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Abstract

X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency caused by mutations in SH2D1A which encodes
SAP. SAP functions in signalling pathways elicited by the SLAM family of leukocyte receptors. A defining feature of XLP is
exquisite sensitivity to infection with EBV, a B-lymphotropic virus, but not other viruses. Although previous studies have
identified defects in lymphocytes from XLP patients, the unique role of SAP in controlling EBV infection remains unresolved.
We describe a novel approach to this question using female XLP carriers who, due to random X-inactivation, contain both
SAP+ and SAP2 cells. This represents the human equivalent of a mixed bone marrow chimera in mice. While memory CD8+ T
cells specific for CMV and influenza were distributed across SAP+ and SAP2 populations, EBV-specific cells were exclusively
SAP+. The preferential recruitment of SAP+ cells by EBV reflected the tropism of EBV for B cells, and the requirement for SAP
expression in CD8+ T cells for them to respond to Ag-presentation by B cells, but not other cell types. The inability of SAP2

clones to respond to Ag-presenting B cells was overcome by blocking the SLAM receptors NTB-A and 2B4, while ectopic
expression of NTB-A on fibroblasts inhibited cytotoxicity of SAP2 CD8+ T cells, thereby demonstrating that SLAM receptors
acquire inhibitory function in the absence of SAP. The innovative XLP carrier model allowed us to unravel the mechanisms
underlying the unique susceptibility of XLP patients to EBV infection in the absence of a relevant animal model. We found
that this reflected the nature of the Ag-presenting cell, rather than EBV itself. Our data also identified a pathological
signalling pathway that could be targeted to treat patients with severe EBV infection. This system may allow the study of
other human diseases where heterozygous gene expression from random X-chromosome inactivation can be exploited.
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Introduction

X-linked lymphoproliferative disease (XLP) is an inherited

primary immunodeficiency caused by mutations in SH2D1A,

which encodes the cytoplasmic adaptor protein SLAM-associated

protein (SAP) [1–3]. SAP functions as an adaptor protein by

associating with members of the SLAM family of surface

receptors—SLAM (CD150), 2B4, NTBA, CD84, CD229, and

possibly CRACC [4–7]—that are expressed on a variety of

hemopoietic cells. A defining characteristic of XLP is extreme

sensitivity to infection with EBV (reviewed in [7–9]). Thus, in

contrast to infection of healthy individuals, which is self-limiting,

exposure of XLP patients to EBV induces a vigorous and

uncontrolled immune response involving polyclonally activated
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leukocytes. Despite such immune activation, XLP patients fail to

control EBV infection, which results in severe and often-fatal

fulminant infectious mononucleosis [7–9]. XLP patients who

survive primary EBV infection can develop hypogammaglobulin-

emia and B-cell lymphoma, although exposure to EBV is not a

prerequisite for these clinical manifestations [8,9]. Strikingly, XLP

patients do not display the same degree of vulnerability towards

other herpes viruses—herpes simplex virus, cytomegalovirus

(CMV), varicella zoster—which can cause life-threatening infec-

tions in individuals with other immunodeficiencies [10]. This

highlights the unique role of EBV in the pathogenesis of XLP,

and the critical—albeit undefined—role of SAP in anti-EBV

immunity.

XLP is associated with a diverse range of lymphocyte defects

including abolished NKT cell development [11,12], compromised

humoral immunity [13–15], and impaired functions of CD4+ T

cells [13,16–18], CD8+ T cells [19,20], and NK cells [21–27]. This

reflects the involvement of SAP in multiple signalling pathways.

Given the complexity of the immunological abnormalities in XLP

patients, it is unclear which of them underlies their unique

susceptibility to EBV. While the defective response of NK cells

following engagement of 2B4 or NTB-A may contribute to the

susceptibility to EBV in XLP [22,24,26,27], it is unlikely to be the

predominant cause since a deficiency in either the absolute

number of NK cells or NK cell cytotoxicity in the presence of

intact T cell development and function in humans is associated

with more generalised susceptibility to multiple viruses (reviewed

in [28]). Similarly, while NKT cells may have a role in anti-viral

immunity, the impact of an NKT cell deficiency on EBV

sensitivity in XLP is unclear because patients with other

immunodeficiencies have also been reported to lack NKT cells,

yet they do not develop fulminant infectious mononucleosis

[29–31]. Lastly, while several previous studies have investigated

the function of CD8+ T cells in XLP [19,20,32], it is difficult to

separate direct effects of SAP deficiency in these cells from indirect

effects that may result from lack of ‘‘help’’ from either functionally

impaired SAP-deficient CD4+ T cells or NK cells, or the absence

of NKT cells, all of which can promote CD8+ T cell responses

[33–36]. Furthermore, these studies of SAP-deficient CD8+ T cells

have not provided an explanation as to why XLP patients are so

vulnerable to infection with EBV, but not with other pathogens.

In addition to these issues, delineating the EBV-specific defect in

XLP has been hindered by the lack of an appropriate

experimental model. Thus, while SAP-deficient mice have proved

key to elucidating mechanisms underlying some of the immuno-

logical defects in XLP [4,7,9], they cannot directly address the

question of EBV susceptibility because neither EBV nor its close

relatives in other primates infect mice, and no mouse virus can

reproduce EBV’s biology or its strictly B-lymphotropic means of

persistence [37]. The question of EBV pathogenesis therefore can

only be answered using a human model in which SAP-deficient

immune cells develop in an otherwise intact immune system.

Fortuitously, female carriers of XLP are healthy [38] and harbour

both SAP-positive and SAP-negative T cells through random

inactivation of the X-chromosome [11].

Here we demonstrate that such XLP carriers provide an ideal

model for elucidating the role of SAP in anti-viral immune

responses in humans. XLP carriers were shown to contain both

SAP+ and SAP2 T cells, which allowed us to determined which

virus-specific responses were dependent on SAP. While both SAP+

and SAP2 CMV or influenza-specific memory CD8+ T cells were

able to respond to their cognate peptides, EBV-specific memory

CD8+ T cells were exclusively restricted to the SAP+ population,

revealing a specific requirement for SAP in anti-EBV immunity.

Further analysis of the response of SAP2 CD8+ T cells to different

Ag-presenting cells (APC) showed that SAP is required for B cell-

mediated CD8+ T cell responses but not for responses induced by

other APCs. Our studies further demonstrated that an important

function of SAP was to prevent the delivery of inhibitory signals

downstream of SLAM family receptors on CD8+ T cells following

interaction with their ligands on target B-cells. These data provide

compelling evidence that the unique susceptibility to EBV

infection in XLP patients is due to the inability of SAP2 CD8+

T cells to respond to Ag-presenting B cells due to inhibitory

signalling mediated by SLAM family receptors, rather than an

inability to recognise and respond to EBV Ags.

Results

Lymphocyte Defects Characteristic of XLP Patients Are
Not Present in XLP Carriers

We analysed seven female carriers of XLP, each of whom was

confirmed as heterozygous at the SH2D1A locus by sequencing

genomic DNA (Figure 1A,B). Analysis of lymphocyte subsets

revealed that these carriers, unlike XLP patients [11,15,16], had

normal frequencies of total and isotype switched memory B cells

(Figure 1C,D,F) and NKT cells (Figure 1E,G). The proportions of

memory CD8+ and CD4+ T cells were also within the range of

healthy controls (unpublished data). This is consistent with XLP

carriers being asymptomatic and lacking evidence of any obvious

deficiency in anti-viral immune responses, including against EBV

[38,39].

