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Abstract

Diffuse Optical Imaging (DOI), the study of the propagation of Near Infra-Red (NIR) light in

biological media, is an emerging method in medical imaging. Its state-of-the-art is non-invasive,

versatile and reasonably inexpensive.

In Diffuse Optical Tomography (DOT), the adaptation of numerical methods such as the

Finite Element Method (FEM) and, more recently the Boundary Element Method (BEM), has

allowed the treatment of complex problems, even for in vivo functional three-dimensional imag-

ing. This work is the first attempt to combine these two methods in DOT.

The BEM-FEM is designed to tackle layered turbid media problems. It focuses on the re-

gion of interest by restraining the reconstruction to it. All other regions are treated as piecewise-

constant in a surface-integral approach. We validated the model in concentric spheres and found

that it compared well with an analytical result. We then performed functional imaging of the

neonate’s motor cortex in vivo, in a reconstruction restricted to the brain, both with FEM and

BEM-FEM.

Another use of the BEM in DOI is also outlined. NIR Spectroscopy (NIRS) devices are

particularly used in brain monitoring and Diffuse Optical Cortical Mapping (DOCM). Unfortu-

nately, they are very often accompanied by rudimentary analysis of the data and the 3D appre-

ciation of the problem is missed. The BEM DOCM developed in the current work represents an

improvement, especially since a topographical representation of a motor activation in the cortex

is clearly reconstructed in vivo.

In the interest of computational speed an acceleration technique for the BEM has been

developed. The Fast Multipole Method (FMM), which is based on the decomposition of Green’s

function on a basis of Bessel and Hankel functions, eases the evaluation of the BEM matrix,

along with a faster calculation of the solutions.
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Chapter 1

Introduction

1.1 The place of optical techniques in medical imaging

The two major uses of medical imaging techniques are pre-clinical and clinical imaging. They

each correspond to very different challenges. The optical method presented in this thesis can

be used in both contexts. However, it is still mostly used in applied research. Some commercial

products exist or have existed, especially in the field of small animal imaging (see subsection

2.1.1.3).

In the process of drug design (see Figure 1.1), pre-clinical imaging constitutes a major

step in understanding a disease and ensuring the safety of a new molecule. It is first a modelling

technique, with the test bench being the animal(s) studied. Functional imaging techniques,

such as functional Magnetic Resonance Imaging (fMRI) or Positron Emission Tomography

(PET) is much more difficult to use in this context than optical imaging. They allow to observe

the physiological processes and progression of the disease. Fluorescence techniques, such as

FMT even provide a better insight by allowing one to concentrate on a particular process by

designing the fluorescent probe so that it is active only where the process of interest takes place.

Coupled with an anatomical imaging technique, such as X-ray Computed Tomography (XCT)

or Magnetic Resonance Imaging (MRI), the optical methods become very useful and provide a

localized functional insight.

In the field of functional clinical imaging, fMRI is the most used technique. It is very

easily coupled with MRI and provides functional information up to a millimeter resolution.

The other most widely used technique is PET, although its usage is more difficult with humans,

especially because of the small period of the fluorine 18 and the effects of the radiations it

emits. Optical imaging techniques, in diagnosis or observation are very marginal and actually

corresponds to one of the aims of the research in this field. We know that it will take time

before the technique is accredited. It is currently confined to research in brain, breast and rarely



1.2. Diffuse Optical Imaging framework 18

Figure 1.1: Drug design process

limb imaging (see subsection 2.1.1.3). Near-infrared spectroscopy, however, is used beyond

the sole optical imaging research, especially in neurology and cognitive sciences, disorders and

activations are monitored with commercially available devices (see subsection 2.2.2).

1.2 Diffuse Optical Imaging framework

If the diffusive media observed with DOI are biological tissues (which is the case considered in

our study), it usually exploits the so-called “optical window” (Figure 1.2 and [11]), in the Near

Infra-Red (NIR) spectrum to investigate its targets. In practice, the biological tissues absorb

NIR light much less than photons in the visible spectrum, making the detectable propagation

of photons from one end surface to the other more likely. However, one should notice that

the diffusion process only takes place after a relatively long distance (the transport length) is

traveled within the turbid media (see Figure 1.3). The diffusely reflected and diffused photons

obey to the same laws but refer to two slightly different imaging techniques, especially distin-

guished when Charge-Coupled Device (CCD) cameras are used, respectively transmission and

reflection imaging. They constitute the photons that we are interested in. The absorbed photons

are also included in our energy balance calculations, since they are sent by the source but never

reach the detectors. The ballistic photons are rare and difficult to measure, especially in thick

turbid media. They travel accross without being disturbed on their path and are the first to reach

the detectors. Lastly, the specular photons are of no interest in our study, since they do not travel

through the media investigated.

