


Flow past a circular cylinder on a P-plane 
............... ........... ..... 

617 

........ ..... .... Shear layer, ,$ x bi 

Southern boundary jet, A‘ x b 
Shear layer, 

a x  1 

WBL. b x  1 

FIGURE 11. A schematic diagram of the asymptotic structure for westward flow past a ‘cigar tube’ 
obstacle. The structure f?r all values of = aA greater than 4 up to x of order az is summarized in 
terms of x and b = (A/a)i. For - 1 a detraining jet of length of order unity runs along y = 1 .  For x $ 1 the jet thickens and lengthens. Over distances of order unity it conserves potential vorticity as 
in Long’s model. Once x is of order a* the southern boundary jet and the two linear shear layers merge 
to form a single nonlinear jet of thickness of order the obstacle width and length of order a % I .  

3.6. Longer obstacles 
The analysis above centres on obstacles of aspect ratio of order unity in general and 
for a circular cylinder in particular. Flow patterns for more elongated obstacles differ 
in some of the parameter regimes. Consider first westward flow past the ‘cigar tube’ 
with boundary 

y =  ( *(l-xz), o < x <  1 (3.40) 

Linear flow and nonlinear flow with x ,< + are unchanged save solely that the shear 
layers at y = f 1 spread only outwards into Iy( > 1. The dynamics change for h > i. 
The continuing fluid from the WBL can no longer form a detraining eastern jet and 
instead forms (in y > 0) a southern boundary jet along y = 1,x -= 0, so called here as 
the jet runs along a southern boundary. The dynamics of this jet are discussed below 
and apply to any jet running precisely (for a B 1) east-west or west-east and thus to 
jets along northern boundaries also. The flow structure in the three distinguished limits 
of increasing flow speed > t, h - 1 and h - a can be compressed to the single 
structure illustrated in figure 11 by noting that the WBL has thickness of order b in 
each of these limits. Fluid from the WBL thus forms a jet of width b carrying flux of 
order unity. The scalings within the jet are equivalent to those introduced for mass- 
carrying layers in $3.4 with y = (y- l ) / b ,  ii = - $g = bu, and additionally x = x/xi. 
Integrating (2.3) across the layer gives 

iiiiz + Fii# = - ii, (3.41) 

where the constant of integration is evaluated by noting that since u is of order unity 
outside the layer, iivanishes to leading order as p-t 00. This is the equation for ‘bottom 
frictional’ jets discussed by Gadgil (1971) and for ‘wide’ jets by Page & Eabry (1990). 
It has the Von-Mises solution 

li = -X+ii0($), (3.42) 
where go($) is the velocity profile entering the jet from the end of the WBL. Equation 
(3.42) shows that ii decreases linearly with x along each streamline so the jet terminates 
after a finite distance at the position js, = ~ ~ ( 0 )  (where both of these quantities are 

0, l < x  

* 1, x < 0. 
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FIGURE 12. The length (in cylinder radii) of both the southern boundary jet along an extended 
obstacle of $3.6 and the separated jetin viscous flow past a bluff body of $5.1. The jets are absent for 

< a and their length approaches As for A $ 1. This structure applies when a % 1 and h < a, i.e. 
A < a2. 

/i 

negative). Figure 12 shows the variation with h of the length of the jet in units of 
cylinder radii, i.e. - x$io(0) = Xii(0, an), where ii follows straightforwardly by 
integrating (3.20) along $ = 0 from 0 = 0 to in. The jet is absent for < and, as 
expected from the discussion of the southern boundary jet in 11, increases smoothly 
with h for h > f .  The large-X behaviour follows from noting from (3.36) that ii + 6-’ as 
h -+ 00 so the jet length approaches hi. The first stages of this asymptotic behaviour are 
apparent in figure 12. 

lies within the linear shear 
layer. The value of $ at the outer edge of the jet (where P = 0) is given implicitly 
by the solution of 

and (3.43) then forms the boundary condition along y = 1 for the shear layer. This 
structure shows particularly clearly when n is sufficiently large that the entire WBL 
flow enters the jet. Then (3.39) gives Po(@) = $- 1 so (3.42) gives @ = (1 +@(1  -e-#) 
and (3.43) gives $m = 1 +X. The jet terminates when R = - 1. Jets for smaller h 
terminate earlier. 