XLP Carriers Have Both SAP+ and SAP2 CD8+ T Cells
Intracellular flow cytometric analysis using a SAP-specific

monoclonal antibody (mAb) enabled us to identify SAP

expression in different cell populations. SAP was expressed in

Author Summary

X-linked lymphoproliferative disease (XLP) is an immuno-
deficiency caused by mutations in the SH2D1A gene,
which encodes a cytoplasmic component, SAP involved in
a signalling pathway in certain populations of immune
cells. The Achilles’ heel in XLP is extreme sensitivity to
Epstein-Barr virus (EBV) infection. Although EBV infection
in normal individuals is generally innocuous, in XLP it can
be fatal. Strikingly, individuals with XLP do not display this
same vulnerability to other viruses, and here we investi-
gate what immune defects underlie this specific suscep-
tibility. We developed a system to examine the behaviour
of immune cells that are identical with the exception of
whether or not they have a functional SH2D1A gene. This
approach uses human female carriers of XLP (one of their X
chromosomes carries the mutation). Following the process
of X-chromosome inactivation in female cells, which is
random, individuals harbour T cells that express the
normal SH2D1A gene as well as cells that express the
mutated version. We found that SAP-deficient CD8+ T cells
fail to be activated by antigen-presenting B cells, but are
activated by other antigen-presenting cell types. Since EBV
selectively infects B cells, the exquisite sensitivity in XLP to
EBV infection results from the ability of the virus to
sequester itself in B cells, which can only induce a cytotoxic
T cell response in SAP-sufficient cells. Thus, the functional
defect in SAP-deficient CD8+ T cells does not relate to a
specific virus but rather to the nature of the target cell
presenting viral epitopes.

Mechanism of Susceptibility to EBV in XLP
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CD4+ T cells, CD8+ T cells, and NK cells from normal donors

(Figure 2A), but not in the same lymphocyte populations obtained

from XLP patients (Figure 2B). Using this approach we

confirmed heterozygous SAP expression (i.e., 40%–60% of the

cells being SAP+/2) within the T and NK cell compartments of

XLP carriers (Figure 2C,D). There was no significant difference

Figure 1. Immune features of heterozygote carriers of XLP. (A) Forward (upper) and reverse (lower) genomic DNA sequences of affected
exons in three representative female XLP carriers. (B) The wild-type and mutated alleles and resulting amino acid changes in the seven XLP carriers
used in this study. (C–E) PBMCs from XLP carriers were labelled with mAb against CD20, CD27, and IgG/A/E or CD3, TCRVb11, and TCR Va24. The
frequency of: (C, F) B cells expressing CD27 (i.e., memory cells); (D) memory B cells expressing isotype switched Ig; and (E, G) NKT cells were then
determined. The values depicted in dot plots in (C), (D), and (E) correspond to the mean frequency of total memory B cells, isotype switched memory
B cells, and NKT cells, respectively. Reference values for healthy controls have been previously published [15,16,29].
doi:10.1371/journal.pbio.1001187.g001

Mechanism of Susceptibility to EBV in XLP
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in the frequency of CD8+ central memory (CD45RA2CCR7+) T

cells (Figure 2C) or NK cells (Figure 2D) that were SAP2 or

SAP+. However, significantly more naı̈ve CD8+ T cells were

SAP2 (p = 0.045), whereas more effector memory (CD45RA2

CCR72) and TEMRA (effector memory cells expressing CD45RA)

cells were SAP+ (Figure 2C). The greater frequency of SAP2 cells

in the naı̈ve compartment would be consistent with proposed

functions for SAP in negatively regulating T cell responses in

mice in vivo [40,41] and in promoting apoptosis of human cells

in vitro [42,43]. In contrast to T and NK cells, .90% of NKT

cells in XLP carriers were SAP+ (Figure 2E), consistent with the

absolute requirement of SAP for their development [11,12]. SAP

was not detected in human B cells (Figure 2A,F) [15], supporting

the concept that intrinsic defects in T cells, NK cells, and

NKT cells, rather than B cells, are responsible for the XLP

phenotype.

Figure 2. Heterozygous SAP expression in T cells and NK cells from XLP carriers. (A, B) PBMCs from a healthy donor (A) or an XLP patient
(B) were incubated with mAb against CD3, CD4, CD8, CD56, and CD20. The cells were then fixed and permeabilised and labelled with an isotype
control (grey histogram) or anti-SAP (red histogram) mAb. Expression of SAP in CD3+ T cells, CD8+ and CD4+ T cells, B cells (CD20+), and NK
(CD32CD56+) cells was then determined. (C–F) PBMCs from XLP carriers were labelled with mAb specific for CD3, CD8, CD45RA, CCR7, CD56,
TCRVb11, TCRVa24, or CD20. The cells were then fixed and permeabilised and incubated with isotype control (blue histogram) or anti-SAP mAb (red
histogram). SAP expression and the frequency of SAP2 and SAP+ cells was determined for: (C) total CD8+ T cells, and subsets of naı̈ve
(CD45RA+CCR7+), central memory (CD45RA2CCR7+), effector memory (CD45RA2CCR72), or TEMRA (CD45RA+CCR72) cells; (D) NK cells (CD32CD56+);
(E) NKT cells (CD3+TCRVb11+TCRVa24+); and (F) B cells (CD20+).
doi:10.1371/journal.pbio.1001187.g002

Mechanism of Susceptibility to EBV in XLP

PLoS Biology | www.plosbiology.org 4 November 2011 | Volume 9 | Issue 11 | e1001187



EBV-Specific Cells Are Largely SAP+ While CMV and Flu-
Specific Cells Are SAP+ or SAP2

To determine the contribution of SAP+ and SAP2 CD8+ T cells

to antiviral immunity, we analysed SAP expression in populations

of memory CD8+ T cells that were specific for EBV, CMV, and

influenza (Flu), as detected by soluble peptide:MHC class I

complexes (i.e., tetramers). Five of the XLP carriers had MHC

class I types that allowed epitope-specific cells to be visualised by

this approach. The frequency of CMV and Flu-specific CD8+ T

cells within the SAP+ population (CMV: range 21%–72%; mean

6 sem: 46.3%612.3%, n = 4; Flu: 8% and 46%; mean:

27.0%619%) was not significantly different from that within the

SAP2 population (CMV: 55.7%612.3%, n = 4 [p = 0.78]; Flu:

73.0%619%, n = 2) (Figure 3A,B). In stark contrast, almost all

EBV-specific CD8+ T cells expressed SAP (95.0%62.9% versus

5.0%62.9% in SAP2 cells, n = 4; p = 0.004; Figure 3A,B). The

same clear-cut distinction was seen when the functional response

of virus-specific CD8+ T cells to various antigenic peptide

challenges was assessed in vitro. Following stimulation of PBMCs

from XLP carriers with CMV or Flu Ags, both SAP+ and SAP2

cells produced IFN-c (Figure 3C,E) and expressed surface CD107a

(Figure 3D,E), an indicator of the ability of cells to degranulate

[44,45]. However, when PBMCs were stimulated with various

EBV peptides, including those from both lytic and latent Ags, only

SAP+ CD8+ T cells responded (Figure 3C–E). Consistent with the

recognition of EBV tetramers, the differences in the responses of

SAP+ and SAP2 CD8+ T cells to in vitro stimulation with EBV

peptides were highly significant (p = 0.0001; Figure 3E). Taken

together these data demonstrated that the CD8+ T cell response to

EBV infection in healthy XLP carriers had been preferentially

recruited from SAP+ T cells, whereas the CD8+ T cell response to

other viruses showed no preference for SAP-expressing cells.

