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Abstract 

In the course of our everyday lives, we are constantly faced with situations in 

which we must choose. Do we invest in the bank or the stock-market? Is a new wage 

deal so unfair that we should resort to a strike? These situations are elegantly 

described mathematically by Rational Choice Theory (RCT), which dominates the 

quantitative social sciences such as economics. However, unfortunately RCT often 

fails to predict how humans actually behave. Here I investigate choice using 

paradigms derived from the RCT framework, but aim to better predict actual choices 

by using a biological level of explanation. First, I examine simple choices that involve 

no social interaction, asking how choices are influenced by risk in potential 

outcomes, and by whether outcomes reflect potential gains or losses. The data 

reveal independent impacts of risk and loss on choice, findings not predicted by 

extant economic theories. Instead, I then harness functional Magnetic Resonance 

Imaging (fMRI) to suggest a biological mechanism by which risk and loss bias 

approach behaviour, and test this hypotheses in further behavioural experiments. 

Secondly, I examine social choices. Specifically, I examine biological systems that 

enable social behaviour to respond flexibly to environmental contingencies. I 

investigate the neural basis of the human fairness motivation using fMRI, and show 

how it flexibly adapts to external social context. Next, I show how this fairness 

motivation adapts to changes in an individual’s internal physiological state. Finally, I 

show how cooperation is modulated by the androgen hormone testosterone. Overall, 

in light of these non-social and social findings, I propose that a biologically-based 

account of choice can explain choices that are not predicted by existing theory. 
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Chapter 1. Introduction 

The choices we make sculpt our lives. Do I continue working in my secure job, or 

do I take a risk and start my own business? Do I invest my savings in the stock 

market, in housing, in Government bonds, or do I take a trip and play the casinos in 

Las Vegas?1 If I am part of a farming community where communal irrigation systems 

must be maintained: do I cooperate with my neighbours, or do I let them do the work 

and free-ride? Understanding how humans make such individual and social choices 

is important – not only because this determines how we now live in our society, but 

also because it constrains the potential structural arrangements in society. 

What do we know about how humans make choices? One starting point is the 

philosopher Plato (2005) who painted a picture of the soul as a chariot, comprising a 

charioteer directing competing motivations: “First the charioteer of the human soul 

drives a pair, and secondly one of the horses is noble and of noble breed, but the 

other quite the opposite in breed and character. Therefore in our case the driving is 

necessarily difficult and troublesome”. Such richness and complexity was also 

evident two millennia later in the writings of Adam Smith, generally acknowledged as 

the father of modern economics. Smith discussed the more passionate side of 

human nature in his Theory of Moral Sentiments (1759), which begins “How selfish 

soever man may be supposed, there are evidently some principles in his nature, 

which interest him in the fortunes of others, and render their happiness necessary to 

him, though he derives nothing from it, except the pleasure of seeing it.” Later in 

Smith’s book The Wealth of Nations (1776), which can be seen as the origin of neo-

classical economics, he describes how even when the individual “intends only his 

own gain, and he is in this, … led by an invisible hand to promote an end which was 

no part of his intention.” Unfortunately, in the latter half of the twentieth century the 

quantitative social sciences, such as economics, lost the richness of earlier 

                                                 
1
 At the time of writing, some might consider Las Vegas to be the safest option.  
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descriptions and came to be dominated by consideration of only one of these 

components of human nature: rational self-interest. 

Since the mid-twentieth century, economics in particular has been dominated by 

this one mode of analysis, centred on the Rational Choice Theory (RCT) (von 

Neumann and Morgenstern, 1944). RCT models individual choices through Expected 

Utility Theory, and social choices through Game Theory. RCT does in fact 

successfully explain many aspects of human behaviour and provides simple and 

mathematically rigorous descriptions of situations in which individuals must choose. 

However, as discussed in Chapter 2, RCT is limited as a descriptive model, and fails 

to predict many aspects of human choice.  

To improve the predictive power of such models, over the past three decades a 

subfield of economics has begun to put the passions back into models of behaviour. 

This field of behavioural economics aims to “increase the explanatory power of 

economics by providing it with more realistic psychological foundations” (Camerer 

and Loewenstein, 2004). However, “it is important to emphasize that the behavioural 

economics approach extends rational choice and equilibrium models; it does not 

advocate abandoning these models entirely” (Ho et al., 2006). This psychologically-

informed economics has been applied to individual choices, for example attempting 

to replace Expected Utility Theory with Prospect Theory (Kahneman and Tversky, 

1979), and has been applied to social choices, for example replacing Game Theory 

with Behavioural Game Theory (Camerer, 2003). However, important behavioural 

regularities are still not predicted by these models, including behaviours described in 

this thesis. 

More recently, biologically-based and neuroscientific approaches to choice have 

been combined with those from economics (Glimcher, 2003; Glimcher and Rustichini, 

2004; Camerer et al., 2005). The term neuroeconomics has been coined in this 

context. Common to different perspectives on neuroeconomics, and to the work in 
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this thesis, is that the fact that the main object of interest is the study of value-based 

decision-making. Such value-based decision-making occurs whenever an animal 

makes a choice from several alternatives on the basis of the subjective value it 

places upon them. In a sense, this inter-disciplinary approach permits the 

reintroduction of earlier richness and complexity into models of human behaviour, but 

within a mathematically specifiable and empirically grounded framework. Further, 

these inter-disciplinary approaches provide better descriptive models of choice. 

In this thesis I aim to understand how, from a biological and psychological 

perspective, people make choices. Specifically, I investigate two paradigmatic 

influences on individual choice, namely risk and loss (Chapters 4 and 5); and two 

paradigmatic influences on social choice, namely fairness and cooperation (Chapters 

6, 7 and 8). I use concepts from the quantitative social sciences, and in particular 

economics, to provide a tractable framework in which to examine these choices. To 

understand how these choices are determined biologically, I use behavioural model 

comparison in conjunction with functional magnetic resonance imaging (fMRI), and 

employ causal manipulations of hormones and physiological state (thirst).  

1.1 Thesis outline 

First, I will describe the theoretical and empirical background to the thesis 

(Chapter 2). Specifically, I will describe Rational Choice Theory and biologically-

based approaches to individual and social choice. In Chapter 3, I describe the 

functional Magnetic Resonance Imaging methods that I employ in this thesis.  

The empirical work presented in this thesis is contained in Chapters 4 to 8. In 

Chapters 4 and 5, I examine the effects of risk and valence on individual choices. In 

Chapter 4, I describe a new paradigm from which neural data is used to infer that risk 

and loss influence choice by biasing individuals away from approaching (choosing) 

stimuli incorporating these variables. This mechanistic hypothesis makes specific 



16 

 

predictions concerning reaction time biases, which I then test in Chapter 5. Chapters 

6 to 8 examine social choice, and specifically the biological systems that enable 

social behaviour to respond flexibly to environmental contingencies. In Chapter 6, I 

investigate the neural basis of a human fairness motivation using fMRI, and show 

how it flexibly adapts to external social context. In Chapter 7, I show how this fairness 

motivation adapts to changes in an individual’s internal physiological state. Finally, in 

Chapter 8, I show how cooperation is modulated by the androgen hormone 

testosterone. 
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Chapter 2. Literature review 

2.1 Overview 

My review of the literature contains four sections. First, I will describe Rational 

Choice Theory (RCT), which provides the dominant theoretical treatments of social 

and non-social choice in the quantitative social sciences. Second. I will address 

biologically-based theories that seek to move beyond RCT in the description of 

choice behaviour. Third, I will review how the treatments of RCT and biologically-

based theories of choice relate to two specific influences on individual choice 

examined in this thesis – the risk and valence of potential outcomes. Finally, I will ask 

how these approaches relate to social choices, and specifically how they relate to the 

concepts of fairness and cooperation that are examined in this thesis. 

2.2 Rational Choice Theory 

2.2.1 Rational Choice Theory: setup and axioms 

Rational Choice Theory can be simply described as follows: an agent chooses the 

best action according to that agent’s preferences, from amongst all the actions 

available to the agent. No qualitative restriction is placed upon the decision-maker’s 

preferences – the agent’s “rationality” lies in the consistency of choices, not in the 

chooser’s tastes. The model has two basic components: a set of actions available to 

the agent (denoted by the set X below); and a specification of the agent’s 

preferences (Kreps, 1990). 

2.2.1.1 The objects of choice: the set of available actions 

We are interested in the behaviour of an individual, who is faced with the problem 

of choosing from among a set of objects (we can also say that this is a set of 

actions). Let X represent some set of objects. The agent knows the set of available 
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objects. Within this set, X, we can describe consumption bundles, for example 

denoted by x or y. In individual, non-social choice an example of a consumption 

bundle with three commodities could be x=(x1, x2, x3), representing x1 cans of beer, x2 

bottles of wine, and x3 shots of whisky. In social choices an example could be a 

particular division of the bill at a restaurant.  

2.2.1.2 The basic preference relation 

As to preferences, we assume that if the agent is presented with any pair of 

actions, she knows which she prefers or if she is indifferent between them. For 

example when asking the agent to compare two alternatives, x and y, if the consumer 

prefers x to y, then we can write x y, or state that x is strictly preferred to y.  

2.2.1.3 Assumptions 

As described above, no qualitative restriction is placed upon the agent’s 

preferences – her “rationality” lies in the consistency of choices. To ensure this 

consistency the following assumptions must hold. 

Assumption 1. Preferences are asymmetric: there is no pair x and y from X 

such that x y and y x. 

This first assumption means that individuals cannot prefer x to y and also prefer y 

to x. However, there are problems with this assumption. One problem relates to the 

time of choice. For example, an agent might prefer more beer one day but more wine 

another. Indeed, how such changes in preference during social choices might be 

induced by social context, internal physiological state and hormones is subject of 

Chapters 6, 7 and 8 respectively in this thesis. Another problem relates to the framing 

of the choice as gains or losses, which is discussed later in this Chapter  

A second assumption is that if an agent makes the judgment x y, she is able to 

place any other option z somewhere on the ordinal scale set by these two. 
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Assumption 2. Preferences are negatively transitive. If x y, then for any 

third element z, either x z, or z y, or both. 

Finally, three further properties are necessary for strict preference: 

Irreflexivity: For no x is x x. 

Transitivity: x y and y z, then x z. 

Acyclicity: If, for a given integer n, x1 x2, x2 x3, … , xn-1 xn, then xn ≠ x1. 

Note that we can also define further such preference relations where individuals 

are indifferent between alternatives, or where they weakly prefer alternatives. 

2.2.2 Utility and utility functions 

How do we describe an agent’s preferences? We could specify preference 

relations for each pair of actions, but this is impractical in all but the simplest 

circumstances. Instead we can use a numerical scale, known as a utility function. 

This also has the advantage that we can turn a choice problem into a numerical 

maximisation problem. The utility function, U, represents an agent’s preferences if, 

for any actions x in X and y in X 

x y     if and only if     U(x)  U(y)   Eq. 2.1 

That is, U measures all the objects of choice on a numerical scale, and a higher 

measure on the scale means the agent likes that object more. To permit a numerical 

representation, it is necessary that the assumptions above are met, and also that 

either the set X is small or that preferences are well behaved (Kreps, 1990).  

The units in a utility scale have no particular meaning. An agent’s preferences, in 

the sense used here, convey only ordinal information. Utility functions therefore also 

only convey ordinal information. Note, however that recent work has sought to 

correlate utility measures with neural activity, which is discussed below.  
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2.2.3 Relating choice and preference: revealed preference 

Under this model, it is easy to see how choices derive from preferences, with the 

agent happy to choose anything that isn’t bettered by something else that is 

available. However, unless we provide our consumer with a questionnaire or 

otherwise directly enquire as to her preferences, the only signs of her preferences 

are the actual choices she makes. We can thus take choice behaviour as the 

primitive and infer the preferences – and a method to achieve this is known as 

revealed preference. Samuleson’s (1938) original observation that preference could 

be inferred from choice, relies on the assumption that when choosing between two 

options A and B, a subject will choose A more frequently than B if (and only if) A is 

more desirable.  

desirability(A) > desirability(B) → p(choose A) > p(choose B) Eq. 2.2 

One strategy here is to present different amounts of A and B over multiple trials, 

and find the point at which she is indifferent between A and B, from which one can 

obtain an ordinal ranking of the desirability of each (Corrado et al., 2008).  

2.2.4 Rational Choice Theory: emergence of behavioural 

economics 

Before turning to biologically-based models of choice in the next section, it is 

important to mention that over the past three decades economists have sought to 

incorporate psychological insights into models derived from RCT, to improve the 

predictive power of such models. The resultant field is termed behavioural 

economics. As described by those in the field, “It is important to emphasize that the 

behavioural economics approach extends rational choice and equilibrium models; it 

does not advocate abandoning these models entirely” (Ho et al., 2006). We return to 

behavioural economic models in later sections, specifically Prospect Theory and 

behavioural game theory. 
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2.3 Biologically-based approaches to value-based choice 

Biologically-based and neuroscientific approaches to choice have a long 

theoretical and empirical tradition, for example relating to the vast literature on 

associative learning and choice (Thorndike, 1911; Mackintosh, 1983). More recently, 

these biological approaches have been combined with economic approaches based 

in RCT to form the emerging field of neuroeconomics (Glimcher, 2003; Glimcher and 

Rustichini, 2004; Camerer et al., 2005). The term neuroeconomics has meant 

different things to different workers in the field: including the application to 

neurobiology of mathematical structures derived from microeconomics (Glimcher, 

2004); or the use of biological insights to provide better assumptions in 

microeconomic models (Camerer et al., 2005). However, common to these different 

perspectives on neuroeconomics, and to the work in this thesis, is that the main 

object of interest is the study of value-based decision-making. By value-based 

decision-making, I mean cases where an agent chooses from several alternatives 

based on the subjective values it places upon them. 

In this section, I describe two key aspects of this biological approach: first 

describing choice as a process, which enables selection between models not 

distinguishable from behaviour alone; and second, describing how choice arises from 

multiple interacting systems, which may explains many “irrationalities” and “biases” 

as seen from the perspective of RCT.  

2.3.1 Choice as a process: differentiating behavioural models 

Unlike RCT, biologically-based theories provide insight into the mechanistic 

processes underlying choice behaviours. At a fundamental level, the purpose of a 

nervous system is to implement appropriate behaviours in response to environmental 

contingencies. Many schemas have been proposed to describe the mapping from 

sensory inputs to motor outputs, of which one is shown in Fig. 2.1 (Corrado and 
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Doya, 2007; Corrado et al., 2008). In this schema, a decision occurs when an 

organism, confronted by discrete options, evaluates those options and selects one to 

act upon. When the organism’s choice is not mandated by the immediate sensory 

characteristics of the options, but rather by the organism’s subjective preference, 

these can be thought of as value-based decisions. Linking option evaluation and 

action selection are decision variables, which are quantities internal to the subject’s 

decision process that summarise properties of the available behavioural options 

relevant to guiding choice (Corrado and Doya, 2007; Corrado et al., 2008).  

Different models of choice may possess markedly different internal components 

(i.e. decision variables), but these models may result in very similar choices. It is 

impossible to choose between such models on the basis of behaviour alone (e.g. as 

in revealed preference discussed above). However, if the models include explicit 

decision variables that can be calculated on every trial, we can ask if correlates of 

these decision variables can be identified within the brain. We use such model-based 

fMRI analysis (O’Doherty et al., 2007) to identify correlates of the variance of 

gambles in Chapter 4 and of social inequality in Chapter 6. 

 

 

Figure 2.1 Choice is a process. A simplified model in which sensory systems 

provide data to decision-making circuits, which in turn direct motor systems. The 

machinery of decision-making can be further subdivided into mechanisms more 

concerned with the evaluation of options and those more concerned with action 

selection: steps that can be linked by decision-variables. Adapted from (Corrado and 

Doya, 2007; Corrado et al., 2008). 
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2.3.2 Choice results from multiple interacting decision systems 

Growing evidence suggests that rather than a unitary process, as in the 

deliberately over-simplified sketch above, choice is actually the result of multiple 

interacting valuation and decision systems (Dayan, 2008; Rangel et al., 2008; Dayan 

and Seymour, 2009). Different weighting to the operation of these systems under 

different contexts may explain many of the apparent irrationalities or biases in choice 

seen with respect to the predictions of RCT. 

How many such systems exist and how they may interact is still a matter of much 

debate (Dayan, 2008; Rangel et al., 2008), although there is good evidence for at 

least three such types of systems. First, a Pavlovian system assigns values that 

engage a limited set of behaviours that are evolutionarily appropriate responses to 

environmental stimuli. These responses include preparatory behaviours such as 

approaching cues that predict the delivery of food (appetitive cues), or avoidance 

behaviours when cues predict a punishment (aversive cues). Second are habitual 

systems, by which agents learn by trial-and-error to assign values to stimulus-

response associations. Finally, model-based systems assign values to actions by 

computing action-outcome associations and then evaluating the values associated 

with the different outcomes. 

2.4 Individual choice: risk and valence 

I examine individual choices in Chapters 4 and 5 of this thesis, and specifically 

two important influences on choice: the risk and valence of potential outcomes. 

Valence is relatively easy to define, meaning whether the potential outcomes under 

consideration entail punishments (e.g. financial losses or painful electric shocks) or 

rewards (e.g. financial gains, tasty foods, or water when thirsty). However, risk is 

more difficult to define. In this thesis, I define risk as a state in which the decision-

maker lacks knowledge about which potential outcome will follow from a choice, and I 
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limit my enquiry to situations in which the agent knows all the probabilities associated 

with potential outcomes.  

I acknowledge that a situation such that the decision-maker knows all probabilities 

reflects only one aspect of risk, albeit an important one. Another important type of 

risk is illustrated in the comments made by Donald Rumsfeld, United States 

Secretary of Defense, in 2002: “There are known knowns; there are things we know 

we know. We also know there are known unknowns; that is to say we know there are 

some things we do not know. But there are also unknown unknowns – the ones we 

don't know we don't know.” As well as the known unknowns studied in this thesis and 

the unknown unknowns described by Rumsfeld, we could also describe a further type 

of risk: when clinicians or lay people identify behaviours as risky, they typically invoke 

a broader meaning where the behaviours may lead to harm, such as when mountain 

climbing (Schonberg et al., 2011). How such different aspects of risk may relate is 

unclear, and indeed individual differences in risky choice appear to be domain 

specific across domains of risk (Slovic, 1964; Weber et al., 2002).  

Risk in situations where the decision-maker knows all probabilities, as examined 

in this thesis, has the advantage of being well defined mathematically. In the 

seventeenth century Pascal began to describe risky options in games of chance. 

Pascal proposed that one could choose the option that carried the greatest 

combination of value and probability, by calculating its expected value (EV) where 

each outcome is weighted by its probability of occurring (v x p, where v is value and p 

is probability). However, calculating expected value had the unfortunate property of 

giving infinite expected value to certain types of gambles (an example being the St 

Petersburg paradox; Glimcher, 2003). One way around this is to convert objective 

values into subjective utilities, where the more money an individual has the less each 

additional unit is worth (this concept of diminishing marginal utility explains why £10 

is worth less to the Chief Executive of Ford than to a pauper). Specifically, Daniel 
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Bernoulli suggested that choice depends on the subjective value of goods (u), which 

leads to models of choice based on expected utility (u x p, where u is utility). This 

concept lies at the heart of the Expected Utility Theory (EUT) formulated by von 

Neumann and Morgenstern (1944) as part of Rational Choice Theory – and EUT has 

become the standard model to describe risky choice in many disciplines such as 

economics. 

In this section I will first describe Expected Utility Theory and some of its 

limitations; second Prospect Theory that was designed specifically to deal with some 

of the limitations (particularly valence effects); third, alternative models from financial 

economics for choice under risk (Markowitz, 1952); and fourth, I will describe 

biologically-based approaches to the study of risk and valence effects on choice.  

2.4.1 The standard economic model of risk: Expected Utility 

Theory 

Expected Utility Theory (EUT) as a description of risky choice lies at the very heart 

of the Rational Choice Theory described by Von Neumann and Morgenstern (1944), 

which builds on Bernoulli’s idea of expected utility rather than expected value. EUT 

cannot account for effects of valence on choice, but can explain risk preference. EUT 

is implemented, amongst other models, to analyse choice data in Chapters 4 and 5.  

2.4.1.1 Expected Utility Theory: Setup and axioms 

In EUT, uncertain prospects are modelled as probability distributions over a given 

set of outcomes. That is, the probability of each potential outcome is known to the 

agent as it is given as part of the description of the object. Here, I use the term 

prospect to refer to an object. An example of a prospect is a gamble of £10 or £0 on 

the toss of a coin, which is a prospect with two outcomes (£10 and £0) each with 

probability 0.5.  



26 

 

As in the case of RCT described above without risk, here the same axioms apply 

such that preferences must be asymmetric and negatively transitive. In addition, 

because EUT concerns probability distributions, two further axioms are added. 

Firstly, the substitution axiom of EUT (also known as the independence axiom), 

which relates to the principle that any state of the world that results in the same 

outcome regardless of one’s choices can be ignored. Specifically, this asserts that if 

a prospect B is preferred to prospect A, then any (probability) mixture (B, p) must be 

preferred to the mixture (A, p). Second, the Archimedean axiom (also known as the 

continuity axiom) guarantees that preferences can be represented by some function 

that attaches a real value to each prospect. Specifically, this states that for all 

prospects q, r and s, where q r s, there exist numbers α and β, both from the 

open interval (0,1), such that αq+(1- α)s r βq+(1-β)s. 

Calculating the expected utility of a prospect is straightforward. The utility of each 

outcome can be determined from the utility function, and then each utility is weighted 

by its probability of occurring. For illustration, consider a situation in which the agent 

does not yet know which state of the world will occur, and in which: there are two 

possible states of the world (1 and 2), with two probabilities of occurring (p1 and p2), 

and each state will provide a potential outcome amount (a1 and a2). For this example 

the expected utility model is specified as follows. 

u(a1, a2) = p1*u(a1) + p2*u(a2)   Eq. 2.3 

The probabilities are given, so the only element that needs to be specified here is 

the utility function u(.). When choosing between prospects, individuals do so on the 

basis of which prospect gives them the highest expected utility.  

2.4.1.2 Risk preference in Expected Utility Theory 

Next we can ask how risk preferences (i.e. tastes for risk) emerge as an implicit 

by-product of the utility function in EUT. EUT enables us to model individuals such 



27 

 

that they can dislike risk (i.e. risk-aversion), can be indifferent to risk (i.e. risk-

neutrality) or like risk (i.e. risk-seeking). 

 

Figure 2.2 Risk preferences in Expected Utility Theory. Panel a) shows how risk 

aversion arises as a by-product of the concave utility function. The prospect is either 

£70 or £30 on the toss of a coin, such that the expected value (EV) is £50. However, 

the utilities of £30 and £70 can be seen on the y-axis, along with the expected utility 

of the gamble (i.e. the average of the utilities). From the expected utility of the 

gamble, one can then calculate the certainty equivalent of the gamble – and this is 

less than the EV, with the difference being the risk premium (RP). As described in the 

main text, the risk averse utility function plotted here is, u(a) = (1-e
-0.03a

)/(1-e
-3.3

). 

Panel b) shows a linear utility function, which will give risk-neutral risk preference (CE 

will equal EV). Panel c) shows a convex utility function, which will give risk-seeking 

risk preference (the CE of the gamble will be greater than its EV). The risk-seeking 

utility function plotted here is, u(a) = (1-e
0.03a

)/(1-e
3.3

). 
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First I will describe risk-aversion. In EUT, risk-aversion is a natural consequence 

of a concave utility function, such as that show in Fig. 2.2. A concave utility function 

seems plausible in light of the idea of diminishing marginal returns highlighted by 

Bernoulli (i.e. the more money you have, the less utility an extra unit of money 

provides). Consider such an individual with a typical concave utility function (Hey, 

2003), specifically a constant absolute risk averse utility function  

u(a) = (1-e-0.03a)/(1-e-3.3)     Eq. 2.4 

where a is the argument in the utility function and r is the index of risk preference. 

The precise utility function chosen here is for illustration and many different functions 

would serve equally well – indeed, how risk aversion arises from any concave utilty 

function is simply visualised in Fig. 2.2a, which plots this specific example. The 

individual is offered a toss of a coin (i.e. probability of each outcome is 0.5) between 

£70 and £30. The expected value (EV) of the prospect is £50. However, if the 

individual has expected utility preferences, the evaluation is based on expected 

utility, rather than on expected value. Consuming £30 has utility ~0.62, whilst 

consuming £70 has a utility of ~0.91. The expected utility of this risky prospect is 

therefore (0.5*0.62 + 0.5*0.91) = 0.76 (Fig. 2.2). 

We can now determine the certainty equivalent (CE) of this risky prospect, which 

is the amount of money that, if received with certainty, the individual regards as 

equivalent to the risky prospect. The utility of the certainty equivalent is the utility of 

the risky prospect (i.e. 0.76), which is worth approximately £44.50.  

u(CE) = p1*u(a1) + p2*u(a2)     Eq. 2.5 

We can now also determine the risk premium, which is the maximum amount that 

the individual would pay to have all risk removed from the prospect. The risk 

premium here is £50-£44.50=£5.50. The risk premium depends on the utility function, 

with a more concave utility function there is a greater risk premium.  
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Risk premium = (p1*a1 + p2*a2) – CE = EV – CE  Eq. 2.6 

We have thus described how an individual with a concave utility function is risk-

averse. Using this same utility function where u(a) is proportional to (1-era)/(1-er) in 

which a is the argument and r is the index of risk preference, we can also show how 

risk-neutral and risk-seeking preferences arise (Fig. 2.2). Risk-aversion arose above 

as the utility function was concave (equivalent to r<0 here). Risk-neutrality arises 

when the utility function is linear (equivalent to r=0 here), and therefore the certainty 

equivalent of any risky prospect is equal to its expected value. Risk-seeking arises 

where the utility function is convex (equivalent to r>0 here), such that the certainty 

equivalent of a risky prospect is greater than its expected value.  

2.4.1.3 Limitations of Expected Utility Theory 

The enormous influence of EUT since the 1940s is testament to its theoretical and 

empirical strengths. Theoretically EUT is logically internally consistent, and has 

normative properties such that it specifies what an agent should do (not just what she 

does do). Empirically, EUT captures many aspects of risk-taking behaviour in the 

laboratory, for example risk preferences with a variety of gambling tasks involving 

gain amounts (Harrison and Rustrom, 2008). 

However, EUT has limitations both theoretically and as a descriptive model of 

behaviour. One theoretical problem is that often only a limited portion of the 

consumer’s overall decision-problem is modelled, which can, for example, lead to 

portfolio effects (Kreps, 1990). A second problem concerns the validity of EUT 

models in complex settings such as choices over pension investments – EUT 

assumes unlimited rationality to understand their economic environment and the 

ability to perform massive calculations at no cost and instantaneously. The 

implausibility of unlimited rationality led Herbert Simon, for example, to propose the 

concept of bounded rationality (Simon, 1972).  
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The critical question, however, is how well EUT performs as a descriptive model of 

choice, even in very simple settings such as those we can implement in the lab. 

Unfortunately, EUT cannot account for a number of important behavioural 

regularities, three of which are described below. 

First is the Allais Paradox, described by Maurice Allais (Allais, 1953) and which 

played a part in determining his Nobel memorial award. It involves two choices as 

follows. 

Choice 1: Choose between two gambles. The first gives a 0.33 chance of 

£27,500, a 0.66 chance of £24,000, and a 0.01 chance of nothing. The 

second gives £24,000 for certain. 

Choice 2: Choose between two gambles. The first gives a 0.33 chance of 

£27,500 and a 0.67 chance of nothing. The second gives a 0.34 chance of 

£24,000 and a 0.66 chance of nothing. 

The modal response pattern is to take the sure thing in choice 1, and the first 

gamble in choice 2. This violates the substitution axiom, by which individuals should 

ignore any state of the world that results in the same outcome regardless of one’s 

choices (note that a 0.66 chance of winning £24,000 removed from both options in 

choice 1 to create choice 2). 

Second is the Ellsberg paradox, which is due to Daniel Ellsberg (Ellsberg, 

1961)(Ellsberg did not win a Nobel prize, but is famous for leaking the Pentagon 

Papers during the Vietnam War and is still an active political campaigner). It involves 

two choices as follows. 

An urn contains 300 coloured marbles; 100 are red, and 200 are some 

mixture of blue and green. We will select a marble from the urn at random. 

You will receive £1,000 if the marble selected is of a specified colour. 

Would you rather that colour be red or blue? 
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You will receive £1,000 if the marble selected is not of a specified colour. 

Would you rather blue or red?  

The modal response is to choose red in both cases. However, the red balls cannot 

be simultaneously more and less numerous than the blue balls! Ellsberg and others 

since have suggested a distinction between situations with risk (objective uncertainty) 

and situations with uncertainty (subjective uncertainty). This “ambiguity” relates to the 

different types of risk discussed above, and to the “unknown unknowns” of Donald 

Rumsfeld.  

The third example is that EUT cannot explain why people seem to make different 

choices when prospects involve gains than when they involve losses. These valence 

effects are the subject of the next subsection, as well as Chapters 4 and 5 of this 

thesis.  

2.4.2 Prospect Theory: introducing valence effects 

Prospect Theory does not seek to replace Rational Choice Theory, but instead 

aims to improve upon the Expected Utility Theory model of risky choice using more 

psychologically realistic assumptions. Indeed, Kahneman and Tversky begin their 

seminal 1979 paper proposing Prospect Theory by writing that “This paper presents 

a critique of expected utility theory as a descriptive model of decision making under 

risk, and develops an alternative model, called prospect theory”. In order to enhance 

the psychological plausibility of their assumptions, Kahneman and Tversky used 

subjects’ responses to a series of hypothetical gambles (see Tables 2.1 and 2.2 for 

examples). Prospect Theory has been highly influential, and indeed for this work 

Daniel Kahneman received a Nobel memorial prize in 2002. Central to PT is the idea 

that losses and gains are treated differently, or in other words that valence impacts 

on choice, an insight that is important to the experiments described in Chapters 4 

and 5. 



32 

 

Decision-making in Prospect Theory has two stages. First is an “editing phase”, 

during which prospects are modified, for example to remove common components 

shared by options. Importantly, during this editing phase prospects undergo “coding” 

in which a “reference point” is chosen against which all the amounts in the prospect 

is compared. During coding everything above the reference point is a “gain” and 

everything below the reference point is a “loss”. For example, consider a prospect in 

which on the toss of a coin an agent receives £10 for heads and £0 for tails. If the 

reference point is £5, then this prospect would be a gain of £5 or a loss of £5; whilst if 

the reference point were £6 then this would be a gain of £4 and a loss of £6. 

 

Figure 2.3 Prospect Theory utility function and probability weighting. Panel a) 

shows the Prospect Theory utility function, which is concave for gains (leading to risk-

aversion) and convex for losses (leading to risk seeking). Each outcome in a 

Prospect is assigned a utility. b) Prospect Theory employs a probability weighting 

function, with each objective probability, p, converted into a subjective probability, π. 

c) For comparison, the EUT utility function is concave throughout, and d) there is no 

probability weighting. Adapted from (Rangel et al., 2008)  
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2.4.2.1 Evaluation in Prospect Theory: valence and probability 

Following the editing phase is an “evaluation phase”, during which expected 

utilities are calculated for each prospect. The decision-maker then chooses the 

prospect with the highest expected utility. The evaluation of prospects in Prospect 

Theory involves three components, and next I describe these as originally specified 

in the Kahneman and Tversky’s 1979 paper proposing Prospect Theory.  

The first component is the “reflection effect”, which I examine experimentally in 

Chapters 4 and 5. This states that individuals are risk-averse with gains, but are risk-

seeking with losses. To illustrate this for gains we can consider two prospects: one 

being a risky prospect of a gain of £10 or £0 on the toss of a coin (i.e. probability of 

each outcome 0.5), and the other prospect being £5 for certain (i.e. the same as the 

expected value of the gamble). As this decision involves gains and individuals are 

risk-averse for gains, then they would choose the sure option of £5. However, now 

consider two prospects with losses: one prospect being lose £10 or lose £0 on the 

toss of a coin; and the other prospect being a sure loss of £5. Individuals are risk-

seeking with losses and would therefore prefer the gamble to the sure option. The 

reflection effect is modelled simply by having a utility function that is concave for 

gains (i.e. leading to risk-aversion) and convex for losses (i.e. risk-seeking) (Fig. 2.3).  

