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Abstract

Lentiviruses such as HIV-1 traverse nuclear pore complexes (NPC) and infect terminally differentiated non-dividing cells, but
how they do this is unclear. The cytoplasmic NPC protein Nup358/RanBP2 was identified as an HIV-1 co-factor in previous
studies. Here we report that HIV-1 capsid (CA) binds directly to the cyclophilin domain of Nup358/RanBP2. Fusion of the
Nup358/RanBP2 cyclophilin (Cyp) domain to the tripartite motif of TRIM5 created a novel inhibitor of HIV-1 replication,
consistent with an interaction in vivo. In contrast to CypA binding to HIV-1 CA, Nup358 binding is insensitive to inhibition
with cyclosporine, allowing contributions from CypA and Nup358 to be distinguished. Inhibition of CypA reduced
dependence on Nup358 and the nuclear basket protein Nup153, suggesting that CypA regulates the choice of the nuclear
import machinery that is engaged by the virus. HIV-1 cyclophilin-binding mutants CA G89V and P90A favored integration in
genomic regions with a higher density of transcription units and associated features than wild type virus. Integration
preference of wild type virus in the presence of cyclosporine was similarly altered to regions of higher transcription density.
In contrast, HIV-1 CA alterations in another patch on the capsid surface that render the virus less sensitive to Nup358 or
TRN-SR2 depletion (CA N74D, N57A) resulted in integration in genomic regions sparse in transcription units. Both groups of
CA mutants are impaired in replication in HeLa cells and human monocyte derived macrophages. Our findings link HIV-1
engagement of cyclophilins with both integration targeting and replication efficiency and provide insight into the
conservation of viral cyclophilin recruitment.
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Introduction

The ability to infect terminally differentiated cells of the

monocyte-macrophage lineage is a conserved property of lentivi-

ruses, including HIV-1 [1]. This process requires pre-integration

complexes (PICs) to traverse the nuclear pore, though the molecular

mechanism remains unclear. The HIV-1 proteins matrix, Vpr and

integrase, as well as a DNA triplex at the central polypurine tract,

have been proposed to contribute, but contrary evidence has been

presented for each [2–5]. Gammaretroviruses such as murine

leukemia virus (MLV) are dependent on cell division for infectivity

and infect non-dividing cells inefficiently [6]. Characterization of

HIV-1/MLV chimeric viruses has suggested a role for the HIV-1

capsid (CA) in nuclear entry [7]. Furthermore, certain HIV-1 CA

mutants are selectively defective in arrested cells but not in actively

dividing cells again implicating a role for CA in HIV-1 nuclear entry

[8–10].

The nuclear pore complex (NPC), through which HIV replication

intermediates must pass, consists of multiple copies of at least 30

different nuclear pore proteins (Nups). Nup358 is a large 358 kDa

protein that constitutes the cytoplasmic filaments and has a C-

terminal cyclophilin (Cyp) domain. It was first named Nup358 [11]

but has also been called RanBP2 [12]. We use its original name

Nup358 throughout this study. Several roles have been proposed for

Nup358 involving cell cycle control, nuclear export, and transpor-

tin/importin dependent nuclear import (reviewed in [13]). In

addition, Nup358 is a co-factor for HIV-1 replication, supporting

nuclear entry of viral PICs and influencing target site preference for

integration [14–17]. It has been unknown how the virus engages

Nup358 and influences PIC traffic across the nuclear pore.
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Here we demonstrate that HIV-1 CA binds directly to the

Nup358 Cyp domain (Nup358Cyp) with an affinity within three

fold of its binding of the monomeric cytoplasmic cyclophilin,

CypA, which is known to be important during HIV-1 infection.

We also demonstrate that CypA is important for directing HIV-1

into a nuclear entry pathway involving Nup358 and subsequent

engagement of the nuclear basket protein Nup153, ensuring

integration into preferred genomic loci. We report that altering

CA interactions with Nup358 or CypA results in alterations in

integration targeting preference, and reduced replication in

macrophages. Our study provides the first evidence for direct

interaction between HIV-1 CA and the NPC and suggests possible

models for links between nuclear import, integration site selection

and effective replication in primary human cells.

Results

Lentiviral Capsid Protein Determines Engagement of
Nup358/RanBP2

Several studies have shown that depletion of Nup358 reduces

HIV-1 infectivity. We sought to define the HIV-1 determinant

that confers its sensitivity to Nup358 depletion by studying

infections with VSV-G pseudotyped viral vectors encoding GFP.

Stable Nup358 depletion by transduction of HeLa cells with MLV

or HIV-1 based shRNA expression vectors reduced HIV-1 GFP

vector infectivity by 6- to 8-fold confirming Nup358’s role as an

HIV-1 cofactor [14,17] (Figure 1A, B and Figure S1). We

validated effective shRNA targeting by western blotting, using a

Nup358 specific antibody (Figure 1B), as well as by co-transfecting

the shRNA expression vector and a plasmid encoding GFP-tagged

Nup358 into 293T cells (Figure S2). Studies on the role of Nup358

in HIV-1 replication have used M-group HIV-1 isolates [14–17].

In order to confirm the importance of Nup358 as a cofactor for

other HIV-1 isolates we also tested the O-group HIV-1 virus

MVP5180 [18,19] as a distantly related HIV-1 and found that this

too was sensitive to Nup358 depletion, suggesting that Nup358 use

is a conserved feature of HIV-1 biology (Figure 1A and Figure

S1C). We next tested whether the even more distantly related

simian immunodeficiency virus from macaques (SIVmac) was

sensitive to Nup358 depletion. In contrast to HIV-1, infectivity of

SIVmac, was not reduced by Nup358 RNAi, suggesting species-

specificity of Nup358 use (Figure 1A and Figure S1C). We next

sought to identify the viral determinant for Nup358 RNAi

sensitivity. Given that the HIV-1 capsid protein (CA) has been

implicated in HIV-1 nuclear import [7,8,10], we tested whether

the different sensitivities to Nup358 depletion between HIV-1 and

SIVmac could be accounted by their different CA proteins. We

exchanged CA coding regions between HIV-1 and SIVmac and

analyzed infectivities of chimeric viruses on Nup358 depleted cells.

Replacement of SIVmac CA with CA from HIV-1 [20] rendered

the chimeric SIVmac sensitive to Nup358 depletion, while

replacement of HIV-1 CA with SIVmac CA [21] rendered

HIV-1 largely insensitive to Nup358 depletion (Figure 1C). For

comparison, we examined the sensitivity of these viruses to

transportin 3 (TRN-SR2) depletion, and confirmed that TRN-

SR2 specific shRNA reduced infectivity of both HIV-1 (,8 to 10-

fold) and SIVmac (,20-fold) (Figure 1A and Figure S1). MLV

GFP vector infectivity was not affected by depletion of these

proteins as reported previously, consistent with MLV’s inability to

traverse the nuclear pore and infect non-dividing cells (Figure 1A

and Figure S1).

If Nup358 and TRN-SR2 facilitate nuclear entry of wild type

HIV-1, then their depletion should inhibit HIV-1 infection at the

level of nuclear import. We confirmed that 2-LTR circle products

of HIV-1 were modestly reduced in abundance in the Nup358 or

TRN-SR2 depleted cells, whereas late reverse transcript produc-

tion was unaffected (Figure 1D) [22]. However, we observed that

the ten-fold reduction in infectivity was greater than the two to

four-fold reduction in 2-LTR circles, possibly explained by an

integration defect increasing the amount of 2-LTR circles. To

measure integration we infected Nup358 or TRN-SR2 depleted

cells with HIV-1 GFP vector, grew the cells for 2 weeks and

measured the number of integrated proviruses by Taqman qPCR.

We observed that the reduction of integrated proviruses in

Nup358 depleted cells (5-fold) was similar to the reduction of 2-

LTR circles (4-fold) (Figure 1D and Figure S3). In contrast, the

reduction of proviruses in TRN-SR2 depleted cells was signifi-

cantly greater (50-fold), than the reduction in 2-LTR circles (2 to

3-fold). This observations may suggest that Nup358 depletion

blocks HIV-1 at a step prior to nuclear import but after reverse

transcription, whereas TRN-SR2 depletion imposes two blocks,

one at the stage of nuclear import (reduction of 2-LTR circles)

and a second at integration. However, we suggest caution in

interpretation of 2-LTR circle assay as a measure of nuclear entry

given that 2-LTR circles are non productive for infection and

their formation may have different co-factor requirements.

Importantly, replication of wild type NL4.3GFP-IRES was also

impaired in Nup358 or TRN-SR2 depleted HeLa cells expressing

CD4 (Figure 1E). Equivalent CD4 expression in these cells was

confirmed by flow cytometry using fluorescent CD4 specific

antibody (Figure S4). These data suggest that Nup358 and TRN-

SR2 contribute to optimal viral nuclear entry, integration and

eventually replication.

