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ABSTRACT 

 

The research focuses in devising decentralised and distributed control 

system architecture for the management of internetworking systems to 

provide improved service delivery and network control. The theoretical basis, 

results of simulation and implementation in a real-network are presented. It is 

demonstrated that better performance, utilisation and fairness can be 

achieved for network customers as well as network/service operators with a 

value based control system. 

 

A decentralised control system framework for analysing networked and 

shared resources is developed and demonstrated. This fits in with the 

fundamental principles of the Internet. It is demonstrated that distributed, 

multiple control loops can be run on shared resources and achieve 

proportional fairness in their allocation, without a central control. Some of the 

specific characteristic behaviours of the service and network layers are 

identified. The network and service layers are isolated such that each layer 

can evolve independently to fulfil their functions better. A common architecture 

pattern is devised to serve the different layers independently. The decision 

processes require no co-ordination between peers and hence improves 

scalability of the solution. The proposed architecture can readily fit into a 

clearinghouse mechanism for integration with business logic. This architecture 

can provide improved QoS and better revenue from both reservation-less and 

reservation-based networks. The limits on resource usage for different types 

of flows are analysed. A method that can sense and modify user utilities and 

support dynamic price offers is devised. An optimal control system (within the 

given conditions), automated provisioning, a packet scheduler to enforce the 

control and a measurement system etc are developed. The model can be 

extended to enhance the autonomicity of the computer communication 

networks in both client-server and P2P networks and can be introduced on the 

Internet in an incremental fashion.  
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The ideas presented in the model built with the model-view-controller and 

electronic enterprise architecture frameworks are now independently 

developed elsewhere into common service delivery platforms for converged 

networks.  

 

Four US/EU patents were granted based on the work carried out for this 

thesis, for the cross-layer architecture, multi-layer scheme, measurement 

system and scheduler. Four conference papers were published and 

presented.  
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1. INTRODUCTION 

 

1.1  General 

 

This thesis contributes to the de-centralised and distributed resource 

allocation and traffic management areas of the Internet engineering. The de-

centralised and distributed control architecture supports autonomic network 

systems that are visualised to allow dynamic self-organisation of the network 

according to the professional, economical and social needs of the users [64, 

93]. With the exponential growth in the number of systems and subsystems 

that forms part of the Internet, without autonomic networking the management 

of the network to deliver expected performance will become impractical, as 

there will be far too many disparate systems to administer. While the 

individual devices are getting cheaper, major portion (>70%) of the total cost 

of ownership of the networked systems is spent in the management of the 

network [172].  

  

The system proposed controls traffic admission to the network at the edge 

routers, on an edge-to-edge basis such that the network is not overloaded, at 

the same time maintains higher utilisation of the network elements. The edge 

routers treat the network as a common resource. However, semaphores like 

token passing are not used for ingress control. A centralised bandwidth broker 

is not used either. It is demonstrated that a system that provides direct 

feedback to its users (in the given case the users are edge routers) and the 

users acting on that feedback to control the usage of the system will achieve 

proportional fairness in  a de-centralised way without the need for inter-user 

communication. 

 

The idea is to build on the de-centralised and distributed principles of IP 

systems and developing a higher-level control system that compliments the 

existing IP systems. The Diffserv protocol does not maintain any per-flow 

state in the core elements of the network; similarly, the proposed system also 
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does not require any per-flow state to be maintained in the core elements of 

the network. However, Diffserv alone cannot guarantee inter-packet delays for 

premium traffic and perform appropriate traffic management. Moreover, a 

system that is protocol-agnostic is required to provide a stable management 

environment, as the transport protocols change in course of time. 

 

The resources are allocated in parallel. Each resource is associated with 

an intermediate variable called ‘price’, which is in effect a ‘price-like variable’ 

and is not connected to any currency. When there is imminent congestion, the 

price function of that resource is increased and the ingress flow is limited to 

admit only the higher value flows.  

 

Concept diagrams of the overall system presented in this thesis is given in 

Figure 1 and Figure 2. Internet can be visualised as a decentralised network 

of different types of networks. It may be noted that Figure 1 is only a very top-

level abstract diagram, depicting the connectivity architecture of the Internet1.   

The different types of networks include Tier 1 networks (generally the national 

ISPs), Tier 2 networks (generally the regional ISPs) and Tier 3 networks 

(generally the local ISPs). These different networks themselves operate as 

autonomous systems (AS). The idea is to manage the traffic input to the 

network by de-centralised decision processes in the edge routers as 

indicated. The only feedback required is that of the cost functions of the 

network resources for traffic/route aggregates. This information is available in 

databases for every autonomous network (AS) that constitutes the network 

(shown as NIB). In a full-mesh autonomous network consisting of n nodes, the 

number of unique connections possible is n. (n-1)/2 i.e. O(n2). Collecting this 

information will be an enormous problem. However organising the cost 

function information per autonomous network helps to reduce the complexity 

of retrieving it to O(n).  

                                                 

1
 The end-to-end transit of datagrams through the different types of networks could be 

traced using programs like traceroute 
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Figure 1 Concept diagram-I of the system presented in this thesis – 
ingress traffic and feedback in the network 

 

 

1.2  Problem statement 

 

The Internet can be considered as a multi-service delivery platform with 

three distinct types of entity: the user, the network provider and the service 

provider. The services are delivered by different types of transport 

mechanisms (e.g. TCP, UDP) in different type of system organisations (e.g. 

client-server, P2P).  

 

In general, the flow rate/QoS achieved by user traffic is determined by 

various transport & network issues; not user/operator demand. At the 

moment, the resources used for the service delivery are provisioned manually 

as per the estimated requirements of the users, as decided by the business 

contracts and associated policies. Below this management level, while there 

are some control mechanisms like TCP for microflows, there are no integrated 
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control mechanisms available for macroflows i.e. traffic aggregates. The 

reservation based flow control like the one used in Intserv did not succeed. 

 

The UDP traffic and aggregates of TCP flows does not have a control 

system to manage them in the client-server or P2P architectures. This gives 

rise to inefficiencies and unfairness in service delivery. 

 

Therefore, a new control architecture is necessary to put user/operator 

demand in control of the service achieved. 

 

Using the system architecture methodology given in section 1.6.2, the 

different viewpoints on how the Internet evolved has been looked at. Earlier 

works from the view points of resilience, queuing and resource sharing by P 

Baran, L Kleinrock and D Davies respectively resulted in the basic designs of 

the current architecture [167]. The disparate packet networks were then 

connected via gateways with traffic engineering and routing techniques, which 

resulted in the current Internet. The next step would then be adding further 

attributes like quality of service and fairness. This coincides with the needs 

identified above. 

 

It may be observed that the application part of the OSI stack is moving 

from a monolithic structure to that of distributed structure, with the advent of 

distributed file sharing as well as computing applications. Similarly, the 

network part of the stack is also moving from a monolithic structure to that of 

distributed structure, with the advent of the multitude of network substrates 

that are seamlessly integrated to provide connectivity. The proposed top-level 

control system provides the necessary framework to maintain the isolation 

between these two parts. This helps to control all types of flows with a single 

framework and help in monetising the usage more effectively.    

 

It has been proven by Ashby and Conant [50] that any control system that 

is effective and simple must be isomorphic with the system being regulated 

i.e. should be a model of the system itself. The connection-less, de-
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centralised and distributed nature of the control system proposed in this thesis 

fulfils this theory. 

 

Considering the enormity of the distribution of Internet resources and the 

different architectures used for service delivery, the control framework 

required to harmonise the resource management has to be agnostic of the 

transport mechanisms, in order to be future proof. This is because innovation 

in transport mechanisms is still happening. Such a framework has to be 

essentially distributed in nature, not only to allow continued growth 

(scalability) but also to facilitate incremental deployment.  

 

This requires devising several components- a control system that provides 

optimal control within the given conditions, automated provisioning (predictive 

and reactive), a control enforcement mechanism and a measurement system. 

 

The control system operates over traffic trunks/route aggregates at the 

edge-routers of the network. It makes decisions regarding the provision of 

resources to the traffic trunks/aggregates. These decision commands are 

enforced by schedulers that control the bandwidth allocated at the links. While 

the schedulers are local to the edge-routers, the decision commands are 

based on the packet transport and resource availability issues across the 

network between the edge routers. Therefore, it is fair to say that the decision 

command system operates above the transport layer. It may be noted that 

there is no resource reservation involved. 

 

The following Figure 2 shows a depiction of the level at which the 

proposed control system operates. The figure shows a depiction of end hosts 

communicating with each other using various end-to-end protocols. The hosts 

communicate via their edge routers. The edge routers use core routers to 

carry the traffic across. The edge routers aggregate the traffic depending on 

their service requirements and routes. These aggregates are transported 

between the edge routers as traffic trunks. The edge routers operate control 

decisions at this is the level.  
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Figure 2 Concept diagram-II of the system presented in this thesis – traffic 
aggregates & control plane 

 

The control layer also serves as an aggregation layer to bundle the various 

flows using the same set of resources and therefore providing higher 

scalability when compared to methods that use admission control per flow. 

 

1.3  Thesis work 

 

This thesis work started in 1999 and the main body of the work was 

complete by 2001. The original title was 'Optimal Infrastructure for a Universal 

Electronic Enterprise',  to research into the design, development and 

implementation of a system architecture and components to efficiently 

operate, control and manage a Universal Electronic Enterprise based on 

Computer Communications Control. The electronic enterprise is constituted 

by networked communication (telecom/datacom) and IT (email, web servers, 

storage etc) software and hardware systems. These are in fact systems of 

systems and are not monolithic in nature. They run on heterogeneous 

distributed platforms and offer a variety of flexible, programmable, and 

multimedia services to the users. The project was envisaged to make original 

contributions in inter-disciplinary systems science, distributed engineering 

technology and real-time protocols. The main thrust was to find a confluence 

of communications, control, signal processing and economics/ management 

in the emerging Internet. The idea was that a value added and interactive 

service provisioning, intra-domain and inter-domain traffic engineering and 
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resource optimisation for network and computing services and resources, 

operating with appropriate price function models would provide optimum 

quality of service and balanced network growth for multi-service networks. 

This thesis presents the results of the work carried out within the constraints 

of the industry. 

 

The Internet resources are provisioned manually as per the estimated 

requirements of the users, as decided by the business contracts and 

associated policies. While there is some basic self-configuration available, 

there is no framework available to suit a dynamic system like the Internet  to 

work as an autonomic system[158]. As such, best effort is made to carry the 

traffic generated by the users within the constraints of the service level 

agreements and the resources. This scenario gives rise to various issues, e.g. 

fairness of the resource allocation, quality of service (delay, jitter, loss) of the 

packet flows etc. While there are some control mechanisms like TCP for 

microflows, there are no integrated mechanisms available for macroflows i.e. 

traffic aggregates. Hence, the issues remain largely unresolved. This thesis is 

an investigation into such issues using the distributed control systems 

approach and provides some theoretical ideas, tools and techniques and 

various elements for building autonomic networks. It also provides some 

realised application examples in IP and Photonic networks.  

 

The thesis is structured as follows: chapter 1 provides the introduction, 

motivation, business framework and engineering process used, chapter 2 

gives background and related work, chapter 3 provides the system analysis 

and modelling, chapter 4 gives architecture simulation, results and 

interpretation of results, chapter 5 describes the scheduler, chapter 6 

describes real network implementation and results, chapter 7 gives 

conclusions and future work.  

 

This thesis contributes the following: A decentralised control system 

framework enable easy analysis of networked and shared resources is 

developed. It is demonstrated that distributed, multiple control loops can be 

run on shared resources and achieve proportional fairness in their allocation, 
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without a central control. Some of the specific characteristic behaviours of the 

service and network layers are identified. These layers are isolated such that 

each layer can evolve independently to fulfil their functions better. A common 

architecture pattern is devised to serve the different layers independently. The 

decision processes require no co-ordination between peers and hence 

improving the scalability. The architecture can fit into a clearinghouse 

topology to readily integrate with business logic. This architecture can provide 

improved QoS and better revenue from both reservation-less and reservation-

based networks. The limits on resource usage for different types of flows are 

analysed. A method that supports dynamic price offers and modify/sense user 

utilities is devised. A control system that is optimal in given conditions, 

automated provisioning, a packet scheduler to enforce the control and a 

measurement system etc are developed. The model can be extended to 

enhance the autonomicity of the computer communication networks in both 

client-server and P2P networks and can be introduced on the Internet in an 

incremental fashion.  

 

1.4  Relevance of the contributions in today’s Internet & Systems 

 

The idea of a universally connected network that this thesis started from is 

gaining more and more strength. In fact, Licklider suggested Intergalactic 

Computer networks far back in 1963 [167].  

 

The idea of control system architecture for de-centralised and distributed 

networks, macro-scheduling with defined attributes of fairness, separation of 

service and network provision, absence of peer to peer co-ordination etc are 

gaining popularity in areas like autonomic systems, provision of on-demand 

real-time services, ensuring QoS in cloud computing, multi-processor job 

scheduling etc. The idea of IP traffic control above the transport layer, 

described in this thesis has found recent interest in ‘Quality of Transport’ 

(QoT) studies. The framework is applicable in different areas of the Internet 

Traffic Control and Management business viz. IP Routers, MPLS switches, 

Optical switches, Photonic switches, Wireless resource management, Server 



 

 

25 

farm load balancers, Content provisioning etc. On the micro-level, the ideas 

are applicable in multiprocessing, multiprocessor, multicore, System-On-Chip 

and Network-On-Chip communication systems.  

 

The idea of scheduler, with reduced inter-packet delay and dynamic 

scheduling, described in this thesis has found recent use in wireless networks 

where a session being transmitted suddenly breaks due to RF channel quality 

issues. 

 

The framework and principles presented in this thesis can be generalised 

to find applications in any system of systems- from multi-agent software 

systems to robotic systems. 

 

1.5  Motivation 

 

The Internet as a physical substrate is a shared resource. A variety of 

applications interacts with each other on this substrate using different 

protocols. Naturally, there are a number of issues that crops up when using a 

shared resource that affects the Quality of Service delivery. 

 

A prime example is the congestion caused by applications competing for 

resources. Protocols like Ethernet, and later TCP etc had some amount of 

congestion control built into them. However, the effectiveness of such 

measures is defeated by applications that spawn multiple TCP instances (like 

the P2P torrents) as well as non-TCP applications (like VoIP, IPTV etc). 

Without QoS class tiering, those who generate the most traffic will dominate 

the Internet bandwidth. Providing QoS in IP has been a major thrust area in 

packet switching networks and the applications that demand QoS include 

human communication, scientific computing, online financial trading, 

distributed games etc. It is known that measurement based admission control 

techniques usually tend to favour small and short lived flows [32] as the short 

flows have higher probability of not getting sampled (for rejection) than flows 

that traverse a larger number of hops. Non-TCP protocols, torrents etc are 
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generally considered unfair. Thus a mechanism to enforce fairness in the 

resource allocation, regardless of the type of protocol used, is needed. 

 

Perhaps a better architectural decision would be not to burden the data 

transport protocols (like TCP) further with the issues like congestion control 

that is due to the shared resource. The rationale is as follows: TCP has 

several functions like packet re-ordering/re-transmission/error correction, flow 

control based on buffer fill, congestion avoidance based on timers etc. Due to 

the wait-times and re-transmissions involved, TCP already incurs longer 

delays than, say UDP. The functions of TCP are indeed going to stay, as they 

are important for the micro-flow. However, to improve the performance, it is 

required to move from ‘congestion avoidance’ at the micro-flow level to 

‘congestion control’ at macro-flow level, by resource provisioning and usage 

control. By doing this, the obstacles encountered by protocols like TCP is 

reduced. 

 

Therefore, issues due to the shared resource will be better solved by an 

automatic provisioning protocol that operates above the transport layer 

between the edge routers, handling the aggregate, macro-flows. This protocol 

will ensure fair sharing of the physical substrate i.e. the network resources 

among the many users and leave the lower layer transport protocols to do the 

jobs they are designed for.  