The second component is “loss aversion”. The idea here is that losses have a 

greater impact on choice than gains. Put another way, “losses loom larger than 

gains”, so that a loss of £5 has more impact on choice than a gain of £5. Loss 

aversion can be illustrated by considering “gain-loss mixed gambles”, which are 

prospects involving both gains and losses. The is illustrated by an anecdote from the 

influential economist Samuelson (1963), who noted that one of his colleagues prefers 

the status quo over a hypothetical gamble that offers an even chance to win $200 or 

lose $100. Follow up studies suggest that preferences of this type are rather common 

(e.g., Redelmeier & Tversky, 1992; Tom et al., 2007; Wedell & Bockenholt, 1994). 
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Loss aversion is simply modelled by rendering the utility function steeper for losses 

than for gains.  

The third component is probability weighting. From the above, we now have a 

utility function that incorporates the “reflection effect” (i.e. it is concave for gains and 

convex for losses) and loss aversion (i.e. it is steeper for losses). Just as we did with 

EUT, we can therefore determine the utility of each potential outcome in a prospect – 

and then we must weight each outcome by the probability with which that outcome 

will occur. However, in Prospect Theory the probabilities are subjective, such that 

individuals overweight small probabilities and underweight large probabilities. This 

probability weighting can be achieved by having a probability weighting function such 

that each probability (e.g. p1, p2) is converted into a weight (e.g. π1, π2) – and it is 

these subjective probabilities by which the outcomes are multiplied. The precise form 

of probability weighting was altered by Kahneman and Tversky in their modification of 

Prospect Theory, called Cumulative Prospect Theory (Tversky and Kahneman, 

1992). 

2.4.2.2 Limitations of Prospect Theory 

Prospect Theory explains choices that cannot be predicted by EUT, particularly 

relating to valence effects (i.e. concerning losses and gains). However, one major 

theoretical issue is that although the specification of a reference point is crucial, it is 

very difficult to know which reference point to choose in a given circumstance. For 

example, Kahneman and Tversky write in their 1979 paper that: “The reference point 

usually corresponds to the current asset position, in which case gains and losses 

coincide with the actual amounts that are received or paid”. However, others dispute 

this and a wide variety of methods for determining the reference point have been 

proposed, for example that it should be determined by rational expectations held in 

the recent past about outcomes (Kőszegi and Rabin, 2006). Clearly, the choice of 

reference point fundamentally alters the model. 
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Second are problems concerning the “reflection effect”, which is a focus of the 

experiments in Chapters 4 and 5 of this thesis. This tied relationship between risk 

and valence has been supported by a series of classic laboratory experiments 

(Kahneman and Tversky, 1979; Camerer, 1989; Battalio et al., 1990; Tversky and 

Kahneman, 1992). It has been used to explain important economic phenomena, such 

as why stock market traders hold losing stocks too long (risk-seeking) and sell 

winners too early (risk-aversion) (Camerer, 1998), and has been applied across 

diverse disciplines from international relations to political science (Levy, 2003). 

However, more recent findings have questioned this tied relationship. For example, 

risk-aversion for gains but risk-neutrality (not the predicted risk-seeking) with losses 

has been reported (Laury and Holt, 2005).  

Finally, although loss aversion has been supported by many experiments, such as 

those involving mixed gambles cited above, recent work has suggested loss aversion 

can be attenuated by changing the format of gambles (Ert and Erev, 2008; discussed 

further in Chapters 4 and 5).  

2.4.3 “Summary statistic” models: finance and foraging 

In addition to EUT and Prospect Theory, we can also consider an alternative 

approach to measuring risk, which decomposes outcome distributions into “summary 

statistics”. Emerging shortly after EUT (Markowitz, 1952), these theories have been 

hugely influential in financial economics. Specifically, a distribution of outcomes can 

be described in terms of: the mean (i.e. expected value); variance (the dispersion of 

outcomes); skewness (asymmetry in outcomes); and further moments such as 

kurtosis. The idea here is that risk is metricated by variance (and later statistics), and 

that this can then be traded-off against expected value. Therefore, risk-preference 

can be directly generated by preference for each component.  

Empirically, that humans respond to summary statistics such as variance has 

been shown in psychological experiments (Coombs and Pruitt, 1960; Coombs and 
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Huang, 1970). These summary statistic ideas have also been influential in ecological 

theory (Stephens, 1981). Further, these ideas have been borne out in animal 

behaviour experiments that have manipulated the trade-off between the mean and 

the variance during foraging (Real L, Ott J, Silverfine 1982; Kacelnik A, Bateson, 

1996). It might provide a useful heuristic in natural stochastic environments, where it 

is difficult to encode each possible outcome or state of the world rapidly and with 

fidelity. Tracking summary statistics is also helpful for learning, as it is 

computationally much easier to update these estimates rather than each outcome 

and its associated probability separately (d’ Acremont and Bossaerts, 2008). 

However, there are two important limitations to this approach. Firstly, valence 

effects are not included in these models. Second, observations of behaviour alone 

cannot distinguish Expected Utility from summary statistic models since both theories 

make identical choice predictions, as any utility function can be approximated by 

preferences for summary statistics using a polynomial expansion (Scott and Horvath, 

1980). 

 

Figure 2.4 “Summary statistic” model with mean-variance trade-off. This plot 

illustrates two different prospects: stocks in blue, bonds in red. The stocks have a 

higher mean payoff (EV), but are more risky (higher variance). 
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2.4.4 Biologically-based approaches to risk and valence 

Considerable biological work has examined how risk and valence influence 

choice, and here I review the evidence regarding each in turn. 

2.4.4.1 Risk sensitive behaviour in non-human animals 

Risk is ubiquitous in natural environments, and risk-sensitivity reflects a 

phylogenetically conserved adaptation, where maintenance of adequate nutrition and 

energy stores in the face of this environmental variability is critical for survival and 

reproduction (Real et al., 1982; Barnard and Brown, 1985; Wunderle et al., 1987; 

Croy and Hughes, 1991; Kacelnik and Bateson, 1996). Consistent with the idea of 

marginally decreasing utility (captured in EUT by a concave utility function), typically 

non-human animals also tend to exhibit risk aversion, which has for example been 

reported for animals as diverse as fish, birds and bumblebees (Stephens and Krebs, 

1987; Kacelnik and Bateson, 1996). 

2.4.4.2 Risk-related brain regions 

Early neuroimaging studies of risky decision-making in humans identified a wide 

variety of cortical and subcortical structures associated with risk (Critchley et al., 

2001; Paulus et al., 2001, 2003; Huettel et al., 2005; Leland and Paulus, 2005). 

These areas have been summarised in a recent meta-analysis of human 

neuroimaging studies of risk, which reported risk involving bilateral anterior insula, 

thalamus, dmPFC, right dlPFC, right parietal cortex, left precentral gyrus and 

occipital cortex (Mohr et al., 2010). 

To begin parsing the contributions of these regions to the process of choice, this 

meta-analysis (Mohr et al., 2010) also sought to distinguish risk-related activity in two 

situations: “decision risk” where processing occurred before or during choice, such 

that it is likely to be used to guide choice; and “anticipation risk” where processing 

occurred after or without a choice, such that it is not used to guide choice. Both types 
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of risk activated bilateral anterior insula, dmPFC and thalamus. Contrasting these 

types of risk revealed greater activity for anticipation risk in left anterior insula and left 

superior temporal gyrus; whilst greater activity for decision risk was seen in right 

anterior insula, dmPFC, dlPFC, parietal cortex and striatum.  

Looking more specifically at parietal cortex, this region has shown enhanced 

activity during risky decision-making in both single unit and fMRI data (Platt and 

Glimcher, 1999; Huettel et al., 2005). Posterior parietal cortex has been implicated in 

executive control processes required for evaluation of uncertain choice options 

(Paulus et al., 2001; Huettel et al., 2005). Furthermore, in a recent study posterior 

parietal cortex activity scaled with the degree of risk measured as variance and 

reflected the choice of risky relative to sure options (Symmonds et al., 2011). This 

same region has also been associated with risky prospects involving “unknown 

unknowns” or ambiguity (Bach et al., 2009). The importance of parietal cortex in risky 

choice is perhaps not unexpected, given that it is known to express an interaction 

between number and space (Hubbard et al., 2005), in keeping with “summary 

statistic” related ideas in which risk may reflect the spread (variance) of an outcome 

distribution. 

Anterior insula was one of the first brain regions to be specifically associated with 

risk (Critchley et al., 2001), and seems particularly related to risky choice (Platt and 

Huettel, 2008; Mohr et al., 2010) and subjective risk preference (Singer et al., 2010). 

Increased insula activity is often reported when individuals choose riskier over safer 

outcomes, for example during a “double-or-nothing” task, in which furthermore the 

magnitude of insula activation was greatest in individuals with higher neuroticism 

measures (Paulus et al., 2003). In a task involving choices between safer and riskier 

options, relative increases in insula activity before a decision preceded more risk-

averse choices (Kuhnen and Knutson, 2005). A number of other studies have also 

implicated anterior insula in the promotion or inhibition of gamble selection based on 
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an individual’s risk-preference (Christopoulos et al., 2009; Engelmann and Tamir, 

2009; Xue et al., 2010). Insula activity has been shown not only to scale with risk 

when it has been manipulated by altering win probability (Preuschoff et al., 2006), but 

also more recently with prediction errors for risk (Preuschoff et al., 2008). Taken 

together with the idea that risk involves an important affective component (Schonberg 

et al., 2011), these various findings for risk in insula cortex are commensurate with 

suggestions that insula plays a more general role in arousal or subjective feeling 

states (Damasio et al., 1996; Craig, 2002, 2009). 

Amongst subcortical structures, the dopaminergic system and its targets such as 

striatum have been implicated in risk processing. Dopaminergic midbrain neurons 

respond with a tonic increase in activity after cue presentation that reflects reward 

uncertainty, suggesting dopamine neurons may carry information about reward 

uncertainty (Fiorillo et al., 2003). Nucleus accumbens lesions in rats enhance risk 

aversion (Cardinal and Howes, 2005). Further, it is well known that Parkinson’s 

disease patients treated with dopamine agonists may develop compulsive gambling 

(Driver-Dunckley et al., 2003). 

2.4.4.3 Risk: neural evidence for “summary statistic” models 

We can also use this neural data to begin distinguishing between two classes of 

models, namely: EUT/Prospect Theory models in which each value is computed and 

then weighted by its probability; versus “summary statistic” models, in which the 

summary statistics of a prospect are first computed and then aggregated into a value 

signal (Preuschoff and Bossaerts, 2007; Bossaerts, 2010). Unlike in summary 

statistic models, under EUT/Prospect Theory models a separate processing pathway 

for risk is superfluous – and thus neural data can help adjudicate between these 

models by asking if the brain encodes the summary statistics of a decision.  

In agreement with the summary statistic view, fMRI studies have shown expected 

value related signals in striatum (Preuschoff et al., 2006; Tobler et al., 2007),and the 
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medial OFC (Rolls et al., 2008). In non-human primates, electrophysiological work 

has revealed signals corresponding to expected value in the midbrain dopamine 

system (Tobler et al., 2005), and lateral intraparietal cortex (Platt and Glimcher, 

1999). Human fMRI has also revealed risk related signals (measured by variance) in 

striatum (Dreher et al., 2006; Preuschoff et al., 2006), insula (Dreher et al., 2006), 

lateral OFC (Tobler et al., 2007) and parietal cortex (Symmonds et al., 2011). In 

addition to variance, recent fMRI studies have also correlated neural activity with the 

skewness of outcome distributions in prefrontal areas (Symmonds et al., 2010, 2011; 

Wu et al., 2011).  

2.4.4.4 Valence: neural bases of reward and punishment 

Just as risk is an ubiquitous feature of the environment, so too is the need deal 

with both rewards and punishments, or in economic terms gains and losses. A crucial 

question here is: are rewards and punishments treated similarly by organisms, or are 

they treated differently? There are clearly commonalities in the systems neurally 

representing positive and negative values, for example in OFC and striatum 

(O’Doherty et al., 2004). However, considerable biological evidence suggests that 

aversion does not appear to be simply the mirror image of reward (Dayan and 

Seymour, 2009).  

There are theoretical reasons for such reward/punishment asymmetries, for 

example arising from the different sampling biases introduced when learning from 

punishments relative to rewards (Dayan and Seymour, 2008). Empirical evidence 

also suggests that different systems subtend valuation of appetitive and aversive 

stimuli, as well as responses towards each. When studying aversion from physical 

pain, it is known that processing is subserved by specialised neural pathways (Craig, 

2002) and a set of characteristic, involuntary responses. The basic representation 

and learning of aversive values implicates brainstem and midbrain structures, such 

as peri-acqueductal gray; whilst cortical structures such as anterior insula are 
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associated with more complex representations (Seymour et al., 2007) and even 

subjective feeling states (Craig 2002, 2009). In terms of ascending neurotransmitter 

systems, dopamine is more associated with reward (Schultz et al., 1997, O’Doherty, 

2004), whilst the identity and nature of the aversive opponent is only poorly 

understood despite suggestions that serotonin may play such a role (Dayan and 

Huys, 2009). Whilst risk tasks tend to use financial losses rather than pain, money is 

a conditioned reinforcer that through extensive experiential “training” is associated 

with reward – and losing money is therefore akin to removing a conditioned 

reinforcer, which is known to be aversive (Dayan and Seymour, 2009). Further, 

recent evidence suggests that loss aversion with tokens may be present in non-

human primates (Chen et al., 2006). 

Finally, a mechanistic perspective of particular relevance to the experiments in 

Chapters 4 and 5, there also seems to be a striking asymmetry in the actions 

triggered by stimuli of differing valences (Kim and Jung, 2006; Dayan and Seymour, 

2008). Action and valence appear tied such that animals are disposed to approach 

appetitive stimuli and avoid aversive stimuli – associations that can be thought of in 

Pavlovian terms (discussed above). Indeed, new work by Guitart-Masip et al (2011) 

extends this to the monetary domain and shows that whilst the pairings of going to 

win and of not going to avoid punishment are naturally associated, the opposite 

pairings are much harder to learn for humans to learn. 

2.4.4.5 Valence: neural responses to monetary gains and losses 

That processing of both gains and losses at least partly involves a network of 

common neural regions, is suggested by findings with mixed gambles (Tom et al., 

2007). Mixed gambles are stimuli containing possible losses along with gains, and 

behaviourally provide evidence for loss aversion (Redelmeier and Tversky, 1992; 

Tom et al., 2007). With mixed gambles, activity both increased with potential gains 

and decreased with potential losses in striatum, midbrain, ventral prefrontal cortex 
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and anterior cingulate cortex – and furthermore in keeping with the idea of loss 

aversion these regions were more sensitive to the magnitude of losses than that of 

gains (Tom et al., 2007).  

In contrast, a number of studies have found asymmetries between regions 

involved in the processing of gains and losses. For example, a recent meta-analysis 

of risk studies compared studies only involving gains and those involving losses 

(Mohr et al., 2010). Regions common to both gains and losses included in right 

anterior insula, dmPFC and thalamus. Asymmetries were seen with greater activity 

for losses than gains in left anterior insula, left STG, left preecnetral gyrus; and 

greater activity for gains than losses in dmPFC, dlPFC, right parietal cortex, 

thalamus, and occipital cortex.  

With respect to gain/loss asymmetries, two regions that have been particularly 

associated with loss processing are anterior insula and amygdala. Anterior insula is 

involved in the representation of aversive stimuli (Calder et al., 2001; Seymour et al., 

2007), and particularly in representing more complex aspects of aversive stimuli than 

might be represented in amygdala (Seymour et al., 2007). Experiments using framing 

effects have suggested a role for these regions (De Martino et al., 2006; Roiser et al., 

2009; Guitart-Masip et al., 2010). Framing refers to the use of different descriptions 

of objectively identical outcomes such that individuals are more likely to perceive 

those outcomes as either gains or losses, depending on the frame (Tversky and 

Kahneman, 1981). Behaviourally, framing a sure option as a loss biased individuals 

to avoid that sure option and choose a gamble instead (De Martino et al., 2006), a 

bias that can also be elicited by aversive conditioned stimuli presented incidentally 

with the sure option (Guitart-Masip et al., 2010). Neurally, framing effects were 

accompanied by activity in amygdala (De Martino et al., 2006; Guitart-Masip et al., 

2010) and anterior insula (Guitart-Masip et al., 2010). In addition to framing, further 

evidence suggests an asymmetric role for the amygdala: for example, humans with 
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amygdala damage made poor decisions if the decisions involved potential gains, but 

not if they involved losses (Weller et al., 2007). It is perhaps puzzling that the study 

with mixed gambles discussed above (Tom et al., 2007) did not report anterior insula 

or amygdala activity even with a liberal threshold, and our data helping to reconcile 

these findings is discussed in Chapter 4. 

2.5 Social choice 

2.5.1 Overview 

Having reviewed individual choices in the preceding section, I now turn to social 

choices in which decisions involve interactions with others. When von Neumann and 

Morgenstern (1944) proposed RCT and EUT they were in fact concerned primarily 

with social choice, as reflected by the title of the book introducing these concepts: the 

Theory of Games and Economic Behaviour. This RCT approach to social choice is 

called Game Theory, which has been hugely influential across diverse disciplines. It 

is important to distinguish games from Game Theory. Games are a taxonomy of 

strategic situations, such as the Prisoners’ Dilemma Game described below; whilst 

analytical Game Theory is a mathematical derivation of what players with different 

cognitive capabilities are likely to do in games (Camerer, 2003). 

In this thesis, I examine what people actually do in games, in Chapters 6, 7 and 8. 

Specifically, I focus here on two paradigm examples of human social motivations: 

fairness and cooperation. Fairness relates to how intentional agents should divide 

resources amongst potentially entitled recipients (Kahneman et al., 1986), and has 

long been of interest to sociologists (Homans, 1961), economists (Akerlof, 1979; 

Kahneman et al., 1986) and more recently neuroscientists (Sanfey et al., 2003). We 

define cooperation as the voluntary acting together of two or more individuals that 

brings about, or potentially brings about, ends that benefit one, both, or all, which are 
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over and above the benefits arising from individualistic behaviour (Dugatkin, 1997; 

Brosnan and de Waal, 2002). 

This section on social choice will follow the same pattern as that on individual 

choice above: first I will describe the RCT treatment of social choice; second the 

alternatives from behavioural economics (here involving the concept of “other-

regarding preferences”); and third I will describe biologically-based approaches. 

2.5.2 Rational Choice Theory in social choice: Game Theory 

Naturally given its origins, Game Theory employs the same axioms described 

above. Players have a set of available actions, they possess preferences (that can 

be described by a utility function) and players choose the action that is at least as 

good as any other given their preferences. 

Before beginning the following discussion, I raise one caveat. It may seem from 

the following discussion of cooperation and fairness that RCT has little descriptive 

power, but this is not the case in all games (e.g. the matching pennies game where 

individuals must keep their opponents guessing) (Camerer, 2003). Furthermore, even 

where RCT does not well predict behaviour it provides a useful starting point, 

providing a conceptual clarity and mathematically rigorous framework in which to 

consider social choice.  

2.5.2.1 Cooperation: the Prisoners’ Dilemma Game 

The classic game exploring the tension between cooperation and self-interest is 

the Prisoners’ Dilemma Game (Flood and Drescher, 1950). A typical description is as 

follows (see Fig. 2.5 for a payoff matrix). Two prisoners are brought in for questioning 

by the KGB and placed in separate cells. If both stay silent (i.e. cooperate), they both 

receive one year in prison. If they both accuse the other (i.e. defect) they both get 

four years in prison. If one stays silent and the other defects, the co-operator gets 10 

years in prison and the defector gets off scot free. 
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Game Theory makes a clear prediction: the only rational thing for both players to 

do is defect. This because whatever the other player does, defection is superior. In 

Game Theoretic terms, mutual defection is the only Nash equilibrium. However, if the 

two players could cooperate, then they would receive a mutually more beneficial 

outcome (known as a Pareto optimal outcome).  

What humans actually choose has been shown in literally thousands of 

experiments: subjects cooperate in one-shot PDGs about half the time (Kagel and 

Roth, 1995; Camerer, 2003). Whilst this goes against Game Theoretic prediction, we 

nevertheless observe that individuals respond rationally to incentives at least in part: 

for example lowering the temptation (T) or raising the sucker (S) payoffs increases 

cooperation; and when many rounds are played with the same partner, then 

cooperation tends to unravel towards the end as predicted in Game Theory (Kagel 

and Roth, 1995; Camerer, 2003). 

 Cooperate Defect 

Cooperate H, H S, T 

Defect T, S L, L 

Note: assumes T > H > L > S 

Figure 2.5 Payoff matrix describing the Prisoners’ Dilemma Game. The row 

player chooses either cooperate or defect, and the column player does likewise. The 

payoffs in each cell refer are written as: row, column. 

 

2.5.2.2 Fairness: the Ultimatum Game 

We can also use a Game Theoretic approach to describe and analyse a simple 

game that assays fairness. Again there is tension between self-interest and a social 

motivation, fairness; and again Game Theory makes clear predictions. In the 

Ultimatum Game (UG) one player (the Proposer) is given an endowment (e.g. £10) 

and proposes a division (e.g. keep £6/offer £4) to a second player (the Responder), 

who can accept (both get the proposed split) or reject (both get nothing) the offer 
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(Güth et al., 1982). The Game Theoretic prediction is that if individuals are 

maximising only their own payoffs, then Responders should accept any amount 

however small (1 penny is better than nothing) and, knowing this, Proposers should 

offer as little as possible.  

What do humans actually do in these situations? Proposers offer an average of 

40% of the money (many offer half) and Responders reject small offers of 20% or so 

half the time (Camerer, 2003). These behaviours have been shown many times and 

across many cultures (Heinrich et al., 2004). Furthermore, a variant of the UG, called 

the Dictator Game, enables us to ask if Proposers in the UG make such high offers 

because they are “fair-minded” or because of fear of rejection. Dictator Games are 

UGs with the responder’s ability to reject the offer removed – and here too Proposers 

do not offer zero, suggesting that behaviour is not only due to fear of rejections. 

However, again as with Prisoners’ Dilemma Game above behaviour is not completely 

unpredictable, for example with Responders reacting to incentives such that they are 

more likely to accept higher offer proportions. 

2.5.3 Other-regarding preferences and behavioural game theory 

The behaviour described above raises a problem for Game Theory – why should 

individuals cooperate or care about fairness in an anonymous game where they will 

not see the other person again? Just as the assumptions of EUT were modified to 

create Prospect Theory, one approach to explaining behavioural regularities 

inexplicable using standard Game Theory is to improve its assumptions. This 

approach is part of behavioural economics, and it has been said that in contrast to 

analytic Game Theory described above, “Behavioural game theory is about what 

players actually do. It expands analytical game theory by adding emotion, mistakes, 

limited foresight, doubts about how smart others are, and learning to analytical game 

theory. Behavioural game theory is one branch of behavioural economics, an 
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approach to economics which uses psychological regularity to suggest ways to 

weaken rationality assumptions and extend theory.” (Camerer, 2003). 

One way to improve the assumptions of Game Theory is to invoke the concept of 

“other-regarding preferences” (Fehr and Camerer, 2007). For example, in a game 

between me and you, my utility function (i.e. my preferences) would include not only 

what I personally receive, but also by what you receive (weighted in some fashion). 

This can be illustrated by considering the utility function of a Responder in the 

Ultimatum Game. Various utility functions with other regarding preferences have 

been proposed (Messick and McClintock, 1968; Fehr and Schmidt, 1999; Bolton and 

Ockenfels, 2000; Charness and Rabin, 2002) that make similar predictions in the UG, 

and therefore we can use the following simple formulation:  

U = xself – α*(xother – xself),   α ≥ 0  Eq. 2.7 

where xself is the amount the Proposer offered in the trial and xother is the amount 

the Proposer keeps, α is an ‘envy’ parameter (reflecting a tradeoff between inequality 

and self interest). In this model, there is no constant term as we assume a utility of 0 

represents indifference between acceptance and rejection of an offer (i.e. rejection of 

an offer has a utility of 0). For illustration, in a single trial as Responder, the utility of 

the offer is calculated by combining the self-regarding component (amount to self) 

and the other-regarding component (the weighted impact of inequality). This utility is 

then compared to the utility of rejecting (zero), with the offer being accepted if greater 

and rejected if lesser. Thus, if I care a lot about unfairness (i.e. have a high α) then I 

will reject an inequitable offer in this game. 

An advantage of “other-regarding preference” models is that they well capture the 

tension between social motivations and self-interest. They also provide quantified 

metrics on a trial-by-trial basis that can be used in neuroimaging analyses that use a 

model-based approach as implemented in Chapter 6. However, without the addition 

of enormous complexity such models cannot explain critical features of social 
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behaviour, for example how the trade-off between social and self-interested 

motivations is dynamically modulated between different contexts. Such dynamic 

modulation in response to environmental contingencies is critical for success of 

social animals such as humans, and is the subject of the experiments in Chapters 6, 

7 and 8.  

2.5.4 Biological approaches 

With respect to biological approaches to social choice, we first consider fairness 

and then cooperation. 

2.5.4.1 Fairness: biology and neural correlates 

As described above, fairness relates to how intentional agents should divide 

resources amongst potentially entitled recipients (Kahneman et al., 1986). In the UG 

with money humans typically reject low, “unfair”, offers even at cost to themselves 

(Camerer, 2003). How might such a motivation be implemented neurally? Here, we 

assume choice is the outcome of processes whose neural implementation may 

involve social computations such as prediction errors (Behrens et al., 2008; Hampton 

et al., 2008). Responders in the classic UG are reported to show greater activity in 

anterior insula and dorsolateral prefrontal cortex (DLPFC) for lower compared to 

higher offers, a finding interpreted as reflecting fairness and cognitive-control 

respectively (Sanfey et al., 2003). Alternative approaches have endeavoured to 

isolate components of fairness in the UG. One attempt to unconfound fairness from 

offer amount treated it as synonymous with offered endowment proportion, 

implicating lateral PFC in cognitive control (Tabibnia et al., 2008). An alternative 

strategy manipulated the stimuli used, where by changing Proposer intentionality 

anterior insula cortex was implicated in fairness responses (Güroğlu et al., 2010). 

Outside the UG framework others have investigated reward comparison (Fliessbach 

et al., 2007) and fairness in third-party decisions (Hsu et al., 2008), with the latter 
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demonstrating that posterior (but not anterior) insula tracked an objective measure of 

fairness, namely inequality.  

Specifically with respect to insula involvement in fairness, the precise role of 

different regions within this extensive (over 5cm long) and cytoarchitectonically 

diverse cortical region (Flynn, 1999; Varnavas and Grand, 1999) is relatively poorly 

understood. Hsu and colleagues (2008) asked subjects to choose between 

distributions of meals for African children, varying in inequality and amount, which 

resulted in posterior insula activity negatively correlating with inequality. Anterior 

insula activity has been reported as higher for rejected versus accepted offers in the 

UG (Sanfey et al, 2003), a result replicated in a task-matched study (Halko et al., 

2009), although the same contrast in other UG studies shows little activity in this 

region (Guroglu et al. 2010; Tabibnia et al 2008; this study). Indeed, recent work 

shows anterior insula activity depends on Proposer intentionality in the UG (Guroglu 

et al., 2010). Finally, anterior insula activity in some UG studies may reflect 

processing of disgust (Sanfey et al., 2003) or aversion to norm-violation (Guroglu et 

al., 2010), consistent with its role in introspective awareness of emotion (Craig 2009).  

With respect to the role of dlPFC in the UG, previous work has suggested a role in 

cognitive control (Sanfey et al. 2003; Knoch et al. 2006). Such ideas would be in 

keeping with broader evidence concerning dlPFC in executive function (Miller and 

Cohen, 2001). However, previous findings in the UG have been difficult to reconcile, 

as whilst bilateral DLPFC activity was seen with fMRI for lower, compared to higher, 

offer proportions (Sanfey et al. 2003), rTMS to right (but not left) DLPFC increased 

acceptance of lower proportion offers (Knoch et al. 2006). We revisit this debate 

about the role of dlPFC in Chapter 6, in light of our neural data. 

2.5.4.2 Cooperation: hormonal modulation 

There is currently much interest in the biological factors that modulate the trade-off 

between cooperative and more self-motivated behaviour, but in line with influential 
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theory (Gintis et al., 2005) the focus has been on factors increasing a propensity to 

cooperate. Cooperative behaviours are thought to co-opt neural reward mechanisms 

(Rilling et al., 2002; Phan et al., 2010) and are causally promoted by the hormone 

oxytocin (De Dreu et al., 2010). Oxytocin has also been shown to increase measures 

of trust in an economic Trust Game (Kosfeld et al., 2005). 

However, it is less well understood whether opponent endocrine influences exist 

to promote more self-orientated behaviour and reduce cooperation. One potential 

endocrine opponent modulator is the androgen hormone testosterone. This gonadal 

hormone is secreted in men and women and modulates a range of behavioural trade-

offs, for example the trade-off between parenting and courtship in birds (Wingfield et 

al., 1990; Ketterson and Nolan, 1994), rodents (Clark and Galef, 1999) and rural 

Senegalese men (Alvergne et al., 2009). Socially, higher testosterone correlates with 

antisocial behaviour in female prisoners (Dabbs and Hargrove, 1997), while a role in 

fairness-related behaviours is suggested by findings from a bargaining game 

(Burnham, 2007), although in this bargaining paradigm administration of testosterone 

has provided mixed results (Zethraeus et al., 2009; Eisenegger et al., 2010). 

In addition to these social effects of testosterone, it has also been implicated in a 

range of non-social domains. For example, endogenous testosterone in men and 

women has been correlated with attention (Fontani et al., 2004) and risk-taking 

(Sapienza et al., 2009), as well as increasing male financial traders’ profit in a risky 

environment (Coates and Herbert, 2008). These known associations between 

testosterone and reward-related processing (Coates and Herbert, 2008; Sapienza et 

al., 2009) render it difficult to assess any potential social effects in classic tasks such 

as the Prisoners’ Dilemma Game discussed above that use monetary rewards. We 

attempt to address this difficulty with our task in Chapter 8.  
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Chapter 3. Methods 

3.1 Functional magnetic resonance imaging 

Functional magnetic resonance imaging (fMRI) is a non-invasive method of brain 

imaging. fMRI measures local changes in cerebral blood flow that are well known to 

be tightly coupled to underlying neural activity, although the precise nature of this 

neurovascular coupling is still an active field of research (Logothetis, 2008). The main 

advantages of fMRI are safety and ability to image the whole brain with high spatial 

resolution, whilst its main limitation is a relatively poor temporal resolution, in the 

order of seconds. 

fMRI can be used to investigate two fundamental principles of functional 

organisation in the brain: functional integration and functional specialisation (Friston, 

2004). Functional specialisation suggests that a cortical area is specialised for some 

aspects of perceptual or motor processing, and that this specialisation is anatomically 

segregated within the cortex. A single function may then involve many specialised 

areas that are mediated by functional integration between them. In this thesis, fMRI is 

used to ask questions concerning functional specialisation. 

In this chapter, first I will describe the physical principles underlying fMRI; second, 

the relationship between neural activity and fMRI images; third the pre-processing 

steps necessary to prepare fMRI data for statistical analysis; and finally the statistical 

analysis enabling inference about neural activity. 

3.1.1 Principles of fMRI 

3.1.1.1 MR signal generation 

Under normal conditions, thermal energy causes the single proton in a hydrogen 

nucleus to spin about itself (Fig. 3.1) (Jezzard et al., 2003; Huettel et al., 2008). This 

spin has two effects. First, as the proton carries a positive charge its spin generates 
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an electrical current that induces a torque when placed in a magnetic field, called the 

magnetic moment. Second, because the proton has an odd-numbered atomic mass, 

its spin also results in an angular momentum. If a nucleus has both a magnetic 

momentum and angular momentum it is said to have the nuclear magnetic 

resonance (NMR) property, and it is useful for MRI. Such nuclei can be referred to as 

spins. 

