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Abstract

The usage of machine learning techniques for the prediction of financial time se-

ries is investigated. Both discriminative and generative methods are considered

and compared to more standard financial prediction techniques. Generative meth-

ods such as Switching Autoregressive Hidden Markov and changepoint models

are found to be unsuccessful at predicting daily and minutely prices from a wide

range of asset classes. Committees of discriminative techniques (Support Vector

Machines (SVM), Relevance Vector Machines and Neural Networks) are found to

perform well when incorporating sophisticated exogenous financial information in

order to predict daily FX carry basket returns.

The higher dimensionality that Electronic Communication Networks make avail-

able through order book data is transformed into simple features. These volume-

based features, along with other price-based ones motivated by common trading

rules, are used by Multiple Kernel Learning (MKL) to classify the direction of

price movement for a currency over a range of time horizons. Outperformance rel-

ative to both individual SVM and benchmarks is found, along with an indication

of which features are the most informative for financial prediction tasks.

Fisher kernels based on three popular market microstructural models are added to

the MKL set. Two subsets of this full set, constructed from the most frequently

selected and highest performing individual kernels are also investigated. Further-

more, kernel learning is employed - optimising hyperparameter and Fisher feature

parameters with the aim of improving predictive performance. Significant im-

provements in out-of-sample predictive accuracy relative to both individual SVM

and standard MKL is found using these various novel enhancements to the MKL

algorithm.
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1 Introduction

1.1 Summary

Time series relating to financial markets, for example daily prices of a share, are

both highly non-stationary and noisy. Whether predictions can be made about

future values of financial time series is of significant interest, not least because of

the rewards such an ability would entail.

Another feature of financial time series is that in many cases they are multi-

dimensional, so that for example instead of just having a scalar time series of

prices for a currency one might have a ten dimensional vector time series repre-

senting prices of yet to be executed trades for each instance of the time series.

The non-stationary, noisy yet potentially multi-dimensional nature of financial

time series makes them a suitable target for machine learning techniques.

This thesis considers both generative models - where instances of the time series

are interpreted as significantly noisy observations of an underlying signal or latent

state transition - and discriminative methods such as Support Vector Machines.

The document also considers canonical market microstructural models, all of which

are generative by nature, and incorporates them into the discriminative machine

learning domain through Fisher kernels. It is this marriage of traditional, often

empirically based, market microstructural models to the machine learning frame-

work that represents the main aim of the research described here.

Limited effort has been made in this work to examine the consequence of applying

the methods investigated here in the real world: the focus of the work concen-

trates more on machine learning and market microstructure theory than the issues

relating to the practical implementation of the models developed.
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Amongst other things, the research will seek to answer the following questions:

• Can we make predictions in financial markets using machine learning techniques?

• How do generative and discriminative machine learning methods compare with

each other when it comes to dealing with financial time series?

• Can we improve upon existing machine learning techniques to make them more

suitable for financial prediction tasks?

• What features of financial time series are most useful when making predictions?

• Does incorporating domain knowledge of the financial markets, for example market

microstructure, improve our predictive ability?
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1.2 Research contribution

The overall goal of this research is to investigate the usage of machine learning

methods in financial market prediction tasks. I aim to achieve this through incor-

porating canonical financial models into the discriminative and generative machine

learning framework. Whilst progressing towards this goal, several research contri-

butions are made.

The following list summarises the main areas of novelty that this research makes

innovations in, along with where they are first introduced in this document:

• Research into using Switching Autoregressive Hidden Markov Models for

forecasting futures contracts’ daily returns (Section 4.1).

• Research into using changepoint models for forecasting futures contracts’

daily returns (Section 4.2).

• Research into using discriminative machine learning techniques for the pre-

diction of FX carry basket daily returns (Section 5).

• Use of Multiple Kernel Learning techniques in financial market prediction

(Section 6).

• Use of order book features in financial market prediction (Sections 6 and 7).

• Use of market microstructural models in financial market prediction (Section

8).

• Incorporation of market microstructural models into the machine learning

framework (Section 8).

• Use of Fisher features for financial market prediction (Section 8).

• Learning kernel mapping hyperparameter values and market microstructure

parameters through learning the kernel (Section 9).
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1.3 Publications

Parts of this thesis have been published in the Proceedings of the International

Conference of Financial Engineering [95] and Journal of Machine Learning Re-

search Proceedings [1] and presented at the NIPS 2010 Workshop: New Directions

in Multiple Kernel Learning as well as the Workshop on Applications of Pattern

Analysis (WAPA) 2010. More recent work has been submitted to the Journal of

Quantitative Finance.
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2 Related work / literature review

2.1 Econometrics

The models that econometricians have used in an attempt to tackle the problem

of financial time series prediction have mostly attempted to capitalise on the fact

that there is persistence (positive autocorrelation) in price movement - i.e. that

when prices have been going up, they are likely to continue to go up and vice

versa. A popular model which captures the trending nature of returns vt is the

Autoregressive Moving Average (ARMA) model of Box and Jenkins (1970) [2]:

vt =

p
∑

i=1

αivt−i +

q
∑

i=1

βiǫt−i + ǫt + δ

where the error term ǫt is often assumed to be an i.i.d. random variable sampled

from a normal distribution, i.e. ǫt ∼ N(0, σ2).

The variance of these error terms is often modelled through Engle’s (1982) Au-

toregressive Conditional Heteroskedasticity (ARCH) model [3]:

σ2
t =

p
∑

i=1

αiǫ
2
t−i + δ

or its extension to the Generalised Autoregressive Conditional Heteroskedasticity

(GARCH) model by Bollerslev (1986) [4]:

σ2
t =

p
∑

i=1

αiǫ
2
t−i +

q
∑

i=1

βiσ
2
t−i + δ

The main references describing the entire family of techniques are Hamilton (1994)

[5], Alexander (2001) [6] and Lo & MacKinlay (2002) [7].

In terms of literature in this area, the initial work on financial market persis-

tence is in stocks. Fama (1970) [8] found that the majority of stocks in the Dow

Jones Industrial Average exhibited positive daily serial correlation. Fama and

French (1988) [9] discovered that autocorrelations of portfolios of stocks form a

U-shaped pattern across increasing return horizons with positive autocorrelations

in the nearer term, reaching minimum (negative) values for 3-5 year returns and
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then moving back toward zero for longer return horizons.

Using weekly data, Lo and MacKinlay (1988) [10] found significant positive au-

tocorrelation for weekly and monthly holding-period index returns, but negative

autocorrelations for individual securities. They later found negative autocorre-

lation in the weekly returns of individual stock returns, whilst weekly portfolio

returns were strongly positively autocorrelated [11]. More recently, they found

a positive autocorrelation for weekly holding-period market indices returns but a

random walk for monthly ones [7].

Jegadeesh (1990) [12] found highly significant negative autocorrelation in monthly

individual stock returns, but strong positive autocorrelation at twelve months.

Campbell et al. (1996) [13] found that the autocorrelation of weekly stock returns

is weakly negative, whilst the autocorrelations of daily, weekly and monthly stock

index returns are positive. Ahn et al. (2002) [14] looked at daily autocorrelations

of stock indices and found that they are positive even though the futures based on

them are close to zero.

The characterisation of persistence in FX markets is more recent and described

over much shorter time periods. Zhou (1996) [15] found that high-frequency FX

data have extremely high negative first-order autocorrelation in their returns. This

is backed up by Cont (2001) [16] who shows negative autocorrelation on a tick-

by-tick basis for USDJPY and Dacorogna et al. (2001) [17], who highlight the

negative autocorrelation of one minute FX returns.

2.2 Technical analysis

When the forecast horizon of a prediction represents medium to long term time-

scales, for example from days to months, methods focusing on fundamental macro-

economic trends are best placed to make predictions on how a price might evolve.

These techniques often take the form of technical analysis to either make the out-

right predictions themselves or more commonly to ascertain turning points in these

trends and hence the most suitable times to enter into or exit from trades.

Brown and Jennings (1989) [18] showed that technical analysis is useful when

prices are not fully informative and traders have rational beliefs about the relation
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between prices and signals.

Neftci (1991) [19] showed that a subset of the rules that technical analysts use gen-

erate successful forecasting techniques, but that even these well-defined rules were

shown to be useless in prediction if the economic time series is Gaussian. However,

if the processes under consideration are non-linear, the rules might capture some

information.

Taylor and Allen (1992) [20] report the results of a survey among senior London-

based foreign exchange dealers and found that the majority of them felt that

technical analysis was an important tool and that there was a bias towards using

technical as opposed to fundamental analysis for shorter time horizons.

Lui and Mole (1998) [21] report the results of another survey regarding the use of

technical analysis amongst foreign exchange dealers in Hong Kong and indicate its

use amongst the majority of respondents and its increased popularity for shorter

time horizons.

Brock et al. (1992) [22] investigated 26 technical trading rules using 90 years of

daily stock prices from the Dow Jones Industrial Average and found that they

all outperformed the market. Neely et al. (1997) [23] used genetic programming

to evolve technical trading rules in foreign exchange markets with great success.

They later show evidence that using technical trading rules to trade during periods

of US intervention in foreign exchange markets can be profitable over the short

term. However, LeBaron (1999) [24] showed that after removing periods in which

the Federal Reserve is active, exchange rate predictability is dramatically reduced

using technical trading rules.

Lo et al. (2000) [25] explore the performance of technical analysis on US stocks

from 1962 to 1996 and find that many technical indicators are informative.

Fernandez-Rodryguez et al. (2000) [26] use a technical trading rule-based neural

network to forecast prices on the Madrid Stock Market and discover that a tech-

nical trading rule outperforms a simple buy-and-hold strategy for bear and stable

markets but not bull ones. Neely and Weller (2001) [27] use genetic programming

to evolve technical trading rules that are profitable during US foreign exchange
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intervention.

Kavajecz and Odders-White (2004) [28] show that the technical analysis concepts

of support and resistance levels coincide with peaks in depth on the limit order

book and that moving average forecasts are informative regarding order book

depth.

2.3 Market microstructure

Where econometrics and technical analysis concentrate more on the value of finan-

cial assets, market microstructure concentrates more on the actual trading process

itself - analysing how specific mechanisms affect phenomena such as trading costs,

prices, volume and trading behaviour in general. The field helps explain many of

the costs that prevent assets from achieving their fundamental values.

Interest in market microstructure has grown substantially over the last two decades

to reflect the rapid changes in the structure and technology of the world’s financial

markets. Structural shifts have arisen due to globalisation, the demutualisation of

many exchanges and increasing competition between markets. Regulatory changes

have also played a significant role. For example, governance from the Securities

and Exchange Commission (SEC) in the US led to the creation of Electronic Com-

munication Networks (ECNs), which have aggressively competed with exchanges

for market share and data from which form the bulk of this research.

A summary of the empirical findings that have been gleaned from the following

literature review can be found in Section 17.1 of the appendix.

2.3.1 Order books

The majority of trading for many financial products takes place on ECNs; this

is most notable for currencies [29]. Continuous trading takes place on these ex-

changes via the arrival of market and limit orders. The latter specify whether the

party wishes to buy or sell, the amount (volume) desired, and the price at which

the transaction will occur. While traders had previously been able to view the

prices of the highest buy (best bid) and lowest sell orders (best ask), a relatively

recent development in certain exchanges is the real-time revelation of the total

volume of trades sitting on the ECN’s order book at both these price levels and

20



also at price levels above the best ask and below the best bid. See Table 1 for an

example of an order book.

Table 1: An example of an order book showing three levels on each side

Price Volume($M)
1.4752 1
1.4751 8

Best Ask 1.4750 3
l Spread

Best Bid 1.4749 15
1.4748 5
1.4747 9

Bollerslev and Domowitz (1993) [30] simulate the effect of varying order book depth

and find a relationship between depth and the autocorrelation in the variance of

transaction prices. They also find increases in the autocorrelation of spreads as

order book depth increases.

Hamao and Hasbrouck (1995) [31] investigated the behaviour of intraday trades

and quotes for individual stocks on the Tokyo Stock Exchange. They found that

when market orders were converted into limit orders, execution is delayed but that

they executed at improved prices, that an order that is held with an indicative

quote has a more significant price impact than one that is immediately executed

in full and that the market tends to move in the direction of market orders after

they are executed. They later examined NYSE SuperDOT market and limit orders

and found that limit orders placed at or better than the prevailing quote perform

better than market orders.

Maslov and Mills (2001) [32] studied NASDAQ order book data and found that

a large asymmetry in the number of limit orders placed between the bid and ask

sides of the book was shown to result in short term price changes.

Bouchaud, Mezard and Potters (2002) [33] investigated the order books of three

liquid stocks of the Paris Bourse and found that incoming limit order prices follow

a power law around the current price with a diverging mean.
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Zovko and Farmer (2002) [34] examined two million orders from the London Stock

Exchange and discovered that the difference between the limit price and the best

price available had a cumulative power law distribution and that these relative

limit price levels are positively correlated with volatility.

Potters and Bouchaud (2003) [35], using NASDAQ order book data, found that

incoming limit order prices revealed a very slowly decaying tail and that the life-

time of a given order increases as one moves away from the bid-ask. They also

found a logarithmic (rather than power-law) relationship between price response

and volume on French and British stocks.

Hall and Hautsch (2004) [36], investigating the Australian Stock Exchange (ASX),

found that buy-sell pressure is particularly influenced by recent market activity

and order book depth and that traders appear to use order book information in

order to infer behaviour relating to other market participants.

Using trades and quotes data for liquid stocks on the Paris stock market, Bouchaud

et al. (2004) [37] found that market orders on the Paris stock market exhibited

persistence whilst limit orders were mean reverting; with the interplay between

the two processes resulting in equilibrium because the persistence in order signs is

compensated for by anticorrelated fluctuations in transaction size and liquidity.

Weber and Rosenow (2005) [38] calculated the mean price impact of market orders

on the Island ECN order book. They discovered that the price impact function

is convex and increases much faster than the concave impact function between

returns and limit order flow; the anticorrelation leads to an additional influx of

limit orders as a reaction to price changes, which reduces the price impact of

market orders.

2.3.2 General market microstructure

Research in market microstructure for stocks starts as early as 1976 when Garman

[39] modelled both dealership and auction markets using a collection of market

agents. Morse and Ushman (1983) [40] examined the effect of information an-

nouncements on spreads and found no significant changes in spreads surrounding

quarterly earnings announcements, but did find significant increases in spreads on

the day of large price changes.
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Lease, Masulis and Page (1991) [41] examine the relationship between spreads and

event date returns on equity offerings by NYSE listed firms and found significant

biases towards negative returns and larger spreads on the offering day.

Allen and Gorton (1992) [42] explain that buyers wish to avoid trading with in-

formed investors and, because they are generally able to choose the time at which

they trade, will tend to cluster. This means that when liquidity buyers are not

clustering, purchases are more likely to be by an informed trader than sales, so the

price movement resulting from a purchase is larger than for a sale. As a result,

profitable manipulation by uninformed investors may occur.

Huang and Stoll (1994) [43] developed econometric models of quote revisions and

transaction returns and used them to highlight the importance of different mi-

crostructure theories as well as to make predictions. Their most significant con-

clusion was that the expected quote return was positively related to the deviation

between the transaction price and the quote midpoint, while the expected trans-

action return is negatively related to the same variable.

Brennan and Subrahmanyam (1996) [44] investigated the relation between monthly

stock returns and measures of liquidity obtained from intraday data. They found

a significant return premium associated with transaction costs.

Amihud, Mendelson and Lauterbach (1997) [45] showed that improvements in

market microstructure are valuable in that stocks listed on the Tel Aviv stock

Exchange that were transferred to a more efficient trading method were subject

to significant and permanent price increases. A similar phenomenon was found by

MacKinnon and Nemiroff (1999) [46], who examined the effect of the move to dec-

imalization on the Toronto Stock Exchange and found many benefits to investors,

such as reduced spreads and transaction costs and increased trading activity.

More general overviews of market microstructural work can be found in [47],[48],

[49], [50], [51], [52], [53], [54] and [55].
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2.4 Evolutionary techniques

Many attempts have been made to carry out financial market prediction in a more

empirical manner, where little or no assumptions are made about how the time-

series of observations come about or the underlying process generating them. One

popular way of doing this has been to use evolutionary techniques, where param-

eters of models or the models themselves are evolved using techniques similar to

genetic processes in the biological world, encompassing functions such as crossover

and mutation.

Neely, Weller and Dittmar (1997) [56] use Genetic Programming [57] techniques to

evolve technical trading rules. They discover evidence of significant out-of-sample

excess returns to those rules for each of six exchange rates over the period 1981-

1995.

Allen and Karjalainen (1999) [58] use Genetic Algorithms [59] to derive technical

trading rules for the S&P 500, but fail to beat a simple buy-and-hold strategy

benchmark.

Kaboudan (2000) [60] used Genetic Programming techniques to predict the price

of six equities. He discovered that predicting actual prices is easier than predicting

returns over a relatively small out-of-sample period of fifty trading days.

Potvin, Soriano and Vallee (2004) [61] employ Genetic Programming as a way to

automatically generate short-term trading rules on the equity markets and con-

cluded that the performance of the rules is heavily contingent on whether the

market was rising or falling.

A summary of the performance of evolutionary techniques by Park and Irwin

(2004) [62] found that Genetic Programming worked well on FX markets, but per-

formed poorly on equities and futures.

Fletcher (2007) [63] investigated a combination of Evolutionary and Neural Net-

work techniques called NEAT (Stanley (2002) [64]) on predicting high frequency

FX triangulation arbitrage opportunities and concluded that the technique was of

similar success to a simpler Kalman Filter-based benchmark and did not warrant

the significantly increased computational cost required to implement the method.

24



2.5 Generative machine learning

2.5.1 Kalman filtering

If one assumes that price action is the result of Gaussian noisy observations of a la-

tent linearly evolving process, one can model the system using a Linear Dynamical

System (LDS):

ht = Aht−1 + ηht ηht ∼ N(0,ΣH) (2.1)

vt = Bht + ηvt ηvt ∼ N(0,ΣV ) (2.2)

where ht represents the underlying latent state at time t, A describes how it moves

from one time step to the next, ηht is the process noise which is i.i.d. normally dis-

tributed with zero mean and covariance ΣH . The observations vt are projections

of ht through the observation matrix B and are also subject to i.i.d. normally

distributed noise of zero mean and covariance ΣV .

A common method, particularly in the signal processing domain, for performing

inference in the LDS described in (2.1) and (2.2) is to use Kalman Filtering [65].

This recursive estimator derives a set of predict and update equations to model

the latent state and observation based on minimising the mean-square error of the

posterior state estimate ĥt :

Predict:

ĥt = Aĥt−1 (2.3)

Pt = APt−1A
T + ΣH (2.4)

Update:

Kt = PtB
T (BPtB

T + ΣV )
−1 (2.5)

ĥt = ĥt +Kt(vt −Bĥt) (2.6)

Pt = (I −KtB)Pt (2.7)

Kalman Filtering is used extensively in financial markets, both in its basic form

and also where various assumptions such as the linearity of the latent state tran-

sition are relaxed (Extended Kalman Filter and the Unscented Kalman filter, e.g.
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[66]). More recent innovations in the area are centred on Ensemble Kalman filter-

ing (e.g. [67]).

The most notable usage in highly liquid markets is that of Bolland and Connor

(1996) [68] & [69]. Fletcher (2007) [63] also used the technique in high frequency

FX prediction.

2.5.2 Hidden Markov Models

An Lth order Markov process is one where the conditional independence p(ht|h1:t) =

p(ht|ht−L:t−1) holds, e.g. for the most common case where L = 1, p(ht) depends

only on the previous time step p(ht−1). A Hidden Markov Model (HMM) is one

where latent states ht follow a Markov process and visible observations vt are gen-

erated stochastically through an emission process which defines how observations

are generated given the latent state, i.e. p(vt|ht).

The joint distribution of the latent states and observations for T time steps can

be expressed:

p(h1:T , v1:T ) = p(v1|h1)p(h1)
T
∏

t=2

p(vt|ht)p(ht|ht−1) (2.8)

The joint probability of the state at time t and the observations up to and in-

cluding that time can be described recursively in a process known as the Forward

Recursion:

p(ht, v1:t) = p(vt|ht)
∑

ht−1

p(ht|ht−1)p(ht−1, v1:t−1) = α(ht) (2.9)

The probability of all the observations from a time t to T given the previous state

can also be derived recursively in a process known as the Backward Recursion:

p(vt:T |ht−1) =
∑

ht

p(vt|ht)p(ht|ht−1)p(vt+1:T |ht) = β(ht−1) (2.10)

(2.9) and (2.10) can then be combined to give the joint probability of each latent

state given the full set of T observations. This is called the Forward-Backward
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Algorithm:

p(ht|v1:T ) =
α(ht)β(ht)

∑

ht
α(ht)β(ht)

(2.11)

It is worth noting that HMM and LDS are in fact equivalent, with the former

having a discrete state space representation and the latter a continuous. HMM

appear a plausible way of modelling financial time series in that the market is often

described as being in different regimes (latent states), which drive observable price

movements. There has been much work in using these techniques in the financial

market domain, e.g. [70], [71], [72], [73], [74], [75], [76], [77] and [78].

2.6 Discriminative machine learning methods

Financial market prediction problems can be expressed as an attempt to find a re-

lationship between an output y and a set of D inputs x where x = {x1, x2 . . . xD},
i.e. y = f(x). If y represents a future asset return or price observation at some

point in the future, the function f could be learnt from in-sample training data so

that when new unseen (out-of-sample) data is presented, a new prediction can be

made. Both regression where y ∈ ℜ and classification where y ∈ {−1,+1}, e.g. a
return is positive or negative, would be useful to investigate.

x could be composed of exogenous variables or L lags of y, T time steps into the

future so that:

yt+T = f(xt)

where xt =
{

x1
t . . . x

D
t , yt, yt−1 . . . yt−L

}

(2.12)

2.6.1 Neural Networks

A popular, more recent method for making predictions in financial markets, some-

times incorporating technical analysis, is that of Artificial Neural Networks (ANN).

ANN embody a set of thresholding functions connected to each other with adap-

tive weights that are trained on historical data in order that they may be used to

make predictions in the future, see for example [79], [80], [81] and [82].

These techniques are often criticised for the stochastic nature of their weight ini-

tialisation, the fact that they cannot be guaranteed to provide optimal solutions
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(they fail to converge on global optima) and that they are prone to overfitting. A

more novel method that is not subject to these criticisms, but that is nevertheless

well placed to deal with the high dimensional data sets that order books reveal is

Support Vector Machines (SVM) [83].

2.6.2 Support Vector Machines

Cortes and Vapnik’s (1995) Support Vector Machine [83] represent the relationship

between an output y and a set of inputs x in the form:

f(x) =
N
∑

i=1

wiφ(x) + b (2.13)

where φ(x) represents a non-linear mapping of x into a higher dimensional fea-

ture space, i.e. a basis function, and w and b are parameters learnt from the N

instances of training data.

In classification, these parameters are found by using Quadratic Programming

(QP) optimisation to first find the αi which maximize:

N
∑

i=1

αi −
1

2

N
∑

i,j

αiαjyiyjφ(xi) · φ(xj)

where αi ≥ 0 ∀i,
N
∑

i=1

αiyi = 0 (2.14)

The αi are then used to find w:

w =
N
∑

i=1

αiyiφ(xi) (2.15)

The set of Support Vectors S is then found by finding the indices i where αi > 0.

b can then be calculated:

b =
1

Ns

∑

s∈S

(

ys −
∑

m∈S
αmymφ(xm) · φ(xs)

)

(2.16)

The mapping x → φ(x) is intended to make the data linearly separable in the

feature space, and to this aim kernels k(xi,xj) = φ(xi) · φ(xj) representing the
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Radial Basis Function:

k(xi,xj) = e
−





‖xi−xj‖2

2σ2





and the Linear Kernel:

k(xi,xj) = xix
T
j

are commonly used.

For regression, one first needs to decide how significantly misclassifications should

be treated (C) and how large the insensitive loss region inside which misclassifica-

tions are ignored should be (ǫ). One then proceeds by using QP optimisation to

find the α+ and α− which maximize:

N
∑

i=1

(α+
i − α−

i )ti − ǫ
N
∑

i=1

(α+
i + α−

i )−
1

2

∑

i,j

(α+
i − α−

i )(α
+
j − α−

j )φ(xi) · φ(xj)

subject to the constraints (∀i):

0 ≤ α+
i ≤ C

0 ≤ α−
i ≤ C

N
∑

i=1

(α+
i − α−

i ) = 0 (2.17)

The α+
i and α−

i are then used to find w:

w =
N
∑

i=1

(α+
i − α−

i )φ(xi) (2.18)

The set of Support Vectors S is then obtained by finding the indices i where

0 < αi < C and ξi = 0. b can then be calculated:

b =
1

Ns

∑

s∈S

(

ti − ǫ−
L
∑

m=1

(α+
i − α−

i )φ(xi) · φ(xm)

)

(2.19)

There has been much work in using SVM and other similar single-kernel based

methods to predict the movement of financial time series, e.g. [84], [85], [86], [87],
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[88], [89], [90], [91], [92], [93], [94], [95] and most notably [96].

