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We report on the first measurement of elliptic flow v,(py) of multistrange baryons £~ + £~ and
Q~ 4+ Q" in heavy-ion collisions. In minimum-bias Au + Au collisions at JSvn = 200 GeV, a signifi-
cant amount of elliptic flow, comparable to other nonstrange baryons, is observed for multistrange baryons
which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion
collisions. The pr dependence of v, of the multistrange baryons confirms the number of constituent quark
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scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of
the observed collective motion is developed at the early partonic stage in ultrarelativistic nuclear collisions

at the Relativistic Heavy Ion Collider.

DOI: 10.1103/PhysRevLett.95.122301

Lattice QCD calculations, at vanishing or finite net-
baryon density, predict a transition from the deconfined
thermalized partonic matter quark gluon plasma to ordi-
nary hadronic matter at a critical temperature 7T, =
150-180 MeV [1,2]. Measurements of hadron yields in
the intermediate (2 < pr < 6 GeV/c) and high (p; =
6-8 GeV/c) transverse momentum p; region indicate
that dense matter has been produced in Au + Au collisions
at the Relativistic Heavy Ion Collider (RHIC) [3-10].
Furthermore, previous measurements of elliptic flow of
hadrons indicate that the matter created at RHIC is also
strongly interacting [11,12]. Thus, in the early stage of the
collision, dense and strongly interacting matter will lead to
collective effects among constituents such as transverse
collective motion. If these interactions occur frequently
enough, the system will then reach thermalization.
Because of the initial spatial anisotropy of the system in
noncentral collisions, an elliptic component of the collec-
tive transverse motion should also be present. Collectivity
is cumulative throughout the whole collision and should
survive the hadronization process [13,14]; therefore, the
amount of transverse flow observed in the final state will
have a contribution from the prehadronic, i.e., partonic,
stage.

Early dynamic information might be masked by later
hadronic rescatterings. Multistrange baryons with their
large mass and presumably small hadronic cross sections
[15-19] should be less sensitive to hadronic rescattering in
the later stages of the collision and therefore a good probe
of the early stage of the collision [20]. Indeed, a systematic
study of hadron pr spectra from high-energy heavy-ion
collisions, using a hydrodynamically inspired model,
shows that multistrange baryons thermally freeze-out close
to the point where chemical freeze-out occurs with T, ~
160 MeV [20,21], which at these collision energies coin-
cides with the critical temperature 7. [1,2]. This may mean
that multistrange baryons are not, or much less, affected by
hadronic rescatterings during the later stage of heavy-ion
collisions [15,16]. Their observed transverse flow would
then primarily reflect the partonic flow. Moreover, elliptic
flow is in itself considered to be a good tool for under-
standing the properties of the early stage of the collisions
[22,23], primarily due to its self-quenching nature. Elliptic
flow is generated from the initial spatial anisotropy of the
system created in noncentral collisions by rescatterings
among the constituents of the system. The generated ellip-
tic flow will reduce the spatial anisotropy of the system and
quench its own origin. Thus multistrange baryon elliptic
flow could be a valuable probe of the initial partonic
system.

PACS numbers: 25.75.Ld

In this Letter, we present the first results on elliptic flow
of multistrange baryons 2~ + £ and O~ + Q" from
Au + Au collisions at /syy = 200 GeV, as measured
with the STAR detector [24]. About 2 X 10° events from
Au + Au collisions collected with a minimum-bias trigger
are used in this analysis. Multistrange baryons are recon-
structed via their decay topology: & — A + 7 and Q) —
A + K with the subsequent decay of A — p + 7 as de-
scribed in [20]. Charged tracks were reconstructed in the
STAR time projection chamber [25]. Simple cuts on ge-
ometry, kinematics, and particle identification via specific
ionization are applied to reduce the combinatorial back-
ground. A detailed description of the analysis procedure
can be found in [20,26].

