
An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for
Energy Minimization in Vision

Yuri Boykov, Member, IEEE, and Vladimir Kolmogorov, Member, IEEE

Abstract—After [15], [31], [19], [8], [25], [5], minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for

exact or approximate energy minimization in low-level vision. The combinatorial optimization literature provides many min-cut/max-flow

algorithms with different polynomial time complexity. Their practical efficiency, however, has to date been studied mainly outside the

scope of computer vision. The goal of this paper is to provide an experimental comparison of the efficiency ofmin-cut/max flow algorithms

for applications in vision. We compare the running times of several standard algorithms, as well as a new algorithm that we have recently

developed. The algorithms we study include both Goldberg-Tarjan style “push-relabel” methods and algorithms based on Ford-

Fulkerson style “augmenting paths.” We benchmark these algorithms on a number of typical graphs in the contexts of image restoration,

stereo, and segmentation. In many cases, our new algorithm works several times faster than any of the other methods, making near

real-time performance possible. An implementation of our max-flow/min-cut algorithm is available upon request for research purposes.

Index Terms—Energy minimization, graph algorithms, minimum cut, maximum flow, image restoration, segmentation, stereo,

multicamera scene reconstruction.

�

1 INTRODUCTION

GREIG et al. [15] were the first to discover that powerful
min-cut/max-flow algorithms from combinatorial op-

timization can be used to minimize certain important
energy functions in vision. The energies addressed by
Greig et al. and by most later graph-based methods (e.g.,
[32], [18], [4], [17], [8], [2], [30], [39], [21], [36], [38], [6], [23],
[24], [9], [26]) can be represented as1

EðLÞ ¼
X
p2P

DpðLpÞ þ
X

ðp;qÞ2N
Vp;qðLp; LqÞ; ð1Þ

whereL ¼ fLp jp 2 Pg is a labeling of imageP,Dpð�Þ is a data
penalty function, Vp;q is an interaction potential, andN is a set
of all pairs of neighboring pixels. An example of image
labeling is shown in Fig. 1. Typically, data penalties Dpð�Þ
indicate individual label-preferences of pixels based on
observed intensities and prespecified likelihood function.
Interaction potentials Vp;q encourage spatial coherence by
penalizing discontinuities between neighboring pixels. The
papers above show that, to date, graph-based energy
minimization methods arguably provide some of the most
accurate solutions for the specifiedapplications. For example,
consider two recent evaluations of stereo algorithms using
real imagery with dense ground truth [34], [37].

Greig et al. constructed a two terminal graph such that the
minimum cost cut of the graph gives a globally optimal
binary labeling L in case of the Potts model of interaction in
(1). Previously, exact minimization of energies like (1) was
not possible and such energies were approached mainly
with iterative algorithms like simulated annealing. In fact,
Greig et al. used their result to show that, in practice,
simulated annealing reaches solutions very far from the
global minimum even in a very simple example of binary
image restoration.

Unfortunately, the graph cut technique in Greig et al.
remained unnoticed for almost 10 years mainly because
binary image restoration looked very limited as an applica-
tion. Early attempts to use combinatorial graph cut algo-
rithms invisionwere restricted to image clustering [40]. In the
late 1990s, a large number of newcomputer vision techniques
appeared that figured how to use min-cut/max-flow algo-
rithms on graphs for solving more interesting nonbinary
problems. Roy and Cox [32] were the first to use these
algorithms to compute multicamera stereo. Later, [18], [4]
showed that,with the right edgeweights on agraph similar to
that used in [32], one can minimize a fairly general energy
function (1) in a multilabel case with linear interaction
penalties. This graph construction was further generalized
to handle arbitrary convex cliques in [19]. Another general
case of multilabel energies where interaction penalty is a
metric (on the space of labels) was studied in [4], [8]. Their
�-expansion algorithm finds provably good approximate
solutions by iteratively running min-cut/max-flow algo-
rithms on appropriate graphs. The case ofmetric interactions
includes many kinds of “robust” cliques that are frequently
preferred in practice.

Several recent papers studied theoretical properties of
graph constructions used in vision. The question of what
energy functions can be minimized via graph cuts was
addressed in [25]. This work provided a simple, necessary,

1124 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 9, SEPTEMBER 2004

. Y. Boykov is with the Computer Science Department, the University of
Western Ontario, London, Ontario N6A 5B7, Canada.
E-mail: yuri@csd.uwo.ca.

. V. Kolmogorov is with Microsoft Research, 7 J.J. Thomson Ave.,
Cambridge CB3 0FB, UK. E-mail: vnk@microsoft.com.

Manuscript received 4 June 2003; revised 16 Feb. 2004; accepted 25 Feb. 2004.
Recommended for acceptance by A. Rangarjan.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0120-0603.

1. Greig et al. [15] consider energy (1) in the context of maximum
a posteriori estimation of Markov Random Fields (MAP-MRF).

0162-8828/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

and sufficient condition on such functions. However, the
results in [25] apply only to energy functions of binary
variables with double and triple cliques. In fact, the full
potential of graph-cut techniques in multilabel cases is still
not entirely understood.

Geometric properties of segments produced by graph-
cut methods were investigated in [3]. This work studied cut
metric on regular grid-graphs and showed that discrete
topology of graph-cuts can approximate any continuous
Riemannian metric space. The results in [3] established a
link between two standard energy minimization ap-
proaches frequently used in vision: combinatorial graph-
cut methods and geometric methods based on level-sets
(e.g., [35], [29], [33], [28]).

A growing number of publications in vision use graph-
based energy minimization techniques for applications like
image segmentation [18], [39], [21], [5], restoration [15], stereo
[32], [4], [17], [23], [24], [9], shape reconstruction [36], object
recognition [2], augmented reality [38], texture synthesis [26],
and others. The graphs corresponding to these applications
are usually huge 2D or 3D grids and min-cut/max-flow
algorithm efficiency is an issue that cannot be ignored.

The main goal of this paper is to experimentally compare
the running time of several min-cut/max-flow algorithms
on graphs typical for applications in vision. In Section 2, we
provide basic facts about graphs, min-cut and max-flow
problems, and some standard combinatorial optimization
algorithms for them. We consider both Goldberg-Tarjan
style push-relabel algorithms [14] as well as methods based
on augmenting paths a la Ford-Fulkerson [13]. Note that, in
the course of our experiments with standard augmenting
path techniques, we developed some new algorithmic ideas
that significantly boosted empirical performance on grid-
graphs in vision. Section 3 describes our new min-cut/max-
flow algorithm. In Section 4, we tested this new augment-
ing-path style algorithm as well as three standard algo-
rithms: the H_PRF and Q_PRF versions of the “push-
relabel” method [14], [10] and the Dinic algorithm [12] that
also uses augmenting paths. We selected several examples
in image restoration, stereo, and segmentation where
different forms of energy (1) are minimized via graph
structures originally described in [15], [18], [4], [8], [23], [24],
[6]. Such (or very similar) graphs are used in all computer
vision papers known to us that use graph cut algorithms. In
many interesting cases, our new algorithm was significantly

faster than the standard min-cut/max-flow techniques from
combinatorial optimization. More detailed conclusions are
presented in Section 5.

2 BACKGROUND ON GRAPHS

In this section, we review some basic facts about graphs in
the context of energy minimization methods in vision. A
directed weighted (capacitated) graph G ¼ hV; Ei consists of
a set of nodes V and a set of directed edges E that connect
them. Usually, the nodes correspond to pixels, voxels, or
other features. A graph normally contains some additional
special nodes that are called terminals. In the context of
vision, terminals correspond to the set of labels that can be
assigned to pixels. We will concentrate on the case of graphs
with two terminals. Then, the terminals are usually called
the source, s, and the sink, t. In Fig. 2a, we show a simple
example of a two terminal graph (due to Greig et al. [15])
that can be used to minimize the Potts case of energy (1) on
a 3� 3 image with two labels. There is some variation in the
structure of graphs used in other energy minimization
methods in vision. However, most of them are based on
regular 2D or 3D grid graphs such as the one in Fig. 2a. This
is a simple consequence of the fact that, normally, graph
nodes represent regular image pixels or voxels.