2.6.3 Relevance Vector Machines

Tipping’s Relevance Vector Machine (2001) [97] implements a Bayesian proba-

bilistic methodology for learning in models of the form shown in (2.13). A prior is

introduced over the model weights governed by a set of hyperparameters, one asso-

ciated with each weight (αi), whose most probable values are iteratively estimated

from the data. If one assumes that the N target values t that one is attempting to

predict are samples from the model subject to Gaussian distributed noise of zero

mean and variance σ2, and that both α and σ2 have uniform distributions, one

can derive the model evidence:

p(t|α, σ2) =

∫

p(t|w, σ2)p(w|α)dw

=
1

2π
N
2

∣

∣σ2I +ΦA−1ΦT
∣

∣

− 1
2 exp

{

−tT

2
(σ2I +ΦA−1ΦT )−1t

}

where A = diag(α0, α1, . . . , αN), I is the N × N identity matrix and Φ is the

N×D design matrix constructed such that the ith row represents the vector φ(xi).

This evidence can be maximized by Mackay’s (1992) [98] evidence procedure:

1. Choose starting values for α and β.

2. Calculate m = βΣΦT t and Σ = (A+ βΦTΦ)−1 where β = σ−2.

3. Update αi =
γi
m2

i

and β =
N−

∑

i γi

‖t−Φm‖2 .

4. Prune the αi and corresponding basis functions where αi > a threshold value

(corresponding to wi with zero mean).

5. Repeat (2) to (4) until a convergence criterion is met.

The hyperparameter values α and β which result from the above procedure are

those that maximize the marginal likelihood and hence are those used when making

a new estimate of a target value t for a new input x′:

t = mTφ(x′) (2.20)
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The variance relating to the confidence in this estimate is given by:

σ2(x′) = β−1 + φ(x′)TΣφ(x′) (2.21)

There is very limited evidence of research using RVM in the financial domain

other than Gestel et al. (2001) [90], Hazarika (2002) [91], Tino & Yao (2005) [92]

& Huang & Wu (2008) [94]. It is probable that the reason for the limited evidence

of the use of RVM in the financial domain relative to SVM is that although the

techniques have a similar functional form, the RVM’s evidence procedure described

above makes them not only more complex and computationally expensive to im-

plement but also occasionally prone to over-fitting.

Fletcher (2009) [95] found the use of a committee of ANN, SVM and RVM tech-

niques was superior to any known benchmark when predicting daily FX carry

basket returns.

Despite the many advantages of using SVM/RVM and their resulting popularity,

one of the main problems of the SVM approach for real-world problems is the

selection of the feature-space mapping through the choice of kernel, which is often

selected empirically with little theoretical justification.
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3 Conclusions from literature review

The econometrics literature points to the fact that weekly and monthly stock re-

turns are weakly negatively correlated, whilst daily, weekly and monthly index

returns are positively correlated. This is very different in FX, where short term

returns (i.e. of the order of a minute or less) are highly negatively correlated. The

consistency of the models described and results reported in this area make it a

very useful source of benchmarks for the techniques this research will develop.

The majority of technical analysis is concerned with incorporating previous price

action of the time series in question, occasionally incorporating simple measures

of the volume traded, for example to provide an estimate of information quality

that cannot be deduced from the price [99] or to confirm trends [100] and [101]. A

review of the field by Park (2004) [102] suggests that technical analysis works best

on currency markets, intermediate on futures markets, and worst on stock mar-

kets. This review also suggests that the efficacy of technical analysis is in decline

as markets become increasingly efficient through the decline in transaction costs,

increased computing power and more sophisticated market participants. This de-

cline is reflected in Neely (2009) [103] - an unusually recent example of work in a

field that has increasingly fewer publications associated with it.

There is a great deal of research on order books and the related field of market

microstructure, but it is heavily based on stocks and often relates to characterising

features such as liquidity, volatility and spreads (the difference between the best

bid and ask prices) instead of attempting to predict future price action. The ex-

posure of order books’ previously hidden depths that has occurred more recently

should allow traders to capitalise on the greater dimensionality of data available

to them at every order book update (tick) when making trading decisions and per-

mit techniques that are more sophisticated than the standard time series analysis

toolset to be used when forecasting prices. Published literature does not indicate

that this has occurred.

The evidence on the efficacy of evolutionary algorithms in financial prediction ap-

plications is divided. Furthermore, much of the work appears highly empirical,

involving tweaking algorithms through trial and error, and in the author’s opinion

does not warrant formal research. The author also has a preference for research

32



that is fully repeatable and does not involve the random/stochastic elements which

form the basis of most evolutionary techniques.

There is a significant body of work implementing signal processing methods in

financial time-series prediction. Similar to econometric techniques, many of the

methods can be seen as special cases of the ideas I propose developing (e.g. the

Kalman Filter is a recursive estimator for an LDS). However, the framework under

which the prediction problems are posed is not consistent with the Bayesian in-

ference or even machine learning methodology that my research is centred around

and it will therefore be difficult to develop novel techniques as extensions from the

signal processing domain.

The literature suggests that standard HMM techniques can be effective in very

specific applications, for example when predicting daily FX returns. However, the

standard HMM framework appears to be too simplistic to be useful for the major-

ity of financial market prediction problems.

The stochastic nature of ANN’s weight initialisation, the fact that they cannot be

guaranteed to provide optimal solutions (they fail to converge on global optima)

and that they are prone to overfitting make ANN less of a useful forecasting tool

than SVM. However, despite the many advantages of using SVM and their resulting

popularity, one of the main problems of the SVM approach for real-world problems

is the selection of the feature-space mapping through the choice of kernel, which

is often selected empirically with little theoretical justification.
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4 Generative machine learning research

Given the scarcity of evidence of using generative machine learning methods in

financial prediction tasks, it was felt that a contribution could be made by inves-

tigating non-standard methods from this area. The evidence of success of HMM

in financial prediction tasks, coupled with the knowledge that financial returns

are at least to some extent autocorrelated, made Switching Autoregressive Hidden

Markov Models an appropriate starting point.

4.1 Switching Autoregressive Hidden Markov Models

4.1.1 Theoretical model

Ephraim and Roberts’ (2005) [104] Switching Autoregressive Hidden Markov Model

(SAR-HMM) is similar to the standard HMM described in (2.8) but instead of

the observations of the time series vt being generated by the hidden states ht at

any given time t, the latent states describe an autoregressive relationship between

sequences of observations. The extension of HMM to SAR-HMM is potentially rel-

evant in that markets often go through periods where they trend or mean-revert,

corresponding to positive and negative autoregressive coefficients respectively.

The SAR-HMM switches between sets of autoregressive parameters with proba-

bilities determined by a state transition probability similar to that of a standard

HMM:

vt =
R
∑

r=1

ar(ht)vt−r + ηtwith ηt ∼ N(0, σ2) (4.1)

where ar(ht) is the r
th autoregressor when in state h ∈ {1 . . . k} at time t and each

ηt is an i.i.d. normally distributed innovation with mean 0 and variance σ2.

4.1.2 Inference

The definition in (4.1) allows us to to describe the probability of an observation

at time t expressed as a function of the previous R observations and the current

state ht:

p(vt|vt−R:t−1, ht) =
1

σ
√
2π

exp







− 1

2σ2

(

vt −
R
∑

r=1

ar(ht)vt−r

)2






(4.2)
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The forward recursion calculates at time t the probability of being in a state ht

given all the observations up to that point in time v1:t , i.e. p(ht|v1:t).

Starting with an initial probability of being in a state given the first observation:

p(h1|v1) ∝ p(v1|h1)p(h1)

values for p(ht|v1:t) for subsequent values of t can be found by iteration:

p(ht|v1:t) =
∑

ht−1

p(vt|vt−R:t−1, ht)p(ht|ht−1)p(ht−1|v1:t−1) (4.3)

where each p(ht−1|v1:t−1) is the result of (4.3) for the previous time step t− 1 and

p(vt|vt−R:t−1, ht) is calculated from (4.2). The full derivation of (4.3) is shown in

Section 17.2.1 of the appendix.

The forward recursion can be started at t = R + 1 with the previous posterior

equalling the initial starting probability for each state, i.e. p(hR|v1:R) = p(h1).

Once the forward recursion has been completed for all time steps t = 1 : T , the

backward pass calculates at time t the probability of being in a state ht given all

the observations in the entire sequence of T time steps v1:T , i.e. p(ht|v1:T ).

Commencing at the final time step (t = T ) and working backwards to the start

(t = 1), p(ht|v1:T ) can be evaluated as follows:

p(ht|v1:T ) =
∑

ht+1

p(ht+1|ht)p(ht|v1:t)p(ht+1|v1:T ) (4.4)

where each p(ht+1|v1:T ) is the result of (4.4) from a previous iteration (i.e. future

time step t+1) and p(ht|v1:t) for each time step has been calculated by the forward

pass in (4.3). The full derivation of (4.4) is shown in Section 17.2.1 of the appendix.

4.1.3 Experiments

Experiments were conducted attempting to predict the daily returns for each of

44 futures contracts spanning 10.5 years (see Table 14 in Section 17.3 of the ap-

pendix for the futures contracts investigated). It was found that the performance
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of the Switching Autoregressive HMM was highly sensitive to the choice of param-

eter values θ = {R,a, p(h1|v1), p(ht+1|ht)} and hence a parameter set that was

appropriate for one time period would give very poor results for another. Ex-

pectation Maximisation was used in conjunction with K-folds cross-validation to

optimise θ for each fold, but this problem of starting point sensitivity was never

overcome and experiments using this technique on daily returns were discontinued.

The work was repeated on attempting to predict minutely returns on each of the

the 44 futures contracts for a subset of ten different days but exactly the same

problems were encountered and the experiments abandoned.

36



4.2 Changepoint models

The failure of the SAR-HMM to effectively model financial returns motivated an

investigation into a different class of generative model. In the same way that

the SAR-HMM seemed plausible because markets often go through periods where

they trend or mean-revert - these different states being represented by the alterna-

tive autoregressive parameters - they can also be thought of as occasionally going

through structural changes in other aspects of the time series, for example the

variance. A class of models that aims to characterise such sudden alterations in

behaviour is that of changepoint models.

4.2.1 Theoretical model

Changepoint models - see for example [105] and [106] - assume one or more pa-

rameters defining the distribution of one or more observable variables are constant

for a run of length rt at time t, but change when there is a changepoint and a new

run starts, i.e. rt = 0.

Their use in this context would be to predict at time t the next observation

xt+1 given the vector of all previous observations x1:t. One could assume, for

example, that observations are Gaussian distributed, i.e. P (xt) ∼ N(µt, σ
2
t ) and

that the variance σ2
t (or its inverse, the precision λt) is sampled from a Gamma

prior (i.e. λt ∼ Gam(α0, β0)) and the mean µt is sampled from a Gaussian (i.e.

µt ∼ N(µ0, (κ0λ)
−1)), each time a changepoint occurs. Another assumption could

be that the probability distribution of a run being of length rt at time t given its

length the previous time step is as follows:

P (rt|rt−1) =











Pcp if rt = 0

1− Pcp if rt = rt−1 + 1

0 otherwise

(4.5)

where in general Pcp will be small so that P (rt = 0|rt−1), i.e. the probability of a

changepoint occurring at time t, will be low.

4.2.2 Implementation

See Section (17.2.2) in the appendix for a full derivation of the equations used in

this section.
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Assuming that we are starting at time t = 1 with a zero run length, i.e. that

r0 = 0 and that values for all the hyperparameters have been chosen, conjugacy of

the priors allows inference in the model to proceed as follows for each time step:

• Assume that we are starting at time t with a zero run length, i.e. that r0 = 0.

Choose values for µ0, ν0 and λ0.

• Make a new observation xt.

• Evaluate Predictive Probabilities for all rt where 0 < rt < t:

P (xt|rt−1,x
rt′
t−1) = St(xt|µt, αt, σ

2
t ), i.e. xt is distributed with a Student t-

distribution with a mean µt, 2αt degrees of freedom and a variance of σ2.

• Calculate Growth Probabilities for all rt where 0 < rt < t:

P (rt = rt−1 + 1,x1:t) = P (rt−1,x1:t−1)P (xt|rt−1,x
rt′
t−1)(1− Pcp)

• Calculate Changepoint Probabilities for all rt where 0 < rt < t:

P (rt = 0,x1:t) =
∑

rt−1

P (rt−1,x1:t−1)P (xt|rt−1,x
rt′
t−1)Pcp

• Calculate Evidence:

P (x1:t) =
∑

rt

P (rt,x1:t)

• Determine Run Length Distributions for all rt where 0 < rt < t:

P (rt|x1:t) =
P (rt,x1:t)
P (x1:t)

• Update all the parameters:

µt+1 =
(κtµt + xt)

κt + 1

αt+1 = αt + 0.5

κt+1 = κt + 1

βt+1 = βt +
κt(xt − µt)

2

2(κt + 1)

σ2
t+1 =

βt(κt + 1)

αtκt

• Make a prediction of what the next observation will be using these updated

parameters:

P (xt+1|x1:t) =
∑

rt

P (xt+1|rt,xrt
t )P (rt|x1:t)
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4.2.3 Experiments

Experiments were once again conducted attempting to predict the daily returns for

each of 44 futures contracts spanning 10.5 years (2751 data points) and minutely

returns on each of the the 44 futures contracts for a subset of ten different days, but

similar problems as with the SAR-HMM were encountered and the experiments

abandoned.
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4.3 Conclusions

Though modelling price action as observations generated from some latent process

seems plausible, particularly when incorporating either the known autocorrelation

of asset returns or the sudden structural changes that occur in a market, the large

number of parameters that the two generative models investigated here required

rendered them impractical for financial prediction tasks. The low signal to noise

ratio in asset price returns meant that when using models with large numbers of

parameters overfitting frequently occurs and a set of parameters that was useful

for one period seldom seems to be appropriate for the following one.

Furthermore, some of the mathematical assumptions that are used in formulat-

ing these two models, for example selecting exponential family distributions for

the conjugate priors in the changepoint models in order to make the mathematics

tractable, have no real-life financial motivation. For example, there is no reason

that the priors used in Section 4.2.1 should be Gamma and Gaussian distributions,

other than to make the maths tractable (the former being the conjugate prior of

the latter). The choice of probability distributions which the generative models

briefly investigated here consist of seem to have no foundation in financial theory -

where it is known for example that returns from most asset classes follow a distri-

bution with much higher kurtosis than the Gaussian. A useful innovation in this

area could be to use models that have been shown to be more appropriate to the

time series they are modelling but are also either still of the exponential family

to ensure mathematical tractability or where sensible numerical approximations

can be made so that conjugacy is not necessary. One might expect this significant

weakness of the models investigated to also be the case for the majority of other

standard generative machine learning methods used to model financial processes.

A greater effort could have been made in both attempting to make the methods

investigated here successful. This could have been done in many ways, perhaps

for example by extending the models to incorporate exogenous factors known to

have an impact on the time series being predicted, incorporating regularisation

into the models to reduce over-fitting or even to investigate more of the many

alternative generative machine learning methods available. However, because of

the weaknesses of these methods as described above, it was felt that researching

discriminative methods would be an appropriate next step and that this area could

be revisited - perhaps in conjunction with the discriminative framework.
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5 FX carry basket prediction

Temporarily putting aside generative models, it seemed appropriate to investigate

models that are not subject to the weaknesses outlined previously - namely poten-

tial over-parametrisation and the circumstantial choice of probability distribution.

With this aim in mind, it was decided to research standard discriminative machine

learning techniques incorporating sophisticated exogenous financial data.

It was expected that the novel inclusion of such data and the highly pragmatic

and less theoretically motivated approach would be reflected in improved forecast

ability.

The work in this section is published in the Proceedings of the International Con-

ference of Financial Engineering 2009 [95].

5.1 Background

A portfolio consisting of a long position in one or more currency pairs with high

interest rates and a short position in one or more currencies with low interest

rates (an FX carry basket) is a common asset for fund managers and speculative

traders. Profit is realized by owning (carrying) this basket owing to the difference

in the interest rates between the high yielding currencies and the low yielding ones.

The returns that this basket generate are subject to the risk that the difference

between the yields might reduce, possibly becoming negative, and the fact that

the exchange rates of the currencies might move unfavourably against the basket

holder. A common basket composition is of the three highest yielding G10 cur-

rencies bought against the three lowest ones, updated daily to reflect any changes

in yield rankings. This basket has a long-bias in the sense that someone holding

it will tend to earn a positive return on the asset, subject to periods of negative

returns (draw downs).

It would clearly be useful to an FX carry basket trader to be able to predict nega-

tive returns before they occur, so that the holder could sell out of or even go short

the asset class before it would realize a loss. Several market-observable factors
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are known to hold a strong relationship with FX carry returns. Furthermore, the

returns are known to exhibit short term persistence (i.e. autocorrelation) [16]. It

is upon these two phenomena that a trader may wish to capitalise, attempting to

predict when returns will be negative and hence reduce the risk of realising poor

returns for the asset over the holding period.

Artificial Neural Networks (ANN) have been used extensively in the general area

of financial time-series prediction, with varying success e.g. [79], [107], [81] & [82]

and hence represent a good starting point with the prediction problem posed here.

Support Vector Machines (SVM) [83], being a more recent technique, have been

used to a lesser extent e.g. [84], [86], [87] & [89] and indeed there is little evidence

of their use in FX carry basket prediction and very little work on the incorporation

of exogenous variables when making predictions. The more novel RVM has been

used even less in the financial domain e.g. [90], [91], [92] & [93] and apparently

never in the area of FX carry prediction.

Knowing of the relation between carry returns for any given day and both ob-

servable exogenous factors for that day and previous days’ returns, it makes sense

to attempt to incorporate these as inputs into a model where future returns are

predicted given information available at the present.

The FX carry basket prediction problem can be expressed as attempting to find a

relationship between an output y and a set ofD inputs x where x = {x1, x2 . . . xD},
i.e. y = f(x), where y is used to represent a future return of the carry basket,

either T = 1 or T = 5 days into the future. Both regression where y ∈ ℜ and

classification where y ∈ {−1,+1}, i.e. the T -day return is positive or negative, are

investigated. x is composed of five exogenous variables and L lags of y, so that:

yt+T = f(xt)

where xt =
{

x1
t . . . x

5
t , yt, yt−1 . . . yt−L

}

(5.1)

5.2 Experimental design

The total dataset comprised target and input values from 01/01/1997 to 12/12/2008

(3118 trading days). Various combinations of in-sample and out-of-sample periods

were used for the experiments covering this dataset, but after a combination of
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trial and error and the consideration of the practical implications of implementing

the trading system, an in-sample period of one year (262 trading days) used to

train the networks to make predictions for the following six months (131 days) was

decided on1. Logarithms of five and one day returns of this carry basket were used

as target values along with the five exogenous variables and three lags of the carry

basket returns as input variables.

Experiments were conducted by training the networks for one year, outputting

predicted values for six months, rolling on six months so that the following out-of-

sample started at the end of the previous in-sample and recording the out-of-sample

predictions for the 21 periods that the dataset encompassed in this manner. The

time-series of predictions generated using this rolling window of predictions, which

encompassed 2751 trading days from 06/01/1998 to 22/07/2008, was used as the

input to various simple trading rules so that the cumulative effect of asset returns

as if the FX carry basket had been traded could be ascertained.

Neural Networks with one hidden layer using various activation functions, reg-

ularisation parameters and numbers of hidden neurons were investigated. The

effect of pre-processing the inputs using standard normalization methods as well

as Principal Component Analysis was researched. After the activation function

and a pre-processing method had been decided upon, different numbers of hidden

neurons and regularization parameters were used for the several ANN used at the

committee stage.

SVM and RVM using radial and linear kernels, alternative pre-processing methods

and parameters for C, ǫ and σ (where relevant) were investigated. After settling

on a kernel and pre-processing method, different values for C, ǫ and σ were used

for the SVM and RVM when used at the committee stage.

The ANN, SVM and RVM were used both in an attempt to predict actual one

day and five day returns and also to predict whether the one/five day return was

below various threshold values. It was found that the latter implementation of the

1Note that the in and out-of sample lengths are in themselves parameters and one could argue
that they should therefore not have been selected from test data in the fashion described here,
however the sensitivity of the performance to significant changes in this parameter was minimal
and it was consequently felt that selecting the window lengths in this manner would not lead to
over-fitting.
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networks, i.e. for classification, was much more effective. However, the ANN, SVM

and RVM performed differently from each other, depending on how negatively the

threshold value was set. Three alternative values for the threshold were therefore

used when the classifiers were combined at the committee stage.

Various combinations of different implementations (i.e. parameter settings, num-

ber of hidden neurons, kernels etc.) of ANN, SVM and RVM in conjunction with

each other were investigated and an optimal committee comprising of the pre-

dictions of ten classifiers was decided upon. These ten predictions were fed into

various simple trading rules to generate trading signals, informing a trader to

what extent he should be long/short the basket on any given day. It was found

that in general the committee of networks was much more effective at predicting

five day returns than one day returns, and it was on this basis that the optimal

configuration was used.

5.3 Results

Conservative transaction costs of 0.04%2 of the position size per trade were used

to estimate the returns that would have been realised for the optimal trading rule

based on the classifier predictions over the 21 out-of-sample periods which the

dataset comprised. These are shown in Table 2 alongside the benchmark of con-

stantly holding this long-biased asset - see Section 17.4 in the appendix for an

explanation of the acronyms.

2Trading costs for the currencies such as the ones used in the carry basket are typically one
or two basis points (one hundredths of a percent), only very occasionaly increasing to three or
four basis points during illiquid times.
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Figure 1: FX carry basket cumulative returns for committee prediction and benchmark

Figure 1 details the actual time series of returns using the classifier predictions

alongside the benchmark and hence highlights the many occasions when negative

returns could have been pre-empted and the trader would have profited by going

short the basket. In this sense, the classifier predictions are only able to outperform

the benchmark in periods when it falls significantly. This is most evident in the

final two and a half year period on the graph.

Table 2: Comparison between benchmark and committee prediction

Time Series Always-In Benchmark Committee Prediction

Overall Return 201% 339%
CAGR (%) 6.88% 12.36%
SD Annualized 8.4% 8.3%
SD Loss Annualized 6.9% 5.9%
Max Draw Down -14.2% -11.6%
Max DD Time (days) 628 295
Sharpe Ratio 0.82 1.49
Sortino Ratio 0.99 2.08
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5.4 Conclusions

Assuming conservative estimates of trading costs, over the 10.5 year (2751 trading

day) rolling out-of-sample period investigated, 110% in Sortino and 80% in Sharpe

relative to the ‘Always In’ benchmark were found. Furthermore, the extent of the

maximum draw-down was reduced by 19% and the longest draw-down period was

53% shorter.
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6 Multiple Kernel Learning on the limit order

book

Following the success of the committee of discriminative techniques in predicting

FX carry basket returns, it was felt that greater innovation on the theoretical side

should be attempted in order to ascertain whether making the predictive methods

richer from a machine learning perspective would improve performance.

The work in this section was presented at the Workshop on Applications of Pat-

tern Analysis (WAPA) 2010 and is published in the Journal of Machine Learning

Research (JMLR) Proceedings Series [1].

6.1 Background

A trader wishing to speculate on a currency’s movement is most interested in what

direction he believes that currency will move over a forecast horizon ∆t so that

he can take a position based on this prediction and speculate on its movement:

buying the currency (going long) if he believes it will go up and selling it (going

short) if he believes it will go down.

A method which deals with the problem of kernel selection is that of Multiple

Kernel Learning (MKL) (e.g. [108], [109]). This technique mitigates the risk of

erroneous kernel selection to some degree by taking a set of kernels and deriving

a weight for each kernel such that predictions are made based on a weighted sum

of several kernels.

Multiple Kernel Learning considers convex combinations of K kernels:

κ(xi,xj) =
K
∑

t=1

dtκt(xi,xj) where dt ≥ 0,
∑

t

dt = 1. (6.1)

It is often useful when looking at high dimensional datasets (for example in the

world of computer vision) to summarise them by extracting features (e.g. [110]).

Taking this into account, the principle of MKL can be extended by constructing a

set of kernels that not only includes different kernel functions applied to the input

data but also different features of the data itself. The weightings that the MKL

allocates to each kernel method / feature combination highlights its usefulness in
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representing the input space for the task at hand.

The majority of the research using SVM in financial prediction tasks deals with

the problem of kernel selection in a purely empirical manner with little to no the-

oretical justification. The exceptions to this being Wang and Zhu (2008) [111],

who use a two step kernel-selection/SVM procedure and Luss and D’Aspremont

(2008) [112] who use Multiple Kernel Learning (MKL) to classify the impact of

news for a financial prediction task. There is very scant evidence of research using

MKL in financial market prediction and no evidence of work based on using MKL

on order book volume data, with all previous research using features based on

previous price movements (e.g. [113]).

For the purposes of exploring MKL on order book data, two MKL techniques will

be investigated: Rakotomamonjy et al.’s (2008) SimpleMKL [114] and Hussain

and Shawe-Taylor’s (2009) LPBoostMKL [115] techniques.