The shear layer forced by the jet outflow has length of order hi and thus, from (3.1), 
width of order d. It is governed by (3.4) (with x replacing x and y’ = ( y -  l)/bi 
replacing 9)  subject to the boundary conditions 

This nonlinear jet of width y- 1 - b and length - x - 
&($m) = X, (3.43) 

@(O, Y7 = 1, @@, 0) = !bm(X), (3.44) 

and a solution similar to (3.31), (3.32) follows directly. On the lengthscale of X = x / a  
the layer is unaltered from the corresponding shear layer in linear flow. 
- The structure of figure 11  holds for a < x < a’. For faster flows, where A - a % 1 (so 
A - a’, b - l), the WBL has thickness of order unity, governed by the conservation of 
potential vorticity through Long’s model, and the southern boundary jet and shear 
layers merge to form a nonlinear, detraining jet of thickness unity and length of order 
a governed by equation (5.1) of I. Solutions of this latter equation have a wider 
significance for flow over long obstacles and will be discussed elsewhere. The layer 
structure for obstacles with east-west boundary sections of finite, non-zero length 
follows directly by combining the ‘cigar tube’ structure discussed here with the 
detraining eastern jet of R3.3-3.5. 
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4. Eastward flow 
Eastward flow is governed by (2.3)-(2.6) with the negative sign chosen in (2.6). For 

slow steady flow where a is arbitrary and A < min (a-', l), the vorticity equation (2.3) 
reduces to (3.1) as in westward flow. The solution with uniform eastward flow at large 
distance is thus given by multiplying solution (3.2) by - 1. The pattern of streamlines 
is unaltered. Oncoming flow displaced into shear layers about y = f 1 passes through 
shoulder regions at ( x , y )  = (0, f 1) and enters a detraining WBL on the rear of the 
cylinder. 

4.1. Thejlow near the rear stagnation point 
The stagnation point at ( x , y )  = (l,O), which for westward flow is an entraining 
forward stagnation point in a WBL, is in eastward flow a detraining rear stagnation 
point. The full governing equation (2.3) again has a solution of similarity form (3.8) 
where F here satisfies (3.9) with a replaced by -a on the right-hand side. This has the 
exact solution F(x) = - 1 +exp ( - x / 6 ) ,  satisfying the far-field condition F(m) = - 1, 
provided ad2 - 8 + A  = 0. The two roots for 6 are 

6, = [1 +(I  -4a~)i1/2a, 6, = [ I  - ( I  -a~)i]/2a, (4.1) 

which, as required, are both positive and real for = a A  < f .  For weak advection 
(A -+ 0), 6, +. a-2 and 6, + 0. The layer that evolves smoothly with increasing flow speed 
from the linear layer is thus the layer of thickness S,.f As X increases, this layer thins 
and the simple stagnation-point solution vanishes as X passes through f and the roots 
(4.1) become complex. The roots continue to give the oscillatory behaviour of the outer 
part of the boundary layer and it is the presence of two roots that allows the unusual 
boundary condition at the exterior of the nonlinear WBL in $4.2. Although the layer 
is detraining, which usually precludes specifying precisely the outer flow field (as in the 
eastern jet of §3.3.2), the presence of two decaying solutions of unspecified amplitude 
allows the exterior streamfunction itself to be specified as for an entraining boundary 
layer (like the WBL of $3.3). 

Since both roots (4.1) have positive real part, the similarity form does not yield a 
stagnation-point solution for the flow at the forward stagnation point (x,  y )  = (- 1,O). 
In contrast to the detraining eastward jet in westward flow, the absence here of any 
decaying solutions for the outer regions of the boundary layer precludes an entraining 
eastern boundary layer irrespective of the strength of the oncoming flow. 

4.2. Thejlow field for A - a-l, a 4 1 
As noted in $3.3 and I nonlinearity first becomes important in the WBL for X of order 
unity. The shear layers remain linear and the shoulder regions turn the oncoming flow 
to form the start of the WBL. The layer is again of thickness o1-l and analogously to 
$ 3.3 is governed by 

h%,+i,+@se = -isin28, (4.2) 

@(o,8) = 0, @(m,e) = -sin8 (0 < 8 <in). (4.3) 

The solution of (4.3) for h < f is discussed in Foster (1985) and I and follows directly 
by integrating (4.3) along streamlines to obtain C($, 8) and then evaluating (3.26) to 
obtain the displacement of streamlines. Provided < f all fluid entering the WBL from 
the shoulder region detrains by the rear stagnation point at 8 = 0. 