In the absence of a strong magnetic field, the spins of the hydrogen protons are 

orientated randomly and tend to cancel each other out. However, when placed within 

an external magnetic field protons change their orientation, initiating a gyroscopic 

motion known as precession. Protons precess about an axis determined by the 

magnetic field. Precessing protons can be in two states: parallel to the magnetic field, 

in which they have a lower energy level; and anti-parallel, in which they have a higher 

energy level. The parallel, low-energy state is slightly more stable so there will be 

more protons in the parallel than anti-parallel state, with the relative proportion of the 

two states dependent on the temperature and the strength of the magnetic field. In 

this thesis, all fMRI experiments were conducted in scanners using a 3 Tesla (T) 

static magnetic field.  

 

Figure 3.1 Magnetic spin. Precessing hydrogen nuclei can be in either a parallel 

(low-energy) or anti-parallel (high-energy) states relative to the static magnetic field 

(B0).  

 



53 

 

When a spin in the high energy state falls into the low energy state, it emits a 

photon with energy equal to the energy difference between the two states. 

Conversely, a spin in the low energy state can jump to the high energy state by 

absorbing a photon with energy matching the energy difference between the two 

states. For a given atomic nucleus and magnetic field strength, we can calculate the 

frequency of the electromagnetic radiation needed to make spins change from one 

state to another, which is known as the Larmor frequency. These properties are used 

in MRI. Within MRI scanners, radiofrequency (RF) coils bombard spins in the 

magnetic field with photons, which are absorbed by some protons – and these are 

subsequently released to re-establish the equilibrium proportions of the energy 

states. This decaying signal can be detected by a receiver RF coil, and the signal 

depends on the molecular environment of the spins. By analysing this time varying 

signal we can learn the properties of the spins and their surrounding environment.  

The process by which an MR signal, created by an excitation pulse, decays over 

time is known as spin relaxation. This generally occurs within a few seconds. Two 

primary mechanisms contribute here, namely longitudinal relaxation and transverse 

relaxation. For a given substance (e.g. water or fat) in a magnetic field of given 

strength, the rates of longitudinal and transverse relaxation are given as time 

constants. When the excitation pulse finishes, protons in the high energy (anti-

parallel) state go back to their low energy (parallel) state: this is known as 

longitudinal relaxation, and the time constant associated with the longitudinal 

relaxation is called T1. The excitation pulse also causes coherence between spins 

precessing around the main field vector, as they begin their precession within the 

transverse plane at the same starting point. Over time, the coherence between the 

spins is lost and they become out of phase: this is known as transverse relaxation 

and the gradual loss of this coherence is characterised by a time constant T2. In 

addition to the T2 decay, which is caused by intrinsic spin-spin interactions, field 
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inhomogeneities can also lead to a loss of coherence – and the combined effects of 

both causes lead to signal loss known as T2* decay, which is characterised by the 

time constant T2*. 

3.1.1.2 MR image formation 

We wish to acquire a three dimensional image that depicts the spatial distribution 

of some property of the spins, for example the T1, T2 or T2* relaxation times of the 

tissues in which they reside. We are able to form such an image using another field 

type within the MRI scanner: a magnetic gradient. The precession frequency of a 

spin within a magnetic field (i.e. the Larmor frequency) is determined by the magnetic 

field strength, which determines both the frequency of electromagnetic radiation 

needed during excitation to make spins change to a high energy state, and the 

frequency emitted by spins when they return to the low-energy state. Application of a 

magnetic field that varies linearly across space will cause spins at different locations 

to precess at different frequencies. 

To generate our three dimensional image we apply three magnetic fields arranged 

orthogonally along the following axes: the z axis (usually superior-inferior with 

respect to brain anatomy; this is known as the “slice select” gradient); the x axis (left-

right anatomically; known as the “frequency-encoding” or “readout” gradient); and the 

y axis (posterior-anterior anatomically; known as the “phase-encoding” gradient). 

These gradients can be stepped, enabling the partition of the image into three 

dimensional volume elements (voxels), for example 3x3x3mm in the functional data 

reported in this thesis. The size of the voxels determines the spatial resolution that 

can be achieved, along with anatomical constraints (discussed below). 

The signal acquisition process is accomplished in two steps: first a slice is 

selected within the total imaging volume; and second a two dimensional encoding 

scheme is used within that slice to resolve the spatial distribution of the spin 

magnetisations. To achieve slice selection we introduce a static gradient along the 
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slice selection axis (i.e. the z axis), such that we can exclusively tune only those 

spins in the slice to match the frequency of the excitation pulse. Once the spins are 

excited within the desired slice, they can be spatially encoded so that the MR signal 

from different parts of the slice can be resolved. In a typical anatomical imaging 

sequence this is achieved one line at a time within the slice, with each line following 

one of a succession of individual excitation pulses. Specifically, initially to excite the 

desired slice the RF and “slice select” (z-axis) field are used; then before the data 

acquisition period, the y-axis “phase-encoding” gradient is switched on to move the 

effective location of data acquisition along the y-axis (i.e. to a new line within the 

slice); and finally, data acquisition for that line begins, during which the x-axis 

“readout gradient” is switched on. Following acquisition of the slice data, a two-

dimensional inverse Fourier transform can convert the raw data into image space.  

3.1.1.3 MR scan types 

It is possible to optimise the scanning parameters to acquire different types of 

data. Two such parameters govern the time at which MR images are collected: first 

the repetition time (TR), which is the time interval between successive excitation 

pulses; and second is the echo time (TE), which is the time interval between 

excitation and data acquisition. 

An example of such optimisation in this thesis is the collection of T1-weighted 

structural images, for which we want to optimise our ability to differentiate between 

different tissues. At very short TRs there is no time for longitudinal magnetization 

(which is related to T1) to recover, whilst at very long TRs longitudinal magnetization 

recovers similarly for different tissues – and therefore an intermediate TR (e.g. 

400msecs) will enable maximum differentiation between tissues. We must also have 

a very short TE (e.g. 20msecs) to minimise T2 contrast and have exclusive T1 

contrast. All structural scans reported in this thesis are T1 weighted. 
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A key challenge in the acquisition of functional images is that images must be 

acquired very rapidly, typically every 2-3 seconds. To achieve this we use Echo-

planar imaging (EPI), developed in the 1970s by Peter Mansfield. This technique 

allows the collection of an entire slice by changing spatial gradients rapidly following 

a single RF pulse, which allows a back and forth trajectory to be used to acquire the 

slice.  

3.1.2 Blood-oxygenation-level dependent (BOLD) fMRI 

Haemoglobin (Hb) is an iron-containing protein found in red blood cells, which 

transports oxygen in the blood in order to meet the metabolic demands of tissues in 

the body. The magnetic properties of Hb differ according to whether it is bound to 

oxygen (oxyHb), in which case it has zero magnetic moment, or whether it is not 

bound to oxygen (deoxyHb), in which case it is paramagnetic. The presence of 

deoxyHb therefore affects magnetic susceptibility, which in turn affects the T2* time 

constant described above. Blood-oxygenation-level dependent (BOLD) contrast is 

the difference in signal on T2*-weighted images as a function of the amount of 

deoxyHb. Work in both animals (Ogawa et al., 1990) and humans (Ogawa et al., 

1992) has demonstrated that this BOLD contrast can be reliably detected. 

How changes in BOLD relate to neural activity can be characterised by the 

haemodynamic response function (HRF; Fig. 3.2). First, increased neuronal activity 

increases metabolic demand and transiently increases the concentration of deoxyHb 

in the local vasculature, which may cause an “initial dip” in the BOLD response 

(Menon et al., 1995; Duong et al., 2001). Second, this is followed after a delay of 

around 1-2 seconds by a large increase in local blood flow, which peaks at around 6 

seconds after onset of activity. This MR signal increase during neuronal activity 

occurs because more oxygen is supplied to the brain region than is consumed, with 

excess oxygenated blood flowing though active regions flushing the deoxygenated 

blood from the capillaries supporting the active neural tissue and from downstream 
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venules. Third, following the “initial dip” and “peak” there is an undershoot that lasts 

for several seconds. fMRI relies upon identifying the clear peak in the BOLD 

response as the “initial dip” is smaller and difficult to identify (Heeger and Ress, 

2002). 

 

 

Figure 3.2 Canonical haemodynamic response function.  

 

The relationship between the BOLD response and specific patterns of neural 

activity is still an area of active research (Logothetis, 2008). BOLD appears to be 

more related to inputs to cortical regions (i.e. synaptic activity) rather than outputs 

(i.e. cell firing) (Heeger and Ress, 2002; Logothetis, 2008). However, for example the 

relationship of the BOLD signal to inhibitory relative to excitatory activity remains 

unclear (Logothetis, 2008), as does the interpretation of decreases in BOLD signal 

relative to a resting baseline (Lin et al., 2011).  

Further characteristics of the HRF also impact on the interpretation and acquisition 

of fMRI data. Temporal resolution is limited by the delayed nature of the HRF peak 

described above. The extended temporal nature of the HRF also requires that the 

length of each trial is not the same as the TR or a multiple of the TR in order to 

ensure adequate sampling of the haemodynamic response (Frackowiak et al., 2004). 

Spatial resolution is limited by the geometry of the cerebral microvasculature, with 
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the spatial scale of the haemodynamic response being about 2-5mm according to 

high resolution optical imaging experiments (Friston, 2004). The HRF also varies 

between areas and between subjects (Handwerker et al., 2004). 

3.1.3 Preprocessing of fMRI data 

The measured BOLD signal change is small compared with the total intensity of 

the MR signal, in the order of a few percent. Furthermore, there are multiple sources 

of noise in the data, including: artefacts from head movement, heart rate or 

respiration; thermal noise; system noise from imperfections in scanner hardware; and 

variability in neuronal activity associated with non-task-related brain processes. 

Therefore, fMRI data undergo a number of preprocessing steps to improve the signal 

to noise ratio. Analyses reported here were carried out in either SPM 5 (Chapter 6) or 

SPM 8 (Chapter 4) (Wellcome Trust Centre for Neuroimaging, www.fil.ion.ucl.ac.uk/ 

spm). The preprocessing steps are summarised in Fig 3.3.  

To further improve the signal to noise ratio, prior to preprocessing the first few 

images were removed to allow for T1-equilibriation (6 such “dummies” were removed 

in all experiments in this thesis). Additionally, all experiments reported here were 

conducted at 3 Tesla (T), with higher static field strength known to improve signal to 

noise ratio (Wright et al., 2008). 
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Figure 3.3 Overview of pre-processing and statistical analysis This schematic 

depicts the transformations that start with an imaging data sequence and end with a 

statistical parametric map (SPM). During pre-processing, the data undergo 

realignment into the same anatomical space; are then normalised into standard 

space; and undergo spatial smoothing. Next, the general linear model is used to 

estimate the parameters of a design matrix and derive test statistic for each voxel. 

The test statistics (usually t or F-statistics) constitute the SPM. Finally, statistical 

inferences are made on the basis of the SPM and Random Field Theory. Reproduced 

from (Flandin and Friston, 2008). 

 

3.1.3.1 Realignment and unwarping 

The images are first realigned into a common reference frame, in order to correct 

for any head movements during scanning. Head movement was also minimised 

during data acquisition by the use of foam pads around a participant’s head. Such 

realignment removes variance from a time series that would otherwise introduce 

error (and thus reduce sensitivity) or could, more problematically, introduce evoked 

effects (if movement were correlated with the cognitive task). Realignment was 

performed using a rigid-body affine transformation, with the reference frame as the 

first image in the time series. Six parameters are used in the transformation: three 

translations and three rotations about orthogonal axes. 
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However, despite realignments, considerable movement correlated variance can 

remain, for example that related to interactions between movements and magnetic 

field inhomogeneities (Andersson et al., 2001). In all studies in this thesis we 

militated against this problem in two ways. First, we included the movement 

parameters as regressors of no interest in the statistical model. Second, we use 

unwarping, which involved acquiring images used to estimate subject and session 

specific inhomogeneities in the magnetic field (called fieldmaps) – and we used these 

to generate a forward model of movement-by-inhomogeneity interactions (Andersson 

et al., 2001). 

3.1.3.2 Spatial normalisation 

Next, images were transformed into a standard space. This has two purposes. 

First, we intended to conduct analyses at the group level (see below), rendering it 

important to ensure that the same coordinate referred to the same anatomical area in 

all subjects. Second, normalisation helps standardisation and interpretation between 

studies. Here, normalisation was to Montreal Neurological Institute (MNI) space. 

Spatial normalisation was achieved by geometrically distorting each subject’s brain 

into a standard shape (Friston et al., 1995a), which here involved the following 

process. First, the mean realigned and unwarped image was coregistered with the 

subject’s T1-weighted structural image. Next, the subject’s structural image was 

segmented into grey and white matter images and mapped onto template tissue 

probability maps. Finally, this mapping was applied to both the structural and 

functional images to create spatially normalised images. 

3.1.3.3 Spatial smoothing 

In the last stage of preprocessing, the fMRI data were smoothed by applying  a 

Gaussian kernel of 8mm full width half maximum (FWHM). The motivations for 

smoothing the data are fourfold (Friston, 2004). Firstly, by the matched filter theorem, 

the optimum smoothing kernel corresponds to the size of the effect one anticipates. 
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Second, by the central limit theorem, smoothing the data renders the errors more 

normal in their distribution and ensures the validity of inferences based on parametric 

tests. Third, smooth data is an assumption in Gaussian random field theory (see 

below). Finally, when averaging across subjects, it is often necessary to smooth 

more (e.g. 8mm FWHM) to project the data onto a spatial scale where homologies in 

functional anatomy are expressed amongst subjects.  

3.1.4 Statistical analysis of fMRI data 

The most widespread method of analysing fMRI data is a mass univariate 

approach, in which the time series for each voxel is analysed independently. Within 

each voxel, the most common approach to analysing the time series is to use a 

variant of the General Linear Model (GLM, see below). The same GLM is applied to 

each voxel – and then the resulting statistics can be assembled into an image that is 

known as a statistical parametric map (SPM). Finally, using this SPM one can 

employ classical inference to ask if there are regionally specific effects related to the 

experimental factors included in the GLM. These steps are summarised in Fig 3.3. All 

analyses reported here were carried out in either SPM 5 (Chapter 6) or SPM 8 

(Chapter 4) (Wellcome Trust Centre for Neuroimaging, www.fil.ion.ucl.ac.uk/spm). 

3.1.4.1 The General Linear Model (GLM) 

The GLM is an equation that expresses the observed response variable Y in 

terms of a linear combination of explanatory variables contained in a design matrix, 

X, plus an error term (Friston et al., 1995b) 

Y = X β + ε     Eq. 3.1 

where β is a vector containing the parameters to be estimated. In this analysis of 

our fMRI data, for each voxel the observed response variable, Y, is the time series of 

observed BOLD signal in that voxel. Many commonly used statistical approaches are 

special cases of the GLM, including linear regression, t-tests and analyses of 
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variance (ANOVAs). The GLM approach assumes that the residuals are 

independently and identically distributed, which is not the case for fMRI time series 

and therefore a correction is applied to impose sphericity (Glaser and Friston, 2004). 

The design matrix, X, consists of columns, which are referred to as regressors. 

The regressors included in the design matrix represent the experimental 

manipulations, confounds and covariates of no interest. All experiments in this thesis 

use an event-related design, with the events modelled as delta (stick) or boxcar 

functions, which are then convolved with a canonical haemodynamic response 

function (Friston et al., 1998) (HRF, see Fig 3.2). Regressors in the design matrix can 

be categorical, such as 1 or 0 to represent the onset of a particular stimulus 

condition. Regressors can also be parametric, such that they modulate the height of 

an onset regressor. This thesis includes both types of regressors. The β parameters 

are then estimated using a restricted maximum likelihood algorithm. 

Inferences about the effects of interest are made using the estimated β 

parameters (Friston, 2004). Two statistical tests are employed in my analysis. First, 

to test the null hypotheses that all estimates are zero, which gives an F-statistic. 

Second, to test the null hypothesis that some particular linear combination (e.g. a 

subtraction) of the estimates is zero, which gives a T-statistic. The T-statistic is 

obtained by dividing a contrast or compound (specified by contrast weights) of the 

ensuing parameter estimates by the standard error of the compound. The latter is 

estimated using the variance of the residuals around the least-squares fit. By 

applying the test at each voxel in the brain, an image of F or T statistics across the 

brain is produced, which is the “SPM”. 
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Figure 3.4 Example of regressor and convolution. In red is the model of the 

stimulus, in green is the model after convolution with the canonical HRF; and in blue 

is the observed data. 

 

3.1.4.2 Multiple comparisons 

The mass univariate approach described above involves many thousands of 

separate tests across the whole brain volume. Indeed, in a typical fMRI experiment 

there are approximately 20,000 voxels in the brain. If we wish to test an anatomically 

open hypothesis, a correction for multiple comparisons is necessary. When 

correcting for multiple comparisons, the adjusted type I error rate, α, derives from the 

number of independent statistical tests. One classical approach to this problem of 

multiple comparisons is the Bonferroni correction, in which the acceptable α is 

divided by the number of statistical tests being carried out. However, because of the 

large number of voxels (e.g. 20,000), whilst this minimises the chances of a type I 

error it also increases the chances of a type II error, that of a false negative i.e. it is 

an over conservative correction. 

However, parameter estimates are highly correlated across adjacent voxels, for 

example because activity often spans large regions or large vessels and because we 

apply spatial smoothing. To determine a better correction factor than the number of 
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voxels we can apply Random Field Theory, which provides a way of adjusting the p 

value that takes account of the fact that neighbouring voxels are not independent by 

virtue of continuity in the original data (Friston et al., 1995c; Friston, 2004). The 

strong degree of spatial correlation in functional images leads to covarying clusters of 

voxels (resolution elements or resells), and we can therefore control for false 

positives at the level of these clusters, rather than at the level of individual voxels. 

Random Field Theory controls the expected number of false positive regions, and 

because a region can contain many voxels the corrected threshold under a Random 

Field Theory correction is much lower than Bonferroni. 

Specifically, to make inferences about regionally specific effects, the SPM is 

thresholded using some height and spatial extent thresholds. Corrected p-values can 

then be derived that pertain to: “cluster level inferences” concerning the number of 

activated voxels (i.e. volume) comprising a particular region; and voxel-level 

inferences, relating to the p-value for each voxel within that cluster. Cluster level 

inferences require a “cluster defining threshold”, in this thesis P<0.005 uncorrected. 

Although the cluster-defining threshold is somewhat arbitrary, simulations show that 

the assumptions behind cluster level correction hold for defining thresholds above 

T=2.5, and allow inferences to be based on a combination of peak height and spatial 

extent (Friston et al., 1993). 

Whilst the above relates to anatomically open hypotheses, one can also test 

anatomically closed hypotheses based on a priori regions of interest (e.g. the 

amygdala in Chapter 4). This can be implemented using small volume correction 

(SVC), in which one restricts the analysis to a particular region and then applies the 

Random Field Theory correction. Such a region of interest can be defined in three 

main ways. First, as an anatomical region (e.g. the amygdala). Second, from peaks 

of regions identified in in previous studies (e.g. functional imaging or 

neuropsychological). Third, one can use orthogonal contrasts to restrict the search 
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volume to task-relevant activations (Kriegeskorte et al., 2009; Vul and Kanwisher, 

2010). 

3.1.4.3 Group level analyses 

The analysis described above operates at the single subject level to provide 

parameter estimates and contrast estimates for each subject. However, in this thesis 

we wish to combine data from multiple subjects and conduct analyses at the group 

level. 

One method is to use a fixed effects analysis. This assumes that the effect of the 

experimental manipulation is fixed across subjects, with differences between subjects 

caused by random noise. However, this restricts statistical inferences to the particular 

sample of subjects used in the study. For example, the effects could be driven by a 

small proportion of the subjects, whilst the remaining subjects showed no effect. 

Instead, we wish to make inferences about the population from which subjects are 

drawn, and therefore analyses must include information about the distribution of 

effect across subjects. To achieve this, a random effects analysis can be used, which 

treats the effect of the experimental manipulation as variable across subjects such 

that it could have a different effect on different subjects. This is implemented in a two-

stage “summary statistic” procedure. At the “first level” (fixed effects) the contrast 

estimates are calculated for each individual, as described in the previous section. 

Then, at the “second level” (random effects) these are treated as new response 

variable, Y, in a GLM. The second level design matrix can be used in the same way 

as at the first level e.g. to test the null hypothesis that the contrasts are zero, using a 

column of ones and a single sample T test. At this second level, we can also look 

across subjects and ask whether inter-individual differences at a behavioural level 

covary with inter-individual differences at the neural level.  

 



66 

 

Chapter 4. Individual choice: Dissociable neural 

processes bias approach to risk and loss 

4.1 Introduction 

In Chapter 2, I outlined how the degree of risk in potential outcomes acts as a 

powerful influence on economic choice in humans (Harrison and Rutström, 2008) 

and other animals (Real et al., 1982; Barnard and Brown, 1985; Kacelnik and 

Bateson, 1996). This influence of risk can be captured by Expected Utility Theory 

(EUT). However, whether outcomes entail gains or losses (i.e. their valence) also 

powerfully biases behaviour (Kahneman and Tversky, 1979; Tversky and Kahneman, 

1992, 1981; Camerer, 1998) – and this is not captured by EUT.  

The prevailing view in behavioural economic theory is of a tied relationship 

between these influences of risk and valence – the “reflection effect” – which 

specifies that individuals prefer riskier options with potential losses and safer options 

with potential gains (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992). 

Thus, when individuals evaluate an option greater risks have more impact on choice 

than smaller risks, whilst valence determines whether this risk makes an option more 

or less desirable. This tied relationship is a foundation stone in Prospect Theory 

(Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) and has been 

supported by a series of classic laboratory experiments (Kahneman and Tversky, 

1979; Camerer, 1989; Battalio et al., 1990; Tversky and Kahneman, 1992). It has 

been used to explain important economic phenomena, such as why stock market 

traders hold losing stocks too long (risk-seeking) and sell winners too early (risk-

aversion) (Camerer, 1998), and has been applied across diverse disciplines from 

international relations to political science (Levy, 2003).  

However, more recent findings have questioned this tied relationship. For 

example, risk-aversion for gains but risk-neutrality (not the predicted risk-seeking) 
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with losses has been reported (Laury and Holt, 2005). Thus, our aim was to build on 

the insight incorporated in Prospect Theory that both valence and risk influence 

choice, but instead of a tied relationship seek a more general account of the 

relationship between these variables.  

One hypothesis is that when individuals consider an economic stimulus, its 

valence and degree of risk independently influence choice. In other words, rather 

than a tied relationship, such independence would allow greater gambling with losses 

than with gains as classically reported (Kahneman and Tversky, 1979; Camerer, 

1989; Battalio et al., 1990; Tversky and Kahneman, 1992), but also accommodate 

more similar gambling for each (Laury and Holt, 2005), and even the opposite finding 

of more gambling for gains than losses. This hypothesis also enables us to bring 

together insights incorporated in Prospect Theory that valence influences choice 

(Kahneman and Tversky, 1979; Tversky and Kahneman, 1992), with ideas derived 

from financial economics that individuals respond to risk as measured by the 

variance in potential outcomes (Markowitz, 1952; Bossaerts, 2010). Further 

motivating our hypothesis is mounting biological evidence that competing neural 

valuation systems each influence choice (Dayan, 2008; Rangel et al., 2008; Guitart-

Masip et al., 2010): if risk and valence each influenced choice through distinct neural 

systems this would be more consistent with behavioural independence rather than 

tied effects. Candidate neural regions to mediate the effects of valence and risk 

include the orbitofontal cortex and striatum previously related to loss aversion (Tom 

et al., 2007), as well as insula (Preuschoff et al., 2006; Bossaerts, 2010) and parietal 

cortex (Platt and Glimcher, 1999; Huettel et al., 2005; Mohr et al., 2010) previously 

related to risk.  

We tested an hypothesis of independence between biases exerted by risk and 

valence, by designing a new choice task that independently manipulated outcome 

valence (gains or losses) and degree of risk (defined as outcome variance; Figs. 4.1, 
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4.2). In a series of experiments, we first established that risk and valence biased 

choice in our paradigm (Experiment 1). Second, we then asked if these biases result 

from stable and independent processes (Experiment 2): we predicted that within 

individuals each bias should be consistent over time, but that an individual’s 

sensitivity to one source of bias would not predict their sensitivity to the other bias. 

Next, we used fMRI to ask if risk and valence are processed by distinct neural 

systems (Experiment 3). Finally, we altered our task structure in a manner we 

predicted would reverse the direction of the valence-induced bias but leave the risk-

induced bias unaffected (Experiment 4). We go on to suggest that behavioural and 

neural dissociations in the impacts of risk and valence are explicable within a 

biologically-based account of choice. 

4.2 Materials and Methods 

Our study comprised four independent experiments. In all four experiments we 

used a choice task that independently manipulated the degree of risk in outcomes 

(defined as outcome variance) and their valence (gains or losses). We developed two 

variants of our task, using the “accept/reject” task in Experiments 1, 2 and 3 and 

using the “selection” task in Experiment 4. Experiment 1 assayed behaviour in the 

“accept/reject” task. In Experiment 2 participants undertook the “accept/reject” task 

on two separate days (1-3 days apart, mean 2 days), receiving feedback and 

payment on the second day. In Experiment 3 participants undertook the 

“accept/reject” task during fMRI scanning. Experiment 4 assayed behaviour in the 

“selection” task. The study was approved by the Institute of Neurology (University 

College, London) Research Ethics Committee. 

4.2.1 Participants 

All participants were recruited using institutional mailing lists, were healthy and 

provided informed consent. 16 participants took part in Experiment 1 (mean age 26 



69 

 

years, range 19-70; 6 male). 28 participants took part in Experiment 2 (mean age 27 

years, range 19-62; 13 male). 22 right-handed participants took part in Experiment 3 

(age mean 22 years, range 18-32; 6 male), with three further participants excluded 

due to artefacts during acquisition of the fMRI data. 24 participants took part in 

Experiment 4 (age mean 23 years, range 18-34; 3 male). 

4.2.2 Task 

“Accept/reject” task (Experiments 1, 2 and 3): In the “accept/reject” task (Fig. 

4.1) there were 200 trials presented in a random order, of which 100 were “gain 

trials” (all possible outcomes ≥ 0) and 100 were “loss trials” (all outcomes ≤0). In 

each trial participants chose to accept or reject a lottery (four possible outcomes) 

compared to a sure option (£6 in “gain trials”; £-6 in loss trials). Each trial began with 

a fixation cross presented for 1-2secs (mean 1.5secs), followed by viewing the 

options for 4020msec; and finally a black square appeared to indicate participants 

had 1500msec to input their choice by button press (the black square turned white 

when they chose). If participants failed to make a choice, they received zero on a 

“gain trial” and the maximum loss possible on a “loss trial” (£-12). 

Our decision-variables of interest were risk and valence. We manipulated risk by 

using a set of 100 lotteries (four possible outcomes, all ≥ 0; Fig. 4.1, 4.2) in which we 

parametrically and orthogonally manipulated the degree of risk (variance; 10 levels) 

and expected value (EV; 10 levels). We presented each lottery in this set once to 

give 100 “gain trials”. To manipulate valence and keep all else matched including 

risk, we multiplied all amounts by -1 to give 100 “loss trials” (i.e. all outcomes ≤0, and 

a sure option of £-6).  

Participants began the day with an endowment of £12. At the end of the 

experiment, one “gain trial” and one “loss trial” were picked at random and the 

outcome of both were added to the endowment to determine payment. Participants 

could receive between £0-24 in the task. In Experiment 2 where participants 
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undertook the task on two separate days, they received feedback and payment on 

the second attendance. In Experiment 3 using fMRI, all amounts were doubled to 

provide a more typical level of payment for fMRI scanning. 

“Selection task” (Experiment 4): This variant of our task aimed to change the 

route through which individuals were biased by loss aversion. It was identical to the 

“accept/reject” task except that, whereas on every trial in the “accept/reject” task 

individuals evaluated a lottery and accepted or rejected; in this new “selection” task 

individuals evaluated two lotteries and selected between them. To manipulate risk we 

again generated a set of 100 “gain trials”, in which we parametrically and 

orthogonally manipulated the difference in risk (10 levels of variance) and EV (10 

levels) between two lotteries (each with two possible outcomes, all ≥ 0). To 

manipulate valence, we again simply multiplied all amounts by -1 to give 100 “loss 

trials”. 

 

 

Figure 4.1 Dissociating valence and risk related biases using task design. 

Panels a-c refer to the “accept/reject” task. a) In each “gain trial” individuals chose to 

accept a lottery (4 possible outcomes, all ≥ 0) or reject and so receive £6 for certain. 

b) We created a set of 100 “gain trials” that parametrically and orthogonally 

manipulated the degree of risk (defined as outcome variance; 10 levels) and 

expected value (EV; 10 levels) of the lotteries. Half the lotteries had an EV above the 

sure amount and half below, metricating risk preference as the proportion of riskier 
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choices (PropRisk; risk-averse<0.5; risk-neutral=0.5; risk-seeking>0.5). c) Multiplying 

all “gain trial” amounts by -1 gave 100 “loss trials” with identical parametric 

manipulations. All 200 trials were presented in random order. Panels d-e refer to the 

“selection” task, in which again there were: d) 100 “gain trials” with parametric and 

orthogonal manipulation of difference in risk and EV between the two options; and e) 

100 “loss trials” created by multiplying the "gain trial” amounts by -1. However, here in 

each trial individuals were presented with two lotteries to consider and select 

between. 

4.2.3 Stimulus sets 

“Accept/reject” task: For our “accept/reject” task we generated a set of 100 “gain 

trials” (ARMainList), where we manipulated the difference in variance (ΔVar;10 levels) 

and EV (ΔEV;10 levels) of the lottery relative to the sure option of £6 (Fig. 4.2). We 

created this stimulus set in two stages. First, we generated a list of every possible 

trial within the following constraints: each lottery had four outcomes (i.e. four pie chart 

segments); outcomes were between £0-£12; the smallest allowable probability was 

0.1, in order to militate against possible probability distortion effects at small 

probabilities (KT, 1979, 1992); the smallest allowable probability increment was 0.05; 

and we controlled for lottery skewness. Second, from within this very large number of 

potential trials, we selected our set of 100 trials that were the closest match to our 

desired 10 levels of ΔVar and 10 levels of ΔEV.  

We used ARMainList in Experiments 1 (behavioural) and 3 (fMRI). However, to check 

our behavioural findings were not caused by this specific lottery set, or because we 

had controlled for skewness, in Experiment 2 we also compared the ARMainList to two 

alternative sets. In Experiment 2, 11 of 28 subjects used ARMainList (maximum ΔEV 

1.25, and maximum ΔVar 23.9), and the remainder used one of two stimulus sets 

generated in the same way but with new lotteries and without skewness controlled 

(11 participants used ARAlternateList1 [maximum ΔEV 1.35, and maximum ΔVar 23.8] 

and 6 participants used ARAlternateList2 [maximum ΔEV 2.70, and maximum ΔVar 23.8]). 
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Importantly, the same behavioural effects were seen regardless of lottery set and 

therefore in our main analysis we collapse across lottery sets in Experiment 2. 

“Selection” task: For the “selection” task we generated a set of 100 “gain trials” in 

the same way, although here manipulating the difference in EV (10 levels) and 

variance (10 levels) between two lotteries (each with two possible outcomes, ≥ 0). 

The difference in EV and variance between the options (maximum ΔEV 1.9 and 

maximum ΔVar 18.3) was similar to that used in the “accept/reject” task. 