6.2 SimpleMKL

SimpleMKL learns the kernel weightings (i.e. dt of (6.1)) along with the α’s by

using semi-infinite linear programming to solve the following constrained optimi-

sation:

min
d

J(d) =



































min
{f},b,ξ

1
2

K
∑

t=1

1

dt
‖ft‖2 + C

m
∑

i=1

ξi

s.t. yi

K
∑

t=1

ft(xi) + yib ≥ 1− ξi

ξi ≥ 0, i = 1, . . . ,m



































(6.2)

where:

ft(x) = sign

(

m
∑

i=1

αiyiκt(xi,x) + b

)

(6.3)
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The associated dual problem is very similar to (2.14):

min
dt

{

max
α

−1

2

∑

i,j

αiαjyiyj
∑

t

dtκt(xi, xj) +
∑

i

αi

}

s.t.
∑

t

dt = 1, dt ≥ 0,
∑

i

αiyi = 0, C ≥ αi ≥ 0 (6.4)

This problem can be solved using a standard SVM optimisation solver for a fixed

weighting of kernels, to generate an initial solution for α. After this step one can

fix α and use a linear programming technique to solve for the d’s and hence find

the weights of the kernels. This 2-step process is repeated until a convergence

criterion is met.

6.3 LPBoostMKL

In general, boosting consists of constructing a convex combination of weak learners

- defined as classifiers that misclassify less than half the time. The expectation is

that a weighted combination of weak learners may be boosted to become a single

strong learner, see for example [116]. This is possible if each of the weak learners

are slightly correlated with the true classification but not fully correlated with

each other.

The novel LPBoostMKL methodology, which is an extension of Linear Program-

ming Boosting via Column Generation [117], treats each kernel κt as defining a

class of weak learners and derives the weightings of the kernel through the following

optimisation [115]:

min β

s.t.
∑m

i=1 uiyiht(p)(xi) ≤ β, p = 1, . . . , n
∑m

i=1 ui = 1

0 ≤ ui ≤ D

where n are the number of weak learners chosen and

ht(p)(xi) =
1

vt(p)

m
∑

i=1

uiyiκt(p)(xi,x) (6.5)

is the weak learner constructed using the kernel κt(p), where t(p) ∈ {1, . . . , K}.
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The weak learner is normalised using vt(p):

vt(p) = max
t(p)∈{1,...,K}

√

√

√

√

m
∑

i,j=1

uiujyiyjκt(p)(xi,xj) > β. (6.6)

When the weak learners are constructed using Equation (6.5), LPBoost solves the

MKL problem [115].

6.4 Experimental design

Representing the volume at time t at each of the price levels of the order book on

both sides as a vector Vt (where Vt ∈ R
6
+ for the case of three price levels on each

side) a set of features was constructed:

F =

{

Vt,
Vt

‖Vt‖1
,Vt − Vt−1,

Vt − Vt−1

‖Vt − Vt−1‖1

}

Radial Basis Function kernels have often proved useful in financial market predic-

tion problems, e.g. [89], and for this reason a set consisting of three radial kernels

with different values of σ2 along with a linear kernel was used:

K =

{

exp

(

−‖xi − xj‖2
σ2
1

)

, . . . , exp

(

−‖xi − xj‖2
σ2
5

)

, 〈xi,xj〉
}

This meant that altogether there were |F| × |K| = 4 × 6 = 24 feature / kernel

combinations constructed from the order book data, so that for example the com-

bination K1F1 is the Radial Basis Function with the scale parameter σ2
1 applied to

the simplest volume feature Vt and K3F6 is the linear kernel applied to the volume

feature Vt − Vt−1.

In the problem of currency prediction, any move that is predicted has to be sig-

nificant enough to cross the spread in the appropriate direction if the trader is to

profit from it and here we are concerned with a multiclass classification of that

movement. We attempt to predict whether the trader should go long by buying the

currency pair because PBid
t+∆t > PAsk

t , go short by selling it because PAsk
t+∆t < PBid

t

or do nothing because PBid
t+∆t < PAsk

t and PAsk
t+∆t > PBid

t .

With this in mind, three SVM are trained on the data with the following labelling
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criteria for each SVM:

SVM 1:PBid
t+∆t > PAsk

t ⇒ y1t = +1, otherwise y1t = −1

SVM 2:PAsk
t+∆t < PBid

t ⇒ y2t = +1, otherwise y2t = −1

SVM 3:PBid
t+∆t < PAsk

t , PAsk
t+∆t > PBid

t ⇒ y3t = +1, otherwise y3t = −1

In this manner, a three dimensional output vector yt is constructed from y1t , y
2
t

and y3t for each instance such that yt = [±1,±1,±1]. Predictions are only kept

for instances where exactly one of the signs in yt is positive, i.e. when all three

of the classifiers are agreeing on a direction of movement. For this subset of the

predictions, a prediction is deemed correct if it correctly predicts the direction of

spread-crossing movement (i.e. upwards, downwards or no movement) and incor-

rect if not.

Both MKL methods described above were investigated along with standard SVM

based on each of the 24 kernels / feature combinations individually. Predictions

for time horizons (∆t) of 5, 10, 20, 50, 100 and 200 seconds into the future were

created. Training and prediction were carried out by training the three SVM on

100 instances of in-sample data, making predictions regarding the following 100

instances and then rolling forward 100 instances so that the out-of-sample data

points in the previous window became the current window’s in-sample set. The

data consisted of 6×104 instances of order book updates for the EURUSD currency

pair from the EBS exchange starting on 2/11/2009. EURUSD was selected as the

currency pair to investigate because it is the most actively traded currency pair,

comprising 27% of global turnover [29]. Consequently, the EBS exchange was

selected for this analysis because it is the primary ECN for EURUSD, meaning

that most of the trading for the pair takes place on it.

6.5 Results

When describing the predictive accuracy of the three different kernel methods

(SimpleMKL, LPBoostMKL and the individual kernels) several factors need to be

considered: how often each method was able to make a prediction as described

above, how correct the predictions were overall for the whole dataset and how the

predictive accuracy varied depending on the direction of movement predicted, e.g.

how many predicted upward movements actually transpired, etc. In the tables
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and figures that follow, for the sake of clarity only one of the 24 individual kernels

is used when comparing the two MKL techniques to the individual kernels. The

kernel chosen is the one with the most significant weightings from the SimpleMKL

and LPBoostMKL methods (as highlighted in Figures 2 and 3), namely the radial

basis function mapping with the smallest scale parameter (σ2) on the simple vol-

umes feature, i.e. K1F1.

A simple trend-following benchmark was employed for the sake of comparison.

A moving average (MA) crossover technique (see for example [118]) consisting of

a signal constructed from moving averages of two rolling windows, MAlong and

MAshort, was used. When MAlong < MAshort the signal was to go long (+1) and

when MAlong > MAshort the signal was to go short (-1). The window lengths

chosen for the two periods were those that gave the highest predictive accuracy for

the data set. This technique was chosen as a benchmark because out of the com-

monly used technical analysis methods toolset it is one of the simplest and when

the parameters have been optimised retrospectively to suit the overall dataset (in

a manner that would not be possible in reality) it represents the most competitive

comparison for the techniques investigated here. In contrast to the kernel-based

methods, this rule produced a continuous non-zero signal.

Table 3 shows how often each of the methods were able to make a prediction for

each of the time horizons and Table 4 shows each of the methods’ predictive ac-

curacy over the entire dataset when a prediction was actually possible.

Table 3: % number of instances predictions possible
∆t SimpleMKL LPBoostMKL K1F1 Moving Average
5 27 24 26 100
10 43 38 42 100
20 51 50 50 100
50 44 43 43 100
100 35 34 35 100
200 26 25 21 100

Tables 5, 6 and 7 break down the predictive accuracy of each method conditioned

on whether a positive, negative or no movement (i.e. not spread-crossing) were

predicted. Note that ”NA” indicates that no predictions for that particular value
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Table 4: % accuracy of entire dataset
∆t SimpleMKL LPBoostMKL K1F1 Moving Average
5 95 95 95 4
10 90 90 89 6
20 81 81 81 10
50 66 66 66 17
100 51 51 51 24
200 45 46 46 30

of ∆t were possible.

Table 5: % accuracy of positive movement predictions
∆t SimpleMKL LPBoostMKL K1F1 Moving Average
5 NA NA NA 2
10 NA NA NA 5
20 12 33 6 9
50 30 32 30 17
100 27 27 27 24
200 35 35 38 30

Table 6: % accuracy of negative movement predictions
∆t SimpleMKL LPBoostMKL K1F1 Moving Average
5 NA NA NA 2
10 NA NA NA 4
20 16 17 16 8
50 16 17 16 16
100 19 21 21 23
200 34 37 39 31

Figures 2 and 3 show the average weighting that SimpleMKL and LPBoostMKL

assigned to each of the 24 individual feature / kernel combinations.

6.6 Conclusions

Table 3 indicates that both MKL methods and the individual kernel were able to

make predictions between a third and half the time with the MKL methods slightly
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Table 7: % accuracy of zero movement predictions
∆t SimpleMKL LPBoostMKL K1F1 Moving Average
5 95 95 95 NA
10 90 90 89 NA
20 82 81 82 NA
50 70 70 70 NA
100 59 60 60 NA
200 50 50 50 NA

Figure 2: Graph of SimpleMKL kernel weightings
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outperforming the individual kernels in the majority of cases. Table 4 shows that

the individual kernels and MKL methods are significantly better than the MA

benchmark, despite the latter having had the unfair advantage of having had its

two parameters optimised on this performance metric. However, the main reason

for this is because the MA technique is not able to predict zero movements. When

the predictive accuracy is conditioned on the direction of the movement predicted,

as shown in Tables 5, 6 and 7, one can see that although the kernel methods still

outperform the trend-following technique for positive and negative movement pre-

dictions in the majority of cases, the out-performance is less significant.
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Figure 3: Graph of LPBoostMKL kernel weightings
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Figures 2 and 3 show that for both MKL techniques, kernels K1F1, K1F2, K1F3,

K3F1, K3F2 and K3F3 have consistently high weightings and hence were the most

relevant for making predictions over the data set. These kernels are the radial

basis function mapping with the three smallest scale parameters (σ2) on the sim-

ple volumes feature and the change in volumes feature. The fact that both MKL

methods selected very similar weightings for the 24 different mapping / feature

combinations highlights the consistency of the techniques. Furthermore, the ver-

tical bands of colour (or intensity) highlight the consistency of each of the kernel

/ feature combination’s weightings across the different time horizons: in almost

all cases the weighting for a particular combination is not significantly different

between when being used to make a prediction for a short time horizon and a

longer term one.

Figure 4 shows a 700 second snap-shot of the positive and negative predictions

generated by the SimpleMKL method for ∆t = 50. The triangles denoting predic-

tions of positive or negative movement (at the best bid or ask price respectively)

have black lines linking them to the opposing (spread-crossing) price at the end of

each prediction’s 50 second forecast horizon. In this particular example, one can
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Figure 4: Example of SimpleMKL predictions for 50s horizon with resulting actual price move-

ment
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see that the SimpleMKL method commences by making four predictions for posi-

tive movement, the first of which is significantly correct, followed by an even more

successful downward movement prediction. The many zero movement predictions

shown do not have their resulting predictions plotted for the sake of clarity. If

nothing else, this graphically depicts the fact that although these techniques may

make incorrect predictions more often than correct ones, the extent of the moves

that work in the technique’s favour more than compensate for the losses of the

incorrect ones.

The upper half of Figure 5 shows a theoretical Profit and Loss (P&L) curve for the

period constructed from a trading rule based on each of the technique’s signals.

Amongst other things, it was assumed that one had to pay the spread each time

a trade was made, that the trade size each time was $1M and that there was no

slippage. It highlights the fact that similar predictive accuracies do not necessarily

translate into similar P&L curves, with the two MKL techniques clearly outper-

forming the individual kernel and all three of the kernel methods outperforming
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Figure 5: P&L curves of techniques (above) and time series of EURUSD over dataset (below)
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the trend-following one. The profit that the two MKL methods realise in this

example are significant both in their magnitude and also in their consistency over

time, in that the periods where money is lost (draw-downs) are both infrequent

and short-lived. The lower half of the figure shows the price of EURUSD over

the time period that the dataset encompasses, which clearly contained no overall

trends in either direction.

In terms of comparing the two MKL methods, it is worth noting that they are

both solving the same optimisation problem (as expressed in (6.1)), so one would

expect them to give very similar results, as they do in the majority of cases. How-

ever, one of the main differences between them is that the continuously improving

LPBoost algorithm can be stopped at any point prior to convergence to produce

a suboptimal classifier and in this sense one can control the accuracy vs training

time trade-off for the method. This aspect of the method is of practical benefit in

real-time applications where training time is an important constraint.
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The results of the MKL experiments described here are significant in that no price

action or features based on prices is taken into account when predicting future

prices - in stark contrast to other similar research. This means that any trading

rules based on this technique are likely to complement existing rules well, the ma-

jority of which look at previous price action in some manner or other. Furthermore,

the out-performance of the kernel-based techniques for long time horizons over the

trend-following benchmark make them a useful method for locating turning points

in time series of EURUSD prices.
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7 Currency forecasting using MKL with finan-

cially motivated features

Given the success of using MKL methods with fairly simple features, it was felt

that augmenting the features used to embody standard concepts from the world

of trading could potentially improve performance. Furthermore, because of the

significant similarity between LPBoostMKL and SimpleMKL, there seemed little

to be gained by continuing to compare the two techniques and research on LP-

BoostMKL was discontinued at this point.

The work in this section was presented at the NIPS2010 Workshop: New Directions

in Multiple Kernel Learning.

7.1 Background

The following four Price-based Features are based on common price-based trading

rules (which are described briefly in Section 17.5 of the appendix):

F1 =
{

EMAL1
t , . . . , EMALN

t

}

F2 =
{

MAL1
t , . . . ,MALN

t , σL1
t , . . . , σLN

t

}

F3 =
{

Pt,maxL1
t , . . . ,maxLN

t ,minL1
t , . . . ,minLN

t

}

F4 =
{

⇑L1
t , . . . ,⇑LN

t ,⇓L1
t , . . . ,⇓LN

t

}

where EMALi

t denotes an exponential moving average of the price P at time t

with a half life Li, σ
Li

t denotes the standard deviation of P over a period Li, MALi

t

its simple moving average over the period Li, maxLi

t and minLi

t the maximum and

minimum prices over the period and ⇑Li

t and ⇓Li

t the number of price increases

and decreases over it.

In a manner similar to Section 6.4, a further set of four volume-based features was

constructed:

F5...8 =
{

V t,
V t

‖V t‖1
,V t − V t−1,

V t−V t−1

‖V t−V t−1‖1

}
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7.2 Experimental design

Radial Basis Function (RBF) and polynomial kernels have often been used in finan-
cial market prediction problems, e.g. [89] and [119]. Furthermore, Artificial Neural
Networks (ANN) are often used in financial forecasting tasks (e.g. [80, 81, 82]) and
for this reason a kernel based on Williams (1998) [120] Infinite Neural Network
(INN) with a sigmoidal transfer function is also employed (see K11:15 below). A
feature mapping set consisting of five of each of these kernel types with different
values of the relevant hyperparameter (σ, d or Σ) along with the linear kernel is
used:

K1:5 =
{

exp
(

−
∥

∥x− x′
∥

∥

2
/σ2

1

)

, . . . , exp
(

−
∥

∥x− x′
∥

∥

2
/σ2

5

)}

K6:10 =
{

(〈

x,x′
〉

+ 1
)d1 , . . . ,

(〈

x,x′
〉

+ 1
)d5
}

K11:15 =

{

2

π
sin−1

(

2xTΣ1x
′

√

(1 + 2xTΣ1x)(1 + 2x′TΣ1x′)

)

, . . . ,
2

π
sin−1

(

2xTΣ5x
′

√

(1 + 2xTΣ5x)(1 + 2x′TΣ5x′)

)}

K16 =
{〈

x,x′
〉}

This means that altogether there are |F| × |K| = 8 × 16 = 128 feature / kernel

combinations. We will adopt notation so that for example the combination F1K1

is the moving average crossover feature with a RBF using the scale parameter σ2
1.

The experimental procedure as described in Section 6.4 was adopted here, how-

ever instead of comparing SimpleMKL and LPBoostMKL, only SimpleMKL was

investigated along with standard SVM based on each of the 128 kernels / feature

combinations individually.

When comparing the predictive accuracy of the kernel methods when used in-

dividually to their combination in MKL, one needs to consider both how often

each method was able to make a prediction as described above and how correct

the predictions were overall for the whole dataset. In the tables and figures that

follow, for the sake of clarity only three of the 128 individual kernels are used

when comparing SimpleMKL to the individual kernels. 10-fold cross-validation

was used to select the three kernels with the highest predictive accuracy for the

dataset, namely F8K16, F1K1 and F1K3.

Table 8, which shows how often each of the methods was able to make a predic-

tion for each of the time horizons, indicates that SimpleMKL was very similar in

the frequency with which it was able to make predictions as the three individual

kernel / feature combinations highlighted. Table 9 shows each of the methods’
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Table 8: Percentage of time predictions possible

∆t SimpleMKL F8K16 F1K1 F1K3

5 26.1 24.7 26.1 24.7
10 41.1 40.4 39.8 37.7
20 50.2 49.1 48.1 45.0
50 46.3 44.1 44.8 45.5
100 32.8 33.5 34.6 35.3
200 27.0 24.9 26.6 27.4

Table 9: Percentage accuracy of predictions

∆t SimpleMKL F8K16 F1K1 F1K3

5 94.7 94.7 93.0 92.8
10 89.9 89.6 88.4 84.6
20 81.7 81.3 79.5 72.3
50 67.1 65.4 65.5 61.1
100 61.1 51.1 60.7 59.9
200 58.9 45.0 58.8 61.3

predictive accuracy over the entire dataset when a prediction was actually pos-

sible. The results indicate that SimpleMKL has higher predictive accuracy than

the most effective individual kernels for all time horizons under 200 seconds and

is only marginally less effective than F1K3 for the 200 second forecast horizon.

P-values for the null hypothesis that the results reported could have occurred by

chance were calculated (the methodology for doing this is explained in Section

17.6 in the appendix). It was found that for both SimpleMKL and the individual

kernels highlighted for all forecast horizons, the null hypothesis could be rejected

for a significance level of < 10−5.
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Figure 6: MKL Kernel weightings
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As reflected in Figure 6, the kernel / feature combinations F1K1, F2K5 and F3K5

are consistently awarded the highest weightings by SimpleMKL and hence are the

most relevant for making predictions over the data set. These kernels are the

RBF mapping with the smallest scale parameter on the exponential moving aver-

age crossover feature, the RBF mapping with the largest scale parameter on the

price standard deviation / moving average feature and the RBF mapping with the

largest scale parameter again on the minimums / maximums feature.

The vertical banding of colour (or intensity) highlights the consistency of each of

the kernel / feature combination’s weightings across the different time horizons:

in almost all cases the weighting for a particular combination is not significantly

different between when being used to make a prediction for a short time horizon

and a longer term one. One can also see from Figure 6 that although all eight of

the features have weightings assigned to them, in most cases this is only in con-

junction with the RBF kernels - the polynomial and infinite neural network based

mappings being assigned weightings by MKL for only the fourth and fifth features.
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The most successful individual kernels as selected by cross-validation are awarded

very low weights by SimpleMKL. This reflects a common feature of trading rules

where individual signals can drastically change their significance in terms of per-

formance when used in combination. Furthermore, the outperformance of Sim-

pleMKL to the individual kernels highlighted indicates that MKL is an effective

method for combining a set of price and volume based features in order to correctly

forecast the direction of price movements in a manner similar to a trading rule.

63



8 Fisher kernels

It was then decided to return to the domain of generative machine learning meth-

ods in an attempt to combine this class of models with the methods successfully

used from the discriminative toolset.

The Fisher kernel represents a method for incorporating generative probability

models into discriminative classifiers such as SVM. It also facilitates the inclusion

of some canonical market micro-structural models, all of which are generative by

nature, into the discriminative machine learning domain. It is this incorporation

of traditional, often empirically based, market microstructural (MM) models into

the machine learning framework that represents the main contribution of this work.

When one adapts the parameters of a model to incorporate a new data point so

that the model’s likelihood L will increase, a common approach is to adjust each

parameter θi by some function of dL/dθi. The Fisher kernel [121] incorporates this
principle by creating a kernel composed of values of dL/dθi for each of the model’s

parameters and therefore comparing data instances by the way they stretch the

model’s parameters.

Defining the log likelihood of a data item x with respect to a model for a given

setting of the parameters θ to be logLθ(x), the Fisher score of x is the vector

gradient of logLθ(x):

g(θ, x) =

(

∂ logLθi(x)

∂θi

)N

i=1

(8.1)

The practical Fisher kernel is then defined as:

κ(x, z) = g(θ, x)′g(θ, z) (8.2)

From the literature review, the most significant and widely adopted MMmodels are

based around three main families: Autoregressive Conditional Duration models,

Poisson processes and Wiener processes. I will briefly describe the background

to each of these classes of models and how they can be incorporated into Fisher

kernels.
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8.1 Autoregressive Conditional Duration model

The literature on time deformation in financial markets suggests that sometimes

time, as observed through the rate of a particular financial transaction occurring,

flows very rapidly while in other periods it moves slowly. The market microstruc-

ture literature, for example [122], shows that one should expect stochastic clus-

tering in the rate of price changes for a financial asset. An explanation for this is

that ill-informed traders trade randomly according to a stochastic process such as

a Poisson process, while informed traders enter the market only after observing a

private, potentially noisy signal. The agents providing the prices (market makers)

will slowly learn of the private information by watching order flow and adjust their

prices accordingly. Informed traders will seek to trade as long as their information

has value. Hence one should see clustering of trading following an information

event because of the increased numbers of informed traders.

Engle and Russel’s (1998) Autoregressive Conditional Duration (ACD) model [123]

captures this stochasticly clustering arrival rate by expressing the duration of a

price (how long a financial asset’s price remains constant) as a function of previous

durations. The model is used commonly throughout the market microstructure

literature, e.g. to measure the duration of financial asset prices [124]. It is defined

as follows:

ht = w +
L
∑

i=1

qixt−i +
L
∑

i=1

piht−i (8.3)

xt = htǫt, ǫt ∼ Exp(λ) (8.4)

where xt is the duration of the price at time t, ht is its expected duration, L is the

lag of the autoregressions and w, p, q and λ are constants.

Simplifying (8.3) to be an order 1 autoregressive process, the likelihood of the

model can be expressed:

L = λ exp
[

−λxt(w + qxt−1 + pht−1)
−1
]

(8.5)

Differentiating L wrt each of the parameters:
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∂L
∂w

= λ2xt(w + qxt−1 + pht−1)
−2 exp

[

−λxt(w + qxt−1 + pht−1)
−1
]

(8.6)

∂L
∂q

= λ2xtxt−1(w + qxt−1 + pht−1)
−2 exp

[

−λxt(w + qxt−1 + pht−1)
−1
]

(8.7)

∂L
∂p

= λ2xtht−1(w + qxt−1 + pht−1)
−2 exp

[

−λxt(w + qxt−1 + pht−1)
−1
]

(8.8)

∂L
∂λ

= (1− λxt(w + qxt−1 + pht−1)
−1) exp

[

−λxt(w + qxt−1 + pht−1)
−1
]

(8.9)

The chain rule can then be used to express these differentials as functions of the

log likelihood (LL):

d (ln [f(x)])

dx
=

f ′(x)

f(x)
⇒

∂LL
∂w

= λxt(w + qxt−1 + pht−1)
−2 (8.10)

∂LL
∂q

= λxtxt−1(w + qxt−1 + pht−1)
−2 (8.11)

∂LL
∂p

= λxtht−1(w + qxt−1 + pht−1)
−2 (8.12)

∂LL
∂λ

= λ−1 − xt(w + qxt−1 + pht−1)
−1 (8.13)

A search algorithm, such as the simplex method [125], can be used to find estimates

for p, q and w based on the observed durations x1:T and then these estimates can

be used in (8.10) - (8.13) in order to derive the Fisher score of a new observation for

each of the four parameters. This will be done for price durations on the front bid

xBid and xAsk sides so that an 8 dimensional Fisher score vector can be calculated

for each data instance:

gACD
t =

{

∂LLt

∂wBid

,
∂LLt

∂qBid

,
∂LLt

∂pBid

,
∂LLt

∂λBid

,
∂LLt

∂wAsk

,
∂LLt

∂qAsk

,
∂LLt

∂pAsk

,
∂LLt

∂λAsk

}

(8.14)
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8.2 Poisson processes

Poisson processes permeate the market microstructure literature in their descrip-

tions of limit order arrival rates, volume changes and order cancellations - see for

example [126]. However, their modelling of trade arrival rates are subject to criti-

cism and it is suggested that renewal processes might be better placed to do this

- see for example [127], [128], [129] and [130].

If we denote the volume at each depth i of the order book (i ∈ [1 . . . 2D] assuming

D levels on the bid side and D on the ask) at time t as V i
t , we can use ∆Vi to

represent the rate of change of volume at a depth over a given time interval τ :

∆Vi =

∣

∣V i
t+τ − V i

t

∣

∣

τ
(8.15)

We can model ∆Vi using a Poisson process, i.e. ∆Vi ∼ Poi(λi):

P (∆Vi = x) =
e−λiτ (λiτ)

x

x!
(8.16)

Setting the time interval τ to 1, the log likelihood of a rate xi observed at depth i

for a model parameterised by λi can be expressed:

LL = log

(

e−λi(λi)
xi

xi!