Nup358 Interacts with HIV-1 CA via Its Cyclophilin
Domain

Nup358 contains a cyclophilin domain (Nup358Cyp) at its

extreme carboxyl-terminus. The HIV-1 N-terminal CA domain

(CANTD) resides on the surface of the virion core and recruits

CypA to viral cores [23,24]. The CA-dependent sensitivity of

HIV-1 to Nup358 depletion led us to hypothesize that HIV-1

CANTD might also interact with Nup358Cyp in a similar manner

Author Summary

During infection HIV-1 enters the nucleus by crossing the
nuclear membrane and incorporating itself into the host
DNA by a process called integration. Here we show that
the viral capsid protein gets tethered to a cyclophilin
protein called Nup358, a component of the nuclear
membrane gateways that allow transport between the
cytoplasm and the nucleus. Altering the capsid protein so
that it cannot use Nup358 prevents viral replication in
macrophages, a natural target cell type for HIV-1.
Intriguingly, these viral mutants are not less infectious in
certain immortalised cell lines suggesting that in these
cells nuclear entry is regulated differently. In this case
similar to wild type virus, the mutant viruses integrate into
host chromosomes but they integrate into different
regions suggesting that the pathway into the nucleus
dictates where the virus ends up in the host chromatin. We
also show that another cyclophilin, the cytoplasmic
protein cyclophilin A, influences the engagement of
Nup358 as well as other proteins involved in HIV-1 nuclear
entry. We hypothesise that HIV-1 has evolved to use
cyclophilins so that it can access a particular pathway into
the nucleus because alternative pathways lead to defects
in integration targeting and viral replication in human
macrophages.

Cyclophilins Mediate HIV-1 Nuclear Import
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Figure 1. Binding of CANTD to Nup358 and effects on HIV-1 infectivity. A, VSV-G pseudotyped GFP encoding vectors derived from HIV-1
NL4.3 or MVP5180, SIVmac, or MLV were titered on HeLa cells expressing scrambled control (SC) or Nup358 or TRN-SR2 specific shRNA (mean and SD,
n = 3). Relative changes from titer on control cells are shown above the bars. B, Western blots detecting Nup358, TRN-SR2 or b-Actin as loading
control. C, Schematic representation of HIV-1/SIVmac chimeras and titration of HIV-1 GFP vector bearing an SIVmac CA (HIV-1 SIVCA) or SIVmac
bearing HIV-1 CA-p2 (SIV(HIV-1CAp2)) measured on SC, Nup358, or TRN-SR2 depleted HeLa cells (mean and SD, n = 3). D, Measurement of HIV-1 late
reverse transcription product (LRT) or 2-LTR circles at indicated time points post infection (p.i.) in HeLa control cells (SC) or cells depleted for Nup358
or TRN-SR2 (mean and SD, n = 3). A parallel sample was used to determine the number of infected cells by flow cytometry 48 h post infection. E, HeLa
control cells (SC) or cells depleted for Nup358 or TRN-SR2 were transduced with an MLV vector expressing human CD4 and the neomycin resistance
gene and drug selected cell population were infected with NL4.3GFP-IRES. Percentage of infected cells was enumerated at indicated time points by
measuring GFP expression using flow cytometry. F, Isothermal titration calorimetry of cyclophilin A (CypA) or Nup358Cyp against the CANTD domains
of NL4.3 HIV-1 or SIVmac in the presence or absence of 10 mM cyclosporine (Cs). G, HIV-1 GFP vector titer on CRFK cells expressing empty vector (EV),
owl monkey TRIM5 RBCC fused to human CypA (TRIMCypA) or human Nup358Cyp (TRIMNup358) in the presence or absence of 5 mM Cs (mean and
SD, n = 3). Protein levels measured by western blot detecting the HA tag with b-Actin as a loading control.
doi:10.1371/journal.ppat.1002439.g001
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to its interaction with CypA. To test this, we purified recombinant

CypA and Nup358Cyp and measured binding to recombinant

CANTD, using isothermal titration calorimetry (ITC) [25]. We

found that the HIV-1 CANTD bound Nup358Cyp with a Kd of

16 mM, in a similar range to its Kd of 7 mM for CypA (Figure 1F)

[25]. Surprisingly, the CypA inhibitor cyclosporine (Cs) did not

prevent Nup358Cyp binding to HIV-1 CANTD whereas it did

inhibit CypA binding. Whilst capsid interaction with both

Nup358Cyp and CypA was entropically favourable, interaction

with Nup358Cyp was more strongly entropically favourable than

CypA. This does not markedly alter the affinity with respect to

CypA as CANTD interaction with CypA is more enthalpically

favourable than with Nup358Cyp. The different thermodynamic

signatures between CypA and Nup358Cyp suggest that the two

proteins do not form identical interactions. The entropic

component of any interaction is the sum of changes in protein

and solvent dynamics. Given that the ligand, CANTD, is the same

in each experiment whilst Nup358Cyp and CypA comprise a

single globular fold it is likely that the entropically favourable

nature of both interactions is a consequence of releasing ordered

water molecules upon complex formation. The larger entropic

change associated with Nup358Cyp interaction may indicate a

greater release of ordered water upon complexation, suggesting

that the interface is larger than in CypA:capsid.

SIVmac CANTD did not bind Nup358Cyp (Figure 1F), and

bound CypA with a very low affinity (,800 mM) (Figure 1F),

which becomes important below. The inability of Nup358Cyp to

bind to SIVmac CANTD correlates with the insensitivity of

SIVmac to Nup358 depletion in HeLa cells (Figure 1A).

To probe Nup358Cyp binding further we designed an HIV-1

inhibitor based on the simian restriction factor TRIMCyp. Owl

monkey TRIMCyp blocks HIV-1 by binding incoming capsids via

its CypA domain [26]. We replaced the TRIMCyp cyclophilin

domain with human CypA or Nup358Cyp to make TRIMCypA

and TRIMNup358. We found that both TRIMNup358 and

TRIMCypA blocked HIV-1 infectivity (Figure 1G) whereas

SIVmac infection was not restricted, as expected from the lack

of binding (Figure S5). Importantly, Cs treatment only rescued

infectivity from TRIMCypA but not from TRIMNup358,

corroborating Cs sensitivity measured by ITC (Figure 1F). We

confirmed similar expression levels of chimeric proteins by western

blot (Figure 1G). These data are consistent with HIV-1, but not

SIVmac, CANTD efficiently binding Nup358Cyp in the context of

TRIMNup358 in the cytoplasm of infected cells. This suggests that

HIV-1 PICs containing CA or possibly entire capsid cores can

interact directly with a component of the NPC, providing insight

into how HIV-1 contacts the nuclear pore during the process of

nuclear entry.

Residue 61 of the Nup358 Cyclophilin Domain Is
Positively Selected

Host proteins that interact with pathogens are often under

positive selective pressure [27]. A higher rate of non-synonymous

nucleotide substitutions (dN) than synonymous substitutions (dS) at

a particular codon in an interspecies comparison provides

evidence for such positive selection. We aligned Nup358Cyp

DNA sequences from 12 different species (Figure S6) and

performed an analysis of codon-specific selective pressures using

the program Random Effect Likelihood (REL) implemented on

the online version of the HyPhy package [28]. Despite overall

strong negative selection across the Cyp domain, we found

Nup358Cyp codon 61 to be positively selected at a statistically

significant level (Bayes factor .50; Figure 2A). Indeed, residue 61

is extremely conserved as methionine across the whole vertebrate

Cyp family except in Nup358Cyp. (Figure 2B, C). In the case of

Nup358Cyp lower vertebrates encode the ancestral methionine,

whereas higher vertebrates encode valine, leucine or isoleucine at

this position. Fixation of the positively selected site appears to have

occurred after the divergence of fish and tetrapods, since

Nup358Cyp sequences from fish (e.g. Danio rerio) retain methionine

at position 61 (Figure 2B, C). This observation suggests that

Nup358 has been under selective pressure to evolve and that this

has led to variation in the sequence at this position. The

cyclophilin domain of Nup358 has been proposed to possess

prolyl cis-trans isomerase activity, similarly to CypA [29,30].

Assuming that the Nup358Cyp active site is homologous to that of

CypA then according to the CypA structure (PDB:1FGL) residue

61 is located directly at the bottom of the active site suggesting that

it might impact on substrate specificity (Figure 2D). To examine

this further we made a TRIMNup358 mutant in which the valine

at Nup358Cyp position 61 was changed to the ancestral residue

methionine. TRIMNup358 V61M was no longer able to restrict

HIV-1, suggesting that binding to HIV-1 CA is influenced by this

residue (Figure 2E). Our results suggest that during evolution

selective pressure, possibly from ancient pathogenic viruses, has

driven the change of Nup358Cyp position 61, altering substrate

specificity in higher vertebrates. In turn HIV-1 is adapted to use

this modified protein for nuclear entry in humans.