Calculation of EV, Variance and Skewness: For a given lottery with N potential 

outcomes ( m1, m2,… mN), with probabilities p = p1, p2, …pN, we define the EV, 

variance (Var) and standardised skewness (Skw) of the outcome distribution as 

follows: 
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4.2.4 Statistical analysis 

All statistical tests used were two tailed. 
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Figure 4.2 Design of the stimulus sets used in our choice task. In each trial 

participants chose between two options that differed in their risk (variance) and 

expected value (EV). We constructed a set of 100 trials (all amounts ≥ 0) in which we 

parametrically and orthogonally manipulated the difference in risk (ΔVariance, 10 

levels) and EV (ΔEV, 10 levels) between the two options. We presented this set of 

100 trials once to give 100 “gain trials”, and to create 100 “loss trials” whilst keeping 

all else matched we simply multiplied all amounts by -1 (not shown in this figure). 

Panel a) shows an example “gain trial” from the “accept/reject” task. Panel b) 

illustrates this lottery’s outcome distribution, for which we can calculate the lottery’s 

variance (in this case 1.3) and EV (7.25). By comparing the lottery Variance and EV 

to those of the other option (here £6 for sure) we determine the difference in risk 

(ΔVariance) and EV (ΔEV) between the two options, which could be plotted in panel 

c. For illustration, panel c) plots the stimulus set (ARmainlist) used in the “accept/reject” 

task. 
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4.2.5 Behavioural modelling 

We used behavioural modelling of our “accept/reject” task to ask three questions: 

first, did both our decision-variables of interest, risk and valence, influence choice; 

second, can we identify a trial-by-trial metric of risk for use in our fMRI analysis; and 

third, can our behavioural findings be explained by probability distortion or choice 

randomness? We analysed the data separately from each of the three experiments 

using the “accept/reject” task Experiment 1 (n=16), Experiment 2 (n=28, Day 1 and 

Day 2), and Experiment 3 (n=22, fMRI). We also analysed the combined dataset in 

which we included the data from Day 1 in Experiment 2, giving a combined dataset 

with n=66. 

In all our models, on each trial the subjective value, or utility (U), of the lottery was 

computed using a utility function (see below). This lottery value (U) was then 

compared to the value of the sure amount (S). 

Impacts of risk and valence on choice: We compared three models to ask if 

behaviour was biased by risk and valence. First, in a very simple Mean-Only model 

(Mn_Only), individuals only cared about the mean of the options. 

U = Mean      (4.4) 

Second, we asked if choice was also biased by risk, using a Mean-variance 

model (Mn_Var). Specifically, risk is measured as variance. Here, ρ is a free 

parameter reflecting an individual’s preference for variance, where a risk-neutral 

individual has ρ=0, risk-averse ρ<0, and risk-seeking ρ>0. 

U = Mean + ρ*Variance    (4.5) 

Third, we asked if both risk and valence bias choice, using a Mean-variance-

valence model (Mn_Var_Val). There is a ρgain parameter that reflects risk preference 

in gain trials and a ρloss parameter reflecting risk preference in loss trials. 

U = Mean + ρ*Variance    (4.6) 
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where, ρ=ρgain for Mean>0; ρ=ρloss for Mean<0; 

Expected Utility model (EUT): In addition to these models described above, we 

also asked if our data could be explained with a standard power utility model 

commonly used to model expected utility (Camerer, 2003). This model incorporates 

the impact of risk on choice, using a free parameter, κ, that reflects the concavity of 

the utility function and therefore the degree of risk aversion. 
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Prospetic model: The final utility function we tested used a model derived from 

Prospect Theory (Kahneman and Tversky, 1979), which in addition to the power 

utility function described above also incorporates the effects of valence and 

probability weighting. Here, the parameter λ reflects the degree of loss aversion, and 

the parameter π reflects probability distortion implemented with the Prelec probability 

weighting function (Prelec, 1998). 
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Noise in choice: In all our models, on each trial the subjective value, or utility (U), 

of the lottery was computed using a utility function. This lottery value (U) was then 

compared to the value of the sure amount (S) to generate a trial-by-trial probability of 
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accepting the lottery, using a softmax function with a free parameter β (constrained 

between 0 and 20) that allows for noise in action selection: 

 SUAccept
e

P
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
1

1
    (4.11) 

Finally, we asked if valence acted by changing choice randomness. To the best 

fitting of the models above, we replaced the single free parameter in our softmax 

decision-rule with separate parameters for gain trials (βgain) and loss trials (βloss). 

Model fitting and comparison: We fit data on an individual participant basis. We 

estimated best-fitting model parameters using maximum likelihood analysis. 

Optimisation was implemented with a non-linear Nelder-Mead simplex search 

algorithm in Matlab. We compared models using Group Bayes Factors, with the 

Bayesian Information Criterion (BIC) penalising model complexity (Schwarz, 1978).  

4.2.6 Experiment 3: fMRI of the “accept/reject” task 

4.2.6.1 fMRI data acquisition 

Images were acquired using a 3T Allegra scanner (Siemens, Erlangen, Germany). 

BOLD sensitive functional images were acquired using a gradient-echo EPI 

sequence (46 transverse slices; TR, 2.76 secs; TE, 30 ms; 3 x 3 mm in-plane 

resolution; 2 mm slice thickness; 1 mm gap between adjacent slices; z-shim -0.4 

mT/m; positive phase encoding direction; slice tilt -30 degrees) optimised for 

detecting changes in the OFC and amygdala (Weiskopf et al., 2006a). One run of 

515 volumes was collected for each participant, followed by a T1-weighted 

anatomical scan. Local field maps were also acquired. 

4.2.6.2 fMRI data analysis  

Functional data were analysed using standard procedures in SPM8 (Statistical 

Parametric Mapping; www.fil.ion.ucl.ac.uk/spm). fMRI timeseries were regressed 
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onto a composite general linear model (GLM). The GLM contained boxcars for the 

length of time the lottery was displayed (5.5 seconds) to examine the decision-

making process. Delta functions were also included for button presses, lottery onset 

to account for visual stimulus presentation, and for trials in which subjects failed to 

respond. We modelled our neuroimaging data using a 2 valence (gain, loss) by 2 

choice (accept, reject) design. Parametric modulators were also placed on the boxcar 

for the EV and Variance of the lottery on that trial. The delta functions and boxcars 

were convolved with the canonical haemodynamic response function. 

We report all activations at P<0.05 that survive whole brain correction using 

family-wise error at the cluster level (Friston et al., 1994), unless otherwise stated. 

Clusters were defined using a threshold of P <0.005 uncorrected. For presentation, 

images are displayed at P < 0.001 uncorrected. For the contrast of loss>gain we also 

used small volume correction (P<0.05) in anatomical regions of interest (amygdala 

and anterior insula) specified in the PickAtlas toolbox (Maldjian et al., 2003).  

4.3 Results 

4.3.1 Behaviour 

4.3.1.1 Behaviour in the “accept/reject” task 

We first established that risk and valence both biased choice within our 

“accept/reject” task (Experiment 1, n=16; Fig. 4.3). Our task comprised “gain trials” 

and “loss trials”. In each of 100 “gain trials” participants chose to accept a lottery (all 

outcomes ≥ 0) or reject the lottery and so receive £6 for certain. The degree of risk in 

the lottery, operationally defined as variance in outcomes (Bossaerts, 2010), was 

parametrically manipulated across the 100 gain trials. Valence was independently 

manipulated by multiplying all amounts in our gain trials by -1, creating 100 “loss 

trials” with an identical parametric manipulation of risk. We presented the 200 trials 

randomly ordered. Our set of lotteries orthogonally manipulated risk (variance; 10 
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levels) and expected value (10 levels; Fig. 4.1, 4.2), such that half the lotteries had 

an expected value above the sure amount and half below: providing a simple metric 

of risk preference indexed as the proportion of riskier choices made (PropRisk; risk-

neutral=0.5; risk-averse<0.5; risk-seeking>0.5).  

Our data showed that risk biased choice overall, with individuals being averse to 

risk (PropRiskall 0.40± s.d. 0.15; one-sample t-test versus risk-neutral, t(15)=-2.9, 

P=0.01; Fig. 4.3d). We also extracted a simple metric for the impact of valence on 

choice from the difference in riskier choices in each domain (ImpValence = 

PropRiskgain-PropRiskloss). Individuals were also sensitive to valence (ImpValence 

0.11±0.17; one-sample t-test versus no effect of valence, t(15)=2.6, P=0.019). 

Strikingly however, against a prevailing expectation (Kahneman and Tversky, 1979; 

Tversky and Kahneman, 1992) individuals gambled more for gain (PropRiskgain 0.46 

± s.d.0.18) compared to loss outcomes (PropRiskloss 0.35 ± s.d.0.14; t(15)=2.6, 

P=0.019). 
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Figure 4.3 Dissociating valence and risk related biases using task design. 

Panels a-d refer to the “accept/reject” task. a) In each “gain trial” individuals chose to 

accept a lottery (4 possible outcomes, all ≥ 0) or reject and so receive £6 for certain. 

b) We created a set of 100 “gain trials” that parametrically and orthogonally 

manipulated the degree of risk (defined as outcome variance; 10 levels) and 

expected value (EV; 10 levels) of the lotteries. Half the lotteries had an EV above the 

sure amount and half below, metricating risk preference as the proportion of riskier 

choices (PropRisk; risk-averse<0.5; risk-neutral=0.5; risk-seeking>0.5). c) Multiplying 

all “gain trial” amounts by -1 gave 100 “loss trials” with identical parametric 

manipulations. All 200 trials were presented in random order. d) Behaviour in the 

“accept/reject” task (Experiment 1, n=16). Individuals were risk averse overall (i.e. 

PropRiskall <0.5). Valence also biased choice, with more gambling for gains than 

losses (ImpValence = PropRiskgain-PropRiskloss). Panels e-g refer to the “selection” 

task, in which again there were: e) 100 “gain trials” with parametric and orthogonal 

manipulation of difference in risk and EV between the two options; and f) 100 “loss 

trials” created by multiplying the "gain trial” amounts by -1. However, here in each trial 

individuals were presented with two lotteries to consider and select between. g) 
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Behaviour in the “selection” task (Experiment 4, n=24): risk aversion overall was 

unaltered compared to the  “accept/reject” task (i.e. PropRiskall <0.5), but the direction 

of the valence effect was completely reversed. Error bars show s.e.m., * P<0.05, ** 

P=0.005. 

 

4.3.1.2 Behaviour in the “selection” task: manipulating task design to 

dissociate risk and valence effects 

Given that our observation of greater gambling for gains than losses differs from 

previously reported findings (Kahneman and Tversky, 1979; Tversky and Kahneman, 

1992), we aimed to replicate those previous findings by modifying our task. One 

possible source for this difference is the format in which the decisions were 

presented, as illustrated by comparing our “accept/reject” task to the problems used 

in the classic paper establishing Prospect Theory (Kahneman and Tversky, 1979). In 

the former each trial presented a different lottery to accept or reject, whilst in the 

latter each problem presented two options for individuals to select between. Such a 

format effect is also suggested by recent work with “loss-gain mixed gambles” 

(gambles containing losses and gains), which were avoided more often when 

presented analogously to our “accept/reject” task than when presented as two 

options to select between (Ert and Erev, 2008).  

We modified the format of our paradigm to create a new “selection” task (Fig. 4.1), 

aiming to selectively reverse the bias from loss aversion but leave the overall risk-

induced bias unchanged relative to our “accept/reject” task. Again there were 100 

“gain trials” with parametric modulation of the degree of risk between the two options 

in each trial, with the magnitudes of these differences similar by design to the 

“accept/reject” task (i.e. up to a difference in variance of approximately 20, details in 

SI). Valence was manipulated as before to generate 100 “loss trials”. However, here 

in each trial individuals were presented with two lotteries to consider and select 

between. Again across trials we orthogonally manipulated the differences in risk (10 
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levels) and expected value (10 levels) between the options, giving a metric of risk 

preference overall as the proportion riskier choices (PropRiskall), and a metric for the 

impact of valence from the difference in riskier choices in each domain (ImpValence).  

As predicted, risk aversion overall was the same in the “selection” task (PropRiskall 

0.42±0.11) as in the “accept/reject” task (P>0.4 for independent sample t-tests 

against PropRiskall in Experiments 1, 2 or 3, details below). Further, the magnitude of 

the valence effect was the same in the “selection” task (ImpValence -0.16±0.25) as in 

the “accept/reject” task (P≥0.3 for independent sample t-tests against the 

ImpValence in Experiments 1, 2 or 3, details below). However, the direction of this 

valence effect was completely reversed, such that now individuals selected the riskier 

option more for losses (PropRiskloss 0.50±0.17) than gains (PropRiskgain 0.34±0.16; 

t(23)=3.1, P=0.005).  

4.3.1.3 Behaviour: risk, valence and their relationship in all four 

experiments 

Here we present the behavioural data from all four experiments separately. Our 

two decision-variables of interest were risk and valence, both of which strongly 

influenced behaviour in all four experiments. As shown in Figure 4.4, behaviour was 

strikingly consistent across the three experiments that used the “accept/reject” task 

(Experiments 1, 2 and 3); whilst with our “selection” task we selectively reversed the 

direction of the valence-induced bias but left the overall risk-induced bias unaffected 

(Experiment 4). 

Impact of risk: In our “accept/reject” task half the lotteries had an expected value 

above the sure amount and half below, providing a simple metric of risk preference 

as the proportion of riskier choices made (PropRisk; risk-neutral=0.5; risk-

averse<0.5; risk-seeking>0.5), which could also be used with our “selection” task. In 

all four experiments our participants were biased to be risk averse, choosing the risky 

option less than half the time overall (i.e. PropRiskall <0.5). One sample ttests against 



82 

 

the null hypothesis of risk-neutrality (i.e. PropRiskall = 0.5) showed risk aversion in all 

datasets: Experiment 1 (PropRiskall = 0.40±0.14, t(15)=-3.0, P=0.011); Experiment 2 

Day 1 (PropRiskall = 0.45±0.13, t(27)=-2.2, P=0.039); Experiment 2 Day 2 (PropRiskall 

= 0.40±0.13, t(27)=-4.4, P<0.0005); Experiment 3 (PropRiskall = 0.40±0.11, t(21)=-

4.2, P=0.0002); and Experiment 4 (PropRiskall = 0.42±0.11, t(23)=-3.7, P=0.001). 

Impact of valence: We extracted a simple metric for the valence-induced bias 

from the difference in riskier choices in each domain (ImpValence = PropRiskgain-

PropRiskloss). Valence biased choice in all four experiments, as shown by one sample 

ttests against the null hypothesis of no bias (i.e. ImpValence = 0) in all four datasets: 

Experiment 1 (ImpValence = 0.11±0.17, t(15)=2.6, P=0.019); Experiment 2 Day 1 

(ImpValence = 0.15±0.16, t(27)=5.0, P=3.2x10-5); Experiment 2 Day 2 (ImpValence = 

0.10±0.14, t(27)=3.8, P=0.001); Experiment 3 (ImpValence = 0.18±0.15, t(21)=5.6, 

P=1.5x10-5; and Experiment 4 (ImpValence = -0.16±0.25, t(23)=-3.1, P=0.005). 
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Figure 4.4 Behavioural results summary In our “accept/reject” task (Experiments 1, 

2 and 3) half the lotteries had an expected value above the sure amount and half 

below, providing a simple metric of risk preference as the proportion of riskier choices 

made (PropRisk; risk-neutral=0.5; risk-averse<0.5; risk-seeking>0.5), which could 

also be used with our “selection” task (Experiment 4). Risk: On each chart the dotted 

line shows the proportion of riskier choices made overall (PropRiskall): in all four 

experiments participants were risk averse overall, choosing the riskier option less 

than half the time (i.e. PropRiskall <0.5). Valence: In each experiment there is an 

effect of valence, which is reversed for the “selection” task compared to the 

“accept/reject” task, whilst the risk-induced bias remains unaffected. We obtain the 

same results using parameters derived from our winning Mean-Variance-Valence 

model (see below). 
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Relationship between the risk- and valence-induced biases: In the 

“accept/reject” task participants gambled more for gain than loss outcomes 

(Experiment 1, P=0.019; Experiment 2 Day 1, P=3.2x10-5; Experiment 2 Day 2, 

P=0.001; Experiment 3, P=1.5x10-5). In the “selection” task we reversed the direction 

of this valence-induced bias and showed more gambling for losses than gains 

(Experiment 4, P=0.005). Despite context reversing the effect of valence, context had 

no effect on the overall risk-induced bias (independent samples ttests comparing 

PropRiskall in the “selection” task to experiments using the “accept/reject” task: 

Experiment 1 t(38)=0.5, P=0.64; Experiment 2 Day 1 t(50)=-0.8, P=0.45; Experiment 

2 Day 2 t(50)=-0.7, P=0.46; Experiment 3 t(44)=0.6, P=0.59). 

This robust valence-induced bias did not result in participants becoming 

absolutely risk-seeking in either valence in any of the four experiments, as shown by 

one sample ttests against risk-neutrality (i.e. PropRisk = 0.5): Experiment 1 

(PropRiskgain = 0.46±0.18, t(15)=-0.96, P=0.4; PropRiskloss =0.35±0.14, t(15)=-4.5, 

P=4.7x10-4); Experiment 2 Day 1 (PropRiskgain = 0.52±0.15, t(27)=0.71, P=0.5; 

PropRiskloss =0.37±0.16, t(27)=-4.4, P=1.6x10-4); Experiment 2 Day 2 (PropRiskgain = 

0.45±0.15, t(27)=-1.89, P=0.07; PropRiskloss =0.35±0.13, t(27)=-6.1, P=1.8x10-6); 

Experiment 3 (PropRiskgain = 0.49±0.14, t(21)=-0.30, P=0.8; PropRiskloss =0.31±0.13, 

t(21)=-6.7, P=1.3x10-6); Experiment 4 (PropRiskgain =0.34±0.16, t(23)=-5.0, P=4.8x10-

5; PropRiskloss =0.50±0.17, t(23)=-0.02, P=1.0). 

4.3.1.4 Stable and independent inter-individual differences for risk and 

valence 

Having established that both risk and valence biased choice, we exploited inter-

individual differences to seek evidence of their behavioural independence. If these 

biases result from stable and independent processes we can make two predictions: 

firstly, within individuals each bias should be consistent over time; and second, if they 
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are independent then knowing an individual’s sensitivity to one source of bias would 

not predict their sensitivity to the other bias. 

We tested these conjectures in Experiment 2, where 28 participants performed the 

“accept/reject” task on two separate days (1-3 days apart). We found behaviour on 

Day 1 strongly predicted behaviour on Day 2 for both risk (PropRiskall r=0.77, 

P=2.1x10-6) and valence (ImpValence r=0.84, P=3.3x10-8; Fig. 4.5). However, 

crucially these preferences were independent, with risk and valence effects showing 

no correlation on either Day 1 (r=-0.021, P=0.92, Fig. 4.5) or Day 2 (r=0.14, P=0.47; 

Fig. 4.6), or in our other datasets (Fig. 4.6).  

 

 

Figure 4.5 Individuals’ preferences for risk and valence are consistent and 

independent. In Experiment 2, 28 participants performed the “accept/reject” task on 

two separate days. We demonstrated a striking consistency over days in individual 

preferences for both risk (panel a, PropRiskall r=0.77, P=2.1x10
-6

) and valence (panel 

b, ImpValence r=0.84, P=3.3x10
-8

). However, crucially these preferences were 

independent, with risk and valence effects showing no correlation on either Day 1 

(panel c, r=-0.021, P=0.92) or Day 2 (r=0.14, P=0.47; Fig. 4.6), or in our other 

datasets (Fig. 4.6).  
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Figure 4.6 Independence in individual preferences for risk and valence. In 

Experiment 2, 28 participants performed the “accept/reject” task on two separate 

days. First, we demonstrated that individual preferences for both risk and valence 

were strikingly consistent over days (Fig. 4.5). Second, independence between these 

preferences for risk and valence was demonstrated as they were uncorrelated on Day 

1 (panel a) or Day 2 (panel b) of Experiment 2. Furthermore, we replicate this 

independence with the “accept/reject” task in Experiment 1 (n=16, panel c) and 

Experiment 3 (n=22, panel d), and also with the “selection” task in Experiment 4 

(n=24, panel e). In this figure we demonstrate these findings using a simple metric of 

the risk-induced bias as the proportion of riskier choices made (PropRiskall; risk-

neutral=0.5; risk-averse<0.5; risk-seeking>0.5); and a simple metric of valence 
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impact from the difference in riskier choices in each domain (ImpValence = 

PropRiskgain-PropRiskloss). We obtain the same results using parameters derived from 

our winning Mean-Variance-Valence model (see below). 

 

4.3.1.5 Accept/reject” task with different stimulus sets 

In Experiment 2, 28 participants performed the “accept/reject task” on two 

separate days. As described above, we predicted that the impact of risk and valence 

would be consistent over time within individuals, but that these preferences would be 

independent (Fig. 2). Further, to ensure our findings were not caused by the 

particular set of lotteries, we used three lottery sets (11 participants used ARMainList; 

11 participants used ARAlternateList1; and 6 participants used ARAlternateList2). As described 

immediately below, our results were not affected by which list was used, and 

therefore we collapsed across them in the analyses presented above. 

Stimulus set did not alter the impacts of risk and valence: In a 2 (gains, 

losses) x 2 (Day1, Day2) mixed ANOVA with lottery set (ARMainList, ARAlternateList1, 

ARAlternateList2) as a between subjects factor, lottery set did not interact with either the 

main effect of valence (F(2,25)=0.49, P=0.62); main effect of day (F(2,25)=0.23, 

P=0.12) or their interaction (F(2,25)=0.63, P=0.54). In this mixed ANOVA we found a 

main effect of Valence (F(1,25)=16.47, P=0.0004), no main effect of Day 

(F(1,25)=8.04, P=0.09), and an interaction of Valence with Day F(1,25)=7.72, 

P=0.01. 

Independent and stable preferences for risk and valence with all three 

stimulus sets: We obtained the same results for all three stimulus sets, with the 

impacts of risk and valence being highly consistent over time within individuals, but 

with these biases being uncorrelated. With all three lists we found a strong 

correlation between the impact of risk (PropRiskmean) on Day 1 and Day 2 (ARMainList 

r=0.76 P=0.007; ARAlternateList1 r=0.88 P=4.0x10-4; ARAlternateList2 r=0.85 P=0.03) and for 

the impact of Valence (ARMainList r=0.91 P=9.0x10-5; ARAlternateList1 r=0.77 P=0.006; 
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ARAlternateList2 r=0.88 P=0.022). However, there was no correlation between the 

measures on either day (ARMainList Day 1 P=0.74, Day 2 P=0.31; ARAlternateList1 Day 1 P 

= 0.36 Day 2 P = 0.67, ARAlternateList2 Day 1 = 0.49, Day 2 P=0.58). 

4.3.2 Behavioural Modelling 

We also conducted a model-based analysis of data from our “accept/reject” task to 

ask three questions: first, did both our decision-variables of interest, risk and valence, 

influence choice; second, could we identify a trial-by-trial metric of risk for use in our 

fMRI analysis; and third, could our behavioural findings be explained by probability 

distortion or choice randomness? 

We analysed the data separately from each of the three experiments using the 

“accept/reject” task Experiment 1 (n=16), Experiment 2 (n=28, Day 1 and Day 2), and 

Experiment 3 (n=22, fMRI). We also analysed the combined dataset in which we 

included the data from Day 1 in Experiment 2, giving a combined dataset with n=66. 

Risk and valence both influence choice: The effects of risk and valence are 

seen clearly by comparing our three related “summary statistic” models (Mean-Only, 

Mean-Variance, and Mean-Variance-Valence). The simple Mean-Only model where 

individuals care only about the mean value of the options (Experiment 1 Mn_Only 

summed BIC = 3803) is markedly improved by adding the influence of risk in the 

Mean-Variance model (Experiment 1 Mn_Var=3426). In turn, this Mean-Variance 

model is markedly improved by also accounting for valence in our Mean-Variance-

Valence model (Experiment 1 Mn_Var_Val =3293), which includes separate risk 

parameters for each valence. We replicate these results in Experiment 2 (Day 1 

Mn_Only=6028; Mn_Var =5434; Mn_Var_Val =5180; Day 2 Mn_Only=5917; Mn_Var 

=5087; Mn_Var_Val =4989), Experiment 3 (Mn_Only=5249; Mn_Var =4896; 

Mn_Var_Val =4701) and with the combined dataset (Mn_Only=15080; Mn_Var = 

14571; Mn_Var_Val =13756). These marked improvements from incorporating risk 
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and valence effects are found despite penalising for increased model complexity by 

using the BIC in model comparison.  

The importance of risk and valence is also evident with our EUT and Prospetic 

models. By construction our EUT model incorporates the impact of risk, and it out-

performs the Mean-Only model described above (Experiment 1 EUT = 3696). In turn, 

this EUT model is markedly improved by also accounting for valence in the Prospetic 

model (Experiment 1 Prospetic=3424). Again we replicate these results in 

Experiment 3 (EUT =5092; Prospetic=5067), with the combined dataset 

(EUT=14571; Prospetic=14128) and on the first but not second day of Experiment 2 

(Day 1 EUT=5783; Prospetic=5637; Day 2 EUT=5486; Prospetic=5642), 
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Figure 4.7 Behavioural model comparison. We analysed the data from each of the 

three experiments using the “accept/reject” task. Panel a shows the combined 

dataset (including Experiments 1, 3 and Day 1 in Experiment 2, giving n=66) and 

panels b-d each dataset separately. We plot the summed BIC for each model 

relative to that for the worst performing model (Mean-Only). The effects of risk and 

valence are seen clearly by comparing our three related “summary statistic” models: 

the simple Mean-Only model where individuals care only about the mean value of the 

options (Mn_Only) is markedly improved by adding the influence of risk in the Mean-

Variance model (Mn_Var), which in turn is markedly improved by also accounting for 

valence in our Mean-Variance-Valence model (Mn_Var_Val) that includes separate 

risk parameters for each valence. We replicate these results. The importance of risk 

and valence is also evident with our Expected Utility (EUT) and Prospetic models: the 

EUT model incorporates the impact of risk and it out-performs the Mean-Only model 

described above, but the EUT model is itself outperformed by the Prospetic model 
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that also accounts for valence. The winning model in the combined dataset and in 

each individual dataset is the Mean-Variance-Valence model.  

 

Variance provides a trial-by trial metric of risk: Our task manipulated risk by 

parametrically altering the variance in our set of 100 lotteries (presented once as 

gains and once as losses). Here we asked if variance would constitute a reasonable 

trial-by-trial metric of risk for our fMRI analysis. Indeed, the winning model in each 

experiment and the combined dataset was the Mean-Variance-Valence model, which 

explicitly used variance as a metric of risk. 

Further, in absolute terms our winning Mean-Variance-Valence model well 

predicted individuals’ actual choices. In Experiment 1 the Mean-Variance-Valence 

model correctly predicted 75% (±s.d.10%) of participants choices (probability of 

correct choice >0.5), with similar predictive power in Experiment 2 (Day 1 80%±7% 

and Day 2 80%±8%) and Experiment 3 (n=22, fMRI) 74%±s.d.7%) and the combined 

dataset (77%±8%). 

Our findings are not explained by probability distortion or choice 

randomness: Probability distortion, such as the overweighting of small probabilities 

and underweighting of large probabilities (Kahneman and Tversky, 1979), was 

accounted for in the Prospetic model using a Prelec probability weighting function 

(Prelec, 1998). However, the Mean-Variance-Valence model performed better than 

the Prospetic model (summed BICs reported above).  

To ask if valence acted by changing choice randomness, in our winning MVV 

model we replaced the single free parameter in our softmax decision-rule (β) with 

separate parameters for gain trials (βgain) and loss trials (βloss). However, the Mean-

Variance-Valence model with separate noise parameters (Experiment 1 summed BIC 

= 3314, Experiment 2 (Day 1= 5318; Day 2 = 5088); Experiment 3 = 4775) performed 

worse than the standard Mean-Variance-Valence model for all datasets. 
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Replication of our behavioural findings using model-derived parameters: 

Our winning Mean-Variance-Valence model provided a measure of risk preference 

for each valence (ρgain and ρloss) for each participant, which we could use to give a 

measure of the impact of risk overall (average of ρgain and ρloss) and the impact of 

valence (ImpValence = ρgain-ρgain). Note ρ<0 is risk averse, ρ=0 is risk neutral and 

ρ>0 is risk seeking. The model derived parameters (Experiment 1 ρgain =-

0.005±0.060, ρloss=-0.045±0.035, β =1.10±1.36, one subject excluded who rejected 

essentially all offers; Experiment 2 Day 1 ρgain =0.010± 0.071, ρloss=-0.054±0.063, β 

=0.71±0.29; Experiment 2 Day 2 ρgain =-0.015±0.075, ρloss=-0.054±0.060, β 

=0.67±0.0.32; and Experiment 3 ρgain =-0.001±0.024, ρloss=-0.034±0.022, β 

=1.85±0.87) were very highly correlated with the simple metrics derived from the 

proportion of riskier choices (Experiment 1 gains r=0.94, P=3.1x10-7, losses r=0.89, 

P=8.3x10-6, one subject excluded who rejected essentially all offers; Experiment 2 

gains [Day 1 r=0.83, P=5.5x10-8; Day 2 r=0.92, P=7.2x10-12], losses [Day 1 r=0.87, 

P=1.2x10-9; Day 2 0.89, P=4.2x10-10]; Experiment 3 gains r=0.94, P=1.3x10-10, losses 

r=0.90, P=7.9x10-9). Therefore, using metrics based on the model parameters 

instead of the proportion of riskier choices gave the same results in all preceding 

analyses, namely: greater gambling for gains than losses (Experiments 1, 2 and 3); 

and stable but independent preferences for risk and valence (Experiment 2). 

4.3.3 Neuroimaging results 

We next used fMRI to ask if dissociable neural processes underlie the behavioural 

responses to risk and valence, and the independent preferences for each, 

demonstrated behaviourally above (Experiment 3, n=22). We implemented a 2 

valence (gain, loss) by 2 choice (accept, reject) analysis, with a trial-by-trial metric of 

risk as the variance of the lottery. 

Our data revealed dissociable neural processing for risk and valence. The degree 

of risk in the lottery positively correlated with activity in posterior parietal cortex, a 
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region associated with risk (Platt and Glimcher, 1999; Huettel et al., 2005; Mohr et 

al., 2010), and in middle temporal gyrus (Fig. 4.8; Table 4.1). In contrast, an effect of 

valence was expressed in greater activity for gains than losses in value-related 

(O’Doherty, 2004; Rangel et al., 2008) areas of orbitofrontal cortex and bilateral 

striatum (Fig.4.8), as well as left dorsolateral prefrontal cortex and right posterior 

insula. Further, we demonstrated an anatomical dissociation between this risk and 

valence related processing, by using exclusive masking with a liberal threshold 

(P<0.05 uncorrected). The risk-related parietal activity still survived whole brain 

correction having removed the valence-related voxels; as did the valence-related 

activity in OFC, striatum and posterior insula having removed the risk-related voxels. 

Interestingly, no activity for losses relative to gains survived whole brain correction, 

and only by taking anterior insula (Mohr et al., 2010) and amygdala (De Martino et 

al., 2006; Guitart-Masip et al., 2010) as a priori regions of interest did left insula 

survive small volume correction.  

 

 

Figure 4.8 Dissociable neural encoding of stimulus risk and valence. In 

Experiment 3, 22 participants underwent fMRI scanning whilst performing the 

“accept/reject” task, which independently manipulated the degree of risk and the 

valence in outcomes. a) For valence, greater activity was seen for gains than losses 

in orbitofrontal cortex and bilateral striatum. b) Risk was measured as the variance of 

the lottery, and this positively correlated with activity in posterior parietal cortex. This 

activity for valence and risk was neuroanatomically dissociable, as shown by 

exclusive masking with a liberal threshold. 

 

Our neural data also revealed dissociable substrates corresponding to the 

independent inter-individual differences found behaviourally for risk and valence. 
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Greater individual risk aversion (i.e. lower PropRiskyall) predicted enhanced activity 

when accepting than when rejecting a risky option, in areas including the risk-related 

region of posterior parietal cortex and bilateral anterior insula/inferior frontal gyrus 

(IFG; Fig. 4.10; Table 4.2). By contrast, the more an individual’s choices were 

influenced by valence (ImpValence, defined above), the greater the enhancement of 

valence-related activity for gains relative to losses in right posterior insula (Fig. 4.9). 