 

In a highly distributed network, the effect of multiple control loops is 

another issue. In this thesis, it is demonstrated that multiple control loops can 

be allowed in a highly distributed automated network, yet their isolation and 

tractability can be maintained.  

 

The attempt in this thesis is first to analyse such a sharing mechanism and 

then to synthesis and implement a solution, and provide a value based 

admission control to deliver specific quality of service and ultimately improve 

the average revenue per user. 
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1.6  Business framework and Engineering process 

1.6.1 Business context framework used 

 

An overview of the electronic business enterprise entities in the network 

communication space, their relationships and importance can be gained from 

the Zachman frame work [229], shown in Figure 3. The figure is applicable to 

enterprises including Internet Service and Infrastructure Providers. The rows 

represent various viewpoints from which the aspects can be described. Each 

cell, formed by the intersection of a column and a row represents an aspect of 

the enterprise modelled from a particular viewpoint. This framework is 

introduced here only to show the wider context of this thesis work. The thesis 

considers only the system and technology models for the network aspect. 

 

 

Figure 3 Enterprise architecture framework (courtesy: Zachman) 
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1.6.2 System architecture methodology used 

 

Developments in the architectural specifications by ANSI/IEEE/ISO/IEC 

[94, 95] as well as the UML [178] have made it possible to develop standard 

models that can be applied across the whole spectrum of engineering 

architecture. 

 

 

Figure 4 Conceptual model for architectural description (ref ANSI/IEEE 
1471/ISO/IEC 42010) 

 

Figure 4 shows the conceptual model for the system architecture followed 

in this work. A system is realised to fulfil one or more missions (use or 

operation) in an environment. The environment or context determines the 

usecases. The different stakeholders of the system have different concerns 

about the system. The concerns are interests pertaining to the development, 

operation etc as well as performance, reliability, evolvability etc. These 

concerns are considered and addressed from different viewpoints. The 

expression of a system’s architecture with respect to a particular viewpoint is 

referred as view. Views are groups of models that conform to exactly one 

viewpoint by using its language and rules. The viewpoint taken here is that of 

distributed resource control. 

 

 

view

 

architectureDescription

 

'organised by'1..*

  

 

'organised by'1..*

  

 

rationale  

 

provides

 

  

 

provides

 

 

model

 

'participates in' 

aggregates1..*

 

'participates in' 

aggregates1..*

 

'participates in'1..*

'consists of'

1..*

 

'participates in'1..*

'consists of'

1..*

 

architecture

 
'described by' 

  
 
'described by' 

  

 

mission

 

system

 

  

fulf ills1..*

 

  

fulf ills1..*

 'has an'

 

 

 

 'has an'

 

 

 

 

stakeholder

 
has1..*

  
 
has1..*

  

 

view point

 

 1..*

'is addressed to'
1..*

 

 1..*

'is addressed to'
1..*

 

view pointLibrary

 
'has source'0..1

 0..*
 
'has source'0..1

 0..*

  

 

identif ies

1..*

  

 

identif ies

1..*

 

'establishes methods for'
1..*

 1..*

 

'establishes methods for'
1..*

 1..*

 

'conforms to'

 

 

  

'conforms to'

 

 

 

 

environment

 influences

 inhabits 

 influences

 inhabits 

 

concern

 

'used to cover'

1..*

 

1..*

 

'used to cover'

1..*

 

1..*

 

'is important to'
1..*

has

1..*

 

'is important to'
1..*

has

1..*

 

 

 

identif ies

1..*

 

 

 

identif ies

1..*

 

 

 

selects

1..*

 

 

 

selects

1..*



 

 

29 

The way in which the system architecture methodology helped in 

formulating the problem and solution in a systematic way is mentioned in 

section 1.2 

 

1.6.3  System engineering process used 

 

The incremental process for system engineering i.e. architecting, 

designing and testing etc is characterized as in Figure 5 below, described by 

the IEEE [94]. 

 

Figure 5 System engineering process (courtesy: IEEE 1220) 

The process inputs are the requirements including the value judgments of 

needs, risk tolerance, cost, utility, quality, delivery, development platforms etc. 

All the inputs to the engineering process have very high variance in the initial 

development phase.  

 

The system engineering process described above was used in the 

systematic development of the system requirements and architecture, 

functional block design and implementation as well as validation and 

verification of the system.  
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2. BACKGROUND 

 

2.1  Related work 

2.1.1 De-centralised and distributed networks 

 

The connection-less communication system brought about by the Internet 

Protocol suite shares the distributed network resources in a very effective 

way. This is achieved by filling the network resources with fine granularity 

packets. Awduche et al [16] provides an overview of Internet traffic 

engineering. Prior research has been conducted on how these resources are 

shared and utilised in order to deliver value added services. Methods for 

dynamic routing, traffic management, capacity management etc have been 

studied earlier for telephony and IP networks [11, 12, 91, 157]. However, 

sophisticated, on-line, QoS routing and traffic engineering methods are not 

commonly deployed in real world IP networks [12]. The work described in this 

thesis is an effort to contribute further in this area of study. 

 

On feedback control, Jacobson et al [97] introduce feedback from packet-

receiver to packet-sender for congestion control. Keshav [121] has done 

further investigations into the feedback control methods and the usage of 

estimators and fuzzy logic etc. Further work by Breslau et al found that 

measurement based admission control techniques usually tend to favour 

small and short lived flows [32]. All these studies deal at the TCP flow level 

and assume round robin schedulers. The Internet however consists of 

different types of flows e.g. TCP, UDP etc. The work in this thesis is to build a 

system above this transport level, using schedulers that are more flexible.  

 

On overall system philosophy, Nagle [163] introduces a game theoretic 

approach and proposed market based techniques to avoid 'tragedy of the 

commons' with network resources. In other words, users driven only by their 

self-interest (not driven by market forces) will over-exploit the resources. This 

will degrade rendering of services by those resources, in effect reducing the 
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utility of the resources to all the users. This thesis shows that by using the 

proposed system, the provision of resources will be proportionally fair to all 

the users and that over-exploitation and consequent degradation of quality 

does not happen due to the aggregate level admission control. MacKie-Mason 

and Varian [152] describes a per-packet charge based congestion control. 

However, Junko et al states that ‘market theory’ based studies are not 

warranted [165] at this layer. Kelly [117] describes the proportional fairness in 

resource sharing and uses ECN  (Explicit Congestion Notification) and 

shadow prices. Low [151] describes an optimisation approach to flow control, 

later implemented by random early marking [14]; further development is given 

in Paganini, Doyle and Low [179].  

 

Fischer et al shows that in a distributed and decentralised network like the 

Internet, achieving consensus to provide perfect fairness will be impossible as 

there will at least be some faulty nodes [66]. Interest in self-maintaining 

networks, a prime objective of autonomic systems for enterprises as well as 

networks, had suddenly caught on around 2003 [48, 93]. A good survey of 

autonomic networks is available in [57].  

 

2.1.2 Schedulers 

 

On schedulers, Nagle [163] proposed a fair queuing algorithm and 

Demers, Keshav, Shenker [55] provide an analysis of why fair queuing is 

better than first-come-first-served (FCFS) queues. Goyal proposed improved  

fair queuing algorithms [81, 82] to meet the demands of fairness, delay 

bounds, computational efficiency, heterogeneity etc. More details are given in 

section 5. Not much effort has gone into the aggregate level real-time 

feedback based scheduling in the communications networks [185, 209]. In this 

thesis work, further improvement is made to offer bounded delay for premium 

traffic in a work-conserving scenario.  

 

The resources of the network (communication bandwidth, channels, CPU, 

memory etc) are shared between the user processes by appropriately 

scheduling their access to those resources. Schedulers operate at different 
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levels in the system, at the micro levels as well as the macro levels. A 

scheduler must provide assurances on how the resources are shared and 

what type of guarantees are given. Usually the scheduler ensures that every 

flow is eventually served, and in doing so ensures some sort of fairness as 

well.  

 

The service level assurances provided to the user or the network operator 

requires the given assurance policies are enforced. Schedulers act as the 

enforcement points of output control policies as given in Figure 6  

 

 

Figure 6 Scheduler as enforcement points for control policies 

In order to control the multiservice network resources at the required 

service levels, the following criteria were identified by the author to satisfy the 

requirements of policy enforcement points/schedulers. The scheduler shall:   

 

1. partition the output bandwidth according to bids 

2. provide QoS guarantee and fairness even with variable capacity 

3. does not require prior knowledge of the length of packets 

4. flexible to incorporate forwarding strategies based on policies 

5. use the bandwidth efficiently when a scheduled flow is blocked 

6. handle the instantaneous nature of congestion 

7. operate in hierarchical systems  
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In the domain of flow control in IP networks, the studies so far deal at the 

TCP flow level and assume round robin schedulers.  

 

The work in this thesis is to build a system above the TCP level using 

schedulers that are more flexible.  

 

2.1.2.1 Operation of Schedulers 

 

A Queuing and scheduling mechanism is necessarily used whenever there 

are multiple user processes competing for limited resources. In this section, 

scheduling mechanisms for packet networks with no reservation, handling 

datagram packets of variable length is dealt with. 

 

Often the queuing that is seen in human queuing systems is First-come 

First-serve. A similar system was used in the packet networks, termed FIFO 

(First-in First-Out). FIFO suffers from several fundamental issues. In the 

presence of congestion i.e. when the arrival rate is higher than the departure 

rate, FIFO starts to lose packets and no guarantee can be given for the flows 

involved. The reason for this is that in general data packets are transmitted 

with a ‘time-to-live’ information. If the size of the packet queue increases (this 

happens in congestion), packets that have zero time-to-live will be discarded 

from being queued for transmission. Further, flows that are higher in rate 

compared to the rest of the flows take up more share of the network. 

Therefore, the FIFO scheduler is also unfair. In order to make the flows 

behave better, the flows need to be rewarded for behaving better. 

 

Nagle [163] proposed in RFC970 (1985) a round robin scheduling 

algorithm to resolve this issue of unfairness. The single first in, first out queue 

associated with each outgoing link was replaced with multiple queues, one for 

each source host. These queues were then serviced in a round robin fashion. 

It may be noted that the optimal strategy for a given user class is no more 

sending as many packets as possible, but sending at an appropriate rate that 

makes one packet available for service when its turn comes in the round robin 
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cycle. This way the host will be serviced each time the round-robin algorithm 

cycles, and the host's packets will experience less transit delay.  

 

Nagle [163] does point out that although the round robin queue makes the 

packet switches fair, the whole of the network is not made fair. To achieve 

this, rules of the game has to be changed further, so that the optimal strategy 

for players results in a situation that is optimal for all. 

 

Demers, Keshav, Shenker [55] provides an analysis of why round robin 

fair queuing is better than first-come-first-served (FCFS) queues. They 

proposed what was later called as Weighted Fair Queuing. In WFQ, the 

different queues can have different service shares. In here, the time at which 

the packet would finish being serviced is calculated and then the packets are 

serviced in order of their finish time. The priority assignment for the weighted 

schedulers could be either partially-preemptive or non-preemptive [81]. In 

partially-preemptive scheduling, the packet in service is always the packet 

with the highest priority, possibly by pre-empting the transmission of a packet 

with lower priority, either by discarding or fragmenting. WFQ scheduler 

however is unfair for the variable rate flows. 

 

Goyal proposed Start-time Fair Queuing (SFQ) algorithm [81, 82] to meet 

the demands of variations in packet arrival rate as well as server rate. In SFQ 

the start and finish time are calculated similar to that in WFQ although the 

packets are serviced in the increasing order of start times. SFQ does provide 

fairness as well as delay guarantees as follows. 

 

2.1.2.2 Fairness guarantee 

 

In a general case, the allocation of link bandwidth is fair if equal share is 

given to all the flows. In a weighted queue scheduling scenario, the bandwidth 

is allocated proportional to the weight associated with the flow. If wf is the 

weight associated with the flow f and Sf is the service received by the flow f in 

the time interval (t1, t2), then the allocation is fair if, for all intervals (t1, t2) in 

which the flows f and m are backlogged,     
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Clearly, the assumption here is that the flows can be serviced in 

infinitesimally divisible quantities. As this is impractical, the objective of a fair 

allocation algorithm is to have   
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  as close to zero as 

possible. Golestani [78] has shown that, if a packet scheduling algorithm 
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It has been shown in Goyal [81] that        value of SFQ is 

 
  
   

  
   

  
   

  
  

 

2.1.2.3 Delay guarantee 

 

Given the derivation of Finish time, the general deadline guarantee is 

derived based on its expected arrival time. The departure time Td is 

guaranteed as 
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where      
 
  is the departure time of packet   

 
,        

 
   

 
   is 

the expected arrival time of packet   
 
 that has been assigned a rate   

 
 and 

  
 
 depends on   

 
 and the properties of the server as well as the other flows 

at the server.  

It has been shown in Goyal [82] that for SFQ, the term   
 
 is 

 

  
 
    

  
   

 
       

 
  
 

 
 

    

 
  

 

where   is the server capacity,       is the burstiness of the server,   

is the set of flows served 

 

However, in the said SFQ scheduler, the Instantaneous nature of 

congestion was not accounted for and the inter-packet delay can grow very 

large. 

 

Further detailed readings of schedulers available for packet networks are 

available in Zhang [231] and Parekh [181]. 

 

2.1.3 Discussion 

 

This thesis work builds on the work carried out in different areas of 

network control and management summarised above. It can be seen that 

although feedback control has long been used in computer communication 

networks at physical, data and transport layers, automatic feedback control is 

not used above the transport layer. This thesis introduces a distributed control 

system framework, developed in order to facilitate tractable analysis, 

simulation and implementation.  
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In general, a control system can be open loop or closed loop. Open loop 

control systems use admission control and job scheduling etc while close loop 

control systems use one or many feedback signals in a centralised or 

distributed fashion. In a control system that is stabilised, the feedback signal 

of the resource indicates the condition of the resource. This feedback about 

the state of the network is used for pre-emptive, preventive or corrective 

actions. This feedback signal can also be used as a unitary value similar to 

the cost, which can be used by the appropriate price function models and 

trend analysis to price the service. A dynamic network resource management 

and control system that operates above the transport layer is analysed, 

devised and demonstrated in this thesis. This operates for a multiplicity of 

flows in both reservationless and reservation enabled networks, using local 

information and computation to achieve global optimisation within the given 

conditions. In order for such an implementation to be globally accepted, a 

form of guarantee of fairness to the multitude of users is considered an 

important characteristic feature. Fairness means every user gets an equitable 

service according to certain criteria that is applied uniformly to all the users. 

 

On a wider appreciation, the system demonstrated in this thesis proves, in 

the given conditions, that a distributed set of resources/elements, with 

distributed feedback (with messages); can achieve a fair solution without the 

involvement of a central control.  

 

2.2  Internet, System of Systems, Control theory 

 

Although a flat network is possible to obtain (as in LANs), the Internet is 

organised in a multi-level hierarchy. The rule of thumb number of the 

acceptable number of levels if hierarchy is ln(N) where N is the number of 

routers [127]. The number of levels, in practical terms, is decided by several 

factors including the cost/capacity of the routers, degree of administrative and 

security desired etc. The inter-networks are generally classified into three: the 

Internet, which is the global public network; the intranet that is private network 
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and the extranets that is hybrid- private networks/internetworks connected 

through the Internet. The Internet is, alternatively, a system of systems having 

three major layers 1) the access layer that provides local and remote access 

and services 2) the distribution layer that provides the edge functions and 3) 

the core layer that provides high-speed switching backbone [47]. In this work, 

the control theory framework is introduced to global scheduling functions in 

distributed computing and communication networks. A closed loop control 

overlay is used for regulating the sharing of the resources in this system of 

systems. This system eliminates the need for centralised control. This means 

an incremental introduction of the scheme into the inter-network is possible. 

 

In the engineering of the network, the management system that overlays 

such a control system across the network will stabilise the resource 

management of the computing and communication network elements in a 

proportional fair manner. The theory holds well regardless of the tiering of the 

network and can be generalised to any system of systems.  