)

= −λi + xi log(λi)− log(xi!) (8.17)

Differentiating (8.17) with respect to λi we can derive the Fisher score:

∂LL
∂λi

= −1 +
xi

λi

(8.18)

The parameter λi needs to be estimated at each depth i. The Maximum Likelihood

(ML) estimate of λi can be calculated by adjusting (8.17) to take into account a

set of N observations:

LLN =
N
∑

j=1

log

(

e−λi(λi)
xj
i

xj
i !

)

= −Nλi +

(

N
∑

j=1

xj
i

)

log(λi)−
N
∑

j=1

log(xj
i !) (8.19)
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Differentiating (8.19) wrt λi and setting this to zero yields our ML estimate of λi:

∂LLN

∂λi

= −N +

(

N
∑

j=1

xj
i

)

1

λi

= 0

⇒ λ̂i =
1

N

N
∑

j=1

xj
i (8.20)

λ̂i is substituted into (8.18) and a 2D dimensional Fisher score vector created for

the D levels on each side:

gPoiss
t =

{

∂LLt

∂λ1

, . . . ,
∂LLt

∂λ2D

}

(8.21)

8.3 Wiener process barrier model

Lancaster’s (1992) Wiener process barrier model [131] assumes that the price evo-

lution of an asset follows a Wiener process:

dpt = µdt+ σdz (8.22)

where the price of the asset pt follows a random walk with drift µ and variance σ2.

This means that the price movement of an asset over a time period t will be

distributed3:

pt − pt−1 = ∆pt ∼ N(µt, σ2t) (8.23)

and that the ML estimates of µ and σ can be ascertained from a sequence of N

such price movements:

µ̂ =
1

N

N
∑

t=1

∆pt (8.24)

σ̂2 =
1

N

N
∑

t=1

(∆pt − µ̂)2 (8.25)

Modelling the price with such a process means that the likelihood of a limit order

priced at a distance α from the current mid price surviving at least t time units

3Note that the price movements are normally distributed as opposed to log-normally as one
might expect over longer time-scales than the ones investigated here.
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without being hit is:

L = Φ

(

α− µt

σ
√
t

)

− exp

[

2µα

σ2

]

Φ

(−α− µt

σ
√
t

)

(8.26)

where Φ represents the standardised cumulative Gaussian distribution function.

Using the substitutions x =
α− µt

σ
√
t
, y =

−α− µt

σ
√
t

and z = exp
[

2µα
σ2

]

so that:

L = Φ(x)− zΦ (y) (8.27)

the derivatives of L wrt µ and σ can be calculated:

∂L
∂µ

=
∂x

∂µ

∂ (Φ(x))

∂x
− ∂z

∂µ
Φ(y)− z

∂y

∂µ

∂ (Φ(y))

∂y

= −
√
t

σ
φ (x)− 2α

σ2
zΦ (y) + z

√
t

σ
φ (y) (8.28)

∂L
∂σ

=
∂x

∂σ

∂ (Φ(x))

∂x
− ∂z

∂σ
Φ(y)− z

∂y

∂σ

∂ (Φ(y))

∂y

= −
(

α− µt

σ2
√
t

)

φ(x) +
4µα

σ3
zΦ (y) + z

(−α− µt

σ2
√
t

)

φ(y)

= −x

σ
φ(x) +

4µα

σ3
zΦ (y) + z

y

σ
φ(y) (8.29)

where φ represents the standardised Gaussian distribution function.

The chain rule can then be used to express these differentials as functions of the

log likelihood:

∂LL
∂µ

=
−

√
t

σ
φ (x)− 2α

σ2 zΦ (y) + z
√
t

σ
φ (y)

Φ (x)− zΦ (y)
(8.30)

∂LL
∂σ

= −−x
σ
φ(x) + 4µα

σ3 zΦ (y) + z y
σ
φ(y)

Φ (x)− zΦ (y)
(8.31)

µ̂ from (8.24) and σ̂2 from (8.25) can be substituted into (8.30) and (8.31) in order

to derive the 4 dimensional Fisher score vector for a new set of observations:

gWiener
t =

{

∂LLt

∂µBid

,
∂LLt

∂σBid

,
∂LLt

∂µAsk

,
∂LLt

∂σAsk

}

(8.32)
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9 Kernel parameterisation learning

9.1 Hyperparameter learning

With the aim of improving MKL’s predictive performance it was decided to con-

sider a major innovation from a machine learning perspective. Taking the MKL

principle of learning the optimal weighting of a set of kernels further, one can allow

aspects of the kernels themselves, for example the hyperparameter values used in

the kernel mappings, to be learnt from the data itself.

Instead of selecting a range of hyperparameter values for each kernel mapping,

for example the different σ2 in the Radial Basis Function mappings as detailed in

(7.2), it is possible to learn the optimal hyperparameter value for a mapping from

the data itself. Furthermore, parameterisations of the features themselves can be

learnt: replacing the maximum likelihood estimates used in the Fisher kernels of

Section 8 with parameters that result from an optimisation.

Referring back to Equation 6.4 in Section 6.2, the optimisation that SimpleMKL

carries out aims to find the set of kernel weightings dt which minimises the following

quantity:

β = max
α

{

−1

2

∑

i,j

αiαjyiyj
∑

t

dtκt(xi, xj) +
∑

i

αi

}

Once dt and α have been selected, this is equivalent to maximising the quantity:

∑

i,j

αiαjyiyj
∑

t

dtκt(xi, xj) ≡ αTY K(θ)Y α

This means that for a given kernel K parameterised by a hyperparameter / Fisher

parameter set θ, the optimum value of θ is:

max
θ

αTY K(θ)Y α

=max
θ

C(θ) (9.1)

where α is ascertained from the support vectors of an SVM trained with the target

values in Y . The process that determines the optimal hyperparameter setting for

each kernel mapping is an iterative one:
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1. Choose an initial setting θ = θ0 for each of the |F|×3 = 12×3 = 36 feature

/ mapping combinations. Create a set S composed of these 36 kernels.

2. Train MKL on S and record the resulting α, kernel weightings d and β.

Remove any kernels from S which receive a zero weighting from MKL.

3. Derive new θ for each of the 36 kernels through the optimisation in (9.1),

using α from previous step. Record objective function value c for each

optimised kernel.

4. Add a kernel to S if c > β for that kernel.

5. Repeat steps (2) to (4) until c ≤ β + ǫ (where ǫ is a small number).

6. The final S, α and d are used for future predictions.

The effect of each parameter in θ cannot be considered independently of the other

parameters on the cost function. This means that more complex optimisations

than simple linear search need to be used in order to derive the optimum θ. Two

different optimisation methods will be investigated:

1. Sorting the individual components of θ by the effect they have on C(θ) for

an in-sample data set and then optimising each value in turn using a simple

linear search method, starting with the parameter that C(θ) is most sensitive

to. This will be termed the Serial Optimisation method.

2. Calculating derivatives of C(θ) with respect to each of the components in θ,

namely ∇C(θ), and using a gradient search method. This will be termed the

Parallel Optimisation method.

Elaborating on point 2.:

∇C(θ) = ∂

∂θ

(

αTY K(θ)Y α
)

= αTY
∂K(θ)

∂θ
Y α (9.2)

This means we need to calculate the elements in the matrix
∂K(θ)

∂θ
so that for

each Fisher Kernel, the second order derivatives of every parameter with respect

to both itself and the other parameters, i.e.
∂2LL
∂θx∂θy

∀x,y = 1 . . . D, need to be

calculated.
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Clarification point

In order to avoid confusion further on in this document, it is important to make

the distinction between what I will refer to as learning the kernel (or kernel learn-

ing) and MKL. The former refers to the process described above in Section 9.1,

whereby kernel mapping hyperparameters and in the case of the Fisher kernels, the

kernels themselves, are learnt. This process includes MKL as part of the learning

process.

When I refer to MKL on its own, I mean just that - the Multiple Kernel Learning

process - where kernels in a set are allocated weightings and combined but with

no other learning taking place.
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9.2 Kernel derivatives

A linear feature mapping on a Fisher feature parameterised by a vector θ =

{θ1, . . . , θD} takes the general form:

Ki,j =

[

∂LLi

∂θ1
, . . . ,

∂LLi

∂θD

] [

∂LLj

∂θ1
, . . . ,

∂LLj

∂θD

]T

=
∂LLi

∂θ1

∂LLj

∂θ1
+, . . . ,+

∂LLi

∂θD

∂LLj

∂θD

=
D
∑

k=1

∂LLi

∂θk

∂LLj

∂θk
(9.3)

9.2.1 RBF mapping

The RBF mapping on a Fisher feature takes the general form:

Ki,j = exp

[

1

σ2

D
∑

k=1

∂LLi

∂θk

∂LLj

∂θk
− 1

2σ2

D
∑

k=1

(

∂LLi

∂θk

)2

− 1

2σ2

D
∑

k=1

(

∂LLj

∂θk

)2
]

(9.4)

(9.4) can be differentiated with respect to θ:

∂ (Ki,j)

∂θ
=

∂ (exp [f(θ)])

∂θ

=
∂ [f(θ)]

∂θ
exp [f(θ)] (9.5)

where:

f(θ) =
1

σ2

[

D
∑

k=1

∂LLi

∂θk

∂LLj

∂θk
− 1

2

D
∑

k=1

(

∂LLi

∂θk

)2

− 1

2

D
∑

k=1

(

∂LLj

∂θk

)2
]

(9.6)

and the rth row of the vector
∂ [f(θ)]

∂θ
is:

∂ [f(θ)]

∂θr
=

1

σ2

D
∑

k=1

[

∂2LLi

∂θk∂θr

∂LLj

∂θk
+

∂2LLj

∂θk∂θr

∂LLi

∂θk
− ∂2LLi

∂θk∂θr

∂LLi

∂θk
− ∂2LLj

∂θk∂θr

∂LLj

∂θk

]
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9.2.2 Polynomial mapping

The polynomial mapping on a Fisher feature takes the general form:

Ki,j =

(

D
∑

k=1

∂LLi

∂θk

∂LLj

∂θk
+ 1

)α

(9.7)

(9.7) can be differentiated with respect to θ:

∂ (Ki,j)

∂θ
= α (f(θ) + 1)α−1 ∂ [f(θ)]

∂θ
(9.8)

where:

f(θ) =
D
∑

k=1

∂LLi

∂θk

∂LLj

∂θk
(9.9)

and the rth row of the vector
∂ [f(θ)]

∂θ
is:

∂ [f(θ)]

∂θr
=

D
∑

k=1

[

∂2LLi

∂θk∂θr

∂LLj

∂θk
+

∂2LLj

∂θk∂θr

∂LLi

∂θk

]

(9.10)

9.2.3 Infinite Neural Network mapping

The infinite neural network mapping on a Fisher feature takes the general form:

Ki,j =
2

π
sin−1

















2α
D
∑

k=1

∂LLi

∂θk

∂LLj

∂θk
√

√

√

√

(

1 + 2α
D
∑

k=1

(

∂LLi

∂θk

)2
)(

1 + 2α
D
∑

k=1

(

∂LLj

∂θk

)2
)

















(9.11)

(9.11) can be differentiated with respect to θ:

∂ (Ki,j)

∂θ
=

2

π
√

1− f(θ)2
∂ [f(θ)]

∂θ
(9.12)
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where:

f(θ) =

2α
D
∑

k=1

∂LLi

∂θk

∂LLj

∂θk
√

√

√

√

(

1 + 2α
D
∑

k=1

(

∂LLi

∂θk

)2
)(

1 + 2α
D
∑

k=1

(

∂LLj

∂θk

)2
)

(9.13)

and the rth row of the vector
∂ [f(θ)]

∂θ
is:

∂ [f(θ)]

∂θr
=

∂a
∂θr

bc− a
[

∂b
∂θr

c+ ∂c
∂θr

b
]

(bc)2
(9.14)

where:

a = 2α
D
∑

k=1

∂LLi

∂θk

∂LLj

∂θk
(9.15)

b =

(

1 + 2α
D
∑

k=1

(

∂LLi

∂θk

)2
)1/2

(9.16)

c =

(

1 + 2α
D
∑

k=1

(

∂LLj

∂θk

)2
)1/2

(9.17)

∂a

∂θr
= 2α

D
∑

k=1

[

∂2LLi

∂θk∂θr

∂LLj

∂θk
+

∂2LLj

∂θk∂θr

∂LLi

∂θk

]

(9.18)

∂b

∂θr
= 2α

(

1 + 2α
D
∑

k=1

(

∂LLi

∂θk

)2
)−1/2 D

∑

k=1

∂2LLi

∂θk∂θr

∂LLi

∂θk
(9.19)

∂c

∂θr
= 2α

(

1 + 2α
D
∑

k=1

(

∂LLj

∂θk

)2
)−1/2 D

∑

k=1

∂2LLj

∂θk∂θr

∂LLj

∂θk
(9.20)

9.2.4 Normalisation

Each feature / mapping combination is subject to the normalisation:

K̂(x, z) =
K(x, z)

√

K(x, x)K(z, z)
(9.21)
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The quotient rule can be used to ascertain the derivative:

∂
(

K̂(x, z)
)

∂θ
=

∂f
∂θ
g − f ∂g

∂θ

g2
(9.22)

where:

f = K(x, z) (9.23)

g =
√

K(x, x)K(z, z) (9.24)

∂f

∂θ
=

∂ (K(x, z))

∂θ
(9.25)

∂g

∂θ
=

1

2

[

√

K(z, z)
√

K(x, x)

∂ (K(x, x))

∂θ
+

√

K(x, x)
√

K(z, z)

∂ (K(z, z))

∂θ

]

(9.26)

so that:

∂
(

K̂(x, z)
)

∂θ
=

∂(K(x,z))
∂θ

− 1
2
K(x, z)

(

1
K(x,x)

∂(K(x,x))
∂θ

+ 1
K(z,z)

∂(K(z,z))
∂θ

)

√

K(x, x)K(z, z)
(9.27)

This means that for each mapping, the overall derivative for the normalised kernel

is, using the chain rule, the product of equation (9.27) and one of (9.5), (9.8) or

(9.12).

9.2.5 Autoregressive Conditional Duration model

The second order derivatives of the Autoregressive Conditional Duration model

parameters are as follows:
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∂2LL
∂λ∂w

= xt(w + qxt−1 + pht−1)
−2 (9.28)

∂2LL
∂λ∂q

= xtxt−1(w + qxt−1 + pht−1)
−2 (9.29)

∂2LL
∂λ∂p

= xtht−1(w + qxt−1 + pht−1)
−2 (9.30)

∂2LL
∂λ2

= −λ−2 (9.31)

∂2LL
∂w2

= −2λxt(w + qxt−1 + pht−1)
−3 (9.32)

∂2LL
∂q2

= −2λxtx
2
t−1(w + qxt−1 + pht−1)

−3 (9.33)

∂2LL
∂p2

= −2λxth
2
t−1(w + qxt−1 + pht−1)

−3 (9.34)

∂2LL
∂q∂w

= −2λxtxt−1(w + qxt−1 + pht−1)
−3 (9.35)

∂2LL
∂p∂w

= −2λxtht−1(w + qxt−1 + pht−1)
−3 (9.36)

∂2LL
∂p∂q

= −2λxtht−1xt−1(w + qxt−1 + pht−1)
−3 (9.37)

9.2.6 Poisson process

Each parameter used in the Simple Poisson model’s Fisher Kernel is independent

of the other so only simple differentiation of (8.18) wrt λk for each of the levels on

the Bid and Ask sides is required:

∂2LL
∂θ2k

= −xk

λ2
k

(9.38)

9.2.7 Wiener distribution:
∂2LL
∂µ2

Representing the numerator and denominator from (8.30) as f and g respectively:

f = −
√
t

σ
φ (x)− 2α

σ2
zΦ (y) + z

√
t

σ
φ (y) (9.39)

g = Φ(x)− zΦ (y) (9.40)
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The second derivative of the log likelihood with respect to µ can be expressed:

∂2LL
∂µ2

=
∂
(

f
g

)

∂µ

=

∂f
∂µ
g − f ∂g

∂µ

g2

=

∂f
∂µ
g − f 2

g2
(9.41)

where we still need to calculate
∂f

∂µ
.

Using the expressions for the derivatives of the standardised Gaussian and cumu-

lative Gaussian distribution functions:

∂φ (f(x))

∂x
= −f(x)

∂f(x)

∂x
φ (f(x)) (9.42)

∂Φ (f(x))

∂x
= φ (f(x))

∂f(x)

∂x
(9.43)

we can calculate the following partial derivatives:

∂ (φ(x))

∂µ
=

x
√
t

σ
φ(x)

∂ (φ(y))

∂µ
=

y
√
t

σ
φ(y)

∂z

∂µ
=

2αz

σ2

∂ (Φ(y))

∂µ
= φ(y)

√
t

σ

Which gives:

∂f

∂µ
= −

√
t

σ

∂ (φ(x))

∂µ
− 2α

σ2

∂z

∂µ
Φ(y)− 2α

σ2
z
∂ (Φ(y))

∂µ
+

∂z

∂µ

√
t

σ
φ(y) + z

√
t

σ

∂ (φ(y))

∂µ

= − t

σ2
xφ(x)− 4α2

σ4
zΦ(y) +

t

σ2
zyφ(y) (9.44)
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∂2LL
∂µ2

can then be calculated by substituting (9.44), (9.39) and (9.40) into (9.41).

9.2.8 Wiener distribution:
∂2LL
∂σ2

Now representing the numerator and denominator from (8.31) as f and g respec-

tively:

f = −x

σ
φ(x) +

4µα

σ3
zΦ (y) + z

y

σ
φ(y) (9.45)

g = Φ(x)− zΦ (y) (9.46)

The second derivative of the log likelihood with respect to σ can be expressed:

∂2LL
∂σ2

=
∂
(

f
g

)

∂σ

=
∂f
∂σ
g − f ∂g

∂σ

g2

=
∂f
∂σ
g − f 2

g2
(9.47)

In a similar manner, it is useful to calculate the following partial derivatives:

∂ (φ(x))

∂σ
=

x2

σ
φ(x)

∂ (φ(y))

∂σ
=

y2

σ
φ(y)

∂z

∂σ
= −4zµα

σ3

∂Φ(y)

∂σ
= −φ(y)

y

σ

∂f

∂σ
=

2x

σ2
φ(x)− x

σ

∂ (φ(x))

∂σ
+

4µα

σ3

(

− 3

σ
zΦ(y) +

∂z

∂σ
Φ(y) + z

∂Φ(y)

∂σ

)

+
∂z

∂σ

y

σ
φ(y)− 2zy

σ2
φ(y) +

zy

σ

∂ (φ(y))

∂σ

=
2x

σ2
φ(x)− x3

σ2
φ(x) +

4µα

σ3

(

− 3

σ
zΦ(y)− 4zµα

σ3
Φ(y)− 2zy

σ
φ(y)

)

− 2zy

σ2
φ(y) +

zy3

σ2
φ(y) (9.48)

∂2LL
∂σ2

can then be calculated by substituting (9.48), (9.45) and (9.46) into (9.47).
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9.2.9 Wiener distribution:
∂2LL
∂µ∂σ

Representing the numerator and denominator from (8.30) as f and g respectively:

f = −
√
t

σ
φ (x)− 2α

σ2
zΦ (y) + z

√
t

σ
φ (y) (9.49)

g = Φ(x)− zΦ (y) (9.50)

the cross derivative of the log likelihood with respect to σ and µ can be expressed:

∂2LL
∂µ∂σ

=
∂f
∂σ
g − f ∂g

∂σ

g2
(9.51)

∂g

∂σ
is equal to (9.45).

Making use of the partial derivatives calculated in Section 9.2.8:

∂f

∂σ
=

√
t

σ2
φ(x)−

√
t

σ

∂ (φ(x))

∂σ
+

4α

σ3
zΦ(y)− 2α

σ2

∂z

∂σ
Φ(y)− 2α

σ2
z
∂Φ(y)

∂σ
+

∂z

∂σ

√
t

σ
φ(y)− z

√
t

σ2
φ(y) +

z
√
t

σ

∂ (φ(y))

∂σ

=

√
t

σ2
φ(x)−

√
t

σ2
x2φ(x) +

4αz

σ3
Φ(y) +

8α2zµ

σ5
Φ(y) +

2αzy

σ3
φ(y)− 4zµα

√
t

σ4
φ(y)− z

√
t

σ2
φ(y) +

z
√
ty2

σ2
φ(y)

(9.52)

∂2LL
∂µ∂σ

can then be calculated by substituting (9.52), (9.49), (9.50) and (9.45) into

(9.51).
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10 Experimental plan

10.1 Motivation

The principal aim of this research is to investigate the marriage of machine learn-

ing techniques with models from the financial domain. With this in mind, we wish

to discover whether discriminative machine learning techniques can be informative

regarding the effectiveness of standard order book based features and price based

technical analysis methods. In the context of Multiple Kernel Learning, this trans-

lates into understanding which kernel mappings and features are the most effective

at making predictions on an individual basis and also whether MKL selects these

kernels and allocates them significant weightings when they form part of an overall

set.

Following this initial area and the questions it raises, there is the issue of the ef-

fectiveness of incorporating generative models, embodied as Fisher kernels, into

the discriminative framework and understanding their usefulness in our predictive

ambitions.

Finally, we wish to investigate whether allowing hyperparameter learning and

learning of the parameters in the generative models is useful or whether it is

taking things too far to learn the set of kernels as well as the kernels themselves.

Breaking these three main areas of interest down into some simple questions that

can be answered experimentally, the experiments need to be designed so that they

address the following more specific questions:

10.1.1 General kernel selection

Which kernel mapping / features combinations are the best performers when used

individually?

The majority of the literature points to the RBF mapping being the most effective

in terms of performance for financial prediction problems and it will be interesting

to see if the experiments show that out of the three mappings being investigated

(RBF, Polynomial and INN) it is indeed the RBF that is consistently more effec-

tive than the others. Given that there is no evidence of previous research on using
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either the volumes in order book data or Fisher kernels to forecast price move-

ments, it will be of use to see which class of features is the most effective: price

action based, order book volume based or those based on Fisher kernels. From

the literature, one might expect the efficacy of the three classes to vary across

the different time horizons, with order book and Fisher based features to be more

effective over the shorter horizons and price based ones over the longer and the

experiments will highlight whether this is the case. There may also be one par-

ticular feature that stands out overall in its performance that will exemplify its

corresponding trading rule, volume feature or MM based model.

How do the individual kernels compare to a simple benchmark and how stable is

their performance over time?

It may be that the individual kernels are actually less successful at making predic-

tions than a naive predictor on average or that their outpeformance is so slight as

to not justify the increase in computational complexity they entail. Furthermore,

it may also be that the stability in their performance over time (i.e. over all the

out-of-sample periods) is so low as to render them unreliable.

10.1.2 Standard MKL

Which combinations are awarded the highest weightings by standard MKL?

One might expect that the kernels awarded the highest weightings are also those

that are selected the most frequently, and this is something that we will investi-

gate. However, it may be that the stability of these weightings and selections is so

low that meaningful conclusions cannot be drawn in this area. Is there a partic-

ular kernel mapping, feature or class of feature which is consistently awarded the

highest weightings / selected the most often? Another line of inquiry is whether

the kernels with the highest weightings / most often selected are also the ones that

perform the best on an individual basis. Are there some kernels that show poor

performance when used individually, but seem consistently to be selected during

MKL? It will also be interesting to see what the performance of the average kernel

(i.e. allocating each kernel in the set the same weight) is.

What happens when subsets of the full MKL set are used
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It will be interesting to see the impact of using subsets of the full kernel set. The

two subsets which will be the most informative will be one based on the most

commonly selected kernels from the full standard MKL run and one based on the

most effective of the kernels when they are run individually. The performance

comparison between these two subsets and the full set will give us information

about whether MKL seems occasionally to be selecting kernels that appear to be

fairly low performing when taken individually, but add value when added to other

kernels and also about how effective MKL is in general with larger sets. Is MKL

actually able to effectively distinguish between kernels when the set is large or does

reducing the size of the set it can choose from greatly improve its performance?

10.1.3 Kernel learning

Does learning the kernel improve performance?

We shall investigate the impact on performance of extending MKL so that not

only are kernel weightings learnt from the data but also aspects of the kernels

themselves. Will the predictive ability increase when the kernel hyperparameters

and the Fisher feature parameters are learnt or will this be taking things too far

and lead to significant overfitting?

Remembering the definition of β from Section 9.1 and that it is this value that

the kernel learning process is attempting to minimise, we can assess the extent

that kernel learning has taken place from a theoretical perspective before any pre-

dictions are made. We can therefore investigate whether there is a relationship

between the extent of kernel learning as measured through β and the resulting

accuracy of the predictor.

Also, from a kernel learning perspective we shall be able to identify what the op-

timal hyperparameter values / Fisher feature parameters are and contrast them

with the ones that proved most effective on an individual basis (for the hyperpa-

rameters) and the ML values (for the Fisher feature parameters).

Lastly, it will be useful to see if there is a significant difference in performance

between the parallel and serial optimisation methods used for kernel learning and

whether the former’s outperformance justifies its increased computational com-

plexity (and mathematical effort). One particular area of interest will be the
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relationship between the extent of optimisation (as represented by reduction in β

) and the performance that is borne out by the predictor. Does a greater reduction

in β mean better performance or does it just mean further overfitting?