Again, we used exclusive masking with a liberal threshold (P<0.05 uncorrected) to 

demonstrate a dissociation between these risk and valence related regions. 

 

Figure 4.9 Inter-individual differences in the impact of valence. We derive a 

simple metric of the impact of valence as the difference in riskier choices in each 

domain (ImpValence = PropRiskgain-PropRiskloss). The greater this metric, the greater 

was an individual’s activity for the main effect of gains>losses in right posterior insula. 

These neural findings provide evidence that stimulus risk and valence undergo 

separable processing. However, this does not explain how they influence action 

selection to bias choice. One possibility is that they influence the individual’s 

disposition to approach or avoid stimuli, by acting as appetitive or aversive stimulus 

features. Such approach/avoidance mechanisms appear to underlie a variety of 

biases in humans and animals (Dayan, 2008; Rangel et al., 2008; Dayan and 

Seymour, 2009; Guitart-Masip et al., 2010), and are consistent with the patterns of 

activity we observe for both risk and valence when individuals approach (accept) the 

lottery. Thus, the more averse an individual was to risk (i.e. lower PropRiskyall), the 
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greater the activity evoked when approaching (i.e. accepting) the risky option in 

areas including anterior insula/IFG (Fig. 4.10), a region known to support aversive 

representations (Calder et al., 2001; Seymour et al., 2007). In relation to valence, 

actions can be parsed into approach (accept) or avoidance (reject). Of the four 

possible actions in our task (Gainaccept, Gainreject, Lossaccept, Lossreject) individuals are 

least disposed to choose the lottery with losses, and this specific action to which 

individuals were most averse (Lossaccept) was the sole action associated with 

increased anterior insula/IFG activity (Fig. 4.10). 
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Figure 4.10 Approaching risk and loss. A possible mechanism by which valence 

and risk bias choice is by influencing the disposition to approach economic stimuli. 

Actions can be parsed into approach (accept) or avoidance (reject). a) In relation to 

valence, anterior insula/IFG demonstrates an interaction of choice (accept, reject) 

and valence (gain, loss). Panel b) shows this interaction was driven by increased 

activity when approaching (accepting) the lottery with losses (Lossaccept), which was 

the specific action to which individuals were most averse of the four possible actions 

in our task (Gainaccept, Gainreject, Lossaccept, Lossreject). Parameter estimates are taken 

from the peak for this interaction in right anterior insula/IFG. c) For risk, the more 

averse an individual was to risk (i.e. lower PropRiskyall), the greater the activity when 

approaching (i.e. accepting) the risky option in areas including anterior insula/IFG. d) 

For illustration we plot this correlation with risk aversion (Risk aversion = 0.5 – 

PropRiskall; i.e. risk-neutral = 0, risk-averse>0) at the peak for this activity in right 

anterior insula/IFG. Error bars indicate s.e.m.. 

4.4 Discussion 

We describe greater gambling for gains than losses, a finding inconsistent with a 

tied relationship between risk and valence that specifies a valence-induced bias in 

the opposite direction. Instead, we found behavioural and neural dissociations 

between the effects of risk and valence, consistent with an hypothesis that risk and 

valence exert independent influences on choice. We showed that a simple 

manipulation of task structure dissociated the impacts of risk and valence, by 
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selectively reversing the effect of valence while leaving a risk-induced bias 

unaffected; that individual preferences for each were also independent; and further 

that risk and valence were encoded by distinct neural systems. These dissociations 

are not predicted by existing behavioural economic theory (Kahneman and Tversky, 

1979; Tversky and Kahneman, 1992), but can be accommodated in a biologically-

based account of choice in which risk and loss bias approach towards economic 

stimuli. 

Mounting evidence suggests distinct valuation systems compete for control of 

action, including more reflexive systems that relate the value of particular states to 

innate behavioural repertoires like avoidance (Kim and Jung, 2006; Seymour et al., 

2007; Dayan and Seymour, 2009); and more sophisticated goal-directed systems 

that use explicit models of the environment to select actions (Dayan, 2008; Rangel et 

al., 2008). Here, loss and risk may act through the former to bias choice by triggering 

avoidance or approach responses, although the degree of similarity between risk and 

valence related systems is a matter for further study. With respect to the insights of 

Prospect Theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992), this 

account is consistent with the idea of loss aversion in which losses have greater 

weight (“loom larger”) than gains, although not with the “reflection effect” that 

specifies risk-seeking with losses and risk-aversion with gains. More broadly, that risk 

and valence bias (i.e. systematically influence) choice is not unexpected biologically, 

given previous work showing loss aversion in non-human primates (Chen et al., 

2006) while risk sensitivity is well known to be phylogentically ancient (Real et al., 

1982; Barnard and Brown, 1985; Kacelnik and Bateson, 1996).  

The observation that individuals are biased to avoid a stimulus containing loss can 

explain behaviour in a variety of tasks. Framing a sure option as a loss biased 

individuals to avoid that sure option and choose a gamble instead (De Martino et al., 

2006), a bias that can also be elicited by aversive conditioned stimuli presented 
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incidentally with the sure option (Guitart-Masip et al., 2010). Avoidance of economic 

stimuli containing losses also explains why individuals are biased away from 

choosing “loss-gain mixed gambles”, which are economic stimuli containing losses 

along with gains (Redelmeier and Tversky, 1992; Tom et al., 2007).  

A biologically-based account is also consistent with the context dependence we 

see in response to losses, where we reverse the direction of the loss-induced bias 

between our “accept/reject” and “selection” tasks (Figs. 2 and 4). Context powerfully 

determines how animals react to aversive stimuli, such that depending on context 

rats under threat respond by fleeing, freezing or even fighting (Blanchard and 

Blanchard, 1988; Seymour et al., 2007; Dayan and Seymour, 2009). Although losses 

induced avoidance in both our tasks, in the “selection” task individuals had to select 

between two lotteries and so could not express avoidance by withdrawal, but instead 

could potentially avoid losses by selecting the higher variance (riskier) option. 

Consistent with our data, context effects in the same direction have been shown with 

“loss-gain mixed gambles”, which when presented analogously to our “accept/reject” 

task were avoided more often than when presented analogously to our “selection” 

task (Ert and Erev, 2008). In the classic paper establishing Prospect Theory 

(Kahneman and Tversky, 1979), each problem presented two options for individuals 

to select between, which led to the same direction of effect as in our “selection” task. 

The neural data from the “accept/reject” task also support the idea that valence 

biases individuals from approaching (accepting) the lottery with losses, expressed by 

increased anterior insula/IFG activity for this action (Fig. 4.8). Anterior insula is 

known to be involved in the representation of aversive stimuli (Calder et al., 2001; 

Seymour et al., 2007), although we recognise that fMRI data is only suggestive and 

that causal evidence for an approach/avoidance mechanism will depend on further 

experiments. Nevertheless, our data help reconcile previously discrepant neural 

findings concerning valence. As expected we find greater activity for gains than 



99 

 

losses in a ventral valuation network comprising bilateral striatum and orbitofrontal 

cortex (O’Doherty, 2004; Tom et al., 2007; Rangel et al., 2008). However, with 

respect to loss-related activity, whilst some studies report activity in regions 

associated with aversive processing, such as amygdala (De Martino et al., 2006; 

Guitart-Masip et al., 2010) and anterior insula (Guitart-Masip et al., 2010), others do 

not (Tom et al., 2007). Crucially the loss-related activity we find in anterior insula is 

driven by having to approach losses, explaining why loss-related activity is reported 

by studies using contrasts including choice (De Martino et al., 2006; Guitart-Masip et 

al., 2010), such as in the interaction we see between valence and choice (Fig. 4.10). 

That we see loss-related activity in anterior insula rather than amygdala may reflect 

its involvement in representing more complex aspects of aversive stimuli (Seymour et 

al., 2007).  

With respect to risk, the overall proportion of riskier choices was similar in the 

“accept/reject” and “selection” tasks (PropRiskall in Figs. 4.3, 4.4), where by design 

the magnitudes of the differences in risk between the two options in the trials was 

similar. Most individuals were biased (i.e. systematically influenced) to be averse to 

risk overall. This impact of risk was seen regardless of whether context led valence to 

induce greater gambling for gains than losses, or the opposite. That risk constitutes 

an important variable influencing choice is a long-standing idea in psychology 

(Coombs and Pruitt, 1960), finance (Markowitz, 1952; Bossaerts, 2010) and animal 

behaviour (Real et al., 1982; Barnard and Brown, 1985; Kacelnik and Bateson, 

1996); which has been argued to involve an important affective component 

(Schonberg et al., 2011). 

Our neural data revealed activity encoding the degree of stimulus risk in parietal 

cortex (Fig. 3), which was anatomically dissociated from activity encoding the 

stimulus valence. Such parietal activity concurs with single unit and fMRI data 

showing enhanced activity during risky decision-making (Platt and Glimcher, 1999; 
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Huettel et al., 2005; Mohr et al., 2010). Interestingly, we did not observe this 

correlation in insula, previously seen in the absence of parietal activity when risk is 

manipulated by altering win probability (Preuschoff et al., 2006). Instead, parietal 

cortex is known to express an interaction between number and space (Hubbard et 

al., 2005), suggesting that this parietal risk representation may reflect the spread of 

an outcome distribution. Our neural data do implicate anterior insula in one potential 

mechanism by which risk may bias choice, namely where individuals were biased 

from approaching (choosing) stimuli containing risk. Consistent with such a 

mechanism, we found greater individual aversion to risk associated with greater 

activity when approaching the risky option in anterior insula/IFG (Fig. 4.8).  

Finally, we demonstrate stable and independent inter-individual differences for risk 

and valence (Figs. 4.5, 4.6), which were mirrored by dissociable neural correlates of 

inter-individual differences for each (Figs. 4.9, 4.10). These findings are supportive of 

independence between risk and valence induced biases, although alone are not 

inconsistent with the “reflection effect” in Prospect Theory (Kahneman and Tversky, 

1979; Tversky and Kahneman, 1992). Stability in the aversive impact of loss on 

choice over time has not to our knowledge been previously demonstrated, and is 

interesting in light of work suggesting framing effects may be genetically mediated 

(Roiser et al., 2009). Stability in the impact of risk concurs with work showing stability 

over time durations of months (Andersen et al., 2008). Our finding of functional 

segregation in insula for these preferences also fits recent work showing this region’s 

putative role in preferences (Singer et al., 2009a), and considerable functional 

segregation in this large cortical region (Caruana et al., 2011).  

In conclusion, we find behavioural and neural dissociations between the effects of 

risk and valence, consistent with an hypothesis that risk and valence exert 

independent biases on choice. These dissociations are not predicted by existing 

behavioural economic theory. However, a biologically-based account of choice, in 
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which risk and valence bias approach responses, can explain both classical 

(Kahneman and Tversky, 1979; Camerer, 1989; Battalio et al., 1990; Tversky and 

Kahneman, 1992) and our new findings. Specifically, within an account of choice 

proceeding from option evaluation to action selection (Corrado et al., 2009), we 

suggest that the risk and valence of an economic stimulus are processed by 

separable neural systems, and may influence action-selection partly through reflexive 

systems that bias approach responses. Recasting the relationship between risk and 

valence from a biological perspective yields testable predictions, and carries 

implications across the diverse disciplines to which existing theory (Kahneman and 

Tversky, 1979; Tversky and Kahneman, 1992) has been applied, including the 

economic (Camerer, 1998), cognitive (De Martino et al., 2006) and political sciences 

(Levy, 2003). In the next Chapter, we directly test the predictions of an approach 

avoidance mechanism using reaction times. 
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4.5 Tables 

Regions L/R x y z Z # vox Corr. P 
value 

Gain>loss      

OFC / rostral ACC R 6 38 -8 
6 50 13 
9 38 -17 

4.67 
4.29 
4.22 

 

876 <0.001 

Putamen 
 

Putamen 

L 
 

R 

-12 11 22 
-24 -10 13 

24 11 1 

4.53 
3.99 
4.18 

680 <0.001 

Posterior Insula 
 
 

R 30 -22 19 
36 -34 16 
39 -19 16 

4.29 
3.79 
3.75 

157 0.008 

Loss>gain  nil    

Accept>reject      

Caudate 
 

R 15 17 10 
0 -1 16 

6 -13 25 

5.65 
4.02 
3.86 

288 <0.001 

Infr. Parietal lob. 
 

Precuneus 

R 51 -34 49 
45 -43 46 
21 -73 43 

4.62 
4.39 
4.06 

1539 <0.001 

Supr. Medl. gyrus 
 

Supr. Medl. gyrus 

R 
 
L 

9 32 40 
24 14 46 
3 38 31 

4.15 
4.00 
4.15 

1226 <0.001 

Reject>accept  nil    

Interaction (gain>loss, 
reject>accept) 

     

pre-SMA R 9 20 61 
-3 29 52 
0 32 43 

4.21 
3.62 
3.58 

285 0.003 

Anterior Insula / IFG 
 
 

R 30 26 -8 
27 20 -20 
39 20 -11 

4.02 
3.39 
3.38 

97 0.025 

Interaction (gain>loss, 
accept>reject) 

 nil    

Variance (pos. correl.)      

ITG / MTG R 48 -61 -8 
54 -55 -2 

4.59 
4.41 

155 <0.001 

Posterior parietal 
Supr. parietal / precuneus 

 

R 39 -82 22 
15 -70 55 
33 -64 34 

4.48 
4.25 
4.12 

316 <0.001 

Variance (neg. correl.)      

Cerebellum L/R -6 -76 -17 
-9 -79 -26 
6 -73 -23 

4.84 
4.61 
4.24 

732 <0.001 
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Table 4.1 fMRI results across subjects. This table shows all activity surviving 

cluster level correction (P<0.05 FWE corrected; threshold of P<0.005 used to define 

the clusters) for contrasts involving: valence (gain versus loss); choice (accept versus 

reject); interaction of choice and valence; positive and negative correlations with 

variance; positive and negative correlations with expected value; interaction of 

variance in gains versus losses. For each cluster is shown: the three constituent 

peaks with the highest Z-scores; the number of voxels at P<0.005 (uncorrected); and 

the P-value of the cluster after FWE correction across the whole brain. No regions 

significantly correlated with expected value. In addition to these whole brain corrected 

results: left anterior insula showed the same interaction (gain>loss, reject>accept x=-

27 y=20 z=-11 #vox=69) as right anterior insula, which was again driven by increased 

activity when accepting the lottery with losses; and on the left this also led to activity 

for loss>gain (x= -33 y=20 z=-5 Z=4.13 #vox=51). (ACC = Anterior Cingulate Cortex; 

IFG = Inferior Frontal Gyrus; OFC = orbitofrontal cortex; SMA = Supplementary Motor 

Area). 
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Regions L/R x y z Z # vox Corr. P 
value 

PropRiskall (neg correl.) on 
accept>reject 

     

Infr. parietal lob. 
Postcentral gyr. 

L/R -54 -43 49 
33 -70 46 
-30 -46 43 

5.20 
4.67 
4.54 

2328 <0.001 

Anterior Insula / IFG 
 

L -42 20 -8 
-33 20 -11 
-51 38 1 

5.02 
4.76 
4.20 

384 <0.001 

Anterior Insula / IFG 
 

R 39 23 -11 
48 23 -8 
42 20 -2 

4.47 
4.47 
4.25 

212 0.003 

Middle Frontal gyr. L -30 2 61 
-33 -16 52 
-24 -7 49 

4.19 
3.97 
3.52 

194 0.022 

Supr. Medl. gyr. 
 

L/R -3 29 49 
6 23 43 

51 14 22 

4.17 
4.16 
4.05 

768 <0.001 

Caudate 
Thalamus 

 

R 15 -7 13 
15 8 13 
9 -31 1 

4.06 
4.01 
3.82 

458 <0.001 

Valence Impact (pos 
correl.) on gain>loss 

     

Posterior insula R 39 -10 13 
63 -19 4 

36 -31 16 

4.32 
3.87 
3.22 

129 0.008 

 

Table 4.2 fMRI results between subjects, using second level covariates related 

to risk and valence. This table shows all activity surviving cluster level correction 

(P<0.05 FWE corrected; threshold of P<0.005 used to define the clusters) for 

contrasts involving: the second level covariate for risk (PropRiskall) on activity for 

accept>reject; and the second level covariate for valence (ImpValence) on activity for 

gain>loss. The negative correlation with risk preference (PropRiskall) indicates greater 

activity for accepting (approaching) the lottery with increasing risk aversion. For each 

cluster is shown: the three constituent peaks with the highest Z-scores; the number of 

voxels at P<0.005 (uncorrected); and the P-value of the cluster after FWE correction 

across the whole brain. (IFG = Inferior Frontal Gyrus). 
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Chapter 5. Individual choice: Avoiding losses and 

approaching risks bias reaction times 

5.1 Introduction 

As described in the preceding chapter, the degree of risk in outcomes and their 

valence are powerful determinants of choice. In Prospect Theory the “reflection 

effect” specifies a tied relationship between risk and loss, such that individuals prefer 

gambling with losses and also safer options with gains (Kahneman and Tversky, 

1979; Tversky and Kahneman, 1992). However, the preceding chapter suggests 

instead that risk and valence exert independent biases on choice: that is valence 

influences choice, but can either increase or decrease gambling dependent on 

context; and regardless of whether valence increases or decreases gambling, 

collapsing across domains there is a consistent overall effect of risk. Furthermore, 

our neural data, particularly in anterior insula, suggest a potential mechanism by 

which risk and valence bias choice, acting through systems that trigger approach 

towards appetitive and avoidance of aversive stimulus components. Here, in this 

chapter we test our hypothesis that risk and valence exert independent biases 

through approach/avoidance mechanisms using reaction time (RT) data. 

Reaction times have previously been shown to be slower towards aversive and 

faster towards appetitive stimuli (Guitart-Masip et al., 2011). If valence and risk are 

indeed such stimulus features, this makes for the following predictions. With respect 

to valence, individuals will be slower to approach (choose) options containing losses 

than gains. With respect to risk, this stimulus feature can be aversive, neutral or 

appetitive depending on an individual’s risk preference. We predict that when risk-

averse individuals will be slower to approach, when risk-neutral will show no RT bias; 

and when risk-seeking they will be faster to approach risk.  
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Furthermore, we can use RT data to suggest where within the choice process risk 

and valence might exert their biases. As described in the Literature Review (Chapter 

2), the choice process can be broadly considered to consist of option evaluation and 

then action selection (Corrado et al., 2008). In this chapter we allow subjects to 

select their action at any point within the trial; whilst in the preceding chapter 

(Chapter 4) on each trial individuals evaluated the options during an imposed wait 

period before action selection. If in the free response experiments we see the same 

RT biases as were seen previously with the imposed wait, this would be more 

suggestive of a bias affecting the later action selection than option evaluation. 

5.2 Methods 

In the experiments reported in the previous chapter, in each trial participants were 

required to wait for 4020msec evaluating the options before then having 1500 msec 

in which to choose. Here, we report data from two new experiments in which 

individuals were free to respond at any time within the 5520msec that the options 

were displayed (Fig. 5.1). In one new experiment we used the “accept/reject” task, 

and we refer to this dataset as AccRejfree; n=19). The second new experiment used 

the “selection” task (Selectionfree; n=34). 

We compare behaviour in our two new free response time experiments to 

behaviour in the tasks with an imposed wait time. The latter uses data from two 

experiments from the preceding chapter, one using the “accept/reject” task 

(AccRejwait; n=22; Experiment 3 in the preceding chapter) and one using the 

“selection” task (Selectionwait ; n=24; Experiment 4 in the preceding chapter). Due to 

a coding error, reaction times were not accurately recorded in Experiments 1 and 2 

from the preceding chapter. 

Therefore, here we present results from four experiments (AccRejfree; Selectionfree; 

AccRejwait; and Selectionwait), in which we can examine the effect of task 
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(“accept/reject” and “selection” tasks) and response (“free” and “wait”) on choice and 

reaction times. The study was approved by the Institute of Neurology (University 

College, London) Research Ethics Committee. 

5.2.1 Participants 

All participants were recruited using institutional mailing lists, were healthy and 

provided informed consent. In our two new experiments, 19 participants took part in 

AccRejfree (mean age 23 years, range 19-31; 6 male; one further participant was 

excluded as they only rejected); and 34 participants took part in Selectionfree (mean 

age 24 years, range 19-36; 16 male; one further participant was excluded who 

confused the buttons). As described in the preceding chapter, 22 right-handed 

participants took part in the AccRejwait experiment (age mean 22 years, range 18-32; 

6 male); and 24 participants took part in Selectionwait experiment (age mean 23 

years, range 18-34; 3 male). 

5.2.2 Task 

The two experiments using an imposed wait (AccRejwait and Selectionwait) are 

described in the preceding chapter. Each trial began with a fixation cross presented 

for 1-2secs (mean 1.5secs); followed by viewing the options for 4020msec; and 

finally a black square appeared to indicate participants had 1500msec to input their 

choice by button press (the black square turned white when they chose). The two 

new experiments (AccRejfree and Selectionfree) were identical, except that individuals 

could choose at any point during the 5520msec for which the stimuli were presented 

(the black square was present throughout stimulus presentation and turned white 

when they chose). 

As described in the previous chapter, in each experiment there were 100 “gain 

trials” and 100 “loss trials”, with all 200 trials presented in random order. Payment 

was as before. Participants began the day with an endowment of £12. At the end of 
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the experiment, one “gain trial” and one “loss trial” were picked at random and the 

outcome of both were added to the endowment to determine payment. Participants 

could receive between £0-24 in the task. The AccRejwait dataset was previously 

acquired during fMRI scanning and all amounts were doubled. 

5.2.3 Stimulus sets 

In the “accept/reject” task we used the set of trials described in the previous 

chapter (ARMainList), where we manipulated the difference in variance (ΔVar;10 levels) 

and EV (ΔEV;10 levels) of the lottery relative to the sure option of £6 (maximum ΔEV 

1.25, and maximum ΔVar 23.9). In the “Selection” task we used the same set of trials 

described in the preceding chapter (maximum ΔEV 1.9 and maximum ΔVar 18.3). 

5.2.4 Statistical analysis 

All statistical tests used were two tailed. 

5.2.5 Choice modelling 

To ensure consistency between behaviour when participants made a free 

response and the behaviour described in the preceding chapter, we used a model-

based analysis of participants’ choices. We used identical methods to those 

described in preceding chapter.  

5.2.6 Reaction time normalisation 

We normalised each individual’s RTs by taking the natural logarithm, mean-

correcting and dividing by the standard deviation. However, we note that our findings 

were the same irrespective of having used “raw” or normalised RTs.  
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5.3 Results 

5.3.1 Choice behaviour with free response period 

Choice behaviour in the two new experiments with a free response (AccRejfree and 

Selectionfree experiments) strikingly replicate our previous results using an imposed 

wait period (AccRejwait and Selectionwait experiments) (Fig. 5.1). As before, both risk 

and valence strongly influenced choice in the “accept/reject” task and the “selection” 

task; but with our “selection” task we selectively reverse the direction of the valence-

induced bias whilst leaving the overall risk-induced bias unaffected – that is, we 

again dissociate risk and valence effects. Further, as before inter-individual 

differences for risk and valence were dissociable in both new experiments. This 

choice data is detailed below. 

Impact of risk: In our “accept/reject” task half the lotteries had an expected value 

above the sure amount and half below, providing a simple metric of risk preference 

as the proportion of riskier choices made (PropRisk; risk-neutral=0.5; risk-

averse<0.5; risk-seeking>0.5), which could also be used with our “selection” task. In 

both new experiments our participants were biased to be risk averse, choosing the 

risky option less than half the time overall (i.e. PropRiskall <0.5), shown by one 

sample ttests against the null hypothesis of risk-neutrality (i.e. PropRiskall = 0.5): 

AccRejfree (PropRiskall 0.41±0.14; one-sample t-test versus risk-neutral, t(18)=-2.83, 

P=0.01) and Selectionfree (0.39±0.11; ttest versus risk neutral t(33)=-6.17, P=5.9x10-7). 

There was no difference in the overall risk-aversion between the AccRejfree and 

Selectionfree datasets (independent samples ttest t(51)=-0.75, P=0.46).  

For comparison, as detailed in the preceding chapter: in the AccRejwait experiment 

PropRiskall = 0.40±0.11, t(21)=-4.2, P=0.0002; and in the Selectionwait experiment 

PropRiskall = 0.42±0.11, t(23)=-3.7, P=0.001. 
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Figure 5.1 Experimental design and choice in our two new experiments with 

free response periods. In two new experiments (AccRejfree and Selectionfree ), both 

tasks were exactly as those reported previously (Chapter 4), except that here on each 

trial individuals could respond at any time during the 5.5 seconds for which the stimuli 

were displayed. Choice in these two new experiments was essentially identical to that 

reported in the previous chapter when there was an imposed wait period before 

response. Panels a-e refer to the “accept/reject” task. a) In each “gain trial” 
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individuals chose to accept a lottery (4 possible outcomes, all ≥ 0) or reject and so 

receive £6 for certain. b) In the 100 “gain trials” we parametrically and orthogonally 

manipulated the degree of risk (defined as outcome variance; 10 levels) and 

expected value (EV; 10 levels) of the lotteries. Half the lotteries had an EV above the 

sure amount and half below, metricating risk preference as the proportion of riskier 

choices (PropRisk; risk-averse<0.5; risk-neutral=0.5; risk-seeking>0.5). c) Multiplying 

all “gain trial” amounts by -1 gave 100 “loss trials”. d) Behaviour in the “accept/reject” 

task (AccRejfree, n=19). Individuals were risk averse overall (i.e. PropRiskall <0.5). 

Valence also biased choice, with more gambling for gains than losses (ImpValence = 

PropRiskgain-PropRiskloss). e) Individuals’ risk and valence-related preferences were 

independent. Panels f-i refer to the “selection” task, in which again there were: f) 100 

“gain trials”; and g) 100 “loss trials”. However, here in each trial individuals were 

presented with two lotteries to consider and select between. g) In the “selection” task 

(Selectionfree, n=34) again there was overall risk aversion overall (i.e. PropRiskall 

<0.5), but the direction of the valence effect was completely reversed. i) Individuals’ 

risk and valence-related preferences were independent. Error bars show s.e.m., * 

P<0.05, ** P=0.005. 

 
Impact of valence: As before, we extracted a simple metric for the valence-

induced bias from the difference in riskier choices in each domain (ImpValence = 

PropRiskgain-PropRiskloss). Valence biased choice in both new experiments, as shown 

by one sample t-tests against the null hypothesis of no bias (i.e. ImpValence = 0): 

AccRejfree (ImpValence = 0.11±0.20, t(18)=2.36, P=0.030); Selectionfree (ImpValence 

= -0.15±0.29, t(33)=-3.12, P=0.004). The magnitude of the valence related bias was 

the same in both tasks (independent samples ttest t(51)=0.59, P=0.56). 

For comparison, as detailed in the preceding chapter: in the AccRejwait experiment 

ImpValence = 0.18±0.15, t(21)=5.6, P=1.5x10-5; and in the Selectionwait experiment 

ImpValence = -0.16±0.25, t(23)=-3.1, P=0.005. 

Relationship between the risk- and valence-induced biases: In the 

“accept/reject” task participants gambled more for gain than loss outcomes 

(AccRejfree ttest t(18)=2.36, P=0.03). In the “selection” task we reversed the direction of 

this valence-induced bias and showed more gambling for losses than gains 

(Selectionfree, ttest t(33)=-3.12, P=0.004). Thus, despite context reversing the effect of 



112 

 

valence, context had no effect on the overall risk-induced bias (i.e. risk and valence 

effects are dissociated). 

As before, this robust valence-induced bias did not result in participants becoming 

absolutely risk-seeking in either valence in either experiment, as shown by one 

sample ttests against risk-neutrality (i.e. PropRisk = 0.5): in the AccRejfree experiment 

(PropRiskgain 0.47±0.18, t(18)=-0.79, P=0.44; PropRiskloss 0.36±0.16, t(18)=-4.01, 

P=0.001); and in the Selectionfree experiment (PropRiskgain (0.31±0.16; ttest t(33)=-

6.95, P=6.1x10-8; PropRiskloss 0.46±0.20 ttest t(33)=-1.09, P=0.29). 

5.3.1.1 Independent inter-individual differences for risk and valence  

As before, inter-individual differences for risk and valence were dissociable in both 

our new experiments. There was no correlation between PropRiskall and ImpValence 

in either the AccRejfree experiment (r = 0.17, P=0.49) or the Selectionfree experiment 

(r=-0.14 P=0.53; Fig. 5.2). 

5.3.1.2 Behavioural modelling of choice behaviour 

Model-based analysis of data from the accept/reject task replicated our previous 

findings (Fig. 5.3). Choice was best predicted by models incorporating both risk and 

valence induced biases, and as before the winning model was the Mean-Variance-

Valence model described in the preceding chapter.  
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Figure 5.2 Behavioural model comparison in the new AccRejfree experiment. We 

show the same results as before, with the Mean-Variance-Valence model best 

predicting choice. We plot the summed BIC for each model relative to that for the 

worst performing model (Mean-Only). The effects of risk and valence are seen clearly 

by comparing our three related “summary statistic” models: the simple Mean-Only 

model where individuals care only about the mean value of the options (Mn_Only) is 

markedly improved by adding the influence of risk in the Mean-Variance model 

(Mn_Var), which in turn is markedly improved by also accounting for valence in our 

Mean-Variance-Valence model (Mn_Var_Val) that includes separate risk parameters 

for each valence. The importance of risk and valence is also evident with our 

Expected Utility (EUT) and Prospetic models: the EUT model incorporates the impact 

of risk and it out-performs the Mean-Only model described above, but the EUT model 

is itself outperformed by the Prospetic model that also accounts for valence. 

5.3.2 Reaction times with free response 

5.3.2.1 Approaching valence biases reaction times 

We next tested our hypothesis that individuals are slower to choose (approach) 

losses than gains – regardless of whether the task induces increased gambling for 

gains relative to losses (“accept/reject” task) or the reverse (“selection” task). As 

predicted individuals were slower to approach losses than gains in both new 

experiments, using the “accept/reject” task (AccRejfree: gains mean RT 2975± 

s.d.574msec; losses 3189±648; t(18)=4.62, P=2.1x10-4) and the “selection” task 

(Selectionfree: losses 3222±525; gains 2681±472; t(33)=13.04, P=1.4x10-14) (Fig. 5.2). 

This main effect of valence was also seen in a 2 valence (gain, loss) by 2 choice 

(riskier, surer) analysis of variance (ANOVA), with RT as the dependent variable, in 

both new experiments: in the AccRejfree experiment (gain riskier 3066msec ±464; 
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gain surer 3016±702; loss riskier 3365±556; loss surer 3365±556; main effect of 

valence F(1,18)=29.0, P=4.1x10-5; no main effect choice F(1,18)=2.87, P=0.11; and no 

interaction F(1,18)=2.63, P=0.12); and in the Selectfree experiment (gain riskier 

2880±604; gain surer 2674±445; loss riskier 3274±544; loss surer 3256±541; main 

effect of valence F(1,33)=245.95, P=7.4x10-17; main effect choice, F(1,33)=8.17, 

P=0.007; and no interaction F(1,33)=3.03, P=0.091). 

 

 

Figure 5.3 Valence biases RTs. In all four experiments individuals were slower to 

approach losses than gains in all four experiments: a) the AccRejfree experiment; b)  

Selectionfree; c) AccRejwait ; and d) Selectionwait. RT data is normalised for each 

subject. In each experiment we parse trials into the four possible events: the 

possibilities here are a gain trial and choose the surer option; a gain trial and choose 

riskier; a loss trial and choose surer, a loss trial and they choose riskier.  

