactions.

Norskov et al.33 demonstrated that there was a relationship between oxygen re-

duction activity and the binding ability of O and OH. They proposed that the origin

of the overpotential for Pt was the O and OH adsorption, and both dissociative and

associative reaction paths may contribute to the ORR depending on the metal and

the electrode potential.

1.7 Parameters Affecting the Catalyst Perfor-
mance

Essential criteria for good catalyst performance is the availability of active sites

for the reactions and intermediates during the reduction process, high electronic

conductivity and the chemical and structural stability under the operating temper-

ature and oxygen partial pressure. The catalytic activity is controlled by all these

intrinsic chemical activities on the surface. In a fuel cell, the Pt catalyst is made up

of nanoparticles (ranging from 3-6 nm) typically dispersed on a high surface area

carbon support, which considerably increases the available catalytic surface area

and hence the catalytic activity.40 These nanoparticles are generally represented

as cubo-octahedral structures consisting of Pt atoms arranged on eight (111) and

six (100) facets bounded by edge and corner atoms (Figure 1.6).10 It has been

observed that the (111) and (100) crystal facets are the active sites for the oxygen

reduction with the (111) facets being thermodynamically more stable.10,28 How-

ever, when the nanoparticle size increases, the number of Pt atoms on the (100)
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facets increases and thus the oxygen reduction becomes facile and more catalyti-

cally active.41

Figure 1.6: A nanoparticle showing the (111) and (100) crystal facets, edge and
corner site.

Besides the active crystal facets, the size of the nanoparticle also affects the cat-

alytic activity. According to studies performed by Kinoshita, the catalytic activity

decreases with decreased Pt particle size.42,43 One explanation for this, is the dis-

solution of platinum in the acidic environment and the migration of these soluble

platinum species on to the carbon support, leading to loss of surface area and

corrosion.44,45 In addition, cyclic voltammetry (CV) experiments indicated that

the concentration of the dissolved platinum increases when the voltage potential

increases from 0.65 to 1.1 V and decreases at voltage potentials greater than 1.1

V.46 The observed potential dependence can be explained by the complex oxi-

dation behaviour of platinum. Between the voltage potential region of 0.85 and

1.2 V, quartz crystal nanobalance studies have shown that 0.5 monolayer (ML) of

chemisorbed oxygen atoms are formed (at a potential region of 0.85 V and 1.15
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V) and further formation of chemisorbed oxygen is explained in terms of a place-

exchange mechanism of 0.3 ML of the chemisorbed oxygen with platinum.46 This

place-exchange mechanism between the oxygen and platinum eventually leads to

the formation of a thin surface oxide film on the catalyst surface. The surface ox-

ide film is thought to have a detrimental effect on the mechanism and kinetics of

the catalysts such as the changing of the electronic properties of the catalyst sur-

face, influencing the adsorption behaviour of reaction intermediates and/or prod-

ucts at the catalytic surface and restricting the flow of current within the cell.47

For these reasons, Pt alone does not present satisfactory activity for the ORR and

a number of strategies to improve the catalytic activity have been reported.

1.8 Pt-Alloy Catalysts

The alloying of Pt with a secondary transition metal (Pt-M alloy catalyst) is a

prime approach for enhancing the catalytic activity of the ORR while reducing

cost. A wide variety of Pt-M alloy catalysts and a range of atomic compositions

have been investigated, both experimentally and theoretically, for their use in low

temperature fuel cells. They have been shown to exhibit improved catalytic ac-

tivity by a factor of 2 to 4 in comparison to pure Pt.48,49 He et al.50 classified

these Pt-M alloy catalysts into four categories depending on their ability to reduce

oxygen and their tolerance to chemical corrosion:50 (i) highly active and highly

corrosive (M = Fe, Co, V and Mn); (ii) highly active and corrosive (M = Zn, Cu,

Mo and Ni); (iii) less active but stable (M = Zr, Cr and Ta) and (iv) active and sta-

ble (M = W and Ti). Investigations have also indicated that the catalytic activity

of the Pt-M alloy catalysts is related to the atomic ordering between Pt and the

alloying element M and the highest activity displayed for the Pt:M ratio is 3:1.51
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The catalytic activity enhancement that occurs when Pt is alloyed with other met-

als are mainly attributed to the following:

Structural and geometric effects: Jalan and Taylor suggested that the enhanced

catalytic activity of the Pt-M alloys catalysts are due to changes in the ge-

ometrical structures (i.e. bond distance, number of nearest neighbour and

the surface atom position).52 The Pt-Pt bond distance can be changed when

Pt is alloyed with other metals. Alloying Pt with a smaller metal, causes

a contraction in the Pt lattice, which has been shown to improve catalytic

acitivity.53 Experimentally, the heat-treatment temperature used for the al-

loy preparation also controls the Pt-Pt bond distance.54 Additionally, it was

observed that Pt atoms segregate to the catalyst surface in the presence of

certain alloying elements (such as Ni, Co, Ir, etc.), which leads to a Pt-

skin surface with higher concentration of active sites for the ORR.55,56 Sta-

menkovic et al. showed that the Pt3Ni(111) with a Pt-skin layer is 10 times

more active than the corresponding Pt(111) surface and 90 times more than

the current state-of-the-art carbon supported catalysts26.

OHads inhibition effect and oxide formation: X-ray absorption spectrocopy

(XAS),57–59 X-ray photoelectron spectroscopy (XPS)60,61 and CV26,62–66

experiments have shown that certain Pt-M alloy catalysts inhibit the forma-

tion of OH species and that the amount of oxide formed decreases when the

alloying element present is increased. These occur because the competitive

binding species are reduced, leading to an increase in the number of free

active sites for the ORR67.

Electronic effect: Alloying with different metals modifies the electronic struc-

ture which is caused by a shift in the d-band vacancies. These d-band va-

cancies are the degree to which the d-band is filled with electrons within the

alloy.68 Mukherjee et al.57 used in-situ x-ray absorption near-edge struc-

ture (XANES), extended x-ray absorption fine structure (EXAFS) and ex-

situ x-ray powder diffraction (XRD) experiments to investigate the elec-

tronic effect of Pt alloys. They observed lower d-band vacancies on the

Pt-M alloys compared to Pt depending on the alloying element. This is
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because the 5d vacancies on the alloy surface are increased, leading to an

increased coupling between the oxygen 2p states and the alloying metal

d-states.69,70 This results in a stronger metal-O interaction, and the weak-

ening of the O-O bonds.69

A d-band model approach was developed by Nørskov et al. that links the

catalytic activity of the alloy with the fundamental surface properties of the

catalyst surface.71–74 These surface properties, contributing to this model

are the surface d-band centre, εd, the degree of filling the d-band, fd and the

coupling between the absorbate states and the metal d-states, Vad. All these

properties are expected to change the electronic effect of the alloy systems

and also the catalytic activities. According to this model, as the alloy d-

states (d-band centre, εd) shifts up, a distinctive antibonding state appears

above the Fermi level, thereby causing a stronger activity. Therefore, in

order to have an active alloy for the ORR, the shift in the εd must not cause

a very strong or too weak activity. A volcano-type behaviour was observed

when the d-band centre of the Pt3M alloys was correlated with the catalytic

activity (Figure 1.7).57,66,70,75,76

Figure 1.7: Relationship between the catalytic properties and electronic structure
of Pt3M alloys.66
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As discussed, the Pt-M alloy catalyst can have increased benefits compared to pure

Pt. However, they do not fully resolve all the problems associated with pure Pt.

One of the biggest issues observed is the stability of the Pt-M alloys. A durability

test performed by Colòn-Mercado and Popov51 noticed a decay in performance

of the Pt-M alloy catalysts caused by the dissolution of the alloying metal and Pt

particles into the electrolyte, leading to the loss of active surface area and eventu-

ally the formation of thin surface oxide. Nonetheless, the presence of thin surface

oxide is relatively low compared to the pure Pt.60

1.9 Theoretical studies of ORR

Theoretical modelling, especially with the present-day computer hardware capa-

bilities has enhanced the understanding and development of the ORR processes

and accelerated the pace for the discovery of a better catalyst. Predicted catalysts

with enhanced catalytic activity and stability could then be validated by careful

synthesis and experimental tests, leading to an overall reduction in costs. Several

theoretical techniques have been employed to study the ORR but the most popular

of these is the density functional theory b (DFT), a quantum mechanical method

that can reproduce with a good degree of accuracy a variety of structural and elec-

tronic properties of the system (e.g. bond lengths, crystal lattice constant, binding

energies, vibrational frequencies, e.t.c.).

Using DFT, the key elements in understanding the catalytic activities of the alloy

catalysts are the adsorbate’s structure, bonding type and the binding energy. For

example, several theoretical studies have shown that atomic oxygen adsorbs on

Pt(111) and Pt(100) at the three-fold face centred cubic (fcc) and two-fold bridge

binding sites respectively.77–79 In addition, it was observed that on both surfaces,

the adsorption energies decrease when the atomic oxygen coverage increases. Fur-

thermore, the absorption of atomic oxygen at 0.25 ML occurs at the tetrahedral

bDiscussed further in Chapter 2.
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site, underneath the hcp hollow site on the Pt(111) and tetrahedral site underneath

the bridge site on the Pt(100).78 Légaré80 examined structures with a mixture of

surface and sub-surface oxygen and predicted that sub-surface oxygen becomes

favoured on Pt(111) at an oxygen coverage between 0.50 and 0.75 ML. On the

other hand, Hawkin et al.81 discovered the initiation of oxide growth on Pt(111)

proceeded by an unexpected clustering of the oxygen atoms beyond 0.50 ML with

a pronounced surface buckling. As for the Pt-M alloys, different compositions of

alloys have been probed. One of these compositions is the monolayer bimetal-

lic alloys (MBAs) where the alloying metal is present in the outer surface layers

(mostly in the first two layers) of the alloy. One study predicted that MBAs of Pt

will bind oxygen weaker than pure Pt and that the induced segregation energy will

play a vital role in the relative stability of the surface and sub-surface monolayer

structures.82,83 The absorption energy barrier was investigated on both MBAs and

Pt3M alloys, and it was found that the alloying metal and alloy compositions does

have an effect on the atomic oxygen absorption kinetics.84

Nonetheless, in-depth investigations of oxygen coverage on Pt-M alloys are still

insufficient, a topic which, this thesis will attempt to address.

1.10 Project aims and Objectives

A brief overview of fuel cell technology presented in this chapter has outlined the

current inadequacy of PEMFCs for future commercialisation. One of the major

issues, is to find a more efficient catalyst for the poor cathode performance as-

sociated with the ORR. Platinum-based alloy catalysts have been identified as a

means of improving both the activity and the stability. The work presented in this

thesis will attempt to gain detailed understanding of the catalyst surface oxida-

tion on platinum-nickel (Pt-Ni) alloy catalysts compared to pure Pt. The aim of

this research is to determine the relative propensity of surface oxide film form-

ing on Pt and Pt-Ni alloys. The DFT technique will be employed to investigate

how atomic oxygens bind to the surface. Furthermore, to bridge the temperature
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and pressure gap between DFT and technological relevant conditions, a statistical

thermodynamic model is applied.

The rest of the thesis will be presented as follows: Chapter 2 describes the the-

oretical methodology used for this research. The examination of atomic oxygen

coverage effects on pure Pt was carried out in Chapter 3. Both the active Pt(111)

and (100) surfaces were explored to determine their tendency of forming thin sur-

face oxide. It was found that surface oxide film is more likely to form on the

Pt(111) surface compared to the Pt(100) surface. However, at the PEMFC oper-

ating conditions, the adsorbed oxygens were present on the two surfaces. Next,

different compositions of Pt-M alloy were investigated, starting with MBAs in

Chapter 4 and Pt3M in Chapter 5. Chapter 4 focused on Pt-Ni-Pt (underlayer) and

Ni-Pt-Pt (overlayer) structures for the (111) and (100) surfaces, whereas Chapter

5 considered Pt3Ni and Pt3Ni-Ptskin at the (111) surface. It was discovered that,

at the PEMFC operating conditions, thin surface oxide film is more likely to form

on the MBAs compared to the Pt3Ni and Pt3Ni-Ptskin surfaces. Finally, Chapter

6 presents preliminary results on the other alloying element and summarises the

outcomes of the research.
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Chapter 2

Theoretical Methodology

2.1 Introduction

One of the main goals of modelling a solid material is the determination of its total

energy, which can further lead to the evaluation of other physical properties such

as the cohesion energy, equation of state, vibration frequencies, etc. To achieve

accurate total energies, it is necessary to use electronic structure methods based

on quantum mechanics.

This chapter provides a general introduction to the many-body problem of elec-

tronic structure theory and the other practicalities involved in performing a total

energy calculation. These include the electronic structure theory itself, how the

theory is implemented and finally, the statistical thermodynamic model, which

bridges the temperature and pressure gap. For a detailed description of other sim-

ulation methods, the reader is referred to numerous textbooks.1–5
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2.2 Electronic Structure Theory

2.2.1 The Schrödinger Equation/ Born-Oppenheimer ap-
proximation

In quantum mechanics, the energy of a non-relativistic system is determined through

the approximate solution of the time-independent Schrödinger equation.6

ĤΨ = EΨ . (2.1)

where Ĥ is the Hamiltonian operator, Ψ is the wavefunction and E is the total

energy of the system. The Hamiltonian operator is the sum of the kinetic energy

operator, T̂ , (that is the kinetic energy of the electrons and nuclei separately) and

the potential energy operator, V̂ , (that is the attractive electrostatic interaction

between the electrons and nuclei and the repulsive potential due to the electron-

electron and nucleus-nucleus interactions).

In reality, the Schrödinger equation (Eq. 2.1) can only be solved for a limited

number of systems (e.g. hydrogen atom). In order to solve Eq. 2.1 for solids,

which contain many interacting atoms, approximations are employed. The most

fundamental approximation is the Born-Oppenheimer approximation (adiabatic

approximation)7 that separates the motions of the nuclei and electrons. It as-

sumes that the nuclei are infinitely heavy compared to the electrons and so move

much more slowly than the electrons. Hence the nuclei can be assumed to be at

stationary positions (i.e. fully localised about a single point) with respect to the

electron movement that is more rapid. Therefore, within this approximation, as

the nuclei are stationary, the kinetic energy of the nuclei is neglected and the po-

tential energy of the nucleus-nucleus repulsion interaction is treated as a constant.
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Thus, the nuclear and electronic wavefunctions are decoupled and the Schr-ödinger

equation is solved only for the electronic wavefunction. The Hamiltonian opera-

tor within the Born-Oppenheimer approximation becomes the sum of the kinetic

energy of the electrons (Te), the potential energy due to electron-electron inter-

action (Vee), and the attractive potential energy between the electrons and nuclei,

known as the external potential (Vext).

ĤelecΨelec = (Te + Vee + Vext) Ψelec = EelecΨelec . (2.2)

The Vee is the quantity that contains all the many-body physics of the electronic

structure problem because too many degrees of freedom are involved. Since most

practical systems contain lots of electrons, it is still a major challenge to solve

the Schrödinger equation using the Born-Oppenheimer approximation. Hence,

further approximations are required to solve Eq. 2.2 accurately and efficiently.

2.2.2 Density Functional Theory

A fundamental approach to the electronic structure problem relies on the Density

Functional Theory (DFT) method. This method is a powerful ab-initio a method

used for describing the structural and electronic properties of a practical system

especially solids and their surfaces. Furthermore, it is currently one of the most

popular and robust theoretical methods available as it is computationally more

efficient than other theoretical methods with similar accuracy.1,2 The development

of the DFT method started as far back as the late 1920’s by Thomas and Fermi.8,9

However, 30 years later, in 1964, Hohenberg and Kohn proved two key theorems

that are stated below.
aab-initio (synonymous to first-principles) calculations involve no adjustable parame-

ters.
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The first theorem states that the ground state total energy of a system of interacting

electrons is a unique functional b of the ground state electron density, n0(r).10,11

In addition, all the ground state properties (the potential, wavefunction, Hamilto-

nian) are functionals of the electron density, n(r), by a one to one correspondence

between the ground state electron density and the external potential, Vext. There-

fore, all the physical properties of a system can be calculated if the n(r) is known.

The second theorem (also called the variational principle) states that the ground

state electron density, n0(r), and the total energy for a given external potential,

Vext, can be calculated exactly (at least, in principle) by successfully minimising

the energy functional with respect to the n(r). This is subject to the constraint of

describing the correct number of electrons as:

N =

∫
n(r)dr . (2.3)

According to these theorems, the ground state total energy, E0[n(r)], of an elec-

tronic system at a given Vext can be written as a functional of the n(r):

E[n(r)] = min
n(r)
〈Ψ|Te[n(r)] + Vee[n(r)] + Vext[n(r)]|Ψ〉 , (2.4)

where minn(r) is the minimum E[n(r)] with respect to all the possible electron

density, n(r) and

E[n(r)] ≥ E0[n0(r)] . (2.5)

Unfortunately, the above Hohenberg-Kohn theorems do not provide a way of find-

ing the ground state density. This led to a significant discovery by Kohn and Sham

bA functional is a function whose argument is itself a function.
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(1965), where they showed that the problem of the many interacting electrons in

an external potential can be mapped exactly to a set of non-interacting electrons

in an effective external potential.12,13 The Kohn-Sham (KS) total energy for the

system can be written as:

E[n(r)] = T [n(r)] + Vext[n(r)] + EHartree[n(r)] + Exc[n(r)] . (2.6)

where T [n(r)] is the kinetic energy functional of the non-interacting electron sys-

tem which has the same n(r) as the real system, given as:

T = −1

2

N∑
i=1

∫
ϕ∗i (r)∇2ϕi(r)d3r , (2.7)

where ϕi are the single-particle KS orbitals. The Vext[n(r)] is given as:

Vext[n(r)] =

∫
V (r)n(r)d3r , (2.8)

EHartree is the Hartree energy describing the (classical) electron-electron Coulomb

repulsion given by:

EHartree[n(r)] =
1

2

∫∫
n(r)n(r′)

|r− r′|
d3rd3r′ , (2.9)

And the final term, Exc[n(r)], is the exchange and correlation energy functional,

which accounts for all the important quantum-mechanical many-body interactions

between the electrons. The next step in the electronic structure problem is to
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define the effective potential, Veff(r), which consists of the electrostatic potentials

(that is the external potential), Hartree potential and the exchange-correlational

potential. The Veff(r) is defined as:

Veff(r) = Vext(r) + VHartree[n(r)] + Vxc[n(r)] ,

=
δ {
∫
V (r)n(r)d3r + EHartree[n(r)] + Exc[n(r)]}

δn(r)
,

= V (r) +

∫
n(r′)

|r− r′|
d3r′ +

δExc[n(r)]

δn(r)
. (2.10)

The ground-state electron density is obtained in practice by solving theN electron

Schrödinger-like one-particle equation, given by:

{
−1

2
∇2 + Veff(r)

}
ϕi(r) = εiϕi(r) , (2.11)

which yields the KS orbitals, ϕi, and the electron density of the non-interacting

electron system is given as:

n(r) =
N∑
i=1

|ϕi(r)|2 . (2.12)

The Kohn-Sham equations yield the mathematical framework for finding the ground

state density, n0(r), and the energy, E[n(r)], of a many-body electron problem.

The Hartree and exchange-correlation potentials depend on the density, n(r),

which further relies on the KS orbitals, ϕi, and in turn depends on the Veff(r).
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Therefore, the problem of solving the Kohn-Sham equations (Eqs. 2.10, 2.11 and

2.12) has to be done in a self-consistent (iterative) way. The general procedure is

schematically shown in Figure 2.1. Usually, the first step is to start with an initial

guess for the n(r), calculate the corresponding Veff(r) and then solve the Kohn-

Sham equations for the ϕi, which in turn define a new density and total energy.

This process is repeated using the new density and total energy, until convergence

is reached to within the chosen numerical accuracy.1

Figure 2.1: Representation of the self-consistency cyclic loop used in solving the
Kohn-Sham equations in numerical calculations.1
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2.2.3 Exchange-Correlation Functionals

In principle, the ground state total energy (Eq. 2.6) is exact for the considered

system and contains no approximations, as long as the exchange-correlation func-

tional can be derived exactly. Unfortunately, this has not been possible and the

precise form for the Exc[n(r)] and Vxc(r) = δExc[n(r)]
δn(r) are still not known and

will therefore be approximated. So far, there are a variety of approximations for

the exchange-correlation functional but the most widely used ones in condensed

matter physics are the local density approximation (LDA) and the generalised gra-

dient approximation (GGA).

2.2.3.1 Local Density Approximation (LDA)

This is the simplest approximation originally introduced by Kohn and Sham,12

valid only for slowly varying electron densities. Within LDA, the Exc[n(r)] is

assumed to be the same as that of a homogeneous electron gas of the same density,

εhom
xc (n(r)),

ELDA
xc [n(r)] =

∫
n(r) εhom

xc (n(r)) d3r , (2.13)

where εhom
xc (n(r)) is the exchange-correlation energy per particle of the homoge-

neous electron gas of density, n. The exchange and correlation contributions are

separated out as:

εhom
xc (n(r)) = εhom

x (n(r)) + εhom
c (n(r)) . (2.14)
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The exchange energy, εhom
x (n(r)) can be calculated exactly by using the Dirac

expression,14

εhom
x (n(r)) = −3

4

(
3

π

)1/3

(n(r))1/3 , (2.15)

while the correlation energy, εhom
c (n(r)) is obtained based on the highly accurate

quantum Monte Carlo simulations of the free electron gas15,16 and the numerical

data are then fitted to a simple parameterised form. Common parameterisation

forms are Perdew-Zunger (PZ),17 Perdew- Wang (PW)18 and Vosko-Wilk-Nusair

(VWN).19

LDA works well for realistic systems such as solid state and metal systems but

does badly for molecular systems. Furthermore, it typically underestimates the

lattice constant and overestimates the binding energies compared to experimental

values. To improve the shortcomings of the LDA, the gradient dependent func-

tionals were introduced.

2.2.3.2 Generalised gradient approximation (GGA)

These are second generation functionals, where the gradient of the electron den-

sity,∇n(r) as well as the density itself, are included in the εhom
xc (n(r)) as:

EGGA
xc [n(r)] =

∫
n(r) εhom

xc (n(r)) ,∇n(r)) d3r . (2.16)

The GGA takes into account the inhomogeneity in the electron density gradi-

ent. They are “semi-local” functionals and generally yields more reliable results
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than the LDA functional for molecular systems. However, the GGA results are

not necessarily superior to the LDA results and errors can be identified for some

properties such as the overestimation of the lattice constants. There are many

different versions of GGAs but the most widely used in this thesis, as in many

surface physics studies, is the Perdew, Burke, and Ernzerhof (PBE)20,21 exchange-

correlation functional. Several off-spring of PBE (revPBE,22 RPBE23 and PBE-

WC24) and its close relative PW9118,25 are also used for the simulations of solids

and its surfaces. The PBE functional is chosen because it is well known to treat

molecules interacting with metallic surfaces reasonable well.

2.2.4 DFT Implementation in the VASP Code

The implementation of DFT has been incorporated into several computational

codes to perform quantum mechanical energy minimisation calculations on molecules,

solids and surfaces. In this thesis, the VASP (Vienna Ab-initio Simulation Pack-

age) code has been used, developed at the Institut für Materialphysik of the Uni-

versity of Vienna.5,26–28 VASP is a DFT-based code used to compute the elec-

tronic structure properties of systems, using periodic boundary conditions. It

utilises plane-waves as the basis set to expand the Kohn-Sham orbitals and the

projector-augmented-wave (PAW) method29,30 to describe the electron-ion inter-

actions. The following sections will briefly outline the most important aspects of

the VASP implementations.

2.2.4.1 Periodic Boundary Conditions and Bloch’s Theorem

Crystalline solids are periodic in three dimensions and contain lots of electrons

that cannot be included in the calculation. To overcome this problem, periodic

boundary conditions (PBC) are introduced to reduce the system to one particular

unit cell, which is periodically repeated in three dimensions. For crystal surfaces,

where the periodicity is in two dimensions, they are represented as slabs (several
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layers of atoms) with a vacuum region. The vacuum region must be large enough

to prevent any significant interaction between the adsorbate and the next periodic

image (lateral interaction) or any subsequent slab respectively. The slab must

also be thick enough to represent both the bulk and surface atoms (as shown in

Figure 2.2).

Figure 2.2: Periodic unit cell with a slab consisting of five atomic layers and one
adsorbate, repeated in vertical direction.

The application of PBC allows Bloch’s theorem4,31 to be utilised. According to

this theorem, due to the translational symmetry, each electronic wavefunction of

the crystal, based on the unit cell can be expressed as:

Ψk(r) = eik.ruk(r) , (2.17)

where Ψk(r) is the electronic states, r is a position vector, k is a wave vector
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confined to the first Brillouin zone (BZ) c of the reciprocal lattice, eik.r is a plane

wave and uk(r) is a periodic function of the crystal lattice, given by,

uk(r) = uk(r + L) . (2.18)

where L is one of the lattice vectors of the periodic crystal.

2.2.4.2 Brillouin Zone (BZ) Sampling

When PBC are applied to the solid system, the infinitely extended integrals in real

space are replaced by the finite integrals over the BZ in reciprocal space. These

integrals are computed numerically by sampling the integrals at finite number

of k-points in the BZ. To minimise the number of k-points needed to integrate

the BZ, a number of different methods have been devised for obtaining accurate

approximations.32–34 In this thesis, the method developed by Monkhorst and Pack

is implemented. This method generates a uniform mesh of k-points along the

three lattice vectors in reciprocal space.33 The number of k-points is determined

by three integers, qi, along the coordinates. The integers generate a sequence of

numbers according to

ui =
2r − qi − 1

2qi
(2.19)

where r varies from 1 to qi . The grid size determined by the Monkhorst-Pack

scheme is obtained according to

kxyz = uxt1 + uyt2 + uzt3 (2.20)

cThe first Brillouin zone is the collection of all points in reciprocal space that are
closer to the origin (denoted as the Γ point) than to any other reciprocal lattice point.
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where t1, t2 and t3 are the lattice vectors in reciprocal space.

