


10 K .  M .  Jansons and E .  R .  Johnson 

FIGURE 8. A schematic representation of the directions of the dipoles in the resonant mode of 
the system described in figure 7. 

obtain the flow field explicitly, let the forcing a t  ma be 1, and at m, be 1,. Then the 
resonant interaction is given by 

1, = V$(x, ; m! ; 6) + V$(xo ; my ; S),l 
1, = WX, ; mt ; c) + v$(x, ; my ; 5). J 

Substituting for Q$ from (2 .1)  gives 

A ,  C?' A ,  A ,  v A ,  c?' 
lo = - +- D 2  3 k = - -  +-, 

D2 d: d; 

where A ,  = A ( o / H , ) .  Hence 

A , d i 2  - A I D p 2  1, (t) = ( -A ,D-2  A,dY2 )(Z)' 

Non-trivial solutions to this system require 

( A o d , 2 - l ) ( A l d ; 2 - 1 )  = A 0 A , D - 4 .  

Substituting for A ,  from ( 2 . 2 )  gives 

[ w - f l o ( l  +d,2)][w-1pY1(1 + d 3 ]  = 9 , H , 0 - 4 .  

Now system-0 and system-1 have the same frequency w* in isolation so 

W* = I i , ( l  + d i 2 )  = 18,(1 +dT2), 

and (3.15) becomes (w-w*)Z = + H 0 H , 0 - 4 ,  

i.e. w = o*+$(H,H,)fD-2.  

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

There is resonant splitting of the frequency, symmetric about w = w* .  Substituting 
(3.17) in (3.13) gives the ratios of the dipole strengths over the two mountains, 

(3.18) 

As in the first example, the relative orientation of the dipoles over the hills is arbitrary 
when they are isolated. When the hills interact the orientation is restricted to either 
a ' + ' mode, of frequency higher than w*,  in which the dipoles are parallel or a ' - ' 
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mode, of frequency lower than w * ,  in which the dipoles are antiparallel. In the 
present example the strengths of the dipoles differ if the hills have different heights, 
the stronger dipole lying over the higher mountain. 

The average of the modes gives a transferring mode with rapid frequency oo = w* 
and slow, transferring frequency w1 = $(H,  Hl)k/D2, depending on the geometric 
mean of the mountain heights. 

The restriction that do and d, are large, and so H ,  and H ,  close, can be relaxed by 
using the exact solution for system-0 and system-1 obtained by solving the forced 
problem for a hill near a rectilinear boundary in terms of bipolar coordinates. The 
form of the solution would be unaltered. 

4. Resonant systems containing many mountains 
The analysis of I can be extended to demonstrate resonance in a system containing 

many mountains and dales. The simplest example is of a hill surrounded by a haze 
of equal and opposite dales or, equivalently, a dale surrounded by a haze of equal and 
opposite hills. Results are presented below for the case of a dale as this is the more 
likely occurrence owing to the comparative rarity of deep hollows on the ocean floor. 
The consistency relation for a dale of depth - H o  surrounded by N hills of height 
H ,  follows from equation (30) of I as 

Substituting from (2.2) for A gives 

where ri is the distance 
correction to the natural 

2w 
rt + O ( r 3 1 ,  

of mountain i from the origin. Thus the leading-order 
frequency of the dale is given by 

N 

w = - ~ , [ ~ ~ {  i=1 C r r f+o ( r ;6 ) r ] .  (4.3) 

There is symmetric splitting about the natural frequency wo = -I&, and energy is 
transferred between the dale and the surrounding hills with frequency 

0, = ..{; .:)i. 
i-1 

(4.4) 

The ensemble average frequency for an infinite system of mountains follows by 
replacing N by infinity in (4.4) and taking an ensemble average over all systems 
having a dale identical to mo at the origin. This gives 

(4.5) 

with the subscript 0 indicating that all subscript-0 quantities are held constant in the 
averaging. As in I, the ensemble average of the sum can be written 

( rf), = [ T - ~ P ( ~  10) 2nr dr, 
i=l 
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where P(r 10) is the probability of finding a mountain a t  distance r given there is a 
dale at the origin. Distribution P ( r J 0 )  includes no contribution from m, and for 
simplicity is taken to be isotropic. 