For X > f this is no longer the case and the azimuthal velocity -ij remains positive 

t This root is given in 11. However 8 in I1 equals S;l here and (14) in I1 should have 8 replaced by 
8-I. 
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FIGURE 13. A schematic diagram of the asymptotic structure of eastward flow past a cylinder 
when A = a A  is of order unity but greater than ;. 

as 8 + 0 on those streamlines closest to the cylinder. Simple stagnation flow at 8 = 0 
breaks down. The flow at a rear stagnation point when h > a is examined in detail for 
a model problem in I1 where an asymptotic structure is presented supported by 
accurate numerical computations. Figure 13 gives a schematic diagram of this 
structure, modified for the present geometry. The continuing flow from the WBL is 
turned in a square inertial region of dimension a-l x 01-l where the governing equation 
is the conservation of relative vorticity. The incoming southward velocity profile is 
simply turned to give the outgoing eastward velocity profile for a detraining southern 
boundary jet of dimensions 1 x a-' along y = 0. The eastward jet, governed by 
equations equivalent to (3.41) and (3.42), has length of order h and forms the southern 
boundary condition for a shear layer of dimensions 1 xa - i  governed by (3.4) that 
returns fluid to the west. This returning fluid rejoins the WBL in an inertial boundary 
current of dimensions a-f x a-i governed by the conservation of potential vorticity. 

Unlike the asymptotic structure for westward flows in g3.4 and 3.5, the structure for 
eastward flows does not remain locally determined if the speed increases so that A 
becomes of order unity or larger. This appears to be closely related to the upstream 
influence problem discussed in 1. Similarly, no new structure appears for elongated 
obstacles like those in $3.6. For obstacles like (3.40) corresponding to eastward flow 
over an abrupt southward step the sole difference from flow past a cylinder is that the 
upstream linear shear layers spread into only lyl > 1. Flow over a northward step is 
even simpler: the flow is displaced northwards over distances x of order a without 
forming flux-carrying shear layers, and remains linear for speeds up to those where 
h - a % - l .  

5. Viscous separation 
This paper considers the limit of Ekman and Rossby numbers vanishing with 

A = Ro/2Ei fixed. In this limit Ekman pumping by Ekman layers on the upper and 
lower boundaries gives the leading-order viscous effect on an otherwise inviscid 
motion. Horizontal viscous effects are negligible in the bulk of the flow, becoming 
important only within thin boundary layers on the vertical sides of obstacles. Provided 
these layers remain thin and attached to the obstacles they do not affect the flow. If the 
layers separate then the leading-order flow in the neighbourhood of the obstacle alters. 
A review of results on the separation of Ef layers on anf-plane is given in Page (1987). 
In particular Page (1982) notes that attached flow can be expected on an f-plane 
provided 
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du 
ds 

A L 2 - 1  

at each point on the boundary. Here un is the tangential velocity and s is the distance 
along the boundary in the flow direction. The discussion in Page (1987) and the 
numerical solutions for f-plane flows in Becker (1991) show further that the shape of 
the separated region can be obtained by choosing the region boundary so that equality 
holds in (5.1) at each point on the boundary. 

The linear solutions ( A  = 0) of 53.1 and nonlinear solutions of 53.3 for h < t can 
be regarded as separated flows. An Ef layer forms on the incident side of the cylinder 
with the fluid accelerating before separating at the shoulder regions at 8 = &:n. No Ef 
layer is required on the western side of the cylinder as the flow is stagnant there to 
leading order, and no Ei layers are present within the linear shear layers as the leading- 
order flow is arbitrarily differentiable there. Once h > : in the inviscid solution of $3.3.2 
some fluid enters an eastern boundary jet along the rear of the cylinder. The flow 
decelerates within this jet and may separate. This is considered in the following 
subsection. 