Substitutions in HIV-1 CANTD Alter Engagement of
Nup358/TRN-SR2

If binding of HIV-1 CA to Nup358 is important for HIV-1

infectivity, then amino acid substitutions in CA that affect

interaction with Nup358 should influence infectivity. Indeed, we

found that whilst wild type HIV-1 infectivity is sensitive to both

Nup358 as well as TRN-SR2 depletion, certain HIV-1 CA

mutants were not, suggesting an inability to utilize these cofactors.

We infected HeLa cells stably expressing Nup358 or TRN-SR2

shRNA with GFP-encoding VSV-G pseudotyped HIV-1 vectors

bearing wild type or mutant CA. We found that the cyclophilin-

binding mutants G89V and P90A were insensitive to Nup358

depletion but remained sensitive to TRN-SR2 depletion

(Figure 3A). We hypothesized that an inability to bind Nup358-

Cyp or CypA might underlie infectivity defects of other HIV-1 CA

mutants. The HIV-1 CA mutant N57A is more severely defective

in arrested cells than dividing cells (Figure 3A) [10], suggesting that

this residue may have a role in nuclear entry. Indeed, ITC

demonstrates that N57A is impaired in binding Nup358Cyp (Kd

55 mM) but not CypA (Kd 7 mM) (Figure 3B). As, N57A is less

sensitive to both Nup358 and TRN-SR2 depletion (Figure 3A), we

hypothesize that its infectivity defect is caused by an inability to

engage these proteins. We found that N57A was still restricted by

TRIMNup358 (Figure S5), suggesting that increased avidity

through Nup358Cyp dimerization in the context of TRIMNup358

may overcome the reduced affinity to monomeric Nup358Cyp.

Importantly, N57A’s insensitivity to Nup358 depletion suggests that

it does not engage Nup358 during nuclear entry.

Finally, we studied the HIV-1 CA mutant N74D, which is

reported to be less sensitive to Nup358 or TRN-SR2 depletion

(Figure 3A) [17,31]. Like N57A, N74D bound monomeric

Nup358Cyp in ITC experiments with significantly lower affinity

than wild type (Kd 95 mM) (Figure 3B) and like N57A, N74D was

also restricted by TRIMNup358 (Figure S5A). As for N57A, it

seems contradictory that HIV-1 CA mutants that are less sensitive

to Nup358 depletion are restricted by TRIMNup358. We assume

that binding characteristics of TRIMNup358, and Nup358 itself,

to CA are different particularly given that TRIM5 is reported to

form cytoplasmic dimers [32] and higher-order multimers [33],

Cyclophilins Mediate HIV-1 Nuclear Import
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Thus a forced dimerization of Nup358Cyp by fusing it to

TRIM5a, could increase binding of Nup358Cyp to CA by

increasing avidity, thereby allowing restriction. In addition, it is

possible that the decreased binding of N57A as well as N74D to

TRIMNup358 is disguised by an increased sensitivity to restriction

by this TRIM5 chimera. HIV-1 CA N57 is located at the base of

helix 3 and N74 in helix 4 (Figure 4C, D), suggesting that amino

acid residues outside the Cyp-binding loop can impact on

Nup358Cyp binding. We propose that Nup358 and TRN-SR2

define an import pathway used by wild type HIV-1 and that

CA amino acid substitutions direct the virus to use Nup358

independent (G89V, or P90A), or Nup358/TRN-SR2 indepen-

dent (N74D, or N57A) import pathways.

To test whether HIV-1 dependence on Nup358 is increased in

non-dividing cells, we arrested HeLa cells with aphidicolin and

measured infectivity of the CA mutant viruses. We found that only

N57A and MLV infectivities were inhibited by aphidicolin

treatment (Figure 3A and Table S1) whereas mutants G89V,

P90A and N74D were not affected. This suggests that G89V,

P90A and N74D use Nup358/TRN-SR2 independent routes into

the nucleus even in the absence of cell division. This hypothesis is

supported by the observation that neither the wild type virus nor

these mutants become additionally sensitive to Nup358 or TRN-

SR2 RNAi in aphidicolin-arrested cells (Figure 3A and Table S1).

On the other hand N57A is slightly increased in its sensitivity to

aphidicolin particularly after Nup358 depletion. We conclude that

these co-factors are required for HIV-1 infection of dividing and

non-dividing cells.

Nup358/TRN-SR2 Independent HIV-1 CA Mutants
Integrate with Different Integration Site Preferences

HIV integration is favored in chromosomal regions rich in

genes and associated features such as CpG islands, DNAaseI

hypersensitive sites, and high G/C content. We have shown that

Nup358 or TRN-SR2 depletion reduces HIV-1 integration

frequency near these features [16]. To test this for the CA

mutants studied above, we sequenced 19,546 unique integration

sites from HIV-1 and its mutants by 454/Roche pyrosequencing

and compared their chromosomal distributions as described

[16,34–37].

Although the HIV-1 CA mutants retained the preference for

integration within transcription units, their integration site distri-

butions diverged from wild type HIV-1. The patterns clustered into

two groups that map to two distinct areas on the CA surface

(Figure 4). HIV-1 CA mutants N57A and N74D integrated into

regions of chromatin associated with a significantly lower density of

transcription units and associated features. For wild type HIV-1 this

density was 15 transcription units/MB, whereas for CA mutants

N57A or N74D the density was reduced to what is expected for

random integration (7–9 transcription units/MB) (Figure 4A and

Figure S7). In contrast, the two Cyp-binding mutants, G89V and

P90A, exhibited an opposite phenotype, with favored integration

into regions of increased density of transcription units (,20

transcription units/MB). The chimeric HIV-1 containing SIVmac

CA, showed a further increased preference for regions dense in

transcription units (25 transcription units/MB) (Figure 4A and

Figure S7A). These latter three viruses similarly showed increased

frequency of integration in areas rich in active genes, CpG islands,

DNase sites, and high in GC content, features correlating with high

gene density. Hierarchical clustering of the CA mutants based on

these data separated the viruses into two groups: N57A and N74D,

and the Cyp-binding mutants G89V, P90A and chimeric HIV-

1(SIVCA) (Figure 4B). Wild type HIV-1, which has an intermediate

targeting phenotype, was an outlier within this second group. Thus

amino acid substitutions in CA can alter integration targeting

preference, resulting in either of two phenotypes. Because G89V

and P90A influence targeting in the same direction, we infer that

disruption of normal CypA interactions, and possibly Nup358

interactions, result in increased frequency of integration in regions

with high densities of transcription units. The N74D and N57A

substitutions are less sensitive to depletion of both Nup358 and

TRN-SR2, and N74D gains sensitivity to depletion of other nuclear

pore proteins [17]. We thus infer that this pathway leads to favored

integration in regions with lower densities of transcription units.

We were surprised that HIV-1 CA mutants P90A and N74D,

which are less sensitive to depletion of TRN-SR2 and/or Nup358

(Figure 3A), and have different integration site preferences in

unmodified cells (Figure 4), were as infectious as wild type virus in

single round assays. This is true when the virus is pseudotyped

with the VSV-G envelope (Figure 3A) or the natural HIV-1 gp160

envelope (Figure S9). To test whether these CA substitutions affect

HIV-1 replication we compared replication of wild type HIV-1

NL4.3 (Ba-L Env) with CA mutants P90A and N74D in spreading

infection in HeLa TZM-bl cells [38]. Interestingly, we found that

replication of both HIV-1 CA mutants was impaired in these cells

compared to wild type virus, suggesting that cofactors used for

nuclear entry and/or integration site selection are important for

optimal replication (Figure 4E). We also found that HIV-1 NL4.3

(Ba-L Env) bearing CA alterations N74D or P90A replicated

poorly in primary human MDM from four independent donors,

whereas wild type virus replicated efficiently (Figure 4F and Figure

S7B). These data demonstrate that HIV-1 CA mutants P90A and

N74D do not support optimal replication. One possible explana-

tion is that this is due to differences in their integration site

targeting as compared to the wild type virus, though other models

are possible. Whether the defect in replication is due to a defect in

viral gene expression remains unclear. However, it is clear that the

mutant viruses that are unable to effectively utilize Nup358 or

TRN-SR2 display a replication defect in a cell line and in primary

human macrophages.