A sufficiently high number of k-points must be used, to reduce the magnitude of

any error in the total energy calculation. However, the computational cost also

increases with increased k-point mesh. Therefore, it is important to test a varied

set of k-point mesh until convergence is reached to within the chosen accuracy.

For insulators and semiconductors, only a very small number of k-points is needed

to obtain an accurate electronic potential and total energy. In contrast, metals

require a dense k-point mesh to define the Fermi surface and the total energy

precisely.

2.2.4.3 Plane Wave Basis Sets

To solve the Kohn-Sham equations (Eq. 2.10, 2.11 and 2.12) in practice, the use

of basis set functions are required to expand the one-particle orbital, ϕi(r). The

basis set functions are constructed from either atom-centred functions or non-

atom-centred functions or a combination of both. The type of basis sets chosen is

very important to the accuracy and computational time of an electronic structure

calculation. For solid state simulations, VASP uses the non-atom-centred plane-

wave basis set and implements efficient algorithms such as fast Fourier transforms

(FFTs) to move between real and reciprocal space.35

The periodic function, uk(r), in Eq. 2.17 can be expanded using a discrete set of

plane waves with the wave vectors of the reciprocal lattice vectors,

uk(r) =
∑
G

ck,G eiG.r , (2.21)

where G represents the reciprocal lattice vectors ( defined as G . L = 2πm,

L is the lattice vector of the crystal in real space and m is an integer). The one-
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particle orbital in the total energy calculation, ϕi,k(r) can be rewritten as the linear

combination of plane waves:4

ϕi,k(r) =
∑
G

ci,(k+G) e
[i (k+G).r] . (2.22)

To represent the orbitals exactly, an infinite number of plane waves would be

required. However, the expansion coefficient, ci,(k+G), for the plane waves with

small kinetic energies are more important than those with large kinetic energies.

Thus, within a practical simulation, the plane wave basis set is truncated to include

only plane waves that have kinetic energies less than a particular energy cutoff,

Ecut

1

2
|k + G|2 ≤ Ecut . (2.23)

Therefore, the size of the plane wave basis set can be adjusted via Ecut. The

truncation of the plane wave basis set to Ecut will ultimately lead to an error in

the computed physical quantities, but this can be reduced by increasing Ecut until

convergence within the required tolerance is reached.

2.2.4.4 Pseudopotentials

Electrons in a solid (or atom or molecule) can be divided into core and valence

electrons, where the core electrons are localised and tightly bound to the nuclei,

while the valence electrons are weakly bound. The physical properties of a ma-

terial are mainly governed by the valence electrons. Thus, the core electrons are

“frozen” using the pseudopotential (PP) approximation. Within this approxima-

tion, the strong Coulomb potential of the nucleus and the effects of the tightly
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bound core electrons are replaced by an effective ionic potential acting on the va-

lence electrons.36 Using pseudopotentials to describe the electron-ion interaction

leads to a reduced number of electrons that need to be described. Thus faster

calculations and the treatment of bigger systems can be performed.

In all the calculations reported in this thesis, the Projector-Augmented-Wave (PAW)

method29,30 is utilised. This method is, in principle, a frozen-core all-electron

method that combines ideas from the pseudopotential method and the all-electron

linear augmented plane- wave (LAPW) method.37 This means that the core elec-

trons are frozen, but the valence electron wavefunctions are reconstructed to ef-

fectively have an all electron character.

2.3 Output from the ab-initio Calculation

The outputs generated from the DFT calculations contain sufficient information

for evaluating physical and chemical properties of the system. This section gives

a brief introduction of the selected properties considered in this thesis.

2.3.1 Binding and Segregation Energies

An energy minimisation is performed for an initial guessed structure until the

lowest energy configuration is attained. From the output total energy, the binding

energy can be calculated. Within this thesis, the binding energy, Eb, per oxygen

atom is defined as :

Eb =
1

nO
[Eslab/O − Eslab − nOEO] (2.24)
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where nO is the number of oxygen atoms in the unit cell, EO/slab is the energy

of the slab with oxygen atoms, and Eslab is the energy of the clean slab. EO=

1/2Etotal
O2

, where EO2 is the energy of the isolated oxygen molecule in its ground

state.

The next stage is to understand the composition and stability of interacting oxygen

with the Pt-M alloy surfaces so as to determine which configuration is likely to be

observed under oxidising conditions. It is believed that the M component will be

enriched to the surface in the presence of oxygen.38 To determine which surface

composition is most stable, the surface segregation energy is calculated for all the

Pt-M alloy surfaces in the presence of oxygen at the oxygen coverages studied.

The surface segregation energy is defined as:

∆Eseg = E[PtNi/O] − E[Ptskin/O] (2.25)

where E[PtNi/O] is the total energy for non-Ptskin configurations with oxygen, and

E[Ptskin/O] is the total energy for Ptskin structures with oxygen. In Chapter 3 of

this thesis, E[PtNi/O] and E[Ptskin/O] are Ni-Pt-Pt/O and Pt-Ni-Pt/O surfaces re-

spectively while in Chapter 4, they are Pt3Ni/O and Pt3Ni-Ptskin/O configurations

respectively. The segregation energy for the clean slab (that is the configuration

without oxygen) is the difference in total energies between the two structures. Pos-

itive segregation energy indicates that a Ni-rich surface is favoured while negative

segregation energy signifies a Pt-rich surface.

2.3.2 Work-function

The work-function (Φ) is the minimum energy required to remove an electron

from the bulk metal at 0K. Therefore, the energy difference between the Fermi

energy, EF and the electrostatic potential in the middle of the vacuum level, Evac,

corresponds to the work-function (Eq. 2.26 and Figure 2.3).
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Φ = EF − Evac (2.26)

Figure 2.3: Schematic energy diagram of a bulk metal.

It is well-known that the surface environment will affect the work-function.39

Therefore, the work-function change, ∆Φ, according to Eq. 2.27 can be used as a

representation for the actual surface state when the reaction is taking place.

∆Φ = Φ(Θ)− Φclean (2.27)

where ∆Φ is the work-function change in eV and Θ is the total oxygen coverage

and Φclean is the work-function for the clean slab.
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2.3.3 Surface dipole moment

The surface dipole moment40 (in Debye) is evaluated by the using Helmholtz

equation,

µ =
A∆Φ

12πΘ
(2.28)

where A is the surface area in Å2 per (1x1) surface unit cell, ∆Φ is the work-

function change in eV and Θ is the total oxygen coverage.

2.3.4 Charge Density differences

An important output from electronic structure calculations is the electron density.

By analysing the electron density, real space information can be obtained about

the chemical bonds that have been formed or broken within the system. In this

thesis, the charge density difference, ∆n(r), is defined as:

∆n(r) = nslab/O(r)− nslab(r)− nO(r) (2.29)

where nslab/O(r) is the total electron density for the converged slab with oxy-

gen atoms. From the nslab/O(r), the electron density of both the clean surface,

nslab(r) and the isolated oxygen layer, nO(r), are subtracted. The charge differ-

ence formed according to Eq. 2.29 describes the charge transfer between the ad-

sorbates and the interacting surface. The final state geometries (i.e. the adsorbed

or absorbed systems) are required to calculate the charge density differences.
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2.3.5 Density of States

The density of states (DOS) is a common tool for interpreting the characteristics

of the chemical bonding within quantum systems. These analyses provide very

useful information about the distribution of electronic states in k-space and at a

given energy level. From the DOS, we can locate the Fermi level and the energy of

the highest occupied state. Also, to determine the electronic state for a particular

ion in a system, the partial density of states (PDOS) is analysed. This is when

the DOS is projected onto the atomic orbitals. In this thesis, the average partial

density of states (PDOS) for each layer in the surface slab system is analysed.

2.3.6 d-band Centre Model

The d-band centre, εd, model, developed by Hammer and Nørskov,41,42 can pre-

dict the trends in the adsorption binding energies of various adsorbates on the

metal surfaces. It has been shown that there is correlation between the d-band

centre, referenced to the Fermi level and the structure reactivity. In general, the

adsorbates bind to the surface of the transition metal strongly if the d-band centre

of the surface atom is higher in energy. The d-band centre is calculated as the first

moment of the projected d-band density of states on the surface atoms referenced

to the Fermi level.43

εd =
µ1

µ0
=

∫
E n(E)dE∫
n(E)dE

(2.30)

where µ1 and µ0 are the first and zero moment of the projected d-band density of

states.
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2.3.7 Bader Analysis

Bader analysis44 is a useful tool for calculating the number of valence electrons

associated with a particular ion in a periodic solid. This method involves analysing

the topological features of the electron density around an atom (or ion), which

is then divided into Bader basins associated with each atom. Inside the Bader

basin, the electron density is summed up and the Bader charge for each atom is

determined. Also, the technique can provide valuable results for magnetic systems

where the electronic magnetic moments contained within the Bader basins can be

integrated in the same manner as the charge.

2.4 Statistical Thermodynamic Model

DFT is usually denoted to be the theory at zero temperature and pressure. How-

ever, there is need to extrapolate the results to conditions at which industrial cata-

lysts operate (i.e. real catalysts work under high pressures and temperatures). In

order to bridge the temperature and pressure gap, statistical thermodynamics us-

ing classical ideal gas is implemented. In this approach, a clean platinum surface

is in contact with an oxygen environment (reservoir) at a certain temperature, T ,

and pressure, p. At equilibrium, the oxygen molecules can be added to (or taken

from) the platinum surface without changing either its temperature or pressure.

The statistical thermodynamic properties of the system can be described by the

Gibbs free energy, G, which is a function of the number of Pt (NPt) and O (NO)

atoms in the system, in addition to the T and p.

The most stable configuration is the one that minimises the surface free energy,

γ(T, p):45,46

γ(T, p) =
1

A
[∆G(T, p,NPt, NO)−NPtµPt(T, p)−NOµO(T, p)] (2.31)
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where A is the surface area, NPt and NO are the number of platinum and oxygen

atoms respectively. µPt is the platinum chemical potential, which is the total

energy of a Pt atom in the bulk (i.e. µPt = Ebulk
Pt ). The T and p dependence

is mainly given by µO, the oxygen chemical potential, (i.e., the O2 gas phase

environment), defined as:

µO(T, p) =
1

2

[
EDFT

O2
+ µ̃O2(T, po) + kBT ln

(
pO2

po

)]
(2.32)

where po corresponds to the atmospheric pressure.

µ̃O2(T, po) = EZPE + ∆H− T∆S and includes the contributions from rotations

and vibrations of the O2 molecule, as well as the ideal-gas entropy at 1 atm.47 This

term can either be calculated or taken from experimental values (the choice made

in this study)48 listed in thermodynamic tables. EDFT
O2

is the DFT total energy of

the O2 molecule.

From Eq. 2.31, ∆G is the Gibbs free energy difference between the surface slab

with oxygen (slab/O system, i.e., Pt/O system) and the clean slab (Pt). This is

defined as:

∆G = Gslab/O −Gslab (2.33)

where Gslab/O and Gslab is:

G = EDFT + F conf + F vib + pV (2.34)

EDFT is the total energy from the DFT calculations, F conf is the configurational

free energy, and F vib is the vibrational free energy, which contains the zero point

energy, EZPE, and the entropy-related contributions, Svib. The largest contribu-
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tion to Eq. 2.34 arises from the EDFT. the contributions (F conf , F vib and pV )

have not been included in the present study for the surface and bulk phases. This

is because the present work has assumed that the F conf and F vib for the metal

atoms in the clean surface is similar to that in the adlayer structure and that these

contributions are rather small. As for the pV -term, according to literature, a sim-

ple dimensional analysis illustrates that the contribution will be less than 0.001

meV Å−2 for pressures up to 1 atm.

Therefore, the contributions (F conf , F vib and pV ) have not been included in the

present study for the surface and bulk phases.

2.4.1 Free Energy as a Function of Potential

In order to determine which surface structure is observed when applied potential

is included, the oxygen chemical potential, µO, is extended as:

µO(T, p) =
1

2

[
EDFT

O2
+ µ̃O2(T, po) + kBT ln

(
pO2

po

)
− eU

]
(2.35)

where U is the applied potential. The Gibbs free energy, G(T, p), is then calcu-

lated as:

G(T, p) = EDFT
slab/O − E

DFT
slab − µO (2.36)

where EDFT
slab/O and EDFT

slab is the DFT total energy of the slab with the oxygen

system, (Pt/O) and the clean slab (Pt) respectively.
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2.4.2 Limitation of the Statistical Thermodynamics Model

There are several limitations to the above statistical thermodynamics model. These

limitations are discussed below.

1. The phase diagram is restricted to the structural configurations considered.

This means that if there is a more stable phase and it is not included in the

set of structures considered, the model will not find it.

2. The bulk oxidation of Pt is not considered in the model. This is impor-

tant because in a more accurate model, the formation of bulk PtO2 could

be more stable than the oxygen adsorption, absorption or on/sub-surface

phases.

3. The approach cannot describe disordered phases, which may become im-

portant e.g. at more elevated temperatures. If the disordered phases are

found to be stable, then an explicit calculation of the configurational en-

tropy contribution will become necessary, which can be addressed by equi-

librium Monte Carlo simulations.

4. The presence of water on the catalyst surface is not included in the free en-

ergy as a function of potential model. This is because, a humid environment

is required for a working PEMFC.
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Chapter 3

Atomic Oxygen Coverage effects
on Pt Surfaces

3.1 Introduction

Platinum is a noble metal that is widely used as a catalyst in many technologically

important processes such as, in automotive exhaust gas systems and fuel cells. It

is, therefore, essential to understand the mechanical and chemical properties in-

volved in the oxidation of Pt surfaces. Extensive studies of oxygen adsorbed on

low index Pt(111) and Pt(100) surfaces have been carried out theoretically1–10 and

experimentally using a variety of surface techniques.11–20 Without the presence of

oxygen, the Pt(100) surface is observed to reconstruct to a quasi-hexagonal struc-

ture that is not found on the Pt(111) surface.21 However, it was discovered that the

surface reconstruction on the Pt(100) surface is lifted upon the adsorption of oxy-

gen and a p(2x2) overlayer is formed on the Pt(111) at low oxygen coverage.22,23

The oxygen adsorption process on the surfaces resulted in different surface struc-

tures and depend greatly on temperature.24,25 On the Pt(111) surface, three phases

of adsorbed oxygen atoms were discovered, which are: (i) the molecular phase (∼
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160 K); (ii) atomic oxygen (desorbs ∼ 600 K and 1100 K) and (iii) surface oxide

(> 1250 K).24

It was observed that during the characterisation of the surface using cyclic voltam-

metry experiment, an oxide formation was detected within the Pt surface.26–28

This is similar to other reports where the oxidation of other transition metals

(TMs) in an oxygen-rich environment has resulted in the formation of surface

oxides. Some of the TMs identified theoretically and experimentally to form sur-

face oxides are Ru, Rh, Ir, Co, Pd, Ag, and Cu.26,29–36 There is general agreement

that the adsorption of oxygen to a catalyst surface involves the dissociation of ad-

sorbed oxygen, followed by oxygen diffusion into the sub-surface region to form

a surface oxide. The thermodynamics and kinetics of these steps depend on the

partial pressure, temperature and the orientation of the metal surface.37,38 It is

believed that the surface oxide formation on the Pt surface poisons the catalyst

during surface reactions, leading to significant loss of activity. Clearly, a more

detailed atomistic understanding of the interactions of oxygen with Pt surfaces

would be valuable, in particular, to investigate how easily the surface oxides will

form. It is believed that a critical oxygen coverage is the key to the oxide for-

mation and this critical oxygen coverage is thermodynamically, not kinetically

determined.39

This chapter gives an extensive account of the interaction of the platinum catalyst

with the oxidising environment using first-principles calculations. The focus of

this study is on the low index Pt(111) and the unreconstructed Pt(100) surfaces.

The results presented are for oxygen adsorption, incorporation of sub-surface oxy-

gen and the stability of surface oxide. In addition, the pressure-temperature phase

diagrams are determined for conditions extending from low pressure to techno-

logically relevant conditions of finite temperature and pressure. Results from the

present study show that the Pt(100) surface binds oxygen more strongly than the

Pt(111) surface. Furthermore, the critical oxygen coverage required before the

sub-surface incorporation of oxygen is 0.75 ML on the Pt(111) surface and above

1.00 ML on the Pt(100) surface. The statistical thermodynamic study also re-
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vealed that at the PEMFC operating condition (300 K and 1 atm), the most likely

structures to be found on the surfaces are 0.50 ML (fcc) and 0.75 ML (bridge) on

the Pt(111) and Pt(100) surfaces respectively.

The rest of this chapter is organised as follows: Section 3.2 is devoted to the

computational setup for the calculations, followed by section 3.3 and 3.4, which

discusses the stability of oxygen within the considered environments and finally,

section 3.5 contains the conclusion of this chapter.

3.2 Computational Methods

This section describes the computational methods used to collect and analyse the

results of this chapter.

3.2.1 Density Functional Theory Calculations

All calculations were performed using DFT as implemented in the Vienna ab-

initio simulation package (VASP) with the projector augmented wave (PAW)40–43

method, generalised gradient approximation (GGA) of Perdew-Burke-Ernzerhof

(PBE) for the exchange-correlation functional44,45 and a plane-wave cut-off en-

ergy of 400 eV. The Monkhorst-Pack k-point sampling scheme was used to sample

the Brillouin zone46 and a Methfessel-Paxton method of order 1 with a smearing47

of 0.2 eV was used for all relaxation calculations. The convergence criteria for the

electronic self-consistent iteration and the ionic relaxation loop are set to 10−5 eV

and 0.02 eV Å−1, respectively.

Extensive convergence tests were carried out to determine the k-point mesh (re-

ported in Appendix A) which gives confidence that the adsorption energies re-
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ported herein are fully converged to 0.001 eV. The theoretical lattice constant

for fcc Pt was calculated by performing total energy calculations on a Pt perfect

crystal at various volumes, and fitting energy versus volume curves to a Birch-

Murnaghan equation of state.48 All surface calculations were performed within a

(2x2) supercell and a five-layer slab consisting of four atoms in each layer. The

positions of the atoms in the top three layers were allowed to relax, while the bot-

tom two layers were fixed at the calculated bulk positions. A vacuum thickness

of 8 Å separate each successive slab and a k-point mesh of 8x8x1 was used for all

calculations, which generates energy convergence to within 0.01 meV.

For all calculations performed, the oxygen atoms were allowed to move freely in

all directions during the energy minimisation until the lowest energy configuration

was attained. The binding energy, Eb per oxygen atom was calculated as defined

by Eq. 2.24.

3.3 Results and Discussion

This section details the results of the atomic oxygen interaction with the Pt(111)

and Pt(100) surfaces. Firstly, the bulk properties are modelled, followed by the in-

teractions of atomic oxygen with the surfaces. Finally, a statistical thermodynamic

model is applied to assess the stability of the surfaces under realistic conditions.

3.3.1 Bulk Pt, Clean Pt (111) and (100) surfaces and the
oxygen molecule

Before investigating oxygen adsorption on the Pt surfaces, the properties of bulk

Pt, clean Pt (111) and (100) surfaces and the free oxygen molecule are consid-

ered. Table 3.1 illustrates the calculated properties of bulk Pt along with the
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corresponding experimental and other theoretical values for comparison. Using

a k-point grid of 16x16x16, the calculated bulk lattice constant, ao is 3.98 Å (ne-

glecting zero-point vibrations), the bulk modulus, Bo is 2.28 Mbar and the cohe-

sive energy, Eo is -5.90 eV . The corresponding experimental values for the Pt

lattice constant, cohesive energy and bulk modulus are 3.92 Å, -5.84 eV and 2.78

Mbar respectively.49 The slight overestimation of the calculated ao and the cor-

responding underestimation of the Bo is well known for the PBE functional.50,51

The calculated lattice constant is in good agreement with other PBE results.8,51

On the other hand, the calculated cohesive energy and bulk modulus are smaller

than other PBE results.51 This may be due to the different technical set-up been

employed.

Table 3.1: Properties of bulk Pt and comparison with other ab initio calculations
and experiment. ao(Å) is the lattice constant, Bo(Mbar) is the bulk modulus,
Ecoh(eV) is the cohesive energy.

Present work a Other ab initio calculations b Experimental results c

ao 3.98 3.97 3.92
Bo 2.28 2.41 2.78
Ecoh -5.90 -5.59 -5.84

a Present work using PBE
b FP-LAPW method, PBE51

c Experimental result49

The clean Pt(111) and Pt(100) surfaces were cleaved from the bulk and then al-

lowed to relax to their lowest energy structures. The change in interlayer spac-

ings, δi,j , between layers i and j with respect to the bulk interlayer distance, δ0,

is listed in Table 3.2. For the Pt(111) surface, the changes observed for the first

and second interlayer spacings are positive and negative respectively while the

Pt(100) surface showed a negative change of the interlayer distance. These re-

sults are in good agreement with other ab-initio calculations52 and experimental

analyses determined by low energy electron diffraction (LEED) and high-energy

ion scattering(HEIS).53,54 The calculated workfunction for the clean Pt(111) and
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Pt(100) surfaces are 5.67 eV and 5.69 eV respectively, in good agreement with

the experimental values. The experimental values determined by photoelectron

spectroscopy for Pt(111) is 5.82 ± 0.15 eV and for Pt(100) is 6.08 ± 0.15 eV.55

Table 3.2: Change in interlayer spacings of Pt(111) and Pt(100) surfaces and the
comparison with other ab initio calculations and experiments. d0(Å) is the bulk
Pt interlayer distance, δ12(%) is the change in the interlayer spacing between the
first and second layer and δ23(%) is the change in the interlayer spacing between
the second and third layer spacing.

Present ab initioa Exp

Pt(111)
do 2.30
δ12 +0.53 +0.85 1.0 ± 0.1b

δ23 -1.40 -0.56

Pt(100)
δo 1.99
δ12 -3.02 -2.37 +0.2 ± 2.6 c

δ23 -1.25 -0.55

a USPP-PBE52

b LEED53

c HEIS and LEED54

USPP= Ultrasoft pseudopotentials
HEIS=high-energy ion scattering (HEIS) spectroscopy

A spin-polarised calculation was performed on the isolated O2 molecule using a

cubic unit cell of 12 Å. The binding energy and bond length for the gas-phase O2

molecule are calculated to be 3.04 eV/ O atom and 1.23 Å respectively; both are

larger than the experimental values (2.56 eV/ O atom and 1.21 Å56) but compa-

rable with other theoretical results.31,57 The differences between the theoretical

and experimental values are due to the well-known overestimation of the PBE

functional31 and the theoretical binding energy does not include the zero-point

energy. In the present work, the main interest is the relative stability of various

structures and so the over-binding of O2 is not expected to affect the overall trends

and conclusions of this work.
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3.3.2 On-surface Adsorption of Atomic Oxygen on Pt Sur-
faces

The most stable adsorption sites on both Pt(111) and Pt (100) surfaces have been

explored by comparing the binding energies relative to the gas-phase O2 molecule

for the oxygen coverage range of θtot(0.25 ≤ θtot ≤ 1.00ML). Figure 3.1. illus-

trates the high symmetry adsorption sites of an isolated O atom on both the (111)

and (100) surfaces. On the (111) surface, the adsorption sites are three-fold fcc

(where there is no Pt atom in the second layer) and hcp (where Pt is present in

the second layer), two-fold bridge and one-fold top while on the (100) surface,

there are four-fold hollow, two-fold bridge and one-fold top sites. Figure 3.2 sum-

marises the DFT adsorption energies as a function of oxygen coverage on the Pt

surfaces at 0 K. The binding energies reported are the non zero-point corrected

energies.

Figure 3.1: Adsobates at adsorption sites on (a) Pt (111) and (b) Pt(100) surfaces
(top view).

62



Figure 3.2: On-surface adsorption binding energies of oxygen on (a) Pt(111) and
(b) Pt(100) surfaces at various oxygen coverages.

Figure 3.2a illustrates that on the (111) surface, oxygen prefers to bind to the high-

coordinated three-fold fcc site. This is in agreement with experimental scanning

tunnelling microscopy (STM) and low energy electron diffraction (LEED) studies

as well as other DFT calculations that give a p (2x2) superstructure.10,11,58 The

fcc preference for adsorbed oxygen has also been observed on the (111) surfaces

of several other fcc transition metals (TM) such as Ir, Rh.59,60 In addition, on the

(111) surface, the bridge site is unstable and oxygen adsorbed on that site relaxes

into the neighbouring fcc site. For the (100) surface, (shown in Figure 3.2b), the

two-fold bridge site is the most energetically favoured binding site for oxygen.

This is also in line with other theoretical calculations.9,22 Overall, the (100) sur-

face binds oxygen more strongly than the higher coordinated (111) surface above

0.25 ML. At 0.25 ML, the binding energies of oxygen for both the (111) and

(100) surfaces are similar. The (111) surface at low oxygen coverage is however,

slightly more favoured with a small energy difference of 0.03 eV.

Looking closely at both figures, it can be seen that the binding energies decrease

steadily as the oxygen coverage is increased except for the top site. Similar trends

have also been observed for other transition metals such as Cu,36,61 Ag,57 Au,62

Rh30 and Pd,63 when oxygen coverage increases. The reason the binding energies
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decrease with increased oxygen coverage is because each Pt atom interacts with

more oxygen atoms, leading to reduced binding energies e.g. at the fcc site and

at 0.25 ML, oxygen is coordinated to three Pt atoms. This is still the case at a

higher oxygen coverage, however, the Pt atom is interacting with more than one

oxygen atom. As for the top site, the binding energies are essentially constant as

the oxygen coverage is increased on both surfaces. This is because at the top site,

each oxygen atom interacts directly with only one Pt atom even when the oxygen

coverage increases.

The binding energy difference between 0.25 ML and 1.00 ML oxygen coverage at

the most stable adsorption site for the (100) surface is 0.43 eV while for the (111)

surface is 1.03 eV, suggesting that the (100) surface binds oxygen more tightly.

It is observed that, for both the (111) and (100) surfaces, the 1.00 ML oxygen

coverage at the top site is more stable than the hcp and hollow site respectively.