Phenotypic Features of SAP2 and SAP+ Cells
One explanation for the disparate responses of SAP2 and SAP+

CD8+ T cells to EBV, but not to other viruses, may result from

differential expression of co-stimulatory or inhibitory molecules in

the absence of SAP. Thus, we determined the phenotype of SAP2

and SAP+ cells with respect to expression of a suite of molecules

known to regulate CD8+ T cell function. Expression of the co-

stimulatory/activation/effector molecules CD27, CD28, CD38,

OX40, ICOS, perforin, and granzyme B did not differ between

SAP2 and SAP+ CD8+ T cells, irrespective of whether the cells were

of a naı̈ve or memory phenotype. Similarly molecules known to

inhibit lymphocyte function—PD-1, BTLA—were comparably

expressed on SAP2 and SAP+ naı̈ve and memory CD8+ T cells

(unpublished data). We also analysed the TCR repertoire of SAP2

and SAP+ cells by determining expression of distinct TCR Vb
chains by flow cytometry to deduce whether the TCR usage was

significantly different between these cells. Although this approach

may not be sufficiently sensitive to detect restricted diversity, the

TCR repertories of SAP2 and SAP+ cells appeared to be generally

similar (Table 1). The few biased TCR Vb chains used in two

carriers (#1, #3; Table 1) probably reflects the responses of

different subsets of effector/memory cells to different viruses and

their unique antigenic epitopes. Thus, lack of SAP expression does

not appear to alter thymic selection of CD8+ T cells, or their ability

to acquire expression of receptors involved in regulating lymphocyte

function. Consequently, it is unlikely that perturbed selection or

activation of SAP2 CD8+ T cells through co-stimulatory and

regulatory receptors underlies their poor responsiveness to

stimulation with EBV. Rather, this is likely a direct effect of SAP

deficiency.

SAP Is Required for CD8+ T Cell-Mediated Cytotoxicity of
Ag-Presenting B Cells

The selective dependence of EBV-specific CD8+ T-cell-

mediated immunity on SAP raised the question of which T-cell

extrinsic mechanisms might explain the differences between the

responses to EBV versus CMV and Flu. Since Ag presentation was

a logical place to start, we developed an approach that would allow

us to analyse the ability of SAP2 T cells to respond to distinct types

of APCs. Thus, multiple SAP2 and SAP+ clonal pairs were

established from different XLP carriers (Figure S1) and then tested

for their ability to recognise cognate peptides presented on

different APC targets, namely autologous EBV-transformed

lymphoblastoid cell lines (B-LCLs), or HLA class I-matched

monocytes or fibroblasts. SAP+ CD8+ T cell clones responded to

their specific peptide regardless of the nature of the APC, as

evidenced by enhanced IFN- c production (Figure 4A, upper

panels), acquisition of expression of CD107a (Figure 4B–E, Figure

S2A upper panel) and lysis of Ag-presenting target cells

(Figure 4F,G). In contrast, SAP2 CD8+ T cell clones responded

poorly upon stimulation with peptide-pulsed B-LCLs compared to

SAP+ clones, irrespective of whether the clones were specific for

CMV (Figure 4A,B, Figure S2A lower panels) or Flu (Figure 4C

lower panel, Figure 4D,F). Importantly the defective responses of

SAP2 clones to specific Ag presented on B-LCLs did not reflect a

generalised activation defect because these cells responded as well

as SAP+ cells following PMA/ionomycin stimulation (Figure 4A–

C, Figure S2A). Strikingly, the impairment was restricted to Ag

presented in a B cell context. Thus, the same SAP2 CMV-specific

or Flu-specific clones responded as well as their SAP+ counterparts

to peptides presented on HLA-matched monocytes (Figure 4B,

Figure S2), or fibroblasts (Figure 4C,E,G).

We extended these studies by assessing induction of CD107a

expression by SAP2 and SAP+ CD8+ T cells within a CMV-

specific T cell line in response to presentation of specific Ag by in

vitro–derived dendritic cells (DCs) compared to B-LCLs. Although

the frequency of total CD8+ T cells responding to CMV peptides

was similar irrespective of whether B-LCLs or DCs were the APC

(,5%–6%), the SAP+ CD8+ T cells predominated the response

when CMV-derived peptides were presented by B-LCLs (.90%

of responding cells; Figure S2B). In contrast, both SAP2 and SAP+

CD8+ T cells responded to Ag-presenting DCs (35% and 65% of

responding cells, respectively; Figure S2B). These findings are

entirely consistent with the data for Ag-specific paired SAP2 and

SAP+ clones (Figure 4, Figure S2A), and together provide

compelling evidence for an important role for SAP in mediating

CD8+ T cell recognition of B cell targets.

It would be ideal to also demonstrate that EBV-specific SAP-

deficient CD8+ T cells are unable to respond to Ag endogenously

presented by B cells. This could not be investigated using XLP

carriers due to the extreme paucity of EBV-specific cells within the

SAP2 subset of CD8+ T cells in these individuals (see Figure 3). To

address this, we generated EBV-specific CD8+ T cell lines from an

XLP patient with a well-characterised loss-of-expression mutation

in SH2D1A ([F87S], XLP#3 in [46]). This was achieved by

repeatedly expanding their purified CD8+ T cells on autologous

EBV-transformed B-LCLs, as performed previously for other

SAP-deficient patients [19]. As expected, EBV-specific CD8+ T

cells from normal donors efficiently lysed autologous B-LCL target

cells. In contrast, there was a profound defect in the ability of XLP

Mechanism of Susceptibility to EBV in XLP
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Figure 3. Selective recruitment of SAP+ cells into the EBV-specific memory CD8+ T cell compartment. (A, B) XLP carrier PBMC were
labelled with specific MHC class I/peptide complexes together with anti-CD8 mAb; the cells were then fixed/permeabilised and incubated with anti-
SAP mAb. The proportion of SAP+ and SAP2 cells that were specific for the different viruses was then determined. Dot plots in (A) depict SAP
expression in tetramer+ cells from a carrier with detectable populations of CMV-, Flu-, and EBV-specific CD8+ T cells. The graphs in (B) depict
proportions of SAP+ and SAP2 cells amongst EBV, CMV, or Flu-specific CD8+ T cells from five different XLP carriers. (C–E) PBMCs from XLP carriers were
either unstimulated or stimulated with EBV, CMV, or Flu peptides, or with PMA/ionomycin. Expression of (C) IFN-c or (D) CD107a by SAP2 and SAP+

Mechanism of Susceptibility to EBV in XLP
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CD8+ T cells to lyse autologous B-LCLs (Figure S2C, panel [i]).

For these experiments, the donor and XLP patient were HLA

matched. This allowed assessment of the ability of EBV-specific

CD8+ T cells to lyse B-LCL derived from a SAP-sufficient donor

or SAP-deficient XLP patient, and thereby to determine whether

the cytotoxic defect of XLP CD8+ T cells resulted from impaired

presentation of EBV Ag by SAP-deficient B-LCL. When this

experiment was performed, XLP CD8+ T cells proved to be

equally defective in killing allogeneic B-LCLs, which contrasted

the behaviour of EBV-specific CD8+ T cell lines from normal

donors (Figure S2C panel [ii]). Importantly, the inability of XLP

CD8+ T cells to lyse B-LCL target cells did not appear to result

from altered expression of lytic effector molecules since acquisition

of perforin and granzyme B by XLP CD8+ T cells was comparable

to that of normal CD8+ T cells (Figure S2C panel [iii]). This is

consistent with the reduced cytotoxicity of SAP-deficient cells

resulting from impaired recognition of B-LCL targets, which

subsequently compromises immune synapse formation between

effector and target cells, and polarisation of lytic mediators

[19,47].

SAP+ and SAP2 T Cells Display Comparable Expression of
the SLAM Family of Receptors, Yet Their Ligands Are
Differentially Expressed by Distinct Types of APCs

To begin to elucidate the mechanism underlying compromised

SAP2 CD8+ T cell recognition of peptide-pulsed B cell targets and

explore ways in which function might be restored, we examined

the expression of SAP-associating receptors on subsets of SAP2

and SAP+ T cells. SAP associates with the cytoplasmic domains of

SLAM, 2B4, CD84, NTB-A, CD229, and possibly CRACC [4,7].