 

2.3  Study on advantages of resource sharing 

 

One of the advantages of IP packet based network is that the granularity 

of sharing the network resources is much finer than a connection based 

network. Therefore, the network resources are utilised much more efficiently. 

In order to demonstrate advantages of using a shared system, a brief 

comparative study of three candidate systems is given below. The three 

system models are a) connection oriented circuit-switched model b) 

reservation based datacom model and c) dynamically shared network model.  

In fact, the three models described represent three phases of progress in 

resource management technology. The study and simulations by the author 

uses high level abstract models of the system from the perspective of queuing 

theory. The service quality obtained from each of the systems is looked at, 

along with the demand on resource to provide that quality. The comparison 

between the models are given in section 2.3.3.1 

 



 

 

39 

 

 

2.3.1 Connection oriented circuit-switched model 

 

In the circuit-switched model, the quality of service for the applications is at 

its best, for the given parameters like guaranteed bandwidth, due to the end-

to-end connection with no store-and-forward. However, the availability or 

grade of service is characterised by the probability of blocking (proportion of 

calls that are rejected in the long term). In order to provide reasonable grade 

of service, the circuit-switched networks generally provide over-trunking. 

Over-trunking ratio is given by the ratio of required trunks to the average 

offered load s/ρ where s is the number of trunks and ρ is the average offered 

load [157]. For large values of offered load with a given blocking probability of 

0.1%, the over-trunking ratio is about 120%, as can be seen from the 

following Figure 7. The standard Erlang-B formula B      =
     

       
   

 is used in 

this simulation, where B is the probability of lost calls cleared. 

 

Figure 7  Over-trunking ratio in the ‘circuit-switched model 

 

Although this graph can be approximated to    
  

  where   is the offered 

load, which shows an economy of scale for large systems, practical systems 

require an over-trunking ratio between 110 and 120%. 
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2.3.2 Reservation based datacom model 

 

The reservation based (e.g. Intserv type) packet network can be modelled 

as separate router trunks as given in Figure 8: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Reservation based packet trunks in the Internet 

The packets go through a series of store-and-forward intermediate 

systems between the source and the destination for every channel. The 

simplest approximation of such a communication channel of tandem queues 

will be a queue with associated waiting, for a single server. Such a system 

could be approximated as a set of multiple M/M/1 queues. The performance is 

thus defined by the characteristic of an M/M/1 queue, E[k] =  
  

 − 
 given in 

Figure 9 where E[k] is the average number of elements in the queue and u is 

the utilisation. This is a simplification of the Erlang-C2 formula for the single 
                                                 

2
 
For an M/M/s queue, the probability of queuing  

        

  

  
 

 −  

 
  

  
 
  

  
 

 −  
   
   

 

where s is the number of servers and   is the offered load.  

 

Internet 

cloud reserved 

channels 
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server case. At about 60% average load the average number of waiting 

connections is unity and from there on it increases approximately in an 

exponential fashion. 

 

 

Figure 9 Waiting time in the ‘net’ model 

 

2.3.3 Dynamically shared resource datacom model 

 

In the distributed resource controlled (DRC) network proposed in this 

thesis, the closed loop feedback brings the system to dynamic load balance 

under controlled load. This is because the traffic is distributed within the 

network in accordance with the load on the resources. There are no 

reservations and all users share the system without static allocations. This is 

similar to the current Internet substrate but without the greedy flows. Greedy 

flows are contained within the edge-to-edge ‘traffic trunks’ and therefore such 

flows will be limited depending on their provisioning potential. Such a system 

can be approximated as a multiserver M/M/s queue as given in Figure 10: 
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Figure 10 Limit case approximation: a dynamically load balanced system. 

The characteristic of the M/M/s queue E[k] =  
        

 − 
  compared with the 

case of the M/M/1 queue mentioned before is given in Figure 11 below: 

 

Figure 11 Improvement in the waiting time in the ‘net’ model 
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In the given case, at 85% utilisation, the waiting time is reduced to one 

fifth. As the number of servers increase, the utilisation can be further 

increased for a given delay parameter.  

 

Hence, the probability that delay P[d] in the proposed closed-loop, 

reservation-less system exceeds a given value x, at a given loading l is less 

than the probability of delay P[d] in an open-loop, reservation-based system 

i.e. {P[d]reservation-less(l)>x} << {P[d]reservation-based(l)>x}. Although the maximum 

utilisation is approximated to be proportional to the inverse of the number of 

hops [40], the improvement seen above will hold good for any number of 

hops.  

 

2.3.3.1 Dynamic sharing with multiple paths 

 

Comparing the three models, it can be seen that  

a) connection oriented circuit-switched model: at 60% load there is 0.1% 

blocking,  125% overtrunk 

b) reservation based datacom model: at 60% load there is only 1 waiting 

connection in the system. In comparison with the connection oriented circuit-

switched style trunks, characterised by blocking probability and over-trunking, 

the connection less packet data system offers savings obtained from reduced 

network provisioning for the same class of service. 

c) dynamically shared network model: at 60% load, with sharing across 25 

trunks, there is hardly any waiting connection in the system. In comparison 

with the ‘reservation based Intserv’/Diffserv style, characterised by queued 

calls through the network, the dynamically resource shared packet data 

system offers savings obtained from less waiting and its associated drop.  

 

The reduction in waiting time improves the QoS as well as reduces the 

number of abandoned connections. This improves profit for the operator, 

depending on the traffic and value mix. Therefore, a dynamically shared 

network model is superior to the previous models. 
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The idea can be directly extended to sharing the multiple routes available 

between a given source-destination pair. The following graph in Figure 12 

shows the advantage that can be gained from adaptive multipath load 

balancing over 25 trunks with shared queue.  

 

Figure 12 Route sharing and network utilisation 

 

The curve shows the figure of merit of such a network with a given QoS 

parameter (in this case the number of elements in the queue), the utilisation 

with adaptive network elements plotted against the utilisation without adaptive 

network elements, for the same QoS parameter.  

 

It is known that the current utilisation figure for the Internet is between 10 

to 20% [174]. It can be seen that the network utilisation can be doubled in this 

regime while maintaining the same QoS. 

 

A network overlay offering such dynamical, shared resource features can 

further increase the utilisation of the network by prompting the user to use the 

network when the network is lightly loaded. Further, with the advertisement of 

associated price, people can buy the bandwidth/QoS in an interactive fashion. 
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Further, since such a system is above the transport layer, fairness can be 

enforced on any type of transport protocol including torrents. 

 

Hence, the feedback-controlled system is advantageous in many ways: 

 

 Due to the dynamic load sharing and balancing behaviour, the 

proposed system provides better performance in terms of the number 

of satisfied customers at given CoS, with given provisioning 

 Due to network usage information feedback and knowledge of 

customer value, the proposed dynamic system can be directly used for 

network state dependent charging and value based admission control 

 Provides a common framework to manage user and business 

policies/utilities as well as network elements 
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3. SYSTEM ANALYSIS AND MODELLING 

 

3.1  Control system reference model 

 

In a computer communications network, the service/network operator and 

the user are the actors. These actors aim to maximize their benefit from the 

usage of the network. These actors would have, at any particular instant, a 

defined set of resources allotted to them, which is a subset of the global 

network substrate. The user uses a subset of the resources owned by a single 

or several network operators. The target requirement of the actors is to 

increase their respective utility of the system. For example, the user would 

want to improve their satisfaction (from their use of the network) at minimal 

expense, the network operator would want to maximise the resource usage 

and maximise the profit they derive from their business of network ownership. 

In this thesis, this primal – dual problem [117] is re-cast in the control system 

model. This makes the system analysis more tractable and implementable 

using appropriate mechanisms. 

 

In a feedback control system, the potential target requirement (of the 

actor) is first captured. The resources are then controlled using an 

intermediate feedback variable to achieve the targets. This is mechanised by 

passing messages that incorporate a function of the intermediate variable 

between the controller and the resource plant. 

 

A control system regulates the system resources to maintain the targets 

requirements. 

 

Mapping this concept of regulation to the network operator/ traffic-

aggregate scenario, this is equivalent to: 

 The operator wants to fulfil the requirement of the traffic-aggregate for the 

different classes of traffic 

o The operator has to maintain the isolation between those classes   
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o For each resource, there will be a set control level for each class of 

traffic  

o The operator would want the total traffic level through each 

resource to be maintained as close as possible to the said control 

levels. In other words the given ‘supply’ has to be fully consumed to 

maximise resource usage efficiency 

 The intermediate variable is manipulated according to the difference 

between the resource supply and its consumption (in other words the 

demand) so as to reach equilibrium  

o This variable is a forcing function and is usually termed as the 

resource price function as is analogous to price that drives an 

economic system3. This is a low bandwidth mechanism to convey 

aggregate information about a set of cost functions 

 In the steady state, the difference between the available resources and the 

consumed resources is zero; the multiple traffic-aggregates sharing the 

resource receive an even treatment across all of them4.  

o These properties ensure a particular form of fairness known as 

proportional fairness [117]. 

 

In such a scenario, the variable set of resource requirements set by the 

individual actors in order to receive an allocation is akin to a potential set to 

receive a flow. Thus this requirement is termed the provisioning potential for 

the individual actor. In an economic model [132], this potential would be akin 

to how much those actors are willing to pay for the given resources. The 

provisioning potential is set by the operator. In this case, the feedback 

variable would be equivalent of price for that resource. These terms are useful 

in using the model at different layers of the system hierarchy spanning the 

different aspects of technology and business.  

 

                                                 

3
 Kolmogorov complexity of such a number is much less than that of having to specify all 

the parameters of the resource. 
4
 in a time multiplexed scenario this is achieved by a weighted fair scheduler 
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3.1.1 Single resource, single actor, single path model with price 

function 

 

A concrete simulation model5 of such a system for a single actor with a 

single resource is shown below in Figure 13. The single resource/ single actor 

scenario in fact does not require any sharing method; however this example is 

given to introduce the modelling approach.  

 

Driving on the similarity from the economic system where the price of an 

item is determined by its demand/supply, the controller output in this context 

is termed ‘price’, which is in effect a ‘price-like variable’ and is not connected 

to any currency. Generally, this parameter provides an indication of the 

demand the system is experiencing and can be mapped on to a suitable 

parameter in any given domain. This allows the users (in this case edge 

routers) of the system to decide on their responses as to how to bid, expend 

their potential and share the common resources. 

 

 

 

Figure 13 Generic model of the proposed resource control system 

 

For the model above, the following parameters can be defined: 

 

Ck : Set point for control, in ‘resource unit’, set by the n/w operator  

Ek : Difference variable, in ‘resource unit’. The difference between the set 

                                                 

5
 Implemented in matlab/simulink tool 
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point and controlled output is given by Ek = Ck – Yk 

k : Sample step number, iteration steps for computation 

K : Proportionality multiplicand for the ‘availability figure’ of the resource, 

its value controls the stability with time. This parameter is scheduled 

into the controller based on simulation results   

Pk : Resource price function in ‘price unit for resource unit’ 

Ak : Potential willingness to Pay by the user (in this case edge router), in 

‘Provisioning Potential unit’ (later termed as PPk) 

Yk : Output level, in ‘resource unit’ 

 

3.1.1.1 Control system equations and transfer function: 

 

The difference equations for the control system model given in Figure 13 

could be written as 

 

         −   −               (1) 

      
     

      
         (2) 

 

Taking the z-transform of (1) 

 

              −          

     − 
      

       
                   (3) 

     

Taking the z-transform of (2) 

      
    

        
         (4) 

 

Substituting (3) in (4) 

     − 
           

             

                −          −       

 

     −                  −          −      , as           −       
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     −           − 
    

 
   −           (5) 

The transfer function      can be obtained by taking the impulse response 

of (5). Input           , the z transform of      is         

     −      − 
    

 
   −       

     
        

    

 
      

 
         (6) 

 

3.1.1.2 Stability of the resource control system 

 

Lemma 1: 

The given resource control system model shown in Figure 13 is always 

stable so long as the provisioning input      has no poles i.e.        

              

 

Proof: 

 

It can be seen that the transfer function (6) has no poles as K is a 

constant, if      has none. Therefore, the control system is always stable if 

     is bounded. 

When there are poles in a system, stability is guaranteed when         

It may be observed that if      is a step function,      
 

       
 ; the pole is 

cancelled by the numerator’s   −   . Therefore, the system is stable for step 

change in     . 

 

3.1.1.3 Resource price function block 

 

The inner control loop is a ‘deccumulator’, a concept introduced in this 

thesis for price function updates. 

 

This update algorithm introduced in the controller provides a tractable 

model in the given context and is called the price function block. What this 
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does is to introduce the concept of a price-like variable in the controller where 

the price function parameter tracks the resource consumption.  

 

It may be observed that the resource price function block receives a 

proportion of the resource availability (difference between the supplied 

resource and their usage) as negative feedback for price function stabilisation. 

This is done so that as the availability increases, the price must go down and 

vice versa. 

 

3.1.1.4 Resource sharing  block 

 

In the following resource-sharing block, the resource price function later 

denominates the resource consumption 6  to each user (in this case edge 

router). The numerator is the provisioning potential that controls the transfer 

function. Sharing of the resources in this way is akin to a commercial 

transaction. The allotted share of resource usage is regulated by the set point. 

 

3.1.1.5 Initial and boundary conditions 

 

The initial and boundary conditions are set as follows. The initial operating 

condition for the resource price function (P0) is set by the network operator 

and forced on the system. In this case, P0 is set to unity. The output of the 

resource price function is bounded to upper and lower limits to define a 

sustainable operating regime. Likewise, the resource consumption is also 

bounded. The feedback ensures sustained operation within the boundary 

conditions. 

 

 

 

 

                                                 

6
 in this case ingress traffic flow allocation 
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3.1.2 Multiple resources, actors and paths model with price function 

 

In the real scenario, there are multiplicity of resources, actors, aggregates 

and paths. There are a number of ways in which such a system can be 

modelled.  

 

3.1.2.1 Model for simulation and development 

 

However, it is important that such a model should be tractable and can 

demonstrate the concepts developed in this thesis. Further, this model should 

yield itself to further synthesis. With this in mind, a three-flow – two-resource 

model shown in Figure 14 is developed, where the two resources are the core 

routers. It is further shown that this model is sufficient to demonstrate the 

principles developed in this thesis as well as the interactions between the 

component flows. 

 

 

 

Figure 14  Simulation reference model using multiple resources and actors 

The edge routers serve a set of individual users from its captive area. The 

edge routers can utilise any of the core routers they have business agreement 

with. In the given model, the edge router ER1 uses core router R1, the edge 
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router ER2 uses core routers R1& R2, the edge router ER3 uses core router R2. 

This arrangement is used such that the interactions between the constituent 

flows could be readily seen during the analysis and synthesis. In addition to 

the flows identified in Figure 14 above, couple of ‘disturbance flows’, D1 using 

both resources R1& R2 and D2 using only resource R1 will also be used in the 

analysis and synthesis. It may be noted that the edge routers aggregate the 

user traffic per traffic path. 

 

A concrete simulation model of such a system is shown in Figure 14 

below. The model is built within the matlab/simulink system so that various 

simulations can be run and stability, sensitivity etc assessed. The two core 

routers R1& R2 are shown to the right of the diagram. The core routers receive 

traffic from the edge routers ER1, ER2 , ER3. The core router is also shown to 

be receiving traffic from a ‘disturbing source’ D. This is to simulate scenarios 

where a non-confirming flow loads the core routers without following the edge-

router mechanism presented in this thesis. The ‘monitors’ shown at the 

various output blocks are from observing the data generated. The data 

generated are then used in various graphs provided in this thesis. It can be 

seen that the aggregate traffic sent to the core routers by each of the edge 

routers depends on the ratio of the provisioning potential PP and price P. The 

price function is calculated at the deccumulator. The deccumulator takes its 

input from the controller K, which is fed with the difference of the core router 

capacity and core router utilisation. The dynamic state of the core routers is 

available from the network information base. Analytical proof of this model is 

given in the following section. 