Table 3.3: Average Pt-O bond lengths (Å) and interlayer spacings (%) of atomic
oxygen on Pt(111) and Pt(100) surfaces at 0.25ML. dPt−O(Å) is the bond length
between O and the nearest neighbour belonging to the top-layer Pt atoms, δ12(%)
is the change in the interlayer spacing between the first and the second layer and
δ23(%) is the change in the interlayer spacing between the second and the third
layer.

Pt (111) Pt (100)

fcc hcp top bridge hollow top

dPt−O 2.05 2.06 1.83 1.95 2.27 1.81
δ12 +1.19 +1.93 -0.14 -0.98 -0.48 -1.95
δ23 -0.44 -0.86 -1.13 -0.98 -0.46 -1.16
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Table 3.3 shows the Pt-O bond lengths and the change in interlayer spacings of

all the studied adsorption sites at 0.25 ML oxygen coverage. Further analysis of

the geometric structures show that the Pt-O bond lengths for the (111) and (100)

surfaces are constant as the oxygen coverage is increased. This suggests that the

bond length is not coverage dependent at any specific adsorption site. The bond

lengths on the high coordinated adsorption sites are longer on both surfaces. These

results are in good agreement with calculations performed by Gu and Balbuena.8

In addition, it is interesting to note that on the (100) surface, the favourable bridge

site has a shorter bond length compared to the fcc site on the (111) surface. The

reason for this, could be that the (100) surface is an open and less coordinated

surface and therefore binds oxygen more strongly. The magnitude of the interlayer

spacings is different on the two surfaces and at each adsorption sites. On the (111)

surface, positive changes are observed for the first interlayer spacing at the fcc and

hcp sites and a negative change is noticed at the top site while on the (100) surface

and at all the adsorption sites, the changes are negative. Furthermore, on the two

surfaces and at all adsorption sites, small negative changes in the second interlayer

spacings are observed.

3.3.3 On-surface Mixed Sites Adsorption of Atomic Oxy-
gen on Pt Surfaces

To examine the effect of multiple surface interactions with oxygen, mixed sites

configurations were considered for both surfaces. The oxygen atoms are adsorbed

at two different high symmetry adsorption sites at the same time. These configura-

tions include various combinations of oxygen atoms binding on the (111) surface

at the fcc and hcp sites while on the (100) surface at the hollow and bridge sites.

The top adsorption site was excluded in the study because it is an unfavourable

binding site for all coverages except at 1.00 ML for the two surfaces studied. The

oxygen coverage range was extended to 2.00 ML, in order to fully explore all the

possible mixed configurations on the (2x2) surface.
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Figure 3.3: Binding energies for the on-surface mixed adsorption sites for oxygen
adsorbed on (a) Pt (111) and (b) Pt (100) surfaces at various oxygen coverages.
Solid black lines highlight the most stable mixed sites at each oxygen coverage.
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Figure 3.3 illustrates the binding energies of the most stable mixed sites config-

urations along with the on-surface adsorption. Between 0.25 ML and 1.00 ML

coverage, the high-symmetry on-surface fcc and bridge sites are the favoured ad-

sorption sites for the (111) and (100) surface respectively. This is in agreement

with work carried out by Lagare and Hawkin et al. who demonstrated that the

fcc site is more favoured compared to the mixed-site configuration on the (111)

surface.7,64 Above 1.00 ML oxygen coverage, low binding energies are observed

for all the considered configurations on both surfaces. This is because the interac-

tions between the Pt atoms and adsorbed oxygens increase with oxygen coverage,

thereby leading to an unstable overlayer. It is evident that the on-surface mixed

sites configuration is unfavourable for the adsorption of oxygen above 1.00 ML.

3.3.4 Sub-surface Absorption of Atomic Oxygen on Pt
Surfaces

As mentioned earlier, sub-surface oxygen has been detected during surface oxi-

dation for a number of TMs including Ru, Rh, Ir, Pd, Ag, and Cu.26,29–36 These

sub-surface oxygen atoms are believed to poison the surface leading to the for-

mation of a surface oxide. This has prompted the present work to investigate the

incorporation of oxygen sub-surface on Pt surfaces.

The stability of incorporating oxygen sub-surface without the presence of on-

surface oxygen, is examined theoretically on both the (111) and (100) surfaces at

the oxygen coverage range of θsubtot(0.25 ≤ θsubtot ≤ 1.00 ML). This involves

placing the oxygen atoms between the top two Pt layers. Figure 3.4 shows the

high symmetry absorption sites for oxygen incorporation on both surfaces. On

the (111) surface, there are three different absorption sites, the octahedral (octa)

and two tetrahedral sites described as tetra-i and tetra-ii. The octa site is where

oxygen is located underneath the fcc site while for tetra-i and tetra-ii, oxygen is

located underneath the top and hcp site respectively. On the other hand, the (100)

surface, has only the octahedral and one tetrahedral site present, where oxygen is
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positioned beneath the top and bridge sites respectively.

Figure 3.4: Sub-surface absorption sites on Pt (111) and Pt (100). Red represent
oxygen and light blue represent Pt.

Figure 3.5 shows the binding energies of oxygen absorption at each sub-surface

site for both surfaces. For both surfaces, the incorporation of oxygen into the

sub-surface region is very unstable compared to the on-surface adsorption. On

the (111) surface and at the oxygen coverage between 0.25 ML and 0.50 ML,

oxygen prefers to absorb at the tetrahedral (tetra-ii) site where oxygen is located

underneath the hcp site. This is in agreement with the theoretical calculations per-

formed by Gu et al. on Pt(111) surface.8 Above 0.50 ML, the favoured absorption

site switches to the tetra-i site where oxygen is positioned underneath the top site.

As for the (100) surface, the tetrahedral (tetra100) site with oxygen located beneath

the bridge site is the favoured absorption site at all considered oxygen coverage.

The octahedral site (octa100) is very unstable with a binding energy difference of

about 2.0 eV at the 0.25 ML oxygen coverage.
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Figure 3.5: Binding energies for the sub-surface oxygen absorption on (a) Pt (111)
and (b) Pt (100) at various oxygen coverages.

As the sub-surface oxygen coverage increases, the sub-surface incorporation be-

comes more favoured, indicating that there is attraction between the oxygen atoms

which stabilise the sub-surface structures.65 At 0.25 ML sub-surface oxygen cov-

erage for all the studied sub-surface sites, the binding energy is significantly lower

compared to the on-surface adsorption. This is because additional energy is re-

quired to distort the lattice.32 Figure 3.6 shows the converged structures and the

interlayer spacings of the sub-surface oxygen at 0.25 ML and 1.00 ML on the

(111) and (100) surfaces. It can be seen that as the sub-surface oxygen coverage

increases, the δ12 increases from 14 to 52 % and from 13 to 58 % on the (111) and

(100) surface respectively. In addition, there is a small contraction of the δ23 on

the two surfaces. This further illustrates the large expansion between the top two

Pt layers as the sub-surface oxygen increases so as to accommodate the increasing

number of sub-surface oxygen atoms.
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Figure 3.6: Converged sub-surface structures at (a) 0.25ML and (b) 1.00ML on
Pt(111) and (c) 0.25ML and (d) 1.00ML on Pt(100) surfaces. Red represent oxy-
gen and light blue represent Pt.
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3.3.5 Interaction of Oxygen with the On/sub-surface Phases

To understand the initial formation of surface oxides, it is important to examine

the interaction between the on-surface and sub-surface oxygens. This can be done

by studying the combined interaction of the on-surface and sub-surface oxygen.

There is a vast number of possible structural combinations that can be examined

on the two surfaces. Here, the configurations considered on the (111) surface are:

(i) fcc/tetra-i; (ii) fcc/tetra-ii; (iii) fcc/octa; (iv) hcp/tetra-i; (v) hcp/tetra-ii and

(vi) hcp/octa while on the (100) surface are: (i) bridge/tetra; (ii) bridge/octa; (iii)

hollow/tetra and (iv) hollow/octa. A total oxygen coverage, θtot of 2.00 ML was

considered. The formation of a thin surface oxide will appear when the on/sub-

surface phases become energetically more stable than having pure on-surface or

sub-surface structures at the same total oxygen coverage θtot.

The configuration where the sub-surface oxygen is located directly below an on-

surface oxygen is significantly less stable than other structures. These configu-

rations are fcc/octa and hcp/tetra-ii on the (111) surface and bridge/tetra on the

(100) surface. The reason these configurations are unstable is due to the strong re-

pulsion between the electronegative oxygen atoms located on the top and directly

below the Pt atom.63 Also, the structures in which the oxygen atoms are located

further away from each other are found to be more stable because the electrostatic

repulsion between the oxygens are reduced.
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Figure 3.7: The binding energies for the on/sub-surface phases on (a) Pt (111) and
(b) Pt (100) surfaces at various oxygen coverages. Solid black lines highlight the
most stable on/sub-surface structures at each oxygen coverage.

Within the limits of the on/sub-surface phases considered, the main geometries

that were found to be stable between the θtot of 0.50 ML and 2.00 ML are the

fcc/tetra-ii and bridge/tetra structures on the (111) and (100) surface respectively.

Figure 3.7 shows the binding energies of the most stable on/sub-surface phases

along with the on-surface adsorption on both surfaces.
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On the (111) surface and at the θtot of 0.25 and 0.5 ML, the on-surface fcc site is

still the most stable geometry. As θtot increases to 0.75 ML, the fcc site is also

favourable but the difference in binding energies between the (0.75 Ofcc) and (0.50

Ofcc + 0.25 Otetra−ii) is only 0.05 eV. This means that there is a possible coexis-

tence of the (fcc/-) and (fcc/tetra-ii) structures at 0.75 ML, suggesting that the for-

mation of surface oxide film will begin at this oxygen coverage. Above 0.75 ML,

the on/sub-surface configurations are energetically favourable (as shown in Fig-

ure 3.7 (top)). At 1.00 ML and 1.25 ML, the preferred geometries are (0.50 Ofcc

+ 0.50 Otetra−ii) and (0.75 Ohcp + 0.50 Otetra−ii) respectively. It is interesting to

notice that at 1.00 ML, the binding energy difference between the (1.00 Ofcc) and

(0.50 Ofcc + 0.50 Otetra−ii) structure is quite large, being 0.29 eV. Furthermore,

the binding energy at 1.25 ML is much lower when compared to 0.75 ML and 1.00

ML oxygen coverage. This further suggests that a coexistence of on/sub-surface

phases will begin to form at 0.75 ML and then a phase transition from on-surface

adsorption to the reconstructed surface oxide-like structure from 1.00 ML. These

results are in agreement with DFT calculations performed by Hawkins et al. who

found that the crossover between surface and sub-surface configurations occurs

at a coverage above 0.75 ML.64 In addition to the DFT calculation, experimen-

tal studies using TPD, XPS, EELS and LEED observed a coexistence of ordered

and disordered domains for oxygen coverages from about 0.40 to 0.75 ML.13 In

the same experimental study performed by Weaver et al. Pt surface oxides were

observed and significant disruption of the surface layers was detected above 0.75

ML.13

For the θtot between 1.50 ML and 2.00 ML, the on/sub-surface configurations

are stable as the binding energies are exothermic. This indicates that a surface

oxide-like structure will continue to grow on the surfaces as the oxygen coverage

increases. In addition, it is observed that the binding energies at these total oxygen

coverages are more stable compared to the full monolayer (1.00 Ofcc) on-surface

structure.
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Figure 3.8: Top and side views of the most stable oxygen on/sub-surface configu-
rations calculated using a (2x2) surface unit cell on the Pt(111) surface at the θtot

of (a) 0.75 ML, (b) 1.00 ML and (c) 1.25 ML. The average change in interlayer
spacing, (%), δ12, between the first and second layer and δ23, between the second
and third layer, with respect to the bulk Pt interlayer distance is given to the right
of the figures. The large sky blue sphere represents Pt atoms, the small red and
blue spheres represent on-surface O atoms at the fcc and hcp sites and the small
black sphere represents the sub-surface O atoms at the tetra-ii site.
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Table 3.4: The calculated (average) bond lengths (Å) for the most stable on/sub-
surface configurations on the Pt(111) surface at the θtot of 0.75 ML, 1.00 ML and
1.25 ML. dOonsurf−Pt1 (Å) is the distance between the on-surface oxygen and the
nearest-neighbour first layer Pt atom, dPt1−Osub

(Å) is the distance between the
nearest-neighbour first layer Pt atom and sub-surface oxygen, dOsub−Pt2 (Å) is the
distance between the sub-surface oxygen and the nearest-neighbour second layer
Pt atom and dPt1−Pt2 (Å) is the distance between the top two Pt atoms layers

0.75 ML 1.00 ML 1.25 ML

dOonsurf−Pt1 2.04 2.01 2.01
dPt1−Osub

2.03 2.06 2.96
dOsub−Pt2 2.04 2.15 2.04
dPt1−Pt2 3.27 3.75 3.43

Next, the geometric structures of the stable on/sub-surface phases are analysed

in more detail. The most stable configurations and the structural details for the

θtot at 0.75, 1.00 and 1.25 ML are displayed in Figure 3.8 and Table 3.4. The

stable structures at these θtot are: (i) (0.50 Ofcc + 0.25 Otetra−ii); (ii) (0.50 Ofcc

+ 0.50 Otetra−ii) and (iii) (0.75 Ohcp + 0.50 Otetra−ii). From all these geometric

structures, a significant amount of Pt buckling was observed in the first layer of the

surface. This Pt buckling is more pronounced on the (0.50 Ofcc + 0.50 Otetra−ii)

phase. The average positions of the top two Pt layers are used to calculate the

interlayer spacings, δ12 and δ23. It can be seen that the first interlayer spacing, δ12,

for (0.50 Ofcc + 0.25 Otetra−ii) and (0.50 Ofcc + 0.50 Otetra−ii) doubles from 24

to 46 % as the θtot increases while the (0.75 Ohcp + 0.50 Otetra−ii) configuration

decreases back to 36 % (Figures 3.8). As for the bond lengths, the Pt-O bond

lengths for the on-surface and sub-surface oxygens are around 2 Å for all three

structures while the Pt-Pt bond lengths for the top two Pt layers are above 3 Å.

Proceeding onto the (100) surface, the on-surface bridge site is still the ener-

getically favoured site at the θtot of 0.25 ML up until 1.00 ML (Figure 3.7b).

Above 1.00 ML, the binding energies for the on/sub-surface phases are consider-

ably lower compared to the pure on-surface adsorption. With the lower binding

energies observed, it is predicted that the surface oxide will be difficult to form on
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the surface. At 1.25 ML and 1.50 ML, the binding energies are slightly exother-

mic and the geometric structures are illustrated in Figure 3.9. The stable structures

are (1.00 Ohollow + 0.25 Otetra) and (0.75 Obridge + 0.75 Oocta). From the (1.00

Ohollow + 0.25 Otetra) structure (Figure 3.9a), it can be seen that the top Pt layer

splits into two layers. This is illustrated as Pt1a and Pt1b and a large interlayer

spacing of 16.4 % between this split layer is observed. As for the (0.75 Obridge

+ 0.75 Oocta) structure (Figure 3.9b), there is a significant gap between the top

Pt layers, with an expansion of 60 % for the δ12. Table 3.5 illustrates the bond

lengths of the stable geometric structures. On the two structures, the Pt-O bond

lengths for the on-surface oxygens are shorter than the sub-surface oxygens. Fur-

thermore, the Pt-Pt bond length for the split Pt layers on (1.00 Ohollow + 0.25

Otetra) is shorter than the two Pt layers on the (0.75 Obridge + 0.75 Oocta).

Figure 3.9: Top and side views of the most stable oxygen on/sub-surface config-
urations calculated using a (2x2) surface unit cell on the Pt(100) surface at the
θtot of (a) 1.25 ML and (b) 1.50 ML. The average change in interlayer spacing,
(%), δ12, between the first and second layer and δ23, between the second and third
layer, with respect to the bulk Pt interlayer distance is given to the right of the fig-
ures. The large sky blue sphere represent Pt atoms, the small red and blue spheres
represent on-surface O atoms at the hollow and bridge sites and the small black
and orange spheres represent the sub-surface O atoms at the tetra and octa.
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Table 3.5: The calculated (average) bond lengths (Å) for the most stable on/sub-
surface configurations on Pt(100) surface. dOonsurf−Pt1 (Å), dOonsurf−Pt1a (Å)
and dOonsurf−Pt1b

(Å) are the distances between the on-surface oxygens and the
nearest-neighbour first layer platinum atoms or split platinum atoms; dPt1−Osub

(Å), dPt1a−Osub
(Å) and dPt1b−Osub

(Å) are the distances between the nearest-
neighbour first layer platinum atom or split platinum atoms and sub-surface
oxygen; dOsub−Pt2 (Å) is the distance between the sub-surface oxygen and the
nearest-neighbour second layer platinum atom; dPt1a−Pt1b

(Å) and dPt1b−Pt2 (Å)
are the distances between the split top platinum layer and dPt1−Pt2 (Å) is the
distance between the top two platinum atoms layers.

1.25 ML 1.50 ML

dOonsurf−Pt1 - 1.95
dOonsurf−Pt1a 1.99 -
dOonsurf−Pt1b

2.65 -
dPt1−Osub

- 2.67
dPt1a−Osub

2.65 -
dPt1b−Osub

3.22 -
dOsub−Pt2 1.95 2.09
dPt1a−Pt1b

3.27 -
dPt1b−Pt2 2.73 -
dPt1−Pt2 - 3.89

From the results discussed above, it can be concluded that a threshold oxygen

adsorption coverage, θc, is required before oxygen starts penetrating sub-surface

to form a thin surface oxide-like structure. This θc within the (2x2) surface unit

cell structures considered is 0.75 ML on the (111) surface and above 1.00 ML

on the (100) surface. A larger surface unit cell will be required to accurately de-

termine the θc. Nevertheless, the θc is compared to other late transition metals

calculated on the (111) surface. The θc for Ru, Rh, Pd, Ag and Ir are 0.89, 0.59,

0.50, 0.24 and 1.5 ML respectively.31,32 This result suggests that it will be diffi-

cult for surface oxide to form on the (100) surface because of the high binding

energies observed. There is no available information from literature to confirm

the formation of surface oxide on the (100) surface.
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When oxygen interacts with the two surfaces, the (100) surface is more reactive

than the (111) surface. In addition, the fact that thin surface oxide-like structure

can form on the (111) surface suggests that a gradual poisoning of the catalyst

may occur. This will eventually lead to a degradation of the catalyst, hence a

decreased power output.

The next section discusses the thermodynamically stable structures that may be

observed on the catalyst surfaces during a PEMFC operation.

3.4 Statistical Thermodynamic Model

The effect of temperature and pressure on the (111) and (100) surfaces are investi-

gated using a statistical thermodynamic model on the stability of the various oxy-

gen coverage structures. The statistical thermodynamic model discussed in Sec-

tion 2.4 is implemented to calculate the surface free energies. This generates the

(T, p) phase diagram that describes the most stable phase from low pressure right

up to real catalysis conditions. The surface free energies are calculated for the

most stable adsorption energies for oxygen coverages from θtot(0.25 ≤ θtot ≤ 2.00ML)

over a temperature range from 100 K to 1000 K and a pressure range from 10−5

atm to 105 atm. Figure 3.10 shows the (T, p) phase diagram of the (111) and (100)

surfaces.
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Figure 3.10: Phase diagram of (a) Pt(111) and (b) Pt(100) surfaces in equilibrium
with O2 gas phase. PEMFC operating conditions are labelled as 1 atm (horizontal
white line) and 300 K (vertical white line).
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Table 3.6: The temperatures (K) at which the oxygen coverage changes phase
from the (T, p) thermodynamic phase diagram on the Pt(111) and Pt(100) surfaces
at low pressure (10−5 atm), real catalytic condition (1 atm) and high pressure (105

atm).

Three different oxygen coverage structures were identified on the (111) surface

while there were four identified structures on the (100) surface. The thermody-

namically stable structures on the (111) surface are: (i) 1.25 ML on/sub-surface

configuration (0.75 Ohcp + 0.50 Otetra−ii); (ii) on-surface fcc adsorption 0.50 ML

and (iii) on-surface fcc adsorption 0.25 ML. Table 3.6 summarises the tempera-

tures at which the oxygen coverage changes phase on the (111) and (100) surfaces

at low, real catalytic condition and high pressures. On the (111) surface and at low

pressure (10−5 atm), oxygen desorbs off the surface at 766 K. The experimental

oxygen desorption temperature was determined by Gland et al. to be 700 K.11

In addition, both the experimental and theoretical calculations have observed a

p(2x2) structure of 0.25 ML oxygen coverage at 670 K and a high density p(2x1)

structure of 0.50 ML at 480 K.3,23,24,66 This is in agreement with the current the-

oretical results which also identified the (2x1) and (2x2) structures as the most

stable at 0.50 ML and 0.25 ML respectively. Experimental UHV and TPD stud-

ies showed that at 300 K and 1.2 ML, the disordering of the Pt surface occurs,

caused by either the sub-surface oxygen or the nucleation of platinum oxide par-

ticles.67 These experimental results are similar to present study, which identified
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the on/sub-surface structure (0.75Ofcc + 0.50Otetra−ii) but at a reduced desorp-

tion temperature of 184 K. Furthermore, the on/sub-surface structure also showed

a disordering of the surface atoms. At the operating pressure of a realistic cata-

lyst, 1 atm (as indicated by the thick horizontal white line), 0.25 ML is the lowest

oxygen coverage observed on the (111) surface and desorbs off the surface above

1000 K. It is evident that 0.50 ML will be observed on the surface at the operating

temperature of a realistic catalyst at 300 K (as indicated by the thick vertical white

line).

As for the (100) surface, all the on-surface bridge adsorption sites (from 0.25 ML

to 1.00 ML oxygen coverage) were the thermodynamically most stable structures.

At the low pressure (10−5) atm, oxygen desorbs from the (100) surface at 752

K. The UHV experiment performed by Weaver et al. indicated a 0.63 ML oxy-

gen coverage at 573 K with a LEED pattern of disordered (3x1) domains.16 This

oxygen coverage cannot be modelled on the current (2x2) surface and therefore,

a (3x1) surface is required to address this experimental observation. Even though

oxide growth has been reported on the (111) surface,13,67 none has been detected

on the (100) surface. This suggests that the observed on-surface oxygen adsorp-

tions are most likely to be formed on the surface. At the operating pressure of a

realistic catalyst, 1 atm (as indicated by the thick horizontal white line), all the

on-surface oxygen adsorption coverages, 1.00 ML, 0.75 ML, 0.50 ML and 0.25

ML are observed on the surface while at the operating temperature of the realistic

catalyst at 300 K (as indicated by the thick vertical black line), only 0.75 ML will

be detected.

3.4.0.1 Free Energy as a Function of Potential

As discussed in Section 2.4.1, the free energy as a function of potential is obtained

for the PEMFC operating conditions of 300 K and 1 atm. The thermodynamically

stable structures identified above for the (111) and (100) surfaces are analysed

using Eqs. 2.35 and 2.36, to determine the most likely structures that would be
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observed on the catalyst surface when potential (between 0.00 V and 1.50 V)

is applied to the statistical thermodynamic model. Figure 3.11 displays the free

energy as a function of potential for the (111) and (100) surfaces.

Figure 3.11: Free energy as a function of potential for the thermodynamically
stable structures on (a) Pt(111) and (b) Pt (100) surfaces.

In general, as the potential is increased, the free energies observed on the (111)

surface is considerably more stable than the (100) surface. Furthermore, the sur-

face composition changes on the two surfaces as the potential is increased. The

structures predicted on the (111) surface are 0.50 ML at low applied potential and

0.25 ML at high applied potential, with the oxygen coverage switching at 0.63 V.

As for the (100) surface, 0.75 ML and 0.50 ML oxygen coverages are expected at

low and high applied potentials respectively, with the oxygen coverage changing

at 0.40 V. At low applied potentials, the structures observed are the same as those

predicted in the above statistical thermodynamic model at 300 K and 1 atm (Fig-

ure 3.10). These results suggest that pure on-surface adsorptions will be expected

on the two surfaces regardless of the applied potential.
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3.5 Electronic Properties

3.5.1 Change in Work function, Dipole Moment and d-
band Centre

The work function change, ∆Φ, (defined in Eq. 2.27), surface dipole moment, µ,

(Eq. 2.28), and the average d-band centre, εd, of the first Pt layer (described in

section 2.3.6) are analysed with respect to oxygen coverage on the Pt(111) and

Pt(100) surfaces. In addition, the plot between the average d-band centre, εd, of

the first layer and the binding energies are shown for the studied oxygen cover-

ages. These results are illustrated in Figure 3.12. The pure on-surface adsorption

of oxygen at the fcc and bridge site on the Pt(111) and Pt(100) surfaces respec-

tively are compared to the on/sub-surface configurations for the identified stable

structures at the θtot(0.25 ≤ θtot ≤ 2.00ML).
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Figure 3.12: Electronic properties of Pt(111) and Pt(100) surfaces where a)
change in the calculated work-function, ∆Φ, b) surface dipole moment, µ, c)
average d-band centre of the top Pt layer as a function of oxygen coverage for
the most stable structures and d) the average d-band centre, εd, of the top Pt layer
plotted as a function of the binding energies at the studied oxygen coverages.

84



Figure 3.12a shows that on the Pt(111) and Pt(100) surfaces, the workfunction,

∆Φ, changes as the oxygen coverage increases up to 1.00 ML for the on-surface

adsorption. This change is considerably larger on the Pt(100) surface compared

to the Pt(111) surface. This general increase in work function change is mainly

due to the electronegativity difference between Pt (2.28) and oxygen (3.44) which

causes large charge transfer from the top-layer Pt atoms to the oxygen, result-

ing in a large inward pointing surface dipole moment (that is the oxygen nega-

tive charge at the vacuum side of the surface).57,68,69 On the Pt(111) surface and

at 0.75 ML and 1.00 ML, the workfunction changes are lower for the on/sub-

surface structures compared to the on-surface adsorption at the same oxygen cov-

erage. Above 1.00 ML oxygen coverage, the workfunction change for the Pt(111)

on/sub-surface configurations is much lower than that of the Pt(100) on/sub-surface

configurations. In addition, on the Pt(111) surface, a saturation value of 1.25 ML

oxygen coverage is reached, which includes the on/sub-surface configurations.