10.1.4 Practical considerations

It will be interesting to see whether the increased complexity that MKL and ker-

nel learning entail is justified through increased performance and also whether the

complexity of some of the techniques is so significant as to render them implasuble

for real time applications.

A further issue of importance from a pragmatic perspective is how frequently the

different techniques are able to make predictions - do the methods that have a

significantly high predictive accuracy only make their predictions infrequently -

i.e. is there a trade-off between predictive accuracy and frequency?
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10.2 Kernel sets investigated

10.2.1 Full kernel set

A set F consisting of each of the 3 Fisher kernels described in (8.14), (8.21) and

(8.32) along with the feature set described in Section 7.1 will be constructed:

F1 =
{

EMAL1
t , . . . , EMALN

t

}

F2 =
{

MAL1
t , . . . ,MALN

t , σL1
t , . . . , σLN

t

}

F3 =
{

Pt,maxL1
t , . . . ,maxLN

t ,minL1
t , . . . ,minLN

t

}

F4 =
{

⇑L1
t , . . . ,⇑LN

t ,⇓L1
t , . . . ,⇓LN

t

}

F5...8 =
{

V t,
V t

‖V t‖1
,V t − V t−1,

V t−V t−1

‖V t−V t−1‖1

}

F9...11 = {gACD,gPoiss,gWiener}

A feature mapping set consisting of the kernel types described in section 7.2 (with-

out the linear kernel) will be used:

K1:5 =
{

exp
(

−‖x− x′‖2 /σ2
1

)

, . . . , exp
(

−‖x− x′‖2 /σ2
5

)}

K6:10 =
{

(〈x,x′〉+ 1)d1 , . . . , (〈x,x′〉+ 1)d5
}

K11:15 =

{

2
π
sin−1

(

2xTΣ1x
′√

(1+2xTΣ1x)(1+2x′TΣ1x′)

)

, . . . , 2
π
sin−1

(

2xTΣ5x
′√

(1+2xTΣ5x)(1+2x′TΣ5x′)

)}

This means that altogether there will be |F| × |K| = 11 × 15 = 165 individual

kernels along with an average kernel constructed by taking the average of the 165

kernel matrices, giving 166 individual kernels altogether4.

10.2.2 Reduced kernel set

In order to investigate what happens when the MKL set is reduced to a subset

based on the most commonly selected or most effective from the full set, two re-

4Note that the average kernel is only used as a benchmark and is not included in the set of
kernels used for combination by MKL.
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duced kernel sets will be used:

Selection based on Stability / Highest Weightings (Reduced Set A)

A reduced set will be formed by investigating the weightings from a standard MKL

run and taking the NA most commonly selected individual kernels along with the

NA kernels with the most significant weightings for each of the six time horizons.

Selection based on Efficacy (Reduced Set B)

A reduced set will be formed by taking the NB most effective individual SVM for

each of the six time horizons.

NA and NB will be selected to give roughly the same size subset in both cases

(which will not simply be N × 6 because of overlap, for example because some

kernels may be allocated high weightings for multiple time horizons etc).

10.3 Methodology

The general experimental procedure, as described in Section 6.4 (without the Sim-

pleMKL / LPBoostMKL comparison), will again be adopted and repeated in the

following 16 sets of experiments:
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Table 10: Experiment sets

Experiment Name Kernel Set
Kernel Learning

Hyperparameter Fisher Parameter
Individual Individual SVM None None
Standard MKL Full Set None None
Serial MKL Full Set Serial Serial
Parallel MKL Full Set Parallel Parallel
SerialF MKL Full Set None Serial
ParallelF MKL Full Set None Parallel
StandardReduxA MKL Subset A None None
SerialReduxA MKL Subset A Serial Serial
ParallelReduxA MKL Subset A Parallel Parallel
SerialReduxFA MKL Subset A None Serial
ParallelReduxFA MKL Subset A None Parallel
StandardReduxB MKL Subset B None None
SerialReduxB MKL Subset B Serial Serial
ParallelReduxB MKL Subset B Parallel Parallel
SerialReduxFB MKL Subset B None Serial
ParallelReduxFB MKL Subset B None Parallel

The predictive accuracy of each feature / kernel combination will be assessed in

terms of the percentage of possible predictions (as described in section 6.4) and

the percentage of correct predictions.

10.4 Benchmark

These results will be compared with a very simple benchmark, namely a classifier

which predicts for the entire out-of-sample region, whatever the most common

class was in the in-sample period. For example, if the price was mostly moving

up in the in-sample period and had hence been assigned ’+1’ in the majority of

cases, then this benchmark classifier would assign ’+1’ to the entire out-of-sample

period. This benchmark embodies both the trend-following technical indicator

and the principle of a random classifier (which is significantly more effective than

simply predicting each class with a probability of a third).
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11 Experimental results

Figure 7 shows the price of EURUSD over the period in question.

Figure 7: Price of EURUSD over dataset
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This dataset was chosen because it encompasses trends of varying severity in both

directions as well as some range trading characteristics.
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11.1 General kernel selection

11.1.1 Accuracy comparison

In order to investigate which kernel mapping / feature combinations were the best

performers when used individually, the percentage accuracy of each out-of-sample

period was calculated over the different predictive time horizons. Figure 8 shows

the average of this accuracy for all of the 165 kernels for each of the horizons along

with the performance of the benchmark (shown as the horizontal red line). One

can see that the benchmark outperforms all the individual SVM for shorter time

horizons and the majority of them for the longer horizons.

Figure 8: % accuracy of individual SVM against benchmark
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With the aim of establishing whether a particular feature, kernel mapping or class

of feature (i.e. price based, volume based or Fisher feature) was particularly ef-

fective, these results are summarised to highlight these different ways of grouping

the 165 kernels and shown in figures 9, 10 and 11. The actual numbers for these
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graphs can be found in the corresponding Tables 15, 16 and 17 in the appendix.

Refer to Section 10.2.1 for a reminder of what each of the features F1 to F11 are.

Figure 9: % accuracy of individual SVM by feature type
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Figure 10: % accuracy of individual SVM by kernel mapping
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Figure 11: % accuracy of individual SVM by feature class
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Looking at Figure 9, one can see that there is little consistency in the relative

performance of the features across the different predictive time horizons with F8

having the highest predictive accuracy for the shortest time horizon ∆t = 5s, F10

for ∆t = 10s, F4 for ∆t = 20s, F7 for ∆t = 50s & ∆t = 100s and F2 for ∆t = 200s.

This lack of consistency is not evident when examining the kernel mappings. Fig-

ure 10 shows the RBF mapping outperforming the Poly and INN mappings for all

time horizons, significantly so for the shorter ones.

One can see that that the relative performance of the different feature classes is

also very consistent, with for time horizons ∆t ≤ 100, the volume based features

perform most effectively and the Fisher based ones coming in second place. This

is not the case for the longest time horizon, where price based features are the

most effective.

The figures in this section show that percentage accuracy decreases with further

time horizons until ∆t = 100 but then increases slightly for ∆t = 200.
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11.1.2 Stability comparison

Figure 12: Time series % accuracy comparing best individual SVM to benchmark
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Figure 12 compares the percentage accuracy of the best individual SVM as a time

series against that of the benchmark (as described in Section 10.4). Once can see

that for the shorter time horizons, the benchmark’s performance is much more

consistent than that of the best individual SVM, but its stability decreases to be

similar to that of the best individual kernels with increased predictive horizon.

In order to calculate the stability in predictive ability, the variance in the percent-

age accuracy was calculated across the out-of-sample periods for each predictor.

The inverse of the variance, which I will call the stability, is shown for all 165

individual SVM in Figure 39 in the appendix.

Figures 13, 14 and 15 shows these stabilities summarised by feature type, kernel
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mapping and feature class. See Tables 18, 19 and 20 in the appendix for the actual

numbers.

Figure 13: Stability of individual SVM by feature type
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Figure 14: Stability of individual SVM by kernel mapping
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Figure 15: Stability of individual SVM by feature class
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One can see from Figure 13 that other than ∆t = 50, F11 has the highest stability

out of the features for all time horizons. The benchmark has significantly greater

stability than any of the features for ∆t ≤ 20, but significantly lower for the longer

predictive horizons.

Figure 14 shows that for ∆t ≤ 20, the INN is generally the kernel mapping with

the highest stability, followed very closely by the Polynomial kernel mapping. This

is switched round for the longer time horizons, but in all cases ∆t > 5 the RBF is

the least stable predictor.

In terms of class of feature, Figure 15 shows that the classes are fairly similar in

their stability at all time horizons other than ∆t = 200, where the Fisher feature

class is significantly more stable than the other two classes.

The figures in this section show that the stability of the predictors increases with

time horizon whilst that of the benchmark decrease dramatically.
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11.2 Standard MKL

Figure 40 in the appendix shows a scatter-plot of the relationship between the

weighting a kernel was allocated on average by MKL and its overall percentage

accuracy (Top) and the number of times it was selected by MKL and its over-

all percentage accuracy (Bottom). The corresponding correlation coefficients for

these relationships are shown in Figure 16 (Table 21 in the appendix).

Figure 16: Correlation of MKL average weighting & number of times included vs % accuracy
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One can see that the number of times a kernel is included by MKL on average has

a strong relationship with how accurate that kernel is when it is used as a predictor

on its own. There is also a similar relationship with the average weighting each

kernel is awarded and its corresponding accuracy; however, it is less strong. In

both cases, the relationship generally decreases in strength with predictive horizon.

Figure 41 in the appendix shows the average weighting that MKL allocated each
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of the individual SVM over the different time horizons. In order to understand

whether there is a particular kernel mapping, feature or class of feature which

is consistently awarded the highest weightings, Figures 17, 18 and 19 show these

weightings summarised in these three different manners. The actual numbers are

shown in Tables 22, 23 and 24 in the appendix.

Figure 17: Average weighting of individual SVM by feature type
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Figure 18: Average weighting of individual SVM by kernel mapping

∆ 
t (

s)

Kernel

 

 

RBF Poly INN

200

100

50

20

10

5

14%

1.8%

0.25%

0.034%

0.0045%

0.00061%

8.3e−005%

Figure 19: Average weighting of individual SVM by feature class
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Figure 17 indicates that the first 6 features (F1 to F6) are awarded significantly

higher weightings on average than the others. One can also see that the RBF
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kernel mapping is allocated much higher weightings than the Polynomial and INN

mappings from Figure 18. Furthermore, Figure 19 shows that price based features

are favoured by MKL significantly more than volume or Fisher based ones, the

latter being awarded very low weightings. In all cases, there is a great deal of

consistency in these weightings across the different time horizons.

100



11.2.1 Kernel subset

Selection based on Stability / Highest Weightings (Reduced Set A)

Using NA = 3, the overall set contained 7 members instead of 18 because many of

the kernels were both selected frequently and allocated high weightings for multiple

time horizons. These 7 kernels were as follows:

• F1RBF1 EMA Price based feature

• F2RBF1 [SMA SD] Price based feature

• F3RBF1 [Mins Maxs] Price based feature

• F3RBF2 [Mins Maxs] Price based feature

• F3RBF5 [Mins Maxs] Price based feature

• F5RBF5 Volume based feature

• F6RBF5 WeightedVolumes Volume based feature

Selection based on Efficacy (Reduced Set B)

Using NB = 2, the overall set contained 8 members instead of 12 because some of

the individual kernels were the best predictors for multiple time horizons. These

8 kernels were as follows:

• F1RBF1 EMA Price based feature

• F2RBF1 [SMA SD] Price based feature

• F4RBF1 [Ups Downs] Price based feature

• F6RBF1 WeightedVolumes Volume based feature

• F10RBF1 Poisson Fisher feature

• F1RBF2 EMA Price based feature

• F2RBF2 [SMA SD] Price based feature

• F1RBF5 EMA Price based feature
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Figures 20 and 21 (Tables 25 and 26 in the appendix) compare the percentage

accuracy and stability of the benchmark, average kernel, the full MKL set and

subsets A and B.

Figure 20: % accuracy of benchmark, average kernel, full MKL set and Subsets A & B
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Figure 21: Stability of benchmark, average kernel, full MKL set and Subsets A & B
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Figure 20 shows that the percentage accuracy of both subsets is better than the

full MKL set for the longer time horizons (∆t ≥ 50), but worse for the shorter

ones. Subset A outperforms Subset B for the shorter time horizons, but this is

reversed for longer ones. The BM outperforms all other methods for shorter time

horizons, but is generally worse for longer ones. The performance of the average

kernel is worse than all the other methods over all time horizons.

Once can see in Figure 21 that the stability of the different sets is fairly similar,

with the full MKL set being generally the most stable in its performance. The

benchmark is significantly more stable than the other methods for lower predictive

time horizons, but significantly less stable for longer ones. The average kernel is

the most stable predictor for the mid to longer time horizons (∆t ≥ 20).

Figures 22 and 23 (Tables 27 and 28 in the appendix) show the average weighting

each of the kernels in subsets A and B were allocated for the different time horizons.
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Figure 22: Average weighting for Subset A
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Figure 23: Average weighting for Subset B
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Figure 22 shows that for Subset A, the only kernel to receive above 20% weight-

ing on average across all time horizons is F2RBF1. The weightings for Subset
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B are slightly more equally distributed, as Figure 23 shows, with all but kernels

F10RBF1, F1RBF2 and F1RBF5 getting> 10% weightings in the majority of cases.
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11.3 Kernel learning

11.3.1 Reduction in β

Figures 24, 25 and 26 (Tables 29, 30 and 31 in the appendix) compare the per-

centage accuracy of the kernel learning methods for the full MKL set, Subset A

and Subset B. The following terms are used in the legends of these figures:

• No Learning - denoting that no kernel learning (of either kernel mapping

hyperparameters or Fisher feature parameters) has taken place.

• Serial Hyper. and Fish. - denoting that both kernel mapping hyperparam-

eter and Fisher feature parameter learning has taken place using the serial

optimisation method.

• Parallel Hyper. and Fish. - denoting that both kernel mapping hyperparam-

eter and Fisher feature parameter learning has taken place using the parallel

optimisation method.

• Serial Fish. - denoting that only Fisher feature parameter learning has taken

place using the serial optimisation method.

• Parallel Fish. - denoting that only Fisher feature parameter learning has

taken place using the parallel optimisation method.
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Figure 24: Comparison of % accuracy between kernel learning methods for full MKL set
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Figure 25: Comparison of % accuracy between kernel learning methods for Subset A
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Figure 26: Comparison of % accuracy between kernel learning methods for Subset B
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For the full MKL set, Figure 24 shows that the percentage accuracy with any of

the kernel learning methods is marginally better than with no learning at all. For

shorter time horizons, only learning the Fisher feature parameters results in higher

percentage accuracies than when hyperparameter values are learnt as well. There

is very little difference between the accuracies of using parallel and serial optimi-

sation techniques. Looking at Figures 25 and 26, the same can be said for Subsets

A and B, other than that not learning the kernel outperforms all the learning

methods for ∆t = 200 in Subset B.

Figures 27, 28 and 29 (Tables 32, 33 and 34 in the appendix) compare the per-

centage reduction in β resulting from kernel learning for the full MKL set, Subset

A and Subset B.
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Figure 27: β reduction from Kernel Learning for full MKL set
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Figure 28: % β reduction from Kernel Learning for Subset A
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Figure 29: % β reduction from Kernel Learning for Subset B
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Once can see in Figure 27 that the percentage reduction in β is more significant

for the full MKL set when kernel learning optimises hyperparameter values as well

as Fisher features, instead of the latter in isolation. This effect is very significant

for Subsets A and B, as shown in Figures 28 and 29. In all cases, there is lit-

tle difference in the percentage reduction between parallel and serial optimisation

methods. Furthermore, the reduction is more pronounced for longer time horizons.

It is worth noting that although Subset A does not contain any Fisher features,

and hence would not benefit from kernel learning directly, the process outlined in

Section 9.1 still allows a reduction in β through the MKL stage - this is why there

is a non-zero percentage reduction in β shown for the serial and parallel Fisher

feature parameter optimisation methods in Figure 28.

Figures 42, 43 and 44 in the appendix show scatter-plots of the relationship be-

tween percentage reduction in β and the resulting percentage accuracy of the

predictor for the full MKL set, Subset A and Subset B. The corresponding corre-

lation coefficients for these relationships are shown in Figure 30.
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Figure 30: % correlation between % β reduction and % accuracy
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Figure 30 (Table 35 in the appendix) shows that the correlation between percent-

age β reduction and resulting percentage accuracy of the predictor is generally

weakly positive for all the learning methods with the exception of the longest pre-

dictive horizon where it is moderately negative.

Figures 42, 43 and 44 in the appendix show scatter-plots of the relationship be-

tween final β value (i.e. after kernel learning) and the resulting percentage accuracy

of the predictor for the full MKL set, Subset A and Subset B. The corresponding

correlation coefficients for these relationships are shown in Figure 31.
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Figure 31: % correlation between final β value and % accuracy
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Figure 31 (Table 36 in the appendix) shows that the correlation between percentage

β reduction resulting percentage accuracy of the predictor is generally negative for

all the learning methods.

11.3.2 Weightings

Figures 32, 33 and 34 compare the average weightings allocated by MKL using the

four different kernel learning methods for the full MKL set, Subset A and Subset B.
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Figure 32: Comparison of average weighting across kernel learning methods for full MKL set
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The first observation that one can make regarding Figure 32 is that there is strong

consistency in the weightings that the kernels are allocated across the learning

methods. It is also evident that many of the kernels are awarded no weighting at

all and only kernels 1, 4, 7, 10, 13 and 16 (F1RBF , F2RBF , F3RBF , F4RBF ,

F5RBF , F6RBF ) are awarded more than 10% on average. There is also strong

consistency across the different time horizons.
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Figure 33: Comparison of average weighting across kernel learning methods for Subset A
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Figure 34: Comparison of average weighting across kernel learning methods for Subset B
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The consistency across learning methods and time horizons is also noticeable for

Subsets A and B through Figures 33 and 34, the former only allocating F2RBF

average weightings > 10% and the latter allocating F2RBF and F6RBF > 10%

weighting on average. Refer to Section 11.2.1 for a reminder of what each of the

subset kernels are.
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11.3.3 Parameter values

For the sake of completeness, Figures 48 to 59 in the appendix show how the

hyperparameter values learnt in kernel learning for the full MKL set change over

time for the three different mapping types (RBF, Poly and INN) and four differ-

ent optimisation methods (serial hyperparameter and Fisher optimisation, parallel

hyperparameter and Fisher optimisation, serial Fisher optimisation and Parallel

Fisher optimisation).

Figures 60 to 70 in the appendix show the three Fisher models’ parameters that

were learnt using the four optimisation methods (serial hyperparameter and Fisher

optimisation, parallel hyperparameter and Fisher optimisation, serial Fisher opti-

misation and Parallel Fisher optimisation) for the full MKL set and Subset B over

time. These figures show for the majority of the parameters that the time series of

the learnt parameter value in question is very similar across the different sets and

across the distinction between whether optimisation is altering the hyperparame-

ters as well as the Fisher parameters. However, the time series of parameter values

learnt using parallel learning is typically much more stable / of lower variance than

using a serial optimisation method.

Figures 71 to 81 in the appendix compare the Fisher models’ parameters that were

learnt against their Maximum Likelihood estimates over time. In the majority of

cases, though the time series of parameter values is clearly related, the learnt val-

ues exhibit much higher variance than the Maximum Likelihood estimates of the

relevant parameter value.

Figure 35 (Table 37 in the appendix) shows the correlation between these learnt

and ML estimates of the Fisher parameters for the different optimisation methods.
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Figure 35: Correlation between learnt and ML estimates of Fisher parameters
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One can see in Figure 35 that the correlation between the ML parameters and

those derived from kernel learning is significantly positive in the majority of cases.

The exceptions being parameters wBid & wAsk from the ACD model and µBid &

µAsk from the Wiener model where it is weakly positive, pBid & pAsk from the ACD

model where it is weakly negative and qBid & qAsk from the ACD model where it

is strongly negative. The results are consistent across the different MKL sets and

learning methods, with the correlations always stronger for techniques involving

serial optimisation than those using parallel optimisation.
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11.4 Practical considerations

In order to investigate the computational complexity of each technique, the time

taken to run each technique’s corresponding experiment was recorded. These com-

putation times are shown in Figure 36.

Figure 36: Computational time of experiments
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Figure 36 (Table 38 in the appendix) shows that the kernel learning methods are

more computationally expensive than their standard MKL counterparts. The ex-

periments involving kernel learning are fairly consistent in their computational

times, with the exception of ParralelReduxFA, which takes over twice as long to

complete as its counterparts. Running the SVM individually takes more time than

any of the methods other than ParralelReduxFA. The benchmark’s computation

time is so low that it is indistinguishable from zero when shown on the same scale

as that of the other methods, reflecting its highly simplistic construction
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In order to be able to compare the MKL methods with the set of individual SVM

in terms of percentage accuracy and frequency of predictions, the individual SVM

with the highest percentage accuracy for each time horizon were selected and

referred to as if they were one individual SVM. This aggregate kernel Individual

Best was composed as follows:

Table 11: SVM that Individual Best is composed from
∆t Kernel
5 F6RBF1

10 F10RBF1

20 F2RBF1

50 F2RBF1

100 F1RBF2

200 F1RBF5

Figure 37 (Table 39 in the appendix) shows an overall accuracy comparison be-

tween the different methods.
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Figure 37: Overall experimental accuracy comparison
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One can see from Figure 37 that for shorter time horizons (∆t ≤ 20) the bench-

mark outperforms all the other methods, while the methods based on Subset B

have the highest percentage accuracy for the longer time horizons. The average

kernel has generally the lowest performance across all time horizons, while the best

individual kernel is reasonably similar to the MKL methods for the longer time

horizons, but significantly higher for the shorter ones.

Figure 38 (Table 40 in the appendix) shows the percentage number of times pre-

dictions were possible for all the different methods.
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Figure 38: Proportion of times predictions possible for different methods
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Figure 38 shows that the benchmark is able to make predictions significantly more

frequently than any of the other methods. Following this, the average kernel is

able to make predictions more frequently than any of the other techniques. Less

noticeably, methods based on Subsets A and B are able to make predictions slightly

more frequently than those based on the full MKL set. All methods are able to

make predictions most frequently over medium time horizons (i.e. 20 ≤ ∆t ≤ 50),

with the number of predictions possible falling as the time horizon is increased or

decreased.
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12 Experimental conclusions

12.1 General kernel selection

12.1.1 Accuracy comparison

Referring to Figure 8 in Section 11.1.1 one can clearly see that the benchmark

has a very high percentage accuracy for short time horizons, exceeding that of all

the individual SVM for ∆t ≤ 20s. If one considers the benchmark’s construction,

this significant accuracy over shorter time periods is not surprising; one would

expect trends that are evident in the 100s of in-sample training data to persist for

a reasonable time with the effect tailing off with the longer forecast horizons over

which the trend is less likely to have persisted to. The fact that the accuracies of

the individual SVM are so different to the benchmark for the shorter time hori-

zons highlights the fact that they are doing something different to simply trend

following, and for longer time horizons, actually something more effective.

One can see from Figure 9 in Section 11.1.1 that there is no feature that is the

most effective across all time horizons and that it is not possible to generalise on

the features’ performance across the different predictive time horizons. However,

grouping the features into different classes (price, volume or Fisher feature based),

as shown in Figure 11, shows much greater consistency. For all time horizons

∆t ≤ 100s, the volume-based features show the highest predictive accuracy with

the Fisher features following closely behind. The price based features only show

relative outpeformance for the longest time horizon ∆t = 200s. The relative out-

performance of volume based features to price based ones for shorter time horizons

(which is reversed for longer time horizons) is exactly what one would expect to

see when market microstructural effects, related to order book volumes and the

features based on them, have a much stronger effect on future price movements

than previous price action. It seems that in the case of EURUSD, the cut-off in

effectiveness of volume based features vs price based ones occurs somewhere be-

tween 100 and 200s. The Fisher features’ performance is only marginally better

than price based features for the majority of time horizons, indicating that it might

be making predictions in a very similar manner to the price based features.

Another interesting observation from Figure 9 is that the performance of the indi-

vidual kernels is more differentiated for shorter time horizons than for longer ones,
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where the percentage accuracy of each individual SVM is much more similar to

each other.

In terms of the effectiveness of the different kernel mappings highlighted in Figure

10, the RBF clearly significantly outperforms the Polynomial and Infinite Neural

Network mappings across all time horizons. The performance of the the latter

being very similar in their mediocrity. All the literature has pointed to the RBF

being the most suitable kernel mapping for financial prediction tasks, and the re-

sults clearly back this up.

Something that is so obvious that it could be overlooked is the general decrease in

accuracy of the predictive methods that occurs for all the different ways of gener-

alising across feature type, feature class and kernel mapping. Accuracy generally

declines to 100s and then slightly improves at 200s. One would expect accuracy

to decline with time; the trend-following component that all the predictors have

inherent in their design (through having a bias factor in the SVMs they are based

on) means that a proportion of their predictive ability can always be ascribed to

trend-following and this component’s effectiveness will decline with increased time

horizon. The greatest increase in predictive accuracy when moving from ∆t = 100s

to 200s is shown when generalising across feature class in the price feature. This

is also seen in Figure 9 with the significant increase in performance of features F1

and F2 when moving from ∆t = 100s to 200s. This indicates that the price based

features class, and in particular the two moving averages of price based features

F1 and F2, work well for shorter time horizons and longer ones, but not for the

intermediate horizon of 100s.