 

 



 

 

54 

 

Figure 15 Control system reference model for multiple resources, actors 
and paths 

 

The results of the simulation are given in section 4.2 in this document. 

 

3.1.2.2 Analytical proof with multiple elements 

 

Let the total number of resources be RT and the total number of traffic 

aggregates be NT (active paths). The parameters of interest in section 3.1.1 

are then modified to incorporate the different sets of resources, traffic 

aggregates and paths as follows: 

 

CRk : Set point for control for resource R, k is the iteration number 

ERk : Difference variable for resource R 

KR : Proportionality multiplicand for availability figure of the resource 

R, this is scheduled into the controller based on simulation results 

NR : Traffic aggregate using resource subset R 

NT : Total number of traffic aggregates (active paths) 

PNk : Total resource price function for traffic aggregate N 

PPNk : Provisioning Potential for the traffic aggregate N (formerly Ak) 

PPRk  Total share of Provisioning Potentials for resource R 
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PRk : Resource price function for resource R 

RN : Resource subset used by traffic aggregate N 

RT : Total number of resources  

UN : Resource consumption by traffic aggregate N (e.g. Flow rate of 

active path)  

UR  Total resource consumed by users (in this case edge router) in a 

given resource R 

VT : Number of paths (or combinations) 

YRk : Output level of resource R 

 

The equations in section 3.1.1 get modified as follows: 

 

ERk = CRk – YRk                      (7) 

 

PRk = PRk-1 – KR ERk          (8) 

 

With NT traffic aggregates using the resources in VT paths, the resource 

price function for each traffic aggregate is calculated as: 

PNk = PRk, R  RN          (9) 

The resource consumed by traffic aggregate N is given by: 

UNk = PPNk / PNk                                      (10) 

 

The output level is now given as: 

YRk = URk =  UNk, N  NR                     (11) 

 

Lemma 2: 

The multi-loop feedback control system drives the system to fully use up 

the available resources. 
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Proof: 

When the multi-loop feedback control system is in equilibrium, ERk = 0. 

From (7) 

YRk = CRk  when ERk = 0                                                                           (12) 

From (11) & (12), 

UNk = CRk                            (13) 

This means that the resource consumption by different users (in this case 

edge router), summed up at the resource R is equal to the capacity of the 

resource. It follows that the actors fully use-up the resources. 

 

3.1.2.2.1 Proportional allocation and fairness7 

 

In other words, no resource is left un-allocated; all the resources are used 

up and shared according to the provisioning potential of the users (edge 

router). It may also be observed that all the users pay the same price, as 

opposed to the pricing schemes in a bid scenario where the tender offers 

differ. These are properties of a proportional fair system [117]. 

 

The proportional allocation of resources for individual traffic aggregates is 

proved as follows: 

 

The provisioning potential PP for any given traffic aggregate is divided 

across the resources that the traffic aggregate uses. The utilisation of any 

given resource is given by 

URk = PPRk / PRk                                      (14) 

 

When the resource is fully used, UR equals the capacity of resources CR . 

In this case PRk = PPRk / CRk                     (15) 

 

                                                 

7
 As far as the author is aware, results (16) and (18) shows a new way of presenting 

proportional fairness, and more tractable, when contrasted with the available literature 
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As the resource price is equal for all the traffic aggregates using the given 

resource, substituting (15) in (10), for the case of full utilisation, 

UNk = (PPNk / PPRk ). CRk                          (16) 

 

The result (16) shows that the service obtained by the traffic aggregates is 

proportional to their provisioning potential8.  

 

The fairness across individual traffic aggregates is proved as follows: 

From (16), considering the ratio of resource allocation to provisioning 

potential, 

UNk / PPNk = CRk / PPRk                           (17) 

 

Since CRk / PPRk is a resource related quantity and applies to all the traffic 

aggregates,  

 

U1k / PP1Rk = CRk / PPRk  = U2k / PP2Rk                                                    (18) 

for infinitesimally divisible fluid flows. 

The result (18) shows that the service obtained by the traffic aggregates is 

fair across the traffic aggregates.  

 

3.1.2.2.2 Distributed multi-node macro-scheduling 

 

It may be observed that result (16) is similar to the WRR algorithms 

present in the literature [78]. WRR algorithms operate on a single resource, 

e.g. a link. However, it may be observed that result (16) extends the WRR 

theory to work across multiple resources. The provisioning potential is 

distributed and shared across the multiple nodes and the scheduling decision 

takes care of global schedulability across the multiple nodes. Therefore, the 

system described is a top-level distributed multi-node scheduling system, 

working above the individual node schedulers. 

 

                                                 

8
 This shows that the price-function is only an intermediate variable and that the resource 

allocation is entirely determined by the provisioning potentials and the capacity of the 
resource 
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It may be noted that the intermediate variable called resource-price 

disappears from the resource allocation equation (16)  

 

3.1.2.2.3 Isolation and scalability 

 

The above analysis shows that the traffic aggregates compete for the 

resource share within the distributed network independently and receive their 

fair share depending on their provisioning potential. This means each control 

loop operates independently and the system maintains isolation between the 

traffic aggregates.  

 

Scalability is the ability of the system to deliver the required performance 

as the network grows. The growth could be either vertical or horizontal.  

 

Vertical scalability means the size and number of flows using given set of 

resources increase. As the flows are aggregated in the edge router, 

increasing the capacity of the edge router e.g. the CPU, I/O etc will resolve 

this. 

 

The horizontal scalability means the number of routes and resources in the 

network increase. It can be seen that no co-ordination between the routers 

are required for making resource allocation decisions by individual edge 

routers. The only information required is the network load information from the 

network information bases. As the number of administrative domains is 

limited, this does not pose a problem either. Therefore, the system is scalable 

to multiple layers of hierarchies.      

     

3.1.2.3 Traffic aggregation 

 

The following is a note for completeness: In cases where multiple 

individual users contribute to traffic aggregates, the aggregation happens as 

follows:  
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N : Number of users making N traffic aggregates 

NT : Total number of traffic aggregates  

PNk : Total resource price function for traffic aggregate N 

Pnk : Price function for individual user making up total aggregate resource 

price PNk 

PPNk : Potential willingness to Pay by the traffic aggregate N 

PPnk : Potential willingness to Pay by user making up aggregate PPNk 

UN : Resource consumption by traffic aggregate N 

un : User resource consumption making up aggregate consumption UN 

V : Number of individual paths making V aggregate paths 

VT : Total number of paths 

 

N  n 

PNk =  Pnk 

UN  un 

V  v 

PPNk =  PPnk 

 

3.1.3 Features of importance 

 

The following features can be noted from the analysis model. 

 

3.1.3.1 Resource price function 

 

When the system senses that the utilisation of the resources is less than 

its capacity supply (say in state 1), the output of the price function is reduced 

(in state 2) so as to get the users (in this case edge router) to consume more 

resources.  

Comparing the two states 1 and 2, when YR1[1] < CR1[1],  

PR1[1] < PR1[0]  
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3.1.3.2 Resource utilisation gain  

 

When the output of the price function is reduced (say in state 1) so as to 

get the users consume more resources, the feedback control ensures better 

resource utilisation (in state 2). This improvement in resource usage is called 

Resource utilisation Gain 

Comparing the two states 1 and 2, when PR1[1] < PR1[0],  

YR1[2] > YR1[1]  

 

3.1.3.3 Resource revenue  

 

It may be observed that for any resource R, for a given sum of PPs, the 

revenue for that resource (product of total resource usage Y and resource 

price P) remains same regardless of the state as long as there is demand for 

the excess capacity. This product equals the sum of PPs for that resource.  

Comparing the two states (1) and (2), 

 

YR1[1] * PR1[0] = PPN1[1] + PPN2[1] /2 = YR1[2] * PR1[1] = PPN1[2] + PPN2[2] /2 

 

Thus the revenue from the resource is guaranteed despite the variation (in 

above case, reduction) in price; so long as there is demand. 

 

3.1.3.4 Operator revenue gain 

 

The following shows how the self-adjustment mechanism maximises 

revenue across the multiplicity of resources in the given conditions.  

 

Due to the resource price function, which has an adjustment mechanism 

that invites more traffic, the total resource price of the network reduces, and 

the operator is able to input more traffic into the network, increasing the 

utilisation of the resources. This extra traffic is permitted to be input at no 

extra cost to the operator. In this case,   

 

[YR1[2]  YR2[2] ] > [YR1[1] YR2[1] ] and 
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[UN1[2] UN2[2] UN3[2] ] > [UN1[1] UN2[1]  UN3[1]] 

 

If the user is paying a real price per unit share of resource (unit bandwidth 

in this case), the extra revenue to the operator from the user can be 

calculated as follows. CP here denotes the real charged price. (For 

convenience of calculation, CP is taken as the PP of individual users and 

remains same at both step1 and step2). 

 

Difference in revenue from step1 to step2 = revenue in step2 – revenue in 

step1 

 

                              

      

      

      

  -                             

      

      

      

   

 

Since, [UN1[2] UN2[2] UN3[2] ] > [UN1[1] UN2[1]  UN3[1]] and CP remains the same, 

revenue in step2 > revenue in step1 

This improvement in operator revenue is called operator revenue gain. 

This revenue can then be utilised by the operator for his benefit/ passing on to 

individual users according to business strategy. 

 

3.1.3.5 Fairness to user traffic flow  

 

Lemma 3 :  

The allocation of bandwidth to the set of users (in this case edge routers) 

in the given network is proportionally fair. 

 

Proof:  

As evident, each traffic aggregate traffic flow pays the same resource price 

per resource unit consumed. In equilibrium, reached at step 2: 
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PPN1[2] / UN1[2] = (PPN2[2] /2 )/ UN2[2] = PPN3[2] / UN3[2]  

 

This property observed at step2 shows that the distribution is 

proportionally fair [117]. Users of each resource pay equal resource price per 

resource used. The feedback control provides proportional fairness and 

eliminates the possibility of cheating. 

 

3.1.3.6 Value added service protection 

 

Now suppose that user1 is a more valuable user. The service manager 

increases the provisioning potential for user1 when an unexpected reduction 

in throughput is sensed (e.g. when the price for the resources goes high). In 

this case, the allocation for other user2 is further reduced to maintain the 

provisioning for user1. 

 

It may be noted that the method of increasing the provisioning potential for 

a given user should be compatible with lemma 1. 

 

3.2  Stability of the multi-loop system 

 

It has been demonstrated in section 3.1.1 that the system is always stable 

so long as the function of provisioning potential input has no poles. 

 

For the multiple resources, actors and paths model, the very nature of the 

system like the distributedness, adaptiveness, uncertainty in the time delays, 

inaccuracy of available instantaneous data etc makes it hard to analyse the 

stability of the system in the traditional control systems model e.g. using the z 

transforms.  Although the resource provisioning decisions on one router 

affects flows on another, it may be noted that this type of interaction is akin to 

that in a WRR system where the allocation to one flow affects the other. The 

system described in this thesis is a distributed multi-node macro-scheduling 
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similar to WRR (see section 3.1.2.2.2). Therefore, a mechanism for further 

modelling and analysis is available although it is left for future work. 

 

However, these types of issues were understood earlier by Lyapunov [72]. 

Lyapunov’s Second method provides a tool to analyse such systems. Rather 

than depending on the unknown system parameters, the Lyapunov’s Second 

method uses a Lyapunov function to assess the stability of the system. 

Lyapunov function uses the finite nature of the physical system to provide 

conclusions about the stability, for e.g. in physical systems, a Lyapunov 

function is the system energy (as a physical system can only store a finite 

energy9); in economic systems, it is the cost; and for computational systems, it 

is the ‘error’.  

 

3.2.1 Lyapunov Stability 

 

If there exists a Lyapunov function, V : O  , defined in a region of 

state space near a solution of a dynamical system such that  

1. V (0) = 0 

2. V (x) > 0 : x  O ; x  0 

3. V (x(ti+1)) - V (x(ti)) = V(x)  0 : x  O, 

then the solution of the system is said to stable in the sense of Lyapunov. 

x = 0 represents a solution of the dynamical systems and O, O represent 

the output space and a region surrounding this solution of the system. 

 

3.2.2 Asymptotic Stability 

 

If in addition to conditions (1) and (2) of the definition in section 3.2.1, the 

system has a negative-definite Lyapunov function 

V(x)  0 : x  O 

then the system is Asymptotically Stable. 

                                                 

9
 For example, in a mechanical system if it can be shown that the energy is always being 

dissipated except at the equilibrium point, then the system finally reaches equilibrium when 
the energy is gone. 
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Asymptotic stability adds the property that in a region surrounding a 

solution of the dynamical system, trajectories are approaching this given 

solution asymptotically. 

 

3.2.3 Global Asymptotic Stability 

 

If in addition to conditions (1) and (2) of the definition in section 3.2.1, the 

Lyapunov function is constructed such that,  

limt

 V (x) = 0, 

over the entire state space, then the system is said to be Globally 

Asymptotically Stable. 

 

The difference between asymptotic stability and global asymptotic stability 

is the fact that the latter implies any trajectory beginning at any initial point will 

converge asymptotically to the given solution, as opposed to the former where 

only those trajectories beginning in the neighbourhood of the solution 

approach the solution asymptotically. 

 

3.2.4 Stability of the given system 

 

The error function Ek in the system under discussion satisfies the 

conditions of the Lyapunov function, as it can be seen that  

YR1[2] > YR1[1] and ER[2] < ER[1]  

 

This function achieves stability in one or more cycles. This demonstrates 

that the system described is stable in the sense of Lyapunov.  

 

3.3  Sensitivity 

 

The variation in the proportionality multiplicand K has its effect on the 

resource price function, as PR[1] = PR[0] – KRER[1]. When the resources are fully 

utilised (resources to be shared have hard physical limits to their availability), 
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the output of the price function stops changing as the second term in the RHS 

goes to zero. 

 

A lower value for the proportionality multiplicand will gradually settle to the 

optimum value within the given conditions. However, this will take additional 

cycles to settle10. 

 

A larger value for the proportionality multiplicand would settle the price 

function at a sub-optimal level, due to the coarse gradient jump in the price 

function update. Note that although the settled price function level is lower, 

the users do not get more of the resources than their proportional share. This 

is taken care of by the fair scheduler of the resource, explained in section 5 in 

this document.  

 

3.4  Robustness 

 

As can be seen from the preceding sections, the system under discussion 

is robust to perturbations. It can also be seen that the system is robust to 

expansions in the structure as well as to the inclusion of multiple layers. 

 

The sensitivity can be decreased by robust design techniques as well as 

by having a ‘robustness monitor’ to monitor whether the price function had 

settled to a level that is different from the optimal value.  

 

3.5  Theorem of de-centralised/ distributed feedback and network 

optimisation 

 

The theoretical understanding developed so far could be summarised as 

follows. 

 

                                                 

10
 Techniques from the neural networks learning process like the momentum factor (a 

factor of the previous price change) could be used here to speed up.  
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A networked system will optimize its resource usage within the given 

conditions and achieve proportional fair solution for the whole of the network 

without the need for any other additional co-ordination by the decision-making 

unit so long as information regarding the state of the set of networked devices 

is used when making decisions that affects that set. 

 

Proof:  

Lemma 1, Lemma 3, Lemma 3 and the given description proves the 

theorem by induction 

 

3.6  Value added products and services  

 

From the outset, the purpose of a communication network system is to 

provide services that users want, in order to satisfy their utilities. The services 

are built on top of the networked systems that enable those services. The 

differentiation between the service delivery part and network operation part is 

described in section 3.7. It can be seen that these two parts are two distinct 

and separate sections of the communications system, which lend themselves 

to layering.  