All edges in the graph are assigned someweight or cost. A
cost of a directed edge ðp; qÞ may differ from the cost of the
reverse edge ðq; pÞ. In fact, the ability to assign different edge
weights for ðp; qÞ and ðq; pÞ is important for many graph-
based applications in vision.Normally, there are two types of
edges in the graph: n-links and t-links. N-links connect pairs
of neighboring pixels or voxels. Thus, they represent a
neighborhood system in the image. The cost of n-links
corresponds to apenalty for discontinuity between thepixels.
These costs are usually derived from the pixel interaction
term Vp;q in energy (1). T-links connect pixels with terminals
(labels). The cost of a t-link connecting a pixel and a terminal
corresponds to a penalty for assigning the corresponding
label to the pixel. This cost is normally derived from the data
termDp in the energy (1).

2.1 Min-Cut and Max-Flow Problems

An s=t cut C on a graph with two terminals is a partitioning
of the nodes in the graph into two disjoint subsets S and T
such that the source s is in S and the sink t is in T . For
simplicity, throughout this paper, we refer to s=t cuts as just
cuts. Fig. 2b shows one example of a cut. In combinatorial
optimization, the cost of a cut C ¼ fS; T g is defined as the

BOYKOV AND KOLMOGOROV: AN EXPERIMENTAL COMPARISION OF MIN-CUT/MAX-FLOW ALGORITHMS FOR ENERGY MINIMIZATION... 1125

Fig. 1. An example of image labeling. An image in (a) is a set of pixels P
with observed intensities Ip for each p 2 P. A labeling L shown in (b)
assigns some label Lp 2 f0; 1; 2g to each pixel p 2 P. Such labels can
represent depth (in stereo), object index (in segmentation), original
intensity (in image restoration), or other pixel properties. Normally, graph-
based methods assume that a set of feasible labels at each pixel is finite.
Thick lines in (b) show labelingdiscontinuities betweenneighboringpixels.

Fig. 2. Example of a directed capacitated graph. Edge costs are reflected
by their thickness. A similar graph-cut construction was first used in vision
byGreigetal. [15] for binary image restoration. (a)AgraphG. (b)AcutonG.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

sum of the costs of “boundary” edges ðp; qÞwhere p 2 S and
q 2 T . Note that cut cost is “directed” as it sums up weights
of directed edges specifically from S to T . The minimum cut
problem on a graph is to find a cut that has the minimum
cost among all cuts.

One of the fundamental results in combinatorial optimi-
zation is that the minimum s=t cut problem can be solved by
finding a maximum flow from the source s to the sink t.
Loosely speaking, maximum flow is the maximum “amount
of water” that can be sent from the source to the sink by
interpreting graph edges as directed “pipes” with capacities
equal to edge weights. The theorem of Ford and Fulkerson
[13] states that a maximum flow from s to t saturates a set of
edges in the graph dividing the nodes into two disjoint parts
fS; T g corresponding to a minimum cut. Thus, min-cut and
max-flow problems are equivalent. In fact, the maximum
flow value is equal to the cost of the minimum cut. The
“duality” relationship between maximum flow and mini-
mum cut problems is illustrated in Fig. 3 in the context of
image segmentation. Max-flow displayed in Fig. 3a saturates
the edges in the min-cut boundary in Fig. 3b.

We can intuitively show how min-cut (or max-flow) on a
graph may help with energy minimization over image
labelings. Consider an example in Fig. 2. The graph
corresponds to a 3� 3 image. Any s=t cut partitions the
nodes into disjoint groups each containing exactly one
terminal. Therefore, any cut corresponds to some assign-
ment of pixels (nodes) to labels (terminals). If edge weights
are appropriately set based on parameters of an energy, a
minimum cost cut will correspond to a labeling with the
minimum value of this energy.2

2.2 Standard Algorithms in Combinatorial
Optimization

An important fact in combinatorial optimization is that there
are polynomial algorithms for min-cut/max-flow problems
on directed weighted graphs with two terminals. Most of the
algorithms belong to one of the following two groups:
Goldberg-Tarjan style “push-relabel” methods [14] and
algorithms based on Ford-Fulkerson style “augmenting
paths” [13].

Standard augmenting paths-based algorithms, such as the
Dinic algorithm [12], work by pushing flow along non-
saturated paths from the source to the sink until the
maximum flow in the graph G is reached. A typical
augmenting path algorithm stores information about the
distribution of the current s ! t flow f among the edges of G
using a residual graph Gf . The topology of Gf is identical to G,
but the capacity of an edge in Gf reflects the residual capacity
of the same edge in G given the amount of flow already in the
edge. At the initialization, there is no flow from the source to
the sink (f = 0) and edge capacities in the residual graph G0

are equal to the original capacities in G. At each new
iteration, the algorithm finds the shortest s ! t path along
nonsaturated edges of the residual graph. If a path is found,
then the algorithm augments it by pushing the maximum
possible flow df that saturates at least one of the edges in the
path. The residual capacities of edges in the path are reduced
by df while the residual capacities of the reverse edges are
increased by df . Each augmentation increases the total flow
from the source to the sink f ¼ f þ df . Themaximum flow is
reached when any s ! t path crosses at least one saturated
edge in the residual graph Gf .

The Dinic algorithm uses breadth-first search to find the
shortest paths from s to t on the residual graph Gf . After all
shortest paths of a fixed length k are saturated, the
algorithm starts the breadth-first search for s ! t paths of
length kþ 1 from scratch. Note that the use of shortest paths
is an important factor that improves theoretical running
time complexities for algorithms based on augmenting
paths. The worst-case running time complexity for the Dinic
algorithm is Oðmn2Þ, where n is the number of nodes andm
is the number of edges in the graph.

Push-relabel algorithms [14] use quite a different
approach. They do not maintain a valid flow during the
operation; there are “active” nodes that have a positive
“flow excess.” Instead, the algorithms maintain a labeling of
nodes giving a low bound estimate on the distance to the
sink along nonsaturated edges. The algorithms attempt to
“push” excess flows toward nodes with smaller estimated
distance to the sink. Typically, the “push” operation is
applied to active nodes with the largest distance (label) or
based on FIFO selection strategy. The distances (labels)
progressively increase as edges are saturated by push
operations. Undeliverable flows are eventually drained
back to the source. We recommend our favorite textbook
on basic graph theory and algorithms [11] for more details
on push-relabel and augmenting path methods.

Note that the most interesting applications of graph cuts
to vision use directed N-D grids with locally connected
nodes. It is also typical that a large portion of the nodes is
connected to the terminals. Unfortunately, these conditions
rule out many specialized min-cut/max-flow algorithms
that are designed for some restricted classes of graphs.
Examples of interesting but inapplicable methods include
randomized techniques for dense undirected graphs [20],
methods for planar graphs assuming small number of
terminal connections [27], [16], and others.

3 NEW MIN-CUT/MAX-FLOW ALGORITHM

In this section, we present a new algorithm developed
during our attempts to improve empirical performance of
standard augmenting path techniques on graphs in vision.

1126 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 9, SEPTEMBER 2004

2. Different graph-based energy minimization methods may use
different graph constructions, as well as different rules for converting
graph cuts into image labelings. Details for each method are described in
the original publications.