When expression of these molecules was assessed on lymphocytes

from XLP carriers, we found no significant differences in their

expression on SAP2 and SAP+ CD8+ T cells within the naı̈ve and

TEMRA subsets (p.0.05; Figure 5A; Figure S3). Most of these

molecules were also expressed comparably on SAP2 and SAP+

central memory and effector memory CD8+ T cells. However,

there were significant differences in the expression levels of 2B4

and NTB-A on SAP2 and SAP+ central memory CD8+ T cells,

and of 2B4 and CRACC on SAP2 and SAP+ effector memory

CD8+ T cells, with them being lower on SAP2, relative to SAP+,

cells. While these differences were statistically significant, the net

differences in expression were ,2-fold. Thus, it is unknown

whether this would translate to a biological effect; furthermore, it is

important to highlight that CRACC has been reported to function

independently of SAP, at least in the context of human NK cells

[48]. Thus, the lower level of CRACC on SAP2 cells will be

inconsequential at least with respect to SLAM-receptor/SAP-

dependent signalling and lymphocyte activation. These data

generally imply that, at the cell surface, SAP2 and SAP+ CD8+

T cells are similarly capable of interacting with relevant ligands of

the SLAM family.

The next step was to examine expression of ligands of the

SLAM family receptors on different APCs because expression of

these molecules on APCs could also influence the outcome of

CD8+ T cell-mediated recognition of target cells. While 2B4

interacts with CD48, the other SLAM family receptors are self-

ligands [4,7]. In contrast to SAP+ and SAP2 CD8+ T cells, there

were substantial differences in expression of SLAM family ligands

by B-cell and non-B-cell APCs. NTB-A expression was highest on

B cells and B-LCLs, while CD48 was highest on monocytes and B-

LCLs (Figure 6A,B). B-LCLs also expressed higher levels of

CD229, CRACC, and SLAM than resting B cells and monocytes

(Figure 6A,B). Interestingly, NTB-A, CD48, and CD229 were all

absent from in vitro–derived DCs; however, DCs did express

CRACC, SLAM, and CD84 (Figure 6A,B). The relative levels of

these molecules on DCs were similar to monocytes, with CRACC

and SLAM being less, and CD84 being greater, than on B-LCLs

(Figure 6A,B). Unlike APCs of hematopoietic origin, fibroblasts

did not express any SLAM family ligands (Figure 6A,B). Thus,

APCs exhibit substantial differences in their pattern of expression

of SLAM family ligands.

NTB-A and 2B4 Regulate CD8+ T Cells by Inhibiting Their
Effector Function in the Absence of SAP

The above findings implied that engagement of distinct arrays

of co-stimulatory receptors on SAP2 and SAP+ CD8+ T cells by

Table 1. TCR Vb expression by SAP2 and SAP+ CD8+ T cells in
XLP carriers.

TCR Vb Chain % CD8+ T Cells Expressing TCR Vb Chains

XLP Carrier 1 XLP Carrier 3 XLP Carrier 4

SAP2 SAP+ SAP2 SAP+ SAP2 SAP+

1 4.0 1.45 3.35 3.68 4.77 5.45

2 3.32 0.85 2.33 3.71 8.3 5.97

3 0.62 0.47 0.55 0.39 0.85 1.28

4 1.61 0.27 1.53 1.71 3.35 1.8

5.1 1.9 5.95 2.6 17.1 4.2 2.9

5.2 1.16 0.49 1.1 0.52 1.68 2.8

5.3 1.02 0.27 4.4 1.93 4.64 6.37

7.1 12.6 0.42 1.8 3.08 5.37 3.85

7.2 1.25 2.62 1.62 3.2 1.98 3.96

8 3.06 7.18 1.35 4.14 4.1 7.22

9 0.54 0.22 0.22 1.61 0.71 1.54

11 4.80 34.10 19.8 6.3 4.93 4.74

12 1.53 0.5 1.04 0.8 0.98 0.9

13.1 4.4 9.81 4.7 2.5 4.37 4.27

13.2 1.46 0.5 1.37 2.1 1.48 1.31

13.6 0.88 0.27 2.9 0.12 1.2 1.14

14 0.7 0.37 9.85 1.0 0.84 0.4

16 1.50 0.59 0.86 1.06 2.3 2.44

17 3.67 3.35 3.9 2.25 7.36 5.78

18 0.79 0.35 0.94 1.5 1.1 0.94

20 0.39 0.34 0.34 0.61 1.7 0.9

21.3 1.03 0.52 1.21 4.5 0.8 1.0

22 2.90 0.9 2.3 1.14 4.2 3.0

23 1.81 0.35 3.35 1.65 3.7 2.58

doi:10.1371/journal.pbio.1001187.t001

CD8+ T cells was determined after 4–6 h. The values represent the proportion of responding cells that were SAP2 or SAP+. (E) Summary of data
obtained from analysis of CD8+ T cells from different carriers to determine secretion of IFN-c or degranulation (i.e., CD107a expression) by SAP+ and
SAP2 cells in response to EBV, CMV, and Flu peptides. ‘‘n’’ represents the number of carriers studied for each viral response.
doi:10.1371/journal.pbio.1001187.g003
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ligands expressed on different APCs would modulate the

acquisition of effector function of the responding CD8+ T cells.

This would be consistent with the ability of SLAM family receptors

to switch their function from activating or inhibitory depending on

the presence of SAP [22,24,32]. We therefore explored the

possibility that defined interactions between specific SLAM

receptors on SAP+ or SAP2 CD8+ T cells and their ligands on

APCs differentially regulated cytotoxicity.

We first examined the ability of SAP+ and SAP2 CD8+ T cells

to respond to the Hodgkin’s lymphoma cell line HDLM2. This

line was chosen as a target cell because (a) it lacked expression of

all SLAM family ligands with the exception of SLAM/CD150

itself (Figure 7A), (b) SLAM has been reported to enhance the

cytotoxicity of human CD8+ T cells [49], and (c) SLAM was

expressed at the highest levels on B cells relative to other APCs

(Figure 6), revealing it as a candidate molecule to regulate CD8+ T

cell function. Thus, if expression of SLAM on B cells, but not

fibroblasts, controls the effector function of CD8+ T cells, then it

would be predicted that SAP2 CD8+ T cells would exhibit

reduced cytotoxicity against HDLM2 cells than their SAP+

counterparts. When this was tested experimentally by pulsing

either autologous B-LCLs or MHC class I–matched HDLM2 cells

with CMV peptides and assessing the response of CMV-specific

CD8+ T cells, both SAP2 and SAP+ cells were equally capable of

responding to HDLM2, as evidenced by acquisition of CD107a

expression by a comparable proportion of cells (Figure 7B, lower

panel), but not to B-LCLs, as expected (Figure 7B, upper panel).

This dichotomy in recognising and responding to B-LCLs versus

HDLM2 was not due to differences in expression of MHC class I

by the target APCs (Figure 7A). This finding suggested that SLAM

was unlikely to be the predominant receptor mediating the effector

function of CD8+ T cells in the absence of SAP.

This led us to focus on NTB-A and 2B4 because their ligands

(i.e., NTB-A, CD48) are highly expressed on B cells (Figure 6;

[22,50]) and they can deliver activating and inhibitory signals in

the presence and absence, respectively, of SAP to human NK and

CD8+ T cells [22,24,26,27,32]. Although CRACC was also more

highly expressed on human B-LCLs than on monocytes (Figure 6),

its role in regulating CD8+ T cell function was not explored

because it functions independently of SAP [48,51].