CypA-CA Interactions Dictate the Use of a Nup358/
Nup153 Dependent Nuclear Entry Pathway

The observation that HIV-1 CA mutants P90A and G89V, as

well as chimeric HIV-1(SIVCA) integrate into genome regions

with higher densities of transcription units and associated features

Figure 2. Nup358Cyp evolved under positive selection pressure. A, Codon positions under positive (dN.dS) and negative (dN,dS)
selection along the Nup358Cyp gene sequence, as indicated by the Bayesian probability that a particular site is under selective pressure. A Bayes
factor .50 is considered strong evidence for the favored model. B, Maximum likelihood phylogenetic tree of cyclophilins A, B, C, D, E, F, G, H and
Nup358Cyp from Rhesus macaque (M. mulatta), Human (H. sapiens), Chimpanzee (P. troglodytes), Dog (C. familiaris), Cow (B. taurus), Horse (E.
caballus), Marmoset (C. jacchus), Mouse (M. musculus), Rat (R. norvegicus), Opossum (M. domestica), Zebrafish (D. rerio), Orangutan (P. abelii) and
Rabbit (O. cuniculus). Branch lengths and bootstrap supports are shown. C, Maximum likelihood phylogenetic tree demonstrating the simplest model
of evolution of residue 61 in Nup358Cyp sequences. D, Structure of CypA bound to CANTD with CypA key residues R55 and M61 as well as HIV-1 CA
P90 highlighted. (PDB:1FGL) E, NL4.3 HIV-1 GFP vector titer on CRFK cells expressing empty vector (EV), TRIMCypA, wild type TRIMNup358, or
TRIMNup358 mutant V61M. Protein levels measured by western blot detecting the HA tag with b-Actin as loading control are shown. The data are
representative of three independent experiments (mean and SD, n = 3).
doi:10.1371/journal.ppat.1002439.g002

Cyclophilins Mediate HIV-1 Nuclear Import

PLoS Pathogens | www.plospathogens.org 6 December 2011 | Volume 7 | Issue 12 | e1002439



raised the possibility that integration targeting might be influ-

enced by CypA binding to CA. Since cyclosporine (Cs) selectively

inhibits CypA but not Nup358Cyp binding (Figure 1F, G), we

investigated whether Cs could retarget integration by HIV-1. In

fact, Cs treatment retargeted viral integration preferences in a

way that phenocopied the CA G89V/P90A substitutions shifting

integration preferences into regions of higher gene density

(Figure 5A, B). Thus preventing CypA-CA interactions with Cs

has the same effect on integration targeting as amino acid

substitutions in HIV-1 CA that block CypA binding, supporting

the idea that integration targeting is truly affected by cyclophilin-

CA interactions.

Figure 3. Effect of CA mutants on Nup358/TRN-SR2 RNAi sensitivity and Nup358Cyp binding. A, Titers of VSV-G pseudotyped NL4.3 HIV-
1 GFP vectors bearing wild type or mutant CA on HeLa control cells (SC), or Nup358 or TRN-SR2 depleted cells in the presence or absence of 2 mg/ml
aphidicolin (AC). MLV GFP vector was used as a control for aphidicolin. Relative changes from titer on control cells are shown above the bars. The data
are representative of two independent experiments each using three different virus doses. B, ITC of human CypA and Nup358-Cyp against HIV-1
CANTD mutants. Kd values as well as stoichiometries (N), enthalpies (DH) and entropies (DS) are shown.
doi:10.1371/journal.ppat.1002439.g003
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Figure 4. Residue changes in HIV-1 CA mutants alter integration site targeting. A, Effects of CA mutants on integration frequency near
multiple chromosomal features. The rows show genomic features, and the columns indicate integration site data sets. The color code indicates ROC
areas [34]. The arrow denotes the wild type control set used for pairwise statistical comparisons to the other data sets. P values summarizing the
significance of departures from the control are represented by asterisks (*P,0.05; **P,0.01; ***P,0.001). Several different intervals are compared.
"Expression density" summarizes the density of genes in the indicated length intervals that are expressed in the upper half ("top 1/2") or upper
sixteenth ("top 1/6") of all genes on Affymetrix HU95A chip data for HeLa cells (accessions GSM23372, GSM23373, GSM23377, and GSM23378). For a
more detailed guide see [16]. B, ROC area values were used to generate pairwise Euclidean distances, which were then analyzed by hierarchical
clustering generating the presented dendogram. The locations of changed residues in mutant viruses studied on C, the CA hexamer (PDB:3GV2) and
D, the CA monomer (PDB:3GV2). E, Time course of replication competent NL4.3 (Ba-L Env) bearing wild type, P90A or N74D CA in HeLa TZM-bl cells.
Luciferase expression was measured by counting RLU at indicated times after virus inoculation. The data are representative of two independent
experiments. F, Replication assay of NL4.3 (Ba-L Env) bearing wild type or CA mutants P90A or N74D in human MDM. Cells were stained for Gag p24
at specific time points after infection and infected colonies counted. Standard errors of the mean of three fields are shown.
doi:10.1371/journal.ppat.1002439.g004
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Reduction of Nup358 by RNAi led to integration into low

gene density/activity regions [16] but preventing CypA binding

by CA amino acid substitutions (G89V/P90A) or Cs treatment

shifted virus integration preferences into high gene density/activity

regions. This suggested to us that Nup358 and CypA have different,

possibly opposing effects on HIV-1. Alternately, Cs treatment

may somehow change the availability of Nup358 in the cell. To

investigate this further we tested whether CypA inhibition in

Nup358 depleted cells influences HIV-1 infectivity. Remarkably, Cs

treatment specifically rescued HIV-1 infectivity reduced by Nup358

depletion to the level observed in control cells (Figure 6A and Figure

S8). We note that the small inhibitory effect of Cs on HIV-1

infectivity is preserved and infectivity is rescued to the level of

infectivity on control cells treated with Cs. Thus Cs inhibits HIV-1

GFP infectivity by 2–3 fold but concomitantly rescues infectivity

from the effects of Nup358 depletion. Transient CypA depletion

using shRNA expression had a similar effect as CypA inhibition with

Cs, also rescuing infectivity reduced by Nup358 depletion

(Figure 6B). As expected, the CypA insensitive mutants G89V or

P90A did not respond significantly to Cs treatment or CypA

depletion by RNAi respectively (Figure 6A, B). The infectivity of the

HIV-1 CA mutant N74D was slightly reduced by Cs consistent with

its reduced sensitivity to Nup358 depletion and supporting the

notion that it is still able to recruit CypA as confirmed by ITC

(Figure 3B, 6A and Figure S8). Cs also partially rescued HIV-1

infectivity in cells with strong TRN-SR2 depletion (Figure 6A and

Figure S8), suggesting that TRN-SR2 participates in the Nup358

dependent import pathway into which the virus is directed by CypA.

We were also able to show that the distantly related HIV-1 O-

group virus MVP5180 was also specifically rescued upon Cs

treatment/CypA depletion in Nup358 or TRN-SR2 depleted cells

but was unaffected in control cells (Figure 6A, B). This suggests

that MVP5180 functionally interacts with CypA in a similar way to

NL4.3 and this is concordant with the very similar co-crystal

structures of M-group HIV-1 CANTD with CypA and O-group

HIV-1 CANTD with CypA (PDB ID: 1M9D) [39]. Together these

observations made using both NL4.3 and MVP5180 suggest that

CypA acts upstream of Nup358 and that Nup358 is not required for

HIV-1 infectivity in the absence of CypA activity. In other words we

propose that CypA activity directs the virus to engage Nup358.

If CypA activity directs HIV-1 to interact with cytoplasmic

Nup358 to traverse the NPC then reduced HIV-1 infectivity

through depletion of nuclear pore proteins that act downstream of

Nup358 should also be rescued by CypA inhibition. To test this we

analyzed infectivity of HIV-1 NL4.3 and its CA mutants in HeLa

cells depleted for Nup153 (Figure 6C). Nup153 is a NPC

component in the nuclear basket and has been highlighted in

genome wide siRNA screens as co-factor for HIV-1 [14,40,41].

We found that HIV-1 NL4.3 infectivity was strongly reduced in

Nup153 depleted cells by ,10-fold, whereas MLV infection was

not affected (Figure 6C). However, the Cyp non-binding mutant

HIV-1 CA G89V as well as mutants N74D and N57A, which are

less dependent on Nup358/TRN-SR2 were only moderately

affected (,3-fold). When cells were treated with Cs during

infection, infectivity reduced by Nup153 depletion was specifically

rescued for wild type virus, whereas the HIV-1 CA mutants

remained unaffected (Figure 6C). The O-group HIV-1 MVP5180

was affected by Nup153 depletion similarly to NL4.3 and CypA

inhibition rescued its infectivity similarly to what we observed in

Nup358 depleted cells. These observations support the notion

that inhibition of CypA recruitment leads HIV-1 to use different

cellular cofactors, and perhaps a different pathway, for nuclear

entry.

Importantly, Cs treatment prevented spreading infection of

wild type HIV-1 in human MDM [42](Figure 6D). Thus,

productive infection in a biologically relevant cell type is

dependent on the conserved use of cyclophilins. Our results

suggest that inhibition of CypA may not only prevent the use of

Nup358 but rather may direct HIV-1 into a Nup358/Nup153

independent nuclear entry pathway that may not be available or

functional in MDM. In one possible model, for some cell lines such

as HeLa cells, the use of alternate pathways and retargeting of

integration preferences may not lead to large infectivity defects

particularly when measuring infectivity using VSV-G pseudotyped

HIV-1 vectors with GFP driven from a heterologous promoter. In

replication assays using full length HIV-1 and primary targets of

HIV-1 infection such as macrophages, Cs treatment (Figure 6D) or

CA residue changes (Figure 4F) have their strongest inhibitory

effects. Whilst our observations can be explained by various

models, they support the notion that the cofactors that the virus

has evolved to use, and has conserved the use of, such as Nup358

and TRN-SR2, may be most important in the primary cells in

which the virus naturally replicates. A model is presented in

cartoon form (Figure 7).