 

3.6.1 Isolation 

 

Traditionally the features of telecommunications services were embedded 

into the equipment at the user end as well as the operator end e.g. the 

customer handset, infrastructure switch, provisioning platforms etc. This made 

it difficult to introduce new services and features. The control system 

framework helps to model the different layers of the system of communicating 

systems separately and provides tractable solutions to each closed loop while 

maintaining their isolation, without interference between them. Thus, 

operators are free to adopt independent policies (subject to provisioning 

potential being bounded) to maximise the overall value of the service without 

interaction or interference with network resources.   
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3.7  System architecture of a multi-layer communication network 

 

Firstly, a control layer for the fair sharing of the underlying network 

resources (CPU time slots, frequency, links, storage memory etc) is 

developed using a pareto-optimal11 control system.  Secondly, to enforce the 

control on how the real-time requirements of the different classes of services12 

are satisfied, a job scheduler is developed. Thirdly, the service layer that 

provides the ability to sense user utilities13 and provide charging interfaces 

where different product bundles can be formulated based on the economic 

policies (including game theories) is developed. The system provides a 

framework for negotiating between the constituent elements according to the 

policies, and provides fair solutions to its users (in this case edge routers) 

across the different layers of the network hierarchy. The tractability of the 

control system approach helps to monitor this easily.  

 

Figure 16 shows a layered architectural view of the communication 

network. The service layer consists of different hosts running various 

applications. It uses the IP service provided by the service provider (service 

provider uses the network provided by the network provider). 

 

The service provider delivers IP services to an aggregate of hosts with a 

quality level decided by the value it places on the user SLA.  

 

Inside the network ingress router, packets arriving from the users are 

classified according to their route and buffered at the output port. To a first 

approximation, the quality of service delivered for services using a particular 

route can be sensed from the buffer backlog at the output ports. This backlog 

                                                 

11
 i.e. no further resource allocation possible in the system that can make one 

party/criteria better off without making another party/criteria worse off [173] 
12

 different classes of service for DiffServ are EF (expedited forwarding, low loss/latency 
traffic), AF (assured forwarding, assured delivery under conditions), BE (best-effort 
forwarding) 

13
 Customers are only required rank one bundle of service over the other in order to reach 

equilibrium, no need to measure 'utility' [140] 



 

 

68 

is measured by setting a small virtual threshold, for faster measurement and 

remedial purposes.  

 

The QoS controller uses a provisioning potential to control this backlog. 

The more the backlog, the less the quality of service delivered. The 

provisioning potential of the queue is now raised as an attempt to increase the 

service (bandwidth) provisioning. The provisioning potential is raised (e.g. a 

step change) so long as the queue contains valuable traffic, until it reaches 

absolute limits specified. It may be noted that the method of increasing the 

provisioning potential for a given user should be compatible with Lemma 1. 

Valuable traffic contains individual users whose provisioning potential is 

raised according to certain policies decided by the management. 

 

 

Figure 16 A three-layer model of the communications network 
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If the route receives more bandwidth (in terms of lines, wavelengths or 

radio channels), the buffer backlog reduces immediately. If the system is 

unable to provide more bandwidth, it attempts to use additional routes.  

 

The network management part of the service provider uses the carrier 

network for transport. The loading per route is controlled by the availability of 

carrier capacity. The carrier network provides availability information to the 

service and network manager.  

 

As the usage of the carrier capacity is increased, the admittance controller 

reduces the loading, such that congestion is avoided. If the usage is less, 

more traffic is input to the network. This way the resources are always used 

efficiently. A proportional fair sharing of the resources is achieved using a 

distributed control system that is employed to control the network load.  

 

3.7.1 Service and Network layers 

 

As shown, the service layer (Customer-Operator loop) deals with the 

provisioning of user services. The network layer (Operator-Network loop) 

deals with the provisioning of the network equipment.  

 

The service layer uses the network layer. Each of these layers could have 

further layers within them. For example, the network layer could have an IP 

layer, an (optional) MPLS layer, a wireline/wireless/optical layer etc. The 

user/provider relationship in multi-layer systems holds good for multiple levels 

of system hierarchies as given in Figure 17. The relationships generally map 

to sequential levels of abstraction. The transfer functions f, g and h of each 

layer maps to inter-layer adaptation functions f(x,t), g[f(),y,t], h{g[],z,t} as the 

level goes higher.   
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Figure 17 Cross-layer optimisation & in-layer control system 

 

Each of these layers can have their own control system for in-layer 

resource optimisation within the given conditions. In such a system, a user 

layer operating with the resource availability levels in the provider layer can 

provide cross-layer optimisation within the given conditions. The multiple 

resource allocation layers and their inter-layer adaptation sub-layers provide a 

dynamic resource allocation system and cross-layer optimisation within the 

given conditions. Such a system satisfies the traffic demands of end user at 

faster pace due to automated negotiations. 

 

These service and network layers have different types of economics 

associated with them. The service layer is like a product market where the 

price offering depends on the business proposition to the particular customer. 

The network layer is similar to a facility market where each user pays the 

same charge for using the service.  
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PNk and PPNk are parameters in the carrier network level for traffic 

aggregates and are decoupled from each other. These are appropriately 

decided, negotiated, distributed and mapped to the real world customer offers 

based on the economics of service management. It could be a linear or non-

linear relationship as decided by various policies defined by the operator. In a 

measurement-based system, the operator can dynamically modify PPNk to 

satisfy user requirements. A value based provisioning could use the similar 

type of controllers used in the control loops. 

 

3.7.1.1 Service layer 

 

The operation at this point of presence level is mainly decided by the 

business policy. It is defined by how individual SLAs are made, how the 

utilities are assessed and distributed and how the individual actors are 

charged. This is like a customer ‘product market’ where the strategy is to 

enhance the revenue from the individual customers. In here, the individual 

users could be paying different prices depending on the value proposition. 

 

Although this thesis does not deal with the service layer activities 

mentioned above, it may be noted that the system proposed can be used to 

facilitate a clearinghouse for service and network owners. For example, the 

end customers receive money from their own sources and give it to the 

service operators in return for the services and the service operators in turn 

give it to the network operators in return for the network resources. This 

closed-loop has its own regulations and it will not be possible for any party to 

act arbitrarily. For example, an ingress router cannot raise the provisioning 

potential for a given set of traffic arbitrarily as a) it has to receive money from 

the end customer and b) it has to pay to the network operator. Such 

arrangements also help to contain the so-called ‘Slashdot effects’ that tend to 

create huge amount of flash-traffic for websites. 

  

At a static level, there will be hard limits on the resource usage anyway 

defined in the SLAs. 
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3.7.1.2 Network layer 

 

It may be noted that in the case of the operation dealing with the network 

resources the strategy is to maximise the resource utilisation, which is akin to 

‘facility market’. In here, every user pays the same price to use the facility.  
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4. SYSTEM ARCHITECTURE SIMULATION AND RESULTS 

 

The system architecture for the de-centralised and distributed network 

management system using distributed feedback is simulated in this chapter. 

The results of the simulation of the architecture are also given, demonstrating 

the value based QoS as well as network optimisation within the given 

conditions.  

 

4.1  Model used for simulation and software development 

 

 

Figure 18 Simulink diagram of the three flows/two resources system 
reference model with parameter values 

 

A simulation model of the system described above is given in Figure 18 

together with the parameter values. The various constituent blocks are 

explained earlier in section 3.1.1 and 3.1.2. A concrete model, demonstrated 

on a real network, is explained in chapter 6. 
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There are two core router resources with their respective, settable control 

levels14, three actors using three ingress routers and three flows taking three 

routes. Flow 1 uses core router 1, flow 2 uses both core routers 1 and 2 while 

flow 3 uses core router 2 only. It can be seen that the distributed bandwidth 

broker elements in the ingress controller works out the resource price function 

per traffic -aggregate path.  

 

4.1.1 Controller  

 

The controller determines the speed of response and robustness of the 

system. In the simulation model above, the controller used is proportional 

type.  

 

4.1.1.1 Estimation of the proportionality multiplicand 

 

In this example, a value for the proportionality multiplicand is chosen that 

would settle the resource price function to its equilibrium value in a single 

step. The equilibrium value is calculated using an offline algorithm given 

below. This value, for the given availability figure, is estimated as 0.16. The 

estimation uses the parameter values given in Figure 18. From equation (7) & 

(8),  

 

KR = (PRk-1 – PRk)/ (CRk - YRk) 

 

In order to find the value of KR, PRk-1 is to be the initial open-loop value of 

the price-function and PRk is its expected closed-loop value at steady state. 

CRk is the capacity15 of the resource (also the final steady state utilisation) and 

YRk is the initial open-loop value of total resource utilisation.  

 

a) PRk-1 = 1 

                                                 

14
 In general the ‘usable limit’ of a resource is set at a lower level than the maximum 

capability of the resource, to allow for some operational margin 
15

 In general the ‘usable limit’ of a resource is set at a lower level than the maximum 
capability of the resource, to allow for some operational margin.  
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b) From equation (15), PRk = PPRk / CRk.   

PPRk is the share of provisioning potential for the given resource R. In 

the given case, PPRk =  
   

  

 
    where N is the number of traffic 

aggregate flows through the given resource, PPi is the PP for traffic 

aggregate i, Hi is the number of hops transited by traffic aggregate flow 

i 

PPRk = PP1/1 + PP2/2 = 4.5 

CRk = 6 

∴ PRk = 4.5 / 6 = 0.75 

 

c) From equation (15), YRk = PPRk / PRk, given that the open-loop 

utilisation requires to be found, the open-loop value of PRk given in (a) 

is used  ∴ YRk = 4.5/1 = 4.5 

∴ KR = (PRk-1 – PRk)/ (CRk - YRk) = (1 – 0.75) / (6 - 4.5) = 0.1666 

 

To avoid the system settling to a non-optimal price function (see the 

discussion on sensitivity in section 3.3), it is always safe to start with a low 

proportionality multiplicand although it may take longer to settle.  

 

4.1.2 Measurement feedback 

 

In the given design model, unity feedback function is used and the 

measured value is polled every second. Due to the unreliability of the packet 

switched network, one cannot fully rely on the instantaneous feedback. 

Hence, the previous feedback value is required to be stored in the system so 

that this value can be used if the instantaneous value is not available.  

 

4.1.3 Initial values for the price function and provisioning potential 

 

The initial operating condition for the price function is set to unity by the 

operator. The provisioning potential (PP) for all users (in this case edge 

router) is chosen and set at 3 units per unit bandwidth in the given reference 

topology.  
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4.2  Simulation results of the multi-user, multi-resource reference 
model 

 

Result of the Matlab simulation of the multi-user, multi-resource model is 

given below in Figure 19: 

 

Figure 19 Matlab simulation results of the reference model 

 

4.2.1 Explanation of the results graphs 

 

Step1: At step1, the program starts up.  

As this is a feedback control system, calculations take effect only in the 

(n+1) iteration. This is the reason for lack of instant response. Further, using 

sub-optimal value of K (0.16 instead of 0.1666 as calculated in section 

4.1.1.1) meant that the calculations take 2 iterations before reaching the final 

values. This is why there is a slight undershoot/overshoot (0.25%) in steps 2 

& 3 for the flow allocations. This is an artefact of numerical calculations, an 
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error band, and not indicative of control loop instability per se. In practical 

systems, the overshoots are usually capped by hard-limits.  

  

CR1  = 6 

CR2  = 6 

 

From given equations in section 3.1.1 and 3.1.2: 

 

The resource price for each user is 

PN1[1] = PR1[0] = 1 

PN2[1] = PR1[0] + PR2[0] = 2 

PN3[1] = PR2[0] = 1 

 

The flow bandwidth allocated to each user is  

UN1[1] = PPN1[1] / PN1[1] = 3  

UN2[1] = PPN2[1] / PN2[1] = 1.5 

UN3[1] = PPN3[1] / PN3[1] = 3 

 

The total output at the resources (resource usage) is 

YR1[1] = UN1[1] + UN2[1] = 4.5 

YR2[1] = UN2[1] + UN3[1] = 4.5 

 

Step2: In this first iteration, the above usage information YR is now fed 

back to the controller.  

 

The difference signals (availability information) are  

ER1[1] = CR1[1] – YR1[1] = 1.5 

ER2[1] = CR2[1] – YR2[1] = 1.5 

 

The system now updates the resource prices as 

PR1[1] = PR1[0] – KR1ER1[1]  = 0.76, KR1 = 0.16 

PR2[1] = PR2[0] – KR2ER2[1]  = 0.76, KR2 = 0.16 

 

The resource prices for individual users is  
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PN1[2] = PR1[1] = 0.76 

PN2[2] = PR1[1] + PR2[1] = 1.52 

PN3[2] = PR2[1] = 0.76 

 

The flow allocated to each user is 

UN1[2] = PPN1[2] / PN1[2] = 4  

UN2[2] = PPN2[2] / PN2[2] = 2 

UN3[2] = PPN3[2] / PN3[2] = 4 

 

The total output at the resources is 

YR1[2] = UN1[2] + UN2[2] = 6 

YR2[2] = UN2[2] + UN3[2] = 6 

 

The capacity of the resources is thus fully utilised. 

 

An explanation of the notable features is given below. An explanation of 

later steps (from Step10) is given in section 4.2.2.8. 

 

4.2.2 Features of importance 

 

4.2.2.1 Resource utilisation gain 

 

Comparing the utilisation of the network between step1 and step2 

YR1[1] = 4.5 units 

YR2[1] = 4.5 units 

 

YR1[2] = 6 units 

YR2[2] = 6 units 

 

There is 33% gain (increase) in the usage (in this case flow) with the 

feedback control. 
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4.2.2.2 Resource revenue 

 

YR1[1] * PR1[0] = 4.5 = PPN1[1] + PPN2[1] /2  

YR1[2] * PR1[1] = 4.5 = PPN1[2] + PPN2[2] /2 

 

Thus, the revenue from the resource is guaranteed despite the reduction 

in price so long as there is demand. 

 

4.2.2.3 Resource price function adjustment 

 

The total resource price of the network is reduced between step1 and 

step2 

 

Total Resource PriceR1R2[1] = PN1[1] + PN2[1] + PN3[1] = 4 units 

Total Resource PriceR1R2[2] = PN1[2] + PN2[2] + PN3[2] = 3 units 

 

The total resource price is reduced by one unit because there was spare 

capacity in supply. This is an incentive for other customers to use the 

resource.  

 

4.2.2.4 Operator revenue gain 

 

Extra traffic allowed at resourceR1 = YR1[2] - YR1[1] = 1.5 units 

Extra traffic allowed at resourceR2 = YR2[2] - YR2[1] = 1.5 units 

Extra revenue from user =    

                              

      

      

      

  -                             

      

      

      

   

                                       = 30 units - 22.5 units = 7.5 units   

There is 33% gain (increase) in revenue in a feedback-controlled network. 
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4.2.2.5 Proportional fairness to user traffic flow 

 

The pricing function drives flow levels to a proportionally fair distribution. It 

may be noted that each user traffic flow pays the same resource price per 

resource unit consumed: 

 

Resource price/ resource for userN1[2] = PPN1[2] / UN1[2] = 0.75 

Resource price/ resource for userN2[2] = (PPN2[2] /2 )/ UN2[2] = 0.75 

Resource price/ resource for userN3[2] = PPN3[2] / UN3[2] = 0.75 

 

Lemma 3 is therefore demonstrated in actual results. 

 

4.2.2.6 Scalability 

 

It can be seen that  

a) the resource allocation at the core routers (the shared resources) 

maintains the isolation for the constituent flows as the allocation is 

determined only by their respective provisioning potentials and  

b) no co-ordination is required between the edge routers for the 

calculation of ingress rates.  

Thus, the system exhibits the qualities required for scalability and 

distributability. 

 

4.2.2.7 Sensitivity 

 

The proportionality multiplicand for availability figure of the resource 

determines the convergence. For small values of proportionality multiplicand, 

as calculated in section 4.1.1.1 (in this case 0.16) the system settles to the 

optimum value of the price function (in this case 0.76). For a higher value of 

proportionality multiplicand e.g. 0.25, the corresponding output of the price 

function is 0.625. Although this is sub-optimal, the system is found to be 

stable, as observed from the matlab/simulink simulations. 
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4.2.2.8 Interactions 

 

The following interactions can be clearly seen in the graph in Figure 19.  