When interactions between NTB-A/NTB-A and/or 2B4/

CD48 were blocked with specific mAbs [22,52–54], activation of

SAP+ CD8+ T cells by B cell targets was not significantly affected

(%CD107a+ cells—no mAb: 51.3%63.8%; + anti-NTB-A mAb:

56%66.5%; + anti-2B4 mAb: 55.7%65.6%; + anti-NTB-A/2B4

mAbs: 55.7%67.3%; n = 4, p = 0.48 [27,32]). By contrast,

blocking interactions between NTB-A/NTB-A or 2B4/CD48

substantially improved the effector function of SAP2 CD8+ T cells

compared to when these cells were examined in the absence of

added mAbs (Figure 7C,D). Importantly, combined blockade of

both pathways could restore effector function of SAP2 T cells to a

level comparable to SAP+ clones (Figure 7C). These observations

suggest that signalling through NTB-A and 2B4 impedes the

effector function of SAP-deficient, but not SAP-sufficient, CD8+ T

cell in response to Ag-presenting B cell targets.

To provide additional data that homotypic NTB-A interactions

can suppress the function of SAP-deficient CD8+ T cells, we

transfected fibroblasts to express NTB-A (Figure 7E) and

compared the ability of SAP+ and SAP2 clones to lyse the

parental (i.e., NTB-A2) or transduced NTB-A+ cells in a 51Cr

release assay. Consistent with the data presented in Figure 4, there

was no difference in lysis of either parental fibroblasts by SAP+ and

SAP2 CD8+ T cell clones (compare Figure 7F and G; red lines), or

lysis of NTB-A2 and NTB-A+ fibroblasts by SAP+ CD8+ T cells

clones (Figure 7F). However, the cytotoxic activity of the same

SAP2 CD8+ T cell clone was significantly reduced when NTB-A

was ectopically expressed on fibroblasts (Figure 7G, p,0.05).

Thus, these data provide evidence that in the absence of SAP,

SLAM family receptors acquire inhibitory function which

compromises the ability of CD8+ T cells to be activated by Ag-

presenting B cells.

Discussion

Primary immune deficiencies are characterised by increased

susceptibility to infection by a range of pathogens [10]. The

molecular mechanism underlying this heightened vulnerability is

often explained by the nature of the genetic defect responsible for a

particular immune deficient condition. Thus, a lack of B cells in X-

linked agammaglobulinemia (XLA) a lack of T and NK cells in X-

linked several-combined immunodeficiency (X-SCID) and im-

paired B-cell responses in X-linked hyper-IgM syndrome due to

mutations in BTK, IL2RG, and CD40LG, respectively, predispose

affected individuals to severe, recurrent, and often life-threatening

infections [10,55]. In contrast to these conditions, the explanation

for why loss-of-function mutations in SH2D1A, resulting in SAP-

deficiency, render XLP patients exquisitely sensitive to infection

with EBV, but not other viruses, is enigmatic. Indeed, while

previous studies that examined lymphocytes from XLP patients or

Sap-deficient mice have clearly shed light on the role of SAP in

different immune cells and allowed us to understand the complex

nature of some of the clinical manifestations of XLP [4,7], the

question of why XLP patients are uniquely susceptible to EBV

infection remains unanswered. Efforts to address this have also

been hampered by the absence of appropriate animal models due

to the specificity of EBV infection for humans. For these reasons,

we developed a novel approach to answer this basic question

relating to XLP.

Female carriers of several X-linked diseases, such as X-SCID,

XLA, and Wiskott-Aldrich syndrome, display skewed X-chromo-

some inactivation with preferential expression of the wild-type

(WT) allele in some lymphocyte lineages [56–58]. This occurs

because expression of the WT allele in specific hematopoietic cells

confers a survival advantage over cells expressing the mutant

allele, which therefore fail to develop in the female carriers. In

contrast to these X-linked diseases, normal numbers of T and NK

cells are detected in XLP patients [11,16], and lymphocytes from

Figure 4. SAP deficient CD8+ T cells fail to respond to B cell targets. SAP+ and SAP2 CD8+ T cell clones specific for (A, B) CMV or (C–E) Flu
isolated from unrelated XLP carriers were cultured with (A) autologous B-LCLs, (B) B-LCLs or HLA-matched monocytes, or (C–E) B-LCLs or HLA-
matched fibroblasts that had been pulsed with either an irrelevant or cognate peptide for 4–6 h. Stimulation with PMA/Ionomycin was used as a
positive control. Expression of IFN-c (A) or CD107a (B–E) was then determined. The graphs in (D) and (E) represent the percentage of Flu-specific SAP+

or SAP2 cells induced to express CD107a+ following stimulation with peptide-pulsed B-LCLs (D) or fibroblasts (E). The values represent the mean 6
sem of experiments using three different Flu-specific SAP+ or SAP2 clones. (F, G) SAP+ and SAP2 Flu-specific CD8+ T cell clones were cultured with
51Cr-labelled B-LCLs (F) or fibroblasts (G) pulsed with their cognate peptide for 4–6 h. Cytotoxicity was determined by standard chromium-release
assay. The results are representative of two experiments performed using different clonal pairs of SAP2 and SAP+ cells. Data presented in Figure S2
for responses to CMV-pulsed B-LCLs and monocytes were obtained from experiments using different pairs of SAP2 and SAP+ clones. ** p,0.05.
doi:10.1371/journal.pbio.1001187.g004
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female carriers of XLP exhibit random inactivation of the X-

chromosome [11]. These observations demonstrate that SAP is

not required for lymphocyte development (with the exception of

NKT cells [11]; Figures 1, 2). Consequently, female carriers of

XLP represent an ideal model to assess the role of SAP in CD8+ T

cell-mediated anti-viral immune responses because both SAP+ and

SAP2 cells with the same genetic background are generated at

similar frequencies (Figure 2). This is essentially the human

equivalent of a mixed bone marrow chimera in mice, and

therefore eliminates any variability that may arise from compar-

isons of SAP-deficient CD8+ T cells from XLP patients with SAP-

sufficient cells from unrelated normal donors, as has been

performed in earlier studies [19,20,32]. Another feature of

female XLP carriers is that they have an intact immune system

and are not susceptible to any known infections [38,39]. Thus,

any secondary defects in the function of CD8+ T cells from XLP

patients due to a lack of NKT cells or impaired NK cell

function—which can all contribute to fine-tuning CD8+ T cell

responses [33–36]—are circumvented by studying XLP carriers.

These attributes of XLP carriers allowed us to perform a detailed

analysis of the responses of SAP2 and SAP+ CD8+ T cells from

the one individual to not only EBV but other common viruses

including CMV and Flu in the setting of a normal host immune

response.

Figure 5. Expression of SLAM family receptors on CD8+ T cell subsets in XLP carriers. PBMCs from XLP carriers were stained with mAb
specific for CD8, CD45RA, and CCR7 and either 2B4, NTB-A, CD229, SLAM, CD84, or CRACC; expression of SAP was then detected following fixation
and permeabilisation. Expression of each of the SLAM family members on SAP2 and SAP+ naı̈ve, central memory, effector memory, and TEMRA CD8+ T
cells was determined by gating on CD45RA+CCR7+, CD45RA2CCR7+, CD45RA2CCR72, and CD45RA+CCR72 cells, respectively. The histograms in (A)
are derived from analysis of one carrier. Data for all carriers are presented in Figure S3. (B) Representative histogram plots of SLAM family receptor
expression on SAP+ and SAP2 CD8+ T cell clones.
doi:10.1371/journal.pbio.1001187.g005
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Previous studies using tetramers have demonstrated that EBV-

specific CD8+ T cells could be detected in XLP patients (n = 2;

[59]). These cells, however, exhibit poor in vitro responses to EBV

Ags [19,32]. Our phenotypic and functional analysis of Ag-specific

CD8+ T cells from XLP carriers demonstrated that CMV or Flu-

specific CD8+ T cells are distributed within both SAP+ and SAP2

memory populations, however there was a dramatic, and highly

significant, skewing of EBV-specific CD8+ T cells such that .95%

of these cells were detected within the SAP+ compartment

(Figure 3). By using peptides derived from both lytic and latent

EBV Ag, we established that the exclusive SAP+ effector CD8+ T

cells generated following EBV infection were not restricted to a

single dominant antigenic epitope (Figure 3). This demonstrates

that there is a selective advantage for SAP+ CD8+ T cells in anti-

EBV immunity, but not in either anti-CMV or anti-Flu immunity.