Figure 5. CypA inhibition alters HIV-1 integration site targeting. A, Effects of CypA inhibition by cyclosporine (Cs) on integration frequency
near multiple chromosomal features for wild type NL4.3 HIV-1 GFP vector and CA mutants. The arrow denotes the wild type control set used for
pairwise statistical comparisons to the other data sets. The heat map analysis was performed as in Figure 4A. B, ROC area values were used to
generate pairwise Euclidean distances, which were then analyzed by hierarchical clustering generating the presented dendogram.
doi:10.1371/journal.ppat.1002439.g005
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Discussion

Here we have presented data suggesting that HIV-1 uses a

pathway that includes the cytoplasmic cyclophilin CypA and the

nuclear pore associated cyclophilin Nup358 to access the nucleus

and target preferred regions of the genome for integration. We

find that a determinant for the use of this pathway is CA and we

demonstrate the first direct interaction of HIV-1 CA with a

Figure 6. CypA inhibition forces HIV-1 into a Nup358/Nup153 independent nuclear entry pathway. A, Titers of VSV-G pseudotyped
NL4.3 HIV-1 GFP vectors bearing wild type or mutant CA on HeLa control cells (SC), or Nup358 or TRN-SR2 depleted cells in the presence or absence
of 8 mM Cs (mean and SD, n = 3). Relative changes from titer on control cells are shown above the bars. B, HeLa cells expressing scrambled control
(SC), or Nup358 specific shRNA were transiently transduced with either MLV empty vector control or vector expressing CypA specific shRNA and
subsequently infected with wild type NL4.3 HIV-1 GFP vector or CA mutant P90A or O-group MVP5180 GFP vector. Infection was measured 48 hours
later by FACS to enumerate infected cells. Fold changes to control cells are shown. A parallel western blot for experiments in B detecting CypA and b-
Actin as loading control. C, HeLa control cells (SC) or transiently Nup153 depleted cells were infected with indicated vectors in the presence or
absence of 8 mM Cs (Mean and SD, n = 3). Western blot detecting Nup153 and b-Actin as a loading control. D, MDM from 2 independent donors were
infected with 400 pg RT replication competent HIV-1 NL4.3 (Ba-L Env) in the presence of 5 mM Cs or DMSO. Replication was measured over time by
counting CA positive cells after staining with a CA specific antibody.
doi:10.1371/journal.ppat.1002439.g006
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component of the nuclear pore complex. Disrupting engagement

of CypA/Nup358 by mutating CA or inhibiting CypA with Cs

appears to cause HIV-1 to use a Nup358/Nup153 independent

pathway. The role of CypA in this process remains obscure but

our data suggests that it directs HIV-1 to utilize a nuclear entry

pathway involving Nup358 and Nup153. Indeed, roles for CypA

in nuclear transport of cellular factors have been proposed before

[43–45]. Our data illustrate that this HIV-1 nuclear import

pathway is directly linked to integration site preference, which

provides a candidate explanation for reduced replication in human

MDM. Intriguingly, HIV-1 CA substitutions can influence the

regions of the genome that the virus targets for integration. We

have distinguished between the regions targeted for integration

using criteria related to the density of transcription units, including

GC content, DNAaseI hypersensitivity and gene expression.

Infections with HIV-1 variants containing substitutions in CA

that prevent CypA binding (e.g. G89V), and inhibiting CypA

binding with Cs, both lead to increased frequency of integration in

regions with higher densities of transcription units (Figure 4 and 5),

supporting the consistency of our observations. Furthermore,

mutations that render HIV-1 less sensitive to both Nup358 and

TRN-SR2 depletion (CA N57A and N74D) both shift integration

preferences to regions with lower densities of transcription units

(Figure 4). Thus mutations that prevent HIV-1 utilizing Nup358

and TRN-SR2 have the same effect as depletion of these proteins,

as described in our previous study [16]. These observations suggest

that nuclear entry pathways may lead to different areas of

chromatin and provide probes to investigate this possibility.

Several reports have suggested a role for HIV-1 CA in nuclear

entry [7,8,10,17,40,46]. Using ITC experiments we demonstrate

here that HIV-1 binds to the nuclear pore through interactions

between CA and the C-terminal Cyp domain of Nup358. This is

the first direct evidence for an interaction between CA and the

NPC and suggests that CA-containing PICs or whole capsid cores

dock at the NPC prior to nuclear entry as previously inferred from

microscopy studies [47]. Recruitment of cores through Nup358

may assist appropriate uncoating and interaction of PICs with

the nuclear transport machinery including TRN-SR2 and

Nup153. Remarkably, Nup358Cyp shows evidence for positive

selection and a positively selected residue affects restriction by

TRIMNup358 suggesting that this residue impacts on HIV-1 CA

binding. This is the first case of an HIV-1 co-factor displaying

signs of positive selection. We speculate that ancient pathogens,

possibly viruses, may have provided the necessary selective

pressure for the change of residue 61 from methionine, which

has been conserved in the entire cyclophilin family, to valine,

isoleucine or leucine in Nup358Cyp. It will be interesting to

examine whether other viruses that encounter the nucleus during

Figure 7. Model for CypA-dependent/-independent HIV-1 nuclear entry pathways. A, Wild type (WT) HIV-1 capsids are bound by
cytoplasmic cyclophilin A (CypA) molecules that direct the capsid to use a specific nuclear entry pathway. The nuclear entry pathway involves CA
binding to the cyclophilin domain of the cytoplasmic nuclear pore complex (NPC) component Nup358. Nup358 may mediate uncoating directly at
the nuclear pore, liberating the pre-integration complex, which will interact with TRN-SR2 and the nuclear NPC component Nup153. B, Inhibition of
CypA-CA interaction by the drug cyclosporine (Cs) or by substitution of CA residues that abolish CypA binding directs the virus into a less productive
CypA-independent nuclear entry pathway that displays impaired dependence on Nup358 and Nup153. This route of nuclear entry results in virus
integration preferences in areas of higher density of transcription units and associated features. C, HIV-1 capsid mutants that are less sensitive to
Nup358, Nup153 or TRN-SR2 RNAi (HIV-1 CA N57A or N74D) enter the nucleus through a different pathway that directs their integration into genome
areas of lower density of transcription units. D, Depletion of Nup358 by RNAi reduces viral nuclear entry via the Nup358-dependent pathway and the
virus gains access via an Nup358-independent alternative pathway resulting in phenotypically similar integration site selection as observed for the CA
mutants N74D or N57A. Alternative nuclear entry pathways disturb HIV-1 integration site selection, possibly contributing to sub-optimal replication
of the virus in spreading infection assays.
doi:10.1371/journal.ppat.1002439.g007
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their life cycle use Nup358 and whether this position influences

their recruitment. Indeed, Nup358 has been suggested to be

involved in HSV-1 capsid attachment to the nucleus, however the

viral determinants for this process remain obscure [48].

We also demonstrate that HIV-1 CA sequence influences the

sites in which HIV-1 integrates. Although there are many possible

explanations for that, we hypothesize that this occurs through

selection of the cofactors for nuclear import or the nuclear import

pathway. In the future, it will be interesting to investigate whether

TRN-SR2 functions to enhance cytoplasmic availability of HIV-1

co-factors required for nuclear import or integration site selection.

Interaction with such co-factors may be disturbed by CA

mutations leading to impaired nuclear import or integration.

Surprisingly SIVmac, a primate lentivirus from rhesus ma-

caques that was derived experimentally from SIV from sooty

mangabeys [49] does not appear to utilize Nup358 during

infection. SIVmac is however sensitive to TRN-SR2 depletion

suggesting that it uses a related but somewhat different set of co-

factors to enter the nucleus as compared to HIV-1. SIVmac is

known to integrate into genes in a similar way to HIV-1 but subtle

differences between HIV-1 and SIVmac integration targeting may

exist. The significance of these observations remains unclear and

characterization of the pathways used by a variety of lentiviruses to

enter the nucleus and target favored sites will undoubtedly be

informative.

Whilst our data don’t rule out partial cytoplasmic uncoating we

envisage the HIV-1 CA acting as a protective cage around the

reverse transcription complex, shielding the viral macromolecules

from pattern recognition by innate immune mediators present in

the cytoplasm. Antagonistic Nup358 and CypA activities could be

explained by a model in which CypA stabilizes or protects the core

[50], whilst Nup358 regulates uncoating at the nuclear pore [47].