Though individual kernels are able to outperform the benchmark for longer time

horizons, in no cases does generalising (i.e. averaging) over the categories of fea-

ture, class or kernel mapping outperform the benchmark. In other words, for

individual SVM the results show that no particular feature, feature class or kernel

mapping outperforms the benchmark for any time horizon.

12.1.2 Stability comparison

Referring to Figure 12 in Section 11.1.2, given the benchmark’s trend-following

nature one would expect it to be highly consistent in its accuracy for shorter time

horizons - trends are unlikely to suddenly reverse in the short term if they have
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already persisted for the duration of the in-sample period. However, this is not

true for longer time horizons, where a trend has had a much longer time and hence

greater chance to change direction. The most effective individual SVM’s perfor-

mance is massively inconsistent for the shorter time horizons. For these shorter

time horizons, this SVM does not go through time periods of higher predictive

accuracy followed by lower ones, which one would expect from a predictor which

was somehow dependent on market regimes or the noisiness of the time series it

is attempting to forecast - it is constantly inconsistent. However, for the longest

time horizon (∆t = 200s) the predictor’s performance does seem to be marginally

less erratic - going through longer periods of time where it is consistently effec-

tive or ineffective. This all suggests that the individual SVM is not really doing

much more than picking up on some short term trend-following behaviour when

employed on the shorter time horizons, but that there is predictive ability over

and above this trend-following capacity when the SVM is employed for ∆t = 200s.

This is backed up by some of the individual SVMs’ overall outperformance in pre-

dictive accuracy over the benchmark as shown in Figure 8.

One can see the stabilities shown in Figure 12 quantified in Figure 13, which shows

again the benchmark being significantly more stable than the individual SVM for

shorter time horizons but much less so for longer ones, with the stability of the

individual SVM doing the opposite.

Revisiting what is written in the results concerning stability summarised by fea-

ture, kernel mapping and feature class:

• F11, the Wiener model-based Fisher feature, generally has the highest sta-

bility out of the features for all time horizons.

• For ∆t ≤ 20, the INN is the kernel mapping with the highest stability,

followed very closely by the Polynomial kernel mapping. This is switched

round for the longer time horizons, but in all cases the RBF is the least

stable predictor.

• The feature classes are fairly similar in their stability at all time horizons

other than ∆t = 200, where the Fisher feature is significantly more stable

than the other two classes.

In summary, the trend-following benchmark is both much more accurate and sta-

ble over shorter predictive horizons, whilst some of the individual SVM are more
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effective on both counts for longer horizons. It is not really possible to generalise

the individual SVM’s accuracy across feature or feature class but the RBF kernel

mapping outperforms the Polynomial and Infinite Neural Network mappings for

all time horizons. This lack of generalisation is not the case when it comes to

stability, where F11, the Wiener model based Fisher feature is generally the most

consistent predictor.
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12.2 Standard MKL

Referring to Figure 16 in Section 11.2, one can clearly see a strong relationship

between both how many times an individual kernel was selected by the Simple

MKL algorithm and what weightings the individual kernels were allocated and

the corresponding accuracy of the predictor when it was used on its own individ-

ually. This shows that SimpleMKL is generally both selecting the more effective

of the individual SVM for its predictive performance and allocating them more

significant weightings. The fact that the correlation is higher for the number of

times an individual SVM is selected than the weighting it is allocated indicates

that SimpleMKL might be more effective at choosing whether to place an indi-

vidual kernel in the set it is using for prediction than allocating weightings to the

kernels it has selected. The decrease in correlation with predictive time horizon

could be due to the fact that there is more to differentiate kernels in their per-

formance, and hence make it easier for Simple MKL to choose between them, for

shorter time horizons than for longer ones (as can be seen for example in Figure 9).

SimpleMKL clearly favours features F1 to F6 (all the price based features and half

of the volume-based features) and the RBF mapping with much higher weightings

across all time horizons - as can be seen in Figures 17, 18 and 19. The choice of the

RBF kernel mapping can be explained through its significant outperformance in

predictive accuracy, but the bias towards features F1 to F6 can be neither explained

through their predictive accuracy nor their stability. Furthermore, it is hard to

quantify a comparison between the consistency in the weightings across different

time horizons as shown in Figures 17, 18 and 19 and the consistency between

the accuracy or stability of the individual SVM when generalised over feature,

feature class or kernel mapping. However, it does appear that the SimpleMKL

weightings are much more stable across time than either the accuracy or stability

of the individual SVM.

12.2.1 Kernel subset

The kernel subsets described in Section 11.2.1 consist mostly of price-based fea-

tures in both cases, with the addition of a couple of volume-based features in

subset A (where the kernels were selected based on their weighting in the full-set

SimpleMKL) and one volume based feature and one Fisher feature in subset B

(where the kernels were selected based on the performance as individual SVM).
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Subset A’s composition reflects Simple MKL’s proclivity for price based features,

whilst subset B’s reflects the fact that a price-based feature often had the highest

predictive accuracy for any given time horizon (despite the fact that price based

features as a whole did not). The kernel mapping is always RBF in both subsets,

reflecting Simple MKL’s strong bias to selecting it as a mapping and its significant

predictive outperformance relative to the other kernel mappings.

Looking at Figure 20, one can see that reducing the size of the set from which

SimpleMKL chooses its kernels to focus on ones that one would suspect would

improve performance, either because full-set SimpleMKL allocated them higher

weightings or because they had higher predictive accuracies when used individ-

ually, does increase performance for the longer time horizons. The fact that it

does not do so for the shorter ones suggests again that a large proportion of the

predictive ability of the SVM based approach, be it individual SVM or in combi-

nation through SimpleMKL, is based on short term trend-following and that the

larger set used in full-set MKL is better able to capitalise on this than smaller sets

based around more potentially effective predictors. The fact that the benchmark

outperforms the other methods for shorter time horizons, but that this is reversed

for the longer ones, lends greater credence to this idea. The same is also true for

Subset A’s shorter time horizon outperformance / longer time under performance

relative to Subset B; it is possible that the kernels that Subset B is composed

of, being selected because of their outperformance as individual SVM, are doing

more genuine prediction over and above the bias component of trend-following

than their counterparts in Subset A.

The outperformance of all three MKL methods relative to the average kernel at all

time horizons indicates that the weighting procedure that SimpleMKL employs is

much more effective when it comes to the resulting predictor than simply allocat-

ing all the individual kernels in the full set an equal weighting. There are clearly

some individual kernels in this full set that significantly reduce the performance

of any predictor that includes them and SimpleMKL is able to weed these out.

Comparing the stability of the different sets, as shown in Figure 21, one can see

that they are fairly similar, with the full MKL set being generally the most stable

in its performance. One would expect the stability of SimpleMKL predictions to

increase slightly with set size - there being occasions when kernels that are typ-
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ically not selected by SimpleMKL are suddenly required, owing to some unusual

feature of the in-sample data. As mentioned before, given the benchmark’s trend-

following nature, one would expect it to be highly consistent in its accuracy for

shorter time horizons; trends are unlikely suddenly to reverse in the short term if

they have already persisted for the duration of the in-sample period (100s), but

this is not the case for longer time horizons. The average kernel’s high stability

relative to the other methods for longer time horizons is likely to be due to the

stability inherent in simply averaging the predictions of a large set of predictors as

opposed to weighting a smaller subset of predictors with weightings derived from

some in-sample data.

The majority of Subset A’s predictive accuracy is due to kernel F2RBF1, which

Figure 22 shows to have the lion’s share of the weightings allocated by SimpleMKL

across all time horizons. One cannot attribute Subset B’s performance so unilat-

erally, with the weightings being more evenly distributed amongst several kernels,

most notably F2RBF1, F1RBF2 and F1RBF5. It is clear that features F1 and F2,

the two moving average of price based features, are allocated the most significant

weightings by SimpleMKL for both subsets.
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12.3 Kernel learning

12.3.1 Reduction in β

Figures 24, 25 and 26 in Section 11.3.1 show that for all three MKL methods

(full-set, Subset A and Subset B), learning the kernels’ hyperparameters / Fisher

feature parameters generally represents a slight improvement in terms of percent-

age accuracy relative to no kernel learning. For shorter time horizons, only learning

the Fisher feature parameters results in higher percentage accuracies than when

hyperparameter values are learnt as well, though this effect is even more marginal.

There is very little difference between the accuracies of using parallel and serial

optimisation techniques. Given the crude iterative nature of the serial optimisa-

tion method, the optimisation problem of minimising β as described in Section 9.1

is clearly trivial enough to not warrant parallel optimisation.

The kernel learning’s limited improvement in performance is reflected in the low

proportional reduction in β that the learning process achieves, as shown in Figures

27, 28 and 29. As one would expect, in all cases the proportional reduction in β is

more significant when optimising the hyperparameter values along with the Fisher

feature values. The extent of the difference in β reduction between optimising the

Fisher feature parameters and doing this as well as optimising the hyperparameter

values is due to the exponential effect the hyperparameters have on kernel map-

pings (e.g. σ in the RBF mapping: exp
(

−‖x− x′‖2 /σ2
)

) - and hence exert a

much stronger influence on β than the Fisher feature parameters. This effect is

compounded in Subset B (Figure 29), where only one of the kernels is composed

of a Fisher feature. Note that the percentage β reduction is more or less zero for

Subset A (Figure 28) when hyperparameter optimisation is not taking place - re-

flecting the fact that Subset A contains no Fisher feature based kernels to optimise.

Examining the relationship between reduction in β and resulting accuracy more

closely, once can see from Figure 30 that the correlation between percentage β

reduction and percentage accuracy of the resulting predictor is generally weakly

positive. This means that there is a slight relationship between the extent of kernel

learning that has taken place and the resulting accuracy. This is not the case for

the longest time horizon, where the correlation is negative, indicating that there

may be over-learning (i.e. overfitting) taking place for ∆t = 200s.
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The stronger negative correlation between the final β value and resulting accuracy,

as shown in Figure 31, is an indication that a lower β value is associated with a

more effective predictor, and that it is a sensible thing to be attempting to minimise

in our iterative SimpleMKL / kernel learning procedure (as described in Section

9.1) from an empirical, as well as a theoretical, perspective.

12.3.2 Weightings

Looking at the weightings awarded to kernels when kernel learning is applied on

the full MKL set, as shown in Figure 32, one can see strong consistency in the

weightings that the kernels are allocated across the learning methods. It is also

evident that many of the kernels are awarded no weighting at all and only ker-

nels F1RBF , F2RBF , F3RBF , F4RBF , F5RBF , F6RBF are awarded more than

10% on average. This is a clear reflection of what was mentioned previously in

Section 12.2, with SimpleMKL clearly favouring features F1 to F6 (all the price

based features and half of the volume based features) and the RBF mapping. This

favouritism is still evident despite kernel learning now also taking place.

Kernel learning has not altered SimpleMKL’s preferences for any of the subsets’

kernel weightings either, with Subset A still only allocating F2RBF average weight-

ings > 10% (Figure 33) and Subset B allocating F2RBF and F6RBF > 10%

weighting on average (Figure 34).

12.3.3 Parameter values

Referring to Figures 60 to 70 in the appendix, the similarity of the learnt Fisher

parameters across the different sets and across the distinction between whether

optimisation is altering the hyperparameters as well as the Fisher parameters,

is no surprise given the similarity in predictive accuracy between these different

methods. Although there is little to distinguish the serial and parallel optimi-

sation methods from a performance perspective, it seems that that the latter is

significantly more stable in the learnt values it produces. One would expect this

as a consequence of the parallel optimisation method’s ability to adjust all the pa-

rameter values simultaneously as opposed to iteratively in the manner that serial

optimisation is carried out.
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As can be seen in Figures 71 to 81 in the appendix, it is encouraging that in the

majority of cases the time series of Maximum Likelihood derived Fisher parame-

ters is similar to those that are derived as a consequence of learning the kernel.

The fact that the two very different processes of kernel learning through minimis-

ing β (as described in Section 9.1) and calculating Maximum Likelihood estimates

of the parameters result in similar values, indicates that both processes represent

effective ways of establishing the Fisher parameter values and that the generative

models that embody these parameters have some plausibility. One potential ex-

planation for the optimised values being so similar to the ML ones is that they are

initialised with the mean value of each Fisher parameter over the period investi-

gated. However, as one can see from Figures 71 to 81, over the period in question

the ML parameter values deviate significantly from their means so this can only

be a minor consideration. One would expect lower stability in the optimised pa-

rameter values, which depend on many aspects of the kernel and other external

factors, relative to the ML estimates which are based on small sets of features of

the data.

It is interesting that this relationship does not hold for parameters qBid & qAsk

from the ACD model, with the two different ways of arriving at these parame-

ter values showing strongly negatively correlated results. This is something that

should be investigated in further work. The similarity of correlation between ML

and kernel learning across set and learning method (Figure 35) reflects the simi-

larities in percentage accuracy across these distinctions. The fact that the serial

optimisation methods exhibit stronger correlation with the ML derived parameters

than parallel optimisation ones could be due to the parallel optimisation method

having a propensity to converge more rapidly to local minima than the iterative

serial optimisation method. However, given the similarity in performance of these

two techniques, this is unlikely to be a significant effect.
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12.4 Practical considerations

Looking at Figure 36 in Section 11.4, one can see that kernel learning involves

significantly more computation time than standard MKL. There is almost no dif-

ference in computation time between the serial and parallel optimisation methods,

tying up once again with the similarity in their performance. Running the full set

of SVM individually takes four times as long as their combined use in standard

SimpleMKL, highlighting the computational efficiency of the SimpleMKL method.

When considering the overall percentage accuracy of the 16 different combinations

of methods investigated here, it is clear that the benchmark outperforms all the

other methods for shorter time horizons (Figure 37). As described before, this is

due to the trend-following construction of the benchmark, making it difficult to

improve upon over the short term because of the expectation that trends evident

in 100s of training data might persist for a reasonable time, with the effect tailing

off for longer forecast horizons. For longer time horizons, it is methods based on

Subset B that show the highest percentage accuracy. Biasing our set of kernels to

choose from in SimpleMKL towards ones that showed strong performance when

used individually significantly improves performance relative to standard MKL.

Learning the kernel represents an improvement on standard MKL for Subset A for

longer time horizons (∆t ≥ 50), but not for Subset B, other than at ∆t = 100s

where it is the strongest of the methods. The outperformance of most of the

MKL methods relative to the average kernel at all time horizons indicates that

the weighting procedure that SimpleMKL employs is much more effective when it

comes to the resulting predictor than simply allocating an equal weighting to all

the individual kernels in the full set. There are clearly some individual kernels in

this full set that significantly reduce the performance of any predictor that includes

them and SimpleMKL is able to weed these out.

As can be seen from Figure 38, the trivial construction of the benchmark enables

it to make predictions with much higher frequency than any of the other methods

for all time horizons. In a similar fashion, the simple averaging of the full set of in-

dividual SVM creates a predictor that is able to forecast more often than its more

sophisticated counterparts. There is little to distinguish the other methods from

each other in terms of the proportion of times they are able to make predictions,

other than the fact that methods based on Subsets A and B are generally able to

make predictions more frequently than those based on the full set.
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Looking at the computational time, percentage accuracy and proportion of times

predictions are possible for each method simultaneously, one can comment on the

overall performance of the different methods (which can be referred to by their

experimental names in Figures 36, 37 and 38):

• The benchmark (Benchmark) is the most accurate predictor for shorter time

horizons by a significant margin. It is also extremely simple to calculate -

requiring almost no computational time relative to the other methods - and

is able to make predictions far more frequently than the other methods. For

any practical purposes it is clearly the most appropriate method for shorter

time horizon prediction (i.e. ∆t ≤ 20s).

• Constructing an average kernel (Average) from the full set of individual ker-

nels is computationally very expensive (requiring the full set of individual

kernels to be calculated) and despite being able to make predictions com-

paratively frequently, leads to a relatively inaccurate classifier for all time

horizons. Out of the methods investigated, it is the least suitable for the

prediction task this research is concerned with.

• Using the best individual kernel (Individual Best) for each time horizon re-

quires one first to know what this kernel would be; it is therefore computa-

tionally expensive, in that one would have to run the full set of individual

SVM in order to ascertain this. However, the best individual SVM for each

time horizon are only marginally less accurate than the benchmark for the

shorter time horizons and though not the most accurate of the techniques for

the longer ones, are nevertheless more accurate than standard SimpleMKL.

Taking into account how frequently it is possible to make predictions us-

ing these individual SVM for the longer time horizons, however, shows that

they would be significantly less effective in circumstances where this was an

important metric.

• Standard SimpleMKL (Standard) (i.e. with no kernel learning and operating

on the full set) is a relatively computationally efficient method, resulting in

reasonable percentage accuracy and frequency over all the time horizons. It

is significantly more effective than the average kernel and individual SVM,

but less so than its reduced kernel set and kernel learning counterparts.
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• Reducing the size of the sets that SimpleMKL is allowed to select from but

still not carrying out kernel learning (StandardReduxA and StandardReduxB)

results in the most computationally efficient methods, with accuracy that is

only marginally lower than kernel learning implementations in the majority of

cases. In the case of ∆t = 200s and ∆t = 50s, it is actually the most accurate

method - significantly so for the latter. Furthermore, the methods’ frequency

of predictions are generally the highest of the SimpleMKL methods. The

two reduced subset standard MKL methods are the most effective performers

overall and would make the best choice of predictive method if computational

time represented any form of constraint.

• The methods involving learning the kernel (Serial, Parallel, SerialF, Par-

allelF, SerialReduxA, ParallelReduxA, SerialReduxFA, ParallelReduxFA, Se-

rialReduxB, ParallelReduxB, SerialReduxFB and ParallelReduxFB) require

significant computational time without reasonable improvements in accuracy

over standard MKL for the shorter predictive time horizons but generally less

significant improvements for the longer ones. It is only for ∆t = 100s that

kernel learning methods show the highest percentage accuracy (SerialRe-

duxB and ParallelReduxB). The frequency of predictions is the highest of

all the MKL methods when kernel learning is applied on the subsets (Seri-

alReduxA, ParallelReduxA, SerialReduxFA, ParallelReduxFA, SerialReduxB,

ParallelReduxB, SerialReduxFB and ParallelReduxFB). Kernel learning on

the subsets therefore represent the best choice of method where the frequency

of prediction is a more important consideration than computational time.
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13 Market microstructure model insights

An outcome of the experiments is that we are able to come up with estimates for

the actual parameter values of which the three market microstructural models are

comprised, allowing us to specify more concretely the aspects of the time series

each of them aims to describe. Given the similarity of the Maximum Likelihood

estimates to those derived through learning the kernel and the relative stability of

the former, ML estimates will be used. Furthermore, for the sake of simplicity it

will be the means of the relevant parameters’ values over time that will be shown.

13.1 ACD model

The ACD model introduced in Section 8.1 is specified:

ht = w + qxt−1 + pht−1

xt = htǫt, ǫt ∼ Exp(λ)

where xt is the duration of the price at time t and ht is its expected duration.

Using the mean ML values for the parameters w, p, q and λ, we have on the Bid

side:

ht = 0.24 + 0.33xt−1 + 0.16ht−1

xt = htǫt, ǫt ∼ Exp(0.51)

And on the Ask side:

ht = 0.29 + 0.31xt−1 + 0.04ht−1

xt = htǫt, ǫt ∼ Exp(0.46)

Referring to Figure 7, the price in our dataset spends about the same amount of

time moving upwards as it does downwards, so one would expect the bid and ask

prices to have similar durations on average. This fact is reflected in the similarity

of the wBid and wAsk parameters: 0.24 and 0.29 respectively. One can see that

the other parameter values are fairly symmetric across the two sides, with the

exception of p, which shows greater autocorrelation of the expected duration on

the Bid than the Ask on average.
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13.2 Poisson process

The Poisson model introduced in Section 8.2 is specified:

P (∆Vi = x) =
e−λiτ (λiτ)

x

x!

where

∆Vi =

∣

∣V i
t+τ − V i

t

∣

∣

τ

and τ is a time interval of 1 second.

Using the mean ML values we have the following table of λi:

Table 12: λ values for each depth on the Bid and Ask

Depth (i)
Side

Bid Ask
1 11.1 11.9
2 12.5 12.0
3 10.8 14.2
4 10.3 12.3
5 13.3 12.6

Once again, there is reasonable symmetry in the λ values across both sides of the

book. It is interesting that the rate of change of volumes is greater away from

the top of the book (Depth 1) on both sides. This is fairly typical of most First

In First Out (FIFO) order books and is due to the fact that traders leave orders

speculatively throughout the book hoping to obtain higher priorities in the order

queue, cancelling them if they do not wish them to get executed at that price.

Orders at the front of the book would have been cancelled previously whilst that

price level was not exposed, so as not to risk getting unwanted order fills. For this

reason, it is often the second layer in an order book that shows the most activity

in terms of volume changes.

The λ values shown here indicate that there are slightly over $ 10 million of volume

changes per second on each of the levels of the EURUSD order book.
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13.3 Wiener process

The Wiener process barrier model introduced in Section 8.3 is specified:

dpt = µdt+ σdz

where the price of the asset pt follows a random walk with drift µ and variance σ2.

This means that the price movement of an asset over a time period t will be

distributed:

pt − pt−1 = ∆pt ∼ N(µt, σ2t)

Using the mean ML values for the parameters µ and σ2 we have on the Bid side:

∆pt ∼ N(−0.02t, 0.282t)

And on the Ask side:

∆pt ∼ N(0.00t, 0.602t)

The fact that the two µ values are so close to zero reflects the negligible overall

drift in prices and lack of overall trend of the dataset. The Ask prices appear to

have a slightly higher variance than the Bid ones, perhaps indicating that the Ask

prices moved around more often whilst the Bid remained constant than vice versa

on average.
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14 Overall conclusions and contributions

What follows is a summary of all the conclusions that have been made as this

research has progressed.

14.1 Literature review

When it comes to making predictions in financial markets, the majority of pub-

lished work in this area is traditionally relatively unsophisticated from a model

complexity / mathematically interesting point of view. The econometrics liter-

ature concentrates mostly on autocorrelation of returns, whilst the majority of

technical analysis is concerned with incorporating previous price action of the

time series in question.

More recently, there has been a significant body of work implementing signal pro-

cessing methods in financial time-series prediction and this has evolved to the

usage of some machine learning techniques. However, the repertoire of techniques

that has been researched for financial market prediction is very small and falls into

the following four areas:

• Neural Networks have been researched heavily. However, the literature in-

dicates that the stochastic nature of their weight initialisation, the fact that

they cannot be guaranteed to provide optimal solutions and that they are

prone to overfitting have been a severe hindrances to their application in

many domains.

• The more recent SVM, which overcome the above major problems, have

been a more popular tool in the recent literature. However, one of the main

problems of the SVM approach for real-world problems is the selection of the

feature-space mapping through the choice of kernel, which is often selected

empirically with little theoretical justification.

• The evidence on the efficacy of evolutionary algorithms in financial prediction

applications is divided, with the majority of the publications in this area

being highly empirical.

• The literature suggests that standard HMM techniques have been effective

in very specific applications, for example when predicting daily FX returns.
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In terms of the research on order books and the related field of market microstruc-

ture, there has been a very significant amount of work done in this area, but it is

heavily based on stocks and often relates to characterising features such as liquid-

ity, volatility and spreads, instead of attempting to predict future price action.

14.2 Generative machine learning research

The main weakness of generative machine learning models is that the majority of

them, and certainly the two investigated in this research, require a large number of

parameters to describe them. Although modelling price action as observations gen-

erated from some latent process seems plausible, particularly when incorporating

either the known autocorrelation of asset returns or the sudden structural changes

that occur in a market, this weakness rendered the SAR-HMM and changepoint

models impractical for financial prediction tasks. It is my belief that the signifi-

cant noise to signal ratio in asset price returns renders the majority of generative

models impractical for financial prediction tasks - the large numbers of parameters

making it difficult to avoid overfitting.

Furthermore, some of the mathematical assumptions that are used in formulating

generative models have no real-life financial motivation. For example, there is no

reason that the priors used in the changepoint model described in 4.2.1 should

be Gamma and Gaussian distributions, other than to make the maths easy. The

choice of probability distributions which the generative models briefly investigated

here consist of seems to have no foundation in financial theory and hence represents

both a great weakness of both these models and one might expect the majority

of other standard generative machine learning methods used to model real-world

processes - particularly financial ones.

14.3 FX carry basket prediction

Using a small committee of simple discriminative machine learning techniques to

predict FX carry basket returns was highly successful. This was almost certainly

mainly due to the predictive value of selecting a set of exogenous features known

to have a relationship with the returns being forecasted. In this sense it represents

a very good example of how well machine learning techniques can capitalise on

sophisticated domain knowledge.
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14.4 Comparison of LPBoostMKL and SimpleMKL on or-

der book features

The first set of MKL experiments described in Section 6, showed that the kernels

using the radial basis function mapping with the three smallest scale parameters

(σ2) on the simple volumes feature and the change in volumes feature were the most

relevant for making predictions over the data set. LPBoostMKL and SimpleMKL

selected similar kernels and allocated them very similar weightings, highlighting

the consistency between the two techniques.