 

At step10, a perturbation of 2 resource units increase is introduced (for 5 

time units) to resource R1 that carries flows 1 & 2 (perturbing signal is not 

plotted). The resource price function of R1 can be seen going high 

immediately. Flow1 and Flow2 reduce in a proportional manner to maintain 

the total load at the set point. In other words, when the demand is more than 

supply, the price is increased to force decreased usage.  

 

As a consequence of reduction in Flow2, the resource price function of R2 

goes down and lets in more traffic from Flow3. In other words, when the 

supply is more than the demand, the price is reduced to force increased 

usage. 

 

After a while, the perturbation is removed. The resource price functions 

and hence the flows then regain their respective equilibrium values. 

 

4.2.2.9 Pareto-optimal solution 

 

As can be seen from the results, in the equilibrium, it is not possible to 

allocate additional resources to one user without making another user worse 

off. This property of the system is called pareto-optimality.  

 

4.2.2.10 Value added service protection 

 

Now suppose that U1 in Figure 18 is a more valuable user than other 

users. The service manager increases the provisioning potential for U1 when 

a reduction in throughput associated with U1 is sensed, e.g. when the price 

allocated with the given set of resources has increased. In this case, the 

allocation for U2 is further reduced to maintain the provisioning for U1. 
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4.3  Simulation of the reference model in channel switching scenario 

 

The discussion so far considered IP traffic aggregates using the solid 

physical media and homogenous network equipment to route the traffic. It 

may be noted that changing the physical media to RF and optical links will not 

make any difference in the principles described, as the resource, e.g. 

bandwidth can be controlled in a similar fashion. 

 

Of further interest is the discrete capacity switching scenario in order to 

add/remove capacity in the existing network. In this case one can consider a) 

solid links b) RF channels c) optical wavelengths. 

 

The model using optical wavelengths is of particular interest at this time, 

particularly due to the emergence of MEMS photonic technology. The optical 

switches made using this technology are called optical cross-connects. They 

use small mirrors to switch wavelengths. The wavelengths can be added and 

removed at will. The control technology developed in this thesis has been 

demonstrated in a real photonic cross-connect as described in section 6.5. 

 

An illustrative reference topology of the system for space/channel 

switching (wired and wireless (optical or radio)) network control is given in 

Figure 20 
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Figure 20 Model of the IP ingress routers using optical/radio 
wavelength/channels on demand  

 

Consider a heavily loaded network configured as shown in Figure 20. 

There are three high capacity IP ingress routers that use the optical network 

to transport packets. IR1 uses fiber link AD, IR2 uses three fiber links AD, DB 

and BC and IR3 uses link BC.  

 

For easy illustration, consider that each fiber consists of twelve 

wavelengths and that each ingress router has equal provisioning potential, 

say six units.   

 

The wavelengths are allocated as a function of the ratio of the provisioning 

potential and a function of the resource demand for the given route.   

 

4.3.1 Results of the simulation in channel switching scenario 

 

The resultant wavelength allocations as well as the function of demand for 

wavelength are plotted on the vertical axis against unit sample steps along the 

horizontal axis as shown in Figure 21. Please note that due to the contention 
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in fiber links AD and BC (due to allocation to both IR1 and IR2), the demand 

for the route ADBC is twice that for routes ADC and ABC.  

 

Initially, at step 1, the number of wavelengths allocated to IR1 is six as the 

demand for this route is unity; IR3 is similar. IR2 receives three wavelengths 

as it uses route ADBC.  Note that the total number of wavelengths allocated is 

only nine, in link AD, which is sub-optimal. When the usage information is fed 

back to the controller, this is effectively signalling the lack of allocation for full 

utilisation i.e. network optimisation. This is immediately reflected in the 

reduced demand function at step 2. The allocation immediately increases to 

fill the set capacity of the fiber. The new allocations can be seen to be 

proportionally fair.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 An illustrative reference topology behaviour of the optical layer 
optimisation 

 

4.3.2 Explanation of the results graphs 

 

Step1: At step1, the program starts up. 
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The initial operating condition for the resource price function is unity and 

the PP for all users is set at 6 units per wavelength. The proportionality 

multiplicand KR is set to 0.08 

 

From given equations in section 3.1.1 and 3.1.2: 

 

The resource price for each user is 

PN1[1] = PR1[0] = 1 

PN2[1] = PR1[0] + PR2[0] = 2 

PN3[1] = PR2[0] = 1 

 

The wavelengths allocated to each user is  

UN1[1] = PPN1[1] / PN1[1] = 6  

UN2[1] = PPN2[1] / PN2[1] = 3 

UN3[1] = PPN3[1] / PN3[1] = 6 

 

The total output at the resources is 

YR1[1] = UN1[1] + UN2[1] = 9 

YR2[1] = UN2[1] + UN3[1] = 9 

 

Step2: The above usage information is now fed back to the controller. 

 

The error signals are given by 

ER1[1] = CR1[1] – YR1[1] = 3 

ER2[1] = CR2[1] – YR2[1] = 3 

 

The system now updates the resource prices as 

PR1[1] = PR1[0] – KR1ER1[1]  = 0.76, KR1 = 0.08 

PR2[1] = PR2[0] – KR2ER2[1]  = 0.76, KR2 = 0.08 

 

The resource prices for individual users is  

PN1[2] = PR1[1] = 0.76 

PN2[2] = PR1[1] + PR2[1] = 1.52 
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PN3[2] = PR2[1] = 0.76 

 

The flow allocated to each user is 

UN1[2] = PPN1[2] / PN1[2] = 8  

UN2[2] = PPN2[2] / PN2[2] = 4 

UN3[2] = PPN3[2] / PN3[2] = 8 

 

The total output at the resources is 

YR1[2] = UN1[2] + UN2[2] = 12 

YR2[2] = UN2[2] + UN3[2] = 12 

 

It may be noted that introduction of the feedback results in full utilisation of 

the resources. 

 

Since the channels are in discrete numbers and cannot be switched in 

fractional form (as opposed to packets that has a lower level of granularity 

and hence could be scheduled in a continuous fashion for fractional 

bandwidths) additional software is required to be run on the background to 

make the system practical so that discrete channels are switched at suitable 

thresholds. 

 

4.3.2.1 Interactions between the individual loops 

 

At step10, a non-co-operative demand for 2 wavelengths is introduced to 

fiber link AD (this perturbing demand is not plotted). The resource demand for 

AD can be seen going high immediately. Wavelength allocations for IR1 and 

IR2 reduce in a proportional manner to maintain the total load at the set point.  

 

As a consequence of reduction in allocation to IR2, the demand for BC 

goes down and allocates more traffic to IR3. 

 

These interactions can be clearly seen in the graph in Figure 21.   
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4.4  QoS and service Protection 

 

This thesis deals with the QoS offered by the packet transport. As the 

loading of the Internet increases, the ability of the network to cope with the 

traffic reduces. As a result, the quality of service offered by the network to its 

users diminishes drastically.  

 

To a first level approximation, the QoS can be considered as inversely 

proportional to the number of packets in the system. In general, the type of 

service is considered deterministic.  

 

To protect a service provision for a particular operator or user, the service 

rate and the QoS requires to be maintained. However, this is only possible 

with a) higher transmission rate and b) reducing the queue sizes of the 

schedulers. Since the resources are always limited, introducing a feedback 

control that maintains the service rate according to the dominant parameter of 

the service assurance will be necessary for scheduling the resource usage. 

With an inner optimisation loop, the system assures fairness to operators and 

optimal resource use in the given conditions. The service assurance for 

bandwidth, with feedback from ‘near’ and ‘far’ dynamically varying congestion 

points was demonstrated (see section 6.3). 

 

4.5  QoS and the traffic mix 

 

In the public network, the QoS obtained for the users of the premium traffic 

depends on the mix of the traffic in the network. The traffic generally contains 

packets with differing QoS requirements. For example, the different classes of 

service for DiffServ are EF (expedited forwarding, low loss/latency traffic), AF 

(assured forwarding, assured delivery under conditions), BE (best-effort 

forwarding). In the short study below, The EF load is the premium traffic and 

the BE load is the best effort traffic.   The following graph in Figure 22 shows 

the simulation results of the effect of traffic mix on the premium flow. The plot 

shows percentage of the EF load and EF drop against the total load. 
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Figure 22 Matlab simulation of the diffserv traffic mix 

 

The EF load is the premium traffic and the BE load is the best effort traffic. 

The plot shows percentage of the EF load and EF drop against the total load. 

 

As can be inferred from the graph, the priority premium traffic has to be 

capped to a small percentage in all scenarios, in order to provide assured 

QoS. The traffic management policies and link schedulers are implemented 

such that the bandwidth partitioning for different classes of traffic are not 

broken.  

 

4.6  Scalability of the Distributed Architecture 

 

Previous sections demonstrated how the de-centralised and distributed 

controller decisions are enforced by the edge-router schedulers within an 

autonomous network. The architecture presented in this thesis is shown to be 

scalable within the autonomous domain, as well as across the multiple layers. 

Further, this architecture can be demonstrated to be scalable across multiple 

autonomous domains, as described below. 
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The Internet is constituted by a collection of autonomous systems 

connected together at network access points (private peering points or IXPs). 

Data flows use single or multiple autonomous systems to reach from the 

source end to the destination end. An abstract sample of such a system is 

shown in Figure 23.  

Figure 23  Illustration of the system across the multiple autonomous networks 

 

In the distributed architecture proposed, the complexity of signalling load 

from individual routers is tackled by storing the measurement data in a 

network information database within each autonomous network, which can be 

queried to retrieve the required information. This also helps in maintaining the 

integrity of the individual autonomous systems.  

 

There is an issue with the extent to which ASs will exchange pricing 

information. In this case, techniques to work with sub-optimal information has 

to be developed. Further work is suggested in this area (see section 7.2).  

 

The number of AS addresses are defined as 16-bit integers (changed to 

32 bits in 2008). There was over 5000 unique autonomous systems in 2000, 
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estimated to grow 10 fold over the next decade. Any given AS consists of a 

few routers to over 100 routers. While the Internet has more than 100,000 

routers, the given organisation reduces overhead of passing resource 

information by way of aggregation. 

 

The measurement data acquisition is done either by a the client asking for 

information or the client being told of the information. In the first model, also 

called the 'pull' model, the client (edge-router or NIB) requests the server (NIB 

or core router) and the server replies with the information. The second model, 

also called the 'push' model, the server send out the information either 

periodically or triggered by an event. The client can either subscribe to the 

server or receive the broadcast and decide what to do about it. The second 

model might be more suitable for larger networks. The scalability of the 

system depends on the number of ‘states’ to be stored and the additional load 

due to the messages. 

 

In the experiment network given in section 6, the pull model was used in 

order to acquire information from the core routers. The measurement requests 

were send every second. 

  

4.6.1 Simulation across multiple autonomous networks 

 

A simulation model, built for the multiple networks scenario, is given in 

Figure 25. The inter-network model uses two networks and three flows, so 

that the interaction characteristics can be studied. The analysis is similar to 

the reference model used earlier in section 3.1.2 for the intra-network case. 

The results can be seen to be following similar pattern i.e. the intra-network 

case and the inter-network case have the same pattern of behaviour, which 

demonstrates that the system operation is scalable.  

 

The autonomous network systems have their own intra-network flows as 

well as inter-network flows that use multiple autonomous systems. The 

resource information about individual routers can be stored in network 
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information bases for later collection. Flows c1, c2 & c3 works with the output 

of the resource price function available at network access points. This 

eliminates the need to poll individual routers within an autonomous network.  

 

Figure 24 Simulation model for the multi-AS scenario 

 

 

a) Allocation and price of resources in autonomous network A for intra-AS flows 
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b) Allocation and price of resources in autonomous network B for intra-AS flows 

 

 

c) Allocation and price of autonomous networks A & B for inter-AS flows 

Figure 25 Matlab simulation results for inter-AS (flows a and b) and intra-

AS flow (flow c)  

 

The autonomous system AS1 and AS2 each has three internal flows and 

two resources. These two autonomous systems are used as the resources for 

three other flows that pass through them. The provisioning potentials for all 

the flows are given as 3 units and the initial operating point for the price 

function is set as unity. When the simulation starts up at step1, due to the 
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demands from both internal and external flows, the price function for all the 

resources goes high. At step2, the allocations are settled to their 

proportionally fair solutions. At step10, a flow that is deliberately admitted at 

the resource A1 creates congestion at A1 and hence the price function for this 

resource goes high. This results in the reduction of all the flows that use this 

resource, in varying degrees, as the provisioning potential is kept constant in 

this reference topology. The reduction in the transit flow has the knock on 

effect on autonomous system B, in that the price function for both resources 

decreases and hence all the flows that use only this autonomous system 

benefits with increased flow.  

 

When the perturbation flow is removed, the system settles back to the 

equilibrium values. The system characteristics remain same across multiple 

domains. This shows that the performance pattern in similar to the single 

network case given in section 3.1.2, and is stable and scalable.  
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5. SCHEDULERS 

 

5.1  Scheduler for Diffserv Expedited Forwarding 

 

As the Diffserv Expedited Forwarding for premium traffic is being 

standardized in RFC2598 (1999) it is required that the EF traffic cannot be 

pre-empted for more than a packet time at the configured rate. It has been 

proposed in the RFC2598 to use either a) use input throttling of the packets or 

b) have one queue in a weighted round robin scheduler where the share of 

the output bandwidth assigned to this EF queue is equal to the configured 

rate, in order to meet this delay requirement. 

 

With the overall design and implementation concept being driven by the 

need for ever faster network processing capabilities, the option (a) to use 

input throttling is perhaps the last option.  

 

When considering the option (b), use of WRR type queue (WFQ, SFQ etc) 

will not meet the packet time requirement in a work-conserving scheme. A 

work conserving scheduler idles only when there are no packets queued. The 

non-work conserving scheduler idles during the period between the last 

packet served and the next packet to be served but has not become eligible 

for service yet. The latter, although it wastes bandwidth, helps reducing the 

jitter and makes the downstream traffic more predictable. Making the 

scheduler non-working conserving, however, is not an efficient option, as it 

wastes bandwidth. The issue in meeting the packet time requirement can be 

demonstrated as follows. 

 

Consider the state diagram of a packet scheduling system is given in 

Figure 26 below. The state transitions are self-explanatory. 
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Figure 26 State diagram of a packet scheduling system 

Assume there are two flows B and P (B stands for BestEffort and P stands 

for Premium) being serviced from time t0. At time t4+  flow B is being served 

and let us take that flow P is scheduled for a time in future, tf (t8 in this case). 

Even in a well-designed system, bursts and malfunctions of different kinds 

can occur and suspend a running flow. Now, assume that flow B got blocked 

at t7. In order to increase the efficiency of resource utilisation, the work-

conserving scheduler services the flow that is not suffering the blocking. In a 

work conserving scheduler, the bandwidth will now be taken over by flow P at 

t7. Due to this, flow P gets expedited service when flow B is blocked. When 

flow B becomes runnable subsequently, it captures the service as given in 

Figure 27.  Flow P relinquishes control on demand from flow B.  

 

 

Figure 27 Effect of bandwidth conservation in round robin scheduler 
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However, the time that flow B did not get serviced (because it was not 

available) is not counted as a loss in effective bandwidth to flow B. Therefore, 

the effective bandwidth share that was assigned to the flow B remains to be 

served. Due to this, flow P will now be scheduled for a time later than tf (later 

than t12). Flow P, however, cannot be penalised for using the extra bandwidth 

that was available due to the suspension of the blocked flow.  

 

In this case, the delay bound for flow P could exceed the service 

agreement.  

 

Hence, in work conserving mode (the mode in which the schedulers are 

preferred to be operated in order to maximize link utilisation), the delay 

experienced by a premium flow in Diffserv Expedited Forwarding could 

exceed the service level agreement as given in the RFC2598. Devising a 

scheduler to achieve this and all the prior requirements is an open problem. 