Thus, although SAP2 cells are abundant within the pool of naı̈ve

CD8+ T cells, the SAP+ cells expressing a TCR with specificity for

EBV vigorously outcompete their SAP2 counterparts and

subsequently become the predominant cell type that expands

and is maintained following exposure to EBV. Thus, our studies

reveal a strong requirement for SAP expression not only in

mediating the effector function of CD8+ T cells in response to

EBV infection but also in the expansion and survival of these cells.

These findings underscore the obligate requirement for SAP, and

by extension SLAM family receptors, at multiple stages in CD8+ T

cells in mediating protection against EBV infection. The ability to

examine competition between WT and gene-deficient cells ex vivo

is another powerful feature of the carrier model, and a human

Figure 6. SLAM family receptor ligands are differentially expressed by distinct types of APCs. PBMCs from healthy controls (n = 6), B-LCLs
from healthy controls and XLP carriers (n = 8), monocyte-derived DCs (n = 4), and human fibroblasts (n = 2) were stained with mAb specific for SLAM
family receptors CD48, NTB-A, CD229, SLAM, CD84, or CRACC. Monocytes and B cells in the PBMCs were identified by expression of CD14 and CD20,
respectively. DCs were identified by expression of CD1a, CD11c, and MHC class II. (A) Histograms of the expression of ligands of the SLAM family on
human fibroblasts, resting primary B cells, B-LCLs, monocytes, and in vitro–derived DCs. (B) The mean fluorescence intensity of the expression of the
different molecules on different APCs (F, fibroblasts; B, resting primary B cells; L, B-LCLs; M, monocytes; DC, dendritic cells).
doi:10.1371/journal.pbio.1001187.g006
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Figure 7. SLAM- family receptors inhibit the function of Ag-specific SAP2 CD8+ T cells. (A) Expression of SLAM receptors and MHC class I
on B-LCL and the Hodgkin’s lymphoma cell line HDLM2 were determined. (B) The ability of CD8+ T cells to be activated by B-LCL and HDLM2 cells was
assessed by incubating CMV-specific SAP2 (red histogram) and SAP+ (blue histogram) CD8+ T cells with peptide-pulsed target cells. The values
represent the percentage of CD107a-expressing SAP2 and SAP+ cells detected after 4–6 h incubation with the different target cells. (C, D) SAP+ and
SAP2 CD8+ T cell clones specific for CMV were cultured with peptide-pulsed autologous B-LCLs in the presence or absence of specific mAb to NTBA
alone, 2B4 alone, or in combination. Expression of CD107a by SAP2 and SAP+ CD8+ T cells was determined after 4–6 h. The values represent the
proportion of responding cells. The data presented in (C) and (D) represent independent experiments performed using different pairs of CMV-specific
CD8+ T cell clones. (E) Expression of NTB-A on parental fibroblasts (red histogram) or those transfected to express NTB-A (blue histogram). (F, G) SAP+

(F) and SAP2 (G) CMV-specific CD8+ T cells clones were cultured with 51Cr-labelled parental (red) or NTB-A-expressing (blue) fibroblast target cells.
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equivalent of the studies performed in mice using mixed bone

marrow chimeras to determine the intrinsic responses of WT

versus mutant cells in a competitive environment.

The mechanism underlying this fundamental requirement for

SAP expression during the generation of EBV-specific CD8+ T

cells was revealed by investigating the ability of SAP2 and SAP+

CD8+ T cells specific for the same CMV or Flu epitopes to

respond to their cognate peptide when presented on B-cell or non-

B-cell target APCs (monocytes, DCs, fibroblasts). The rationale for

these experiments was 2-fold: first, one of the key differences

between the three viruses studied here is the identity of the APC

responsible for activating the CD8+ T cell response. CMV persists

in immature myeloid cells and, on reactivation, is likely to be

presented by infected monocytes/DCs [60], whereas influenza

infects respiratory epithelial cells and can be cross-presented by

DCs [61]. By contrast, EBV is a predominantly B-lymphotrophic

virus and there is strong evidence to suggest that the CD8+ T cell

response is driven by epitopes displayed on infected B cells

themselves [37,62]. Second, although the response of XLP CD8+

T cells to B cells is impaired, they can respond relatively normally

to other types of target cells [19,32]. Thus, it was possible that

SAP-deficient CD8+ T cells failed to be activated when Ag was

specifically presented by B cells. Indeed, SAP-deficient CD8+ T

cell clones from XLP carriers were specifically defective in

responding to their cognate epitopes when presented by B-cell,

but not non-B-cell, targets irrespective of the viral origin of the

specific Ag (Figure 4). Similarly, EBV-specific SAP-deficient CD8+

T cells expanded from XLP patients were severely compromised

in their capacity to lyse B cells presenting endogenously processed

EBV peptide Ags (Figure S2C). Our findings have several

important implications. First, although EBV can presumably be

presented by numerous non-B-cell types of APCs (e.g., tonsillar

epitheilium, cross-primed DCs) [63,64], and this may contribute to

the initial generation of detectable EBV-specific CD8+ T cells in

XLP patients [19,59], the predominant APC involved in

maintaining a robust anti-EBV CD8+ T cell–mediated immune

response appears to be B cells. Second, the inability to control

EBV infection in XLP is likely to result from a direct defect in

CD8+ T cells. Defects in CD4+ T cells may contribute to impaired

anti-EBV immunity in XLP because analysis of the CD4+ T cell

compartment from XLP carriers revealed a predominant response

by SAP+ CD4+ T cells to EBV lysate in vitro (Figure S4). Third,

and most importantly, the exquisite sensitivity of XLP patients to

EBV infection results from the ability of the virus to sequester itself

in infected B cells which can only induce a cytotoxic T cell

response in SAP-sufficient cells. In other words, the functional

defect in SAP2 CD8+ T cells does not relate to a specific virus but

rather to the nature of the target cell presenting viral epitopes.

The finding of a requirement for SAP in CD8+ T cell–mediated

lysis of Ag-presenting B cells, but not monocytes, DCs, or

fibroblasts, predicted that expression of ligands of the SLAM

family would differ between these populations of APCs. This was

confirmed by demonstrating that while fibroblasts lacked expres-

sion of all SLAM family ligands, B cells, monocytes, and DCs

expressed differing levels of some of these ligands (Figure 6).

Signalling downstream of SLAM family receptors is regulated by

SAP via several mechanisms. SAP can deliver activation signals via

Fyn-dependent or Fyn-independent processes [6]. Alternatively,

SLAM family receptors can alter their function to become

inhibitory receptors in the absence of SAP [5,6]. This appears to

be mediated by the recruitment and/or activation of inhibitory

phosphatases [22,24,65,66]. We therefore reasoned that engage-

ment of SLAM receptors delivered either activating signals to

SAP-expressing CD8+ T cells or inhibitory signals to SAP-deficient

CD8+ T cells. Our finding that (1) impeding NTB-A/NTB-A and

2B4/CD48 interactions with blocking mAbs [22,52,54] could

improve the function of SAP2 CD8+ T cells in the context of

responses to Ag-presenting B cell targets and (2) ectopic expression

of NTB-A on fibroblasts protected these cells from cytotoxicity

induced by SAP-deficient Ag-specific CD8+ T cells favoured an

inhibitory function for these receptors in the absence of SAP

(Figure 7). This is reminiscent of early descriptions of inhibitory

function of these receptors on SAP-deficient human NK cells

[22,24,67,68], and the recent demonstration of such a phenom-

enon for CD8+ T cell clones from XLP patients [32]. This

conclusion is also consistent with the reported ability of NTB-A to

associate with SHP-1 in the absence of SAP in human NK cells

and T cells [22,42], thereby suggesting a mechanism of how NTB-

A exerts its inhibitory effect. Veillette and colleagues proposed that

the SAP homolog EAT-2 mediates inhibitory signalling down-

stream of some SLAM family receptors in the absence of SAP

[69]. Interestingly, EAT-2 associates with NTB-A in human

lymphocytes [70], and SH2D1B (encoding EAT-2) was expressed

at increased levels in memory CD8+ T cells from XLP patients

compared to healthy donors (Figure S5). Thus, it is possible that in

XLP heightened expression of EAT-2 mediates an alternative

pathway downstream of NTB-A for inhibitory signalling in SAP-

deficient CD8+ T cells following engagement of SLAM family

receptors. Irrespective of these possibilities, it is clear that

expression of SAP significantly alters the function of SLAM family

receptors on human NK and CD8+ T cells such that these

receptors inhibit cytotoxicity in the absence of SAP.