Fig. 3. Graph cut/flow example in the context of image segmentation in
Section 4.4. Red and blue seeds are “hard-wired” to the source s and the
sink t, correspondingly. As usual, the cost of edges between the pixels
(graph nodes) is set to low values in places with high intensity contrast.
Thus, cuts along object boundaries in the image should be cheaper.
Weak edges also work as “bottlenecks” for a flow. In (b), we show a
maximum flow from s to t. In fact, it saturates graph edges corresponding
to aminimum cut boundary in (c). (a) Original image. (b) Amaximum flow.
(c) A minimum cut.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

Normally, see Section 2.2, augmenting path-based methods
start a new breadth-first search for s ! t paths as soon as all
paths of a given length are exhausted. In the context of
graphs in computer vision, building a breadth-first search
tree typically involves scanning the majority of image
pixels. Practically speaking, it could be a very expensive
operation if it has to be performed too often. Indeed, our
real-data experiments in vision confirmed that rebuilding a
search tree on graphs makes standard augmenting path
techniques perform poorly in practice. We developed
several ideas that improved empirical performance of
augmenting path techniques on graphs in computer vision.

The new min-cut/max-flow algorithm presented here
belongs to the group of algorithms based on augmenting
paths. Similar to Dinic [12], it builds search trees for detecting
augmenting paths. In fact, we build two search trees, one
from the source and the other from the sink.3 The other
difference is thatwe reuse these trees andnever start building
them from scratch. The drawback of our approach is that the
augmenting paths found are not necessarily shortest aug-
menting path; thus, the time complexity of the shortest
augmenting path is no longer valid. The trivial upper bound
on the number of augmentations for our algorithm is the cost
of the minimum cut jCj, which results in the worst-case
complexity Oðmn2jCjÞ. Theoretically speaking, this is worse
than the complexities of the standard algorithmsdiscussed in
Section 2.2. However, experimental comparison in Section 4
shows that, on typical problem instances in vision, our
algorithm significantly outperforms standard algorithms.

3.1 Algorithm’s Overview

Fig. 4 illustrates our basic terminology. We maintain two
nonoverlapping search treesS andT with roots at the source s
and the sink t, correspondingly. In tree S, all edges from each
parent node to its children are nonsaturated, while, in tree T ,
edges from children to their parents are nonsaturated. The
nodes that are not in S or T are called “free.” We have

S � V; s 2 S; T � V; t 2 T; S \ T ¼ ;:

The nodes in the search treesS and T can be either “active” or
“passive.”Theactivenodes represent theouter border in each
tree, while the passive nodes are internal. The point is that
active nodes allow trees to “grow” by acquiring new children
(along nonsaturated edges) from a set of free nodes. The
passive nodes cannot grow as they are completely blocked by

other nodes from the same tree. It is also important that active

nodesmay come in contactwith thenodes from theother tree.

An augmenting path is found as soon as an active node in one

of the trees detects a neighboring node that belongs to the

other tree.
The algorithm iteratively repeats the following three

stages:

. “growth” stage: search trees S and T grow until they
touch giving an s ! t path,

. “augmentation” stage: the found path is augmented,
search tree(s) break into forest(s), and

. “adoption” stage: trees S and T are restored.

At the growth stage, the search trees expand. The active

nodes explore adjacent nonsaturated edges and acquire

new children from a set of free nodes. The newly acquired

nodes become active members of the corresponding search

trees. As soon as all neighbors of a given active node are

explored, the active node becomes passive. The growth

stage terminates if an active node encounters a neighboring

node that belongs to the opposite tree. In this case, we

detect a path from the source to the sink, as shown in Fig. 4.
The augmentation stage augments the path found at the

growth stage. Since we push through the largest flow
possible, some edge(s) in the path become saturated. Thus,
some of the nodes in the trees S and T may become
“orphans,” that is, the edges linking them to their parents
are no longer valid (they are saturated). In fact, the
augmentation phase may split the search trees S and T
into forests. The source s and the sink t are still roots of two
of the trees, while orphans form roots of all other trees.

The goal of the adoption stage is to restore the single-tree

structure of sets S and T with roots in the source and the sink.

At this stage, we try to find a new valid parent for each

orphan.Anewparent shouldbelong to the same set,S orT , as

the orphan. A parent should also be connected through a

nonsaturated edge. If there is no qualifying parent, we

remove the orphan from S or T and make it a free node. We

also declare all its former children orphans. The stage

terminates when no orphans are left and, thus, the search

tree structures of S and T are restored. Since some orphan

nodes in S and T may become free, the adoption stage results

in contraction of these sets.
After the adoption stage is completed, the algorithm

returns to the growth stage. The algorithm terminates when
the search trees S and T cannot grow (no active nodes) and
the trees are separated by saturated edges. This implies that
a maximum flow is achieved. The corresponding minimum
cut can be determined by S ¼ S and T ¼ T .4

3.2 Details of Implementation

Assume that we have a directed graph G ¼ hV; Ei. As with

any augmenting path algorithm, we will maintain a flow f

and the residual graph Gf (see Section 2.2). We will keep

the lists of all active nodes, A, and all orphans, O. The

general structure of the algorithm is:

BOYKOV AND KOLMOGOROV: AN EXPERIMENTAL COMPARISION OF MIN-CUT/MAX-FLOW ALGORITHMS FOR ENERGY MINIMIZATION... 1127

Fig. 4. Example of the search trees S (red nodes) and T (blue nodes) at
the end of the growth stage when a path (yellow line) from the source s
to the sink t is found. Active and passive nodes are labeled by letters A
and P, correspondingly. Free nodes appear in black.

3. Note that, in the earlier publication [7], we used a single tree rooted at
the source that searched for the sink. The two-trees version presented here
treats the terminals symmetrically. Experimentally, the new algorithm
consistently outperforms the one in [7].

4. Strictly speaking, this is is true only if there are no free nodes upon
termination, i.e., S [T ¼ V. If there are isolated free nodes in the end, then
minimum cut can be determined as fS;V � Sg or fV � T; Tg. Both solutions
have the same cost.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

initialize: S ¼ fsg; T ¼ ftg; A ¼ fs; tg; O ¼ ;
while true

grow S or T to find an augmenting path

P from s to t
if P ¼ ; terminate

augment on P
adopt orphans

end while

The details of the growth, augmentation, and adoption stages
are described below. It is convenient to store content of
search trees S and T via flags TREEðpÞ indicating the
affiliation of each node p so that

TREEðpÞ ¼
S if p 2 S
T if p 2 T
; if p isfree:

8<
:

If node p belongs to one of the search trees, then the
information about its parent will be stored as PARENT ðpÞ.
Roots of the search trees (the source and the sink), orphans,
and all free nodes have no parents, i.e., PARENT ðpÞ ¼ ;.
We will also use notation tree capðp ! qÞ to describe the
residual capacity of either edge ðp; qÞ if TREEðpÞ ¼ S or
edge ðq; pÞ if TREEðpÞ ¼ T . These edges should be
nonsaturated in order for node p to be a valid parent of
its child q depending on the search tree.