 

Further, the flows that are really required to be scheduled are the flows 

whose exogenous rates exceed the rate at which they are being serviced. The 

exogenous flow rate is defined as the rate the flow would have, if the links 

were of infinite capacity. Thus, the weights are required to be modified on-the-

fly that takes into account the instantaneous nature of congestion as well. This 

is applicable in various scenarios including P2P. 

 

5.1.1 Expedited Forwarding SFQ (EFSFQ)16 

 

An improved scheduling algorithm that eliminates the delay experienced 

by the premium flows in Diffserv Expedited Forwarding is developed as part of 

this work. The efficiency of the scheduler is increased, at the same time 

expediting the premium flow. The flow is expedited by using the work-

conservation principle, at the same time preventing further delays due to it. 

                                                 

16  This scheduler was previously called Offset Adjusted Fair Scheduler in other 
documents and US patent US06888842 by the author. It is renamed in this thesis to directly 
convey the purpose. 
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The general framework of EFSFQ is similar to that of WFQ and SFQ. 

However, the calculation of virtual start time is modified for any flow that is 

blocked. The flows are serviced in the increasing order of virtual start time; 

therefore, EFSFQ is more similar to SFQ than WFQ. When there is a tie in the 

virtual start time, the ties are broken either arbitrarily or according to a policy. 

The weight can be changed, when required, by the ingress controller to take 

care of the instantaneous nature of congestion. The algorithm is invoked once 

per packet transmitted. The algorithm is given below.  

 

EFSFQ can dynamically change the bandwidth allocation according to the 

policies required to be enforced. Each flow is transported packet by packet. 

The future time of service for a flow will be proportional to the current length of 

packet / its bid, the unit being [bits/ (bits/sec)] i.e. in seconds. This future time 

of service is called virtual start time.  

  

Let p
j

f
, l

j

f
 and r

j

f
 denote the jth packet of flow f, its length and its weight 

respectively. Let )( pA
j

f
denote the time at which the jth packet is requested 

i.e. comes to the head of the queue. If the flow remains runnable, it is the time 

at which its previous packet finishes. S(pj
f) and F(pj

f) denote start time and 

finish time respectively. For the analysis, the following virtual time 

assignments are made:  

1. Virtual time, v(t) =       

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
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      when CPU is busy 
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In EFSFQ, if a flow is blocked, and hence not available for service, the 

virtual start time of the blocked flow (B) is updated in the background and is 

carried along as if it were serviced. This way flow P is assured of being 
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serviced at the previously scheduled time tf. In this way, the scheduler can 

provide reduced inter-packet delay in a work-conserving17 mode. 

2.b. Virtual start time (blocked flow), 

      
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l
PFpFpSpS

i

B

j

Pj

P

j
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



  11

 where i is the virtual packet count 

for flow B for each packet of flow P.  

3. Virtual finish time,    
r

l
pSpF

j

f

j

fj

f

j

f
   

The share of resource capacity received by each flow would be: 

Cf = CR . rf /  r 

where  Cf  is the capacity received by the flow f, CR is the total capacity of 

the resource, rf  is the weight of flow r and the denominator is the sum of the 

weights of all the flows. 

 

5.1.1.1 Delay minimization for the Expedited Forwarding traffic 

 

In the new scheduler devised, it is argued that penalising the flow B for 

getting blocked (no show) is a justifiable option. In addition, from a game 

theoretic point of view, at the network level this forces the individual flows to 

behave well. 

 

Lemma 4: Given a queuing system and assume that at least one of the 

queues is blocked during the period (T1, T2), then during (T1, T2), the 

following property holds 

                  ≤                 

where IPD is the inter-packet delay for Expedited Forwarding traffic. 

 

 

 

 

                                                 

17
 This scheduler works in the non-work conserving mode as well. However, a non-work 

conserving scheduler is less efficient in general 
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Proof:  

 

The lemma is intuitively depicted in Figure 28. As can be seen, flow B had 

to give away the service time allotted to it when it is blocked.  This lost share 

of time will not be given back to flow B. 

 

 

 

Figure 28 Effect of virtual time offset adjustment 

 

 

Here the flow P gets the service at the assured future times and hence 

does not suffer more delay than what is specified. In other words, the adjacent 

flow (in this case P) receives more bandwidth when other flows are blocked or 

do not show. More importantly, the real-time requirement for the flow P is 

ensured in all situations. The inter-packet gap of the Premium flow is thus not 

allowed to grow beyond given limits. 

 

5.1.1.2 Use of free bandwidth 

 

Further, as can be seen, in this case the adjacent flow gets the bandwidth 

share absolutely free. Instead of giving this free bandwidth wholly to the one 

adjacent flow, it could be fairly distributed among all the flows by incrementing 

the virtual start time of all eligible flows by an amount that would spread the 
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time slot evenly. A simple case would be to increment it by an amount equal 

to 
  
 

  
     where    is the number of flows. 

. 

Although it may appear that this would cost additional computation, it is not 

necessarily so. The clock base can be offset by the given amount, and all the 

flows get the extra share instantaneously without additional computational 

load. This is may be done to achieve near ideal fairness.   

 

5.1.2 Complexity and Scalability of the scheduler 

 

As the calculation of virtual time involves only one parameter (start time), 

the computation is inexpensive. Consequently, the computation of start time 

and finish time are also inexpensive. The scheduling order is decided by a 

FIFO queue (containing packets that are at the head of their respective 

queues) prioritised in the order of the start time. The complexity of the 

operations of this queue is O(log N) where N is the number of flows in the 

active list [51]. Since the complexity of the scheduler lies in the said 

mechanism, the complexity of ESFQ is O(log N). 

 

This complexity is sustainable as the number of active flows in the Internet 

is found to be about 1% of the total flows [131]. 
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6. SYSTEM IMPLEMENTATION 

 

This chapter describes a concrete implementation of the de-centralised 

and distributed dynamic resource management system described in previous 

chapters. Results from the real network experiments are captured and shown. 

The system provided quality of service for different types of flows. 

 

The system was implemented in a network of Linux routers using various 

hardware, software and technologies from the IP suite. The implementation 

follows the same design as the simulation model, in order to compare and 

contrast the results.  

 

6.1  Mapping the DRC system to generic architecture 

 

The laboratory reference model for implementation of the Distributed 

Resource Control system (DRC) was devised to be compliant with the COPS 

(Common Open Policy Server) Resource Broker model18 as shown in Figure 

29 

                                                 

18
 The COPS model was selected because of the similarities in top-level blocks that were 

independently visualised for the DRC 
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Figure 29 Simplified DRC System - COPS compliant architecture 

 

The user policies to be implemented are stored in the Policy Information 

Base (PIB). The implementation decisions are made at the Policy Decision 

Point (PDP). These policies are then enforced at the Policy Enforcement 

Points (PEP). The network topology and measurement information is stored 

and collected at the Network Information Base (NIB). The benefit to the user 

and revenue to the network operator are displayed by the Benefit/Revenue 

Meter (BRM). The NIB and BRM are added to the COPS architecture by the 

author. The various functional modules of the system are described below. 

 

6.2  Detailed functional blocks 

6.2.1 Network Information Base 

 

The network information base collects the resource utilisation/ price 

function information. This is done by polling or feedback from the resources 
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that are actively used. Polling is done only if the data is stale i.e. not current. 

In the case of multiple networks, output of resource price functions that are 

propagated to traffic merge points reduces the measurement load- this works 

as a hierarchical system. A schematic is given in Figure 30 

 

 

 

 

Figure 30 Network Information Base 

The capacity partitioning (Cl) could be preloaded in the core routers (this 

could be changed by the operator), and only the difference between this given 

and used bandwidth need be sent out. If the price function calculation block is 

incorporated within the router, then only the output of the price function 

calculation need to be sent out. 

 

6.2.2 Ingress Router 

 

The flow control policy enforcement is performed at the ingress router. 

Admission control policy enforcement is done at the traffic input part of the 

edge router and network ingress policy enforcement is done at the output of 

the forwarding path. The edge routers are designed to have their egress port 

scheduler controlled by the Provisioning Potential and the resource price 

function- in this case the scheduler becomes the Policy Enforcement Point.   
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Figure 31 Ingress Router 

To calculate the resource price function, the ingress controller issues a 

‘resource price function query’ to the local database (see Figure 33) for a 

given source-destination pair, per traffic class. The program uses the routing 

table, finds the participating core routers, finds matches in the ‘resource price 

function database’ and responds with the output value of the resource price 

function. 

 

6.2.2.1 Policy enforcement using Linux traffic control  

 

The linux ports have two methods for controlling- either via netlink 

interface or via the system call interface as given in Figure 32: 
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Figure 32 Different traffic control interfaces to Linux kernel 

The ‘tc’ interface was used for the current implementation. 

 

6.2.3 Policy decision point 

 

The policy decision point makes the admission decision based on the 

policies set apriori. This decision could be to block, modify priority marking or 

admit the flow to the network. A schematic of the reference PDP is shown 

below in Figure 33: 
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Figure 33 Policy Decision Point 

 

6.2.4 Policy Information Base 

 

The policy information is stored in a lightweight database; a general 

schematic is shown below in Figure 34: 

Figure 34 Policy Information Base 
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6.2.5 Link occupancy measurement sub-system 

 

The implementation of the distributed resource control system uses its 

own sub-system for monitoring, measuring and feeding back the data from the 

network nodes. Such a sub-system could be used for carrying all types of 

data that the controller requires. In the current implementation, the traffic load 

on the link was measured using this sub-system.  

                        

Figure 35 Link Occupancy Measurement sub-system 

 

At the core router, (Linux based network element in this case), a java 

application issues ‘tc’ commands to the kernel every second. The kernel 

queuing discipline responds with the traffic statistics for the given interface 

device. This response is parsed to get the data (e.g. ‘sent bytes’ per class of 

traffic). This value is compared with the previous data. The bit rate per class 

of traffic at the given device is then deduced as follows 

Bit rate = data[new] - data[previous] / (sample time * scale adjustment).  

The scale adjustment figure is to take care of any delays in the process. 

 

At the edge router (Linux based network element in this case), a java 

application issues RMI or CORBA calls to the core router program to fetch the 
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bit rate information. This data is stored in stored in the NIB database and 

updated as and when required. 

 

6.3  Network Implementation of the architecture 

 

The architecture described above was implemented in the router research 

laboratory of Nortel Networks Harlow Labs. The network configuration used is 

that of the reference model used for the simulation, described in previous 

chapters. 

 

For ease of demonstration as well as measurement, test and diagnostic 

purposes, the model was drawn up in the TkIned and appropriate ports were 

monitored using SNMP monitors. A screen capture (from the management 

computer) of the working system is shown below in Figure 36: 

 

 

Figure 36 Screen capture of the live demonstration of the reference 
network 
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The software is implemented in a Python platform, Python being selected 

primarily for rapid prototyping. The communication interface was, at the time, 

done through ssh (secured shell) access. This can be done by other remote 

invocations methods as well.   

 

Both TCP and UDP type flows were used in order to demonstrate their 

characteristic responses, in particular the packet trunking as explained in 

section 6.4.1. Only one class of traffic is used in the present demonstration. 

However, the system could be used for other classes of traffic.  

 

6.3.1 Description of the live Network Implementation 

 

As mentioned before, the network is designed around a set of Linux 

routers, host traffic sources and sinks, as in Figure 36, configured in the same 

connectivity pattern that was used for the simulation reference model. This 

pattern of connectivity is used in order to compare and contrast the 

performance of the real network and the simulation model.  

 

6.3.2 Ingress routers 

 

Routers designated 1b, 2c and 1c serve as the ingress routers. The output 

bandwidths of these routers are to be controlled to facilitate network ingress 

control per class of traffic. For this purpose, a differentiated services class 

based queuing (CBQ) discipline is attached to the output ports of these 

ingress routers. The command to control the bandwidth is given through the 

traffic control (tc) interface of Linux. In the demo, this control command is 

issued every second that updates the diffserv CBQ. 

 

6.3.3 Core routers 

 

Routers 2a and 2h form the core network. These are the system resources 

used by the ingress routers, the usage of which is to be controlled. The output 

bandwidth (resource utilisation limit) of these routers is set at a specified level 

(in this case 6Mbps) and is measured. To control the limits per class of traffic, 
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the diffserv CBQ is attached to their output ports. The measurement is done 

through the tc command interface. The statistics sub-command provides the 

measurement. 

  

6.3.4 Traffic sources 

 

Flow1: Host 1e provides a UDP traffic source that uses core router 2a 

only. The output is sunk at the input port of 2h. The ingress controller for this 

flow is 1b. 

 

Flow2: Host 2g provides a TCP traffic that uses both resources 2a and 2h. 

The sink is 1d. The ingress controller for this flow is 2c. 

 

Flow3: Host 1h provides a UDP source that uses resource 2h only. The 

sink is 1d again. The ingress controller for this flow is 1c. 

 

6.3.5 Perturbation  

 

Host 3g is used to generate a traffic pulse to create an overflow at the core 

routers, to study the performance and demonstrate the various effects. Two 

flows are generated: D1, that uses both resources and terminates at 1d and 

D2 that uses only one resource (2a) and terminates at 2h. 

     

6.4  Operation of the live network implementation 

 

As described earlier, there are three traffic aggregate flows taking three 

routes. User1 shares resource1, user2 shares both resource1 and resource2 

and user3 shares resource2. 

 

At start up the system allocates the bandwidth for these traffic aggregates 

according to the pre-determined initial operating point for the resource price 

function. This allocation decision is made at the PDP using the algorithm 

given in section 3.1.2.2. The bandwidth usage at the core resource outputs 
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are now measured and fed back. This information is collected at the Network 

Information Base. The algorithm then modifies the allocated bandwidth to 

force optimum utilisation in the given conditions. This is achieved by varying 

the intermediate variable that is the resource price function. The steady state 

is reached in two sample steps. In the current implementation, the time step is 

one second. The graphs in Figure 36 show the changes in the traffic flow.      

 

6.4.1 Explanation of the results graphs 

 

The graphs on the screen capture shown in Figure 36 shows the network 

load measured via snmp daemons. Please note that the vertical axes are not 

exact to scale (they were modified to give better visibility). The horizontal axis 

represent about 50 seconds duration. 

 

6.4.1.1  Transport of UDP flows 

 

The graph on the left-hand-top (S1) shows the UDP traffic that is 

generated. The second graph on the same line (I1) shows the controlled 

output. The dip in the flow is due to the effect of the perturbation that 

increases the resource usage suddenly. The perturbing flow can be seen in 

the lower middle (D1). It may be observed that the excess UDP flow gets 

dropped at the ingress router (I1). 

 

    The lower graph on the right-hand side (I3) shows another controlled UDP 

flow that is input to the core network system. 

 

6.4.1.2 On-demand QoS 

 

A mechanism had been proposed to signal packet drops back to the user 

for the user to take corrective measures in case they are necessary- like 

increasing user Potential willingness to pay that would provide on-demand 

QoS. 
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6.4.1.3 Improving the transport of TCP flows 

 

The lower left-hand graph (S2) shows the TCP flow that is input to the 

system. The second graph on the line (I2) shows the controlled flow. It is 

interesting to note that the TCP flow changes its rate by itself at the source, 

since the TCP works underneath the control provided by this resource control 

system. We refer to this as Packet trunking and may find very useful 

commercial applications because the network operator can provide 

preferential treatment to specific edge-differentiated TCP user flow 

aggregates [133]. In addition, in a heterogeneous network, TCP delays in the 

core are not uncommon. As the control is done at the ingress, these delays 

and their effect on other core traffic are avoided. The system thus enables the 

network operator to treat both high priority TCP traffic and high priority real 

time (UDP) traffic as one elastic trunk whose resource usage is carefully 

optimised to avoid core buffer overload in any traffic demand loading pattern. 

This basically suggests that TCP performance can greatly be improved if the 

control system proposed is overlayed. The overlay control provided by the 

proposed system eliminates congestion in the network for premium traffic and 

hence eliminates the need to over-stretch the transport protocols and stray 

them from what they are supposed to do best. 