Previous studies established defects in SAP-deficient CD8+ T

cells [19,20,32]. However, there have been major limitations to all

of these inasmuch as they only examined responses of XLP CD8+

T cells to polyclonal (i.e., Ag non-specific) stimulation [19,20], or

only studied responses to EBV and not additional viruses [19,32].

Thus, none of these earlier studies offered an explanation for the

selective inability of XLP patients to respond to infection with

EBV but not other viruses. We have now significantly extended

these observations by providing mechanistic insight into the

dysfunctional behaviour of SAP2 CD8+ T cells by (1) revealing

that the defect in anti-EBV immunity in XLP reflects the nature of

the APC, rather than EBV itself, (2) proving that NTB-A is

inhibitory for the function of SAP-deficient CD8+ T cells, and (3)

excluding a role for SLAM itself in regulating the function of

human Ag-specific CD8+ T cells, a scenario proposed by a

previous study [49].

Our findings that SAP-deficient CD8+ T cells respond poorly to

EBV-infected B cells, but not to monocyte, DC, or fibroblast

APCs, parallel those reported recently for CD4+ T cells from

Sap2/2 mice. In that system no difference was found in the quality

of interactions between DCs and either SAP-deficient or SAP-

sufficient CD4+ T cells [17]. However, SAP-deficient CD4+ T cells

exhibited greatly reduced interactions with cognate B cells,

resulting in impaired help for T-dependent B cell responses [17].

Interestingly, mouse Ly108 (i.e., human NTB-A) is involved in the

formation of stable conjugates between normal CD4+ T cells and

B cells, while interactions with DCs were predominantly mediated

by integrins [71]. The absence of NTB-A and CD48 from DCs

Cytotoxicity was determined after 4 h and is expressed as percentage of Target cell lysis. Each value is the mean 6 sem of triplicate samples and is
representative of experiments performed using three different pairs of SAP2 and SAP+ CMV-specific CD8+ T cell clones.
doi:10.1371/journal.pbio.1001187.g007
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potentially explains why DC-mediated Ag-presentation to CD8+ T

cells is unaffected by SAP deficiency. While SAP was required in

murine CD4+ T cells for NTB-A-mediated interactions with B

cells [71], it appears that SAP functions in human CD8+ T cells to

prevent the delivery of inhibitory signals downstream of NTB-A

that probably involve the recruitment and/or activation of

phosphatases or EAT-2 [22,42,70]. This apparent disparate

function of NTB-A on murine CD4+ and human CD8+ T cells

may be explained by the pattern of expression of EAT-2,

inasmuch as it is detected in human CD8+ T cells (Figure S5)

[72], but not murine CD4+ T cells [69]. Despite these potential

differences, an emerging theme is that loss of SAP in T cells leads

to altered interactions with B cells, while interactions with other

APCs remain intact. This specific defect not only explains the

molecular pathogenesis of the unique susceptibility to EBV

infection in XLP patients but potentially explains their high

incidence of B-lymphomas. Interestingly, EBV is the only known

human pathogen that selectively infects B cells, which results in

expression of high levels of SLAM family ligands to facilitate the

T-B cell cross-talk necessary for immunity. Thus, our studies have

identified a unique pathological signalling pathway that may be

targeted to treat patients with severe EBV infection. Furthermore,

the innovative XLP carrier model has allowed us to unravel the

mechanisms of disease in the absence of a relevant animal model.

This system may also allow the study of other human diseases, for

instance XIAP deficiency, which also predisposes to EBV infection

[8,73], where heterozygous gene expression from random X-

chromosome inactivation could be exploited.

Materials and Methods

XLP Carriers and Patients
Blood samples were collected from seven different XLP carriers

and an XLP patient. PBMC were isolated and either used fresh or

cryopreserved in liquid nitrogen. Genomic DNA was sequenced to

confirm the heterozygous state of the carriers. Primers used for

amplification of the four exons of SH2D1A are: Exon 1 sense: CAA

CAT CCT GTT GTT GGG G, Exon 1 antisense: CCA GGG

AAT GAA ATC CCC; Exon 2 sense: GCA ATG ACA CCA

TAT ACG, Exon 2 antisense: GAA CAA TTT TGG ATT GGA

GC; Exon 3 sense: GTA AGC TCT TCT GGA ATG, Exon 3

antisense: CAT CTA CTT TCT CAC TGC; Exon 4 sense: CTG

TGT TGT GTC ATT GTG, Exon 4 antisense: GCT TCC ATT

ACA GGA CTA C. All participants gave written informed

consent and the experiments were approved by the Human

Research Ethic committees of the Sydney South West Area Health

Service (Royal Prince Alfred and Concord Zones) and St.

Vincent’s Hospital.

Flow Cytometric Analysis
PBMC, CD8 T cell clones, B-LCLs, and fibroblasts were

stained with fluorochrome-conjugated mAbs specific for cell

surface receptors. The following mAbs were used to identify

different lymphocyte populations: anti-CD3, CD4, CD8 (T cells),

CD56 (NK cells), CD20 (B cells), CD14 (monocytes), CD1a,

CD11c (DC) (BD Biosciences), and TCR Va24/Vb11 (NKT cells)

(Immunotech, France) mAbs. CCR7 (R&D Systems), CD45RA

(BD Biosciences), and CD27 (BD Biosciences) were used to

identify subsets of naı̈ve and memory T and B cells. CD83

(eBioscience), CD86, MHC class II, and MHC class I mAbs (BD

Biosciences) were used to phenotype LPS-matured DCs. Expres-

sion of the SLAM family of receptors and ligands was determined

using mAbs against CD84 (BD Biosciences), CD229, NTBA,

CRACC (R&D Systems), 2B4 (Beckman Coulter), CD48 (Im-

munotech, France), and SLAM/CD150 (eBiosciences). TCR Vb
repertoire analysis was performed according to the manufacturer’s

instructions (Beckman Coulter). For degranulation assays mAb

against CD107a (BD Biosciences) was used as previously described

[44,45] and for intracellular cytokine stains anti-IFN-c (BD

Biosciences) mAb was used. Stained cells were analyzed on either

FACSCanto I or II flow cytometers (BD Biosciences) and the data

processed using FlowJo software (Treestar, Ashland, USA).

MHC Class I Tetramers
MHC class I tetramers were prepared in-house, where the

appropriate MHC class I heavy chain molecule was refolded with

b2 microglobulin and the peptide and complexed with streptavi-

din-PE as described [74]. CMV epitopes used were the HLA-

A*0201-restricted peptides NLVPMVATV from pp65 (UL83)

protein, and VLEETSVML from IE-1 (UL122) protein; HLA-

A*0101 restricted peptide, VTEHDTLLY from pp50 (UL44)

protein. EBV epitopes used were HLA-A*0201-restricted GLCT-

LVAML from the lytic Ag BMLF-1, CLGGLLTMV from LMP2,

HLA-B*4402-restricted peptides VEITPYKPTW from EBNA3B

latent protein, and EENLLDFVRF from EBNA3C. The influenza

A epitope was the HLA-A*0201-restricted peptide GILGFVFTL

from matrix protein.