3.2.1 Growth Stage

At this stage, active nodes acquire new children from a set
of free nodes.

while A 6¼ ;
pick an active node p 2 A

for every neighbor q such that

tree capðp ! qÞ > 0

if TREEðqÞ ¼ ; then add q to search tree as an

active node:
TREEðqÞ :¼ TREEðpÞ, PARENT ðqÞ :¼ p,

A :¼ A [fqg
if TREEðqÞ 6¼ ; and TREEðqÞ 6¼ TREEðpÞ

return P ¼ PATHs!t

end for

remove p from A

end while

return P ¼ ;

3.2.2 Augmentation Stage

The input for this stage is a path P from s to t. Note that the
orphan set is empty in the beginning of the stage, but there
might be some orphans in the end since at least one edge in
P becomes saturated.

find the bottleneck capacity � on P

update the residual graph by pushing flow �

through P

for each edge ðp; qÞ in P that becomes saturated

if TREEðpÞ ¼ TREEðqÞ ¼ S then set

PARENT ðqÞ :¼ ; and O :¼ O [fqg
if TREEðpÞ ¼ TREEðqÞ ¼ T then set

PARENT ðpÞ :¼ ; and O :¼ O [fpg
end for

3.2.3 Adoption Stage

During this stage, all orphan nodes inO are processed untilO
becomes empty. Each node p being processed tries to find a
new valid parent within the same search tree; in case of
success,p remains in the treebutwithanewparent;otherwise,
it becomes a free node and all its children are added toO.

while O 6¼ ;
pick an orphan node p 2 O and remove it

from O

process p

end while

The operation “process p” consists of the following
steps: First, we are trying to find a new valid parent for p
among its neighbors. A valid parent q should satisfy:
TREEðqÞ ¼ TREEðpÞ, tree capðq ! pÞ > 0, and the “origin”
of q should be either source or sink. Note that the last
condition is necessary because, during the adoption stage,
some of the nodes in the search trees S or T may originate
from orphans.

If node p finds a new valid parent q, then we set
PARENT ðpÞ ¼ q. In this case, p remains in its search tree
and the active (or passive) status of p remains unchanged. If
p does not find a valid parent, then p becomes a free node
and the following operations are performed:

. Scan all neighbors q of p such that TREEðqÞ ¼
TREEðpÞ:

- If tree capðq ! pÞ > 0, add q to the active set A
- If PARENT ðqÞ ¼ p, add q to the set of orphans

O and set PARENT ðqÞ :¼ ;
. TREEðpÞ :¼ ;, A :¼ A� fpg.

Note that, as p becomes free, all its neighbors connected
through nonsaturated edges should become active. It may
happen that some neighbor q did not qualify as a valid parent
during the adoption stage because it did not originate from
the source or the sink. However, this node could be a valid
parent after the adoption stage is finished. At this point, q
must have active status as it is located next to a free node p.

3.3 Algorithm Tuning

The proof of correctness of the algorithm presented above is
straightforward (see [22]). At the same time, our description
leaves many free choices in implementing certain details.
For example, we found that the order of processing active
nodes and orphans may have a significant effect on the
algorithm’s running time. Our preferred processing method
is a minor variation of “First-In-First-Out.” In this case, the
growth stage can be described as a breadth-first search. This
guarantees that at least the first path from the source to the
sink is the shortest. Note that the search tree may change
unpredictably during the adoption stage. Thus, we cannot
guarantee anything about paths found after the first one.

There are several additional free choices in implementing
the adoption stage. For example, as an orphan looks for a new
parent, it has tomake sure that a given candidate is connected
to the source or to the sink. We found that “marking” nodes
confirmed to be connected to the source at a given adoption
stage helps to speed up the algorithm. In this case, other
orphans do not have to trace the roots of their potential
parents all the way to the terminals. We also found that
keeping distance-to-source information in addition to these

1128 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 9, SEPTEMBER 2004

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

“marks” allows orphans to select new parents that are closer
to the source. This further helps with the algorithm’s speed
because we get shorter paths.

We used a fixed tuning of our algorithm in all
experiments of Section 4. Complete details of this tuning
can be found in [22]. A library with our implementation is
available upon request for research purposes. The general
goal of tuning was to make augmenting paths as short as
possible. Note that augmenting paths on graphs in vision
can be easily visualized. In the majority of cases, such
graphs are regular grids of nodes that correspond to image
pixels. Then, augmenting paths and the whole graph flow
can be meaningfully displayed (e.g., Fig. 3b). We can also
display the search trees at different stages. This allows a
very intuitive way of tuning max-flow methods in vision.

4 EXPERIMENTAL TESTS ON APPLICATIONS

IN VISION

In this section, we experimentally test min-cut/max-flow
algorithms for three different applications in computer
vision: image restoration (Section 4.2), stereo (Section 4.3),
and object segmentation (Section 4.4). We chose formula-
tions where certain appropriate versions of energy (1) can
be minimized via graph cuts. The corresponding graph
structures were previously described by [15], [18], [4], [8],
[23], [24], [5] in detail. These (or very similar) structures are
used in all computer vision applications with graph cuts
(that we are aware of) to date.

4.1 Experimental Setup

Note that we could not test all known min-cut/max-flow
algorithms. In our experimental tests on graph-based
energy minimization methods in vision, we compared the
new algorithm in Section 3 and the following standard min-
cut/max-flow algorithms outlined in Section 2.2:

. DINIC: Algorithm of Dinic [12].

. H_PRF: Push-Relabel algorithm [14] with the highest
level selection rule.

. Q_PRF: Push-Relabel algorithm [14] with the queue-
based selection rule.

Many previous experimental tests, including the results in
[10], show that the last two algorithms work consistently
better than a large number of other min-cut/max-flow
algorithms of combinatorial optimization. The theoretical
worst-case complexities for these “push-relabel” algorithms
are Oðn3Þ for Q_PRF and Oðn2

ffiffiffiffiffi
m

p Þ for H_PRF.
For DINIC, H_PRF, and Q_PRF we used the implemen-

tations written by Cherkassky and Goldberg [10], except
that we converted them from C to C++ style and modified
the interface (i.e., functions for creating a graph). Both
H_PRF and Q_PRF use global and gap relabeling heuristics.
Our algorithm was implemented in C++. We selected a
tuning described in Section 3.3 with more details available
in [22]. We did not make any machine specific optimization
(such as pipeline-friendly instruction scheduling or cache-
friendly memory usage).

Experiments in Sections 4.2 and 4.4 were performed on a
1.4GHz Pentium IV PC (2GB RAM, 8KB L1 cache, 256KB L2
cache) and experiments in Section 4.3 were performed on an
UltraSPARC II workstation with four 450 MHz processors
and 4GB RAM. In the former case, we used Microsoft Visual

C++ 6.0 compiler, Windows NT platform, and, in the latter
case, GNU C++ compiler, version 3.2.2 with the flag “-O5,”
SunOS 5.8 platform. To get system time, we used the ftime()
function in Unix and the _ftime() function in Windows.
Although these functions do not measure process computa-
tion time,we felt that theywere appropriate sincewegot very
consistent results (within 1 percent) when running tests
multiple times.

4.2 Image Restoration

Image restoration is a representative early vision problem.
The goal is to restore original pixel intensities from the
observed noisy data. Some examples of image restoration
are shown in Fig. 5. The problem can be very easily
formulated in terms of energy (1) minimization. In fact,
many other low-level vision problems can be represented
by the same energies. We chose the context of image
restoration mainly for its simplicity.

In this section, we consider two examples of energy (1)
based on the Potts and linear models of interaction,
correspondingly. Besides image restoration [15], graph
methods for minimizing Potts energy were used in segmen-
tation [21], stereo [4], [8], object recognition [2], shape
reconstruction [36], and augmented reality [38]. Linear
interaction energies were used in stereo [32] and segmenta-
tion [18]. Minimization of the linear interaction energy is
based on graphs that are quite different fromwhat is used for
the Pottsmodel. At the same time, there is very little variation
between the graphs in different applications when the same
type of energy is used. They mainly differ in their specific
edge cost settings while the topological properties of graphs
are almost identical once the energy model is fixed.