The lower workfunction change observed for the on/sub-surface configurations

occurs because there is competition for the bonding charge of the top-layer Pt

atoms that arise between the sub-surface and on-surface oxygen atoms, thereby

making the on-surface oxygen less negatively charged.70 Overall, the Pt(100) sur-

face induces more charge transfer compared to the Pt(111) surface.

The surface dipole moment, µ, for the on-surface adsorption, on the two surfaces

are different (Figure 3.12b). On the Pt(111) surface, µ decreases between 0.25

ML and 0.50 ML and then increases from 0.75 ML while on the Pt(100) surface,

there is an increase between 0.25 ML and 0.50 ML and then a reduction from 0.75

ML. The observed µ is in agreement with those calculated by Pang et al.71 With

regards to the on/sub-surface configurations, there is a continuous decrease of the

µ on the two surfaces as the oxygen coverage increases. The µ for Pt(100) surface

is much higher than that of the Pt(111) surface. The decrease in the surface dipole

moment is consistent with strong depolarisation that arises from the partial charge

transfer of the oxygen atoms back on to the top-layer Pt atoms so as to reduce the

repulsive dipole-dipole interactions between the oxygen atoms.72
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Figure 3.12c shows that for the on-surface adsorption on the Pt(111) and Pt(100)

surfaces, the average d-band centre of the top Pt layer becomes more negative as

the oxygen coverage increases. In addition, the average d-band centre correlates

with the adsorption energy which shows that the more negative the d-band centre,

the weaker the adsorption energy (Figure 3.12d). This is in agreement with the

DFT calculation performed on Pd(111).73 The d-band centre for the Pt(100) sur-

face at the bridge site is higher than the Pt(111) surface at the fcc site, suggesting

that Pt(111) surface will bind oxygen more weakly at the fcc site. This is consis-

tent with the work-function change and surface dipole observations. The d-band

centre for the on/sub-configurations on the Pt(100) surface are reduced with oxy-

gen coverage while on the Pt(111) surface, there is no correlation with oxygen

coverage.

3.5.2 Electron density difference and Bader Analysis

To understand the bonding mechanism that occurs within the on-surface chemisorp-

tion and on/sub-surface configurations, the electron density differences, Bader

charges and projected density of states (PDOS) are analysed on the Pt(111) and

Pt(100) surfaces. The structures examined for the electron density differences on

the Pt(111) surface are: (i) on-surface adsorption at 0.25 ML; (ii) on-surface ad-

sorption at 1.00 ML and (iii) on/sub-surface structure, (0.75 Ohcp + 0.50 Otetra−ii)

and on the Pt(100) surface are: (i) on-surface adsorption at 0.25 ML and on-

surface adsorption at 1.00 ML structures. The reason for choosing these configu-

rations is because they are the thermodynamically stable structures. The Pt(111)-

1.00 ML geometry is included for comparison with the Pt(100) counterpart.
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Figure 3.13: Calculated electron density differences for Pt(111) surface at a) 0.25
ML b)1.00 ML c) (0.75 Ohcp + 0.50 Otetra−ii) and Pt(100) surface at d) 0.25
ML and e) 1.00 ML oxygen coverages. The pink and white isosurfaces represent
positive and negative electron density differences respectively. The blue and red
spheres are Pt and O atoms respectively and the isospheres value is±0.045 eÅ−3.

The electron density difference (Eq. 2.29) is the induced redistribution of the oxy-

gen electron density that originates from the oxygen dipole moment. From Fig-

ure 3.13, it can be seen that in all cases, there is a large increase in the electron

charge density on the oxygen atoms which has been transferred from the Pt atoms

(showing a depletion of electron charge density). This reflects the accumulation

of charge on the oxygens and the depletion of charge from the Pt 5d-orbitals. On

Pt(111) and Pt(100) on-surface adsorption (0.25 ML and 1.00 ML oxygen cov-

erage), the oxygens interact mainly with the top-layer Pt atoms and the electron

density accumulates in the vacuum. At the 1.00 ML oxygen coverage, there is

build-up of the electron density because each oxygen atom is coordinated to three

Pt atoms. This increased electron density causes the low binding energy observed

compared to the 0.25 ML oxygen coverage. On the Pt(100) surface, the observed

electron charge density around the oxygen atoms, especially the on-surface 1.00

ML oxygen coverage, may be the major reason for the increased workfunction

as the oxygen coverage increases.68 Similar to the on-surface chemisorption, the

on/sub-surface configuration, (0.75 Ohcp + 0.50 Otetra−ii) (Figure 3.13c) has a
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reduced electron density charge at the top-layer Pt atoms while the second-layer

Pt atoms that are bonded to the O atoms have an enhanced electron charge density

on the O atoms.

Table 3.7: Average Bader charges (e) for the top two Pt layers on the Pt(111)
and Pt(100) surfaces. The average Bader charges for the on-surface oxygen layer,
(Oonsurf ) and the sub-surface oxygen layer (Osubsurf ) layer are also included. The
nominal valence charges for Pt and O are 10 and 6 electrons respectively.

slab 0.25ML 1.00ML 1.25ML

Pt(111)

1st layer 10.04 9.83 9.20 9.90
2nd layer 9.96 9.99 10.05 9.11
Oonsurf - 6.74 6.73 6.76
Osubsurf - - - 6.85

Pt(100)

Pt1 10.05 9.85 9.28
Pt2 9.97 9.98 10.06

Oonsurf - 6.75 6.67
Osubsurf - - -

Table 3.7 illustrate the Bader charges of the top two layers on the Pt(111) and

Pt(100) surfaces. On the two surfaces, the slabs show a small increase and de-

crease of charges between the first and second Pt layers respectively. This sug-

gests that there are charge transfers between the Pt layers and the second Pt layer

is donating charge to the first Pt layer. Moving on to the adsorbed oxygens at

0.25 ML and 1.00 ML on the two surfaces, there are charge transfer from the first

Pt layer onto the oxygen atoms, causing a depletion of electrons on that Pt layer.

As for the on/sub-surface configuration (1.25 ML), the increased charge transfer

observed on the oxygen atoms are mostly being donated from the second Pt layer.

Figure 3.14 shows the PDOS plots (discussed in Section 2.3.5) for the clean Pt

surfaces, the gas phase oxygen atom and the 0.25 ML oxygen coverage at the
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fcc site on the Pt(111) surface and at the bridge site on Pt(100) surface. The

interacting and non-interacting plots are the PDOS for the top Pt layer which is

interacting and not interacting respectively with the O atom. The Pt-O/O plot

illustrates the PDOS of the O atom interacting with the two surfaces. Finally, the

gas phase O is showing the energy levels of the gas phase O atom and the Fermi

level, εF, is determined by taking the experimental first ionisation energy of O

atom from the highest occupied molecular orbital (HOMO).

Figure 3.14: Projected density of states (PDOS) for (a) O/Pt(111) and (b)
O/Pt(100) systems at 0.25 ML oxygen coverage. The Fermi energy is indicated
by the vertical dotted line.

On the Pt(111) and Pt(100) surfaces, the O 2s orbital is observed on the PtO/O

plot, as shown from the sharp DOS peak around 20 eV below the Fermi level.

There is bonding hybridisation between the O 2p and the Pt 5d orbitals. This

bonding hybridisation occurs because the O 2p orbital mixes strongly with the Pt

5d orbitals, thereby causing the broadening of the O 2p orbital (as shown in PtO/O

plot). The oxygen energy levels (Pt-O/O) are split into two states, bonding and

anti-bonding on both surfaces. The bonding states are located between the energy

region of -7.5 eV and -5.5 eV, the lower part of the Pt 5d orbitals. The anti-bonding

states are positioned just above the Fermi level for the Pt(111) surface and at the

Fermi level for Pt(100) surface. On the two surfaces, the average d-band centre

for the oxygen covered Pt surfaces is slightly lower than that of the clean Pt.
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The PDOS for the Pt-O/O non-interacting is similar to the PDOS of the clean Pt

surface. In addition, the average d-band centre for the Pt-O/O non-interacting is

lower than the Pt-O/O interacting.

3.6 Conclusions and Implications to PEMFC

A theoretical investigation of interacting Pt surfaces with the oxidising environ-

ment was carried out. The study focused on the low index Pt(111) and unrecon-

structed Pt(100) surfaces using density functional theory and a statistical thermo-

dynamic model. It was observed that for oxygen on-surface adsorption and at

oxygen coverages between 0.25 ML and 1.00 ML, the fcc and bridge sites are

the most stable adsorption sites for Pt(111) and Pt(100) surfaces respectively. In

addition, it was shown that the Pt(100) surface binds oxygen more strongly than

the Pt(111) surface except at 0.25ML, where the Pt(111) surface is favoured. The

on-surface mixed sites were unfavourable on both Pt(111) and Pt(100) surfaces

compared to the stable on-surface adsorption sites. This is because the interac-

tions between the Pt atoms and adsorbed oxygens increase as the oxygen cover-

age increases. The incorporation of oxygen sub-surface on the two surfaces is en-

dothermic. Furthermore, it was observed that the surface oxide-like structures are

more likely to form on the Pt(111) surface and the oxygen coverage required be-

fore oxygen starts to penetrate sub-surface is 0.75 ML. As for the Pt(100) surface,

lower binding energies were observed for the on-surface chemisorption compared

to the on/sub-surface structures, suggesting that oxygen coverage of more than

1.00 ML will be required to form the surface oxide-like structure.

At the PEMFC operating condition (300 K and 1 atm), the statistical thermody-

namics model revealed that the most likely structures to be found on the surfaces

are 0.50 ML (fcc) on the Pt(111) surface and 0.75 ML (bridge) on the Pt(100)

surface. As the temperature increases at 1 atm pressure, oxygen gradually des-

orbs off each of the surfaces studied. Overall, the Pt(100) surface is less able to

form the thin surface-like structures compared to the Pt(111) surface. However,
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because the Pt(100) surface binds oxygen more strongly, its suitability as a ORR

catalyst will not be feasible. On the other hand, the Pt(111) surface is a better

catalyst for the ORR but with prolonged exposure to the oxidising environment at

high atmospheric pressure, will cause the catalyst to degrade.

In the next chapter, the stability and structural behaviour of Pt/Ni-monolayer

bimetallic alloy surfaces will be investigated theoretically. The alloy composi-

tions on the (111) and (100) surfaces will be explored along with their tendencies

of forming surface oxide film in oxidising environment.
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Chapter 4

Coverage effects on
Pt/Ni-Monolayer Bimetallic
Alloy Surfaces

4.1 Introduction

Proton exchange membrane fuel cells (PEMFCs) are a promising alternative power

source to combustion for automobile applications.1 Their long-term application is,

however, hindered by several factors, which include the high-cost of the Pt-based

electrocatalyst and the slow kinetics of the oxygen reduction reaction (ORR) at

the cathode.2 Hence, much research has been dedicated to the identification of a

more stable and efficient catalyst that will increase the ORR activity and thereby

reduce the Pt loading.3

Several alloy catalysts involving a combination of Pt and another 3d transition

metal such as Co4–7 and Ni6,8–10 have been studied intensively in an attempt to
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improve the catalytic activity and stability relative to pure Pt. The activity of these

alloys has been shown to be dependent on how the atoms are arranged in the first

two layers of the catalyst surface, which can be significantly different from the

bulk composition.11–14 There has been much focus on the monolayer bimetallic

alloys (MBA) where the 3d alloying metal is incorporated either at the top layer

(3d-Pt-Pt) or the sublayer (Pt-3d-Pt).15–17 This arrangement effectively changes

the electronic and chemical properties of the catalyst surface.18 A theoretical in-

vestigation of adsorbing 0.50 ML of oxygen atoms on the MBA has shown that

when certain alloying metal is placed at the sublayer (Pt-3d-Pt), there is an in-

crease in the ORR activity which has been attributed to weaker oxygen binding

energy compared to pure Pt.8,19–21 Alternatively, when the same alloying metal

is placed at the top layer (3d-Pt-Pt), the binding of oxygen is predicted to be

stronger than pure Pt.22 However, due to the surface segregation phenomenon, it

has been shown that certain 3d metals come to the surface causing a decrease in

the catalytic activity compared to Pt.13,23,24 A number of 3d metals were stud-

ied for their stability in the presence of oxygen and the most promising of these

metals, which was verified by AES and HREELS experiments, is the Pt-Ni-Pt

surface.22,25 This Pt-Ni-Pt surface also generated the smallest potential for sur-

face segregation, indicating that it should be an effective surface catalyst towards

the ORR.

For this reasons, it is important to understand the catalytic activity and stabil-

ity of Pt/Ni MBA surfaces in an oxidising environment. Additionally, reports to

date have not investigated the tendency of forming thin film surface oxides on the

MBA surfaces when exposed to the oxidising environment for a long period of

time. Hence, this chapter gives an extensive account of the first-principles calcu-

lations carried out on the low index MBA (111) and (100) surfaces. The results

presented are similar to those presented for the Pt surfaces and include oxygen ad-

sorption, incorporation of sub-surface oxygen and the stability of surface oxide. In

addition, statistical thermodynamics is employed so that conditions ranging from

low pressure to technological relevance can be described, leading to the (T, p)

phase diagrams and free energy as a function of potential plots. It was discov-

ered from the present study that the Pt-Ni-Pt surface was the stable MBA surface
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when oxygen is adsorbed on the surface. However, when the amount of oxygen

is increased, this surface becomes highly susceptible to the formation of thin film

surface oxide-like structures. The Ni-Pt-Pt surface is also not an oxide resistant

surface because it binds oxygen more strongly even when the oxygen coverage is

increased.

4.2 Computational Methods

All calculations are performed using DFT as implemented in VASP with the same

functional and parameters as the calculations presented in the previous chapter

(Section 3.2.1).

The theoretical lattice constant for Pt (3.98 Å) was used for all calculations and

the Ni atoms were incorporated by replacing the Pt atoms in the slabs. Spin po-

larisation was included in the calculations to take into account the presence of

magnetic moments in the system due to the presence of Ni. All calculations were

performed within a 2x2 supercell, a five-layer slab consisting of four atoms in

each layer with a k-point mesh of 8x8x1, which converges the energy to within

0.01 meV. The positions of the atoms in the top three layers were allowed to relax,

while the bottom two layers were fixed at the calculated bulk Pt positions and a

vacuum thickness of 8 Å separates each successive slab.

For all calculations performed, the oxygen atoms were allowed to move freely in

all directions during the energy minimisation until the lowest energy configuration

was attained. The binding energy, Eb per oxygen atom is defined in Eq. 2.24.

The convergence criteria for the electronic self-consistent iteration and the ionic

relaxation loop are set to 10−5 eV and 0.02 eV Å−1 respectively.
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4.3 Results and Discussion

4.3.1 Clean Ni-Pt-Pt and Pt-Ni-Pt structures on the (111)
and (100) surfaces

In the current study, the DFT adsorption energies as a function of oxygen coverage

were modelled on two configurations of the Pt/Ni MBA surfaces. These configu-

rations are Ni-Pt-Pt (Ni-overlayer) and Pt-Ni-Pt (Ni-underlayer) (Figure 4.1). The

Ni-Pt-Pt (Ni-overlayer) configuration is constructed with the first layer Pt atoms

substituted for Ni atoms while the other four layers remain as Pt atoms. The other

configuration, Pt-Ni-Pt (Ni-underlayer) is set up by inserting Ni atoms underneath

the surface Pt atoms. Therefore, the first, third, fourth and fifth layers are still Pt

atoms. In both configurations, the fourth and fifth layers are fixed to the calcu-

lated bulk Pt positions. The top three-layers that include the substituted Ni atoms

are allowed to relax. The incorporation of Ni into the sub-surface is expected to

contract the surface because Ni (3.52 Å) has a smaller lattice parameter.26 As a

result, any modification observed when the surfaces interact with oxygen could

be due to the presence of Ni atoms.
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Figure 4.1: Pt/Ni Ni Monolayer Bimetallic Alloys (MBA) Surfaces; Ni-Pt-Pt (left)
and Pt-Ni-Pt (right)

Table 4.1: The average bond lengths (Å), interlayer spacings (%) and workfunc-
tion (eV) of clean Ni-Pt-Pt (Ni-overlayer) and Pt-Ni-Pt (Ni-underlayer) for the
(111) and (100) surfaces. The results are compared to pure Pt surfaces. d12(Å) and
d23(Å) are the bond lengths between the nearest-neighbour first and second layer
and between the nearest neighbour second and third layer respectively. δ12(%) and
δ23(%) are the changes in the interlayer spacing between the first and the second
layer and the second and the third layer, respectively. Φ(eV) is the workfunction.

(111) surface (100) surface

Ni-Pt-Pt Pt-Ni-Pt Pt Ni-Pt-Pt Pt-Ni-Pt Pt

d12 2.56 2.61 2.83 2.55 2.60 2.77
d23 2.83 2.60 2.79 2.84 2.64 2.80
δ12 -13.20 -10.93 +0.53 -19.90 -16.34 -3.02
δ23 +0.76 -12.01 -1.40 +1.72 -13.02 -1.25
Φ 5.69 5.73 5.67 5.69 5.73 5.69
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Table 4.1 lists the properties for the relaxed clean surface structures for both the

(111) and (100) surfaces, compared to pure Pt surfaces. In general, the trends for

the bond lengths and interlayer spacings of the Ni-Pt-Pt and Pt-Ni-Pt structures

are similar for the (111) and (100) surfaces. For the first layer, the Pt-Ni bond

lengths are shorter while there is a negative change of the interlayer distance for

the considered MBA surfaces at the (111) and (100) surfaces with respect to pure

Pt surfaces. This suggests that the first layer Pt-Ni bonding is strong, caused

by the lattice mismatch between Pt and Ni.27 Therefore, it is expected that the

modification of the surface reactivity will be due to the geometric and electronic

effects. Theoretical studies performed by Escaño et al. suggest that the geometric

effect will dominate.28 In addition, these results are similar to other magnetic

alloying metals such as Cr, Mn and Fe,27 where it was also found that the bond

lengths are shorter compared to pure Pt surfaces.

On both the (111) and (100) surfaces, the bond lengths for the first and second

layers of the Ni-Pt-Pt structure are shorter and longer respectively. For the Ni-Pt-

Pt configuration, the changes observed are negative and positive for the δ12 and

δ23 respectively while the Pt-Ni-Pt structures showed a negative change of the

two interlayer distances. The magnitude of the change in interlayer spacings is

slightly bigger for the (111) surface compared to the (100) surface while there is

little difference for the bond lengths. Concerning the workfunction, Φ, it can be

seen that for Pt-Ni-Pt and Ni-Pt-Pt and at the (111) and (100) surfaces, the Φ is

identical. The workfunction difference between Pt-Ni-Pt and Ni-Pt-Pt surface is

0.04 eV, a small change. Compared to the pure Pt and on the (111) surface, the Φ

for the Pt-Ni-Pt and Ni-Pt-Pt surfaces are bigger and smaller respectively. As for

the (100) surface, the Φ for the Ni-Pt-Pt surface is the same as the Pt surface but

smaller than the Pt-Ni-Pt surface.

The next section is divided into two parts, which discuss the interactions of atomic

oxygen with these MBA surfaces on both Ni-Pt-Pt and Pt-Ni-Pt structures at the

(111) and (100) surfaces. These will enable a detailed understanding of the rela-

tive propensity of forming surface oxides on these surfaces.

103



4.3.2 Oxygen Interactions on Ni-Pt-Pt Monolayer Bimetal-
lic Alloy Surfaces

4.3.2.1 On-surface Adsorption of Atomic Oxygen on Ni-Pt-Pt Sur-
faces

The effect of increasing the oxygen coverage on the Ni-Pt-Pt surfaces was inves-

tigated in the same way as the Pt surface discussed in Chapter 3. The binding en-

ergies reported here, are the non zero-point corrected energies relative to the gas-

phase O2 molecule for the oxygen coverage range of θtot(0.25 ≤ θtot ≤ 1.00ML).

The high symmetry adsorption sites of the isolated O atom on the Ni-Pt-Pt (111)

and Ni-Pt-Pt (100) surfaces are illustrated in Figure 4.2. The DFT adsorption

energies as a function of oxygen coverage on the Ni-Pt-Pt surfaces at 0 K are

summarised in Figure 4.3.

Figure 4.2: Adsobates at adsorption sites on (a) Ni-Pt-Pt (111) and (b) Ni-Pt-Pt
(100) surfaces (top view).

104



Figure 4.3: On-surface binding energies of oxygen on (a) Ni-Pt-Pt (111) and (b)
Ni-Pt-Pt (100) surfaces at various oxygen coverage.

The binding energy graphs (Figure 4.3) indicate a decrease in binding energies as

the oxygen coverage increases. This decrease in binding energies is mainly due

to the lateral repulsion interaction between the negatively charged oxygen atoms.

This is because, compared to the pure Pt surfaces, the top site on the Ni-Pt-Pt sur-

faces are dependent on the oxygen coverage. On the (111) surface (Figure 4.3a),

oxygen prefers to occupy the three-fold fcc-hollow sites. In addition, it can be

seen that a linear trend and a clear order for the adsorption sites were observed.

The next stable adsorption site after the fcc site is the three-fold hcp site, followed

by the two-fold bridge and then the top site. The (100) surface (Figure 4.3b), on

the other hand, showed no favoured binding site for all the considered oxygen

coverages. At 0.25 ML, the four-fold hollow site is stable, followed by the two-

fold bridge sites at 0.50 ML and 0.75 ML and then back to the hollow site at the

1.00 ML. At 1.00 ML oxygen coverage, although the hollow site is favourable,

the energy difference between the hollow and bridge site is small (0.04 eV). Over-

all, oxygen adsorbed on the (111) surface is more stable than that on the (100)

surface.
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Table 4.2: Average Ni-O bond lengths (Å) and interlayer spacings (%) of atomic
oxygen on Ni-Pt-Pt (111) and Ni-Pt-Pt (100) surfaces at 0.25 ML. dNi−O(Å) is
the bond length between O and the nearest neigbour belonging to the top-layer
Ni atoms, δ12(%) is the change in the interlayer spacing between the Ni first layer
and the Pt second layer and δ23(%) is the change in the interlayer spacing between
the Pt second layer and the Pt third layer. Pure Pt results at the (111) and (100)
surfaces are also presented for comparison.

Table 4.2 shows the Ni-O bond lengths and the first and second interlayer spacings

of all the studied adsorption sites at 0.25 ML oxygen coverage and at the (111)

and (100) surfaces. The results for the bond lengths and interlayer spacings for

the oxygen adsorption on pure Pt surfaces are also presented for comparison. Fur-

ther analysis of the geometric structures on the Ni-Pt-Pt surfaces have shown that

the top-layer Ni-O bond lengths are not coverage dependent for both the (111)

and (100) surfaces. Furthermore, at all adsorption sites, the Ni-O bond lengths

for the (111) surface are shorter than those of the (100) surface expect at the top

site, where they are both the same. Comparing these results with Pt (111) and

(100) surfaces, the bond lengths for the Ni-Pt-Pt (111) and (100) surfaces and at

all adsorption sites are shorter, apart from the bridge site on the (100) surface.

This could be the influence of Ni because it is a smaller atom that causes a con-

traction within the surfaces. With respect to the interlayer spacings (Table 4.2),

the changes are positive and negative for the δ12 and δ23 respectively at all studied

adsorption sites and surfaces. In addition, the negative change for the first layer

on the Ni-Pt-Pt surfaces is bigger compared to those on the Pt surfaces.
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4.3.2.2 On-surface Mixed Sites Adsorption of Atomic Oxygen on Ni-
Pt-Pt Surfaces

The interaction of oxygen atoms with the surfaces are investigated at two differ-

ent high symmetry adsorption sites at the same time. This gives a detailed under-

standing of adsorbing oxygen at multiple adsorption sites. Consistent with the Pt

surfaces, the high symmetry adsorption sites considered are the fcc and hcp sites

on the (111) surface and the bridge and hollow sites on the (100) surface. All the

possible mixed configurations on the (2x2) surface were explored at an oxygen

coverage range of θtot(0.25 ≤ θtot ≤ 2.00ML).

Figure 4.4: Binding energies for the on-surface mixed adsorption sites for oxygen
adsorbed on (a) Ni-Pt-Pt (111) and (b) Ni-Pt-Pt (100) surfaces at various oxygen
coverages. Solid black lines highlight the most stable mixed sites at each oxygen
coverage.
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The binding energies of the most stable mixed adsorption sites along with the on-

surface binding energies at single adsorption sites are shown in Figure 4.4. On

the (111) surface, the oxygen atoms prefer to occupy the high symmetry fcc sites

at the oxygen coverage between 0.25 ML and 1.00 ML. In contrast, the mixed

adsorption sites become favourable above 0.50 ML on the (100) surface. At the

θtot of 0.75 ML on the (100) surface, there is a small binding energy difference of

0.03 V between the stable (0.25 Obri + 0.50 Ohol) and (0.75 Obri). Above 1.00 ML

on the two surfaces, the binding energies for the stable mixed site configurations

are lower compared to those below the 1.00 ML oxygen coverage. In addition, as

the oxygen coverage increases, oxygen binds the (111) surface weaker than the

(100) surface, due to O-O repulsion effect. According to this model, the binding

energies for all the favoured mixed site configurations are exothermic indicating

that they are likely to exist.

4.3.2.3 Sub-surface Absorption of Atomic Oxygen on Ni-Pt-Pt Sur-
faces

The stability of incorporating oxygen sub-surface is examined theoretically on

both the (111) and (100) surfaces at the oxygen coverage range of θsubtot(0.25 ≤
θsubtot ≤ 1.00 ML). This involves placing the oxygen atoms at the high symmetry

absorption sites between the top Ni layer and the second Pt layer (see Figure 3.4

for illustration).
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Figure 4.5: Binding energies for the sub-surface oxygen absorption on (a) Ni-Pt-
Pt (111) and (b) Ni-Pt-Pt (100) surfaces at various oxygen coverages.