Section 6 was also the only section where attempts were made to explore the real-

world consequences of using the MKL methods for actual trading through their

incorporation into a simple trading rule and the P&L that would result. It was

found that although the two techniques may make incorrect predictions more often

than correct ones, the extent of the moves that work in the techniques’ favour more

than compensates for the losses of the incorrect ones. This was reflected in the

fact that the two MKL techniques clearly outperformed the best individual kernel

and the moving average-based trend-following predictor. The profit that the two

MKL methods realised in the example shown (Figure 5) was significant both in its

magnitude and also in its consistency over time, in that the periods where money

was lost (draw-downs) were both infrequent and short-lived.

The final point regarding the comparison of SimlpeMKL to LPBoost is that al-

though they are both solving the same optimisation problem and hence one would

expect them to give very similar results (as they do), the main difference between

them is that the continuously improving LPBoost algorithm can be stopped at any

point prior to convergence to produce a suboptimal classifier; in this sense, one

can control the accuracy vs training time trade-off for the method. This aspect of

the method is of practical benefit in real-time applications where training time is

an important constraint.

The first set of MKL experiments were significant in that no price action or features

based on prices were taken into account when predicting future prices - in stark

contrast to other research attempting to predict market direction. Aside from the

novelty that this contribution represents, this means that any trading rules based

on these techniques are likely to complement existing rules well, the majority

140



of which look at previous price action in some manner or other. Furthermore,

the out-performance of the kernel-based techniques for long time horizons over

the trend-following benchmark clearly makes them a useful method for locating

turning points in time series of EURUSD prices.

14.5 SimpleMKL using financially motivated features

Adding features based on standard concepts from the world of trading to the vol-

ume based features, as described in Section 7, changed the kernel combinations

most commonly selected by SimpleMKL to those using the RBF mapping with the

smallest scale parameter on the exponential moving average crossover feature, the

RBF mapping with the largest scale parameter on the price standard deviation /

moving average feature and the RBF mapping with the largest scale parameter

again on the minimums / maximums feature.

Incorporating these financially motivated features also improved percentage accu-

racy of the predictions, as highlighted in Table 13.

Table 13: % Accuracy of standard MKL using order book vs financially motivated

features
∆t Standard Order Book Financially Motivated
5 95 95
10 90 90
20 81 82
50 66 67
100 51 61
200 45 59

For all the MKL methods there was significant consistency in each of the kernel /

feature combinations weightings across the different time horizons - in the majority

of cases the weighting for a particular combination is not significantly different

between when being used to make a prediction for a short time horizon and a

longer term one. Furthermore, the performance of the MKL methods in terms

of percentage accuracy was on the whole higher than that of any of the kernel

combinations individually.
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14.6 Summary of experimental conclusions

• The trend-following benchmark has the highest percentage accuracy and

consistency for the shorter time horizons. One would expect trends that are

evident in in-sample training data to persist for a reasonable time with the

effect tailing off with the longer forecast horizons over which the trend is less

likely to have persisted.

• The individual SVM constructed from volume based features show the high-

est predictive accuracy for ∆t ≤ 100s and the price based ones for ∆t = 200s.

This is what one would expect to see when market microstructural effects,

related to order book volumes and the features based on them, have a much

stronger effect on future price movements than previous price action.

• As expected from the literature, the RBF kernel mapping significantly out-

performs the Polynomial and Infinite Neural Network ones.

• SimpleMKL tends to choose the highest performing individual SVM and

typically allocates them higher weightings.

• SimpleMKL is more effective at choosing kernels to include than it is at

allocating them weightings.

• SimpleMKL favours price based features over volume or Fisher feature based

ones.

• For all the MKL methods investigated, there is a great deal of consistency

with the weightings allocated across the different predictive horizons.

• Reducing the set of kernels that SimpleMKL can choose from to a smaller

(biased) set increases performance for the longer time horizons.

• The average kernel, created by allocating equal weightings to all the kernels

in the full set, has very poor performance.

• Learning the kernels’ hyperparameters / Fisher feature parameters generally

improves percentage accuracy relative to no kernel learning.

• There is very little difference between the accuracies of using parallel and

serial optimisation techniques to learn the kernel.

• The proportional reduction in β that kernel learning achieves is limited.
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• There is a weak relationship between the extent of kernel learning that has

taken place and the resulting accuracy of the predictor, indicating that kernel

learning is not resulting in over-fitting in the majority of cases.

• There is a reasonably strong relationship between the final β value of a

predictor and its accuracy - a lower value being associated with a more

effective predictor.

• In the majority of cases, the time series of Maximum Likelihood derived

Fisher parameters is similar to those derived as a consequence of learning

the kernel.

• The reduced subset MKL methods without kernel learning are the most

effective performers overall and would make the best choice of predictive

method if computational time represented any form of constraint.

• The methods involving learning the kernel require significant computational

time with reasonable improvements in accuracy over standard MKL for the

shorter predictive time horizons, but generally less significant improvements

for the longer ones. They represent the best choice of method where the

frequency of prediction is an important consideration but computational time

is less so.

14.7 Summary of financial insights

The first insight in this area from the experiments conducted is the strength of

the simple trend-following benchmark. This shows that for shorter time horizons

in FX, trends are much more likely to persist than not and that as a consequence

the best prediction for EURUSD’s movement is what it has been doing in the

recent past. The predictive performance of such a naive trend-following technique

reduces considerably with increased predictive time horizons to the point where

it is more or less ineffective when a predictive time horizon of several minutes is

concerned. This conclusion is in contrast to the literature review, which suggested

that short term FX returns were highly negatively autocorrelated - see for example

Dacorogna et al. (2001) [17].

Another useful insight is that order book volumes are more useful than previous

price action for making predictions over the short term (i.e. < 100s) and vice

versa for the longer term.
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14.8 Summary of market microstructure model insights

Estimates for the actual parameter values that comprise the three market mi-

crostructural models were made, permitting us to specify more concretely the

aspects of the time series each of them aims to describe.

It was found that there was a great deal of symmetry between the Bid and Ask

parameters for the ACD model, with the exception of p which showed greater au-

tocorrelation of the expected duration on the Bid than the Ask on average.

There was reasonable symmetry in the λ values across both sides of the book for

the Poisson model, with the rate of change of volumes being greater away from

the top of the book (Depth 1) on both sides.

The two µ parameters for the Wiener process model were close to zero, reflecting

the negligible overall drift in prices and lack of overall trend of the dataset. The

Ask prices appeared to have a slightly higher variance than the Bid ones, perhaps

indicating that on average the Ask prices moved around more often whilst the Bid

prices remained constant than vice versa.
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15 Potential criticisms and suggestions for fur-

ther work

The primary criticism of the research this thesis describes is that although ma-

chine learning techniques have been shown to be effective in making predictions

regarding financial time series in a variety of contexts, the relative outperformance

of these techniques has not been extensive and only limited effort has been made

in comparing the techniques’ performance to benchmarks composed of traditional

methods as highlighted in the Literature Review section, particularly in the areas

of econometrics and technical analysis. Further research could involve comparing

each of the techniques investigated here against more sophisticated financial fore-

casting techniques than the simple trend-following methods used here.

When the research was started, generative models seemed like a plausible method

for financial market prediction due to their representation of these time series

as significantly noisy observations of an underlying signal or latent state transi-

tion. However, because of what was felt were intrinsic weaknesses of generative

models in general and because of the poor results of the experiments that were

conducted in this area, the research into generative models employed on their own

was abandoned. There is a gap in the research in that only a very small sub-

set of generative machine learning models were experimented with - namely the

SAR HMM and changepoint models - and further work could involve investigating

the abundance of other generative models, for example Gaussian Mixture Model

HMM, self-transition HMM and resetting HMM models [132] to name but a few.

The seeming plausibility of the SAR HMM and changepoint models from a fi-

nancial perspective make them suitable candidates for Fisher kernels - something

further work could also investigate.

Furthermore, a greater effort could have been made in attempting to make the

generative methods investigated more successful, perhaps for example by extend-

ing the models to incorporate exogenous factors known to have an impact on the

time series being predicted.

Another issue that has not been addressed in this research is the usage of distribu-

tional predictions. It could have been useful to base trading rules on the confidence

one has in a prediction. In SVM, the margin of the classifier acts as a confidence
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in the predictions it will produce for out-of-sample data points (see for example

[133]), the greater it is the more confidence one would have in future predictions.

One could therefore only permit predictions to be made if the classifier’s margin

was above a certain threshold. In this sense, one could control the trade-off be-

tween the frequency of predictions vs their accuracy, which would be of benefit for

any proprietary trading rules based on these methods.

As stated at the outset, limited effort has been made in this work to examine the

real-world consequence of using the methods investigated here for actual trading.

Other than the committee of discriminative techniques used for FX carry basket

prediction - which was actually traded in a hedge fund with reasonable success -

and the incorporation of the forecasts generated from the methods investigated in

the section comparing LPBoostMKL and SimpleMKL on simple order book fea-

tures into simple trading rules, little effort has been made to investigate how useful

these techniques might be when it comes to making money. This is because the

focus of this research was intended to be much more theoretical than practical. It

was felt that shifting the work to more application-based work would have resulted

in a departure from the ambition of this research - namely to marry the machine

learning and financial domain - through distractions based on the most suitable

trading rule, assumptions regarding transaction costs etc. It would obviously be

intellectually and potentially financially rewarding to take the theoretical models

developed here and apply them in the real world.

There have been inconsistencies throughout this research on the data sets and

consequently the assets investigated. The generative methods concern themselves

with futures contracts, the committee of discriminative techniques looks at FX

carry basket returns and then the latter, more significant body of work is based on

EURUSD order book data. In terms of comparing all the methods researched here,

it would have perhaps been better to use similar data-sets throughout. However,

this shift was a consequence of the change in focus of direction of my research

- on one hand the higher dimensionality of order book data was more suited to

SVM-based methods; on the other, it was a result of changes in my career whilst

this research progressed. Financial data is difficult and expensive to obtain and I

was fortunate enough to obtain the data used throughout as a consequence of my

employment and as this changed, so did the data I had access to.
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Obvious augmentations to the MKL component of this research include a greater

variety of kernel mappings than the three used here, a greater range of price and

volume-based features - perhaps incorporating other factors such as time (e.g. rate

of change of order book updates) and information from other currencies and fur-

ther market microstructural models / Fisher features than the three used here. It

is possible that increasing the size of the full set of feature / kernel mappings from

which MKL was selecting would have improved performance, but it is likely that

this improvement would have been small. This is also true of investigating more

sophisticated optimisation methods for the kernel learning process over and above

the serial and parallel methods used here.
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16 Executive summary

In order to briefly summarise the research described here and with a view to clos-

ing off the thesis’s narrative, I will answer the questions posed in the Introduction

that amongst other things this research was designed to address.

Can we make predictions in financial markets using machine learning

techniques?

The research shows that machine learning techniques can be theoretically used

to make effective predictions in currencies. We have shown that it is possible to

predict the direction of movement (up, down or stay within the bid-ask spread)

of EURUSD between 5 and 200 seconds into the future with an accuracy ranging

from 90% to 53% respectively. We have also shown that it is possible to predict

the turning points in the prices of a basket of currencies in a manner which can

be exploited profitably (and indeed has been).

How do generative and discriminative machine learning methods com-

pare with each other when it comes to dealing with financial time series?

The majority of generative methods, and certainly the two investigated in this

research, require a large number of parameters to describe them. The significant

noise to signal ratio in asset price returns hence renders the majority of generative

models impractical for financial prediction tasks - the large numbers of parameters

making it difficult to avoid overfitting.

Can we improve upon existing machine learning techniques to make

them more suitable for financial prediction tasks?

Using Multiple Kernel Learning on financially motivated features was highly suc-

cessful. However, allowing parameters in the features used, along with the kernels

based on them, to be learnt was of very little benefit in terms of predictive accuracy.

What features of financial time series are most useful when making pre-

dictions?
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Order book volumes are more useful than previous price action for making predic-

tions over the short term (i.e. < 100s) and vice versa for the longer term.

Does incorporating domain knowledge of the financial markets, for ex-

ample market microstructure, improve our predictive ability?

Using features based on commonly used trading rules significantly improved per-

formance. However, incorporating market microstructural models through Fisher

kernels only represented a very minor improvement in predictive accuracy.
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17 Appendix
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17.1 Market microstructure empirical findings

17.1.1 Limit vs market orders

• There is a grey scale of liquidity supply vs demand in that submitting a

market order can be seen as taking liquidity, submitting a limit order far

from the Best Bid or Offer (BBO) is providing liquidity and submitting an

aggressive limit order lies in-between these extremes.

• One can classify traders placing limit orders as having relatively higher pa-

tience for the filling of their trades and hence tolerance of execution risk.

Conversely, traders placing market orders are relatively impatient and toler-

ant of price risk.

• The latter group is often motivated by inventory issues; the more information

they have about the true value of the asset, the more liquidity they will take.

They are likely to start with limit orders and switch to market orders when

they approach deadlines for their inventory requirements.

• These informed traders will often take liquidity at the start of a trading

period in an attempt to profit from their information, but as prices move

towards the true value they may move to creating liquidity. The opposite is

true for the relatively less informed liquidity traders.

• Limit orders are sometimes placed in order to test for the weight of trading

in the opposite direction. If a trader realises that the arrival rate of market

orders is lower than anticipated, he may cancel an existing order to minimise

the execution risk.

• Limit order utility is often a concave function of liquidity demand (i.e. the

anticipated frequency of opposing market orders).

17.1.2 Spreads

• Spreads widen with trader impatience, clearing the market for liquidity.

• An increase in trader numbers or decrease in order book depth (total volume

in book) will tend to decrease spreads. The latter is because limit orders

would be required to queue for longer.

• A finer price lattice has a similar effect to reducing order book depth and

hence tends to cause spreads to tighten.
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• Spreads tend to increase as the dispersal of trader valuations increases.

• When spreads narrow, there is a tendency for more market orders to be

submitted until the rate that they are being submitted at increases to the

extent that an equilibrium is reached with slightly wider spreads.

• Spreads tend to widen at the end of the trading day, although in some

exchanges they can be their largest for short periods at the beginning of the

day.

• An increase in the volatility of the true value leads to an increase in the

submission rate of limit orders and also an increased probability of orders

being picked off. This in turn leads to wider spreads and then subsequently

wider spreads.

17.1.3 Market information / reservation values

• Rapidly taking liquidity by submitting market orders leads to information

being imparted as prices converge to their true value.

• Traders typically receive information more quickly than the rate their limit

orders are executed.

• Queues of orders may develop on the most attractive prices in a book.

• A big difference between a trader’s reservation value and price will mean a

greater cost of delayed execution when using a limit order.

• Traders with values close to the price will submit limit orders, but ones with

big differences (in either direction) will tend to submit market orders.

• Uncertainty regarding other participants’ estimates of the true value leads

to spreads widening.

• Mid prices tend to move in the direction of trades, so that for example a

buy order would drive the mid price up. There is a greater price impact for

trades for less frequently traded assets.

• An increase in order depth at the best price decreases the probability of limit

order submissions on the same side, but increases it on the other.
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• Adverse selection costs and liquidity supply (as measured through order book

depth) are inversely related.
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17.2 Generative machine learning derivations

17.2.1 Switching Autoregressive Hidden Markov Models

Forwards recursion (4.3):

p(ht|v1:t) = p(ht|vt, v1:t−1)

=
p(ht, vt|v1:t−1)

p(vt|v1:t−1)

∝ p(ht, vt|v1:t−1)

=
∑

ht−1

p(ht, vt|v1:t−1, ht−1)p(ht−1|v1:t−1)

=
∑

ht−1

p(vt|v1:t−1, ht−1, ht)p(ht|ht−1, v1:t−1)p(ht−1|v1:t−1)

ht⊥v1:t−1|ht−1 ⇒
∑

ht−1

p(vt|v1:t−1, ht−1, ht)p(ht|ht−1)p(ht−1|v1:t−1)

vt⊥ht−1|v1:t−1, ht ⇒
∑

ht−1

p(vt|v1:t−1, ht)p(ht|ht−1)p(ht−1|v1:t−1)

p(vt|v1:t−1, ht) ≡ p(vt|vt−R:t−1, ht)

⇒
∑

ht−1

p(vt|vt−R:t−1, ht)p(ht|ht−1)p(ht−1|v1:t−1)

Backwards recursion (4.4):

p(ht|v1:T ) =
∑

ht+1

p(ht|ht+1, v1:T )p(ht+1|v1:T )

ht⊥vt+1:T |ht+1 ⇒ p(ht|ht+1, v1:T ) = p(ht|ht+1, v1:t)

∴ p(ht|v1:T ) =
∑

ht+1

p(ht|ht+1, v1:t)p(ht+1|v1:T )

=

∑

ht+1

p(ht+1, ht|v1:t)p(ht+1|v1:T )

p(ht+1|v1:t)
∝
∑

ht+1

p(ht+1, ht|v1:t)p(ht+1|v1:T )

=
∑

ht+1

p(ht+1|ht, v1:t)p(ht|v1:t)p(ht+1|v1:T )

ht+1⊥v1:t|ht ⇒
∑

ht+1

p(ht+1|ht)p(ht|v1:t)p(ht+1|v1:T )
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17.2.2 Changepoint models

If we assume that we can compute the the predictive distribution conditional on

a given run length rt, i.e. that we can calculate P (xt+1|rt,x1:t), we can make a

prediction about the next observation P (xt+1|x1:t). We do this by summing over

rt the product of the predictive distribution and the posterior distribution of rt

given the observations so far observed:

P (xt+1|x1:t) =
∑

rt

P (xt+1|rt,x1:t)P (rt|x1:t) (17.1)

where the posterior can be expressed as the joint probability distribution of the

run length rt and all the observations so far x1:t divided by the probability of

observing all these observations:

P (rt|x1:t) =
P (rt,x1:t)

P (x1:t)

=
P (rt,x1:t)

∑

rt

P (rt,x1:t)
(17.2)

This joint distribution can be expressed recursively:

P (rt,x1:t) =
∑

rt−1

P (rt, rt−1,x1:t)

=
∑

rt−1

P (rt, rt−1,x1:t−1, xt)

=
∑

rt−1

P (rt|xt, rt−1,x1:t−1)P (xt|rt−1,x1:t−1)P (rt−1,x1:t−1)

Using the notation x
rt−1

t−1 to represent the set of observations of x associated with the

previous time step’s run rt−1 (i.e. so that
∣

∣x
rt−1

t−1

∣

∣ = rt−1) means that P (xt|rt−1,x1:t−1) ≡
P (xt|rt−1,x

rt−1

t−1 ). Furthermore, rt⊥x1:t|rt−1 ⇒

P (rt,x1:t) =
∑

rt−1

P (rt|rt−1)P (xt|rt−1,x
rt−1

t−1 )P (rt−1,x1:t−1) (17.3)

where P (rt|rt−1) is defined in (4.5), P (rt−1,x1:t−1) is the result of (17.3) from the

previous recursion and P (xt|rt−1,x
rt−1

t−1 ) is the predictive distribution conditional

on a given run length, derived in the next section. In order to make the maths

appear less cluttered, when rt−1 appears as a super-script, we will denote it by rt′ .
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We will use τ to refer to the inverse of the observation variance, i.e. the precision.

Furthermore, instead of using a point estimate for τ we will assume that it is

distributed according to a Gamma distribution so that τ ∼ Gam(α, β). We can

then express the predictive distribution P (xt|rt−1,x
rt′
t−1) as follows:

P (xt|rt−1,x
rt′
t−1) =

∫ ∞

0

P (xt|τ−1)P (τ−1|rt−1,x
rt′
t−1)dτ

=

∫ ∞

0

P (xt|τ−1)P (τ−1|xrt′
t−1)dτ

=

∫ ∞

0

P (xt|τ−1)
P (x

rt′
t−1|τ−1)P (τ−1)

P (x
rt′
t−1)

dτ

=
1

K

∫ ∞

0

N(xt|µ, τ−1)N(x
rt′
t−1|µ, τ−1)Gam(τ |α, β)dτ

=
1

K

∫ ∞

0

N(x
rt′
t |µ, τ−1)Gam(τ |α, β)dτ where

∣

∣x
rt′
t

∣

∣ = rt−1 + 1

=
1

K

∫ ∞

0

( τ

2π

)

r
t′

+1

2
exp

{

−τ

2

rt′
∑

i=0

(xt−i − µ)2

}

βα exp(−βτ) τα−1

Γ(α)
dτ

=
1

K

βα

Γ(α)

(

1

2π

)

r
t′

+1

2
∫ ∞

0

τα+
r
t′

2
− 1

2 exp

{

−τ

[

rt′
∑

i=0

(xt−i − µ)2

2
+ β

]}

dτ

Substituting in z = τ∆ where ∆ =

rt′
∑

i=0

(xt−i − µ)2

2
+ β so that dz = dτ∆:

P (xt|rt−1,x
rt′
t−1) =

1

K

βα

Γ(α)

(

1

2π

)

r
t′

+1

2

∆−α− r
t′

2
− 1

2

∫ ∞

0

zα+
r
t′

2
− 1

2 exp(−z)dz

=
1

K

βα

Γ(α)

(

1

2π

)

r
t′

+1

2

∆−α− r
t′

2
− 1

2Γ(α +
rt′ + 1

2
)

=
1

K

Γ(α +
rt′+1

2
)

Γ(α)
βα

(

1

2π

)

r
t′

+1

2

∆−α− r
t′

2
− 1

2
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Substituting back in ∆ =

rt′
∑

i=0

(xt−i − µ)2

2
+ β and also α = ν

2
and β = ν

2λ
:

P (xt|rt−1,x
rt′
t−1) =

1

K

Γ
(

ν
2 +

rt′+1
2

)

Γ
(

ν
2

)

( ν

2λ

) ν
2

(

1

2π

)

r
t′

+1

2

(

ν

2λ
+

rt′
∑

i=0

(xt−i − µ)2

2

)− ν
2
− r

t′
+1

2

=
1

K

Γ
(

ν
2 +

rt′+1
2

)

Γ
(

ν
2

)

( ν

2λ

) ν
2

(

1

2π

)

r
t′

+1

2

[

ν

2λ

(

1 +
2λ

ν

rt′
∑

i=0

(xt−i − µ)2

2

)]− (ν+r
t′

+1)

2

=
1

K

Γ
(

ν
2 +

rt′+1
2

)

Γ
(

ν
2

)

(

1

2π

)

r
t′

+1

2 ( ν

2λ

)− r
t′

+1

2

(

1 +
λ

ν

rt′
∑

i=0

(xt−i − µ)2

)− (ν+r
t′

+1)

2

=
1

K

Γ
(

ν
2 +

rt′+1
2

)

Γ
(

ν
2

)

(

λ

νπ

)

r
t′

+1

2

(

1 +
λ

ν

rt′
∑

i=0

(xt−i − µ)2

)− (ν+r
t′

+1)

2

(17.4)

The constant K is the Marginal Likelihood P (x
rt′
t−1) and is calculated in a very

similar way:

P (x
rt′
t−1) =

∫ ∞

0

P (x
rt′
t−1|τ−1)P (τ−1)dτ

=

∫ ∞

0

N(x
rt′
t−1|µ, τ−1)Gam(τ |α, β)dτ

=

∫ ∞

0

( τ

2π

)

r
t′

2
exp

{

−τ

2

rt′
∑

i=1

(xt−i − µ)2

}

βα exp(−βτ) τα−1

Γ(α)
dτ

=
βα

Γ(α)

(

1

2π

)

r
t′

2
∫ ∞

0

τα+
r
t′

2
−1 exp

{

−τ

[

rt′
∑

i=1

(xt−i − µ)2

2
+ β

]}

dτ

Substituting in z = τ∆ where ∆ =

rt′
∑

i=1

(xt−i − µ)2

2
+ β so that dz = dτ∆:

P (x
rt′
t−1) =

βα

Γ(α)

(

1

2π

)

r
t′

2

∆−α− r
t′

2

∫ ∞

0

zα+
r
t′

2
−1 exp(−z)dz

=
βα

Γ(α)

(

1

2π

)

r
t′

2

∆−α− r
t′

2 Γ(α +
rt′

2
)

=
Γ(α +

rt′
2
)

Γ(α)
βα

(

1

2π

)

r
t′

2

∆−α− r
t′

2
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Substituting back in ∆ =

rt′
∑

i=1

(xt−i − µ)2

2
+ β and also α = ν

2
and β = ν

2λ
:

P (x
rt′
t−1) =

Γ
(

ν
2
+

rt′
2

)

Γ
(

ν
2

)

( ν

2λ

) ν
2

(

1

2π

)

r
t′

2

(

ν

2λ
+

rt′
∑

i=1

(xt−i − µ)2

2

)− ν
2
− r

t′

2

=
Γ
(

ν
2
+

rt′
2

)

Γ
(

ν
2

)

( ν

2λ

) ν
2

(

1

2π

)

r
t′

2

[

ν

2λ

(

1 +
2λ

ν

rt′
∑

i=1

(xt−i − µ)2

2

)]− (ν+r
t′

)

2

=
Γ
(

ν
2
+

rt′
2

)

Γ
(

ν
2

)

(

1

2π

)

r
t′

2 ( ν

2λ

)− r
t′

2

(

1 +
λ

ν

rt′
∑

i=1

(xt−i − µ)2

)− (ν+r
t′

)

2

=
Γ
(

ν
2
+

rt′
2

)

Γ
(

ν
2

)

(

λ

νπ

)

r
t′

2

(

1 +
λ

ν

rt′
∑

i=1

(xt−i − µ)2

)− (ν+r
t′

)

2

(17.5)

Substituting K = P (x
rt′
t−1) from (2.5) into (2.4) gives the final expression for

P (xt|rt−1,x
rt′
t−1):

P (xt|rt−1,x
rt′
t−1) =

Γ
(

νn
2
+ 1

2

)

Γ
(

νn
2

)

1
√

νnπσ2
n

[

1 +
1

νn

(

xt − µ

σn

)2
]

νn+1
2

(17.6)

where νn = ν + rt′ , βn = β + 1
2

∑rt′
i=1(xi − µ)2 and σ2

n = 2βn

νn
. (17.6) is a Student’s

t-distribution where the parameters ν and σ are functions of the run length rt−1

i.e. xt ∼ St(νrt′ , σrt′ ).
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17.3 Futures contracts

Table 14: List of futures contracts used in SAR HMM and changepoint model research

Contract Sector

AUDUSD FX
Canadian 3M STIR
Soybean Oil Agg
GBPUSD FX

Corn Agg
Crude Oil Energy
Cotton Agg

EURUSD FX
USD Index FX

Bund Bond
Bobl Bond
Schatz Bond
US 3m STIR
Dax Equity

Euribor STIR
Fed Funds STIR
5 Year US Bond

Gold Comm
Copper Comm

Heating Oil Energy
Hang Seng Equity
Japan 3M STIR

Japan 10 Year Bond
JPYUSD FX
Coffee Agg
Wheat Agg

Live Cattle Agg
Cocoa Agg

Lean Hogs Agg
MXPUSD FX
Nasdaq Equity
Nat Gas Energy
Gasoline Energy
Russell Equity

Soybeans Agg
Sugar Agg

CHFUSD FX
Nikkei Equity

Eurostoxx Equity
2 Year Bond
10 Year Bond
30 Year Bond
AUD 3M STIR

AUD 10 Year STIR
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17.4 Financial acronyms

This is an explanation of each of the acronyms from Section 5.3.