4.2.1 Potts Model

The Potts energy that we use for image restoration is

EðIÞ ¼
X
p2P

jjIp � Iop jj þ
X

ðp;qÞ2N
Kðp;qÞ � T ðIp 6¼ IqÞ; ð2Þ

where I ¼ fIp jp 2 Pg is a vector of unknown “true”
intensities of pixels in image P and Io ¼ fIop jp 2 Pg are
observed intensities corrupted by noise. The Potts interac-
tions are specified by penalties Kðp;qÞ for intensity disconti-
nuities between neighboring pixels. Function T ð�Þ is 1 if the
condition inside the parentheses is true and 0 otherwise. In
the case of two labels, the Potts energy can be minimized
exactly using the graph cut method of Greig et al. [15].

We consider image restorationwithmultiple labels where
the problem becomes NP hard. We use the iterative
�-expansion method in [8] which is guaranteed to find a

BOYKOV AND KOLMOGOROV: AN EXPERIMENTAL COMPARISION OF MIN-CUT/MAX-FLOW ALGORITHMS FOR ENERGY MINIMIZATION... 1129

Fig. 5. Image restoration examples. (a) Diamond restoration. (b) Original

Bell Quad. (c) “Restored” Bell Quad.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

solution within a factor of two from the global minimum of
the Potts energy. At a given iteration, [8] allows any subset of
pixels to switch to a fixed label �. In fact, the algorithm finds
an optimal subset of pixels that gives the largest decrease in
the energy. The computation is done via graph cuts using
some generalization of the basic graph structure in [15] (see
Fig. 2). The algorithm repeatedly cycles through all possible
labels � until no further improvement is possible.

In Table 1, the running times (in seconds, 1.4GHzPentium
IV) when different max-flow/min-cut algorithms are em-
ployed in the basic step of each �-expansion. Each table
corresponds to one of the original images shown in Fig. 5. The
numberof allowed labels is 210 (Diamond) and244 (BellQuad),
correspondingly. We run the algorithms on images at
different resolutions. At each column, we state the exact size
(H x W) in pixels. Note that the total number of pixels
increases by a factor of two from left to right. See Fig. 6 for
logarithmic scale plots.

Note that the running times above correspond to the end
of the first cycle of the �-expansion method in [8] when all
labels were expanded once. The relative speeds of different
max-flow/min-cut algorithms do not change much when
the energy minimization is run to convergence. The number
of cycles it takes to converge can vary from 1 to 3 for
different resolutions/images. Thus, the running times to
convergence are hard to compare between the columns and
we do not present them. In fact, restoration results are quite

good even after the first iteration. In most cases, additional
iterations do not improve the actual output much. Fig. 5a
shows the result of the Potts model restoration of the
Diamond image (100� 100) after the first cycle of iterations.

4.2.2 Linear Interaction Energy

Here, we consider image restoration with “linear” interac-
tion energy. Fig. 5c shows one restoration result that we
obtained in our experiments with this energy. The linear
interaction energy can be written as

EðIÞ ¼
X
p2P

jjIp � Iop jj þ
X

ðp;qÞ2N
Aðp;qÞ � jIp � Iqj; ð3Þ

where constants Aðp;qÞ describe the relative importance of
interactions between neighboring pixels p and q. If the set of
labels is finite andordered, then this energy canbeminimized
exactly using either of the two almost identical graph-based
methods developed in [18], [4]. In fact, these methods use
graphs that are very similar to the one introduced by [32], [31]
in the context of multicamera stereo. The graphs are
constructed by consecutively connecting multiple layers of
image-grids. Each layer corresponds to one label. The two
terminals are connected only to the first and the last layers.
Note that the topological structure of these graphs is
noticeably different from the Potts model graphs, especially
when the number of labels (layers) is large.

1130 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 9, SEPTEMBER 2004

TABLE 1

Fig. 6. Running times for the �-expansion algorithm [8]. The results are obtained in the context of image restoration with the Potts model (see
Section 4.2.1). In two examples (a) and (b), we fixed the number of allowed labels but varied image size in order to estimate empirical complexities of
tested min-cut/max-flow algorithms. Images of smaller size were obtained by subsampling. Our running time plots are presented in logarithmic scale.
Note that empirical complexities of each algorithm can be estimated from slopes of each plot. Dashed lines provide reference slopes for linear and
quadratic growth. All max-flow/min-cut algorithms gave near-linear (with respect to image size) performance in these experiments. (a) Diamond,
210 labels. (b) Bell Quad, 244 labels.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

Table 2 shows the running times (in seconds on 1.4 GHz,
Pentium IV) that different min-cut/max-flow algorithms
took to compute the exact minimum of the linear interac-
tions energy (3). We used the same Diamond and Bell Quad
images as in the Potts energy tests. We run the algorithms
on images at different resolution. At each column, we state
the exact size (height and width) in pixels. Note that the
total number of pixels increases by a factor of two from left
to right. Also, see Figs. 7a and 7b for logarithmic scale plots.

The structure of linear interaction graph directly depends

on the number of labels.5 In fact, if there are only two labels

then thegraph is identical to thePottsmodel graph.However,

both, size and topological properties of the linear interaction

graphs change as the number of labels (layers) gets larger and

larger. In Table 3, we compare the running times of the

algorithms for variousnumbersof allowed labels (layers).We

consider the same two images,Diamond andBellQuad. In each

case, the size of the corresponding image is fixed. At each

column,we state the number of allowed labelsL. The number

of labels increases by a factor of two from left to right. See

Figs. 8a and 8b for logarithmic scale plots.

Our experiments with linear interaction graphs show
that most of the tested max-flow/min-cut algorithms are
close to linear both with respect to increase in image size
and in the number of labels. At the same time, none of the
algorithms behaved linearly with respect to the number of
labels despite the fact that the size of graphs linearly
depends on the number of labels. Our algorithm is a winner
in absolute speed as, in most of the tests, it is 2-4 times faster
than the second best method. However, our algorithm’s
dynamics with respect to increase in the number of labels is
not favorable. For example, Q_PRF gets very close to the
speed of our method in case of L ¼ 250 (Bell Quad) even
though our algorithm was two times faster than Q_PRF
when the number of labels was L ¼ 32.

4.3 Stereo

Stereo is another classical vision problem where graph-
based energy minimization methods have been successfully
applied. The goal of stereo is to compute the correspon-
dence between pixels of two or more images of the same
scene obtained by cameras with slightly different view
points. We consider three graph-based methods for solving
this problem: pixel-labeling stereo with the Potts model [4],
[8], stereo with occlusions [23], and multicamera scene
reconstruction [24]. Note that the last method is designed

BOYKOV AND KOLMOGOROV: AN EXPERIMENTAL COMPARISION OF MIN-CUT/MAX-FLOW ALGORITHMS FOR ENERGY MINIMIZATION... 1131

TABLE 2

Fig. 7. Running times for “multilayered” graphs (e.g., [31], [19]). as functions of image size. The results results are obtained in the context of image
restoration with linear interaction potentials (see Section 4.2.2). Here, we fixed the number of allowed labels (graph layers) and tested the empirical
complexities of min-cut/max-flow algorithms with respect to image size. Images of smaller size were obtained by subsampling. The running time plots
are presented in logarithmic scale where the empirical complexities of algorithms can be estimated from slopes of each plot. Dashed lines provide
references for linear and quadratic growth slopes. All max-flow/min-cut algorithms gave near-linear (with respect to image size) performance in these
experiments. (a) Diamond, 54 labels. (b) Bell Quad, 32 labels.

5. Note that, in Section 4.2.1, we tested the multilabel Potts energy
minimization algorithm [8] where the number of labels affects the number
of iterations but has no effect on the graph structures.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

for a generalization of the stereo problem to the case of
more than two cameras.