Figure 1 shows the invariant mass distribution for
(@ E-+E" and () QO + Q" candidates from
minimum-bias collisions (0% —80% of the total hadronic
cross section). The 2~ + EF and O~ + Q" signals ap-
pear as clear peaks around the rest masses (indicated by the
vertical arrows) in the invariant mass distribution, above a
combinatorial background. The combinatorial background
of uncorrelated decay candidates under the peak can be
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FIG. 1 (color online). (a) E~ + E" and (b) O~ + Q™ invari-
ant mass distribution from minimum-bias (0%-80%) Au + Au
collisions at ,/syy = 200 GeV. The solid lines show the com-
binatorial background as estimated from a same event rotating
method (see text for details). Azimuthal distributions with re-
spect to the event plane of the (¢) 2~ + E" and (d) O~ + Q7
raw yields. Dashed lines represent the fit results. All plots shown
include 2~ + E* and Q= + Q7 in the transverse momentum
range 1 < p;y <4 GeV/c.
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determined by sampling the regions on both sides of the
peak. It can also be reproduced by rotating the A candi-
dates by 180° in the transverse plane and then reconstruct-
ing the E and Q) candidates. The rotation of the A breaks
the correlation in the invariant mass and therefore mimics
the background of uncorrelated decay pairs. Both back-
ground determination methods provide consistent results.
In Figs. 1(a) and 1(b), the combinatorial background as
calculated from the rotation method is shown as solid lines.
Outside the region of the corresponding mass peak, the
rotation method describes the background well. The resid-
ual bump at lower invariant mass than the peak in Fig. 1(a)
can be understood as fake = candidates being recon-
structed as e (7 A, Aake (Trandom» PA))> Where 7, and
pa are the daughters of a real A and 74,4om 1S @ random
7. The real correlation between 77, and p, remains in the
B ke reconstruction resulting in the observed bump in the
E invariant mass distribution. A similar misassociation
happens in the () case with the addition of the 77, being
misidentified as a kaon. Our studies have shown that this
residual correlation does not affect the signal peak. The
raw yields are then extracted from the invariant mass
distribution by counting the number of entries in the
mass peak above the estimated background.

The elliptic flow v, is calculated from the distribution of
particle raw yields as a function of azimuthal angle ¢ with
respect to the event plane angle W. The E and Q candi-
dates are divided in ¢ — ¥ bins, and the raw yields for
each bin are extracted from the invariant mass distributions
as described above. The event plane angle V¥ is used as an
estimate of the reaction plane angle [27,28]. Here, the
event plane is determined from the azimuthal distribution
of charged primary tracks with 0.2 < p; < 2.0 GeV/c and
pseudorapidity || < 1.0. To avoid autocorrelations, tracks
associated with a E or an  candidate are explicitly
excluded from the event plane calculation. Figure 1 shows
the azimuthal distributions of raw yields for (c) 2~ + =
and (d) O~ + QF with respect to the event plane from the
minimum-bias collisions in the 1 < p; <4 GeV/c range.
To reduce the statistical uncertainties in the Z and () signal
extraction and because of the cos2(¢ — W) dependence of
v,, we have folded around 7/2 the candidates in the
7m/2<¢ — V<7 range into the 7/2>¢ — V>0
range. The distributions exhibit a clear oscillation with
azimuthal angle ¢ — W for both E and Q) particles, in-
dicating the presence of significant elliptic flow. The
dashed lines are the results from fitting a function % =

A[1 + 2v,co82(¢p — V)], where A is the normalization
constant. Furthermore, we note that the amplitude of the
oscillation for the = and  are of similar magnitude,
indicating that their v, is similar, as will be discussed later.
The finite resolution in the event plane determination
smears out the azimuthal distributions and leads to a lower
signal in the apparent anisotropy [28]. We determine the
event plane resolution by dividing each event into random
subevents and determine the correction factor to be 1/0.72

for minimum-bias collisions. In the following, all numbers
reported on v, are corrected for this resolution. Systematic
uncertainties in v, were studied by comparing the back-
ground determination methods described above and by
changing the cuts used in the Z and ) reconstruction.
For the =, the estimated absolute systematic uncertainties
are 0.02 for the lowest py bin and smaller than 0.01 for all
other p; bins. For the (), the absolute systematic uncer-
tainty is 0.04 for both measured transverse momentum
bins. Correlations unrelated to the reaction plane (nonflow
effects) can modify the apparent v, [11]. Nonflow con-
tributions for multistrange baryons have not been studied
yet, but are expected to be similar to those calculated for A
(~—0.01 at py =1 GeV/c and ~ — 0.04 at p; = 2.5
and 4.0 GeV/c¢) [11].

Figure 2 shows the results of the elliptic flow parame-
ter v,(py) for multistrange baryons (a) 2~ + E* and
(b)) O~ + Q" from minimum-bias (0%—-80%) Au + Au
collisions. As a reference, the open symbols represent the
published [11] K2 and A v,(p,) from the same event class.
As a guideline, results of the fit [29] to »,(p7) of KO and A
are shown as dashed lines. Hydrodynamic model calcula-
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FIG.2 (color online). »,(py) of (@) E~+E" and
® Q° +QF from 200 GeV Au + Au minimum-bias colli-
sions. The v, of K(S) and A [11] are also shown as open symbols,
and the results of the fits [29] are shown as dashed lines.
Hydrodynamic model calculations [30] are shown as dotted lines
for K and A and as solid lines for 2~ and )~ masses, from top
to bottom, respectively.
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tions using an equation of state with a phase transition at
T.=165MeV and a thermal freeze-out at Ty, ~
130 MeV [30] are shown as dotted lines for K and A and
as solid lines for E and (), from top to bottom, respec-
tively. The expected mass ordering in hydrodynamics of
vo(pr) is observed with lighter particles having larger
v,(pr) than heavier particles. We note that, in this hydro-
dynamic model calculation, a significant fraction of the
elliptic flow is generated prior to the phase transition.