Max Draw Down: The maximum peak-to-trough decline over the time period,

expressed as a percentage of the peak before the decline started.

SD Annualized: This is the average annual standard deviation of all the returns.

CAGR: Compound Annual Growth Rate. This is calculated by taking

the nth root of the total percentage growth rate,

where n is the number of years being considered.

Max DD Time: The longest peak-to-trough decline over the time period.

Sharpe Ratio: The CAGR divided by the annualised standard deviation of all

returns.

Sortino Ratio: The CAGR divided by the annualised standard deviation of the

negative returns.
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17.5 Price-based features

• F1: A common trading rule is the moving average crossover technique (see for

example [118]) which suggests that the price Pt will move up when its short

term moving average EMAshort
t crosses above a longer term one EMAlong

t

and vice versa.

• F2: Breakout trading rules (see for example [134]) look to see if the price has

broken above or below a certain threshold and assume that once the price

has broken through this threshold the direction of the price movement will

persist. One way of defining this threshold is through the use of Bollinger

Bands [135], where the upper/lower thresholds are set by adding/subtracting

a certain number of standard deviations of the price movement σL
t to the

average price MAt
L for a period L.

• F3: Another breakout trading rule called the Donchian Trend system [134]

determines whether the price has risen above its maximum maxLt or below

its minimum minL
t over a period L and once again assumes that once the

price has broken through this threshold the direction of the price movement

will persist.

• F4: The Relative Strength Index trading rule [136] is based on the premise

that there is a relationship between the number of times the price has gone

up over a period ⇑L
t vs the number of times it has fallen ⇓L

t and assumes

that the price is more likely to move upwards if ⇑L
t >⇓L

t and vice versa.
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17.6 Calculation of p-values

• For each in-sample period, the proportion of occurrences of each of the three

classes of movement (up, down or none) over the 100 instances of in-sample

data was determined.

• Predictions of movement were then generated randomly for each of the in-

stances of the out-of-sample period where a prediction was deemed possible

by SimpleMKL / individual kernel, each class having a probability of being

assigned based on the in-sample proportions.

• This was repeated 105 times for each out-of-sample section with the number

of times the randomly generated predictions were correct, along with the

number of times SimpleMKL / individual kernel was correct for that period

recorded each time.

• The proportion of the 105 iterations that the number of correct predictions

recorded for all the out-of-sample periods was greater than that reported by

SimpleMKL / individual kernel was used to calculate the P-value.

• In the work reported here, not one of the 105 iterations of randomly generated

predictions outperformed the SimpleMKL / individual kernel methods.
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Figure 40: MKL average weighting & number of times included vs % accuracy
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Figure 42: Relationship between % reduction in β and % accuracy for full MKL set
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Figure 43: Relationship between % reduction in β and % accuracy for Subset A
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Figure 44: Relationship between % reduction in β and % accuracy for Subset B
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Figure 45: Relationship between final β value and % accuracy for full MKL set
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Figure 46: Relationship between final β value and % accuracy for Subset A
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Figure 47: Relationship between final β value and % accuracy for Subset B
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Figure 48: RBF hyperparam. values for full MKL set with Serial Hyperparam. and Fisher

Optimisation

Figure 49: RBF hyperparam. values for full MKL set with Parallel Hyperparam. and Fisher

Optimisation
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Figure 50: RBF hyperparam. values for full MKL set with Serial Fisher Optimisation

Figure 51: RBF hyperparam. values for full MKL set with Parallel Fisher Optimisation
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Figure 52: Poly hyperparam. values for full MKL set with Serial Hyperparam. and Fisher

Optimisation

Figure 53: Poly hyperparam. values for full MKL set with Parallel Hyperparam. and Fisher

Optimisation
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Figure 54: Poly hyperparam. values for full MKL set with Serial Fisher Optimisation

Figure 55: Poly hyperparam. values for full MKL set with Parallel Fisher Optimisation
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Figure 56: INN hyperparam. values for full MKL set with Serial Hyperparam. and Fisher

Optimisation

Figure 57: INN hyperparam. values for full MKL set with Parallel Hyperparam. and Fisher

Optimisation
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Figure 58: INN hyperparam. values for full MKL set with Serial Fisher Optimisation

Figure 59: INN hyperparam. values for full MKL set with Parallel Fisher Optimisation
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Figure 60: Time series of parameters wBid and wAsk from ACD model
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Figure 61: Time series of parameters qBid and qAsk from ACD model
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Figure 62: Time series of parameters pBid and pAsk from ACD model
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Figure 63: Time series of parameters LBid and LAsk from ACD model
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Figure 64: Time series of parameters λBid
1

and λAsk
1

from Poisson model
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Figure 65: Time series of parameters λBid
2

and λAsk
2

from Poisson model
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Figure 66: Time series of parameters λBid
3

and λAsk
3

from Poisson model

100 200 300 400 500
0

20

40
Serial

100 200 300 400 500
0

20

40
Parallel

100 200 300 400 500
0

20

40
SerialF

100 200 300 400 500
0

20

40
ParallelF

100 200 300 400 500
0

20

40
SerialReduxB

100 200 300 400 500
0

20

40
ParallelReduxB

100 200 300 400 500
0

20

40
SerialReduxFB

100 200 300 400 500
0

20

40
ParallelReduxFB

 

 

λ
3
Bid

λ
3
Ask

Figure 67: Time series of parameters λBid
4

and λAsk
4

from Poisson model
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Figure 68: Time series of parameters λBid
5

and λAsk
5

from Poisson model
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Figure 69: Time series of parameters µBid and µAsk from Wiener model
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Figure 70: Time series of parameters σBid and σAsk from Wiener model
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Figure 71: Comparison between learnt and ML estimates for wBid and wAsk from ACD model
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Figure 72: Comparison between learnt and ML estimates for qBid and qAsk from ACD model
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Figure 73: Comparison between learnt and ML estimates for pBid and pAsk from ACD model
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Figure 74: Comparison between learnt and ML estimates for LBid and LAsk from ACD model
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Figure 75: Comparison between learnt and ML estimates for λBid
1

and λAsk
1

from Poisson

model
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Figure 76: Comparison between learnt and ML estimates for λBid
2

and λAsk
2

from Poisson

model
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Figure 77: Comparison between learnt and ML estimates for λBid
3

and λAsk
3

from Poisson

model
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Figure 78: Comparison between learnt and ML estimates for λBid
4

and λAsk
4

from Poisson

model
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Figure 79: Comparison between learnt and ML estimates for λBid
5

and λAsk
5

from Poisson

model
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Figure 80: Comparison between learnt and ML estimates for µBid and µAsk from Wiener model

0 50 100 150 200 250 300 350 400 450 500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ML vs Learnt Parameter Values for µ
Bid

 

 
ML
Learnt

0 50 100 150 200 250 300 350 400 450 500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ML vs Learnt Parameter Values for µ
Ask

 

 
ML
Learnt

Figure 81: Comparison between learnt and ML estimates for σBid and σAsk from Wiener model
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17.8 Tables of results

Table 15: % accuracy of individual SVM by feature type

Feature
∆t

5 10 20 50 100 200

F1 60.5 48.4 38.2 38.4 33.3 42.7

F2 62.6 58.4 50.5 39.5 32.0 43.8

F3 58.1 52.2 46.4 34.7 36.0 29.5

F4 59.2 56.0 52.5 38.7 33.8 41.2

F5 60.0 59.4 48.1 37.5 35.3 39.5

F6 61.6 57.4 48.0 39.3 39.8 38.2

F7 64.8 57.9 50.3 43.9 39.8 35.9

F8 70.7 59.1 51.2 43.5 38.5 37.4

F9 64.0 58.2 46.5 38.8 37.7 36.5

F10 67.8 59.7 47.3 36.7 34.9 33.3

F11 55.5 46.2 47.0 40.2 34.5 38.8

Table 16: % accuracy of individual SVM by kernel mapping

Mapping
∆t

5 10 20 50 100 200

RBF 83.0 74.7 64.0 45.5 39.6 42.4

Poly 50.3 45.9 40.6 36.9 34.5 35.5

INN 53.5 46.5 38.9 35.2 33.8 35.7

Table 17: % accuracy of individual SVM by feature class

Class
∆t

5 10 20 50 100 200

Price 60.1 53.8 46.9 37.8 33.8 39.3

Volume 64.3 58.4 49.4 41.1 38.4 37.8

Fisher 62.4 54.7 46.9 38.6 35.7 36.2

186



Table 18: Stability of individual SVM by feature type

Feature
∆t

5 10 20 50 100 200

F1 6.4 8.6 12.6 15.4 19.9 20.6

F2 7.4 8.1 10.6 15.0 16.0 19.0

F3 8.1 9.1 11.3 19.9 20.7 18.6

F4 8.5 9.8 12.7 15.1 17.5 19.8

F5 7.7 9.3 12.6 17.8 20.7 18.7

F6 7.6 8.7 11.1 21.7 20.4 21.4

F7 7.6 7.5 10.9 16.9 19.0 24.2

F8 8.1 7.3 10.3 15.6 21.3 23.7

F9 6.8 7.5 10.7 17.0 20.0 24.9

F10 10.2 8.4 11.0 15.3 18.7 30.0

F11 6.2 9.8 12.9 20.2 22.7 46.4

BM 159.7 51.7 19.4 10.7 8.8 6.9

Table 19: Stability of individual SVM by kernel mapping

Mapping
∆t

5 10 20 50 100 200

RBF 26.7 7.3 8.7 14.1 17.9 21.9

Poly 5.4 9.1 13.6 19.6 19.9 23.7

INN 5.7 9.3 13.7 18.3 21.1 22.6

Table 20: Stability of individual SVM by feature class

Class
∆t

5 10 20 50 100 200

Price 7.5 8.8 11.7 16.1 18.3 19.5

Volume 7.8 8.1 11.2 17.7 20.3 21.8

Fisher 7.4 8.5 11.5 17.3 20.3 31.6

Table 21: Correlation of MKL weighting & number of times included vs % accuracy

∆t

5 10 20 50 100 200

Mean Weight 0.59 0.53 0.46 0.38 0.33 0.33

Num Times 0.88 0.91 0.92 0.73 0.51 0.50
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Table 22: Average weighting of individual SVM by feature type

Feature
∆t

5 10 20 50 100 200

F1 7.7 13.0 18.3 24.5 25.4 27.4

F2 20.2 17.9 14.8 12.7 13.3 10.6

F3 18.9 18.6 16.9 15.0 16.7 14.4

F4 9.8 11.0 11.5 9.7 8.7 9.8

F5 9.5 11.3 11.8 12.3 12.9 11.5

F6 12.0 13.4 12.8 13.0 11.4 11.2

F7 5.0 3.0 2.7 2.7 1.9 2.9

F8 6.1 5.5 4.3 3.9 3.7 3.9

F9 2.1 1.5 1.8 1.8 1.8 2.2

F10 6.4 2.9 2.3 2.3 2.2 2.7

F11 2.2 2.0 2.7 2.1 2.0 3.4

Table 23: Average weighting of individual SVM by kernel mapping

Mapping
∆t

5 10 20 50 100 200

RBF 99.5 99.4 99.4 99.3 99.2 98.8

Poly 0.4 0.5 0.6 0.6 0.7 1.1

INN 0.1 0.1 0.1 0.1 0.1 0.1

Table 24: Average weighting of individual SVM by feature class

Class
∆t

5 10 20 50 100 200

Price 54.0 56.7 57.2 59.3 62.3 59.5

Volume 31.5 33.2 33.3 32.1 29.5 30.2

Fisher 14.6 10.1 9.5 8.7 8.2 10.3
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Table 25: % accuracy of benchmark, average kernel, full MKL set and Subsets A & B

Set
∆t

5 10 20 50 100 200

BM 93.0 85.6 73.4 48.8 41.6 45.7

Average 52.9 37.6 43.1 39.8 30.3 39.7

FullSet 83.4 70.6 59.3 43.8 44.6 43.8

SubsetA 79.6 68.5 59.3 46.2 45.4 44.3

SubsetB 73.7 63.9 58.3 52.2 48.5 53.4

Table 26: Stability of benchmark, average kernel, full MKL set and Subsets A & B

Set
∆t

5 10 20 50 100 200

BM 159.7 51.7 19.4 10.7 8.8 6.9

Average 25.6 18.8 19.8 21.8 21.6 14.2

FullSet 26.4 20.9 17.5 17.1 15.1 10.8

SubsetA 20.1 18.9 16.7 16.5 16.2 10.4

SubsetB 15.8 14.1 14.8 14.7 14.2 10.2

Table 27: Average weighting for Subset A

Kernel
∆t

5 10 20 50 100 200

F1RBF1 5.9 9.6 13.7 18.8 19.0 21.1

F2RBF1 30.2 31.5 28.4 25.6 24.8 24.4

F3RBF1 7.8 7.5 6.3 6.2 6.7 7.5

F3RBF2 6.6 6.7 6.1 5.8 6.7 6.5

F3RBF5 12.6 9.7 10.8 8.9 10.3 9.1

F5RBF5 19.3 16.4 17.8 17.7 17.9 16.1

F6RBF5 17.6 18.6 16.9 17.0 14.6 15.4
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Table 28: Average weighting for Subset B

Kernel
∆t

5 10 20 50 100 200

F1RBF1 6.6 10.9 14.6 18.2 19.2 18.9

F2RBF1 14.0 13.9 12.6 12.0 11.8 11.2

F4RBF1 19.5 19.6 21.2 17.0 18.1 19.1

F6RBF1 22.7 26.4 24.4 26.1 23.8 22.4

F10RBF1 12.8 7.9 6.9 6.4 6.1 7.1

F1RBF2 0.3 0.4 1.3 2.8 2.8 3.9

F2RBF2 24.0 20.6 18.3 15.4 16.1 14.1

F1RBF5 0.1 0.3 0.7 2.1 2.2 3.3

Table 29: % accuracy comparison between kernel learning methods for full MKL set

Method
∆t

5 10 20 50 100 200

No Learning 83.4 70.6 59.3 43.8 44.6 43.8

Serial Hyper. and Fish. 83.0 71.8 59.4 46.5 47.8 45.1

Parallel Hyper. and Fish. 82.8 72.8 59.7 46.4 47.8 45.4

Serial Fish. 84.3 72.4 60.4 47.3 47.7 45.3

Parallel Fish. 84.2 73.3 60.5 46.6 47.6 45.3

Table 30: % accuracy comparison between kernel learning methods for Subset A

Method
∆t

5 10 20 50 100 200

No Learning 79.6 68.5 59.3 46.2 45.4 44.3

Serial Hyper. and Fish. 81.2 71.5 61.7 49.7 48.3 46.1

Parallel Hyper. and Fish. 81.2 71.5 61.7 49.7 48.3 46.1

Serial Fish. 82.7 72.3 61.7 49.1 48.7 45.5

Parallel Fish. 82.7 72.3 61.7 49.1 48.7 45.5
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Table 31: % accuracy comparison between kernel learning methods for Subset B

Method
∆t

5 10 20 50 100 200

No Learning 73.7 63.9 58.3 52.2 48.5 53.4

Serial Hyper. and Fish. 82.1 70.8 61.3 51.2 49.6 46.5

Parallel Hyper. and Fish. 82.1 70.9 61.1 51.2 49.5 46.5

Serial Fish. 82.8 71.9 62.1 50.9 49.3 47.1

Parallel Fish. 82.8 71.9 62.1 50.9 49.3 47.1

Table 32: % β reduction from Kernel Learning for full MKL set

Method
∆t

5 10 20 50 100 200

Serial Hyper. and Fish. 2.2 2.2 3.2 3.2 3.2 3.9

Parallel Hyper. and Fish. 2.1 2.1 3.1 3.1 2.9 3.8

Serial Fish. 1.4 1.1 1.9 1.8 1.7 2.4

Parallel Fish. 1.4 1.0 1.8 1.7 1.4 2.5

Table 33: % β reduction from Kernel Learning for Subset A

Method
∆t

5 10 20 50 100 200

Serial Hyper. and Fish. 1.2 1.8 2.4 2.4 2.4 2.8

Parallel Hyper. and Fish. 1.2 1.8 2.4 2.4 2.4 2.8

Serial Fish. 0.0 0.0 0.1 0.1 0.1 0.1

Parallel Fish. 0.0 0.0 0.1 0.1 0.1 0.1

Table 34: % β reduction from Kernel Learning for Subset B

Method
∆t

5 10 20 50 100 200

Serial Hyper. and Fish. 1.1 1.7 2.0 2.1 2.5 3.0

Parallel Hyper. and Fish. 1.1 1.7 2.0 2.1 2.5 3.0

Serial Fish. 0.5 0.7 0.5 0.5 0.7 1.0

Parallel Fish. 0.5 0.7 0.5 0.5 0.7 1.0
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Table 35: Correlation between % β reduction and % accuracy

Set
∆t

5 10 20 50 100 200

Full set 0.10 0.07 0.15 0.08 -0.02 -0.25

Subset A 0.04 0.06 0.14 0.04 0.03 -0.16

Subset B -0.06 -0.04 0.02 0.00 0.12 -0.27

Table 36: Correlation between final β Value and % accuracy

Set
∆t

5 10 20 50 100 200

Full set -0.29 -0.50 -0.38 -0.22 0.02 -0.09

Subset A 0.07 0.00 0.07 0.15 0.02 -0.07

Subset B 0.03 -0.29 -0.12 0.12 -0.07 -0.31

Table 37: Correlation between learnt and ML estimates of Fisher parameters

Method
Parameter

Serial Parallel SerialF ParallelF SerialReduxB ParallelReduxB SerialReduxFB ParallelReduxFB

wBid 0.18 0.19 0.18 0.19 0.19 0.19 0.19 0.19
qBid -0.65 -0.56 -0.65 -0.56 -0.65 -0.56 -0.65 -0.56
pBid -0.03 0.00 -0.03 0.00 -0.03 -0.00 -0.03 -0.00
LBid 0.63 0.62 0.63 0.62 0.63 0.61 0.63 0.61
wAsk 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20
qAsk -0.69 -0.58 -0.69 -0.58 -0.69 -0.58 -0.69 -0.58
pAsk -0.09 -0.05 -0.09 -0.05 -0.08 -0.04 -0.08 -0.04
LAsk 0.64 0.62 0.64 0.62 0.65 0.63 0.65 0.63

λBid
5

0.53 0.56 0.53 0.56 0.53 0.55 0.53 0.55

λBid
4

0.50 0.51 0.50 0.51 0.50 0.50 0.50 0.50

λBid
3

0.52 0.55 0.52 0.55 0.53 0.54 0.53 0.54

λBid
2

0.53 0.58 0.53 0.58 0.53 0.56 0.53 0.56

λBid
1

0.51 0.56 0.51 0.56 0.51 0.56 0.51 0.56

λAsk
1

0.54 0.59 0.54 0.59 0.55 0.58 0.55 0.58

λAsk
2

0.50 0.58 0.50 0.58 0.51 0.57 0.51 0.57

λAsk
3

0.52 0.57 0.52 0.57 0.52 0.55 0.52 0.55

λAsk
4

0.40 0.44 0.40 0.44 0.40 0.42 0.40 0.42

λAsk
5

0.42 0.45 0.42 0.45 0.42 0.45 0.42 0.45
µBid 0.06 0.10 0.06 0.10 0.07 0.11 0.07 0.11
µAsk -0.00 0.03 -0.00 0.03 0.03 0.05 0.03 0.05
σBid 0.51 0.41 0.51 0.41 0.51 0.40 0.51 0.40
σAsk 0.50 0.30 0.50 0.30 0.49 0.29 0.49 0.29
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Table 38: Computational time of experiments

Times (s)

Benchmark 1.64e-001

Individual 3.85e+004

Standard 8.39e+003

StandardReduxA 4.50e+003

StandardReduxB 3.10e+003

Serial 2.10e+004

Parallel 1.99e+004

SerialF 2.36e+004

ParallelF 2.53e+004

SerialReduxA 2.49e+004

ParallelReduxA 2.36e+004

SerialReduxFA 2.38e+004

ParallelReduxFA 6.03e+004

SerialReduxB 2.65e+004

ParallelReduxB 2.29e+004

SerialReduxFB 2.92e+004

ParallelReduxFB 2.22e+004

Table 39: Overall experimental accuracy comparison

Experiment
∆t

5 10 20 50 100 200

Benchmark 93.0 85.6 73.4 48.8 41.6 45.7

Average 78.1 64.5 52.7 40.7 39.3 40.8

Individual Best 90.4 82.3 71.4 49.9 47.6 51.2

Standard 83.4 70.6 59.3 43.8 44.6 43.8

StandardReduxA 79.6 68.5 59.3 46.2 45.4 44.3

StandardReduxB 73.7 63.9 58.3 52.2 48.5 53.4

Serial 83.0 71.8 59.4 46.5 47.8 45.1

Parallel 82.8 72.8 59.7 46.4 47.8 45.4

SerialF 84.3 72.4 60.4 47.3 47.7 45.3

ParallelF 84.2 73.3 60.5 46.6 47.6 45.3

SerialReduxA 81.2 71.5 61.7 49.7 48.3 46.1

ParallelReduxA 81.2 71.5 61.7 49.7 48.3 46.1

SerialReduxFA 82.7 72.3 61.7 49.1 48.7 45.5

ParallelReduxFA 82.7 72.3 61.7 49.1 48.7 45.5

SerialReduxB 82.1 70.8 61.3 51.2 49.6 46.5

ParallelReduxB 82.1 70.9 61.1 51.2 49.5 46.5

SerialReduxFB 82.8 71.9 62.1 50.9 49.3 47.1

ParallelReduxFB 82.8 71.9 62.1 50.9 49.3 47.1
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Table 40: Proportion of times predictions possible for different methods

Experiment
∆t

5 10 20 50 100 200

Benchmark 61.4 70.8 79.6 86.2 85.2 70.4

Average 30.2 39.1 46.1 41.1 34.8 23.3

Individual Best 31.6 39.6 41.6 30.6 15.3 16.5

Standard 26.2 34.6 38.9 34.3 28.5 19.1

StandardReduxA 29.2 37.0 41.2 38.4 30.9 20.9

StandardReduxB 28.9 36.3 42.4 38.9 32.3 21.5

Serial 26.5 34.0 36.7 36.0 27.8 18.7

Parallel 26.4 33.8 36.7 35.6 28.7 18.5

SerialF 26.4 34.7 37.4 35.8 27.5 18.5

ParallelF 26.5 34.4 37.5 35.7 28.4 18.8

SerialReduxA 29.0 36.8 41.1 37.8 31.0 20.6

ParallelReduxA 29.0 36.8 41.1 37.8 31.0 20.6

SerialReduxFA 28.8 36.7 40.7 37.9 31.1 20.7

ParallelReduxFA 28.8 36.7 40.7 37.9 31.1 20.7

SerialReduxB 28.8 35.7 41.2 37.6 31.2 21.1

ParallelReduxB 28.8 35.7 41.2 37.6 31.2 21.1

SerialReduxFB 29.1 36.0 40.9 37.2 31.4 20.9

ParallelReduxFB 29.1 36.0 40.9 37.1 31.4 20.9
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