In this regard Nup358 binding to the conical viral core could have

different effects from monomeric CypA, as eight Nup358 proteins

are attached to the NPC [51]. Multiple simultaneous Nup358-CA

interactions might destabilize the HIV-1 core and liberated PICs

could then interact with TRN-SR2 and the nuclear located

Nup153 ensuring transport through the NPC to appropriate sites

[52]. This model provides a rationale for conservation of Cyp

binding and explains how CA might influence TRN-SR2 or

Nup153 usage without direct interaction [22,40,46,52]. This

model may also explain how the use of TRN-SR2 does not

correlate with the ability of various integrase proteins to bind

TRN-SR2 protein in vitro [46]. If lentiviruses regulate uncoating

through interactions between CA and other host factors then their

integrase proteins may be exposed to different karyopherins during

this process. In this way the CA sequence and structure might be a

stronger influence on the choice of karyopherins than integrase

despite integrase being the ultimate target for karyopherin

interaction. The Nup358 cyclophilin domain has been suggested

to act as a chaperone by mediating prolyl cis-trans isomerization of

cellular proteins [29,30]. It will be interesting to investigate

whether Nup358 is enzymatically active on the HIV-1 capsid core

and whether this causes uncoating at the nuclear pore.

Currently available cyclosporins do not antagonize Nup358Cyp

binding to HIV-1 CA but the fact that cyclophilins can be

pharmacologically inhibited suggests the possibility of specifically

inhibiting HIV-1 CA-Nup358Cyp interaction and possibly HIV-1

replication. Overall, our data demonstrate that rather than being

lost during cytoplasmic uncoating, HIV-1 CA binds to the nuclear

pore component Nup358 and directs the virus into a pathway that

regulates its traffic between the cytoplasm and chromatin, playing

a key role in the integration site targeting required for optimal

continuation of the viral replication cycle.

Materials and Methods

Viruses, Vectors and Infection Assays
VSV-G pseudotyped vectors derived from HIV-1, SIVmac and

MLV-B have been described as has their preparation by 293T

transfection [53]. The HIV-1/SIVmac chimeric vectors have been

described [20,21] as has the HIV-1 vector encoding MVP5180

Gag [19]. HIV-1 NL4.3GFP-IRES has been described [54]. Viral

doses were measured by reverse transcriptase (RT) enzyme linked

immunosorbant assay (Roche). Viral vector infection assays using

VSV-G pseudotyped viruses encoding GFP were analyzed by

enumerating the number of green cells 48 hours post infection by

flow cytometry. Viral vector infectivity experiments were per-

formed in a 24-well plate format as described [53]. To measure

late RT products, 2-LTR circles and integrated provirus, control

or shRNA expressing cells were infected with VSV-G pseudotyped

HIV-1 GFP encoding vector and then grown for indicated times.

Total DNA was purified from 2 samples at each time point

(QiaAmp, Qiagen) and 600 ng were subjected to Taqman

quantitative PCR using late RT [55], 2-LTR circle [56] or GFP

[53] primers and probe to detect provirus as described. Infectivity

was measured in parallel samples by flow cytometry 48 hours post

infection.

Replication Assay in Human Monocyte Derived
Macrophages (MDM) and TZM-bl Cells

MDM were prepared from fresh blood from healthy volunteers

as described [57]. Cells were infected with 400 pg RT/well in 24-

well plates and subsequently fixed and stained using a CA specific

antibody (CA183) and a secondary antibody linked to beta

galactosidase as described [57]. For measuring the effect of CypA

inhibition on HIV-1 replication the assay was performed in the

presence of 5 mM DMSO or Cs throughout the whole time course.

TZM-bl infection assay was performed with 50 pg RT/20000 cells

in 24-well plate dishes and RLU were measured at indicated time

points.

Integration Site Sequencing
Methods for integration site sequencing and heat map and

dendogram analysis have been described [16].

RNAi, Antibodies and Drugs
All RNA interference experiments were performed by expressing

short hairpin RNA from either MLV vector pSIREN RetroQ

(Clontech) (for Nup358, TRN-SR2 and Nup153) or pSUPER

(Oligoengine) (for CypA) or if indicated from the HIV-1 vector

pCSRQ, which was derived by subcloning the shRNA expression

cassette from pSIREN RetroQ into pCSGW. The CypA shRNA

target sequence has been described [58]. The Nup358 shRNA target

sequence that was used throughout the study was 5-GCGAAGT-

GATGATATGTTT-3. Nup153 shRNA target sequence was 5-

CAATTCGTCTCAAGCATTA-3. Both sequences were selected

as 1 of the 4 target sequences from the Dharmacon siRNA smartpool

for Nup358 or Nup153, respectively. Both shRNAs had only minor

toxic effects on the cells, unlike shRNAs derived from the other three

target sequences of each smart pool (Figure S1A, and data not

shown). Additional Nup358 shRNA target sequences used in the

experiment shown in Figure S1A were shRNA2 5-CAAACCACG-

TTATTACTAA-3, shRNA3 5-CAGAACAACTTGCTATTAG-3

and shRNA4 5-GAAGGAATGTTCATCAGGA-3. Specificity for

each target sequence was confirmed by BLAT (UCSC genome

browser). For Nup358, we confirmed effective targeting by co-

transfecting the shRNA expression vector with a plasmid encoding

GFP-tagged Nup358 (Figure S2), as well as by western blotting using
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a Nup358 specific antibody (Figure 1B). TRN-SR2 target sequence

and control have been described and were also validated by co-

transfecting a plasmid encoding for TRN-SR2-IRES-eGFP with the

expression vectors encoding shRNA or control (SC) (Figure S2) [22].

The observations made for shRNA expressing HeLa cells were

similar between populations of puromycin selected cells and clonal

cells but the phenotype of cell clones was more stable, thus we used

single cell clones for all experiments (Figure S1A, B and data not

shown). Nup358, TRN-SR2, Nup153, CypA and beta-Actin were

detected by western blot using a Nup358 antibody kindly given by

Frauke Melchior, mouse TRN-SR2 antibody ab54353 (Abcam),

mouse Nup153 antibody ab24700 (Abcam), rabbit CypA antibody

SA296 (Biomol) and mouse beta-Actin antibody ab6276 (Abcam)

and appropriate horseradish peroxidase linked secondary antibodies.

TRIMCypA and TRIMNup358 were detected using anti-HA

antibody 3F10 (Roche). Cyclosporine (Sandoz) and aphidicolin

(Sigma) were diluted in DMSO and used at 5–8 mM and 2 mg/ml,

respectively.

Binding Assays and Positive Selection Analysis
Isothermal titration calorimetry was performed as described

[25].

Positive Selection Analysis
Codon-specific selection analysis was performed using the

Random Effect Likelihood (REL) algorithm as described [27]

using the alignment in Figure S6.

Supporting Information

Figure S1 Effects of Nup358 and transportin 3 RNAi on
HIV-1 infectivity. A, HeLa cells transiently transduced with the

MLV vector pSIREN-RetroQ expressing four different shRNAs

were infected in parallel with HIV-1 or MLV GFP encoding

vector and infectious units per milliliter viral supernatant were

determined. The target sequences for each shRNA were derived

from the Dharmacon Smartpool. Three of the four shRNA vectors

tested were cytotoxic and reduced MLV infectivity significantly.

Vector encoding Nup358 shRNA1 was used for further experi-

ments. B, NL4.3 derived VSV-G pseudotyped HIV-1 GFP vector

was titrated on cell populations transiently transduced with

lentiviral shRNA expression vectors CSRQ encoding scrambled

control (SC), transportin 3 (TRN-SR2) or Nup358 specific shRNA

and infectious units per ng RT were determined. C, VSV-G

pseudotyped GFP encoding vectors derived from NL4.3 HIV-1,

SIVmac, HIV-1 MVP5180 and MLV were titrated on represen-

tative HeLa cell clones expressing scrambled control (SC) or

Nup358 or transportin 3 (TRN-SR2) specific shRNA. Graphs

show the percentage of infected GFP positive cells per ng RT

measured at 48 hours post infection. The data are representative

of three independent experiments with three independent single

cell clones.

(PDF)

Figure S2 Validation of shRNA targeting efficiency. A,

Plasmid eGFPNup358 was co-transfected with vectors encoding

shRNAs against scrambled control (SC), TRN-SR2 or Nup358

into 293T cells. Transfected cells were analyzed by flow cytometry

and percentage of GFP-positive cells (left panels) as well as mean

fluorescence intensity (MFI) of GFP-positive cells (right panels) was

determined. B, Plasmid TRN-SR2-IRES-eGFP was co-transfect-

ed with indicated shRNA expression vectors into 293T and

analysis was performed as in A.