Detection of SAP by Intracellular Staining
Cells were first stained for surface markers and then fixed with

2% paraformaldehyde, permeabilized with 0.5% saponin, and

incubated with Alexa Fluor 647 (Invitrogen)-conjugated isotype

control or anti-SAP mAb (Abnova, clone 1C9). Cells were washed

and resuspended in PBS/1% FCS and analysed on a FACSCanto

I or II flow cytometer (BD Biosciences).

PBMC Stimulation
1–26106 PBMCs were stimulated with either an irrelevant

peptide, specific MHC class I restricted synthetic peptide, or

PMA/ionomycin as a positive control for 4–6 h in the presence of

Brefeldin A (for IFN-c production) or monensin (for CD107a

expression). The capacity to respond to these peptides was tested

by harvesting the cells and determining expression of IFN-c or

CD107a by SAP+ and SAP2 CD8+ T cells.

Generation and Culture of Human Monocyte-Derived
Dendritic Cells

DCs were generated from peripheral blood monocytes by

culturing sort-purified CD14+ cells (56105/ml) in human

lymphocyte media [15,16] supplemented with 500 U/ml of IL-4

(provided by Dr. Rene de Waal Malefyt) and 50 ng/ml GMCSF

(Peprotech). After 5 d, monocyte-derived DCs were harvested,

washed, and cultured (56105/ml) in the presence of 1 mg/ml of

LPS (Sigma) for a further 18 h. Monocyte-derived DCs were

CD1a+ CD11c+ CD142. Upon maturation with LPS, they

upregulated expression of CD83, CD86, and MHC class I and

MHC class II.

Generation of Ag-Specific T Cell Clones and Lines
Virus-specific CD8+ T cell clones were established from PBMCs

by sort-purifying tetramer positive cells and limiting dilution

cloning as described [75]. Clones were established by seeding sort-

purified tetramer+ CD8+ T cells at 0.3–3 cells/well into media

containing 104 autologous B-LCLs and 105 feeder cells per well.

CMV-specific clones were selected based on their recognition of
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the pp50 (UL44) epitope VTEHDTLLY (HLA-A1 restricted),

while influenza-specific clones recognised the matrix protein

epitope GILGFVFTL (HLA-A2 restricted). All clones were

expanded and tested for specificity by staining with the

appropriate tetramer and for SAP expression (see Figure S1).

EBV-specific CD8+ T cell lines used in DC assays were generated

by sort purifying tetramer-positive cells and expanding them in

vitro on peptide-pulsed autologous B-LCLs and feeder cells. EBV-

specific CD8+ T cell lines from XLP patients and normal donors

were established by repeated stimulation of purified CD8+ T cells

on autologous B-LCLs [19].

T Cell Recognition Assay
The ability of CD8+ T cell clones to respond to various target

cells was measured either by intracellular IFN-c staining or by

staining for CD107a. Autologous B-LCLs were used as B cell

targets. HLA-matched monocytes were sort-purified from buffy

coats on the basis of CD14 (Immunotech) expression and used as

APCs. DCs were generated as described above. HLA-matched

human fibroblasts used were JuSt (HLA-A1 & A2) and MeWo cells

(HLA A2) (ATCC). All APCs were pulsed with appropriate

peptides (1 mg/ml) and used to stimulate CD8+ T cell clones.

Where cytotoxicity was measured, APCs were sensitised with

cognate peptide at a concentration of 1 mg/ml while loading with
51Cr. After washing, T cells were incubated at different APC:T cell

ratios and incubated for 5 h in standard cytotoxicity assay [75]. In

some experiments, blocking mAbs against NTB-A (MA127) [22]

and 2B4 (C1.7 [52,53]) were used to prevent NTB-A/NTB-A and

2B4/CD48 interactions, respectively. B-LCLs were incubated with

the relevant mAb at a final concentration of 20 mg/ml for 30–

45 min prior to mixing with CTL clones. Cultures were incubated

for 4–6 h in the presence of blocking mAbs and mAb to CD107a.

Cells were then appropriately stained and analysed by flow

cytometry. Fibroblasts were transfected using Lipofectamine with

the pcdef3 plasmid containing cDNA encoding human NTB-A.

Positive cells were initially selected in the presence of G418 and

then isolated by sorting NTB-A+ cells. NTB-A+ transfected and

untransfected parental fibroblasts were then used as targets in 51Cr

release assay as described above.

Supporting Information

Figure S1 Generation of SAP2 and SAP+ virus-specific clones.

Virus-specific cells were isolated from PBMCs of XLP carriers by

sorting tetramer+ cells (A). Clones were then established by

limiting dilution assay and positive clones were expanded. All

clones were then examined for their expression of SAP by

intracellular staining (B) and specificity by tetramer staining (C).

(TIF)

Figure S2 SAP deficient CD8+ T cells fail to respond to B cell

targets. (A) Ag-specific SAP+ (upper panel) and SAP2 (lower panel)

CD8+ T cell clones or (B) EBV-specific CD8+ T cell lines isolated

from an XLP carrier were cultured with (A) autologous B-LCLs or

HLA-matched monocytes or (B) autologous B-LCLs or HLA-

matched DCs that had been pulsed with either an irrelevant or

cognate peptide for 4–6 h. Stimulation with PMA/Ionomycin was

used as a positive control. Expression of CD107a was then

determined. These results are derived from different sets of clones

as those presented in Figure 4. (C) EBV-specific CD8+ T cell lines

were established from a healthy control or an XLP patient. The

ability of these cells to lyse autologous (panel [i]) and allogeneic but

HLA-matched (panel [ii]) B-LCLs was measured using a standard

4-h 51Cr release assay. Expression of perforin and granzyme B in

CD8+ T cell lines from the healthy control and XLP patient was

also determined (panel [iii]).

(TIF)

Figure S3 Expression of SLAM family receptors on CD8+ T cell

subsets in XLP carriers. PBMCs from four different XLP carriers

were stained with mAb specific for CD8, CD45RA, and CCR7

and either 2B4, NTB-A, CD229, SLAM, CD84, or CRACC;

expression of SAP was then detected following fixation and

permeabilisation. Expression of each SLAM family member on

SAP2 and SAP+ naı̈ve, central memory, effector memory,

and TEMRA CD8+ T cells was determined by gating on

CD45RA+CCR7+, CD45RA2CCR7+, CD45RA2CCR72, and

CD45RA+CCR72 cells, respectively. The graphs show data points

(mean fluorescence intensity) for all carriers examined (n = 4); the

horizontal bar represents the mean.

(TIF)

Figure S4 EBV-specific CD4 T cells are largely SAP+. PBMCs

from two XLP carriers were either unstimulated or stimulated with

EBV lysate or anti-CD3/anti-CD28 mAbs. Expression of IFN-c
by SAP+ and SAP2 CD4+ T cells was determined after 4–6 h. The

values represent the proportion of responding cells that were

SAP2 or SAP+.

(TIF)

Figure S5 Increased expression of SH2D1B in SAP-deficient

XLP memory CD8+ T cells. CD8+ T cell subsets corresponding to

naı̈ve, central memory, effector memory, and TEMRA CD8+ T

cells were isolated from the peripheral blood of two healthy

controls and two XLP patients. Expression of SH2D1B, encoding

the SAP-related homolog EAT-2, was determined by microarray

analysis using Human Genome U133 Plus 2.0 Affymetrix Arrays

and GeneSpring software.

(TIF)
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