Figure 4.5 shows the relaxed binding energies of oxygen absorption at each sub-

surface site for both surfaces. The incorporation of oxygen into the sub-surface

is exothermic for the (111) and (100) surfaces at the studied oxygen coverages

and at the stable absorption and adsorption sites. Analysis of the final relaxed

structures show that at low oxygen coverage on both surfaces, the oxygen atoms

do not remain sub-surface but return to the on-surface structures. On the (111)

surface and at the oxygen coverage between 0.25 ML and 0.75 ML, the favoured

structures are the on-surface fcc adsorption sites but switches to the sub-surface

tetrahedral (tetra-ii) site, where oxygen is positioned below the hcp site at an oxy-

gen coverage of 1.00 ML (Figure 4.5a). As for the (100) surface and at the oxygen

coverage of 0.25 ML and 0.50 ML, the on-surface bridge adsorption sites are also

favoured, which then converts back to the sub-surface tetrahedral (tetra100) site

where oxygen is placed underneath the bridge site at the 0.75 ML and 1.00 ML

(Figure 4.5b). Table 4.3 tabulates the binding energies of the on-surface adsorp-

tion sites and the sub-surface absorption sites for the (111) and (100) surfaces. It

can be seen that as the oxygen coverage increases to 1.00 ML on both surfaces, the

oxygen atoms remain sub-surface and are significantly unstable. However, when

compared to pure Pt surfaces, oxygen binds strongly to the Ni-Pt-Pt surfaces. This

may be due to the high affinity of Ni for oxygen atoms.
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Table 4.3: Binding energies (eV) of on-surface fcc site and sub-surface octa site
for the Ni-Pt-Pt (111) surface and onsurface bridge site and sub-surface tetra100

site for the Ni-Pt-Pt (100) surface at oxygen coverages between 0.25 and 1.00 ML.

Ni-Pt-Pt (111) Ni-Pt-Pt (100)

coverage (ML) fcc octa bridge tetra100

[eV]

0.25 -2.83 -2.76 -2.03 -1.87
0.50 -2.58 -2.59 -1.93 -1.93
0.75 -2.28 -2.28 -1.58 -0.09
1.00 -2.28 -0.86 -1.39 -0.32

4.3.2.4 Interaction of Oxygen with the On/sub-surface Phases on Ni-
Pt-Pt surfaces

The on/sub-surface configurations are investigated to determine the propensity

of forming surface oxides on the Ni-Pt-Pt surfaces. Similar to the Pt surfaces,

a number of possible structural combinations for the on-surface and sub-surface

oxygen were studied. The configurations considered are the same as those mod-

elled for pure Pt surfaces (Section 3.3.5), at the oxygen coverage range of θtot(0.25

≤ θtot ≤ 2.00 ML). The thermodynamic tendency of forming thin surface oxide

will then become evident when the on/sub-surface phases become energetically

more stable than having pure on-surface or sub-surface structures at the same to-

tal oxygen coverage θtot.
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Figure 4.6: The binding energies for the on/sub-surface phases on (a) Ni-Pt-Pt
(111) and (b) Ni-Pt-Pt (100) surfaces. Solid black lines highlight the most stable
on/sub-surface phases at each oxygen coverage.

Figure 4.6 illustrates the binding energies of the most stable on/sub-surface phases

along with the on-surface adsorption on both the (111) and (100) surfaces. On

the (111) and between θtot of 0.25 and 0.75 ML, the on-surface fcc site is the

most stable adsorption site. As the θtot increases to 1.00 ML, the (0.50 Ofcc +

0.50 Otetra−ii) is favoured. However, the binding energy difference between the

on/sub-surface phase (0.50 Ofcc + 0.50 Otetra−ii) and the (1.00 Ofcc) is small, at

only 0.03 eV. This suggests that there is a possible coexistence of the (fcc/-) and

(fcc/tetra-ii) geometries at 1.00 ML, similar to the Pt (111) surface. Above 1.00

ML, the on/sub-surface configurations are relatively stable with lower binding

energies, due to the O-O repulsion. The negative binding energies imply that the
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surface oxide-like structure will continue to grow on the surface as the oxygen

coverage increases. At all studied oxygen coverage, the stable fcc and on/sub-

surface configurations are energetically favoured compared to those identified on

the Pt(111) surface.

Figure 4.7: Top and side views of the most stable oxygen on/sub-surface configu-
rations on the Ni-Pt-Pt (111) surface calculated using a (2x2) unit cell at the θtot

of (a) 1.00 ML, (b) 1.25 ML and (c) 1.50 ML. The average change in interlayer
spacing, (%), δ12, between the first and second layer and δ23, between the second
and third layer, with respect to the bulk Pt interlayer distance is given to the right
of the figures. The large sky blue and green spheres represent Pt and Ni atoms,
the small red and blue spheres represent the on-surface O atoms at the fcc and hcp
sites and the small black and purple spheres represent the sub-surface O atoms at
the tetra-ii and octa sites.
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Table 4.4: The calculated (average) bond lengths (Å) for the most stable on/sub-
surface configurations on the Ni-Pt-Pt(111) surface at the θtot of 1.00 ML, 1.25
ML and 1.50 ML. dOonsurf−Ni (Å) is the distance between the on-surface oxygen
and the nearest-neighbour first layer Ni atom, dNi−Osub

(Å) is the distance between
the nearest-neighbour first layer Ni atom and sub-surface oxygen, dOsub−Pt(Å) is
the distance between the sub-surface oxygen and the nearest-neighbour second
layer Pt atom and dNi−Pt (Å) is the distance between the Ni and Pt layers.

1.00 ML 1.25 ML 1.50 ML

dOonsurf−Ni 1.80 1.88 1.86
dNi−Osub

1.83 1.89 1.90
dOsub−Pt 2.23 2.07 2.08
dNi−Pt 3.00 3.40 3.42

As seen previously for the Pt(111) surface, the geometric structures for the stable

on/sub-surface phases at the θtot of 1.00, 1.25 and 1.50 ML are analysed. Fig-

ure 4.7 and Table 4.4 show the stable on/sub-surface structures along with the

structural information. From all the considered configurations, the (0.50 Ofcc +

0.50 Otetra−ii) phase is the only structure showing a significant amount of buck-

ling in the first layer of the surface. This buckling in the first layer of the (0.50

Ofcc + 0.50 Otetra−ii) structure causes the average Ni-Pt bond length to be shorter

than the (0.50 Ofcc + 0.75 Otetra−ii) and (0.75 Ohcp + 0.50 Oocta) structures. The

δ23 for all the structures increases slightly, indicating a small disruption in the

Pt layers. The Ni-O bond lengths for the on/sub-surface structures are shorter

than the Pt-O bond lengths. The difference in bond lengths is due to Ni having a

smaller lattice parameter compared to Pt. The Pt-O bond lengths for the on/sub-

surface structures are similar to those observed on/sub-surface arrangements on

the Pt(111) surface.

Continuing this discussion to the (100) surface, the on-surface hollow and bridge

sites are the favoured adsorption sites at the θtot of 0.25 and 0.50 ML (Fig-

ure 4.6b). Beyond 0.50 ML oxygen coverage, the on/sub-surface phases are stable

implying that the reconstructed surface oxide-like structures will begin to form

above 0.50 ML. The binding energy differences between the stable surface oxide-
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like structures and the on-surface adsorption geometries at the θtot of 0.75 ML

and 1.00 ML are very large at 0.19 eV and 0.21 eV respectively. Also, at 1.50

ML, the binding energy for (0.50 Ohol + 1.00 Otetra) is the lowest compared to all

other oxide-like structures at the different oxygen coverages.

Figure 4.8: Top and side views of the most stable oxygen on/sub-surface geomet-
ric structures on the Ni-Pt-Pt (100) surface calculated using a (2x2) unit cell at
the θtot of (a) 0.75 ML, (b) 1.00 ML, (c) 1.25 ML and (d) 1.50 ML. The average
change in interlayer spacing, (%), δ12, between the first and second layer and δ23,
between the second and third layer, with respect to the bulk Pt interlayer distance
is given to the right of the figures. The large sky blue and green spheres represent
Pt and Ni atoms, the small red and blue spheres represent the on-surface O atoms
at the bridge and hollow sites and the small black and purple spheres represent the
sub-surface O atoms at the tetra and octa sites.
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Table 4.5: The calculated (average) bond lengths (Å) for the most stable on/sub-
surface geometric structures on the Ni-Pt-Pt(100) surface at the θtot of 0.75 ML,
1.00 ML, 1.25 ML and 1.50 ML. dOonsurf−Ni(Å) is the distance between the on-
surface oxygen and the nearest-neighbour first layer Ni atom, dNi−Osub

(Å) is the
distance between the nearest-neighbour first layer Ni atom and sub-surface oxy-
gen, dOsub−Pt(Å) is the distance between the sub-surface oxygen and the nearest-
neighbour second layer Pt atom and dNi−Pt(Å) is the distance between the Ni and
Pt layers.

0.75 ML 1.00 ML 1.25 ML 1.50 ML

dOonsurf−Ni 1.85 1.83 1.85 2.01
dNi−Osub

1.83 1.91 1.87 1.86
dOsub−Pt 2.14 2.04 2.02 2.15
dNi−Pt 2.84 2.79 2.98 3.42

Figure 4.8 and Table 4.5 show the geometric structures, interlayer spacings and the

calculated bond lengths for the stable on/sub-surface phases at the θtot between

0.75 ML and 1.50 ML. A significant amount of buckling in the Ni first layer is

observed in all the considered configurations, with the largest buckling found on

(0.50 Ohol + 1.00 Otetra) (Figure 4.8d). These bucklings are considerably bigger

than those identified on the Pt(100) surface. Furthermore, the interlayer spacings

for all the configurations show that the δ12 increases with oxygen coverage (Fig-

ure 4.8). The Ni-O bond lengths for both the on-surface and sub-surface oxygens

are between 1.8 and 1.9 Å for all the studied structures except for 1.50ML where

the on-surface Ni-O bond length is slightly longer at 2.01 Å. This longer Ni-O

bond length observed on the 1.50 ML on/sub-surface structure is caused by the

large buckling in the first layer.
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4.3.3 Oxygen Interactions on Pt-Ni-Pt Monolayer Bimetal-
lic Alloy Surfaces

4.3.3.1 On-surface Adsorption of Atomic Oxygen on Pt-Ni-Pt Sur-
faces

The investigation of atomic oxygen interactions is carried out on the Pt-Ni-Pt

surfaces, where the Ni layer is positioned below the surface Pt layer. As in the case

of the Ni-Pt-Pt and Pt surfaces, both the (111) and (100) surfaces are investigated.

Figure 4.9 shows the binding energies of oxygen adsorption at the high symmetry

adsorption sites on these surfaces, as a function of oxygen coverage.

Figure 4.9: On-surface binding energies of oxygen on (a) Pt-Ni-Pt (111) and (b)
Pt-Ni-Pt (100) surfaces at various oxygen coverages.

The results observed for the Pt-Ni-Pt surfaces are similar to those observed for

the Pt surfaces. On the Pt-Ni-Pt surfaces, the most stable binding sites are the

three-fold fcc-hollow site on the (111) surface and the two-fold bridge site on the

(100) surface. As in the case of Pt (111) surface, the bridge site for the (111)

surface is unstable because the oxygen falls into the nearest fcc site. Comparing

both surfaces, oxygen binds the (100) surface more strongly than the (111) sur-

face. Furthermore, in agreement with the Pt and the Ni-Pt-Pt surfaces, the binding
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energies decrease steadily as the oxygen coverage increases for all the stable ad-

sorption sites. Similarly to the Ni-Pt-Pt surfaces, the decrease in binding energies

is mainly due to the repulsion effect between the negatively charged oxygen atoms

adsorbed onto the surfaces.

Table 4.6: Average Pt-O bond lengths (Å) and change in interlayer spacing (%)
of atomic oxygen on Pt-Ni-Pt (111) and Pt-Ni-Pt (100) surfaces at 0.25 ML.
dPt−O(Å) is the bond length between O and the top-layer Pt, δ12(%) is between
the Pt first layer and the Ni second layer and δ23(%) is between the Ni second
layer and the Pt third layer. Results for Ni-Pt-Pt and Pt at the (111) and (100)
surfaces are also presented for comparison.

Table 4.6 shows the Pt-O bond lengths and the first and second interlayer spacings

of all the studied adsorption sites at 0.25 ML oxygen coverage. Results for Ni-

Pt-Pt and Pt at the (111) and (100) surfaces are also presented for comparison.

Similar to the Pt and Ni-Pt-Pt surfaces, the top-layer Pt-O bond lengths are not

coverage dependent for both the (111) and (100) surfaces at the studied adsorption

sites. The high coordinated adsorption sites on the (111) and (100) surfaces have

longer Pt-O bond lengths. The bond length for the energetically favoured bridge

site on the (100) surface is shorter than that of the stable fcc site on the (111)

surface. This is the same result observed for the Pt surfaces. The bond lengths for

the Pt-Ni-Pt surfaces and at all adsorption sites, are comparable to the Pt surfaces

but longer than the Ni-Pt-Pt surfaces. The reason for this observation may be
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because the Ni sub-layer is not interacting with oxygen and the entire bonding

interactions occur with the top Pt layer. As for the change in interlayer spacings,

negative changes of the first two interlayer distances are observed on the Pt-Ni-Pt

surfaces and at all adsorption sites. These interlayer spacings are different from

those observed on the Ni-Pt-Pt and Pt surfaces.

4.3.3.2 On-surface Mixed Sites Adsorption of Atomic Oxygen on Pt-
Ni-Pt Surfaces

The exploration of adsorbing oxygen at mixed high symmetry adsorption sites

was carried out at the oxygen coverage range of θtot(0.25 ≤ θtot ≤ 2.00ML). In

the same way as the Pt and Ni-Pt-Pt surfaces, the fcc and hcp sites were examined

on the (111) surface while the hollow and bridge sites were modelled on the (100)

surface.
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Figure 4.10: Binding energies for the on-surface mixed adsorption sites for oxy-
gen adsorbed on (a) Pt-Ni-Pt (111) and (b) Pt-Ni-Pt (100) surfaces at various
oxygen coverage. Solid black lines highlight the most stable mixed sites at each
oxygen coverage.

The graph above (Figure 4.10) illustrates the binding energies of the most sta-

ble mixed adsorption sites along with the non-mixed on-surface binding energies.

Similar to the Pt surfaces, the oxygen atoms prefer to occupy the non-mixed high

symmetry fcc sites at the oxygen coverage between 0.25 ML and 1.00 ML on

the (111) and (100) surfaces. On the (111) surface, there is a small decrease in

binding energy at the 1.25 ML, which then levels off as the oxygen coverage in-

creases. As for the (100) surface, the mixed adsorption sites are unstable as the

oxygen coverage is increased, caused mainly by the O-O repulsion.
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4.3.3.3 Sub-surface Absorption of Atomic Oxygen on Pt-Ni-Pt Bimetal-
lic Surfaces

The stability of absorbing oxygen sub-surface are investigated at the oxygen cov-

erage range of θtot(0.25 ≤ θtot ≤ 1.00ML).

Figure 4.11: Subsurface binding energies of oxygen on (a) Pt-Ni-Pt (111) and (b)
Pt-Ni-Pt (100) surfaces at various oxygen coverages.

Figure 4.11 illustrates the binding energies of the oxygen absorption at each sub-

surface site on the two surfaces. On the (111) surface, the octahedral (octa) site

(where oxygen is located beneath the fcc site) is favoured at 0.25 ML while

the tetrahedral (tetra-i) sites (oxygen is positioned underneath the top site) are

preferred at the oxygen coverages between 0.50 and 1.00 ML. Similarly to the

Pt(100) surface, the tetrahedral (tetra100) site (were oxygen is positioned beneath

the bridge site) is stable at oxygen coverages between 0.25 and 0.75 ML on the

(100) surface. As the oxygen coverage increases to 1.00 ML on the (100) surface,

the stability switches to the octahedral (octa100) (where oxygen is located below

the top site) site.
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Figure 4.12: Graph showing the binding energies of the stable on-surface fcc site
and sub-surface tetra-i site on the Pt-Ni-Pt (111) surface.

On the (111) and (100) surfaces, the binding energies increase as the sub-surface

oxygen coverage increases. This trend is similar to those observed on the Pt sur-

faces, where it is observed that there is an attractive force that stabilises the sub-

surface structure as the oxygen coverage increases. On (111) surface, the stable

sub-surface tetra-i site is found to intersect the favoured on-surface fcc adsorption

site at 0.68 ML (Figure 4.12). This suggests that oxygen will probably occupy

the sub-surface region when the on-surface oxygen coverage reaches the critical

oxygen coverage of 0.68 ML. Therefore, it is possible that a thin surface oxide

will form on the (111) surface above 0.68 ML.
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Table 4.7: The average Pt-O and Ni-O bond lengths (Å) and the change in inter-
layer spacing (%) at the θtot of 0.50 and 0.75 ML for the on-surface fcc adsorption
and sub-surface tetra-i absorption sites. dPt−O(Å) is the bond length between O
and the top-layer Pt, dO−Ni(Å) is the bond length between O and the second-layer
Ni, δ12(%) is between the Pt first layer and the Ni second layer and δ23(%) is
between the Ni second layer and Pt third layer.

To understand the stability of the sub-surface tetra-i site and compare it to the on-

surface fcc site, the Pt-O and Ni-O bond lengths and the first and second interlayer

spacings are examined for the oxygen coverage at 0.50 and 0.75 ML (Table 4.7).

It is between these oxygen coverages that the intersection occurs. Regardless

of where the oxygen is placed (either on-surface or sub-surface), the Pt-O bond

lengths are about 2 Å while the Ni-O bond lengths are slightly shorter for the

sub-surface structures. Furthermore, a negative change of the interlayer distance

is observed for the first two layers of the on-surface adsorption while the changes

are postive and negative for the δ12 and δ23 for the sub-surface absorption. These

results demonstrate that the location of the oxygen atoms does not have any effect

on the O-metal bonding interaction.

4.3.3.4 Interaction of Oxygen with the On/sub-surface Phases on Pt-
Ni-Pt surfaces

As mentioned in section 4.3.3.3, it is possible for oxygen to occupy the sub-

surface region when the on-surface oxygen coverage reaches 0.68 ML. To validate
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this result, a bigger unit cell would be required to investigate a greater range of

oxygen coverages, so that the actual critical surface coverage can be determined.

However, by using the (2x2) unit cell, the oxygen coverage at which the surface

oxide-like layer is likely to form can be determined roughly. The configurations

considered for the on/sub-surfaces are exactly the same as those examined for the

Ni-Pt-Pt surfaces for both the (111) and (100) surfaces (section 4.3.2.1).

Figure 4.13: The binding energies for the on/sub-surface phases on (a) Pt-Ni-Pt
(111) and (b) Pt-Ni-Pt (100) surfaces at various oxygen coverages. Solid black
lines highlight the most stable on/sub-surface phases at each oxygen coverage.

Figure 4.13 shows the binding energies of the most stable on/sub-surface phases

along with the on-surface adsorption energies. For the (111) surface, the sta-
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ble sub-surface tetra-i absorption energies are also included for comparison with

the on/sub-surface binding energies. From these graphs, it is clear that there is

no dominant on/sub-surface configurations found at all the studied oxygen cov-

erages. However, consistent sub-surface sites are found to be stable on the two

surfaces. These sub-surface sites are tetra-i and tetra for the (111) and (100) sur-

faces respectively.

On the (111) surface, the on/sub-surface phases become stable from the θtot of

0.75 ML. At 0.75 ML, there is a small binding energy difference of 0.01 eV be-

tween the stable on/sub-surface (0.50 Ofcc + 0.25 Otetra−i) and the next favoured

sub-surface (0.75 Otetra−i) structure. In addition, it is interesting to observe that at

1.00 ML, the pure sub-surface phase (1.00 Otetra−i) is favoured, thereby validat-

ing the stability of the pure sub-surface absorption at 0.68 ML (discussed in sec-

tion 4.3.3.3). Therefore, these results illustrate that there is coexistence between

the pure sub-surface and the surface oxide-like structures and they are likely to

occur above 0.50 ML. The binding energies are unsteady as the oxygen coverage

increases.

Comparing these results with Ni-Pt-Pt(111) and Pt(111) surfaces, Pt-Ni-Pt(111)

will form surface oxide-like structures from 0.50 ML. This is much sooner than

the other surfaces. Furthermore, the binding energy for the stable on/sub-surface

structure at 0.75 ML on Pt-Ni-Pt(111) is similar to the favoured on/sub-surface

structure at 1.00 ML on Pt(111) but lower than the stable on/sub-surface structure

at 1.00 ML on the Ni-Pt-Pt(111) surface. Unlike Ni-Pt-Pt(111) and Pt(111), the

binding energies do not decrease with the oxygen coverage.
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Figure 4.14: Top and side views of the most stable oxygen on/sub-surface con-
figurations on the Pt-Ni-Pt (111) surface calculated using a (2x2) surface unit cell
at the θtot of (a) 0.75 ML, (b) 1.25 ML and (c) 1.50 ML. The average change in
interlayer spacing, (%), δ12, between the first and second layer and δ23, between
the second and third layer, with respect to the bulk Pt interlayer distance is given
to the right of the figures. The large sky blue and green spheres represent Pt and
Ni atoms, the small red and blue spheres represent the on-surface O atoms at the
fcc and hcp sites and the small orange sphere represents the sub-surface O atoms
at the tetra-i site.
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Table 4.8: The calculated (average) bond lengths (Å) for the most stable on/sub-
surface configurations on the Pt-Ni-Pt(111) surface at the θtot of 0.75, 1.25 and
1.50 ML. dOonsurf−Pt(Å) is the distance between the on-surface oxygen and the
nearest-neighbour first layer Pt atom, dPt−Osub

(Å) is the distance between the
nearest-neighbour first layer Pt atom and sub-surface oxygen, dOsub−Ni(Å) is the
distance between the sub-surface oxygen and the nearest-neighbour second layer
Ni atom and dPt−Ni(Å) is the distance between the Pt and Ni layers.

0.75 ML 1.25 ML 1.50 ML

dOonsurf−Pt 2.06 2.01 2.01
dPt−Osub

2.45 2.77 2.90
dOsub−Ni 1.83 1.90 1.90
dPt−Ni 2.83 3.39 3.50

Figure 4.14 and Table 4.8 show the geometric structures, interlayer spacings and

the calculated bond lengths for the stable on/sub-surface structures at the θtot of

0.75, 1.25 and 1.50 ML. A considerable amount of buckling is observed in the

first layer of all the on/sub-surface structures. These observed bucklings are simi-

lar to those identified on the Pt(111) on/sub-surface structures. This suggests that

sub-layer Ni atoms have little effect within the bonding mechanism. The Pt-O

bond lengths for the sub-surface oxygens are slightly longer than those for the

on-surface oxygens while the O-Ni bond lengths are shorter for all the considered

oxygen coverages (Table 4.8). As for the Pt-Ni bond lengths, the higher the oxy-

gen coverage, the longer the bond length. In addition, these Pt-O bond lengths

are comparable to the top-layer Pt-O bond length for the Pt(111) while the Pt-Ni

bond lengths are shorter than the Pt-Pt bond length. The Pt-Ni bond lengths are

expected to be short because the Ni atoms are smaller than Pt.

With regards to the Pt-Ni-Pt (100) surface, the on/sub-surface phases become sta-

ble from the θtot of 0.75 ML (Figure 4.13b). In addition, difference in binding

energies between the on/sub-surface structures is small when the oxygen cover-

age is increased. Similarly to the Ni-Pt-Pt(100), the surface oxide-like structures

will begin to form above 0.50 ML, earlier than those on the Pt(100) surface. The

binding energy for the on/sub-surface structure at 0.75 ML on the Pt-Ni-Pt (100)
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surface is lower than that on the Ni-Pt-Pt (100) surface.

Figure 4.15: Top and side views of the most stable oxygen on/sub-surface struc-
tures on the Pt-Ni-Pt (100) surface calculated using a (2x2) surface unit cell at the
θtot of (a) 0.75 ML, (b) 1.00 ML and (c) 1.50 ML. The average change in inter-
layer spacing, (%), δ12, between the first and second layer and δ23, between the
second and third layer, with respect to the bulk Pt interlayer distance is given to
the right of the figures. The large sky blue and green spheres represent Pt and Ni
atoms, the small red sphere represents the on-surface O atoms at the bridge site
and the small black and purple spheres represent the sub-surface O atoms at the
tetra and octa sites respectively.
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Table 4.9: The calculated (average) bond lengths (Å) for the most stable on/sub-
surface configurations on the Pt-Ni-Pt(100) surface at the θtot of 0.75, 1.00 and
1.25 ML. dOonsurf−Pt(Å) is the distance between the on-surface oxygen and the
nearest-neighbour first layer Pt atom, dPt−Osub

(Å) is the distance between the
nearest-neighbour first layer Pt atom and sub-surface oxygen, dOsub−Ni(Å) is the
distance between the sub-surface oxygen and the nearest-neighbour second layer
Ni atom and dPt−Ni(Å) is the distance between the Pt and Ni layers.

0.75 ML 1.00 ML 1.25 ML

dOonsurf−Pt 1.94 1.93 2.01
dPt−Osub

1.99 2.01 2.07
dOsub−Ni 1.86 1.87 1.80
dPt−Ni 2.65 3.16 2.57

Subsequently, the geometric structures, interlayer spacings and the calculated

bond lengths for the stable on/sub-surface phases at the θtot of 0.75, 1.00 and

1.25 ML are examined further. Figure 4.15 and Table 4.8 illustrate these stable

on/sub-surface phases. There was no significant buckling observed in the first Pt

layer of all the on/sub-surface structures. This is in contrast with the Ni-Pt-Pt

(100) and Pt (100) surfaces, suggesting that the sub-layer Ni atoms are stabilising

the surface structure. The Pt-O bond lengths for the on-surface and sub-surface

oxygens are similar while the Ni-O bond lengths are shorter for all considered

oxygen coverages (Table 4.9). These bond lengths are also comparable to the

on/sub-surface structures on the Ni-Pt-Pt(100) surface.