 

6.4.1.4 Core routers and Ingress routers 

 

The two graphs on the top right-hand side (C1 & C2) show the outputs of 

the core routers. The sudden rise is due to the perturbation traffic pulse. The 

bandwidth can be seen to be controlled back to the set point very fast. The 

time delays are due to the various time lags in the network and system 

implementation. 

 

It can be seen that the perturbation traffic pulse affects all the ingress 

controllers. This is because the perturbation flow passes through both 

resources. If only one resource is perturbed, only the respective resources will 

be affected. This emphasizes the fact that the calculation is not dependent on 

global knowledge. This scenario is better understood in the analysis part 
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where one can see interactions between various components. This is 

explained in the simulation sections 3.1.2 and 4.2.  

 

6.5  IP/Photonic network controller 

 

As stated earlier, the distributed resource controller framework can be 

extended to multiple layers. A controller for wavelength switching is designed 

and developed for the dynamic wavelength provisioning and routing system 

for MEMS optical switches. This system is also demonstrated in a real 

network at the Router Research Laboratory, Harlow Labs, Nortel Networks. 

 

6.5.1 Scope of the IP/Photonic network controller  

 

The model must be capable of demonstrating basic functionalities of auto-

discovery, wavelength provisioning, routing, protection, management, re-

configuration and fast restoration. Static (e.g. SRLG) as well as dynamic (e.g. 

degradation in bit error rate) information and fiber break information are to be 

used for control and test purposes. A distributed routing protocol is to be used 

for the photonic layer i.e. OSPF. 

 

6.5.2 Network elements 

 

The proposed experimental optical network consists of a total number of 

six MEMS (micro electro mechanical systems) based photonic switches in a 

given topology shown in  

Figure 37. Each photonic switch has a control node associated with it. 

These control nodes can initiate, modify, teardown and monitor the 

connectivity and performance of the photonic cross-connects. 
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Figure 37 IP/Optical reference network topology 

6.5.3 Overlay model 

 

In the overlay model shown in Figure 38, both IP and Optical layers use 

MPLS technology i.e. label switching, but independently. Both layers will have 

their own IGP for routing. Because of this, the overlay model is expected to 

command more trust from the operators as this will allow multiple clients 

under weak trust boundaries. In the overlay model, the internals of the 

photonic cloud is not visible to the clients of wavelength services, i.e. IP 

routers etc. This is in contrast with the peer-to-peer model in which both 

layers share the same MPLS space, the scalability of which is not fully 

understood. In the overlay model, control nodes associated with the photonic 

cross-connects exchange the connectivity information. The overlay model 

proposed is more similar to the Multi-Protocol over ATM scheme. 
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Figure 38 IP/Photonic network: abstract system architecture 

6.5.4 Signalling 

 

In-band signalling is difficult in photonic networks. At the same time, 

dedicating a complete channel for out-of-band signalling is less efficient. This 

problem area is under study. 

 

Meanwhile, in the initial phases of the present work, out-of-band signalling 

through Ethernet ports is proposed to be used. This will emulate the point-to-

point photonic network and current routing techniques can be used straight 

away.  

 

6.5.5 IP/Optical Interface 

 

The boundary routers and boundary Photonic cross-connects 

communicate via a control channel called the optical user-network interface 

(O-UNI). 
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6.5.6 Service discovery 

 

The boundary router reachability across the optical cloud is via a service 

discovery mechanism across the O-UNI in conjunction with optical IGP 

(OSPF). 

 

6.5.7 Provisioning 

 

The boundary router issues light path requests across the O-UNI through 

extended RSVP or CR-LDP.  

 

In the static overlay model, the path endpoints are specified by a network 

management system. The paths may be laid out either by the management 

system or by the network elements. 

 

In the data-driven shortcut approach, the boundary routers use traffic 

measurements to autonomously control the number of light paths. Static 

provisioning information, SRLG information etc will also be used. 

 

6.5.8 Protection 

 

The protection and fast restoration may be designed in the local repair 

fashion as is done in the MPLS based fast re-route scheme. 

 

6.5.9 Performance monitoring  

 

Performance monitoring will be used for control of allocation. Decision 

thresholds for bit error rate degradation are set apriori and are used for early 

warning. In such a case the protection switching is set to act before the 

SONET triggers to action, achieving faster protection switching than the 50ms 

SONET limit. In the experimental set-up, 25ms protection switching was 

achieved. 
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6.5.10  Other general requirements 

 

It was decided that the timing accuracy is not important at the initial phase 

of development. However, a stable control is important. 

 

6.5.11  System design 

 
6.5.11.1 Photonic switches  

 

A total of six switches are connected in the given topology. These are 

MEMS, not opto-electronic switches. The switches have 8x8 ports with a 

traffic rate of 10GHz. The number of wavelengths used is 12.  

 

Communication with the photonic switch is via one TCS (Traffic Control 

System) card that controls the 8x8-switch module. This card resides in the 

switch module. Each TCS card is linked to a Control Node by Ethernet. The 

control nodes can be accessed via telnet or RS232. To access the switch, 

one has to login to the TCS card from the control node and send set/modify 

instructions. Status monitoring is also possible.   

 

6.5.11.2 System controller 

 

In the initial phase of the development, before venturing to a fully 

distributed system, one way to implement the system would be to run the 

separate controller processes in one host computer. This host computer 

functions as the network and service delivery platform. 

 

The IP system and Photonic system controllers are separate processes 

run by Python scripts within the host computer. Each control node can be 

accessed from the script by telnet. This way, CLI commands can be issued to 

the switches. The responses are parsed to obtain the relevant data for further 

processing. The script would contain the programs for auto-discovery etc as 

well. A fully distributed system would have border routers directly talking to 

the photonic border cross connects.  
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6.5.12  Progress of IP/Photonic network controller development  

 

This system was developed in the Optical system division of Nortel 

Networks Harlow Labs and had been demonstrated to OEMs and Service 

Providers. 
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7. CONCLUSIONS AND FUTURE WORK 

 

7.1  Conclusions  

 

This work was originally set out develop an architecture for the autonomic, 

de-centralised and distributed management and control of computing and 

communication platforms of the electronic enterprise using minimal overhead 

parameters.  

 

A theoretical framework for the study of distributed network control, 

feedback, resource management, simulation mechanisms, control and 

measurement systems, packet scheduling algorithms, multilayer architecture 

and OSS/BSS sub-system for value added service delivery has been 

developed.  

 

It is demonstrated that, in the given conditions, the proposed distributed 

architecture can manage the QoS priorities, provide on-demand real-time 

services and ensure fairness to the users and processes. The system 

described can provide de-centralised and distributed management and control 

for the Internet traffic and resources.  

 

The system presented has several advantages that are complimentary to 

the overall architectural principles of the Internet. For example, there is no co-

ordination required between the ingress systems in order to use the common 

resource that is the Internet. Many other systems proposed uses semaphores 

like token passing. There is no central bandwidth broker or even a multi-tier 

bandwidth broker system. The term bandwidth broker, used when referring to 

the work presented, is an abstract noun used for convenience that is realised 

in a de-centralised and distributed fashion. The system presented has no 

single point failure in its decision path. This further contributes to the 

scalability attribute of the system. The work presented is scalable both in 

terms of the number of flows and in terms of the number of resources in the 

network. 



 

 

120 

7.1.1 Practical deployment considerations and associated issues 

 

While the theoretical work and demonstration in a live network gave 

promising results, there are several issues to be resolved before deploying 

the architecture presented in a real world network. These include delay issues 

control/feedback information, hierarchical schedulers, inter-domain 

interactions etc. These are further detailed in the next section on future work. 

 

In order to assess the limitations of the work so far and present areas of 

future work, the overall system could be split into a set of major areas e.g. the 

monitoring of network state, decision processes, the control systems, routing 

in different layers and communication protocols; and implementation aspects.   

 

7.1.1.1 Incremental introduction strategy  

 

As demonstrated, this super-system does not require global knowledge of 

policies and information in order to achieve fair allocation of resources. In fact, 

the distributed control eliminates the need for the global knowledge i.e. 

communication between edge-routers is not required. The signalling 

requirements are affordable as the super-system works with the aggregate 

path resource information (like price functions) fed back from network access 

points rather than signalled from every intra-system resource. 

 

The computation complexity is negligible as the system uses a simple 

algorithm. 

 

This super system can be overlayed, which allows it to be transparent and 

allows easier modification. As the system can work with partial deployment, 

ubiquitous deployment of the protocol is not required. This makes an 

incremental introduction strategy viable. 
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7.2  Future work 

 

7.2.1 Monitoring and measurement  

 

Monitoring in itself does not pose any limitation for the current 

implementation. With appropriate interfaces to the network hardware and 

software systems adequate information can be collected for input to the 

control system. For larger networks, event notification from the core routers to 

the edge routers could be used. 

 

7.2.1.1 Loss of data in transmission 

 

The control data is prioritized data. However, when the network grows 

larger, loss of data could result in the decision process making use of stale 

information. The decision process algorithm has to be robust against this. 

 

7.2.1.2 Information bottlenecks 

 

However, it is difficult to take corrective measures to deliver the QoS as 

the performance bottlenecks are not readily known. An example case would 

be where the application requires more bandwidth, it asks for more bandwidth 

(over and above what it currently receives) however there are some highly 

shared/slow servers or links in its path that prevents the application from 

performing well. The feedback information is not always available from the 

Internet equipment that is owned by disparate entities. Akella et al [3] found 

that about 50% of the Internet paths contain non-access bottlenecks, equally 

split between intra-ISP and inter-ISP links.  

 

Referring to Hu et al [89], it looks like the best tools for Internet 

tomography are only 80% successful in detecting the bottlenecks. Such 

tomography methods would require DSP techniques for system identification 

etc. It is important that more work be done in this area so that the bottlenecks 
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are detected and corrective measures taken in order to ensure the QoS 

required by the user. 

 

7.2.2 Decision Processes 

 

The information collected from the network information base for any set of 

resources could be stale or partial. This could be due to a number of issues 

like delays, reachability issues, protocol issues etc. The system however 

needs to operate in this sort of scenarios. Although different types of 

averaging of available data are used at the moment, approaches that are 

more sophisticated are necessary for a wider system. One of the methods to 

consider could be Markov decision processes, entropy based methods etc. 

The idea is that as the number of resources is very large and set to be 

growing exponentially, the information lost from the calculations could be 

considered 'rare events'. These rare events could be analysed using the 

techniques of Partially Observable Markov Decision Processes (POMDP). 

POMDP models contain the sources of uncertainty i.e. stochasticity of the 

controlled process, and imperfect and noisy observations of the state 

(Kaelbling et al [112]) 

 

7.2.3 Control system techniques 

 

In the real networks, the control system properties will be affected by 

various attributes of the network e.g. the propagation delays in control as well 

as feedback data. The control system techniques to cope with such effects 

need to be studied in future work. 

    

In the work presented, only a proportional controller was used as the 

tunable parameter, called proportionality multiplicand. In this, zero steady 

state error is achieved because of the integrator present in the controlled 

system. The derivative was not used to avoid amplification of the load 

variations. However, the use of PID controllers, Kalman filters etc need to be 

explored to achieve a flexible control system. The parameter tuning to achieve 

optimum performance is yet another area to work on. 
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To improve the settling time, techniques such as PID (Proportional-

Integral-Derivative) and/or adaptive controllers (fuzzy, neural networks etc), 

predictor-corrector (Kalman), feed-forward, parameter scheduling etc can be 

used.  

 

7.2.3.1 Proportional-Integral-Derivative  (PID) Controller 

 

PID controllers provide full flexibility in the design and stabilisation of 

networks, the representation of which is given in Figure 39 

 

 

 

 

 

 

 

 

 

 

 

Figure 39 PID Controller model 

The advantage is that while the proportional part provides better response 

to perturbations and increases speed of response, it still has a small steady 

state error and transient overshoot. The overshoot results in the price function 

settling to non-optimal value. By adding a term proportional to the integral of 

the error, the steady state error can be eliminated however the dynamic 

performance deteriorates. With another term proportional to the derivative of 

the error, the dynamic response can be damped. This helps in settling the 

price function to an optimal value, with a speed of response that is adequate. 

The PID controller includes all three terms (proportional, integral and 

derivative). These parameters are usually tuned to get the desired response. 
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7.2.3.2 Provisioning potential input 

 

As can be seen from  

Lemma 1, the nature of the provisioning potential has an impact on the 

stability of the control system. This is an area for further work, to understand 

the nature as well as effect of the provisioning input. 

 

7.2.3.3 Stability of multi-loop interactions 

 

As given in section 3.2, the interaction between the flows in the distributed 

multi-node macro-scheduling could be modelled to study the performance 

under various scales and scenarios 

 

7.2.4 Routing 

 

In the present work, the routing information from OSPF was used in the 

demonstration network. This routing table is updated every 30 seconds. 

Similar type of protocols for photonic systems and wireless systems could be 

used. This has the advantage of re-using the route-changing techniques when 

the existing path does not provide the necessary QoS. 

 

7.2.5 Inter-domain scalability 

 

In the present work, a brief analysis of the inter-domain scalability is 

provided. Further work is necessary in inter-domain analysis, scalability in 

large systems, etc. 

 

7.2.6 Communication protocols 

 

The ad-hoc protocols used in the present work to communicate between 

the various players in the network- the end customers, service operators, 

network operators, network resources in different layers etc require to be 

improved in line with the protocol design principles 
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7.2.7 General architecture for DRC system 

 

The communication networks has been embracing packet based 

technologies for a long time, due to its efficiency to share resources. The 

technologies available to both the individual users and enterprise users 

(including carrier networks) are based on digital technology using the Internet 

Protocol. However, the resource sharing brings in its own issues in service 

assurance. The proliferation of the number of devices makes centralised 

management and control too costly. The availability figure of the Internet 

based systems should be improved from the 99.6% to at least 99.999% that is 

typical of circuit-switched model [9]. Efficient management and control of the 

Internet requires distributed, autonomic, dynamic resource control system.  

 

The analysis, simulation, prototype development and real network 

demonstrations carried out as part of this work gives the proof of concept 

required to develop a network management and control system for distributed 

network control and service delivery. The following is a sketch of distributed 

resource control system showing how the system can be architected.   
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Figure 40 DRC system for the network and service delivery platform 

The general architecture of the management system is shown in Figure 

40. The system uses publish-subscribe architecture and hence there is no 

requirement for rigidly controlled servers running on network elements. 

 

The DRC system designed as middleware provides appropriate 

development and run-time environment for distribution. Layered between the 

application and the network/OS, this is a compact and fast layer4+ solution.  

    

As it has been explained, it is important to collect feedback from the 

system in order to ensure fairness to all the users and processes. It is 

relatively easy to sense when a given application is not performing well and to 

activate a ‘turbo switch’ to order more QoS.  
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7.2.7.1 Components and middleware for the DRC system 

 

 

 

 

 

 

 

 

Figure 41 Middleware model 

The choice of distribution architecture, language and software engineering 

tool for the development of a component-based model as given in Figure 41 is 

briefly mentioned below: 

 

The Common Object Request Broker Architecture (CORBA) provides a 

flexible, scalable alternative to CMIP and SNMP. The transactions are 

between functional objects as object requests. This provides versatile 

coordination and policy enforcement.  

 

The Java platform provides a universal interface to most of the devices 

and operating systems as well as easy run time installation of new 

functionality in other network elements. The multicore systems may require 

other suitable languages. Browser interfaces via XML is now very common. 

The Unified Modelling Language (UML) gives an effective notation for 

modular design and hierarchical generalisation for software engineering the 

system. New UML based tools deliver executable code for both hardware and 

software development from the architectural specification models [104]. 

 

7.2.7.2  Universal distributed network and service delivery system 

 

The generic implementation of the de-centralised and distributed control 

system for the emerging Internet is based on the development of APIs for 
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independent functions and components orchestrated by service-oriented 

architecture. The concepts developed in this thesis will be realised by 

combining enterprise business with the intelligent network functions and 

OSS/BSS functions through web services. 

 

The JAIN, OSS/J, J2EE initiatives are now being heralded as a standard 

method to achieve this solution over the IP Multimedia Subsystem. 
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