First, we observe in Fig. 2(a) that for = the v, increases
with py, reaching a saturation value of ~18% at p; ~
3.0 GeV/c. This is similar to the result for A baryons [11].
In the lower py region (py < 2.5 GeV/c), the = results are
in agreement with the hydrodynamic model prediction
[30]. In the intermediate p; region, however, the E results
start to deviate (as expected) from the hydrodynamic
model prediction, as do the A. Second, we observe in
Fig. 2(b) that the values of v, for the () are clearly non-
vanishing although they have larger statistical uncertainties
due to their smaller abundance. Over the measured pr
range and considering the statistical uncertainties, the v,
of the () is nonzero with 99.73% confidence level (3o
effect). The ) v, values are, within uncertainties, consis-
tent with those measured for the =, indicating that even the
triply strange baryon () has developed significant elliptic
flow in Au + Au collisions at RHIC. In the scenario where
multistrange baryons are less affected by the hadronic
stage [20] and where v, develops primarily at the early
stage of the collision [22,23], the large v, of multistrange
baryons reported in this Letter shows that partonic collec-
tivity is generated at RHIC.

Previously, a particle type (baryon versus meson) differ-
ence in v,(p,) was observed for 77 and p [31] as well as for
Kg and A [11] at the intermediate py region. The present
results on the B v,(p,) follow closely the ones for A,
confirming that this observed particle type difference, in
the intermediate p; region, is a meson-baryon effect rather
than a mass effect. This particle type dependence of the
v,(py) is naturally accounted for by quark coalescence or
recombination models [32-34]. In these hadronization
models, hadrons are formed dominantly by coalescing
massive quarks from a partonic system with the underlying
assumption of collectivity among these quarks. Should
there be no difference in collectivity among u, d, and s
quarks near hadronization, these models predict a universal
scaling of v, and the hadron transverse momentum p7 with
the number of constituent quarks (n,). This scaling has pre-
viously been observed to hold within experimental uncer-
tainties for the K9 and the A when p;/n,=0.7GeV/c
[11].

The n,-scaled v, versus the n -scaled p; are shown in
Fig. 3 for 7~ + 7" (open diamonds), p + p (open circles)
[31], Kg (open triangles), A + A (open squares) [11],
2~ + E7 (solid circles), and Q™ + Q7 (solid squares).
Except for pions, all hadrons, including = and (), scale
well within statistics. The discrepancy in the pion v, may

0.1 -~ Fitto KSand A
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FIG. 3 (color online). Number of quark (n,) scaled v, as a
function of scaled pr for £~ + E* (solid circles) and Q™ +
Q7 (solid squares). Same distributions also shown for 7+ + 7~
(open diamonds), p + p (open triangles) [31], K (open circles),
and A + A (open squares) [11]. All data are from 200 GeV
Au + Au minimum-bias collisions. The dashed line is the scaled
result of the fit to K§ and A [29].

in part be attributed to its Goldstone boson nature (its mass
is smaller than the sum of its constituent quark masses) or
to the effects of resonance decays (a large fraction of the
measured pions will come from the decays of resonances at
higher pr) [29,35]. This further success of the coalescence
models in describing the multistrange baryon v,(py) also
lends strong support to the finding that collectivity devel-
oped in the partonic stage at RHIC. In addition, the good
agreement of v,(pr/n,)/n, for p(uud), A(uds), E(dss),
and ) (sss) further supports the idea that the partonic flow
of s quarks is similar to that of u, d quarks. Future mea-
surements with higher statistics, specially for the (2, will
allow for a more quantitative comparison.

In summary, we reported the STAR results on multi-
strange baryon, 2~ + E7 and Q™ + Q7 elliptic flow »,
from minimum-bias Au + Au collisions at . /syy =
200 GeV. The observations of sizable elliptic flow and
the constituent quark scaling behavior for the multistrange
baryons suggest that substantial collective motion has been
developed prior to hadronization in the high-energy nu-
clear collisions at RHIC.
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