(PDF)

Figure S3 TRN-SR2 RNAi blocks HIV-1 at two steps.
HeLa cells stably transduced with vectors encoding shRNA

targeting scrambled control (SC), TRN-SR2 or Nup358 were

infected with HIV-1 GFP vector and grown for two weeks

before extraction of total DNA. As a control cells were inoculated

with boiled supernatant. Abundance of integrated provirus was

measured from 500 ng total DNA of two independent samples per

cell line by Taqman qPCR for GFP. Fold changes to infectivity on

EV cells are shown above the bars. TRN-SR2 RNAi reduced 2-

LTR circles by four-fold (Figure 1D), whereas reduction of

integrated provirus was 50-fold, suggesting that there are two

blocks in a canonical way, firstly at the step of nuclear entry and

secondly at the step of integration. Boiled controls were below

detectable levels.

(PDF)

Figure S4 CD4 expression measured by antiCD4APC

staining. HeLa control cells (SC), or cells expressing Nup358 or

transportin 3 (TRN-SR2) specific shRNAs were transduced with

MiGRI-CD4-IRES-neo MLV-vector and subsequently G-418

selected. CD4 expression in drug-selected populations was analyzed

by staining with an antiCD4-antibody conjugated to APC as

described [59]. As a negative control (NC) we used untransduced

HeLa cells.

(PDF)

Figure S5 HIV-1 CA mutants are impaired in Nup358-
Cyp binding. CRFK cells expressing empty vector (EV) or

TRIMNup358 were infected with the indicated GFP encoding

VSV-G pseudotyped viral vectors and infectious titers per ng RT

were determined. Fold changes to infectivity on EV cells are shown

above the bars. The data are representative of two independent

experiments each performed with three different vector doses (mean

and SE, n = 2).

(PDF)

Figure S6 Amino acid alignment of sequences used in
the positive selection analysis. Nup358Cyp DNA sequences

from 12 different species [Rhesus macaque (M. mulatta), Human

(H. sapiens), Chimpanzee (P. troglodytes), Dog (C. familiaris), Cow (B.

taurus), Horse (E. caballus), Marmoset (C. jacchus), Mouse (M.

musculus), Rat (R. norvegicus), Opossum (M. domestica), Orangutan

(P. abelii) and Rabbit (O. cuniculus)] were aligned manually and

translated into amino acid sequences. Analysis of codon-specific

selective pressures using the algorithm Random Effect Likelihood

(REL) implemented on the online version of the HyPhy package

[28] was performed as previously described [27].

(PDF)

Figure S7 Integration targeting of wild type HIV-1 and
CA mutants. A, We sequenced 19,546 unique integration sites

by 454/Roche pyrosequencing and aligned them to the hg18

annotated human genome for analysis, as described [34–37]. We

examined the density of several genomic features near integration

sites, including relative gene density. Average of genes in a 1MB

window around the integration sites were determined and

compared to random controls for each virus. CypA/Nup358-

independent CA mutants G89V, P90A and HIV-1(SIVCA)

integrate in areas with higher gene density, whereas Nup358

and transportin 3-independent mutants N57A and N74D integrate

in areas of gene density comparable to random controls. B, Wild

type NL4.3 (Ba-L Env) or NL4.3 (Ba-L Env) bearing CA

mutations P90A or N74D were used to infect human MDM from

two donors in addition to those in Figure 4F at low multiplicity.

Cells were stained for Gag p24 at specific time points after

infection and infected colonies counted. Errors are standard error

Cyclophilins Mediate HIV-1 Nuclear Import

PLoS Pathogens | www.plospathogens.org 13 December 2011 | Volume 7 | Issue 12 | e1002439



of the mean of three fields. Data are from independent virus preps

on independent donors.

(PDF)

Figure S8 Effect of CypA inhibition on Nup358 or
transportin3 RNAi sensitivity. HeLa cells expressing scram-

bled control (SC), Nup358 or transportin 3 (TRN-SR2) specific

shRNA were infected with a fixed dose of wild type or mutant

HIV-1 GFP in the presence of increasing concentrations of Cs (0–

10 mM). Percentage infection was measured 48 hours later by

detecting GFP positive cells using flow cytometry and plotted

against Cs concentration.

(PDF)

Figure S9 Effects of TRN-SR2 or Nup358 RNAi on HIV-1
Env pseudotyped vectors. HeLa cells stably expressing

scrambled control (SC), Nup358 or transportin 3 (TRN-SR2)

specific shRNA were transduced with MLV vector MiGRI-CD4-

IRES-neo and drug selected with G418. Similar CD4 expression

was determined by antiCD4APC staining (Figure S4). Generated

cells were infected with HIV-1 GFP vectors that were pseudotyped

with HIV-1 Env derived from YU-2. Infectivity of wild type HIV-

1 (WT) was reduced similarly strongly as compared to VSV-G

pseudotyped virus. HIV-1 CA mutants P90A and N74D showed a

slightly increased sensitivity to both TRN-SR2 as well as Nup358

RNAi, suggesting envelope specific effects as suggested in a

previous study for TRN-SR2 [31].

(PDF)

Table S1 Effects of aphidicolin treatment. Shown are fold

reductions of infectious titers from graphs in Figure 3A. Left site of

the table shows fold reduction of wild type HIV-1 or CA mutant

infectious titer after aphidicolin (AC) treatment of HeLa cells

transduced with vector encoding shRNA for scrambled control,

Nup358 or TRN-SR2 as compared to untreated cells. Of note,

infectious titers of all viruses, apart from N57A were not

significantly changed in AC arrested cells as compared to

untreated cells. Right site of the table shows fold reduction of

infectious titers by Nup358 or TRN-SR2 RNAi as compared to

control RNAi in AC arrested or untreated HeLa cells. Of note, the

effect of Nup358 or TRN-SR2 RNAi on HIV-1 wild type virus

(WT) or CA mutants, except N57A, was similar in AC arrested

and untreated cells. N57A became slightly more sensitive to

Nup358 or TRN-SR2 RNAi in arrested cells. However, N57A

infectivity was reduced by ,100 fold after AC treatment,

suggesting that the 2–4 fold increased sensitivity to Nup358 or

TRN-SR2 RNAi is not significant.

(PDF)

Acknowledgments

We thank Ian Anderson, Elias Coutavas, Michael Emerman, Ariberto

Fassati, Heinrich Göttlinger, Michael Malim, Frauke Melchior and Joe

Sodroski for reagents.

Author Contributions

Conceived and designed the experiments: TS FDB LCJ GJT. Performed

the experiments: TS AJP KEO JR SH TLB SLR AJF LCJ. Analyzed the

data: TS AJP KEO JR SH TLB SLR AJF LCJ. Contributed reagents/

materials/analysis tools: VNK KL RGJ MN. Wrote the paper: TS TLB

KEO RGJ LCJ FDB GJT.

References

1. Weinberg JB, Matthews TJ, Cullen BR, Malim MH (1991) Productive human

immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human
monocytes. J Exp Med 174: 1477–1482.

2. Dvorin JD, Bell P, Maul GG, Yamashita M, Emerman M, et al. (2002)
Reassessment of the roles of integrase and the central DNA flap in

human immunodeficiency virus type 1 nuclear import. J Virol 76:
12087–12096.

3. Reil H, Bukovsky AA, Gelderblom HR, Gottlinger HG (1998) Efficient HIV-1
replication can occur in the absence of the viral matrix protein. EMBO J 17:

2699–2708.

4. Yamashita M, Emerman M (2005) The cell cycle independence of HIV

infections is not determined by known karyophilic viral elements. PLoS Pathog
1: e18.

5. Popov S, Rexach M, Zybarth G, Reiling N, Lee MA, et al. (1998) Viral protein
R regulates nuclear import of the HIV-1 pre-integration complex. EMBO J 17:

909–917.

6. Roe T, Reynolds TC, Yu G, Brown PO (1993) Integration of murine leukemia

virus DNA depends on mitosis. EMBO J 12: 2099–2108.

7. Yamashita M, Emerman M (2004) Capsid is a dominant determinant of

retrovirus infectivity in nondividing cells. J Virol 78: 5670–5678.

8. Dismuke DJ, Aiken C (2006) Evidence for a functional link between uncoating of
the human immunodeficiency virus type 1 core and nuclear import of the viral

preintegration complex. J Virol 80: 3712–3720.

9. Ylinen LM, Schaller T, Price A, Fletcher AJ, Noursadeghi M, et al. (2009)

Cyclophilin A levels dictate infection efficiency of human immunodefi-

ciency virus type 1 capsid escape mutants A92E and G94D. J Virol 83:
2044–2047.

10. Yamashita M, Perez O, Hope TJ, Emerman M (2007) Evidence for direct

involvement of the capsid protein in HIV infection of nondividing cells. PLoS

Pathog 3: 1502–1510.

11. Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E (1995) Nup358, a
cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding

sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region.

J Biol Chem 270: 14209–14213.

12. Yokoyama N, Hayashi N, Seki T, Pante N, Ohba T, et al. (1995) A giant

nucleopore protein that binds Ran/TC4. Nature 376: 184–188.

13. Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear pore complex:
bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11:

490–501.

14. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, et al. (2008) Global

analysis of host-pathogen interactions that regulate early-stage HIV-1 replica-
tion. Cell 135: 49–60.