To date, there is no literature data to compare with the binding energies of all

the studied oxygen interactions. A general observation from the present work

show that the (111) surface binds oxygen more strongly compared to the (100)

surface. Overall, the interaction of oxygen with the Pt-Ni-Pt surfaces showed

lower binding energies compared to the Ni-Pt-Pt and Pt at the (111) and (100)

surfaces. These low binding energies occur because the sublayer Ni is influencing

the Pt-O bond on the Pt-Ni-Pt surfaces. The Pt-O bond becomes weaker, thereby

leading to reduced oxygen poisoning effect and enhanced ORR activity on the

surfaces.16
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4.3.4 Statistical Thermodynamic Model

The statistical thermodynamic model that yields the (T, p) phase diagrams are

evaluated for both the Ni-Pt-Pt and Pt-Ni-Pt surfaces at the (111) and (100) sur-

faces and compared to the Pt surfaces. The surface free energies required for the

thermodynamic model are calculated from low pressure to real catalytic condi-

tions using the approximation discussed in Section 2.4. Similar to the Pt surfaces,

the surface free energies are calculated for the most stable adsorption energies

for the oxygen coverage range of θtot(0.25 ≤ θtot ≤ 2.00ML) over a temperature

range from 100 K to 1000 K and a pressure range from 10−5 atm to 105 atm.

The (T, p) phase diagram of Ni-Pt-Pt and Pt-Ni-Pt surfaces are illustrated in Fig-

ure 4.16 and Figure 4.17. On all these surfaces, the phase diagrams differ from

each other and the temperatures at which the oxygen coverage changes phase were

different across the examined conditions.
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Figure 4.16: Phase diagram of (a) Ni-Pt-Pt(111) and (b) Ni-Pt-Pt(100) surfaces
in equilibrium with O2 gas phase. PEMFC operating conditions are labelled as 1
atm (horizontal white line) and 300 K (vertical white line).
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Table 4.10: The temperatures (K) at which the oxygen coverage changes phase
from the (T, p) thermodynamic phase diagram on the Ni-Pt-Pt(111) and Ni-Pt-
Pt(100) surfaces at low pressure (10−5 atm), real catalytic condition (1 atm) and
high pressure (105 atm).

On the Ni-Pt-Pt surfaces, the thermodynamically favoured structures on the (111)

surface are the on/sub-surface configurations, (1.00 Ofcc + 1.00 Oocta) (2.00 ML)

and (0.75 Ohcp + 0.75 Oocta) (1.50 ML) and the on-surface configuration, (0.75

Ofcc) (0.75 ML) while on the (100) surface, are the on/sub-surface configurations,

(1.00 Ohol + 1.00 Otetra) (2.00 ML) and (0.50 Ohol + 1.00 Otetra) (1.50 ML)

(Figure 4.16). Table 4.10 summarises the temperatures at which the oxygen cov-

erage changes phase on the (111) and (100) surfaces at low pressure, real catalytic

condition and high pressure. It can be seen that at low temperature and at all con-

sidered pressure, the on/sub-surface structures are likely to be seen on both the

(111) and (100) surfaces. As the temperature increases, the on/sub-surface struc-

ture is favoured on the (100) surface while the surface structures changes with

pressure on the (111) surface. In addition, a lower temperature range is noticed on

the (100) surface compared to the (111) surface as the oxygen coverage changes

phase. There is no complete desorption of oxygen from the Ni-Pt-Pt surfaces

at all the considered pressures (10−5 to 105 atm). At the operating temperature

of a catalyst, 300 K (as indicated by the thick vertical white line), the 2.00 ML

on/sub-surface structures will be observed on both surfaces. This signifies a rapid

poisoning of the catalyst surface which will eventually lead to the instability of

the PEM fuel cell.
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Figure 4.17: Phase diagram of (a) Pt-Ni-Pt(111) and (b) Pt-Ni-Pt(100) surfaces
in equilibrium with O2 gas phase. PEMFC operating conditions are labelled as 1
atm (horizontal white line) and 300 K (vertical white line).
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Table 4.11: The temperatures (K) at which the oxygen coverage changes phase
from the (T, p) thermodynamic phase diagram on the Pt-Ni-Pt(111) and Pt-Ni-Pt
(100) surfaces at low pressure (10−5 atm), real catalytic condition (1 atm) and
high pressure (105 atm).

Proceeding onto the Pt-Ni-Pt surfaces, the thermodynamically stable structure on

the (111) surface is (0.50 Ohcp + 1.00 Otetra−i) (1.50 ML) while the structures

on the (100) surface are (1.00 Ohol + 1.00 Otetra) (2.00 ML), (0.50 Obri) (0.50

ML) and (0.25 Obri) (0.25 ML) (Figure 4.17). Similar to the Ni-Pt-Pt surface, at

low temperatures and all considered pressures, the on/sub-surface structures are

stable but varies as the temperature is increased on the (111) and (100) surfaces.

Table 4.11 indicates that the (111) surface changes phase at a lower temperature

compared to the (100) surface. On both surfaces, it can be seen that oxygen will

come off the surface at some point depending on the temperature and pressure.

The desorption temperatures (at low pressure and standard operating pressures)

identified on these surfaces are lower than those on the Pt surfaces (Figure 3.10).

At the operating temperature of a catalyst, 300 K (as indicated by the thick vertical

white line), the on/sub-surface structures will be observed on the two surfaces,

similar to the Ni-Pt-Pt surfaces. Similarly to the Ni-Pt-Pt surfaces, the poisoning

of the catalyst surface will occur due to the presence of the surface oxide-like

structures.
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There are no reported experimental or theoretical data where the thermodynamics

of the Ni-Pt-Pt and Pt-Ni-Pt surfaces have been studied. However, it was found

that between 298 K and 373 K, NiO islands (∼2.00 ML thick) were formed on

the Ag(100) surface.29 This data was collected from LEIS, XPS, XPD, and LEED

experiments. Other experimental results obtained by XPS and LEIS indicated

a film of CoO growth on a Pt80Co20(100) surface, which also forms islands that

relate to bulk cobalt monooxide.30 This suggests that the current theoretical results

are comparable with these experimental data and that the monolayer oxide films

will most likely form on the catalyst surface during PEMFC operation. Overall,

the presented phase diagrams for all the surfaces showed that the Ni-Pt-Pt surfaces

will bind oxygen more strongly compared to the Pt-Ni-Pt and Pt surfaces. This

agrees with the theoretical work presented by Menning et al. who predicted lower

ORR activity on the Ni-Pt-Pt surfaces due to stronger bonds being formed between

the surface metal and O atoms.22 Therefore, the operation of the PEM fuel cell

will degrade rapidly.

4.3.4.1 Free Energy as a Function of Potential

The free energy as a function of potential is obtained for the thermodynamically

stable structures identified above for the Ni-Pt-Pt and Pt-Ni-Pt surfaces at the nor-

mal working conditions of a PEMFC, 300 K and 1 atm. The most likely structures

on the catalyst surface are determined when potential (between 0.00 V and 1.50

V) is applied. Figure 4.18 shows the free energy as a function of potential for the

Ni-Pt-Pt, Pt-Ni-Pt and Pt surfaces at the (111) and (100).
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Figure 4.18: Free energy as a function of potential for the PEMFC operating
conditions (300K and 1 atm) and for Ni-Pt-Pt, Pt-Ni-Pt and Pt on the (a) (111)
and (b) (100) surfaces.

The surface composition changes as the applied potential is increased on the (111)

and (100) surfaces. The structures expected to be observed on the catalyst surfaces

are Ni-Pt-Pt (1.00 Ofcc + 1.00 Oocta) (2.00 ML) and Pt (0.25 Ofcc) (0.25 ML) on

the (111) surface and Ni-Pt-Pt (1.00 Ohol + 1.00 Otetra) (2.00 ML) and Ni-Pt-Pt

(0.50 Ohol + 1.00 Otetra) (1.50 ML) on the (100) surface. The stable structures

on the (111) surface switches from the Ni-Pt-Pt to the Pt catalyst surface at 0.79

V while on the (100) surface, it switches at 0.40 V from the Ni-Pt-Pt 2.00 ML to

the 1.50 ML. These results suggest that on the (111) surface and as the applied

potential is increased, the top layer Ni atoms will leach from the catalyst surface

to expose more Pt atoms for the ORR. This is consistent with the cyclic voltam-

metry experiment carried out between 0.00 V and 0.90 V, which found that Ni
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leached from the PtNi catalyst surface exposing 20 % surface Pt.10 As for the

(100) surface, continuous oxygen adsorption on the catalyst surface will block

surface sites, leaving fewer sites available for the ORR, thus preventing further

reactions from proceeding. This will then lead to the eventual loss of activity and

the degradation of the PEMFC.

4.3.5 Electronic Properties

4.3.5.1 Change in Work function, Dipole Moment and d-band Centre

Figure 4.19 and Figure 4.20 show the work function change, ∆Φ, surface dipole

moment, µ, and the average d-band centre, εd, of the top layer (described in sec-

tion 2.3.6) with respect to oxygen coverage for the Ni-Pt-Pt and Pt-Ni-Pt at the

(111) and (100) surfaces. In addition, a plot showing the average d-band centre,

εd, and the binding energies are shown for the studied oxygen coverages. The on-

surface chemisorptions and the on/sub-surface configurations are evaluated for

the most stable structures at the θtot(0.25 ≤ θtot ≤ 2.00ML). On the Pt-Ni-Pt

surface, results for the sub-surface tetra-i absorption site are included, due to its

stability at high oxygen coverage.
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Figure 4.19: Electronic properties of Ni-Pt-Pt (111) and Ni-Pt-Pt (100) surfaces
where a) change in the calculated work-function, ∆Φ, b) surface dipole moment,
µ, and c) average d-band centre of the top Ni layer as a function of oxygen cov-
erage for the most stable structures and d) the average d-band centre, εd, of the
top Ni layer plotted as a function of the binding energies at the studied oxygen
coverages.
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Figure 4.20: Electronic properties of Pt-Ni-Pt (111) and Pt-Ni-Pt (100) surfaces
where a) change in the calculated work-function, ∆Φ, b) surface dipole moment,
µ, and c) average d-band centre of the top Pt layer as a function of oxygen cov-
erage for the most stable structures and d) the average d-band centre, εd, of the
top Pt layer plotted as a function of the binding energies at the studied oxygen
coverages.
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There is a linear increase in the ∆Φ with respect to oxygen coverage for all the

on-surface adsorption on Ni-Pt-Pt and Pt-Ni-Pt surfaces except for Ni-Pt-Pt(100)

surface (Figure 4.19a and Figure 4.20a). As for Ni-Pt-Pt(100) surface, the ∆Φ

is constant at the oxygen coverages between 0.25 ML and 1.00 ML. The ∆Φ for

the on-surface adsorption is higher on the Pt-Ni-Pt surface than on the Ni-Pt-Pt

surface on the (111) surface, . As discussed in Section 3.5.1, the general increase

in the work function change is mainly due to the electronegativity difference be-

tween Pt (2.28), Ni (1.91) and oxygen (3.44), which causes large charge trans-

fer from the top-layer Pt/Ni atoms to the oxygen atoms, thereby yielding a large

inward pointing surface dipole moment.31,32 The constant ∆Φ observed on the

Ni-Pt-Pt(100) surface suggests that there may be a small charge transfer between

the top-layer Ni atoms and the oxygen atoms. As the oxygen coverage increases

on the surfaces, the negatively charged oxygens are forced apart to reduce the

lateral electrostatic interactions between them, which then lead to a large polari-

sation (that is an increase in the electron charge transfer).33 A small decrease in

the ∆Φ is observed for the sub-surface tetra-i absorption site (Figure 4.20a). This

is because an outward pointing surface dipole moment is induced from the charge

transfer between the oxygen and the top-layer Pt atoms.33

On Ni-Pt-Pt and Pt-Ni-Pt surfaces and at 0.75 ML and 1.00 ML, the ∆Φ for the

on/sub-surface structures are lower than the on-surface adsorption at the same

oxygen coverage. This ∆Φ was also observed for the pure Pt surfaces. This

reflects the competition for the bonding charge between the sub-surface and on-

surface oxygen atoms, which then creates less negatively charged on-surface oxy-

gen atoms.34 Above 1.00 ML, the workfunction change for the on/sub-surface

structures increase steadily with oxygen coverage on the Pt-Ni-Pt surfaces. As

for the Ni-Pt-Pt surface, the ∆Φ for the on/sub-surface configuration at the (111)

surface increases with oxygen coverage but falls at 2.00 ML while the values for

the (100) surface are scattered. It is thought that these observations may be due to

the direct influence of the Ni atoms present at either the top or sub-layer. Overall,

the Pt-Ni-Pt surfaces have larger workfunction change compared to the Ni-Pt-Pt

and Pt (Figure 3.12a) surfaces.
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The surface dipole moment, µ, (Figure 4.19b and Figure 4.20b), increases with

oxygen coverages on the Ni-Pt-Pt and Pt-Ni-Pt (111) surfaces. A constant µ is

observed on Ni-Pt-Pt (100) at the oxygen coverages between 0.25 ML and 1.00

ML. On the Pt-Ni-Pt (100) surface, the µ varies for the on-surface adsorption

between 0.25 ML and 1.00 ML while it is almost constant on the Pt-Ni-Pt (111)

sub-surface tetra-i site. As for the on/sub-surface configurations, the µ slightly

increase and decrease with oxygen coverage on the Pt-Ni-Pt (111) and Pt-Ni-Pt

(100) surfaces while it somewhat levels off on Ni-Pt-Pt (111) and Ni-Pt-Pt (100)

surfaces.

The average d-band centre of the topmost layer, εd, moves towards lower ener-

gies as the oxygen coverage increases for all the on-surface adsorption except for

Ni-Pt-Pt (100) where it shifts to a higher energy above 0.75ML (Figure 4.19c and

Figure 4.20c). This d-band centre trend is similar to the results obtained for the

Pt surfaces. The on-surface adsorption on the (111) surface is higher on the Ni-

Pt-Pt and Pt-Ni-Pt surfaces compared to the Pt surface. The reason for this result

may be due to the influence of Ni atoms present and the geometric composition

of the surface. The sub-surface tetra-i shows high energy movement with oxygen

coverage while the on/sub-surface structures move up and down by a small quan-

tity on both the Ni-Pt-Pt and Pt-Ni-Pt surfaces. Furthermore, there is no linear

trend between the εd and the binding energies of all the structures (Figure 4.19d

and Figure 4.20d). Nevertheless, there is a general correlation in that, the more

negative εd corresponds to the weaker binding energy of that particular structure.

The weakly bound structures are mainly the on-surface adsorption on the Ni-Pt-

Pt (111) surface and the on/sub-surface configurations on the Pt-Ni-Pt (111) and

Pt-Ni-Pt (100) surfaces. The Pt-Ni-Pt surfaces will bind oxygen more weakly,

suggesting that the ORR will occur more easily on this surface compared to the

Ni-Pt-Pt surface.
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4.3.5.2 Electron density difference and Bader Analysis

In this section, the electron density differences, the Bader charges and the pro-

jected density of states (PDOS) for the thermodynamically stable structures are

analysed.

Figure 4.21: Calculated electron density differences for Ni-Pt-Pt (111) surface
at a) 0.25 ML and b)1.00 ML on-surface adsorptions and c) (1.00 Ofcc + 1.00
Oocta) on/sub-surface and for Ni-Pt-Pt (100) surface at d) 0.25 ML and e) 1.00 ML
onsurface adsorption and f) (1.00 Ohol + 1.00 Otetra) on/sub-surface. The pink
and white isosurfaces represent positive and negative electron density differences
respectively. The blue, green and red spheres are Pt, Ni and O atoms respectively
and the isosurface value is ±0.045 eÅ−3.

Similarly to the Pt surfaces, Figures 4.21 and 4.22 illustrate the accumulation of

electron charge densities on the oxygen atoms. These electron charge densities

have been transferred from the nearest Ni or Pt atoms (showing a depletion of

electron charge densities). The bonding interactions for all the on-surface adsorp-

tion (0.25 ML and 1.00 ML oxygen coverages) occur mainly with the top-layer Ni

or Pt atoms while the sub-surface and on/sub-surface structures involve the second

layer atoms. The main orbitals involved in the bonding of the high electronegative
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oxygens are 5d and 3d orbitals present within the Pt and Ni atoms respectively.

Overall, large electron charge densities are observed on the (100) for the Ni-Pt-Pt

and Pt-Ni-Pt surfaces. This result is similar to the Pt (100) surface (Figures 3.13).

Figure 4.22: Calculated electron density differences for Pt-Ni-Pt (111) surface at
a) 0.25 ML on-surface adsorption, b)1.00 ML sub-surface absorption and c) (0.50
Ohcp + 1.00 Otetra−i) on/sub-surface and for Pt-Ni-Pt (100) surface at d) 0.25 ML
and e) 1.00 ML on-surface adsorption and f) (1.00 Ohol + 1.00 Otetra) on/sub-
surface. The pink and white isosurfaces represent positive and negative electron
density differences respectively. The blue, green and red spheres are Pt, Ni and O
atoms respectively and the isosurface value is ±0.045 eÅ−3.

Table 4.12 shows the Bader charges of the top two layers on the (111) and (100)

surfaces for the Ni-Pt-Pt and Pt-Ni-Pt surfaces. The Bader charges for the Pt

surfaces were also included for comparison. Generally, there is charge transfer

from the transition metals, Pt and Ni onto the O atoms. On both surfaces (Ni-Pt-

Pt and Pt-Ni-Pt) and for the clean slab, charges have been transferred from the Ni

layer to the Pt layer. As for the on-surface adsorption, charges are transferred onto

the O atoms from the Ni layer on the Ni-Pt-Pt surface and from the top two (Pt and

Ni) layers on the Pt-Ni-Pt surface. Concerning the on/sub-surface structures, the
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charges move from the top two (Pt and Ni) layers to the on-surface and sub-surface

oxygens on both the Ni-Pt-Pt and Pt-Ni-Pt surfaces. Compared with the Pt surface,

there is no dominant surface with the most charge transfer. However, more charge

is moved from the Ni layer compared to the Pt layer. This can be explained by

the electronegativity of all the atoms. Ni has the least electronegativity and so it

is expected to donate more charge to the O atoms.

Table 4.12: Average Bader charges (e) of the top two layers on the (111) and
(100) for Ni-Pt-Pt, Pt-Ni-Pt and Pt surfaces. The average Bader charges for the
on-surface oxygen layer, (Oonsurf ) and the sub-surface oxygen layer (Osubsurf )
layer are also included. The nominal valence charges for Pt, Ni and O are 10, 10
and 6 electrons respectively.

Figures 4.23 and 4.24 show the PDOS plots for the Ni-Pt-Pt and Pt-Pt-Ni at the

(111) and (100) surfaces. The clean surfaces and the 0.25 ML oxygen coverage

are examined. The NiPt and PtNi plots show the PDOS for the top two layers on

the Ni-Pt-Pt and Pt-Ni-Pt surfaces. The interacting and non-interacting plots are

the PDOS for the top two layers which are interacting and not interacting respec-

tively with the O atom. The PtNi-O/O and NiPt-O/O plots illustrate the PDOS of

the O atom interacting with the surfaces. Finally the gas phase O is showing the
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energy levels of the O atom and the εF is determined by taking the experimen-

tal first ionisation energy of O atom from the highest occupied molecular orbital

(HOMO).

Figure 4.23: Projected density of states (PDOS) for (a) O/Ni-Pt-Pt(111) and (b)
O/Ni-Pt-Pt(100) systems at 0.25 ML oxygen coverage. The Fermi energy is indi-
cated by the vertical dotted line.

Figure 4.24: Projected density of states (PDOS) for (a) O/Pt-Ni-Pt(111) and (b)
O/Pt-Ni-Pt(100) systems at 0.25 ML oxygen coverage. The Fermi energy is indi-
cated by the vertical dotted line.

Similar to the Pt surfaces, a sharp O 2s orbital peak is observed on all the NiPt/O

and PtNi/O plots at around -19 eV below the Fermi level. In addition, there is

a bonding hybridisation between the O 2p orbital and the d-orbital from either
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the Ni or Pt atoms. This is shown by the broadening of the O 2p orbital on the

NiPt/O and PtNi/O plots. The O 2p orbital on the Pt-Ni-Pt surfaces are wider

than the Ni-Pt-Pt surfaces, suggesting that the oxygen interactions on the Pt-Ni-Pt

surfaces are weaker. The bonding states on all the surfaces can be found at the

energy region between -6.5 eV and -4.5 eV, the lower section of the d-orbital. In

all cases, the non-interacting first-layer d-orbital has the same PDOS to its clean

counterpart. The second-layer (Pt or Ni) does not take part in the bonding process

on all the surfaces except on Pt-Ni-Pt (111), where there is a slight shift of the

d-orbital. The d-band centre for the Ni-Pt-Pt oxygen covered surfaces is higher

than the clean surface while for the Pt-Ni-Pt, it is lower than the oxygen covered

surfaces.

4.3.6 Comparison between Ni-Pt-Pt and Pt-Ni-Pt surfaces

The oxidations of Ni-Pt-Pt and Pt-Ni-Pt surfaces are significantly different from

each other. The discussions so far illustrate that the (100) surface binds oxy-

gen more weakly than the (111) surface. In addition, the Pt-Ni-Pt surface will

bind oxygen more weakly than the Ni-Pt-Pt surface on both the (111) and (100)

surfaces. This suggests that the Pt-Ni-Pt catalyst surface is less blocked by the

adsorbed oxygen atom, thereby generating higher ORR activity. This result corre-

lates with experimental and theoretical work, which showed that the Pt-Ni-Pt con-

figuration exhibited increased activity for the ORR because the Pt-Ni-Pt configu-

ration binds atomic oxygen and hydroxyl groups more weakly than pure Pt.4,22

The next stage is to understand the surface composition and the stability of binding

oxygen to the Ni-Pt-Pt and Pt-Ni-Pt surfaces. This will determine the configura-

tion that will enhance the ORR activity. It is believed that either Pt or Ni will be

enriched to the surface in the presence of oxygen.35 To determine which surface

will be present, the surface segregation energy (Eq 2.25) is calculated for the Ni-

Pt-Pt and Pt-Ni-Pt surfaces in the presence of oxygen at the studied θtot between

0.25 ML and 2.00 ML. The stable structures for the on-surface adsorption and the

on/sub-surface structures are used for the investigation.
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Figure 4.25: The segregation energies between Ni-Pt-Pt and Pt-Ni-Pt for the (111)
and (100). Negative segregation energies mean Pt-rich surface while positive seg-
regation energies mean Ni-rich surface.

The graph (Figure 4.25) above illustrates that in the absence of oxygen, a Pt-

rich surface is present. At 0.25 ML and for the (111) and (100) surfaces, the

segregation energies are negative, revealing a Pt-rich surface. As the oxygen cov-

erage increases above 0.25 ML for the on-surface adsorption, the surface config-

uration switches to a Ni-rich surface. These results agree with both theoretical

calculations and experiments (using AES and HEELS techniques) performed by

Menning et al. on the (111) and (100) surfaces, which showed that in the ab-

sence of oxygen, a Pt-rich surface is observed while at 0.5 ML, a Ni-rich surface

is noticed.22,25 Higher segregation energies are obtained for the on-surface ad-

sorptions on the (111) surface compared those on the (100) surface. As for the

on/sub-surfaces, the segregation energies for the (111) surface increase while for

the (100) surface, they decrease as the oxygen coverages increases to 2.00 ML.

This signifies that the on/sub-surface phases on the (111) surface are Ni-rich while

those on the (100) surface become Pt-rich above 1.75 ML. The gradual structural

transformation of Pt-Ni-Pt to Ni-Pt-Pt is expected to contribute to the deactivation

of the surface catalyst during the PEMFC operations. Although the on/sub-surface
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configurations on the (111) surface showed Pt enrichment, it is believed that the

surface catalyst will be poisoned because of the significant amount of oxygen

atoms present.

4.4 Conclusions and Implications to PEMFC

A theoretical investigation into the stability and structural behaviour of Ni-Pt-Pt

and Pt-Ni-Pt monolayer bimetallic alloy surfaces within the oxidising environ-

ment showed that these configurations exhibit entirely different characteristics.

Similar attributes, however, were observed for the (111) and (100) surfaces of the

same monolayer bimetallic alloy configurations. Overall, it was observed that the

(100) surface binds oxygen more weakly compared to the (111) surface. For all

the on-surface adsorptions, the binding energies decrease as the oxygen coverage

increases. This is mainly due to the lateral repulsion interactions between the oxy-

gen atoms. The monolayer bimetallic alloy surfaces are generally unstable when

oxygen is purely sub-surface except for the Pt-Ni-Pt (111) surface. On the Pt-

Ni-Pt (111) surface, it was observed that critical on-surface oxygen coverage of

0.68 ML is required before oxygen occupy the sub-surface region. Generally, the

interaction of oxygen with the Pt-Ni-Pt surfaces showed lower binding energies

compared to the Ni-Pt-Pt at the (111) and (100) surfaces. This occurs because

the sublayer Ni is influencing the Pt-O bond on the Pt-Ni-Pt surfaces. This Pt-O

bond becomes weaker, thereby leading to reduced oxygen poisoning effect and

enhanced ORR activity on the surfaces.

The thermodynamic stability does suggest that the on/sub-surface configurations

between the oxygen coverages of 1.50 ML and 2.00 ML will be present at the

relevant catalytic conditions (300 K and 1 atm). In addition, when potential (0.00

V to 1.50 V) is included, the top layer Ni atoms will leach from the Ni-Pt-Pt (111)

catalyst surface to expose more Pt atoms for the oxygen reduction reaction. As for

the (100) surface, when the applied potential is increased, continuous oxygen ad-

sorption on the catalyst surface will block the surface sites, thus preventing further
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oxygen reduction reactions from proceeding and the eventual loss of activity. For

these reasons, both the Ni-Pt-Pt and Pt-Ni-Pt monolayer bimetallic alloy surfaces

are not the ideal catalyst to replace Pt for the oxygen reduction reaction because

they will cause the eventual degradation of the PEMFC during operation. How-

ever, the Ni-Pt-Pt catalyst surface may be acceptable because of the Ni leaching

from the surface catalyst.