5 .  I .  A structure for westward separatedflow 
While the Ea layer remains attached to the cylinder it brings the non-zero slip velocity 
along $ = 0 at the inner limit of the mass-carrying layer of 53.3 to rest at the cylinder 
surface. Suppose the flow is symmetric about y = 0 and the Ef layer remains attached 
in y > 0 from the front stagnation point F until a point S where the layer separates 
tangentially from the cylinder. Denote the path of the separated streamline by SA and 
introduce normal and tangential coordinates rotated through an angle y(s) from Oxy, 
with arclength s measured from S (figure 14a). The Ea layer matches a discontinuity in 
tangential velocity across SA and a mass-carrying of thickness b matches a 
discontinuity (on the scale of the cylinder radius) in $ across SA. The equation 
governing the mass-carrying layer in these coordinates (with ii = u/a) follows similarly 
to (3.20) as 

(5.2) 

along lines $ = constant. Here $&) is non-zero, specifying the detraining of fluid 
from the layer into the external flow in n > 0. Including the Ef layer viscous terms in 
(5.2) and integrating across the E f  layer at $ = 0 then gives the &plane extension (for 
a >> 1) of the free-streamline condition in Page (1987), i.e. 

hiiii, + ii- $ sin y(s) = - $&) sin y(s), 

along the separated streamline. 
Equation (5.3) can be expected to have two solutions for the tangential velocity uo(s) : 

one, u;(s) say, corresponding to the flow just inside the separated streamline $ = 0 and 
the other, ui(s) say, corresponding to flow just outside the streamline $ = 0 and so 
forming the inner boundary condition of the separated mass-carrying layer. Now u; 
vanishes at the separation point S and ~m is non-zero there for h > a. Equation (5.3) 
thus requires that y vanishes there: the flow separates at 8 = in for all x > t. Now 
suppose that y(s) is positive at some s > 0. From (5.3) this would imply that u; is 
negative there, giving within the separated region an order-unity flow counter to the 
free-stream flow. This flow pattern would differ from the numerical integrations for p- 
plane flows of Matsuura & Yamagata (1986) and the $plane integrations of Becker 
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FIGURE 14. A structure for separated westward flow when 1/4u < A 4 a. (a) The coordinate system. 
Flow enters a mass-carrying boundary layer at the front stagnation point F and separates tangentially 
at S. Tangential and normal coordinates s and n are rotated through an angle y(s) from Oxy, with 
arclength s measured from S. (6) The postulated structure in y > 0. Fluid from the WBL passes into 
a finite-length jet lying along y = 1. The jet detrains into y > 1 leaving the region immediately behind 
the cylinder stagnant. This detrained fluid spreads into y < 1 within a shear layer of length of order 
a of exactly the same tapering structure as the equivalent layer in the linear flows of figures 1 and 2. 
To leading order the length of the separated region is proportional to a. (c) Streamlines for large X 
and 6 = 0.1 on the jet-length scale, x = x/Xi ,  showing for y of order unity the basic flow and the shear 
layer forced by the detraining jet. The cylinder and WBL become the line x = 0, 0 i y < 1 and the 
jettheline - l < k < O , y = l .  
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(1991). It thus appears that y = 0 and u; = 0 along the entire length of the separated 
Ei layer. As a result, the flow is stagnant close to the rear of the cylinder and the 
separated streamline $ = 0 lies along y = 1. 

With y = 0 equation (5.2) is equivalent to (3.41) and the flow in the mass-carrying 
layer along y = 1+ is determined exactly as in $3.6 for the layer along a longer obstacle. 
As there, the structure over the wide range from h > t to A Q a can be condensed to 
a single form. The separated jet has thickness by finite length hu,(O) of order Xi (shown 
as a function of n in fiBure 12), and lies within a linear shear layer of length of order 
Xi and width of order bs. An example of this structure for large h is given in figure 14(c) 
for b = 0.1. Here (3.4) has been integrated subject to (3.43) using the large-h result of 
43.6 that $m 1 = 1 +TI. 

On the scale of X = x / a  the flow field is of precisely the same form as linear flow: 
there are sources of unit strength at (0, & 1) from which fluid spreads to fill the stagnant 
region behind the cylinder (figure 14b). There is no separation bubble as such. 
Unusually, the separated flow on this scale more closely resembles linear flow than 
attached nonlinear flow (where fluid detrains from a distributed source on the rear of 
the cylinder as illustrated by figure 7). Provided h is small compared to a the size of 
the stagnant region is independent of h to leading order and the length of the 
streamline pattern scales on a. For h of order a the various layers behind the cylinder 
merge into a single layer as in $3.6. 