Error bars show s.e.m., * P<0.05, ** P=0.005, *** P<0.0005.  
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5.3.2.2 Approaching risk biases reaction times 

We hypothesised that, depending on an individual’s preferences, risk can be 

aversive, neutral or appetitive. Thus, our approach/avoidance hypothesis makes the 

following predictions: when individuals are risk-averse then they will be slower to 

choose riskier options; when individuals are risk-neutral no RT bias will be seen; and 

when individuals are risk-seeking then they will be faster to choose riskier options. 

Analysing our data averaged across subjects, we show exactly these RT patterns 

for risk-aversion and risk-neutrality in both new experiments (Fig. 5.2). In the 

AccRejfree experiment, risk-aversion seen in losses was associated with slower RTs 

for riskier than safer choices in losses (t(18)=2.49, P=0.023); and the risk-neutrality in 

gains was associated with no RT bias (t(18)=0.51, P=0.62). In the Selectionfree 

experiment, the risk-aversion seen in gains was associated with slower RTs for 

riskier than safer choices (t(33)=2.67, P=0.012); and risk-neutrality in losses was 

associated with no RT bias (t(33)=0.35, P=0.73). 

However, averaging across subjects masks the degree to which RTs conform to 

our predictions concerning risk. For example, although on average we see risk-

neutrality with gains in the “accept/reject” task, this averages across individuals from 

along the full spectrum of risk preferences. In the AccRejfree experiment, an 

individual’s risk preference with gains (PropRiskgain) strongly predicted the RT bias 

(RTriskier-RTsurer) with gains (r=-0.89, P=4.2x10-7); and their risk preference with losses 

(PropRiskloss) strongly predicted the RT bias with losses (r=-0.75, P=2.3x10-4). In the 

Selectionfree we see exactly the same relationship between risk preference and RT 

bias with both gains (r=-0.82, P=4.6x10-9) and losses (r=-0.70, P=4.8x10-6). 

Furthermore, as shown in Fig. 5.4, in both tasks and for both gains and losses, we 

see exactly the predicted pattern, where: risk slowed approach when risk was 

aversive; risk induced no RT bias when risk was neutral; and risk speeded approach 

when risk was appetitive.  
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Figure 5.4 Risk biases RTs and can be aversive, neutral or appetitive. In all four 

experiments, an individual’s risk preference with gains strongly predicted an RT bias 

(RTriskier-RTsurer) with gains; and their risk preference with losses strongly predicted 

the RT bias with losses. In both tasks we observe our predicted pattern, where: risk 

slowed approach when risk was aversive; risk induced no RT bias when risk was 

neutral; and risk speeded approach when risk was appetitive. Gains are in blue and 

losses are in red. Regression lines are shown, which are in not constrained in any 

way. For illustration as a measure of risk preference we plot risk aversion (Risk 

aversion = 0.5 – PropRiskall; i.e. risk-seeking<0, risk-neutral = 0, risk-averse>0). 

5.3.3 Risk and loss bias RTs after imposed wait period 

We replicated these RT biases for risk and valence in our experiments with an 

imposed wait period of 4 seconds in each trial before the 1.5 second choice period 

(AccRejwait; Selectionwait; Fig. 5.4). This suggests that these biases affect action 

selection rather than option evaluation. 
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With respect to valence, individuals were slower to choose (approach) losses than 

gains in both the “accept/reject” task (AccRejwait: losses mean RT 621msec± s.d.105; 

gains 575±; t(21)=3.16, P=0.005) and the “selection” task (Selectionwait: losses 

611±135; gains 531±103; t(23)=6.58, P=1x10-6). This main effect of valence was also 

shown in a 2 valence (gain, loss) by 2 choice (riskier, surer) analysis of variance 

(ANOVA) with RT as the dependent variable in both the AccRejwait experiment (gain 

riskier 584±94; gain surer 575±99; loss riskier 682±141; loss surer 603±99; main 

effect of valence F(1,21)=15.11, P=8.5x10-4; main effect choice F(1,21)=14.58, P=0.001; 

and an interaction F(1,21)=7.41, P=0.013); and the Selectionwait experiment (gain 

riskier 584±131; gain surer 517±103; loss riskier 609±148; loss surer 634±140; main 

effect of valence F(1,23)=41.41, P=1.5x10-6; no main effect choice, F(1,23)=2.56, P=0.12; 

and an interaction F(1,23)=11.00, P=0.003). 

With respect to risk, analysing our data averaged across subjects we again show 

the predicted RT pattern for risk-aversion and risk-neutrality in both experiments with 

an imposed wait (Fig. 5.2). In the AccRejwait experiment, the risk-aversion seen in 

losses was associated with slower RTs for riskier than safer choices in losses 

(t(21)=4.00, P=7.2x10-4); and the risk-neutrality in gains was associated with no RT 

bias in gains (t(21)=0.65, P=0.52). In the Selectionwait experiment, the risk-aversion 

seen in gains was associated with slower RTs for riskier than safer choices in gains 

(t(23)=3.62, P=0.001); and risk-neutrality in losses was associated with no RT bias in 

losses (t(23)=1.24, P=0.23). 

Further with respect to risk, we again show that individuals’ choice biases 

associated with risk were strongly correlated with their RT biases induced by risk 

(Fig. 5.3). In the AccRejwait experiment, an individual’s risk preference with gains 

(PropRiskgain) predicted the RT bias (RTriskier-RTsurer) with gains (r=-0.46, P=0.03); and 

their risk preference with losses (PropRiskloss) predicted the RT bias with losses (r=-

0.63, P=0.002). In the Selectionwait we see exactly the same relationship between risk 
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preference and RT bias with both gains (r=-0.66, P=4.4x10-4) and losses (r=-0.69, 

P=2.0x10-4). Furthermore, as shown in Fig. 5.5, in both tasks and for both gains and 

losses, we see exactly the predicted pattern of risk slowing approach when risk is 

aversive, inducing no bias when risk is neutral, and speeding approach when risk is 

appetitive. 

 

Figure 5.5 Raw RTs suggest risk and valence bias action selection rather than 

option evaluation. This figure is exactly as Fig.5.3 but with raw RT displayed, to 

illustrate RT biases between the free response and imposed wait versions of each 

task – despite there being a very large difference in RT  between them. Error bars 

show s.e.m., * P<0.05, ** P=0.005, *** P<0.0005.  

5.4 Discussion 

In this chapter we tested an hypothesis that risk and valence biased choice 

through the approach/avoidance mechanisms suggested by our fMRI data in Chapter 
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4. We find RT evidence for such approach/avoidance mechanism for valence, such 

that individuals are slower to choose (approach) options containing loss (Fig. 5.2), 

regardless of whether loss induces greater gambling for gains than losses (in our 

“accept/reject” task) or the opposite (in our “selection” task). We also find RT 

evidence for such an approach/avoidance mechanism for risk, where risk can be 

aversive, neutral or appetitive depending upon subjective risk preference (Fig. 5.3). 

Furthermore, consistent these biases influencing action selection rather than option 

evaluation, we find the same RT biases even after an imposed wait for option 

evaluation that is longer than the average free response time (Fig. 5.4).  

 

 

 

Figure 5.6 Concordant fMRI and RT evidence for approach/avoidance 

mechanisms. For ease of comparison, we show fMRI data from the “accept/reject” 

task previously presented in the previous Chapter, and we show RT data from the 

“accept/reject” task previously presented in this Chapter. For valence, in anterior 
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insula (panels a and b) we show increased activity when approaching the risky option 

with losses (the most aversive option), which is the same pattern we see in our RT 

data in this chapter (panel c). For risk, we see that in anterior insula the greater an 

individual’s risk aversion the greater the activity when choosing the risky relative to 

sure option (panels d and e), which is the same pattern we see in our RT data in this 

chapter (panel f). 

 

One potential explanation for the risk-related RT bias in the “accept/reject” task 

(Fig. 5.3) is that risk-preference is defined by the frequency with which the riskier 

option is chosen, as one might then expect more frequently performed actions to be 

faster. However, this cannot account for the valence related bias (Fig. 5.2). 

Furthermore, it cannot account for the same risk-related biases seen in the 

“selection” task (Fig. 5.3), where the riskier option could randomly appear on either 

side of the screen and was chosen by the related button press (Fig. 5.1). 

Our findings can explain previously reported longer RTs for losses than gains 

(Dickhaut et al., 2003), although we note that a number of previous studies 

examining risk and valence do not report RTs (e.g. Tom et al., 2007). Interestingly, 

where framing is used to manipulate valence rather than actual losses, no RT 

difference was noted with frame (De Martino et al., 2006; Guitart-Masip et al., 2010). 

Finally, in support of our approach/avoidance hypothesis, we see a striking 

concordance between reaction time data and findings in anterior insula during the 

“accept/reject” task (Chapter 4 and Fig. 5.6). Together, these findings support a 

biologically-based explanation of choice that can account for behavioural patterns not 

predicted by existing economic theories. 
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Chapter 6. Social choice: Neural mechanisms 

underlying fairness in choice 

6.1 Introduction 

Fairness is of interest to sociologists (Homans, 1961), economists (Akerlof, 1979; 

Kahneman et al., 1986) and neuroscientists (Sanfey et al., 2003). Fairness reflects 

objective features of how people share resources, classically elicited in the Ultimatum 

Game (UG) where one player (the Proposer) is given an endowment (e.g. £10) and 

proposes a division (e.g. keep £6/offer £4) to a second player (the Responder), who 

can accept (both get the proposed split) or reject (both get nothing) the offer (Güth et 

al., 1982). In the Rational Choice Theory framework Game Theory, as described in 

Chapter 2 a Responder should accept any offer however low, and knowing this a 

Proposer should offer the lowest possible amount – but behaviour does not conform 

to this prediction, with low offer proportions routinely rejected (Camerer, 2003). This 

has been accommodated in behavioural economic models using “other-regarding 

preferences”. However, fairness attribution varies between contexts and individuals: 

labourers’ wages might not seem unfair considered alongside colleagues, yet 

extremely unfair alongside executives’ salaries. This contextual aspect cannot well 

be explained using behavioural economic models. Here, we aim to tease apart 

objective and contextual components of fairness, dissociating their neural substrates. 

Importantly, we define the contextual component of fairness as a choice bias, leaving 

open the question of whether subjects are subjectively aware of this shift (Pronin, 

2007).  

Responders in the classic UG are reported to show greater activity in anterior 

insula and dorsolateral prefrontal cortex (DLPFC) for lower compared to higher 

offers, a finding interpreted as reflecting fairness and cognitive-control respectively 

(Sanfey et al., 2003). However, as the classic UG cannot dissociate objective and 
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contextual fairness, alternative approaches have endeavoured to isolate components 

of fairness in the UG. One attempt to unconfound fairness from offer amount treated 

it as synonymous with offered endowment proportion, implicating lateral PFC in 

cognitive control (Tabibnia et al., 2008). An alternative strategy manipulated the 

stimuli used, where by changing Proposer intentionality anterior insula cortex was 

implicated in fairness responses (Güroğlu et al., 2010). Outside the UG framework 

others have investigated reward comparison (Fliessbach et al., 2007) and fairness in 

third-party decisions (Hsu et al., 2008), with the latter demonstrating that posterior 

(but not anterior) insula tracked an objective measure of fairness, namely inequality. 

However, an isolated fairness manipulation has not as yet been reported.  

Here, we contextually manipulate the fairness of a set of offers from a group of 

Proposers by presentation: alone; interleaved with higher offers from different 

Proposers; or interleaved with lower offers. Using a formal inequality aversion model 

(Messick and McClintock, 1968; Fehr and Schmidt, 1999) we isolated objective and 

contextual fairness components together with economic self-interest, and apply this 

model’s parameters to fMRI data. Behaviourally, we predicted increased acceptance 

when offers were contextually perceived as fairer, despite being objectively identical. 

Neurally, we predicted anatomical dissociations between cognitive control in 

prefrontal and fairness in insula cortex. Within insula itself, a broad-based framework 

suggests a role for posterior insula encoding more primary quantities, mid-insula in 

contextual integration (Craig, 2002, 2009) and anterior insula in introspective 

awareness of emotion and bodily-state (Critchley et al., 2004; Paulus and Stein, 

2006; Singer et al., 2009b). Also within insula, previous studies suggested objective 

inequality is encoded posteriorly (Hsu et al., 2008) and an integrated fairness metric 

anteriorly (Sanfey et al., 2003). Therefore, within insula we predicted objective and 

contextual aspects of fairness would map to posterior and mid/anterior regions 

respectively. 
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6.2 Materials and methods 

6.2.1 Subjects 

32 healthy, right-handed subjects participated in the study, 16 of whom played an 

Ultimatum Game (UG) during fMRI scanning (10 male; age 18-30; mean age 21.8) 

and 16 undertook exactly the same task outside the scanner (4 male; age 18-26; 

mean age 20.6). Two further subjects were excluded from the study, one because he 

could not tolerate the MRI scanner and the other because he did not understand the 

task. All subjects provided informed consent and the study was approved by the 

Institute of Neurology (University College, London) Research Ethics Committee. 

6.2.2 Experimental design 

Subjects underwent fMRI scanning or behavioural testing as Responder in an UG. 

The general form of the UG with two players is as follows. Initially, one player (the 

Proposer) is given an endowment (e.g. £8) and makes an offer to the second player 

(the Responder) about how to split the endowment (e.g. £6 for the Proposer and £2 

for the Responder). The Responder then chooses to accept the offer (both get the 

split as proposed) or to reject it (both get nothing). 

To reinforce the social nature of the task, two subjects always attended each 

experimental session and at the outset were seated together. Prior to data collection 

the pair were assigned to separate testing rooms. Subjects understood that they 

were responding to offers made by past and present participants, who had been 

placed into one of three coloured Proposer groups (blue, yellow and orange) based 

on their answers to two questionnaires. The questionnaires were chosen as they 

quantify the tension between self- and other-regarding motivations [Machiavellianism 

IV (Christie and Geis, 1970); and Social Value Orientation (Van Lange et al., 1997)]. 

In each trial, subjects were told which group an offer came from but were not 

provided with information regarding which specific member. Subjects were told each 
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group comprised the six preceding participants classified into that group and, 

additionally, that one group would also contain the other attendee that day. Subjects 

were shown photographs of group members and asked if any were known to them, 

and subjects also had their own photograph taken for use in future testing with other 

participants.  

This group format was motivated by a need to ensure that, as far as possible, 

subjects treated each trial individually thereby preventing temporal dependencies in 

choice with small numbers of individual Proposers gaining reputations over repeated 

proposals (e.g. earlier lower offers leading to later rejections of higher offers to 

punish that individual). The group format also avoided a need to present a less 

plausible scenario that large numbers of subjects had previously attended the 

experiment. However, in reality the three Proposer groups comprised three sets of 25 

offer proportions. Each set spanned a full range from around 0.10 to 0.50 of the 

endowment with the intention that subjects consider each individual offer and not 

deterministically accept or reject all offers from a particular group. The behavioural 

regularity from experimental economics is that offers below 0.25 are rejected about 

half the time (Camerer, 2003). The “M set” offers were concentrated around this point 

to maximise our sensitivity to contextual changes in acceptance rates. The “L set” 

had a mean offer proportion of 0.21; the “M set” had a mean offer proportion of 0.30; 

and the “H set” had a mean offer proportion of “0.40”. The means of the “L set” and 

“H set” were chosen to induce the context effects on the “M set” described below. 
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Figure 6.1 Illustration of experimental design. a) Timeline of trials. Illustrated is the 

task from the perspective of the Responder: firstly a blank screen is presented for 

500-1500msec (mean 1000msec) in the colour of the Proposer group (L, M or H); 

second, a panel containing the photographs of the Proposer group was added for 

1500 msec; and third the proposal was then shown for 3000msec (denoted both 

numerically and visually by the height of the coin stacks) along with the instruction to 

accept or reject (side counterbalanced between subjects). Subjects understood that 

the silhouette represented the other subject attending that session, who had been 

placed in one of the three Proposer groups. During the 3000msec in which the 

proposal was shown, subjects had to decide by a button press whether to accept or 

reject the offer. Subjects saw a brief screen with “REST” displayed every 8-9 

contiguous trials before an introductory screen announced the group or groups whose 

offers would be presented next (i.e. M group only; M and H groups; M and L groups). 

b) Order of conditions. Initially, in a reputation learning session performed outside the 

scanner subjects responded to the full set of 25 offers from the M Proposer group 

alone (grey in panel b), the 25 H offers alone (white in panel b) and the 25 L offers 

alone (black in panel b). Subjects then underwent the main testing session in the 

scanner or behaviourally, which comprised 3 runs. In each run of 125 trials, subjects 

responded to the M set of offers in 3 contexts: alone (“neutral”); interleaved with the L 

set (M-in-L; “more fair”); and interleaved with the H set (M-in-H; “less fair”). 
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The full sets of offers are as follows: L = {0.08, 0.08, 0.09, 0.09, 0.1, 0.1, 0.1, 0.15, 

0.15, 0.15, 0.16, 0.16, 0.17, 0.17, 0.2, 0.21, 0.22, 0.26, 0.27, 0.3, 0.31, 0.37, 0.4, 0.5, 

0.5}; M = {0.08, 0.1, 0.16, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.26, 0.27, 0.28, 

0.29, 0.3, 0.31, 0.32, 0.36, 0.37, 0.4, 0.46, 0.5, 0.5, 0.5, 0.5}; and H = {0.1, 0.15, 

0.21, 0.27, 0.3, 0.35, 0.36, 0.36, 0.37, 0.4, 0.4, 0.41, 0.42, 0.42, 0.45, 0.46, 0.47, 0.5, 

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}. 

Our prime interest in this experiment related to subjects’ responses to the “M set” 

where our key manipulation of contextual fairness meant that subjects saw the “M 

set” of 25 offers in three different contexts (Fig. 6.1, panel b). This change in context 

was expected to bias subjects’ choices in relation to what was otherwise an 

objectively identical M set. The specific contexts were: 1) “M alone” in which the full 

set of 25 M offers was shown on its own in random order with no contextual 

manipulation; 2) “M-in-H” in which the full set of 25 M offers was shown interleaved 

with the full set of 25 H offers (i.e. there were 50 offers shown in random order; note 

that on each individual trial subjects were told which set the offer emanated from); 

and 3) “M-in-L” with the full set of 25 M offers interleaved with the full set of 25 L 

offers. The main testing session comprised three runs of trials as Responder. In each 

run the full set of 25 M offers was presented three times, once in each context (Fig. 

6.1), and the order of these conditions was counterbalanced within and between 

subjects. Therefore, in this main session there were a total of 375 trials consisting of: 

75 M-in-L; 75 M-in-H; 75 M-alone; 75 L-in-M; and 75 H-in-M trials. 

During each trial subjects (Responders) first saw from which group a proposal 

emanated and then saw the proposed division of the endowment in that trial (Fig. 

6.1). They then indicated, via a button press, their decision to either accept (both get 

the split as proposed) or reject (both get nothing) the offer. The endowment was 

varied in increments of £0.10 from around £7.70 to £9.80.  
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For each subject the experiment comprised four consecutive phases. Initially, 

subjects completed questionnaires and were then informed of the nature of the task. 

Secondly, subjects made 20 proposals. Thirdly, to learn the reputations of the three 

groups (L, M and H), subjects (as Responders) played against the full set of 25 offers 

in each group separately. Fourthly, the main testing session comprised three runs of 

trials as Responder and a total of 375 trials. To provide subjects with rest periods of 

approximately six seconds and to militate against fatigue, subjects saw a brief screen 

with “REST” displayed every 8-9 contiguous trials. After each rest period an 

introductory screen announced the group or groups whose offers would be presented 

next (i.e. M group only; M and H groups; M and L groups). Of the two subjects 

attending each experimental session the one with fewer rejections in the learning 

phase continued the main testing phase in the behavioural testing room whilst the 

second subject conducted this main phase in the MRI scanner. This was to increase 

power to detect fairness related activation independently of choice and also to avoid 

scanning subjects with a deterministic strategy of accepting all offers. Subjects were 

informed that this selection had been made at random. At the end of the 

experimental session subjects were debriefed and all reported believing that the 

proposals they faced were made by present and past participants. The subject’s 

payment was determined by responses and proposals chosen at random. Subjects 

received on average around £30 (~$50). All statistical tests were two-tailed. 

6.2.3 Behavioural modelling 

We fit data on an individual subject basis both according to a psychometric model 

and an economic model. In our psychometric analysis we modelled changes in the 

proportion of acceptance as offer proportion increases with logistic regression: 
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In this model z is the offer proportion (binned into groups of 5 trials). We estimate 

the model separately for “M” offers in each of the three offer contexts (M-alone, M-in-

L and M-in-H). 

In our economic analysis, we modelled individual choices using a binary logistic 

regression utility model. Various utility functions with other regarding preferences 

have been proposed (Messick and McClintock, 1968; Fehr and Schmidt, 1999; 

Bolton and Ockenfels, 2000; Charness and Rabin, 2002) that make similar 

predictions in the UG and we chose the following formulation:  
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Where  U = xself – α*(xother – xself),   α ≥ 0; λ ≥ 0 

       Eq. 6.3 

xself is the amount the Proposer offered in the trial and xother is the amount the 

Proposer keeps, α is an ‘envy’ parameter (reflecting a tradeoff between inequality 

and self interest), and λ reflects choice randomness. In this model, there is no 

constant term as we assume a utility of 0 represents indifference between 

acceptance and rejection of an offer (i.e. rejection of an offer has a utility of 0). For 

illustration, in a single trial as Responder, the utility of the offer is calculated by 

combining the self-regarding component (amount to self) and the other-regarding 

component (the weighted impact of inequality). This utility is then compared to the 

utility of rejecting (zero), with the offer being accepted if greater and rejected if lesser 

(with stochasticity in action selection captured by λ). To further illustrate the other-

regarding component of the utility function, we used an objective metric for 

unfairness (inequality) weighted by the α (“envy”) parameter. For example, if α=0 the 
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subject is entirely self-regarding (they will accept any offer however small) and if α is 

large they will reject lower offers. Because in this study xself did not exceed xother, the 

“guilt” parameter contained in some formulations was not used (Fehr and Schmidt, 

1999). We optimised subject-specific α and λ parameters across all trials using 

nonlinear optimization implemented in Matlab for maximum likelihood estimation.  

We also estimated parameters for each subject in the M-in-H and in the M-in-L 

conditions to examine context effects. 30 of the 32 subjects were included as 2 

behavioural subjects accepted essentially all offers such that parameters could not 

be estimated. No difference was found when a paired t-test was used to compare 

either α or  from the two contexts obtained when both parameters were freely 

estimated for each subject in both conditions. As we were interested in the relative 

contributions of both parameters, we fixed  as the mean  in the two conditions for 

that subject. As an additional check, we confirmed that this result held when  was 

fixed at the average for these two conditions across all subjects. Finally, we 

performed the same procedure but fixed α and estimated . 

6.2.4 fMRI data acquisition 

Images were acquired using a 3T Allegra scanner (Siemens, Erlangen, Germany). 

BOLD sensitive functional images were acquired using a gradient-echo EPI 

sequence (48 transverse slices; TR, 2.88 secs; TE, 30 ms; 3 x 3 mm in-plane 

resolution; 2 mm slice thickness; 1 mm gap between adjacent slices; z-shim -0.4 

mT/m; positive phase encoding direction; slice tilt -30 degrees) optimised for 

detecting changes in the OFC and amygdala (Weiskopf et al., 2006b). Four runs of 

284-286 volumes were collected for each subject, followed by a T1-weighted 

anatomical scan. Local field maps were also acquired. 
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6.2.5 fMRI data analysis  

Functional data were analysed using standard procedures in SPM5 (Statistical 

Parametric Mapping; www.fil.ion.ucl.ac.uk/spm). fMRI timeseries were regressed 

onto a composite general linear model (GLM) containing delta (stick) functions 

representing the onsets of the offer. These delta functions were convolved with the 

canonical HRF and its temporal derivative. The stimulus delta functions were 

separated into five regressors depending on the Proposer type (L-in-M, M-in-L, M-

alone, M-in-H and H-in-M). Each was then parametrically modulated by two 

orthogonalised regressors entered in the following order: offer amount followed by 

inequality (xother – xself). A second GLM with a 2 (accept, reject) by 5 (Proposer type) 

factorial design matrix was also constructed to determine the betas for the 

components of the interaction of choice and context. Throughout the analysis of the 

imaging data the main effects were calculated using the data across all five Proposer 

types, whilst the effect of context was probed within the comparison of M-in-L and M-

in-H. These two conditions were fully matched in terms of offer set (i.e. M offers) and 

task demands (unlike M-alone offers, which were not interleaved with another trial 

type). 

Cluster-based statistics were used to define significant activations both on their 

intensity and spatial extent (Friston et al., 1993). Clusters were defined using a 

threshold of P < 0.005 and corrected for multiple comparisons using family-wise error 

correction and a threshold of P < 0.05. For presentation purposes, images are 

displayed at P < 0.001 uncorrected unless otherwise stated. We report all activations 

at P<0.05 that survive whole brain correction using family-wise error at the cluster 

level, unless otherwise stated. 
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6.3 Results 

6.3.1 Responder behaviour 

To confirm consistency of our results with well known behavioural regularities in 

the UG (Camerer, 2003), we first collapsed across all Proposer group sets. In both 

the learning and main sessions all subjects accepted almost all offers of half the 

endowment, and 29 of the 32 subjects rejected almost all offers under one tenth of 

the endowment. In the main session the mean acceptance rate was 0.50 (s.d. 0.20) 

(Fig. 6.2). Using an analytic framework derived from psychophysics we show a 

graded relationship between increasing offer size and increasing acceptance rate, at 

both individual (Fig. 6.3) and group levels (Supplemental Fig. 6.2). Moreover, such a 

framework predicts that reaction times (RTs) should be greatest at the point of 

equality in value as this represents the point of maximum decision uncertainty 

(Grinband et al., 2006), which is exactly what we observed (Fig. 6.3).  

To test our key behavioural prediction of a contextual bias in fairness perception, 

we focused on the critical M set trials from the main session. Here the set of M offers 

was presented alone (“M-alone”); interleaved with H offers (“M-in-H”; contextually 

less fair) or interleaved with the L offers (“M-in-L”; contextually more fair). When all 

32 subjects were included in the analysis we observed effects of social context on 

the acceptance rate of otherwise identical offers (one way ANOVA; F(2,62)=4.88, P 

=0.013), driven by a highly significant difference between M-in-L trials (seen as 

“fairest”; mean 48.5%) relative to M-in-H trials (seen as “less fair”; mean 45.8%; 

paired two-tailed t-test, t(31)=2.86; P =0.007; Fig. 6.2).  

16 of the 32 subjects who comprised our behavioural sample also performed the 

task in the fMRI scanner. The same pattern was seen when the 16 scanned subjects 

were analysed separately for the key comparison of M-in-L with M-in-H (t(15)=2.64, 

P=0.019; M-in-L mean 39.3%; M-in-H mean 36.3%) with trend-level significance for a 
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one-way ANOVA across all three contexts (F(2,30)=3.21, P =0.074). This contextual 

bias was primarily driven by a lower rate of acceptance in the “less fair” (M-in-H) 

condition, with a significant difference between M-in-H and M-alone (all subjects 

t(31)=2.18, P=0.037; scanned subjects t(15)=2.54, P =0.023) but not between M-in-L 

and M-alone (P >0.1). 

6.3.2 Proposals and questionnaires 

The proposals our subjects made were consistent with those seen in previous 

studies (Camerer, 2003). The mean proportion offered was 0.44 (s.d. 0.09) over all 

32 subjects, and there was no significant difference (two-tailed ttest, p>0.1) between 

the group of 16 scanned subjects (mean 0.46; s.d. 0.10) and the 16 subjects who 

solely underwent behavioural testing (0.42; 0.07). There was also only small variation 

within each subject’s offers and no significant effect of trial number on the mean 

offer. 

Mach IV questionnaire scores (Christie and Geis, 1970) were typical of normal 

populations (mean 95.4; stdev 11.9; n=32); with no difference between scanning 

group and behavioural groups (97.8 (11.4) vs. 93.1 (12.3), two-tailed ttest, p>0.1). 

Using the Van Lange social value orientation questionnaire more subjects were 

classified as prosocial in the scanning than in the behavioural group (Van Lange et 

al., 1997). In the scanning group 8 were classified as prosocial, 5 as individualist, 2 

as competitive and 1 was not classifiable, whilst in the behavioural group 4 were 

prosocial, 4 individualist, 4 competitive and 4 not classifiable. During the learning 

session subjects learnt the reputations of the three opponent groups (L, M and H), 

with only 6 of the 32 subjects (2 in the scanning group) incorrectly ranking the L, M 

and H groups on a visual analogue scale from “most unfair” to “most fair”. 
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Figure 6.2 Biased acceptance of objectively identical offers by contextual 

manipulation. Each bar represents rate of acceptance (+/- s.e.m) of the “M” set of 

offers that spans the full range of offer proportions from 0.08 to 0.50. The M set is 

presented in three different contexts, representing a manipulation of contextual 

fairness: M-in-L (“more fair”, interleaved with lower offers); M-alone (“neutral”, 

presented alone); and M-in-H (“less fair”, interleaved with higher offers). The rate of 

acceptance is normalised with respect to the rate of acceptance in the neutral M-

alone condition. Data is shown for the main session for the scanned group (n=16) 

and the combined data from all subjects including both the scanned subjects and 

those who solely underwent behavioural testing (n=32). 
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Figure 6.3 Psychometric analysis of individual subject data. Data from the 

scanning session is shown for two exemplar subjects (a and b). For each subject the 

upper panels show the probability of acceptance and the lower panels show reaction 

times (RTs), both plotted against offer proportion (each data point being the mean of 

five trials). Data is shown for the “M” offers in the three contexts: M-alone (green; 

“neutral”); M-in-L (blue; “more fair”); and M-in-H (red; “less fair”). The upper panels 

also show probability of acceptance as a logistic function fitted to those points, 

demonstrating a contextual bias evident in a shift to the left for contextually more fair 

(M-in-L) and a shift to the right for the less fair (M-in-H) relative to the control 

condition (M-alone). In the lower panels it can be seen that the point of indifference 

(probability of acceptance is 0.5) corresponds to peak RTs, consistent with choice 

difficulty being greatest at this point and arguing against either acceptance or 

rejection as being a “default” choice . 
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6.3.3 Modelling Responder behaviour 

We next tested if a formal economic model predicted subjects’ choices as 

Responder (Bolton and Ockenfels, 2000;Charness and Rabin, 2002;Fehr and 

Schmidt, 1999;Messick and McClintock, 1968). The intention here was to derive 

model parameters as a bridge to underlying neural mechanisms. The model is 

specified by the following formalism: 

U = xself – α*(xother – xself) 

In this model, the utility (U) a subject derives from a proposal is given by the 

subject’s payoff (xself) minus the weighted inequality of the proposal, with inequality 

being the amount kept by the Proposer (xother) less the amount offered. The α (“envy”) 

parameter quantifies how much a particular subject cares about inequality (i.e. how 

much they weight this social component, e.g. if α=0 they are entirely self-regarding). 

We combined this model of fairness preference with a logistic model of stochastic 

choice with a noise parameter, , and estimated both parameters using maximum 

likelihood estimation.  

We first collapsed across all trial types. Across all 32 subjects mean α was 0.89 

(s.d. 0.54; range 0-2.59) and mean  was 0.54 (s.d. 0.31; range 0-1.26). For the 16 

scanned subjects, mean α was 1.08 (s.d. 0.55; range 0.38-2.59) and mean  was 

0.51 (st. dev. 0.31; range 0.20-1.26). These observations are consistent with 

previous studies using similar model(Fehr and Schmidt, 1999; Krajbich et al., 2009). 

A statistical measure of how well the model predicted subjects’ choice is provided by 

a likelihood ratio test: comparing the full to a reduced model without the inequality 

term was highly significant (all 32 subjects Χ2(1)>104, P <0.001; 16 scanned subjects 

Χ2(1)>6000, P <0.001).  