4.3.1 Pixel-Labeling Stereo with the Potts Model

First, we consider a formulation of stereo problem given in
[4], [8] which is practically identical to our formulation of
the restoration problem in Section 4.2.1. We seek a disparity
labeling d ¼ fdpjp 2 Pg which minimizes the energy

EðdÞ ¼
X
p2P

Dðp; dpÞ þ
X

ðp;qÞ2N
Kðp;qÞ � T ðdp 6¼ dqÞ; ð4Þ

where dp is a disparity label of pixel p in the left image, and
Dðp; dÞ is a penalty for assigning a label d to a pixel p (the
squared difference in intensities between corresponding
pixels in the left and in the right images). We use the same
iterative �-expansion method from [8] as in the restoration
section above.

The tests were done on three stereo examples shown in
Fig. 9. We used the Head pair from the University of
Tsukuba and the well-known Tree pair from SRI. To
diversify our tests, we compared the speed of algorithms
on a Random pair where the left and the right images did not
correspond to the same scene (they were taken from the
Head and the Tree pairs, respectively).

Running times for the stereo examples in Fig. 9 are
shown in seconds (450 MHz UltraSPARC II Processor) in
Table 4. As in the restoration section, the running times
correspond to the first cycle of the algorithm. The relative

performance of different max-flow/min-cut algorithms is
very similar when the energy minimization is run to
convergence, while the number of cycles it takes to
converge varies between three and five for different data
sets. We performed two sets of experiments: one with a
four-neighborhood system and the other with an eight-
neighborhood system. The corresponding running times
are marked by “N4” and “N8.” The disparity maps at
convergence are shown in Figs. 9b, 9e, and 9h. The
convergence results are slightly better than the results after
the first cycle of iterations. We obtained very similar
disparity maps in the N4 and N8 cases.

4.3.2 Stereo with Occlusions

Any stereo images of multidepth objects contain occluded
pixels. The presence of occlusions adds significant technical
difficulties to the problem of stereo as the space of solutions
needs to be constrained in a very intricate fashion. Most
stereo techniques ignore the issue to make the problem
tractable. Inevitably, such simplification can generate errors
that range from minor inconsistencies to major misinterpre-
tation of the scene geometry. Recently, [1] reported some
progress in solving stereo with occlusions. Ishikawa and
Geiger [17] were first to suggest a graph-cut-based solution
for stereo that elegantly handles occlusions assuming
monotonicity constraint.

Here, we consider a more recent graph-based formula-
tion of stereo [23] that takes occlusions into consideration

1132 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 9, SEPTEMBER 2004

TABLE 3

Fig. 8. Running times for “multilayered” graphs (e.g., [31], [19]) in Section 4.2.2. Here, we fixed the size of each image and tested running times with
respect to growth in the number of allowed labels (graph layers). In this case, all algorithms were closer to quadratic complexity. (a) Diamond,
100� 100 pix. (b) Bell Quad, 125� 125 pix.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

BOYKOV AND KOLMOGOROV: AN EXPERIMENTAL COMPARISION OF MIN-CUT/MAX-FLOW ALGORITHMS FOR ENERGY MINIMIZATION... 1133

Fig. 9. (a) Left image ofHead pair. (b) Pottsmodel stereo. (c) Stereowith occlusions. Disparity maps obtained for the Head pair. (d) Left image

of Tree pair. (e) Potts model stereo. (f) Stereo with occlusions. Disparity maps obtained for the Tree pair. (g) Random pair. (h) Potts model

stereo. (i) Stereo with occlusions. Disparity maps obtained for the Random pair. Stereo results. The sizes of images are 384� 288 in (a), (b),

and (c). 256� 233 in (d), (e), and (f). 384� 288 in (g), (h), and (i). The results in (c), (f), and (i) show occluded pixels in red.

TABLE 4

TABLE 5

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

without making extra assumptions about scene geometry.

The problem is formulated as a labeling problem. We want

to assign a binary label (0 or 1) to each pair hp; qi, where p is a

pixel in the left image and q is a pixel in the right image that

can potentially correspond to p. The set of pairs with the

label 1 describes the correspondence between the images.
The energy of configuration f is given by

EðfÞ ¼
X

fhp;qi¼1

Dhp;qi

þ
X
p2P

Cp � T ðp is occluded in the configuration fÞ

þ
X

fhp;qi;hp;q0ig2N
Kfhp;qi;hp;q0ig � T ðfhp;qi 6¼ fhp;q0iÞ:

The first term is the data term, the second is the occlusion
penalty, and the third is the smoothness term. P is the set of
pixels in both images and N is the neighboring system
consisting of tuples of neighboring pairs fhp; qi; hp; q0ig
having the same disparity (parallel pairs). Kolmogorov and
Zabih [23] give an approximate algorithm minimizing this
energy among all feasible configurations f . In contrast to
other energy minimization methods, nodes of the graph
constructed in [23] representpairs rather thanpixels orvoxels.

Weused the same threedata sets as in theprevious section.
Running times for these stereo examples in Fig. 9 are shown
in seconds (450 MHz UltraSPARC II Processor) in Table 5.
The times are for the first cycle of the algorithm. Algorithm
results after convergence are shown in Figs. 9c, 9f, and 9i.

4.3.3 Multicamera Scene Reconstruction

In this section, we consider a graph cuts-based algorithm
for reconstructing a shape of an object taken by several
cameras [24].

Suppose we are given n calibrated images of the same

scene taken from different viewpoints (or at different

moments of time). Let Pi be the set of pixels in the camera i

and letP ¼ P1 [. . . [Pn be the set of all pixels. A pixel p 2 P
corresponds to a ray in 3D-space. Consider the point of the

first intersection of this ray with an object in the scene. Our

goal is to find thedepthof thispoint for all pixels in all images.

Thus, we want to find a labeling f : P ! L, where L is a

discrete set of labels corresponding to different depths. We

tested the algorithm for image sequences with labels

corresponding to parallel planes in 3D-space.
A pair hðp; lÞi, where p 2 P, l 2 L, corresponds to some

point in 3D-space. We will refer to such pairs as 3D-points.
The set of interactions I will consist of (unordered) pairs of
3D-points with the same label hðp1; lÞi, hðp2; lÞi “close” to
each other in 3D-space.

We minimize the energy function consisting of three
terms:

EðfÞ ¼ EdataðfÞ þ EsmoothnessðfÞ þEvisibilityðfÞ: ð5Þ
The data term imposes photoconsistency. It is

EdataðfÞ ¼
X

hðp;fðpÞiÞ;hðq;fðqÞiÞ2I
Dðp; qÞ;

where Dðp; qÞ is a nonpositive value depending on
intensities of pixels p and q (for example, Dðp; qÞ ¼
minf0; ðIntensityðpÞ � IntensityðqÞÞ2 �Kg for some con-
stant K > 0).

The smoothness term is the sum of Potts energy terms
over all cameras. The visibility term is infinity if a

1134 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 9, SEPTEMBER 2004

Fig. 10. Multicamera reconstruction results. There are five images of size
384� 288 in (a), eight images of size 352� 240 in (c), and five images of
size 384� 256 in (e). (a) Middle image of Head data set. (b) Scene
reconstruction for Head data set. (c) Middle image of Garden sequence.
(d) Scene reconstruction for Garden sequence. (e) Middle image of
Dayton sequence. (f) Scene reconstruction for Dayton sequence.

TABLE 6

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

configuration f violates the visibility constraint and zero
otherwise. More details can be found in [24].

The tests were done for three data sets: theHead sequence
from the University of Tsukuba, the Garden sequence, and
the Dayton sequence. The middle images of these data sets
are shown in Fig. 10. Table 6 gives running times (in seconds,
450 MHz UltraSPARC II Processor) for these three data sets.
The times are for the first cycle of the algorithm. Algorithm
results after three cycles are shown in Figs. 10b, 10d, 10f.