15. Zhang R, Mehla R, Chauhan A (2010) Perturbation of host nuclear membrane

component RanBP2 impairs the nuclear import of human immunodeficiency
virus -1 preintegration complex (DNA). PLoS One 5: e15620.

16. Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, et al. (2011) HIV

Integration Targeting: A Pathway Involving Transportin-3 and the Nuclear Pore
Protein RanBP2. PLoS Pathog 7: e1001313.

17. Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, et al. (2010) Flexible use of

nuclear import pathways by HIV-1. Cell Host Microbe 7: 221–233.

18. Braaten D, Franke EK, Luban J (1996) Cyclophilin A is required for the
replication of group M human immunodeficiency virus type 1 (HIV-1) and

simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other
primate immunodeficiency viruses. J Virol 70: 4220–4227.

19. Ikeda Y, Ylinen LM, Kahar-Bador M, Towers GJ (2004) Influence of gag on

human immunodeficiency virus type 1 species-specific tropism. J Virol 78:
11816–11822.

20. Dorfman T, Gottlinger HG (1996) The human immunodeficiency virus type 1

capsid p2 domain confers sensitivity to the cyclophilin-binding drug SDZ NIM

811. J Virol 70: 5751–5757.

21. Owens CM, Yang PC, Gottlinger H, Sodroski J (2003) Human and simian

immunodeficiency virus capsid proteins are major viral determinants of early,

postentry replication blocks in simian cells. J Virol 77: 726–731.

22. Christ F, Thys W, De Rijck J, Gijsbers R, Albanese A, et al. (2008) Transportin-
SR2 imports HIV into the nucleus. Curr Biol 18: 1192–1202.

23. Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP (1993) Human

immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell
73: 1067–1078.

24. Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, et al. (2003)

Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat
Med 9: 1138–1143.

25. Price AJ, Marzetta F, Lammers M, Ylinen LM, Schaller T, et al. (2009) Active

site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat Struct
Mol Biol 16: 1036–1042.

26. Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A

retrotransposition into TRIM5 explains owl monkey resistance to HIV-1.
Nature 430: 569–573.

27. Gupta RK, Hue S, Schaller T, Verschoor E, Pillay D, et al. (2009) Mutation of a

Single Residue Renders Human Tetherin Resistant to HIV-1 Vpu-Mediated

Depletion. PLoS Pathog 5: e1000443.

28. Pond SL, Frost SD (2005) Datamonkey: rapid detection of selective pressure on

individual sites of codon alignments. Bioinformatics 21: 2531–2533.

29. Ferreira PA, Nakayama TA, Pak WL, Travis GH (1996) Cyclophilin-related

protein RanBP2 acts as chaperone for red/green opsin. Nature 383: 637–640.

Cyclophilins Mediate HIV-1 Nuclear Import

PLoS Pathogens | www.plospathogens.org 14 December 2011 | Volume 7 | Issue 12 | e1002439



30. Ferreira PA, Nakayama TA, Travis GH (1997) Interconversion of red opsin

isoforms by the cyclophilin-related chaperone protein Ran-binding protein 2.
Proc Natl Acad Sci U S A 94: 1556–1561.

31. Thys W, De Houwer S, Demeulemeester J, Taltynov O, Vancraenenbroeck R,

et al. (2011) Interplay between HIV Entry and Transportin-SR2 Dependency.
Retrovirology 8: 7.

32. Langelier CR, Sandrin V, Eckert DM, Christensen DE, Chandrasekaran V,
et al. (2008) Biochemical characterization of a recombinant TRIM5alpha

protein that restricts human immunodeficiency virus type 1 replication. J Virol

82: 11682–11694.
33. Li X, Sodroski J (2008) The TRIM5{alpha} B-box 2 Domain Promotes

Cooperative Binding to the Retroviral Capsid by Mediating Higher-order Self-
association. J Virol 82: 11495–502.

34. Berry C, Hannenhalli S, Leipzig J, Bushman FD (2006) Selection of target sites
for mobile DNA integration in the human genome. PLoS Comput Biol 2: e157.

35. Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, et al. (2005) A role for

LEDGF/p75 in targeting HIV DNA integration. Nat Med 11: 1287–1289.
36. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, et al. (2002) HIV-1

integration in the human genome favors active genes and local hotspots. Cell
110: 521–529.

37. Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD (2007) HIV integration

site selection: analysis by massively parallel pyrosequencing reveals association
with epigenetic modifications. Genome Res 17: 1186–1194.

38. Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D (1998) Effects of
CCR5 and CD4 cell surface concentrations on infections by macrophagetropic

isolates of human immunodeficiency virus type 1. J Virol 72: 2855–2864.
39. Howard BR, Vajdos FF, Li S, Sundquist WI, Hill CP (2003) Structural insights

into the catalytic mechanism of cyclophilin A. Nat Struct Biol 10: 475–481.

40. Matreyek KA, Engelman A (2011) The Requirement for Nucleoporin NUP153
during Human Immunodeficiency Virus Type 1 Infection Is Determined by the

Viral Capsid. J Virol 85: 7818–7827.
41. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, et al. (2008)

Identification of host proteins required for HIV infection through a functional

genomic screen. Science 319: 921–926.
42. Saini M, Potash MJ (2006) Novel activities of cyclophilin A and cyclosporin A

during HIV-1 infection of primary lymphocytes and macrophages. J Immunol
177: 443–449.

43. Pan H, Luo C, Li R, Qiao A, Zhang L, et al. (2008) Cyclophilin A is required for
CXCR4-mediated nuclear export of heterogeneous nuclear ribonucleoprotein

A2, activation and nuclear translocation of ERK1/2, and chemotactic cell

migration. J Biol Chem 283: 623–637.
44. Zhu C, Wang X, Deinum J, Huang Z, Gao J, et al. (2007) Cyclophilin A

participates in the nuclear translocation of apoptosis-inducing factor in neurons
after cerebral hypoxia-ischemia. J Exp Med 204: 1741–1748.

45. Ansari H, Greco G, Luban J (2002) Cyclophilin A peptidyl-prolyl isomerase

activity promotes ZPR1 nuclear export. Mol Cell Biol 22: 6993–7003.

46. Krishnan L, Matreyek KA, Oztop I, Lee K, Tipper CH, et al. (2010) The

requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection

maps to human immunodeficiency virus type 1 capsid and not integrase. J Virol

84: 397–406.

47. Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, et al. (2007)

HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex

at the nuclear pore. EMBO J 26: 3025–3037.

48. Copeland AM, Newcomb WW, Brown JC (2009) Herpes simplex virus

replication: roles of viral proteins and nucleoporins in capsid-nucleus

attachment. J Virol 83: 1660–1668.

49. Apetrei C, Kaur A, Lerche NW, Metzger M, Pandrea I, et al. (2005) Molecular

epidemiology of simian immunodeficiency virus SIVsm in U.S. primate centers

unravels the origin of SIVmac and SIVstm. J Virol 79: 8991–9005.

50. Briones MS, Dobard CW, Chow SA (2010) Role of human immunodeficiency

virus type 1 integrase in uncoating of the viral core. J Virol 84: 5181–5190.

51. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002)

Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:

915–927.

52. Woodward CL, Prakobwanakit S, Mosessian S, Chow SA (2009) Integrase

interacts with nucleoporin NUP153 to mediate the nuclear import of human

immunodeficiency virus type 1. J Virol 83: 6522–6533.

53. Schaller T, Hue S, Towers GJ (2007) An active TRIM5 protein in rabbits

indicates a common antiviral ancestor for mammalian TRIM5 proteins. J Virol

81: 11713–11721.

54. Levy DN, Aldrovandi GM, Kutsch O, Shaw GM (2004) Dynamics of HIV-1

recombination in its natural target cells. Proc Natl Acad Sci U S A 101:

4204–4209.

55. Butler SL, Hansen MS, Bushman FD (2001) A quantitative assay for HIV DNA

integration in vivo. Nat Med 7: 631–634.

56. Apolonia L, Waddington SN, Fernandes C, Ward NJ, Bouma G, et al. (2007)

Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol Ther

15: 1947–1954.

57. Tsang J, Chain BM, Miller RF, Webb BL, Barclay W, et al. (2009) HIV-1

infection of macrophages is dependent on evasion of innate immune cellular

activation. AIDS 23: 2255–2263.

58. Sokolskaja E, Sayah DM, Luban J (2004) Target cell cyclophilin A modulates

human immunodeficiency virus type 1 infectivity. J Virol 78: 12800–12808.

59. Schindler M, Rajan D, Banning C, Wimmer P, Koppensteiner H, et al. (2010)

Vpu serine 52 dependent counteraction of tetherin is required for HIV-1

replication in macrophages, but not in ex vivo human lymphoid tissue.

Retrovirology 7: 1.

Cyclophilins Mediate HIV-1 Nuclear Import

PLoS Pathogens | www.plospathogens.org 15 December 2011 | Volume 7 | Issue 12 | e1002439