In the next chapter, the stability and structural behaviour of Pt3Ni and Pt3Ni-

Ptskin alloy surfaces will be investigated. The thermodynamically stable surface,

(111) will be used to study the effect of the alloying composition and its relative

propensity of forming surface oxide film in an oxidising environment.
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Chapter 5

Coverage effects on Pt3Ni and
Pt3Ni-Ptskin (111) surfaces

5.1 Introduction

This chapter will discuss the results obtained from investigating the oxygen inter-

actions on Pt3Ni(111) and Pt3Ni-Ptskin(111) surfaces. The Pt3Ni-Ptskin surface

consists of a Pt-rich layer on the Pt3Ni bulk structure. Pt3Ni and Pt3Ni-Ptskin
surfaces have been selected because research indicates a higher catalytic activ-

ity on these surfaces compared to the monolayer bimetallic alloy (MBA) surfaces

studied in the previous chapter (Chapter 4).1–3 In addition, the surface composi-

tion is believed to affect the oxidation reaction. Experiments have shown that the

so-called “Ptskin” forms on most alloy surfaces and have demonstrated excellent

ORR activity and durability properties compared to the Pt3Ni surface.4,5

Comparison of the two surfaces is investigated for the on-surface adsorption, on-

surface mixed sites adsorption, sub-surface absorption and the tendency for form-
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ing thin film surface oxide-like structures. As well as studying the oxygen in-

teraction on these surfaces, the relative thermodynamic stabilities of the surface

compositions are examined in relation to oxygen in the gas phase for conditions

extending from ultrahigh vacuum to conditions of technological relevance. In ad-

dition, the modification of the surfaces due to the Ni alloying element is explored.

This is assumed to contribute to the enhanced activities observed on these alloy

surfaces.6,7 From these results, it was found that oxygen interacts on the two sur-

faces differently. The Pt3Ni-Ptskin surface binds oxygen more weakly than the

Pt3Ni surface. In addition, the segregation energy suggests that the Pt3Ni ter-

minated surface will dominate when the oxygen coverage is increased. This is

because there is a thermodynamic tendency for Ni to segregate to the surface in

an oxidising environment. Thermodynamically, it is shown that at technological

relevant conditions (300 K and 1 atm), the two surfaces exhibit thin surface-like

oxide structures.

5.2 Computational Methods

All calculations are performed using DFT as implemented in VASP with the same

functional and parameters as the calculations presented in the previous chapters

(Sections 3.2.1 and 4.2). Spin polarisation was included in the calculations to take

into account the presence of magnetic moments in the system due to the Ni atoms.

To be consistent with the Pt and Pt/Ni-MBA surface calculations presented in

Chapters 3 and 4, the present calculations were performed within a 2x2 supercell,

a five-layer slab of four atoms in each layer with a k-point mesh of 8x8x1, which

converges the energy to within 0.01 meV. The positions of the atoms in the top

three layers were allowed to relax, while the bottom two layers were fixed at the

calculated bulk positions and a vacuum thickness of 8 Å separates each successive

slab.

In a similar way to previous chapters, the oxygen atoms were allowed to move

freely in all directions during the energy minimisation until the lowest energy
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configuration was attained. The binding energy, Eb per oxygen atom is defined as

Eq. 2.24 and the convergence criteria for the electronic self-consistent energy and

the ionic forces are set to 10−5 eV and 0.02 eV Å−1, respectively.

5.3 Results and Discussion

5.3.1 Clean Pt3Ni and Pt3Ni-Ptskin structures on the (111)
surfaces

In order to investigate the interactions of oxygen on the Pt3Ni alloy surfaces,

the initial parameters required for further calculations were determined for bulk

Pt3Ni. Bulk Pt3Ni has been reported experimentally to exhibit a close-packed

face-centred cubic (fcc) structure6 which was then modelled by replacing one of

the four Pt atoms in the cubic fcc unit cell with a Ni atom. At a k-point grid of

16x16x16, the calculated bulk lattice constant, ao, (GGA-PBE) is 3.88 Å (neglect-

ing zero-point vibrations), the bulk modulus, Bo, is 2.37 Mbar (obtained using the

Murnaghan equation of state) and the cohesive energy, Eo, is -4.51 eV. The calcu-

lated lattice constant is the same as other calculated GGA-PBE and GGA-PW91

results8,9 and agrees with the experimental value of 3.845 Å.10 These results are

also compared to the previously studied (Chapter 3) Pt lattice constant, bulk mod-

ulus and cohesive energy, which are 3.98 Å, 2.28 Mbar and -5.90 eV respectively.

From these values, there are small differences between the alloyed Pt3Ni and Pt.

This shows that there is a contraction of the Pt3Ni lattice, which is expected be-

cause of the size differences between the Pt and Ni atoms.

The (111) surface was then cleaved from the bulk and two models of the Pt3Ni

alloy were constructed (Figure 5.1). The first model is the Pt3Ni bulk alloy and

contains three Pt atoms and one Ni atom in each layer. The second model is the

Pt3Ni-Ptskin alloy where the first layer consists entirely of Pt atoms; the second
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layer is enriched in Ni and contains two Pt atoms and two Ni atoms and the bulk

Pt3Ni alloy compositions for all other layers. This model retains the bulk stoi-

chiometry and accurately models the experimental observation of Pt enrichment

and depletion in the first and second layers for many Pt-3d alloys such as Pt-Co

and Pt-Fe.5,10,11

Figure 5.1: Two models of the Pt3Ni alloy surfaces. Pt3Ni bulk alloy (left) and
Pt3Ni-Ptskin alloy (right).

The clean surfaces for the two Pt3Ni alloy models were allowed to relax to their

lowest energy structures. Table 5.1 lists the change in the interlayer spacings, δi,j ,

between layers i and j with respect to the bulk interlayer distance, d0 and also

compared the results with the clean Pt (111) surface. On the Pt3Ni-Ptskin surface,

a more negative change is observed for the δ23 compared to those on the Pt3Ni sur-

face. This change in interlayer spacings may be due to the strong interaction of the

mixed second layer with the top Pt-skin layer. The change in interlayer spacings

for the Pt(111) surface is similar to the Pt3Ni-Ptskin surface but quite different to

the Pt3Ni surface. The differences observed for the interlayer spacings between

the Pt3Ni-alloy surfaces and Pt surface occur because Ni is incorporated into the
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present study of the Pt3Ni-alloy surfaces. The workfunction for the Pt3Ni sur-

face is slightly smaller than that obtained for the Pt3Ni-Ptskin surface. However,

the workfunction for the Pt3Ni-Ptskin surface is comparable to the clean Pt (111)

surface.

Table 5.1: The average change in interlayer spacings (%) and workfunction (eV)
of Pt3Ni(111), Pt3Ni-Ptskin(111) and Pt(111) surfaces. d0(Å) is the bulk Pt3Ni
and Pt interlayer distance (Å), δ12(%) is the change in the interlayer spacing be-
tween the first and second layer and δ23(%) is the change in the interlayer spacing
between the second and third layer spacing, Φ(eV) is the workfunction

5.3.2 On-surface Adsorption of Atomic Oxygen on the
(111) surfaces of Pt3Ni and Pt3Ni-Ptskin Alloys

The most stable oxygen adsorption sites have been investigated on the Pt3Ni (111)

and Pt3Ni-Ptskin (111) surfaces, analogous to those studied on Pt and Pt/Ni-MBA

surfaces (Chapters 3 & 4). The binding energies are non-zero-point corrected

energies relative to the gas-phase O2 molecule for the oxygen coverage range

of θtot(0.25 ≤ θtot ≤ 1.00ML). Figure 5.2 shows the high symmetry adsorption

sites of an isolated O atom modelled on the two surfaces. The Pt3Ni alloy sur-

faces differ from the Pt/Ni-MBA surfaces because there are two different adsorp-

tion sites for each high symmetry on-surface site. On the Pt3Ni and Pt3Ni-Ptskin
surfaces, there are two different fcc, hcp, bridge and top sites, where the oxygen

atom can bind to either the Pt or Ni surface atoms.
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Figure 5.2: Adsobates at adsorption sites on (a) Pt3Ni (111) and (b) Pt3Ni-
Ptskin(111) surfaces (top views).

Figure 5.3: On-surface adsorption binding energies of oxygen on (a) Pt3Ni(111)
and (b) Pt3Ni-Ptskin(111) surfaces at various oxygen coverages.

Figure 5.3 summarises the most stable adsorption energies as a function of oxygen

coverage on the two surfaces at 0 K. On the Pt3Ni surface, the three-fold fcc site

is the preferred adsorption site. This is in agreement with other DFT calculations
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performed at θtot of 0.25 ML.12,13 The observed fcc binding site is also consistent

with the Pt(111) and the Pt/Ni(111)-MBA surfaces. As in the case of Pt(111)

and Pt-Ni-Pt(111), the bridge site is unstable and oxygen adsorbed on that site

relaxes into the neighbouring fcc site. At the θtot of 0.25 ML, the top site is also

unstable towards the nearest hcp site. In addition, at the fcc and hcp adsorption

sites, the binding energies decrease steadily as the oxygen coverage increases. As

explained in Chapter 3, the decrease in binding energies is mainly due to the metal

atom interacting with more oxygen atoms at the same time.

As for the Pt3Ni-Ptskin surface, the most stable binding site changes as the oxy-

gen coverage increases. At the θtot of 0.25 and 0.50 ML, the three-fold fcc-hollow

site is the most stable. As the oxygen coverage increases to 0.75 ML, the binding

site switches to the two-fold bridge site followed by the top site at 1.00 ML. The

adsorption of oxygen at 0.25 ML at the fcc site is in agreement with the DFT

calculation performed by Ma et al.12 This result showing changes in the adsorp-

tion sites as the oxygen coverage increases is peculiar to the Pt3Ni-Ptskin surface.

All other surfaces studied within this thesis, showed that the fcc site is the most

stable adsorption site. It is interesting to note that the top site at the 1.00 ML is

considerably more stable than the other adsorption sites. This could be due to

the O2-like formation [O-O is 1.35 Å ] that occurs, thereby stabilising the surface

(Figure 5.4).
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Figure 5.4: Converged 1.00 ML oxygen coverage at the top site and on Pt3Ni-
Ptskin surfaces.

As mentioned earlier, there are multiple adsorption sites where oxygen can bind

to either the Pt or Ni surface atoms (Figure 5.2). Generally, oxygen binding to

the Ni atom has stronger binding strength than those binding to the Pt atom, in

agreement with Ma et al.’s work.12 On both surfaces and at the fcc site, oxygen

prefers to bind to the fcc-Pt atom. Comparatively, the Pt3Ni-Ptskin surface binds

oxygen more weakly than the Pt3Ni surface. Furthermore, oxygen adsorption on

the Pt3Ni-Ptskin surface is weaker than those on the Pt(111) and Ni-Pt-Pt(111)

surfaces but stronger than that on the Pt-Ni-Pt(111) surface. The Pt3Ni surface,

on the other hand, binds oxygen more strongly than those on Pt(111) and Pt-

Ni-Pt(111) but weaker than on the Ni-Pt-Pt(111) surface. Therefore, the general

trend for oxygen adsorption on all studied (111) surfaces (within this thesis) is

determined as Eb(Pt-Ni-Pt) < Eb(Pt3Ni-Ptskin) < Eb(Pt) < Eb(Pt3Ni) < Eb(Ni-

Pt-Pt). The trend for oxygen adsorption agrees with other DFT calculations.12,14
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Table 5.2: Average bond lengths (Å) and interlayer spacings (%) of atomic oxygen
on Pt3Ni and Pt3Ni-Ptskin surfaces at 0.25 ML. dPt−O(Å) and dNi−O(Å) are the
bond lengths between O and the nearest neighbour atom belonging to the top-
layer Pt and Ni atoms respectively, δ12(%) is the change in the interlayer spacing
between the first and the second layer and δ23(%) is the change in the interlayer
spacing between the second and the third layer.

Pt3Ni Pt3Ni-Ptskin

fcc hcp fcc hcp

dPt−O 2.04 2.05 2.06 2.07
dNi−O 1.88 1.87 - -
δ12 +1.28 +1.76 +1.30 +2.36
δ23 -0.33 -0.65 -2.91 -2.96

At the θtot of 0.25 ML, the stable binding sites present on the two surfaces are

the fcc and hcp sites. Table 5.2 shows the average bond lengths and the change in

interlayer spacings for the fcc and hcp adsorption sites at 0.25ML. The Ni-O bond

lengths on the Pt3Ni surface are shorter than the Pt-O bond lengths at the same

adsorption site on the two surfaces. This is in agreement with the bond length

observed on the Pt-Ni-Pt and Ni-Pt-Pt surfaces and other DFT calculations.12,13

As for the change in interlayer spacings, the changes are positive and negative for

the δ12 and δ23 respectively on the two surfaces. These interlayer spacings are

similar to those observed on the Pt surface but smaller than those on the Pt-Ni-Pt

and Ni-Pt-Pt surfaces.

5.3.3 On-surface Mixed Sites Adsorption of Atomic Oxy-
gen on Pt3Ni and Pt3Ni-Ptskin Surfaces

The on-surface mixed sites configurations with atomic oxygen were investigated

on the two most stable high symmetry adsorption sites. These favoured adsorption

sites are fcc and hcp sites on the Pt3Ni surface at the θtot of 0.25 ML to 0.75 ML

and fcc and top sites at the 1.00 ML. As for the Pt3Ni-Ptskin surface, the fcc and
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hcp sites are stable at the θtot of 0.25 and 0.50 ML; bridge and top sites at 0.75

ML and finally top and fcc sites at 1.00 ML. Consistently with previous chapters,

the oxygen coverage was extended to 2.00 ML so that the mixed configurations

can be fully explored.

Figure 5.5: Mixed sites binding energies of oxygen adsorbed on (a) Pt3Ni(111)
and (b) Pt3Ni-Ptskin(111) surfaces at various oxygen coverages. Solid black lines
highlight the most stable mixed sites at each oxygen coverage.

Figure 5.5 shows the binding energies for the most stable mixed sites configu-

rations along with the on-surface adsorption. It is clear from both graphs that

the binding energies decrease steadily as the oxygen coverage increases except at

2.00 ML. The steady decrease in the binding energies is expected due to oxygen
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interacting with more than one metal atom at the same time. At 2.00ML, an in-

crease in binding energies was observed particularly on the Pt3Ni surface. This

may be because the short O-O bond distance at the top-site is stabilising the struc-

ture. On the Pt3Ni surface, the high symmetry fcc site is still the energetically

favourable adsorption site at the θtot between 0.25 ML and 0.75 ML while on the

Pt3Ni-Ptskin surface, the fcc site is only observed at 0.25 ML. These two surfaces

are different from all the other studied surfaces, on which the high symmetry fcc

site was observed to be stable from 0.25 ML up to 1.00ML oxygen coverage. In

the same way as the on-surface adsorption, the binding energies for the mixed

adsorption sites on the Pt3Ni-Ptskin surface are lower than those on the Pt3Ni

surface.

5.3.4 Sub-surface Absorption of Atomic Oxygen on Pt3Ni
and Pt3Ni-PtskinSurfaces

The stability of incorporating oxygen sub-surface is examined theoretically at

θsubtot(0.25 ≤ θsubtot ≤ 1.00 ML). As explained in previous chapters, only the

high symmetry absorption sites are considered. On these surfaces, there are two

different high symmetry absorption sites for each sub-surface (octa, tetra-i and

tetra-ii) site where oxygen absorbs to either the Pt or Ni atoms (Figure 5.6).
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Figure 5.6: Sub-surface Absorption sites on (a) Pt3Ni(111) and (b) Pt3Ni-
Ptskin(111) surfaces.

Figure 5.7: Sub-surface binding energies of oxygen absorbed on (a) Pt3Ni(111)
and (b) Pt3Ni-Ptskin(111) surfaces at various oxygen coverages.
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Figure 5.7 illustrates the most stable binding energies for oxygen absorption at

each sub-surface site on the two surfaces. On the Pt3Ni surface, the octa site 1

(Pt) (where oxygen is located beneath the fcc site) is the favoured absorption site

at all studied oxygen coverages while on the Pt3Ni-Ptskin, the octa site 1 (Pt) is

only stable at the θtot of 0.25 ML and 0.50 ML. At 0.75 ML and 1.00 ML on the

Pt3Ni-Ptskin surface, the preferred absorption sites are tetra-i site 1 (Pt) (where

oxygen is located underneath the top site) and tetra-ii site 1 (Pt) (where oxygen is

located underneath the hcp site) respectively. At low oxygen coverage, 0.25 ML,

the absorption site (octa) observed on the Pt3Ni and Pt3Ni-Ptskin surfaces is the

same as those seen on the Pt-Ni-Pt and Ni-Pt-Pt surfaces. On the two surfaces

and at all absorption sites, oxygen favours binding to the Pt atoms. In addition,

the binding energies of the sub-surface absorption are lower than those for the on-

surface adsorption, suggesting that it would be difficult to form the sub-surface

structures without on-surface oxygen adsorption.

5.3.5 Interaction of Oxygen with the On/sub-surface Phases

The interaction between the on-surface and sub-surface oxygen are explored in a

similar way to those carried out in the previous chapters. This is carried out to de-

termine their tendency to surface oxide formation. The configurations considered

on both surfaces, are the two most stable adsorption sites at each oxygen coverage

and at all the sub-surface absorption sites, up to a θtot of 2.00 ML.
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Figure 5.8: The binding energies for the on/sub-surface phases on (a) Pt3Ni(111)
and (b) Pt3Ni-Ptskin(111) surfaces at various oxygen coverages. Solid black lines
highlight the most stable on/sub-surface phases at each oxygen coverage.

Figure 5.8 shows the binding energies of the most stable on/sub-surface arrange-

ment on the two surfaces along with the on-surface adsorptions. On the Pt3Ni

surface, there is a steady decrease in the binding energies as the oxygen coverage

increases. This decrease in binding energy is also observed for the on/sub-surface

phases on the Pt and Ni-Pt-Pt surfaces. The on-surface fcc site is the energetically

favoured site for the θtot between 0.25 ML and 0.75 ML. At 0.75 ML, a small

binding energy difference of 0.02 eV is observed between the (0.75 Ofcc) geome-

try and the next stable on/sub-surface arrangement, (0.50 Ohcp + 0.25 Oocta), sug-

gesting that there is a possible coexistence of the (fcc/-) and (hcp/octa) configura-

tions. This possible coexistence of arrangements is similar to those on/sub-surface
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structures obtained on the Pt(111) surface, which are (fcc/-) and (fcc/tetra-ii) con-

figurations. Above 0.75 ML, the on/sub-surface configurations are energetically

favoured, implying that the surface oxide-like structures will continue to grow on

the surface as the oxygen coverage increases. Similarly, to the Pt and Ni-Pt-Pt sur-

faces interacting with the on/sub-surface structures, the oxygen-oxygen repulsion

effect between the electronegative oxygen atoms located on the top and below the

metal atom is also causing the weaker interactions of oxygen to the Pt3Ni surface.

As for the Pt3Ni-Ptskin surface, a steady decrease in binding energies is not ob-

served as the oxygen coverage is increased. However, the binding energy trend

obtained is similar to those observed on the Pt-Ni-Pt surface (Figure 4.13). The

on-surface fcc site is favoured only at the θtot of 0.25 ML and 0.50 ML. Above

0.50 ML, the on/sub-surface arrangements become favoured. It is interesting

to note that the O2-like formation observed for the stable on-surface top site at

1.00 ML is not present in the on/sub-surface interaction. This may be due to the

oxygen-oxygen interaction located on the top and below the metal atom. The oxy-

gen interactions on the Pt3Ni-Ptskin surface are less favoured compared to those

on the Pt3Ni surface. Furthermore, the Pt3Ni-Ptskin surface binds oxygen more

weakly than all other surfaces studied. Therefore, the general trend for on/sub-

surface interaction on all studied (111) surfaces (within this thesis) without taking

the oxygen coverage into account is determined as Eb(Pt3Ni-Ptskin) < Eb(Pt)

< Eb(Pt3Ni) < Eb(Pt-Ni-Pt) < Eb(Ni-Pt-Pt). This trend for the on/sub-surface

phases on the (111) surfaces is different from the on-surface adsorption, where

Eb(Pt-Ni-Pt) is found to be the weakest, suggesting that the surface oxides will be

difficult to form on the Pt3Ni-Ptskin surface.
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Table 5.3: The most stable on/sub-surface phases on all studied (111) surfaces at
the oxygen coverages between 0.25 ML and 2.00 ML.

Table 5.3 summarises the most stable on/sub-surface sites on all the studied sur-

faces from the θtot of 0.25 ML to 2.00 ML. It can be seen that at low oxygen cov-

erages (0.25 ML and 0.50 ML) on all studied surfaces, the on-surface adsorption

is favoured. However, as the oxygen coverage increases, the most stable structures

are mainly the on/sub-surface. This indicates that all the studied surfaces will form

thin surface oxide in oxidising conditions depending on the oxygen coverage. The

Pt, Pt3Ni and Ni-Pt-Pt surfaces will form the thin surface oxides at larger oxygen

coverage.

The geometric structures, change in interlayer spacings and the average bond

lengths for the stable on/sub-surface configurations at the θtot of 0.75, 1.00 and

1.25 ML are examined further for the Pt3Ni surface (Table 5.4 and Figure 5.9)

and the Pt3Ni-Ptskin surface (Figure 5.10 and Table 5.5).
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Figure 5.9: Top and side views of the most stable oxygen on/sub-surface con-
figurations on the Pt3Ni surface, calculated using a (2x2) surface unit cell at a
total oxygen coverage of (a) 0.75 ML, (b) 1.00 ML and (c) 1.25 ML. The average
change in interlayer spacings, (%), δ12, between the first and second layer and δ23,
between the second and third layer, with respect to the bulk Pt3Ni value is given
to the right of the figures. The large sky blue and green spheres represent Pt and
Ni atoms, the small red and blue spheres represent the on-surface O atoms at the
fcc and hcp sites and the small purple spheres represent the sub-surface O atoms
at the octa sites.
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Table 5.4: The calculated (average) bond lengths (Å) for the most stable on/sub-
surface configurations on the Pt3Ni surface at the θtot of 0.75, 1.25 and 1.50 ML.
dOonsurf−Pt/Ni(Å) is the distance between the on-surface oxygen and the nearest-
neighbour first layer Pt/Ni atom, dPt/Ni−Osub

(Å) is the distance between the
nearest-neighbour first layer Pt/Ni atom and sub-surface oxygen, dOsub−Pt/Ni(Å)
is the distance between the sub-surface oxygen and the nearest-neighbour sec-
ond layer Pt/Ni atom and d[Pt3Ni]12−[Pt3Ni]23(Å) is the distance between the near-
est neighbour atoms belonging to the first and second layers for the most stable
on/sub-surface configuration.

0.75 ML 1.00 ML 1.25 ML

dOonsurf−Pt/Ni 1.91 1.93 1.99
dPt/Ni−Osub

1.88 1.97 2.22
dOsub−Pt/Ni 1.88 2.01 2.18

d[Pt3Ni]12−[Pt3Ni]23 3.07 3.47 3.88

On the Pt3Ni surface, a small buckling is observed in the first layer of the (0.50

Ohcp + 0.25 Oocta) structure while a positive change is noticed for the δ12 on the

(0.50 Ohcp + 0.50 Oocta) and (0.50 Ofcc + 0.75 Oocta) structures (Figure 5.9). The

buckling in the first layer is similar to that observed on the Pt surface. The pos-

itive change observed for the δ12 is comparable to the on/sub-surface geometries

observed on the Ni-Pt-Pt surface. The average bond lengths for the Pt/Ni-O and

the Pt3Ni-Pt3Ni layers are similar, regardless of the oxygen coverage (Table 5.4).

Comparing other studied surfaces, the observed bond lengths are shorter on these

surfaces than those seen on the Pt and Pt-Ni-Pt surfaces but slightly longer than

the Ni-Pt-Pt surface.
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Figure 5.10: Top and side views of the most stable oxygen on/sub-surface config-
urations on the Pt3Ni-Ptskin surface, calculated using a (2x2) surface unit cell at a
total oxygen coverage of (a) 1.00 ML, (b) 1.25 ML and (c) 1.50 ML. The average
change in interlayer spacings, (%), δ12, between the first and second layer and δ23,
between the second and third layer, with respect to the bulk Pt3Ni value is given to
the right of the figures. The large sky blue and green spheres represent Pt and Ni
atoms, the small red and blue spheres represent the on-surface O atoms at the fcc
and hcp sites and the small orange and purple spheres represent the sub-surface O
atoms at the tetra-i and octa sites.
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Table 5.5: The calculated (average) bond lengths (Å) for the most stable on/sub-
surface configurations on the Pt3Ni-Ptskin surface at the θtot of 0.75, 1.25 and
1.50 ML. dOonsurf−Pt(Å) is the distance between the on-surface oxygen and the
nearest-neighbour first layer Pt atom, dPt−Osub

(Å) is the distance between the
nearest-neighbour first layer Pt atom and sub-surface oxygen, dOsub−Pt/Ni(Å) is
the distance between the sub-surface oxygen and the nearest-neighbour second
layer Pt/Ni atom and d[Pt3Ni−Ptskin]12−[Pt3Ni]23(Å) is the distance between the
nearest neighbour atoms belonging to the first and second layers for the most
stable on/sub-surface configuration.

0.75 ML 1.00 ML 1.25 ML

dOonsurf−Pt 2.01 2.03 2.02
dPt−Osub

2.69 3.06 2.72
dOsub−Pt/Ni 1.93 1.95 1.97

d[Pt3Ni−Ptskin]12−[Pt3Ni]23 3.01 4.69 3.94

Continuing onto the Pt3Ni-Ptskin surface, significant buckling is observed in the

first two layers of all the stable structures. For the (0.25 Ohcp + 0.75 Oocta) ar-

rangement, coupled with the bucklings, a large positive change for the δ12 is also

seen (Figure 5.10b). The observed buckling in the first two layers of the structure

is only specific to this surface. This is because, on all other surfaces, the buckling

is seen only in the first layer of the on/sub-surface structures. The interlayer spac-

ing observed on the Pt3Ni-Ptskin surface is considerably larger than those seen on

all other surfaces. The Pt-O bond lengths for the sub-surface oxygens are substan-

tially longer than the on-surface oxygens (Table 5.5). These were also noticed for

the Pt-O bond lengths on the Pt-Ni-Pt surface. The bond lengths for the first two

layers, (d[Pt3Ni−Ptskin]12−[Pt3Ni]23) are large and the 1.00 ML structure is shown

to have the longest bond length. Overall, the bond lengths observed on the Pt3Ni-

Ptskin surface are longer than those seen on all other surfaces, which correlates

well with the binding energies.

