Quesada Cabrera, R;
Meersman, F;
McMillan, PF;
Dmitriev, V;
(2011)
Nanomechanical and structural properties of native cellulose under compressive stress.
Biomacromolecules
, 12
(6)
pp. 2178-2183.
10.1021/bm200253h.
Preview |
Text
McMillan_Cellulose_revised_080420112.pdf Download (556kB) | Preview |
Abstract
Cellulose is an important biopolymer with applications ranging from its use as an additive in pharmaceutical products to the development of novel smart materials. This wide applicability arises in part from its interesting mechanical properties. Here we report on the use of high pressure X-ray diffraction and Raman spectroscopy in a diamond anvil cell to determine the bulk and local elastic moduli of native cellulose. The modulus values obtained are 20 GPa for the bulk modulus and 200-355 and 15 GPa for the crystalline parts and the overall elastic (Young's) modulus, respectively. These values are consistent with those calculated from tensile measurements. Above 8 GPa, the packing of the cellulose chains within the fibers undergoes significant structural distortion, whereas the chains themselves remain largely unaffected by compression.
Type: | Article |
---|---|
Title: | Nanomechanical and structural properties of native cellulose under compressive stress |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1021/bm200253h |
Publisher version: | http://doi.org/10.1021/bm200253h |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry |
URI: | https://discovery.ucl.ac.uk/id/eprint/1334033 |
Archive Staff Only
View Item |