4.4 Segmentation

In this section, we compare the running times of the
selected min-cut/max-flow algorithms in case of an object
extraction technique [5] using appropriately constrained N-
D grid-graphs.6 The method in [5] can be applied to objects
of interest in images or volumes of any dimension. This
technique generalizes the MAP-MRF method of Greig et al.
[15] by incorporating additional contextual constraints into
minimization of the Potts energy

EðLÞ ¼
X
p2P

DpðLpÞ þ
X

ðp;qÞ2N
Kðp;qÞ � T ðLp 6¼ LqÞ

over binary (object/background) labelings. High-level con-
textual information is used to properly constrain the search
space of possible solutions. In particular, some hard
constraints may come directly from a user (object and
background seeds). As shown in [3], graph construction in
[5] can be generalized to find geodesics and minimum
surfaces in Riemannian metric spaces. This result links
graph-cut segmentation methods with popular geometric
techniques based on level-sets [35], [29], [33], [28].

The technique in [5] finds a globally optimal binary
segmentation of N-dimensional image under appropriate
constraints. The computation is done in one pass of a max-
flow/min-cut algorithm on a certain graph. In case of
2D images, the structure of the underlying graph is exactly
the same as shown in Fig. 2. In 3D cases, [5] build a regular
3D grid graph.

We tested min-cut/max-flow algorithms on 2D and 3D
segmentation examples illustrated in Fig. 11. This figure
demonstrates original data and our segmentation results
corresponding to some sets of seeds. Note that the user can
place seeds interactively. New seeds can be added to correct
segmentation imperfections. The technique in [5] efficiently

BOYKOV AND KOLMOGOROV: AN EXPERIMENTAL COMPARISION OF MIN-CUT/MAX-FLOW ALGORITHMS FOR ENERGY MINIMIZATION... 1135

Fig. 11. Segmentation experiments. (a) Bell photo. (b) Bell segmenta-

tion. (c) Cardiac MR. (d) Lung CT. (e) Liver MR. (f) LV segment. (g) Lobe

segment. (h) Liver segment.

TABLE 7

6. An earlier version of this work appeared in [6].

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

recomputes the optimal solution starting at the previous
segmentation result.

Figs. 11a and 11b shows one of our experiments where a
groupofpeople aroundabellwere segmentedona real photo
image (255� 313 pixels). Other segmentation examples in
Figs. 11c, 11d, 11e, 11f, 11g, and 11h are for 2Dand 3Dmedical
data. In Figs. 11c and 11d, we segmented a left ventricle
in 3D cardiac MR data (127� 127� 12 voxels). In our
3D experiments, the seeds were placed in one slice in the
middle of the volume. Often, this is enough to segment the
wholevolumecorrectly. The testswith lungCTdata (Figs. 11e
and 11f)weremade in the 2D (409� 314pixels) case. The goal
was to segment out a lower lung lobe. In Figs. 11g and 11h,
we tested the algorithms on the 2D liver MR data
(511� 511 pixels). Additional 3D experiments were per-
formed on heart ultrasound and kidney MR volumes.

Table 7 compares running times (in seconds, 1.4 GHz
Pentium IV) of the selected min-cut/max-flow algorithms
for a number of segmentation examples. Note that these
times include only min-cut/max-flow computation.7 In
each column, we show running times of max-flow/min-
cut algorithms corresponding to exactly the same set of
seeds. The running times were obtained for the “6” and
“26” neighborhood systems (N6 and N26). Switching from
N6 to N26 increases the complexity of graphs but does not
affect the quality of segmentation results much.

5 CONCLUSIONS

We tested a reasonable sample of typical vision graphs. In
most examples, our new min-cut/max-flow algorithm
worked 2-5 times faster than any of the other methods,
including the push-relabel and the Dinic algorithms (which
are known to outperform other min-cut/max-flow techni-
ques). In some cases, the new algorithm made possible near
real-time performance of the corresponding applications.

More specifically, we can conclude that our algorithm
is consistently several times faster (than the second best
method) in all applications where graphs are 2D grids.
However, our algorithm is not a clear outperformer when
the complexity of underlying graphs is increased. For
example, linear interaction energy graphs (Section 4.2.2)
with a large number of grid-layers (labels) is one example
where Q_PRF performance was comparable to our
algorithm. Similarly, experiments in Section 4.4 show that
push-relabel methods (H_PRF and Q_PRF) are compar-
able to our algorithm in 3D segmentation tests even
though it was several times faster in all 2D segmentation
examples. Going from the “6” neighborhood system to
the “26” system further decreased relative performance of
our method in 3D segmentation.

Note that we do not have a polynomial bound for our
algorithm.8 Interestingly, in all our practical tests on 2D and
3D graphs that occur in real computer vision applications,
our algorithm significantly outperformed a polynomial
method of DINIC. Our results suggest that grid graphs in

vision are a very specific application for min-cut/max-flow

algorithms. In fact, Q_PRF outperformed H_PRF in many of

our tests (especially in Section 4.2.2) despite the fact that

H_PRF is generally regarded as the fastest algorithm in the

combinatorial optimization community.

ACKNOWLEDGMENTS

A portion of this work was done while the authors were at
Siemens Research, New Jersey, and it would not have been
possible without the strong support from Alok Gupta and
Gareth Funka-Lea. The authors would like to thank Olga
Veksler (University of Western Ontario, Canada) who
provided implementations for Section 4.2. They would also
like to thank Ramin Zabih (Cornell University, New York)
for a number of discussions that helped to improve the
paper. The anonymous reviewers gave numerous sugges-
tions that significantly clarified presentation.

REFERENCES

[1] A.F. Bobick and S.S. Intille, “Large Occlusion Stereo,” Int’l
J. Computer Vision, vol. 33, no. 3, pp. 181-200, Sept. 1999.

[2] Y. Boykov and D. Huttenlocher, “A New Bayesian Framework for
Object Recognition,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. II, pp. 517-523, 1999.

[3] Y. Boykov and V. Kolmogorov, “Computing Geodesics and
Minimal Surfaces via Graph Cuts,” Proc. Int’l Conf. Computer
Vision, vol. I, pp. 26-33, 2003.

[4] Y. Boykov, O. Veksler, and R. Zabih, “Markov Random Fields
with Efficient Approximations,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, pp. 648-655, 1998.

[5] Y. Boykov and G. Funka-Lea, “Optimal Object Extraction via
Constrained Graph-Cuts,” Int’l J. Computer Vision, 2004. to appear.

[6] Y. Boykov and M.-P. Jolly, “Interactive Graph Cuts for Optimal
Boundary & Region Segmentation of Objects in N-D Images,”
Proc. Int’l Conf. Computer Vision, vol. I, pp. 105-112, July 2001.

[7] Y. Boykov and V. Kolmogorov, “An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for Energy Minimization in
Vision,” Proc. Int’l Workshop Energy Minimization Methods in
Computer Vision and Pattern Recognition, pp. 359-374, Sept. 2001.

[8] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy
Minimization via Graph Cuts,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 23, no. 11, pp. 1222-1239, Nov. 2001.

[9] C. Buehler, S.J. Gortler, M.F. Cohen, and L. McMillan, “Minimal
Surfaces for Stereo,” Proc. Seventh European Conf. Computer Vision,
vol. III, pp. 885-899, May 2002.

[10] B.V. Cherkassky and A.V. Goldberg, “On Implementing Push-
Relabel Method for the Maximum Flow Problem,” Algorithmica,
vol. 19, pp. 390-410, 1997.