As in the case of the Pt/Ni-MBA surfaces, there is no literature data to compare

the binding energies of the studied oxygen interactions except for the on-surface

adsorption. A general observation is that the interaction of oxygen with the Pt3Ni-
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Ptskin surface is weaker than that with the Pt3Ni and Pt surfaces. This is consis-

tent with the on-surface adsorption literature that observed lower binding energies

on the Pt3Ni-Ptskin surface, hence enhanced ORR activity.5,12,14 This enhanced

ORR activity is attributed to the surface structure where the Pt enrichment and Ni

depletion is observed in the first two layers.

5.3.6 Statistical Thermodynamic Model

The statistical thermodynamic model is used on the surfaces, to generate the

(T, p) phase diagrams. As in previous chapters, the required surface free ener-

gies are calculated from low pressures up to the real catalysis conditions using

the approximation discussed in Section 2.4. This approximation involves using

only the most stable binding energies calculated at each oxygen coverage from

θtot(0.25 ≤ θtot ≤ 2.00ML). The surface free energies were then calculated over

a temperature range of 100 K to 1000 K and a pressure range from 10−5 atm to

105 atm. Figure 5.11 illustrates the (T, p) phase diagrams of Pt3Ni and Pt3Ni-

Ptskin surfaces while Table 5.6 summarises the temperature at which the oxygen

coverage changes phase at the UHV, real catalytic condition and high pressures.
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Figure 5.11: Phase diagram of (a) Pt3Ni(111) and (b) Pt3Ni-Ptskin(111) surfaces
in equilibrium with O2 gas phase. PEMFC operating conditions are labelled as 1
atm (horizontal white line) and 300 K (vertical white line).
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Table 5.6: The temperatures (K) at which the oxygen coverage changes phase
from the (T, p) thermodynamics phase diagram on the Pt3Ni and Pt3Ni-Ptskin
surfaces at at low pressure (10−5 atm), real catalytic condition (1 atm) and high
pressure (105 atm).

It can be seen that at low temperature and at all considered pressures, the on/sub-

surface structures are observed on the two surfaces. These on/sub-surface oxygens

gradually desorb from the surfaces as the temperature increases until a completely

clean surface is exposed. The temperature at which the initial oxygen coverage

changes phase is relatively close on the two surfaces and at all studied pressures.

The (T, p) phase diagram for the Pt3Ni surface is similar to that observed on the

Pt(111) surface (Figure 3.10 (top)). In addition, the identified structures on the

Pt3Ni surface at 0.50 ML (2x1) and 0.25 ML (2x2) are identical to those observed

on the Pt(111) surface. The main difference between the Pt3Ni and Pt(111) sur-

faces is that, higher desorption temperatures are predicted on the Pt3Ni surface at

all considered pressures.

At the operating pressure, 1 atm (indicated by the horizontal white line), a com-

plete desorption of oxygen occurred on the Pt3Ni-Ptskin surface at a temperature

of 834 K, lower than that on the Pt3Ni surface. At the operating temperature

of 300 K (indicated by the vertical white line), the surface oxide-like structures

are likely to be present on both surfaces. These surface oxide-like structures are
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expected to desorb from the surfaces as the temperature increases compared to

those on the Pt/Ni-MBA surfaces, where the surface oxide-like are observed at

all considered temperature range. These results suggest that the presence of sur-

face oxide will lead to fewer available sites for the ORR, thereby preventing the

reaction from taking place. However, a smaller quantity of the thin film surface

oxides will form on the Pt3Ni and Pt3Ni-Ptskin surfaces, compared to those on the

Pt/Ni-MBA surfaces.

5.3.6.1 Free Energy as a Function of Potential

The free energy as a function of potential is analysed for the PEMFC operating

conditions of 300 K and 1 atm, for the thermodynamically stable structures deter-

mined on the Pt3Ni and Pt3Ni-Ptskin surfaces. The free energies identify the most

likely structures to be found on the catalyst surface when a potential (between 0 V

and 1.5 V) is applied. Figure 5.12 shows the free energy as a function of potential

on the two surfaces combined with those on the Pt surface.
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Figure 5.12: Free energy as a function of potential for the PEMFC operating
conditions (300 K and 1 atm) on (a) Pt3Ni(111) and (b) Pt3Ni-Ptskin(111) surfaces
coupled with those on the Pt surface. The PEMFC operating conditions (300K and
1 atm)

The free energies observed on the Pt3Ni and Pt3Ni-Ptskin surfaces are less stable

than those noticed for the Pt surface. The free energies for the Pt3Ni-Ptskin surface

are lower than those on the Pt3Ni surface. The observed Pt surface structures on

the two surfaces suggest that when potential is included, a Pt-rich surface would

be expected and the structures change from 0.50 ML at low potential to 0.25 ML

at high potential. This oxygen coverage structure switches at 0.63 V on the two

surfaces, identical to those seen on the Pt surface.
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5.3.7 Electronic Properties

5.3.7.1 Change in Work function, Dipole Moment and d-band Centre

Figure 5.13 illustrates the work function change, ∆Φ, surface dipole moment, µ,

and the average d-band centre of the first layer (described in section 2.3.6) with re-

spect to the oxygen coverage for the Pt3Ni and Pt3Ni-Ptskin surfaces. In addition,

the plot between the average d-band centre, εd, of the first layer and the binding

energies are shown for the studied oxygen coverages. In the same way as the pre-

vious chapters, the stable fcc on-surface and the on/sub-surface configurations are

evaluated for the most stable structures at the θtot(0.25 ≤ θtot ≤ 2.00ML).
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Figure 5.13: Electronic properties of the most stable structures identified on the
Pt3Ni(111) and Pt3Ni-Ptskin(111) surfaces. a) work-function change, ∆Φ, b) sur-
face dipole moment µ, c) average d-band centre, εd, of the topmost layer as a
function of oxygen coverage and d) average d-band centre, εd, of the topmost
layer, plotted as a function of binding energies at the studied oxygen coverages.
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The workfunction change, ∆Φ, for the on-surface adsorptions (Figure 5.13a) in-

creases linearly as the oxygen coverage increases on the two surfaces. This ∆Φ is

higher on the Pt3Ni surface than on the Pt3Ni-Ptskin surface. This is mainly due to

the influence of the Ni within the top-layer surface. In addition, the increased ∆Φ,

is also observed on all the studied (111) surfaces, however, the biggest change is

seen on the Pt3Ni-Ptskin surface. As expected, the ∆Φ for the on/sub-surface

structures at 0.75ML and 1.00ML are lower than the on-surface adsorption at the

same oxygen coverage. This is also observed on all the other studied surfaces. As

explained in previous chapters, the lower ∆Φ occurs because there is competi-

tion for the bonding charge between the sub-surface and on-surface oxygen atoms

which creates a slightly less negative charge on-surface oxygen atoms.15

The surface dipole moment, µ, (Figure 5.13b), observed on the Pt3Ni-Ptskin sur-

face is similar to that seen on the Pt surface, suggesting that the Ni atoms in

the second layer are not involved in the bonding. The decrease seen on the two

surfaces for the on-surface adsorption and on/sub-surface structures, occurs as a

result of the strong depolarisation which arises from the electron charge transfer

from the top-layer atoms to more than one adsorbing O atom.16 In the same way

as the ∆Φ, the µ observed on the Pt3Ni surface is higher than those seen on the

Pt3Ni-Ptskin surface.

Next, the average d-band centre of the topmost layer, εd, (Figure 5.13c) moves

towards lower energies as the oxygen coverage increases on the two surfaces and

for the on-surface adsorptions and the on/sub-surface configurations. This ob-

servation is comparable to all other studied (111) surfaces within this thesis. In

addition, the average d-band centre of the topmost layer on the Pt3Ni-Ptskin sur-

face is lower in energy compared to those on the Pt3Ni surface. Figure 5.13d

shows that the weaker binding energy corresponds to higher average d-band cen-

tre. This is also consistent with all the studied surfaces within this thesis and with

the general theory of the d-band centre. Furthermore, from Figure 5.13d, it can be

seen that the Pt3Ni on-surface oxygen adsorptions are much weaker than those on

the Pt3Ni-Ptskin surface.
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5.3.7.2 Electron density difference, Bader Analysis and Density of
States

In this section, the electron density differences and the projected density of states

(PDOS) are analysed. Figure 5.14 shows that in all cases, there is an accumulation

of electron density on the oxygen atoms. This is similar to the electron density

differences obtained on the Pt and Pt/Ni-MBA surfaces. The observed electron

densities have been transferred from the nearest Pt or Ni atoms (showing a deple-

tion of electron charge densities). The bonding interactions on the on-surface ad-

sorptions (0.25 ML and 1.00 ML) take place with the top-layer Pt or Pt/Ni atoms,

in the same way as all other studied surfaces. As for the on/sub-surface phases,

the top two layers for the two surfaces are involved with the bonding of the on-

surface and sub-surface oxygens. Large electron density depletion is seen on the

Pt3Ni-Ptskin on/sub-surface phase (Figure 5.14f). This may be due to the second

layer atoms (two Pt and two Ni atoms) attempting to transfer their electrons to the

sub-surface oxygen but being influenced by the top layer Pt atoms.
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Figure 5.14: Calculated electron density differences for structures on the Pt3Ni
surface at a) 0.25 ML and b) 1.00 ML on-surface adsorption sites and c) (0.75
Ofcc + 0.75 Oocta) on/sub-surface and on the Pt3Ni-Ptskin surface at d) 0.25 ML
and e) 1.00 ML on-surface adsorption and f) (0.50 Ohcp + 1.00 Oocta) on/sub-
surface. The pink and white isosurfaces represent positive and negative electron
density differences respectively. The blue, green and red spheres are Pt, Ni and O
atoms respectively and the isosurphase value is ±0.045 eÅ−3.

Table 5.7 summarises the average Bader charges for the two outer layers and the

corresponding on-surface and sub-surface oxygens. On the clean surfaces, the

charge transfer within the outer two layers is larger on the Pt3Ni surface than

on the Pt and Pt3Ni-Ptskin surfaces. This is mainly because there is a Ni atom

in each layer that would donate more charge to the Pt atoms. As expected, the

charges observed for the oxygen coverages were transferred from the transition

metals (Pt or Ni atoms) onto the O atoms. This is shown by the increase of the

charges on all the oxygen atoms. As for the on/sub-surface structures, the charge

transfer from the Pt3Ni surface is also larger than the Pt3Ni-Ptskin surface. The

charge transfer observed on the Pt surface is comparable to those observed on the

Pt3Ni-Ptskin surface. This suggests that the Ni atoms in the second layer of the

Pt3Ni-Ptskin surface are not involved in the charge transfer.
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Table 5.7: Average Bader charges (e) of the top two layers, (Oonsurf ), of the on-
surface oxygen layer and (Oonsurf ), of the sub-surface oxygen layer on the Pt3Ni
and Pt3Ni-Ptskin surfaces. The nominal valence charges for Pt, Ni and O atoms
are 10, 10 and 6 electrons respectively.

Figure 5.15 shows the PDOS plots for the two surfaces. The clean surfaces and

the 0.25 ML oxygen coverage are examined. The Pt3Ni plot shows the PDOS for

the top layer Pt and Ni atom while the Pt3Ni-Ptskin plot illustrates the PDOS for

the top Pt layer. The interacting and non-interacting plots are the PDOS of the top

layer atoms (Pt or Pt/Ni) which are interacting and not interacting respectively

with the O atom. The Pt3Ni-O/O and Pt3Ni-Ptskin-O/O plots show the PDOS of

the O atom interacting with the surfaces. Finally, the gas phase O is showing the

energy levels of the O atom and the εF is determined by taking the experimen-

tal first ionisation energy of O atom from the highest occupied molecular orbital

(HOMO).
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Figure 5.15: Projected density of states (PDOS) of (a) O/Pt3Ni (111) and (b)
O/Pt3Ni-Ptskin (111) at 0.25 ML oxygen coverage. The Fermi energy is indicated
by the vertical dotted line.

As expected, a sharp O 2s orbital is observed on the Pt3Ni-O/O and Pt3Ni-Ptskin-

O/O plots at about 19 eV below the Fermi level. In addition, the broadening of

the O 2p orbital is due to the bonding hybridisation between the O 2p orbital

and the d-orbital from either the Ni or Pt atoms. Similarly to other surfaces, the

bonding (at about 6.5 eV below the Fermi level) and anti-bonding states (above the

Fermi level) are observed on the two surfaces (Pt3Ni-O/O and Pt3Ni-Ptskin-O/O).

The average d-band centre for the oxygen coverage surfaces is lower than that

of the clean surfaces. There are differences in the PDOS for the non-interacting

surfaces and the clean surfaces, which may be due to the influence of Ni within

the surfaces.

5.3.8 Surface Segregation

The segregation energy between Pt3Ni and Pt3Ni-Ptskin surfaces are analysed

using Eq 2.25 for the studied θtot between 0.00 ML and 2.00 ML. This will

determine which surface structure will dominate in an oxidising environment.

Figure 5.16 presents the segregation energies of the two surfaces for the stable

on-surface oxygen adsorption and the on/sub-surface structures. The segregation

energies for the Pt/Ni(111)-MBA surfaces are also shown for comparison.
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Figure 5.16: Segregation energies between Pt3Ni(111) and Pt3Ni-Ptskin(111) sur-
faces. Negative segregation energies mean Pt3Ni-Ptskin-rich surface while the
positive segregation energies mean Pt3Ni-rich surface.

In the absence of oxygen (clean surface), the Pt3Ni-Ptskin surface is favoured

indicating a Pt-rich surface. This is in agreement with both experimental and the-

oretical calculations, which suggest a Pt-rich surface.11,17–19 As oxygen begins to

interact with the surface from 0.25 ML up to 2.00 ML oxygen coverage, the sta-

bility switches to the Pt3Ni surface. This also agrees with the theoretical results

performed by Ma et al.,20 which showed that the Pt3Ni-Ptskin surface is generally

not thermodynamically favoured at the most stable adsorption sites and at 0.25

ML. For the on-surface adsorption, the segregation energies increase linearly as

the oxygen coverage increase except for 1.00 ML where there is a small decrease

of 0.05 eV. In general, higher segregation energies are observed on Pt3Ni surfaces

compared to the Pt/Ni(111)-MBA surfaces for the on-surface adsorptions, sug-

gesting that the Pt/Ni(111)-MBA surfaces (in particular, the Ni-Pt-Pt surface) will

dominate. In the case of the on/sub-surfaces, there is no correlation for the seg-

regation energies with increasing coverage, though the Pt3Ni surface composition

is the most stable at all coverages.
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5.4 Conclusions and Implications to PEMFC

A theoretical investigation into the stability and structural behaviour of the Pt3Ni

and Pt3Ni-Ptskin(111) surfaces within an oxidising environment showed different

characteristics. Firstly, the oxygen binding energies on the Pt3Ni-Ptskin surface

are lower than those obtained on the Pt3Ni surface. This suggests that the Pt3Ni-

Ptskin surface will be less easily oxidised, thereby leading to increased ORR ac-

tivity. Similarly to what is observed in the previous chapters, the binding energies

for all the on-surface adsorptions are observed to decrease as the oxygen cover-

age increases. This is mainly due to the metal atom interacting with more oxygen

atoms at the same time. At 1.00 ML oxygen coverage on the Pt3Ni-Ptskin sur-

face, an O2-like structure is formed at the top adsorption site, thereby stabilising

the surface.

At the technological relevant conditions (300 K and 1 atm), the thermodynamic

stabilities illustrate that the on/sub-surface structures of 1.50 ML oxygen cover-

age should be observed. This suggests that thin-film surface oxide will form on

the surfaces under oxidising conditions, thereby, leading to fewer surface atoms

available for the ORR and also, lower ORR activity. As the temperature increases

on the two surfaces, the formation of the surface oxide structures becomes more

difficult.

Notably, it is shown that both the Pt3Ni and Pt3Ni-Ptskin(111) surfaces are not

ideal catalysts to replace Pt for the oxygen reduction reaction because they will

cause the eventual degradation of the PEMFC during operation. However, the

Pt3Ni alloy surfaces (particularly the Pt3Ni-Ptskin surface) are better catalysts

compared to the Pt/Ni-monolayer bimetallic alloy surface. This is because Ni

prefers to be on the surface of the catalyst and will bind oxygen more strongly. In

addition, the formation of the thin-film surface oxides occurs more slowly on the

Pt3Ni alloy surfaces.
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Chapter 6

Conclusions and Implications to
PEMFC

The main aim of this thesis was to determine the relative propensity of surface

oxide film forming on Pt and Pt/Ni alloys by means of Density Functional Theory

(DFT) and a statistical thermodynamic model. Both experimental and theoretical

studies have shown that Pt is the preferred transition metal catalyst for the oxygen

reduction reaction because it produces the highest catalytic activity under the pro-

ton exchange membrane fuel cells’ (PEMFC) operating conditions.1 The oxygen

reduction reaction (ORR) kinetics are, however, sluggish, which prevents them

from being commercialised. One explanation for this is the “so called place ex-

change mechanism” between the oxygen and the platinum which eventually leads

to the formation of thin surface oxide film on the catalyst surface, preventing the

ORR from proceeding. For this reason, Pt alone does not present satisfactory ac-

tivity for the ORR, which has led to the alloying of Pt with a secondary transition

metal. Pt/Ni alloys have been shown to exhibit improved activity. However, their

relative propensity of forming surface oxide films has not been investigated.
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In this thesis, electronic structure calculations were employed to investigate the

interaction of the catalyst surfaces with the oxidising environment and to deter-

mine the effect of the overall alloy composition. The catalyst surfaces studied

were the active low index (111) and (100) surfaces for Pt (Chapter 3) and the Pt-

Ni monolayer bimetallic alloys (Chapter 4) and the (111) surfaces for the Pt3Ni

alloys (Chapter 5).

In Chapter 3, it was revealed that for oxygen on-surface adsorption and at oxygen

coverages between 0.25 ML and 1.00 ML, the fcc and bridge sites are the most

stable adsorption sites for Pt(111) and Pt(100) surfaces respectively. In addition, it

was shown that the Pt(100) surface binds oxygen more strongly than the Pt(111)

surface, suggesting that lower catalytic activity will be observed. The surface

oxide-like structures are more likely to form on the Pt(111) surface and the on-

surface oxygen coverage required before oxygen starts to penetrate subsurface is

0.75 ML. As for the Pt(100) surface, an oxygen coverage of more than 1.00 ML

will be required to form the surface oxide-like structure.

Subsequently, in Chapter 4, it was found that the oxygen interactions on the Ni-Pt-

Pt (Ni incorporated at the top layer of the surface) and Pt-Ni-Pt (Ni incorporated

in the sub-layer of the surface) monolayer bimetallic alloy surfaces exhibited en-

tirely different characteristics. However, similar attributes were observed for the

(111) and (100) surfaces of the same alloy configurations. In addition, the al-

loy surfaces are generally unstable when oxygen is purely subsurface except for

the Pt-Ni-Pt(111) surface. On the Pt-Ni-Pt (111) surface, it was observed that

critical on-surface oxygen coverage of 0.68 ML is required before oxygen oc-

cupy the subsurface region. This is at a lower oxygen coverage compared to the

Pt(111) surface, indicating that the surface is more easily poisoned. Generally, the

interaction of oxygen with the Pt-Ni-Pt surfaces showed lower binding energies

compared to the Ni-Pt-Pt at the (111) and (100) surfaces.

The effect of the alloy composition was further investigated on the Pt3Ni and

Pt3Ni-Ptskin surfaces. The results show that the oxygen binding energies on the
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Pt3Ni-Ptskin surface are lower than those obtained on the Pt3Ni surface, suggest-

ing that Pt3Ni-Ptskin will be less easily oxidised, thereby leading to increased

oxygen reduction reaction activity. At 1.00 ML oxygen coverage on the Pt3Ni-

Ptskin surface, an O2-like structure is formed at the top adsorption site, thereby

stabilising the surface.

Following the electronic structure calculations, a statistical thermodynamic model

was applied to the DFT data to bridge the temperature and pressure gap between

DFT and the technological relevant conditions of 300 K and 1 atm. These studies

revealed that the most likely structures to be found on the Pt surfaces are 0.50

ML (fcc) on the Pt(111) surface and 0.75 ML (bridge) on the Pt(100) surface. As

for the monolayer bimetallic alloy and Pt3Ni alloy surfaces, the on/sub-surface

configurations between the oxygen coverages of 1.50 ML and 2.00 ML will be

present on all the (111) and (100) surfaces. This suggests that a thin-film surface

oxide will form on the Pt/Ni alloy surfaces under oxidising conditions, thereby,

leading to fewer surface atoms available for the ORR and then the eventual loss

of catalytic activity.

Overall, this project has provided valuable information about the relative propen-

sity of forming surface oxide on the catalysts studied. It was observed that none

of the alloy surfaces studied are the ideal catalyst to replace Pt for the oxygen re-

duction reaction. This is because Ni has a thermodynamic tendency to leach from

the catalyst surface to expose the Pt atoms (∼ 20%).2 The leached Ni atoms binds

oxygen more strongly and so lead to the eventual degration of the PEMFC during

operation. Of all the alloys studied, a stable Pt3Ni-Ptskin alloy surface may prove

to be a better catalyst because the formation of thin-film surface oxides, on this

surface termination, is thermodynamically less favourable.
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6.1 Future Research Work

It has been discovered that Ni is not an adequate alloying element with Pt as a

catalyst replacement for the PEMFC. Therefore, a useful extension of the present

investigation would be to explore other alloying elements to determine their rel-

ative propensity of forming surface oxide film. As discussed in the introduction

chapter, several alloying elements (e.g. Fe, Co, V, etc.) have been shown to ex-

hibit improved oxygen reduction reaction activity2–4 and so, the approach here is

to use DFT calculations to identify interesting candidates that can be then further

tested experimentally. In order to find an optimum catalyst for the PEMFC, it is

expected that the catalyst with less surface oxide formation will eventually give

the maximum catalytic activity.

Although not presented in this thesis, the surfaces of some interesting alloying

elements (Ti, Zr, Hf and Pd) were modelled and compared to the studied Pt metal

and the Ni alloying element. The surface considered is the thermodynamically

low index (111) surface. Figure 6.1 shows the surface segregation in the absence

of oxygen. It can be seen that the segregation energies are negative, indicating

that the alloying elements will be enriched to the surface.
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Figure 6.1: Segregation energies between the alloying elements (Ti, Zr, Hf, Ni and
Pd) and Pt surfaces without the present of oxygen. Negative segregation energies
mean alloying element surface enrichment while the positive segregation energies
mean Pt-rich surface.

Following the segregation energies, the study was extended to determine the ef-

fect of increasing the oxygen coverage (θtot(0.25 ≤ θtot ≤ 1.00ML)) at the fcc

adsorption site on the monolayer bimetallic alloy surfaces for each alloying el-

ement. The fcc adsorption site was chosen because it was the favoured site for

most of the studied alloy compositions (within this thesis). It can be seen from

Figure 6.2 that the adsorption energies decrease as oxygen coverage increases. In

addition, oxygen binds strongly to the alloying element that is positioned at the

top layer. Therefore, they are not useful catalysts for the oxygen reduction reac-

tion. The obtained information are consistent with the results discussed in Chapter

4 of this thesis, which showed that O binds more strongly to the Ni-Pt-Pt surfaces.

Furthermore, when the alloying element is subsurface, it can be seen that when ei-

ther Ni or Zr are the alloying element we have prefential binding charachteristics

to Pt, therefore, suggesting further study of Zr is warranted.
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Figure 6.2: On-surface adsorption binding energies of oxygen adsorbed at the
fcc site on the bimetallic monolayer alloy surfaces at various oxygen coverages.
Both alloy composition (X-Pt-Pt and Pt-X-Pt) are investigated. X means alloying
element.

It would be interesting to determine what happens to the segregation energies in

the presence of oxygen. Future calculations will include the effect of absorbing

oxygen sub-surface and the on/sub-surface oxygen interactions.

193



References

[1] Nørskov, J.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.; Bli-

gaard, T.; Jonsson, H. Journal of Physical Chemistry B 2004, 108, 17886–

17892.

[2] Paulus, U.; Wokaun, A.; Scherer, G.; Schmidt, T.; Stamenkovic, V.; Rad-

milovic, V.; Markovic, N.; Ross, P. Journal of Physical Chemistry B 2002,

106, 4181–4191.

[3] Mukerjee, S.; Srinivasan, S. Journal of Electroanalytical Chemistry 1993,

357, 201–224.

[4] He, T.; Kreidler, E.; Xiong, L.; Luo, J.; Zhong, C. J. Journal of the Electro-

chemical Society 2006, 153, A1637–A1643.

194



Appendix A

Convergence Tests

At the beginning of the project, a series of convergence test calculations were

performed to determine the parameters for future calculations. The first of these

is to determine the lattice constant. In this test, the volume is varied while keeping

the lattice parameter constant. The resulting (E, V ) points are fitted to the Birch-

Murnaghan equation of state

E(V ) = E0 +B0V0

[
1

B′0(B′0 − 1)

(
V0

V

)B′
0−1

+
1

B′0

(
V

V0

)
− 1

B′0 − 1

]
(A.1)

where V0 is the equilibrium volume,E0 is the energy at that volume,B0 is the bulk

modulus at the equilibrium volume, and B0 is its pressure derivative at that point.

This essentially determines the bulk modulus and the lattice constant required for

further calculations.
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The next convergence test is to determine the number of required k-points, where

the k-points are varied from 3x3x3 grid to 9x9x9 grid using the 2x2 supercell.

Figure A.1 shows the k-points convergence for the Pt (111) surface. It can be seen

that the k-point was converged at the 8x8x8 grid. This is the lowest number of

k-points needed to provide a balance between accuracy and computing time.

Figure A.1: Convergence test for the k-point grid.

Next, a convergence test is carried out to determine the vacuum gap. This will give

the approximate vacuum required to avoid the interactions from other periodic

slabs. Figure A.2 shows this convergence for Pt (111) surface. A vacuum gap of

8 Å was applied to all further calculations.
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Figure A.2: Convergence test for the vacuum gap.
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