Consider the special case where the pair probability density function is given 
by 

0, r < a  

n, r 2 a ,  
P(YI0) = (4.7) 

where n is a constant number density and a is supposed to be much larger than the 
radius of a mountain and much less than the typical distance between mountains. 
Then 

( w ) ,  = - ~ ~ , ( l * c ~ / a + O ( c ~ / a 2 ,  c)), (4.8) 

where c = xn is the area fraction of mountains. There is symmetric splitting about 
wo = -lao and energy is transferred from dale to the surrounding haze of equal and 
opposite mountains with frequency 

(4.9) 

This analysis can be continued following I to determine the effective topography 
for the ensemble-averaged stream function. For the distribution given by (4.7) the 
effective topography consists of the original dale together with a further upward step 
a t  a distance a from the origin. The transferring-mode stream function thus 
resembles that of figure 3, with, however, the outer contour a t  a %- 1. The field is 
initially concentrated far from the origin (figure 3a) ,  then moves to  be concentrated 
over the dale (figure 3c ,  with direction of rotation reversed) and so on. It should be 
noted that the method of linearizing about a background topography (as reviewed 
in LeBlond & Mysak 1978) would fail to obtain this transferring mode. 

( W J ,  = w , c i / a + .  . . . 

5.  Discussion 
It has been shown that slow energy transfer can occur between widely separated 

regions supporting topographic waves on an otherwise flat plane, a phenomenon akin 
to the tunnel effect of quantum dynamics in which energy travels slowly across 
forbidden regions between accessible states. The hilldale pair of $ 2  gives the 
simplest example, relating resonant frequency splitting to  slow transferring modes 
and allowing explicit solution. Section 3 shows that resonance in systems consisting 
only of hills requires the height and positioning of the hills to satisfy rigorous 
restrictions. Resonance is rare in arbitrarily chosen systems, and thus is not expected 
to be an important effect in an infinite ocean (see I). However, in a strongly bounded 
domain, one in which topography is present near the walls of the domain, the images 
introduced by the boundary make resonance more likely. This is particularly 
relevant to numerical experiments on topographic waves. The experiments are 
necessarily on a bounded domain with either rigid or periodic boundary conditions, 
both of which introduce the image system of the topography. For symmetrically 
placed hills of equal \heights (so that they have the same frequency in isolation) 
resonant splitting introduces slow, transferring modes. Such modes have been 
observed in numerical integrations (Rhines & Bretherton 1973). 

Geophysical examples of strongly bounded domains are given by seamount chains 
near continental margins and by two-basin lakes, like Lake Michigan. The latter are 
poorly described by existing analytical models of topographic oscillations in lakes 
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(e.g. Johnson 1987a), which either treat the two basins separately or ignore the 
barrier between the basins. The canonical hill-island--hill geometry of § 3 is converted 
to  a two-basin lake by inversion with respect to a circle within the island, thus 
demonstrating the possibility of modes which evolve slowly over time from being 
concentrated in one basin to being concentrated in the other. The reported depths of 
Lake Michigan in Saylor, Huang & Reid (1980) and Schwab (1983) show two basins 
each of depth around 160m below a basic lake depth of about 100m. Free 
oscillations of the basin could thus show a transferring mode. 

The solution in $4 for a dale in a random array of equal and opposite hills gives an 
example for which the techniques reviewed in LeBlond & Mysak (1978) fail to  give 
the transferring mode. 

This work was completed while one of us (E. R. J.) was the guest of Professor P. B. 
Rhines. It is a pleasure to thank him for his hospitality and support under grant 
OCE86-13725 from the National Science Foundation. 
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