5.2. Comparison with observedJlows 
Experimental observations of separation behind circular cylinders in westward flows 
on a P-plane are reported by Boyer & Davies (1982, called BD herein). BD concentrate 
on determining the variation of the length of the separated region as a function of the 
various non-dimensional parameters describing the flow. They note a difficulty in 
ascribing a definite length to a separation bubble and instead present results for the 
distance behind the cylinder by which dye streaks released separately from the cylinder 
surfaces in y > 0 and y < 0 have converged to within one-fifth of a cylinder radius. The 
structure put forward in $5.1 and illustrated by figure 14(c) shows that even this 
definition is not necessarily robust. The length determined in this manner would 
depend on the value of the streamfunction along the streakline: for the streamline 
$ = e > 0 the distance of approach to the axis y = 0 increases as -loge as 6 + 0. This 
weak dependence on 6 may not be significant in the experiments. 

On the assumption that in different experiments the inner streakline corresponds to 
approximately the same streamfunction value, the eddy lengths observed by BD should 
increase linearly with a provided a is large and A remains small compared to a. The 
parameter definitions in BD differ slightly from those here. In terms of the parameters 
in BD the present parameters become 

a = ,!?HR^o/R(2Ek)iy h = HR^o/R(2Ek)i, (5.4) 

where a hat has been added to symbols used both here and in BD to denote their form 
in BD. In summarizing their results BD note that when westward flow around a 
cylinder separates the length of the separated region: 

(i) increases with increasing R̂ o, 
(ii) increases with increasing ,!?, 
(iii) decreases with increasing RIH,  
(iv) decreases with increasing Ek. 

Two particularly clear plates with reasonably strong P-effect in BD are their figure 
This behaviour is consistent with a separation region proportional to a. 
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5 ( c )  and the westward flow with p = 1 in their figure 26. Both plates show flows with 
the general form of the linear flows of figure 1 as expected. The corresponding values 
of (a,A) are (1.4, 1.8) and ( 3 . 1 , 3 . 1 ) .  These would predict that the separated region in 
figure 26 of BD should be twice as long as that in their figure 5 ( c ) .  The streaklines in 
the two plates do not show this. As noted above the streaklines might follow different 
streamline values; some support for this comes from noting that the separation bubble 
in figure 26(a) appears to be of a similar size to that in figure 26(b) where a x 0.8. It 
should also be noted that a is not large in figure 5(c) so Ekman pumping is as strong 
as vortex stretching there. The thicknesses b = @/a): for the mass-carrying layers in 
the two figures are 1 . 1  and 1.0. These are significantly thicker than the Ea layers, of 
thicknesses ŝ  = d E t / l / 2  of about 0.2 and 0.1 respectively, and so the general theory of 
5 5.1 can be expected to apply. However the mass-carrying layers are not thin compared 
to the cylinder radius and so the description of the wake region in terms of three 
distinct layers is not strictly applicable. 

Among their numerical computations for viscous westward flows Matsuura & 
Yamagata (1986) specifically model some of BD’s experiments. The streamline and 
vorticity patterns of their figure 2 (c)  with (a, A, i) = (1.41,1.77,0.161) to model BD’s 
figure 5(c) ,  show the flow separating at the shoulders of the cylinder and layers 
extending westwards, rather than approaching and joining as in the corresponding 
eastward flow. The slight deviation downwards from the line y = 1 is probably caused 
by the displacement effect in the asymmetric Ef layer. The patterns in their figure 6, 
with (a,A, $) = (15, l O , O . l ) ,  (3,2,0.02) and ( I S ,  1,O.OI) in (a) ,  (b),  and ( c )  respectively, 
are also broadly consistent with the structure presented above, as is their figure 8 which 
shows the wake length increasing linearly with 1 at large Reynolds number. A further 
feature confirmed by Matsuura & Yamagata is the insensitivity to changes in the flow 
parameters of the position of the point of separation in westward flows: the flow 
always separates at the top of the obstacle. 

The structure proposed here differs significantly from the flows postulated by 
Merkine (1980) who assumes that the unseparated solution of (3.39) always gives the 
flow external to the viscous E: boundary layer even when the E: layer solution he then 
calculates separates from the cylinder. His prediction that westward flow separates at 
0 = 1.78 (102’) cannot be considered reliable. 