[11] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A.
Schrijver, Combinatorial Optimization. John Wiley & Sons, 1998.

[12] E.A. Dinic, “Algorithm for Solution of a Problem of Maximum
Flow in Networks with Power Estimation,” Soviet Math. Dokl.,
vol. 11, pp. 1277-1280, 1970.

[13] L. Ford and D. Fulkerson, Flows in Networks. Princeton Univ. Press,
1962.

[14] A.V. Goldberg and R.E. Tarjan, “A New Approach to the
Maximum-Flow Problem,” J. ACM, vol. 35, no. 4, pp. 921-940,
Oct. 1988.

[15] D. Greig, B. Porteous, and A. Seheult, “Exact Maximum
A Posteriori Estimation for Binary Images,” J. Royal Statistical
Soc., Series B, vol. 51, no. 2, pp. 271-279, 1989.

[16] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian, “Faster
Shortest-Path Algorithms for Planar Graphs,” J. Computer and
System Sciences, vol. 55, pp. 3-23, 1997.

[17] H. Ishikawa and D. Geiger, “Occlusions, Discontinuities, and
Epipolar Lines in Stereo,” Proc. Fifth European Conf. Computer
Vision, pp. 232-248, 1998.

[18] H. Ishikawa and D. Geiger, “Segmentation by Grouping Junc-
tions,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
pp. 125-131, 1998.

1136 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 9, SEPTEMBER 2004

7. Time for entering seeds may vary between different users. For the
experiments in Fig. 10, all seeds were placed within 10 to 20 seconds.

8. The trivial bound given in Section 3 involves the cost of a minimum
cut and, theoretically, it is not a polynomial bound. In fact, additional
experiments showed that our algorithm is, by several orders of magnitude,
slower than Q_PRF, H_PRF, and DINIC on several standard (outside
computer vision) types of graphs commonly used for tests in the
combinatorial optimization community.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

[19] H. Ishikawa, “Exact Optimization for Markov Random Fields with
Convex Priors,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 25, no. 10, pp. 1333-1336, Oct. 2003.

[20] D.R. Karger, “Random Sampling in Cut, Flow, and Network
Design Problems,”Math. Operations Research, vol. 24, no. 2, pp. 383-
413, May 1999.

[21] J. Kim, J.W. Fisher III, A. Tsai, C. Wible, A.S. Willsky, and W.M.
Wells III, “Incorporating Spatial Priors into an Information
Theoretic Approach for f MRI Data Analysis,” Medical Image
Computing and Computer-Assisted Intervention, pp. 62-71, 2000.

[22] V. Kolmogorov, “ Graph-Based Algorithms for Multi-Camera
Reconstruction Problem,” PhD thesis, Computer Science Dept.,
Cornell Univ., 2003.

[23] V. Kolmogorov and R. Zabih, “Computing Visual Correspon-
dence with Occlusions via Graph Cuts,” Proc. Int’l Conf. Computer
Vision, July 2001.

[24] V. Kolmogorov and R. Zabih, “Multi-Camera Scene Reconstruc-
tion via Graph Cuts,” Proc. Seventh European Conf. Computer Vision,
vol. III, pp. 82-96, May 2002.

[25] V. Kolmogorov and R. Zabih, “What Energy Functions Can Be
Minimized via Graph Cuts?” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 26, no. 2, pp. 147-159, Feb. 2004.

[26] V. Kwatra, A. Schodl, I. Essa, and A. Bobick, “Graphcut Textures:
Image and Video Synthesis Using Graph Cuts,” Proc. SIGGRAPH,
July 2003.

[27] G. Miller and J. Naor, “Flows in Planar Graphs with Multiple
Sources and Sinks,” Proc. 30th IEEE Symp. Foundations of Computer
Science, pp. 112-117, 1991.

[28] S. Osher and N. Paragios, Geometric Level Set Methods in Imaging,
Vision, and Graphics. Springer Verlag 2003.

[29] S. J. Osher and R.P. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. Springer Verlag, 2002.

[30] S. Roy and V. Govindu, “MRF Solutions for Probabilistic Optical
Flow Formulations,” Proc. Int’l Conf. Pattern Recognition, Sept.
2000.

[31] S. Roy, “Stereo without Epipolar Lines: A Maximum-Flow
Formulation,” Int’l J. Computer Vision, vol. 34, nos. 2/3, pp. 147-
162, Aug. 1999.

[32] S. Roy and I. Cox, “A Maximum-Flow Formulation of the N-
Camera Stereo Correspondence Problem,” IEEE Proc. Int’l Conf.
Computer Vision, pp. 492-499, 1998.

[33] G. Sapiro, Geometric Partial Differential Equations and Image
Analysis. Cambridge Univ. Press, 2001.

[34] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of
Dense Two-Frame Stereo Correspondence Algorithms,” Int’l
J. Computer Vision, 2002.

[35] J.A. Sethian, Level Set Methods and Fast Marching Methods. Cam-
bridge Univ. Press, 1999.

[36] D. Snow, P. Viola, and R. Zabih, “Exact Voxel Occupancy with
Graph Cuts,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 1, pp. 345-352, 2000.

[37] R. Szeliski and R. Zabih, “An Experimental Comparison of Stereo
Algorithms,” Proc. Vision Algorithms: Theory and Practice, pp. 1-19,
Sept. 1999.

[38] B. Thirion, B. Bascle, V. Ramesh, and N. Navab, “Fusion of Color,
Shading and Boundary Information for Factory Pipe Segmenta-
tion,” IEEE Conf. Computer Vision and Pattern Recognition, vol. 2,
pp. 349-356, 2000.

[39] O. Veksler, “Image Segmentation byNested Cuts,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, vol. 1, pp. 339-344, 2000.

[40] Z. Wu and R. Leahy, “An Optimal Graph Theoretic Approach to
Data Clustering: Theory and Its Application to Image Segmenta-
tion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15,
no. 11, pp. 1101-1113, Nov. 1993.

Yuri Boykov received the “Diploma of High
Education” with honors from the Moscow In-
stitute of Physics and Technology (Department
of Radio Engineering and Cybernetics) in 1992
and completed the PhD degree in the Depart-
ment of Operations Research at Cornell Uni-
versity, Ithaca, New York, in 1996. He first
became interested in combinatorial approach to
generic problems in low-level vision while he
was a postdoctoral researcher in the Computer

Science Department at Cornell. As a scientist at Siemens Research,
Princeton, New Jersey, he developed a powerful graph-cuts methodol-
ogy for context extraction in volumetric imagery that, in particular, works
well in many medical applications. Currently, he is an assistant professor
in the Department of Computer Science at the University of Western
Ontario, Canada. He is interested in problems of segmentation,
restoration, registration, stereo, feature-based object recognition, track-
ing, photovideo editing, learning graph-based representation models,
graph-cuts geometry, and others. He is a member of the IEEE and the
IEEE Computer Society.

Vladimir Kolmogorov received the MS degree
from the Moscow Institue of Physics and
Technology in applied mathematics and physics
in 1999 and the PhD degree in computer science
from Cornell University in January 2004. He is
currently a postdoctoral researcher at Microsoft
Research, Cambridge, United Kingdom. His
research interests are graph algorithms, stereo
correspondence, image segmentation, para-
meter estimation, and mutual information. Two

of his papers (written with Ramin Zabih) received a best paper award at
the European Conference on Computer Vision, 2002. He is a member of
the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BOYKOV AND KOLMOGOROV: AN EXPERIMENTAL COMPARISION OF MIN-CUT/MAX-FLOW ALGORITHMS FOR ENERGY MINIMIZATION... 1137

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:33 from IEEE Xplore. Restrictions apply.