We next examined the contextual bias in fairness perception by estimating α and 

 in the M-in-H and M-in-L conditions for 30 subjects (2 subjects in the behavioural 
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group accepted essentially all offers; the remaining 30 subjects had mean =0.95, 

mean =0.56 when collapsed across all trial types). There was a significant 

difference in α between the M-in-H and M-in-L conditions when the  parameter used 

for estimation was fixed at either the mean  in the two conditions for that subject 

(mean M-in-H=1.01; mean M-in-L=0.91; t(29)=2.246, P=0.032) or the average for these 

conditions across all subjects (mean M-in-H=0.97; mean M-in-L=0.89; t(29)=2.157, 

P=0.039).  did not significantly differ between conditions when α was fixed in this 

fashion. 

6.3.4 Neuroimaging 

16 of the subjects performed the task in the fMRI scanner as Responder and we 

report only activation surviving whole brain correction at the cluster level unless 

otherwise stated. Initially, in a conventional factorial analysis we determined whether 

our behavioural bias in choice (accept or reject) driven by a change in social context 

(M-in-L or M-in-H) was reflected in brain activity. We computed the interaction term 

[(AccM-in-H + RejM-in-L) – (AccM-in-L + RejM-in-H)], which revealed an effect in right DLPFC 

(middle frontal gyrus; Table 1). Examination of simple effects showed that this 

interaction was driven by greater activity for rejecting contextually fairer offers (i.e. M-

in-L) than rejecting contextually less fair offers (i.e. M-in-H; Fig. 6.4; paired two-tailed 

ttests rejection t(15)=3.3, P=0.005, acceptance t(15)=0.04, P>0.9). 

In this factorial analysis, we also observed a main effect of choice in increased 

activation for accepting, relative to rejecting, offers in bilateral supplementary motor 

area (SMA) and pre-SMA (Table 1). The pre-SMA and SMA have distinct anatomical 

connections and in imaging studies the vertical commissure anterior (VCA) line is 

often used to distinguish the precise source of activation (Nachev et al., 2008). 

Interestingly in light of previous findings, the peak voxel of this cluster was anterior to 

the VCA in pre-SMA, a region with strong connections to DLPFC (Nachev et al., 
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2008). No activation survived cluster level correction for the reverse contrast 

(reject>accept) or for the main effects of context (M-in-H > M-in-L or M-in-L > M-in-

H). 

We next used a parametric analysis to isolate activity correlating with specific 

components of our formal economic model and their relationship to social context. 

Offer amount and inequality were included as parametric regressors, and the subject-

specific envy () parameter was included as a second level covariate on the 

inequality regressor. We orthogonalised inequality with respect to offer amount in 

order to identify its independent contribution to the BOLD signal having accounted for 

activity related to the offer magnitude. We examined the main effect of inequality, our 

objective metric of fairness, by collapsing across all trials (L; H; M alone; M-in-L; M-

in-H) and this analysis showed a negative correlation with inequality in right posterior 

insula (i.e. greater activation for a more equal allocation; Table 6.2 and Fig. 6.5). A 

similar pattern was evident on the left which did not survive cluster level correction for 

the whole brain (x=-45, y=-15, z=3, Z=4.01, 58 voxels at P<0.005 uncorrected).  

We next asked where in the brain inequality is integrated with context to produce 

changes in contextual fairness. The key contrast in this analysis was to compute the 

interaction between the parametric regressor for inequality in the more (M-in-L) 

versus the less fair (M-in-H) context [inequalityM-in-L > inequalityM-in-H]. This interaction 

showed activation in bilateral mid-insula and rolandic operculum, extending on the 

right into posterior insula and inferior parietal cortex (Table 6.2 and Fig. 6.5). 

Intuitively, this interaction can be expressed as a difference in regression slope of 

activity under both levels of the categorical factor (Toga and Mazziotta, 2002) (see 

Fig. 6.5). Interestingly, in light of our inequality aversion model, inequality modulated 

insula activity in the condition when offers are viewed as more aversive (M-in-H; Fig. 

6.5). In fact, the observation that the M-in-H condition drove the interaction effect 
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exactly mirrors our behavioural finding where this factor was the principal driver of a 

contextual bias (Fig. 6.2).  

For comprehensiveness we also tested for areas correlating with inequality in the 

matched M-in-H and M-in-L conditions alone. Here, we demonstrated a similar 

negative correlation with activation in posterior insula to that seen when including all 

trials (P < 0.05, cluster-level whole-brain corrected on the left, Table 2; 68 vox. at 

P<0.005 unc. on the right at x=42 y=-24 z=27, Z=3.51) with additional activation seen 

in STS close to the location of activation reported in “theory of mind” (TOM) tasks 

(Grèzes et al., 2004; Gobbini et al., 2007). Separately, we observed an interaction of 

offer amount with social context in right DLPFC [offer amountM-in-L – offer amountM-in-H] 

Table 2), which in light of the fact that choice is highly correlated with offer magnitude 

converges with the pattern identified by the interaction term in our factorial design 

(Fig. 6.4). 

Finally, we examined neural correlates of how much a particular subject cares 

about what others receive, regardless of the particular contextual manipulation. In our 

economic model this is captured by the α (“envy”) parameter derived from each 

subject’s behaviour, which specifically weights the inequality component of the utility 

function. The magnitude of the α parameter correlated across subjects with activity in 

the precuneus (P < 0.05, voxel-level whole brain corrected), left frontopolar region (P 

< 0.05, voxel-level whole brain corrected) and left temporo-parietal junction (cluster 

level corrected as above).  
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Figure 6.4. Interaction of choice and context in right dorsolateral prefrontal 

cortex a) In our factorial analysis of the fMRI data there was an effect in right DLPFC 

for the interaction of choice (accept > reject) and context (M-in-H > M-in-L). This 

activation survived whole-brain cluster-level correction (P<0.05 FWE corrected; 

threshold of P<0.005 used to define the cluster) and is displayed at P<0.001 

(uncorrected) on slices through the peak voxel (x=33, y=48, z=24). b) To illustrate 

which differences drive the interaction we plot the regression coefficients (beta values 

+/- s.e.m.) for each condition versus baseline at the peak voxel for the interaction. 

Greater activation is seen for rejecting offers perceived as more fair than for those 

perceived as less fair (t(15)=3.3, P=0.005, two-tailed), with no difference during 

acceptance (t(15)=0.04, P>0.9, two-tailed). 
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Figure 6.5 Neural responses to inequality and its interaction with social context 

in insular cortex. a) Sections showing activation related to processing of inequality 

in the insula. In yellow we show posterior insula is negatively correlated with 

inequality when collapsed across all trials (L, M-in-L, M-alone, M-in-H, H). In red are 

shown areas of differential activity in mid and posterior insula when contrasting 

responses to inequality in the more fair (M-in-L) versus the less fair (M-in-H) context. 

Areas of overlap are shown in orange. The right panels are at the peak of activation 

for the negative correlation, whilst the left panels show slices at the peak for the 

interaction. The activations including these peaks survive whole-brain cluster-level 

correction (P<0.05 FWE corrected; threshold of p<0.005 used to define the clusters) 

and are displayed at p<0.005 (uncorrected, 10 voxel threshold). b) Visualisation of 

the effects driving the interaction of inequality with social context at the peak voxel in 

mid-insula (x=36, y=6, z=9). The slope of the regression line for activation (in arbitrary 

units) against inequality (£) is shown for each social context (M-in-H and M-in-L). The 

difference in slopes illustrates that inequality modulates insular activity only when 

offers are viewed more aversively (M-in-H). The slope of each regression line is the 

parameter estimate (beta) for each condition obtained from the general linear model 
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used to analyse the fMRI data, averaged across subjects (M-in-H beta=-2.92 with 

s.e.m.=0.64; M-in-L beta=0.32 with s.e.m.=0.63). 

 

 

 

 

Figure 6.6 Inequality and envy. For each subject we calculated an α (envy) 

parameter by fitting an inequality aversion model to behavioural data of the 

Responder. In this economic model, utility is the offer amount minus inequality 

(defined as amount to other minus amount to self) and inequality is weighted by α. 

Given their close relationship, the envy parameter was used as a second level 

covariate on the main effect of inequality. Areas highlighted are those that correlate 

between subjects with the degree to which the Responder cared about how much 

money the other person stood to gain relative to themselves. Activation surviving 

whole brain correction at the voxel level (P<0.05 FWE) was seen in precuneus (x=0, 

y=-60, z=42) and L frontopolar cortex (x=-18, y=60, z=18), whilst activation surviving 

cluster level correction (P<0.05 FWE corrected; threshold of P<0.005 used to define 

the clusters) is seen in the L angular gyrus (inferior parietal cortex) (x=-54, y=-60, 

z=30). The data are displayed at P<0.001 (uncorrected) at the peak voxel of the 

precuneus activation.  
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6.4 Discussion 

Our principal aim in this study was a behavioural and neural characterisation of 

objective and contextual aspects of fairness. We defined the contextual component 

of fairness as a shift in choices in response to otherwise identical offers, while 

remaining agnostic to the question of conscious awareness of this shift. Our finding 

of a marked context-dependence provides a perspective on fairness as a relative 

rather than absolute quantity, echoing findings in relation to other high-level 

quantities such as valuation (Ariely et al., 2006; Seymour and McClure, 2008; Vlaev 

et al., 2009). However, our neural data also highlight a fundamental role for objective 

social inequality that accords with effects seen in the UG across diverse cultures 

(Henrich, 2004), in human infants (Fehr et al., 2008) and in similar tasks in non-

human primates [(Brosnan and De Waal, 2003), but note(Jensen et al., 2007)]. Our 

data highlights how these objective and contextual aspects interact to construct a 

fairness motivation with sufficient flexibility to enable appropriate responses to the 

social environment. 

Fairness relates to how intentional agents should divide resources amongst 

potentially entitled recipients (Kahneman et al., 1986). Inequality aversion quantifies 

how this motivation influences choice (Messick and McClintock, 1968). Here, we 

assume choice is the outcome of processes whose neural implementation may 

involve social computations such as prediction errors (Behrens et al., 2008; Hampton 

et al., 2008). We also characterise objective and contextual components of fairness 

in decision-making by combining a standard economic inequality-aversion model 

(Fehr and Schmidt, 1999;Messick and McClintock, 1968) with psychophysical 

methods and the psychological concept of cognitive control (Miller and Cohen, 2001; 

Gilbert and Burgess, 2008).  

Our neuroimaging data strongly support inequality aversion models: first, we find a 

main effect of inequality in posterior insula; second, between subjects the envy 
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parameter correlates with activity in the precuneus, left TPJ and frontopolar cortex; 

third, inequality modulated posterior and mid-insula activity more strongly when 

inequality is psychologically more aversive (M-in-H; Fig. 6.5). Our findings extend 

current inequality aversion models, demonstrating the behavioural and neural 

flexibility to avoid knee-jerk aversion to inequality. 

We found no neural correlate for a self-interested component of the utility function, 

a result that accords with previous UG studies that, as indeed was also the case 

here, did not provide reward-related feedback during the task (Sanfey et al., 2003; 

Halko et al., 2009; Güroğlu et al., 2010). Conversely, robust reward-related activity 

has been seen in social comparison tasks when feedback was given in an estimation 

task (Fleissbach et al., 2007) or where, analogous to feedback, subjects were given 

an outcome in every trial (Tricomi et al., 2010). Our data tentatively link the 

behavioural economic concept of “other regarding preferences” (Fehr and Camerer, 

2007) and the psychological concept of “Theory of Mind” (TOM) (Premack et al., 

1978; Frith and Frith, 2006). Subjects’ α (envy) parameter correlated with activity in a 

subset of TOM-related areas including TPJ, implicated in representing others’ 

intentions, and precuneus involved in perspective taking (Van Overwalle and 

Baetens, 2009).  

Neurally, our results implicate insula cortex in fairness motivation and, combined 

with previous work, suggest functional segregation in this extensive (over 5cm long) 

and cytoarchitectonically diverse cortical region (Flynn, 1999; Varnavas and Grand, 

1999). Both here, and in Hsu et al. (2008), posterior insula activity negatively 

correlated with inequality (see Fig 4 in Hsu et al., 2008). Hsu and colleagues asked 

subjects to choose between distributions of meals for African children, varying in 

inequality and amount. Our concordant findings are striking, as Hsu used decisions 

about third-parties rather than first-party decisions (e.g. in the UG), a difference 

markedly affecting choice in behavioural experiments (Camerer, 2003). We also find 
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a mid-insula peak for integration of context with inequality in our UG. Anterior insula 

activity has been reported as higher for rejected versus accepted offers in the UG 

(Sanfey et al, 2003), a result replicated in a task-matched study (Halko et al., 2009), 

although the same contrast in other UG studies shows little activity in this region 

(Guroglu et al. 2010; Tabibnia et al 2008; this study). Indeed, recent work shows 

anterior insula activity depends on Proposer intentionality in the UG (Guroglu et al., 

2010).  

One resolution to these diverse findings is that distinct fairness-related processes 

are expressed in segregated regions of the insula. Thus, a negative correlation with 

inequality in posterior insula occurs when subjects can form predictions about 

inequality, having previously experienced group offers (in our study) or the 

distribution of experimental allocations (in Hsu et al., 2008). Given predictions for 

inequality, a more equal division than expected could engender a positive prediction 

error and a more unequal division a negative prediction error (see also Paulus and 

Stein 2006; Singer et al., 2009). This explanation for the observed negative 

correlation can also explain why it may not have been seen when each UG Proposer 

is encountered only once and fewer trials are played, as predictions cannot be 

formed (Halko et al., 2009;Sanfey et al., 2003). Capacity of posterior insula for high-

level computation is suggested by involvement in other high-level tasks, albeit 

different to fairness, for example inter-temporal choice (Tanaka et al., 2004; 

Wittmann et al., 2007) and language perception (Jones et al., 2010). Note the peak 

activity for our contextual manipulation is in bilateral mid-insula, which has a role 

integrating representations of physiological state or feelings from the body with 

activity associated with awareness(Craig, 2002, 2009; Farrer et al., 2003; Tsakiris et 

al., 2007). Finally, anterior insula activity in some UG studies may reflect processing 

of disgust (Sanfey et al., 2003) or aversion to norm-violation (Guroglu et al., 2010), 

consistent with its role in introspective awareness of emotion (Craig 2009). Such 
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emotional impact may be attenuated with many more trials (hundreds versus 10 

human Proposals in Sanfey et al., 2003), with unfairness directed at third-parties 

(Hsu et al., 2008), or where much shorter trials reduce scope for introspection 

(36secs in Sanfey et al., 2003). 

In DLPFC we noted an interaction between choice and context, driven by greater 

activity for rejecting contextually fairer offers than less fair offers (Fig. 6.4, Tables 6.1 

and 6.2). Against a background of multiple competing motivations in the UG, our 

results appear consistent with previous suggestions of a role for DLPFC in cognitive 

control during the UG (Sanfey et al. 2003; Knoch et al. 2006). In light of this, one 

interpretation of the data is that increased activity in DLPFC during rejection of 

contextually more fair offers reflects enhanced difficulty of implementing these 

rejections. Such an interpretation is consistent with evidence that rTMS to right (but 

not left) DLPFC increases acceptance of lower proportion offers (Knoch et al. 2006), 

where such disruption would be expected to diminish rejection of contextually fairer 

(M-in-L) offers. However, this interpretation has to be tempered by consideration of 

the fact that if indeed DLPFC activity is specific to rejection, then this would predict 

uniformly greater activity in DLPFC for rejection compared to acceptance, which was 

not what we observed (Fig. 6.4). Understanding the dynamics of DLPFC activity in 

the UG is clearly highly complex and an issue for further investigation using more 

refined paradigms. 

In conclusion, we provide evidence that objective inequality of social distributions 

fundamentally influences fairness behaviour; and that this inequality is flexibly 

integrated with social context. This account might explain otherwise hard to reconcile 

social phenomena. A role for objective inequality helps explain the trans-cultural 

phenomenon of UG rejections (Henrich et al., 2004), the importance of workplace 

inequality (Akerlof, 1982) and the historical attraction of political ideas stressing 

equality (Rousseau, 1754). However, whilst within a particular context inequality is 
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key, relativity of fairness helps explain the importance of comparator groups in labour 

negotiations (Akerlof and Shiller, 2009); and the muted public response as US 

executive pay gradually increased over the past 20 years from around 60 to 160 

times median US income (The Economist, 2007). That fairness inherently involves 

both objective and contextual aspects can also inform wide-ranging social debates, 

from labour disputes to fair structuring of tax systems. However, although these data 

suggest a biological basis for the fairness motivation, whilst humans bargaining over 

money tend to reject unfair offers, in contrast chimpanzees bargaining over primary 

rewards of food do not show this motivation to reject (Jensen et al., 2007). Whether 

fairness represents a uniquely human motivation, or whether humans would also 

ignore the unfairness of offers of primary rewards, such as food, water and sex, is the 

subject of the next chapter. 
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6.5 Tables 

Area L/R x y z 
Z 

score 

# vox, 

p<0.005 

Corr. 

p-value 

Choice (accept > reject): Main effect across all trial types 

SMA and pre-SMA L -9 3 54 3.66 158 0.001 

  -9 12 57 3.52   

SFG R 24 15 54 3.65   

Choice (reject > accept): Main effect across all trial types 

Nil whole brain corrected. 

Interaction of choice and social context  

MFG R 33 48 24 3.92 108 0.005 

  27 45 15 3.54   

  15 54 30 3.44   

SFG R 18 15 51 3.68 79 0.028 

  24 9 51 3.60   

SMA R 6 6 66 3.41   

 

Table 6.1 Results using a factorial model for analysis of the fMRI data. This table 

shows all activation that survived cluster level correction (P<0.05 FWE corrected; 

threshold of P<0.005 used to define the clusters) for the following contrasts: main 

effects of choice (collapsed across all trials; M, L and H); main effects of context 

(between the two matched conditions; M-in-L and M-in-H); and interactions between 

choice and context [(AccM-in-H + RejM-in-L) – (AccM-in-L + RejM-in-H)]. For each cluster is 

shown: the three constituent peaks with the highest Z-scores; the number of voxels at 

P<0.005 (uncorrected); and the P-value of the cluster after FWE correction across the 

whole brain. (SMA = Supplementary Motor Area; SFG = Superior Frontal Gyrus; MFG 

= Middle Frontal Gyrus). 
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Area L/R x y z 
Z 

score 

# vox, 

p<0.005 

Corr. 

p-value 

Offer amount: Main effect across all trial types 

Postcentral gyrus R 39 -30 45 4.91 536 <0.001 

  33 -33 36 4.16   

SMA and pre-SMA L -9 3 51 4.41   

Offer amount: Interaction with social context (M-in-H > M-in-L)   

MFG R 30 45 18 4.44 113 0.006 

Inequality: Negative main effect across all trial types   

Posterior Insula R 33 -21 21 3.73 114 0.006 

  42 -24 24 3.43   

IPC  R 54 -18 30 3.38   

Inequality: Negative main effect, matched trials (M-in-H & M-in-L) 

Posterior Insula / STG L -45 -18 0 3.87 80 0.043 

  -36 -12 3 3.25   

  -54 -12 6 3.24   

STS / MTG R  66 -33 -6 3.55 137 0.002 

  57 -30 6 3.49   

  63 -12 0 3.36   

Inequality: Interaction with social context (M-in-L > M-in-H)  

Mid-Insula / Rolandic operc. R 48 -3 9 5.05 728 <0.001 

  36 6 9 4.12   

Precentral gyrus R 60 3 18 4.00   

MCC L -12 -6 39 4.46 135 0.002 

SMA / MCC R 9 -27 51 3.89   

  9 -3 45 3.45   

Supramarginal gyrus L -51 -27 27 4.38 512 <0.001 

Mid-Insula / Rolandic operc. L -48 -9 12 3.93   

Precentral gyrus L -60 0 9 3.91   

 

Table 6.2 Results using a parametric model for analysis of the fMRI data. This 

table shows all activation that survived cluster level correction (P<0.05 FWE 

corrected; threshold of P<0.005 used to define the clusters) for the following 

contrasts: main effects of offer amount (collapsed across all trials; M, L and H); main 

effects of inequality orthogonalised with respect to offer amount (firstly collapsed 

across all trials and secondly collapsed across the matched M-in-L and M-in-H trials); 

and the effects of context (M-in-L v. M-in-H) on each of these parametric regressors. 

For each cluster is shown: the three constituent peaks with the highest Z-scores; the 

number of voxels at P<0.005 (uncorrected); and the P-value of the cluster after FWE 

correction across the whole brain. (SMA = Supplementary Motor Area; SFG = 

Superior Frontal Gyrus; MFG = Middle Frontal Gyrus; MCC = Middle Cingulate 
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Cortex; STS = Superior Temporal Sulcus; MTG = Middle Temporal Gyrus; STG = 

Superior Temporal Gyrus). 

 



150 

 

Chapter 7. Social choice: The biological limits of 

human responses to unfairness 

7.1 Introduction 

As described in the preceding Chapter, in humans fairness has been studied 

extensively using games played for money (Camerer, 2003). The paradigmatic 

example is the Ultimatum Game (UG;(Güth et al., 1982)), which to recap involves 

one player (the Proposer) being given an endowment (e.g. £10) and proposing a 

division (e.g. keep £6/offer £4) to a second player (the Responder), who then accepts 

(both get the proposed split) or rejects (both get nothing) the offer. In the UG with 

money humans typically reject low, “unfair”, offers even at cost to themselves 

(Camerer, 2003). In contrast, with a food primary reward chimpanzees behave solely 

as self-interested maximisers in an UG, accepting unfair offers (Jensen et al., 2007). 

Here, we asked if thirsty humans make similar self-interested maximising responses 

to unfair offers with a primary reward of water. To maximise our power to induce self-

interested behaviour we physically presented the water, which has been shown 

recently to increase food’s propensity to trigger appetitive responses (Bushong et al., 

2010), and we amplified this effect by an experimental induction of thirst. Further, we 

manipulated water’s value by inducing different levels of thirst, and asked if fairness 

was traded-off against the self-interested motivation to slake that thirst.  

7.2 Methods 

7.2.1 Participants 

21 healthy participants provided informed consent (11 male, mean age 25 (range 

20-32) years; 2 further participants did not complete testing) for a study approved by 

University College London Ethics Committee. 
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7.2.2 Thirst manipulation 

On the testing day, participants were asked to refrain from drinking after 08:00am 

and arrived at 09:00am. We manipulated thirst using saline administered via an 

intravenous line for 50 minutes, at a rate 0.15ml/kg/min for males and 0.12ml/kg/min 

for females. In a double-blind, randomised design. 11 participants received isotonic 

saline (0.9% NaCl) similar to normal human osmolarity, with a minimal impact on 

thirst; and10 received hypertonic saline (5% NaCl) that markedly increases blood 

osmolarity and, as a consequence, thirst (Denton et al., 1999). After infusion subjects 

performed one hour of non-social tasks (not reported here); then the UG; and finally 

waited a further hour without water.  

At pre-infusion baseline (tbaseline) and the time of testing (tUG) we measured 

subjective thirst (visual analogue scale from 0-10) and blood osmolarity (analysis by 

freezing point depression osmometer). Participants completed a similar session 5-7 

days before but without the UG (and receiving the alternative infusion), and were 

unaware of the prospect of the UG until it was conducted. 

7.2.3 Behavioural task 

Three participants attended each session, met each other, and were then tested 

in separate rooms. At time of testing, tUG, participants first received written 

instructions stating that two participants (one Proposer and one Responder) would be 

randomly selected to play an UG, in this case dividing 500ml of water for immediate 

consumption. Next, all participants were informed they were the Responder. The 

experimenter then brought a covered tray, removed the cover and left the room. For 

all participants the tray contained two straight-sided 500ml capacity glasses, one 

holding 62.5ml (12.5%) with “they offer” written below, and the other holding 437.5ml 

(87.5%) next to “they keep”. Participants had 15 seconds to circle “accept” or “reject” 
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on a piece of paper. Participants who accepted then drank the 62.5ml, and all 

participants waited one further hour without water.  

All statistical tests are two-tailed. 

7.3 Results 

7.3.1 Thirst manipulation 

As predicted, administering hypertonic saline markedly altered objective and 

subjective measures relating to thirst. Osmolarity at tbaseline did not differ between 

treatments (hypertonic 293 mOsmL-1 ± s.d. 4; isotonic 295±7; t(19)=1.27, P=0.22), 

but at tUG was higher for the hypertonic (310±5) than isotonic group (295±5; 

t(19)=7.58, P=3.7x10-7). Similarly, subjective thirst was no different between 

treatments at tbaseline (hypertonic 2.5±1.9 and isotonic 2.5±1.7; t(19)=0.057, P=0.96), 

but differed at tUG(7.3±1.6; 3.5±2.0; t(19)=4.68, P<0.0005). 

7.3.2 Fairness influences choice 

Our data show fairness powerfully influenced responses in the UG despite the use 

of primary rewards, with 13 of 21 individuals rejecting the unfair offer (binomial test 

versus no influence of fairness, P<0.0001). Fairness influenced choice in both 

treatment groups (5 of 10 hypertonic and 8 of 11 isotonic individuals rejected; 

likelihood ratio test between groups, Χ2=1.16, P>0.25). 

7.3.3 Fairness is traded-off against subjective self-interest 

Next, we asked whether this fairness was traded-off against self-interest: and this 

was the case for subjective thirst (measured by rating scale). Crucially, subjectively 

thirstier individuals at tUG were more likely to accept the unfair offered water, 

indicated by a main effect of choice in a 2 choice (accept, reject) by 2 treatment 

(isotonic, hypertonic) mixed-effects analysis of variance (ANOVA) with subjective 
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thirst as the dependent variable (main effects of choice F(1,17)=9.37, P=0.007; and 

treatment F(1,17)= 46.12, P<0.0005; with no interaction, F(1,17)=0.15, P=0.7). 

Further, our data revealed that the degree to which hypertonic infusion increased 

subjective thirst was related to choice. This was shown by the significant interaction 

of choice (accept, reject) and treatment (isotonic, hypertonic) in an ANOVA with 

change in subjective thirst as the dependent variable (interaction F(1,17)=7.19, 

P=0.016; main effect of treatment F(1,17)= 27.40, P<0.0001; no main effect of choice, 

F(1,17)=3.52, P=0.078). This interaction was driven by the degree to which hypertonic 

saline increased subjective thirst (Fig. 7.1b). However, our objective measure of thirst 

(blood osmolarity) was not related to choice, either when used as the dependent 

variable or as a covariate in the previous ANOVAs (see below). Together, these 

results suggest the primary driver of the self-interested motivation was subjective, 

rather than objective, thirst.  
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Figure 7.1 Change in subjective thirst and responses to unfairness a) All 

participants were assigned the Responder role in an UG and faced this proposed 

division of water. They received an intravenous infusion of either isotonic or 

hypertonic saline. b) The change in subjective thirst induced by the saline infusion is 

calculated from the difference in subjective thirst at baseline and at testing. In the 

hypertonic group the degree to which the infusion increased subjective thirst was 

related to choice, such that a greater increase was seen in those who accepted 

(6.4±1.7) relative to those who rejected (3.1±1.6; independent samples ttest, t(8)=3.19, 

P=0.013). 

7.3.4 Objective measures of thirst (osmolarity): 

Osmolarity measures were related to treatment, but not choice. When osmolarity 

was included as a covariate in the preceding ANOVAs this did not alter the findings. 

For example, this was evident in a choice (accept, reject) by treatment (isotonic, 

hypertonic) mixed-effects analysis of variance (ANOVA) with subjective thirst at tUG 

as the dependent variable and including osmolarity as a covariate (main effect of 

treatment F(1,16)=6.46, P=0.22; main effect of choice F(1,16)=8.94, P=0.009; no 

interaction of treatment and choice F(1,16)=0.11, P=0.74; no effect of osmolarity 

F(1,16)=0.15, P=0.70). When osmolarity at tUG was used as the dependent variable 

in a 2 choice (accept, reject) by 2 treatment (isotonic, hypertonic) ANOVA there was 

a main effect of treatment (F(1,17)=47.79, P=2.5x10-6), no main effect of choice 

(F(1,17)=1.08, P=0.31) and no interaction (F(1,17)=0.26, P=0.62). When change in 
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osmolarity (tUG-tbaseline) was used as the dependent variable in a 2 choice (accept, 

reject) by 2 treatment (isotonic, hypertonic) ANOVA there was a main effect of 

treatment (F(1,17)=54.63, P=1.1x10-6), no main effect of choice (F(1,17)=1.64, P=0.69) 

and no interaction (F(1,17)=0.83, P=0.38). 

7.4 Discussion 

Humans’ closest relatives, chimpanzees, appear to be rational self-interested 

maximisers who do not reject unfair offers in the canonical fairness task, the UG 

(Jensen et al., 2007). Such behaviour suggests the motivation to reject unfair 

treatment is uniquely human. Indeed, here we show that humans remain interested in 

fairness even with primary rewards and in a deprived state. 

However, whilst our human participants were not solely self-interested, neither 

were they solely motivated by fairness. Instead they exhibited a trade-off between 

these motivations. In terms of behavioural economic theory, such a trade-off maps 

conceptually onto economic models where choice is determined by utility functions 

containing both self and other regarding components (Fehr and Schmidt, 1999). 

Further, our data speak to previously discrepant behavioural economic results as to 

whether individuals’ choices are influenced by the size of the stakes relative to their 

wealth (Cameron, 1999; Camerer, 2003). Thus, here we show that raising the stakes 

by increasing osmolarity (analogous to reducing wealth) does matter, but only when 

these stakes impact upon the individual’s subjective motivational state. Speculatively, 

with even more profound hunger, thirst or sexual deprivation than is ethically possible 

we might infer that the expression of fairness may be even more severely attenuated 

or abolished. Overall, our data isolate fairness during bargaining as a distinctively 

human motivation, but crucially one with biologically determined limits. 
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Chapter 8. Social choice: Testosterone disrupts 

human cooperation by increasing egocentric 

behaviour 

8.1 Introduction 

In the two preceding chapters we have seen that fairness is traded-off against a 

more self-interested motivation, and that this trade-off is modualted by social context 

(Chapter 6) and thirst (Chapter 7). Here we examine the trade-off between 

cooperation and self-interest, and ask how this is biologically modulated by the 

endocrine system. The evolutionary conservation of cooperation, be it lions hunting in 

prides (Dugatkin, 1997) or human scientists toiling together in the lab, ultimately 

derives from benefits accruing to the individual and the wider social group (Axelrod, 

1984; Dugatkin, 1997; Gintis et al., 2005). Cooperation in humans is especially 

striking as it extends to total strangers (Gintis et al., 2005). There is currently much 

interest in the biological factors that modulate the trade-off between cooperative and 

more self-motivated behaviour, but in line with influential theory (Gintis et al., 2005) 

the focus has been on factors increasing a propensity to cooperate. Cooperative 

behaviours are thought to co-opt neural reward mechanisms (Rilling et al., 2002; 

Phan et al., 2010) and are causally promoted by the hormone oxytocin (De Dreu et 

al., 2010). However, whether equivalent influences drive the trade-off in the other 

direction, to promote more self-orientated behaviour and negatively impact on 

cooperation, is unknown. 

Here, we examined testosterone as a candidate agent. This gonadal hormone, 

secreted in men and women, modulates a range of behavioural trade-offs, for 

example the trade-off between parenting and courtship in birds (Wingfield et al., 

1990; Ketterson and Nolan, 1994), rodents (Clark and Galef, 1999) and rural 
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Senegalese men (Alvergne et al., 2009). Socially, higher testosterone correlates with 

antisocial behaviour in female prisoners (Dabbs and Hargrove, 1997) while a role in 

fairness-related behaviours is suggested by findings from a bargaining game 

(Burnham, 2007), although in this bargaining paradigm administration of testosterone 

has provided mixed results (Zethraeus et al., 2009; Eisenegger et al., 2010). 

However, parsing the precise role of any neurohumoral agent in social choice is 

difficult because of an imperative to dissociate social from non-social effects. For 

example, endogenous testosterone in men and women has been correlated with 

attention (Fontani et al., 2004) and risk-taking (Sapienza et al., 2009), as well as 

increasing male financial traders’ profit in a risky environment (Coates and Herbert, 

2008). 