5 . 3 .  Eastward separatedjow 
Separation in eastward flows is discussed in Foster (1985) and I but determining the 
structure of the separated region is less straightforward than in westward flows. 
Provided n < a the E; layer within the WBL in eastward flow remains attached to the 
cylinder. Once > condition (5 .1)  for attached flow is violated close to the rear 
stagnation point. The flow separates but arguments similar to those in 55 .1  show that 
the separated streamline is no longer restricted to lines y = constant but can slope 
steeply to confine the separated flow to a finite region in the neighbourhood of the rear 
stagnation point. The obstacles treated in I were chosen to be streamlined partly 
because inviscid calculations for such shapes could be expected to closely approximate 
viscous flows with attached boundary layers and separated viscous flows. The general 
structure of the flow outside the separated region remains that of figure 13 with excess 
mass from the WBL forming a southern boundary jet along the axis y = 0. 
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6. Summary 
This paper has considered flow past bluff bodies in both eastward and westward 

flows in the almost-inviscid, infinite-Reynolds-number limit of Ro + 0, E + 0 with 
A = Ro/2Ei fixed. For westward flows a complete structure in the limit of vanishingly 
small Ekman pumping (a 9 1) has been obtained for all strengths of nonlinearity A 
from linear flow ( A  = 0) through to purely inviscid flow conserving potential vorticity 
everywhere ( A  - a 9 1). For eastward flows a complete structure has been presented 
for the regime in which nonlinearity first becomes important ( A  - a-l -g 1). 

One unusual and unexpected result of the analysis of eastward flow is the conclusion 
that a western boundary layer (WBL) in this parameter regime can match any interior 
flow. If the layer is entraining then the presence of a single decaying solution for the 
exterior of the layer shows that the vorticity and mass flux in the layer is determined 
by the exterior flow, i.e. by the entrained fluid. If the layer is detraining then the 
presence of two decaying solutions for the exterior of the layer allows the layer to 
match any specified exterior flow. Thus in this limit, as for linear flow, the WBL is 
passive, simply transferring mass to match the interior flow. 

Horizontal viscous effects in these flows are confined to layers of thickness Ef which 
are thinner than the mass-carrying western boundary layers and their extensions 
discussed elsewhere in this work provided tan $ 6 Ei. If the Ea layers remain attached 
they do not affect the external flow. Once x = aA exceeds some critical value in flows 
past bluff bodies these layers separate. The results in 43 then lead directly to the 
proposed structure for separated flow in $ 5 .  Unlike the wide and spreading separation 
bubbles of non-rotating, infinite-Reynolds-number flows (Smith 1985, 1986 and 
Fornberg 1985), the separated regions predicted here and observed in experiments are 
no wider than the obstacle producing them. 

The present structures demonstrate why Long’s (1 952) theory for westward flows 
differs from both his and Boyer & Davies’ (1982) experiments and from Matsuura & 
Yamagata’s (1986) integrations. Long’s model is at the advection-dominated end of the 
continuous spectrum of almost-inviscid flow development which stretches, with 
increasing flow speed, from the linear flows of figures 1 and 2 through the flows with 
attached detraining eastern boundary jets of figures 8 and 9 to the potential-vorticity- 
conserving flows of figure 10. Since the numerical method used here retains time- 
dependence and allows wave propagation both upstream and downstream, this smooth 
continuum of flows belies Matsuura & Yamagata’s comment that it is westward long- 
wave propagation that accounts for the difference between Long’s model and 
experimental observations. The experiments and viscous numerical flows bifurcate 
smoothly from the almost-inviscid continuum when x exceeds some critical value of 
order unity (i for the circular cylinder) and the Ea layer separates at the shoulders of 
the obstacle to form detached jets, of the same thickness as the WBL, within the linear 
shear layers along lines y = constant. It is viscous separation that accounts for the 
differences. 

In their experimental observations of flow in a spherical shell Fultz 8c Long (1951) 
note that there are velocity discontinuities or vortex sheets on either side of the wake 
behind a cylinder in westward flow whereas there is only one such surface behind a 
cylinder in eastward flow ; comparing the patterns for eastward and westward flows 
with = 0.25 in figure 26 of BD shows the differences clearly. The structures proposed 
here for these flows and illustrated in figures 13 and 14(b) have these properties with 
a single jet along y = 0 in eastward flow and twin jets along y = + 1 in westward flow. 
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