To isolate the impact of testosterone on cooperative and individual decision-

making, we exploited a task that assays each of these components independently 

(Bahrami et al., 2010). In this task individuals must share information, and actively 

cooperate, to gain a performance benefit in a visual perceptual decision task. Here, 

we define cooperation as the voluntary acting together of two or more individuals that 

brings about, or potentially brings about, ends that benefit one, both, or all, which are 

over and above the benefits arising from individualistic behaviour (Dugatkin, 1997; 

Brosnan and de Waal, 2002). Collaborative efforts underlie many examples of such 

cooperative behaviour (Dugatkin, 1997; Brosnan and de Waal, 2002), and indeed 

they are essentially synonymous with paradigm cases of cooperation such as group 

hunting (Boesch and Boesch, 1989; Dugatkin, 1997). Importantly, our task enables 

us to avoid known associations between testosterone and reward-related processing 

(Coates and Herbert, 2008; Sapienza et al., 2009), for example in the economic 

bargaining game mentioned above testosterone affected proposers whose choices 

had uncertain reward-related outcomes but not responders whose choices had 
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certain outcomes (Eisenegger et al., 2010). We predicted testosterone would leave 

individual decisions unaffected, and would causally disrupt cooperation. 

8.2 Methods 

We administered testosterone in a randomised, placebo-controlled, double-blind, 

cross-over design (Fig. 8.1a). Pairs of healthy participants (dyads) comprised our 

study sample. In our task, both dyad members sat in a room and performed a 2-

alternative forced choice task on identical stimuli presented on separate monitors 

(Fig. 8.1c). On each trial there were two intervals and participants initially decided 

alone in which interval a target (a higher contrast grating) appeared. Target contrast 

varied between trials, enabling us to measure the sensitivity of each individual’s non-

social decision-making by estimating the slope (Sindiv) of their psychometric function: 

where a large slope indicated highly sensitive performance. After these initial 

individual decisions, participants then saw their partner’s choice. In trials where the 

dyad’s initial responses diverged, one participant was randomly selected to 

announce a cooperative decision reached after free discussion. As was the case for 

individuals we derived a psychometric function for the dyad, where cooperative 

success was reflected in the slope (Scollective). Feedback either followed the individual 

decision if they initially agreed, or alternatively followed their joint decision. 
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Figure 8.1 Experimental design a) Pairs of female participants (dyads) attended on 

two separate days in a blinded, randomised, placebo-controlled cross-over design. 

Both dyad members received identical treatment order. b) Participants had blood 

taken before treatment and testing. c) During testing dyad members sat in the same 

room viewing separate monitors. In a 2-alternative forced choice design gratings were 

presented at two intervals, one containing a target grating with increased contrast. 

Each participant initially responded without consultation, providing measures of 

individual decision-making (Sindiv). If they disagreed a joint decision was requested, 

which provided a measure of cooperative decision-making (Scollective). d) Example 

psychometric function for Dyad 1 under placebo. Proportion of trials reported as 

second interval is plotted against target contrast difference. Highly sensitive 

observers give steep functions with large slope (S). Here individuals (Sindiv) are red 

and green, and the dyad (Scollective) blue. 



160 

 

8.2.1 Participants 

34 female participants completed the study (mean age 21.7 years, range 18-30). 

All participants were part of a dyad and had the same partner throughout. Dyad 

members did not know each other beforehand. In addition to these 17 dyads, two 

further dyads were excluded (one participant performed below chance and a second 

failed to attend both sessions). All were healthy females with normal or corrected to 

normal visual acuity, and took no medication other than long-standing contraceptives 

(7 participants took combined oestrogen and progestogen contraception; one took 

progestogen only contraception). All reported regular menstrual cycles (29.1 ± s.d. 

2.2 days, range 29 to 35 days) and were tested between days 1-14 of their cycle. All 

gave informed consent and the experiment was approved by the local ethics 

committee. 

8.2.2 Experimental procedure 

In a randomised, placebo-controlled, double blind, cross-over design 80mg 

testosterone undecanoate was administered orally (Restandol® testocaps™). The 

unit of randomisation was the dyad, i.e. both participants received testosterone on 

one occasion and both participants received placebo on the other occasion. Oral 

testosterone undecanoate has long been in widespread clinical use and its 

pharmacokinetics are well known (Geere et al., 1980; Katz et al., 1993). Therefore, to 

provide a sufficient washout period each dyad attended the laboratory on two 

separate days 3 to 7 days apart (mean=5.9 days± s.d.=1.1); all had consumed or 

were given breakfast to aid drug absorption; and the gap between drug 

administration and the start of behavioural testing was 6-7 hours. 

Given that testosterone has a circadian rhythm (highest in the morning), all 

participants attended the laboratory at the same times on each of the two testing 

days: 08:45 and 15:00. On each testing day, at 08:45 the pair of participants had a 
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blood sample taken and then received testosterone or placebo. Participants then left 

the laboratory and returned at 15:00 to undergo venepuncture and then perform our 

behavioural task. 

8.2.3 Hormonal measurement 

Total testosterone was measured with a standard, commercially available Roche 

Modular testosterone assay using electrochemiluminescence immunoassay methods 

in the University College London Hospitals biochemistry laboratory. Biochemical data 

was available from 14 of the 17 dyads, with hormonal data from the remaining 3 

dyads incomplete due to administrative errors in the biochemistry laboratory.  

8.2.4 Behavioural methods 

8.2.4.1 Display parameters and Response Mode 

During the behavioural testing (Bahrami et al., 2010) dyad members sat in the 

same testing room and each viewed her own visual display. Display screens were 

placed on separate tables at right angle to each other. Participants could see each 

other by turning around. The two displays were connected to the same graphic card 

via a video amplifier splitter and controlled by the Cogent toolbox 

(www.vislab.ucl.ac.uk/Cogent/) for MATLAB (Mathworks Inc). Each participant 

viewed an LCD display at a distance of approximately 60cm (resolution = 800×600 – 

Dell Ultra Sharp, 22") for which a look-up table linearized the output luminance. 

Background luminance was 62.5 Cd/m2 in both displays. The displays were 

connected to a personal computer through an output splitter that sent identical 

outputs to both of them. Within each session of the experiment, one participant 

responded with the keyboard and the other with the mouse. Both participants used 

their right hand. 
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8.2.4.2 Task, Stimuli and Procedure 

A 2-Alternative temporal Forced Choice (2AFC) design was employed with two 

successive observation intervals. A target stimulus always occurred either in the first 

or the second interval and participants were instructed to choose the interval most 

likely to have contained the target. In each interval stimuli comprised 6 vertically 

oriented Gabor patches (standard deviation of the Gaussian envelope: 0.45 degrees; 

spatial frequency: 1.5 cycles/degree; contrast: 10%) placed equidistant from each 

other around an imaginary circle (radius: 8 degrees). The target stimulus was 

generated by increasing the contrast of one of the six patches. The target location 

and interval were randomized across the experimental session. The stimulus 

duration in each interval was 85 ms. Target contrast was determined by adding one 

of 4 possible values 1.5%, 3.5%, 7.0% or 15% to the 10% contrast of the non-target 

items. 

Each trial was initiated by the participant responding with the keyboard after 

coordinating with their partner (see Fig. 8.1). A black central fixation cross (width: 

0.75 degrees visual angle) appeared on the screen for a variable period, drawn 

uniformly from the range 500-1000 ms. The two observation intervals were separated 

by a blank display lasting 1000 ms. The fixation cross turned into a question mark 

after the second interval to prompt the participants to respond. The question mark 

stayed on the screen until both participants had responded. Each participant initially 

responded without consulting the other. The participant who used the keyboard 

responded by pressing “N” and “M” for the first and second interval, respectively; the 

participant who used the mouse responded with a left and right click for first and 

second interval, respectively. Individual decisions were then displayed on the monitor 

(Fig. 8.1), so both participants were informed about their own and their partner’s 

choice of the target interval. Colour codes were used to denote keyboard (blue) and 

mouse (yellow) responses. Vertical locations of the blue and yellow text were 
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randomised to avoid spatial biasing. If the partners disagreed, a joint decision was 

requested, with the request made in blue if the keyboard participant was to announce 

the decision and in yellow if the mouse participant was to announce the decision. The 

keyboard participant announced the joint decision in odd trials; the mouse participant 

on even trials. Participants were free to verbally discuss their choice for as long as 

they wanted and to choose any strategy they wished.  

The participants received feedback either immediately after they made their 

decision, in cases where they initially agreed, or after the joint decision was 

announced, in cases where they initially disagreed. The feedback word was either 

“CORRECT” or “WRONG”, one for each participant (keyboard: blue; mouse: yellow) 

and one for the dyad (white), and it remained on the screen until the next trial was 

initiated by the keyboard (Figure 1, main text). Vertical order of the blue and yellow 

was randomized and the dyad feedback always appeared in the centre. 

On Day 1 participants completed one practice block of 16 trials and then on both 

days completed 192 trials as 12 blocks of 16 trials (the first three dyads completed 

fewer trials, with a minimum of 128 trials per day). The experiment was self-paced. 

8.2.5 Data Analysis 

Psychometric functions were constructed for each participant and for each dyad 

by plotting the proportion of trials in which the target was seen in the second interval 

against the contrast difference at the target location (the contrast in the second 

interval minus the contrast in the first). The psychometric curves were fit to a 

cumulative Gaussian function, whose parameters were bias, b, and variance, σ2.To 

estimate these parameters a probit regression model was employed using the glmfit 

function in Matlab (Mathworks Inc). A participant with bias b and variance σ2
 would 

have a psychometric curve, denoted P(Δc) where Δc is the contrast difference 

between the second and first presentations, given by 
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As usual, the psychometric curve, P(Δc), corresponds to the probability of saying 

that the second interval had the higher contrast. Thus, a positive bias indicates an 

increased probability of reporting that the second interval had higher contrast (and 

thus corresponds to a negative mean for the underlying Gaussian distribution). 

Given the above definitions for P(Δc), we see that variance is related to the 

maximum slope of the psychometric curve, denote s, via 
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1/2
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.

2
s


      Eq 8.3 

A large slope indicates small variance and thus highly sensitive performance. We 

derive functions for each individual and for the dyad, providing a measure of 

sensitivity for each as Sindiv and Scollective respectively. The sensitivity of cooperative 

decision-making hinges on participants appropriately weighting their own and the 

other’s opinions. For each participant we measure this weighting by the ratio of times 

they agreed with themselves (egocentric decisions) to agreement with the other’s 

opinion (allocentric decisions). All statistical tests were two-tailed. 

8.3 Results 

As expected, our hormonal manipulation engendered a large increase in serum 

testosterone when comparing the time of behavioural testing (mean 9.3 ± s.d. 9.0 

nmol/L) to either morning baseline (1.2 ± s.d. 0.5; t(27)=4.7, P<0.0001) or placebo (1.1 

± s.d. 0.6; t(19)=4.2, P<0.001). Crucially, testosterone had no effect on individual 

decision making. Individual sensitivity (Sindiv) under testosterone was no different to 
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placebo when all 34 participants were considered (Sindiv; Placebo 3.11 ± s.d. 1.68; 

Testosterone 2.99 ± s.d. 1.76; t(33)=0.5, P>0.6). This was also the case when 

considering either the better (Smax Plac. 3.80 ± s.d. 1.70; Smax Test. 3.69 ± s.d. 1.88; 

t(16)=0.2, P>0.8) or worse performing member of each dyad (Smin Plac. 2.41 ± s.d. 

1.38; Smin Test. 2.28 ± s.d. 1.33; t(16)=0.5, P>0.6). The proportion of trials where the 

dyad’s initial decisions diverged also remained unaffected by testosterone (Plac. 0.37 

± s.d. 0.10; Test. 0.39 ± s.d. 0.08; t(16)=0.9, P>0.4).  

Having shown testosterone did not compromise individual decisions we could then 

ask if it had a selective impact on cooperation. The logic of effective cooperation is 

that, if achievable, it benefits the individual more than acting alone (Axelrod, 1984; 

Dugatkin, 1997; Gintis et al., 2005). We tested this by asking if testosterone affected 

the performance benefit each individual accrued from cooperation, measured by 

Scollective-Sindiv (Fig. 8.2). We found testosterone caused a marked decrease in the 

individual performance benefit arising out of cooperation (Scollective-Sindiv Plac. 1.13 ± 

s.d. 1.33, Test. 0.54 ± s.d. 1.02; t(33)=3.3, P<0.005). Furthermore, testosterone 

disrupted the benefit of cooperation for the better participant (Scollective-Smax Plac. 0.44 

± s.d. 1.14, Test. -0.17 ± s.d. 0.59; t(16)=2.2, P<0.05) as well as for the worse 

participant in each dyad (Scollective-Smin Plac. 1.82 ± s.d. 1.15, Test. 1.24 ± s.d. 0.86; 

t(16)=2.4, P<0.05). Thus, even from a purely self-interested point of view both dyad 

members were handicapped when testosterone disrupted the performance benefits 

from cooperation.  

In an evolutionary framework (Brosnan and de Waal, 2002; Gintis et al., 2005) our 

data implicates testosterone as a proximate, mechanistic modulator of cooperation, 

and specifically one that reduces the propensity to cooperate. On this basis we would 

expect it to disrupt cooperation via a consistent bias in cooperative decision-making. 

To test this prediction we focused on participants’ responses as they announced 

cooperative decisions, where they must appropriately weight each dyad member’s 
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opinion. Two considerations might explain how testosterone interferes with this 

weighting. First, testosterone could lead to a consistent overweighting of the other’s 

opinion, engendering allocentric (other-centred) decision-making, in line with its effect 

of increasing offers when given in a bargaining game (Eisenegger et al., 2010). 

Second, it could cause consistent overweighting of participants’ own opinions, where 

such egocentricity parallels its effects on trade-offs in animals, for example to eschew 

parental responsibilities and increase courtship (Wingfield et al., 1990; Ketterson and 

Nolan, 1994).  

To arbitrate between these competing hypotheses, we computed an egocentric-

allocentric (E-A) ratio of the number of trials where the announcer agreed with 

themselves to the number they agreed with the other. Each hypothesis makes a clear 

prediction: an allocentricity bias decreases the E-A ratio; and an egocentricity bias 

increases the E-A ratio. Our data fitted predictions from the second hypothesis, 

namely that testosterone consistently causes an egocentricity bias (Fig. 8.3). The E-

A ratio increased under testosterone (1.61 ± s.d. 1.17) relative to placebo (1.26 ± s.d. 

0.83; t(33)=2.4, P<0.05). This increased E-A ratio was consistent across both the best 

and worst performing dyad members, as shown in a 2 decision-maker (Smin, Smax) by 

2 drug (placebo, testosterone) analysis of variance in which there was a main effect 

of drug (F(1,16)=5.8, P<0.05) but not decision maker (F(1,16)=0.1, P>0.7) and no 

interaction (F(1,16)=0.6, P>0.4). We also note this egocentricity bias was not 

accompanied by altered deliberation time for cooperative decisions (Plac. 7.56secs ± 

s.d. 3.25; Test. 7.44 ± s.d. 2.89; t(33)=0.5, P>0.6); which in light of the broader choice 

literature suggests the effect was not related to decision uncertainty that is usually 

accompanied by reaction time changes (Slamecka, 1963).  

8.3.1 Additional analyses 

Neither E-A ratio nor sensitivity measures were related to blood testosterone 

levels. Biochemical data is available from 14 of the 17 dyads, with hormonal data 
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from the remaining 3 dyads incomplete due to administrative errors in the University 

College London Hospitals biochemistry laboratory in which they were processed. 

There were no significant correlations between testosterone (individual or mean 

dyadic, at baseline or time of testing) and either sensitivity (Sindiv or Scollective) or 

Egocentric-Allocentric ratio. 

Finally, a recent study suggesting participants’ beliefs about which drug had been 

administered might affect choice (Eisenegger et al., 2010). Thus, on each day after 

completing the behavioural testing participants completed a questionnaire asking if 

they believed they had received testosterone or placebo. 2 of 34 subjects did not 

respond. When receiving testosterone 9 of 32 subjects believed they received 

testosterone, and when receiving placebo 11 of 32 subjects believed they received 

testosterone. There was no difference in E-A ratio when participants believed they 

had received placebo (mean=1.58 ± s.d. 1.18, n=44) compared to when they 

believed they had received testosterone (1.21 ± s.d. 0.62, n=20; independent 

samples ttest t(62)=1.3, P>0.1). 
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Figure 8.2 Individuals derive a performance benefit from cooperation. The 

dyad’s cooperative decisions were more sensitive (Scollective) than the individuals’ 

decisions alone (Sindiv). Our metric for this performance benefit on the vertical axis is 

the difference between an individual’s sensitivity and the cooperative sensitivity 

achieved by their dyad (Benefit of cooperation = Scollective - Sindiv). This benefit is 

attenuated by testosterone when collapsed across all 34 participants (Sindiv) and also 

when only the better (Smax) or worse (Smin) members of each dyad are included. Error 

bars indicate s.e.m.. 
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Figure 8.3 Testosterone disrupts cooperation by increasing the egocentricity of 

decision-making. Each member of the dyad announced the dyad’s joint decision in 

half the trials where such a cooperative decision was required. The sensitivity of 

cooperative decision-making hinges on the distribution in weighting attributed to one’s 

own and the other’s opinions. For each participant we measured this weighting by the 

ratio of times they agreed with themselves (egocentric decisions) to agreement with 

the other’s opinion (allocentric decisions). An Egocentric-Allocentric ratio of 1 means 

that participants weight their own and the other’s original judgement equally. On 

placebo there is trend towards egocentricity bias (one sample, t(33)=1.8, P<0.1), an 

egocentricity bias that becomes marked on testosterone (one sample, t(33)=3.0, 

P=0.005). Error bars indicate s.e.m.. 
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8.4 Discussion 

Our data indicate testosterone selectively and causally disrupts cooperation by 

increasing egocentricity in decision-making, operationalised as an enhanced 

weighting of one’s own relative to another’s evidence. We note that such increased 

self-orientation is a consistent theme across a wide range of testosterone related 

behaviours, including sexual and reproductive (Wingfield et al., 1990; Ketterson and 

Nolan, 1994; Clark and Galef, 1999; Alvergne et al., 2009), status-associated (Mazur 

and Booth, 1998), competitive (Wobber et al., 2010) and aggressive (Wingfield et al., 

1990; Dabbs and Hargrove, 1997; Archer, 2006) behaviours. For example high 

status, where the self is dominant over others, is associated with high testosterone in 

humans (Mazur and Booth, 1998; Archer, 2006), chimpanzees (Muller and 

Wrangham, 2004) and other mammals (Sachser and Pröve, 1986). Before 

competitive interactions between the self and others, anticipatory testosterone rises 

are seen in chimpanzees but not in more cooperative and egalitarian bonobos 

(Wobber et al., 2010). Furthermore, in human individuals who worked alone on an 

analytical reasoning task, higher testosterone correlated with higher scores in 

subjects told they were competing individually, but lower performance in subjects told 

their score would subsequently be pooled with someone else’s (Mehta et al., 2009). 

A natural consequence of testosterone causing increased self-orientation would be to 

down-rate perceptions of others or empathy, which are seen by using facial 

trustworthiness ratings (Bos et al., 2010) and empathising related to photographs of 

eyes respectively (van Honk et al., 2011). However, whilst our interpretation accords 

well with the wider literature, here both dyad members received testosterone on the 

same day and thus future work could usefully examine the possibility that 

testosterone may disrupt cooperation by reducing an individual’s ability to signal their 

confidence. Interestingly given a recent study suggesting an effect of participants’ 

beliefs about which drug they received (Eisenegger et al., 2010), which we did not 
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find here, future work might also directly manipulate such an effect. More broadly, the 

idea that testosterone increases self-belief is now testable within a new framework by 

assaying meta-cognition (Fleming et al., 2010).  

The success of social animals, particularly humans, depends on how well 

individuals manage a critical day-to-day trade-off between cooperative and more self-

motivated behaviours. Biological mechanisms controlling this trade-off must tune 

behaviour to the social environment. Whilst a previous focus has been on factors 

promoting cooperation (Rilling et al., 2002; De Dreu et al., 2010; Phan et al., 2010), it 

is clear that without opposing factors, such as that we show for testosterone, this 

form of control mechanism would be lopsided. Indeed, diminished cooperation should 

not necessarily be seen in a negative light as it is likely to be critical in preventing 

exploitation and, more speculatively, might promote artistic and creative endeavours 

that are often characterised by a degree of iconoclasm.  

What our data shows is that the humoral agent testosterone, known to be 

dynamically tuned by ecological contingencies, particularly with respect to 

conspecifics (Mazur and Booth, 1998; Wobber et al., 2010), serves a crucial role in 

modulating this delicate trade-off between cooperation and a more egocentric 

disposition.  
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Chapter 9. General discussion 

9.1 Overview 

In this thesis I aimed to use a biologically-based perspective to understand how 

people make choices. Specifically, I investigated two paradigmatic influences on 

individual choice, namely risk and the possibility of loss (Chapters 4 and 5); and two 

paradigmatic influences on social choice, namely fairness and cooperation (Chapters 

6, 7 and 8). I used concepts from the quantitative social sciences, behavioural model 

comparison, functional Magnetic Resonance Imaging (fMRI) and employed causal 

manipulations of hormones and physiological state.  

In the following sections I will discuss the contributions, limitations and future work 

arising from the studies included in this thesis: first from my examination of individual 

choice in Chapters 4 and 5; and then from my investigations of social choices in 

Chapters 6, 7 and 8. 

9.2 Individual choice 

In both Chapters 4 and 5 I described greater gambling for gains than losses, a 

finding inconsistent with a tied relationship between risk and valence that specifies a 

valence-induced bias in the opposite direction. Instead, we found behavioural and 

neural dissociations between the effects of risk and valence, consistent with an 

hypothesis that risk and valence exert independent influences on choice. I show that 

a simple manipulation of task structure dissociated the impacts of risk and valence, 

by selectively reversing the effect of valence while leaving a risk-induced bias 

unaffected; that individual preferences for each were also independent; and further 

that risk and valence were encoded by distinct neural systems. These dissociations 

are not predicted by existing behavioural economic theory (Kahneman and Tversky, 

1979; Tversky and Kahneman, 1992), but can be accommodated in a biologically-
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based account of choice in which risk and loss bias approach towards economic 

stimuli. This mechanistic explanation provided testable hypotheses, which we 

confirmed using reaction time data in Chapter 5. 

One set of limitations of this work arises from our operationalisation of risk: first, 

we limit choices to those involving risky prospects where the decision-maker knows 

all probabilities; and second we manipulated risk as the variance in outcome 

distributions. Firstly, risk in which all probabilities are known is an important case, 

and this is also the type of risk addressed by EUT and Prospect Theory. However, 

these “known unknowns” reflect only one type of risk, and it is unclear if our findings 

would extend to the “unknown unknowns”, or ambiguity, that have also been shown 

to impact on behaviour (Ellsberg, 1961) and that are reflected neurally (Bach et al., 

2009). It is ill understood how ambiguity-related preferences might interact with 

valence (i.e. gain and loss outcomes), and this is an interesting future line of enquiry. 

Secondly, given our operationalisation of risk as variance, an aspect of risk that we 

do not address is other summary statistics describing outcome distributions. For 

example, skewness has been shown to impact on choice and to be reflected neurally 

(Symmonds et al., 2011; Wu et al., 2011). Again, future work could usefully examine 

how skewness preferences interact with valence. Further, our task does not directly 

address a broader meaning of risky behaviours often used by clinicians or lay people, 

where these are defined as those that  may lead to harm such as in mountain 

climbing (Schonberg et al., 2011). This carries implications for the ecological validity 

of our findings, as it is known for example that individual differences in risky choice 

appear to be domain specific across different types of risk (Slovic, 1964; Weber et 

al., 2002).  

Other limitations also arise from our operationalisation of valence. We use 

financial rewards and punishments. However, whilst this is an extremely well learnt 

conditioned reinforcer (Dayan and Seymour, 2008), it would be interesting to ask if 
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our findings extend to cases outside the financial domain such as primary rewards 

(O’Doherty, 2004), pain (Seymour et al., 2004) or a mixture of pain and money (Talmi 

et al., 2009). 

A further limitation to the generalisability of our findings derives from the way we 

gave our subjects the explicit probabilities. As is typical in economic studies, we used 

choices in which the key decision variables are explicitly stated. However, many 

learning theorists study choices in which options are evaluated on the basis of 

experience (Sutton and Barto, 1998, Stephens and Krebs, 1986; Mackintosh and 

Dickinson, 1979). Growing behavioural evidence suggests that valuation based on 

these different classes of information involve separable mechanisms (Hertwig et al., 

2004; Jessup et al., 2008; Ungemach et al., 2009; Wu et al., 2009). Indeed a recent 

study has shown differential sensitivity to learned and described value and risk in 

brain regions commonly associated with reward processing (Fitzgerald et al., 2010). 

Again, how this aspect of risk evaluation or learning might interact with valence is a 

potentially fruitful avenue for future work.  

The stable and independent inter-individual differences for risk and valence that 

we demonstrate also raises further questions. In particular, stability in the aversive 

impact of loss on choice over time has not to our knowledge been previously 

demonstrated, and is interesting in light of work suggesting framing effects may be 

genetically mediated (Roiser et al., 2009). However, it would be interesting to ask if 

this stability with valence lasted over even longer periods of time, and to ask if there 

are multiple domains within this valence sensitivity as is the case for risk (Slovic, 

1964; Weber et al., 2002). This would speak to the external validity of our valence-

related measures.  

Neurally, our data revealed activity encoding the degree of stimulus risk in parietal 

cortex, which concurs with single unit and fMRI data showing enhanced activity 

during risky decision-making (Platt and Glimcher, 1999; Huettel et al., 2005; Mohr et 



175 

 

al., 2010). This provides evidence in support of “summary statistic models”. However, 

it is important to ask how this risk evaluation is related to action selection, although 

we note that in our study this same region shows activity for choice and that this 

correlates with risk preference. Our neural data also link approach/avoidance 

mechanisms (Kim and Jung, 2006; Seymour et al., 2007; Dayan and Seymour, 2009) 

to both risk and valence. However, the degree of similarity between such risk and 

valence related systems is a matter for further study – and indeed more generally it is 

poorly understood if there exist one or many such mechanisms (Rangel et al., 2008).  

Within an account of choice proceeding from option evaluation through to action 

selection (Corrado et al., 2009), we suggest that the risk and valence of an economic 

stimulus are processed by separable neural systems, and influence action-selection 

partly through reflexive systems that bias approach responses. This process model 

yields testable predictions, for example concerning the approach/avoidance 

mechanism using reaction times. However, critical in this process model are issues 

of temporal order, which are very difficult to address with fMRI. It is also possible that 

we could ask mechanistic questions of our RT data using diffusion modelling (Ratcliff, 

2000), although this typically uses tasks in which the RT is much shorter (in the order 

of 1 to 1.5 seconds, not the 3.5 seconds we see in our free response experiments in 

Chapter 5). Further, our account implies causality that we could perhaps most 

usefully test using neuropsychological techniques, which could also ask which 

regions we identify are necessary as well as sufficient. 

9.3 Social choice 

With respect to the social choices examined in Chapters 6, 7 and 8, I examined 

the biological systems enabling social behaviour to respond flexibly to environmental 

contingencies. In the neural investigation of fairness presented in Chapter 6, the 

principal aim was a behavioural and neural characterisation of objective and 

contextual aspects of fairness. We defined the contextual component of fairness as a 



176 

 

shift in choices in response to otherwise identical offers. Our finding of a marked 

context-dependence provides a perspective on fairness as a relative rather than 

absolute quantity, echoing findings in relation to other high-level quantities such as 

valuation (Ariely et al., 2006; Seymour and McClure, 2008; Vlaev et al., 2009). 

However, our neural data also highlight a fundamental role for objective social 

inequality that accords with effects seen in the UG across diverse cultures (Henrich, 

2004) and in human infants (Fehr et al., 2008). Our data highlights how these 

objective and contextual aspects interact to construct a fairness motivation with 

sufficient flexibility to enable appropriate responses to the social environment. Our 

neuroimaging data strongly support inequality aversion models: first, we find a main 

effect of inequality in posterior insula; second, between subjects the envy parameter 

correlates with activity in the precuneus, left TPJ and frontopolar cortex; third, 

inequality modulated posterior and mid-insula activity more strongly when inequality 

is psychologically more aversive. These findings extend current inequality aversion 

models, demonstrating the behavioural and neural flexibility to avoid knee-jerk 

aversion to inequality. 

One limitation of our design is that although we assume choice is the outcome of 

processes whose neural implementation may involve social computations such as 

prediction errors (Behrens et al., 2008; Hampton et al., 2008), we did not employ a 

non-social control. Another potential issue with the social content of the task was that 

although we led participants to believe they were playing with real others in the 

game, they actually responded to a predetermined set of offers.  

Neurally, perhaps our most important findings relate to the role of insula cortex in 

fairness motivation. We propose functional segregation in this extensive (over 5cm 

long) and cytoarchitectonically diverse cortical region (Flynn, 1999; Varnavas and 

Grand, 1999), with posterior insula negatively correlating with inequality and anterior 

insula positively correlating with inequality. This would explain previously divergent 
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findings in insula (Sanfey et al., 2003; Hsu et al., 2008). Since our study, a causal 

study in non-human primates using stimulation in insula has shown results highly 

consistent with this hypothesis(Caruana et al., 2011), where stimulation of more 

posterior regions led to affiliative behaviours, whilst stimulation more anteriorly led to 

more disgust-related behaviours. 

In Chapter 7, we show that humans remain interested in fairness even with 

primary rewards and in a deprived state. In contrast, humans’ closest relatives, 

chimpanzees, appear to be rational self-interested maximisers who do not reject 

unfair offers in the canonical fairness task, the UG (Jensen et al., 2007). Such 

behaviour suggests the motivation to reject unfair treatment may be uniquely human. 

However, whilst our human participants were not solely self-interested, neither were 

they solely motivated by fairness, and instead they exhibited a trade-off between 

these motivations. Importantly, our data speak to previously discrepant behavioural 

economic results as to whether individuals’ choices are influenced by the size of the 

stakes relative to their wealth (Cameron, 1999; Camerer, 2003): here we show that 

raising the stakes by increasing osmolarity (analogous to reducing wealth) does 

matter, but only when these stakes impact upon the individual’s subjective 

motivational state.  

Finally, in Chapter 8 we addressed the hormonal regulation of cooperation. Our 

data indicate testosterone selectively and causally disrupts cooperation by increasing 

egocentricity in decision-making. This is important as whilst previous work has 

focussed on factors promoting cooperation (Rilling et al., 2002; De Dreu et al., 2010; 

Phan et al., 2010), it is clear that without opposing factors, such as that we show for 

testosterone, this form of control mechanism would be lopsided. Indeed, diminished 

cooperation should not necessarily be seen in a negative light as it is likely to be 

critical in preventing exploitation. However, whilst our interpretation accords well with 

the wider literature, one limitation is that both dyad members received testosterone 
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on the same day. Future work could thus usefully examine the possibility that 

testosterone may disrupt cooperation by reducing an individual’s ability to signal their 

confidence. One other possibility is that testosterone increases self-belief more 

generally and not just in social interactions, which could usefully be tested using a 

framework that assays meta-cognition (Fleming et al., 2010). Further, it will be 

important in future to extend this work such that physiological rather than above 

physiological doses are examined, and that men as well as women are investigated. 

Together, our three social studies point to the importance of control mechanisms 

to manage a critical day-to-day trade-off between social and more self-interested 

motivations. Biological mechanisms controlling such trade-offs must tune behaviour 

to the social environment, and will be critical to the success of social animals such as 

humans. 

9.4 Conclusions 

This thesis began with two observations regarding new inter-disciplinary 

approaches that combine biological and economic perspectives on choice. Firstly, 

that these new approaches could permit the reintroduction of an earlier richness and 

complexity into models of human behaviour, but within a mathematically specifiable 

and empirically grounded framework. Second, that these inter-disciplinary 

approaches may provide better descriptive models of choice. It is my hope that the 

studies described here make modest contributions to both these aims. Certainly, they 

raised questions that I greatly enjoyed trying to answer.  
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