When diffused in the tissue, the photons are also absorbed (like any other electromagnetic
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Figure 1.2: Absorption spectra of the most commonly met molecules in DOI adapted from
BME591 Wikiproject. A more complete version can be found in [1] (Hb: hemoglobin)

wave within a non-void medium) and refracted. It means that the parameters of the diffusion

depend on at least three properties:

µa, the absorption coefficient

µs, the scattering coefficient

n, the refraction index

In a strictly diffusive theory, using a first order approximation of the phase function, only

one parameter is missing from the above list, namely the average cosine of angle scattering [12],

usually noted g. These parameters and the actual physical model of diffusion can be derived

Figure 1.3: Example paths of photons through tissue - we are only interested in the diffused
ones
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from a more general theory (see section 3.1). We will not discuss the refraction effects in this

thesis.

1.2.1 Model-Based Iterative Image Reconstruction

In all DOI methods described in this thesis, the unknown is the distribution of the optical prop-

erties (actually only the absorption coefficient here) within the investigated medium. This is

then linked to the functional activity of the biological tissue probed.

We illuminate the medium with a known source and surface photon density measurements

are taken. This is usually done with optical fibers acting as sources and detectors. CCD cameras

can also be used [13, 14, 15, 16, 17] along with multi-wavelength sources [18, 19, 20] but they

require a different treatment and acquisition process.

In order to reconstruct the optical parameters, the measurements taken on the turbid

medium’s surface have to be completed by a geometrical model of the system, of the source

and of the detectors. One then builds a numerical model called the Forward Model. It is

the simulation of the actual experiment. An Inverse Problem solving method is then applied

to make the actual surface data and the surface data coming from the Forward Model match.

More details about the means used to solve the Inverse Problem are given in section 4.2. We

particularly notice that, in this thesis, the problem is always reduced to a linear single-step

Gauss-Newton approach which implies the assumption of the background optical properties of

the turbid media.

This thesis is about improving the Forward Model and making it easier to setup. The basic

principles of existing reconstruction methods will not be changed.

1.2.2 Numerical Methods used for the Forward Model in DOI

Various numerical methods can be used for the forward model which represent different ap-

proaches to the solving of a partial differential equation on a 3D geometry. Most of the con-

ventional techniques come from mechanical engineering. These include, the Finite Element

Method (FEM) [7, 21, 22, 23], the BEM [24, 9] and the Kirchhoff Approximation thereof

[25], the Finite Difference Method (FDM) [26, 27] and the Finite Volume Method (FVM)

[28, 29, 30].

Boundary integral based methods are useful when one can consider large regions of the

turbid medium as piecewise-homogeneous. This means that assumptions have to be made

regarding the distribution of optical parameters and the position and value of the perturba-

tions searched for [31, 9]. The principle behind the BEM is to use Green’s second identity

[32, 33] and to describe the field through its integral on the surface: in the Diffuse Optical
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Tomography (DOT) and Diffuse Optical Cortical Mapping (DOCM) cases, the photon density

and flux. The main advantage of the method is the avoidance of high-resolution volume meshes

(needed by the FEM, FDM and FVM) which are time-consuming to construct and can intro-

duce errors especially when thin layers are involved. It is also easier to create adaptive meshes

[34] and methods to handle non-scattering regions [35] using the BEM. However, in a conven-

tional approach, as so far used in DOT, the BEM matrix arising from the discretisation of the

problem is full and non-symmetric and in addition suffers from intrinsic ill-conditioning [33].

Furthermore the piecewise-constant assumption is too restrictive for use in the inverse problem

and does not allow the level of detail or flexibility of the volume mesh or volume grid-based

methods. Despite these limitations, this thesis is there to show the use of this method in DOT

and Optical Topography.



Chapter 2

FEM, BEM and Cortical Mapping

2.1 The Finite Element and Boundary Element Methods in Diffuse

Optical Tomography

As early as in the 1970s [36], the association of the FEM with a boundary solution has been

proposed. Such a combination allows one to sum the advantages of the two methods and extend

the range of problems solvable with such algorithms.

The FEM is widely used in Diffuse Optical Tomography since the first study by Arridge

et al [37], especially for its flexibility and referenced accuracy [21, 22, 23]. Volume integrals-

based reconstructions of optical properties, especially the absorption coefficient, are of partic-

ular interest. For example, they allow a lot of freedom for the priors definition [38] and fine

reconstructions [39]. The well-known [13, 14, 40] Temporal Optical Absorption and Scatter-

ing Tomography (TOAST) software package for Optical Tomography is currently based on this

technique. It reaches its limits when dealing with thin multiple layers (see the mathematical

formulation in the next section).

On the other hand, the BEM is surface-based, a feature which allows to model finely

multilayered geometries with ease. In a paper from Sikora, Arridge et al [24], a pure BEM

forward model was proved to be an excellent alternative to the common volume integral-based

techniques. However, the treatment of multiple large-scale inhomogeneities (coming out of a

priori knowledge of the position of uninteresting organs, layers or other structures) is more

challenging and requires the addition of many extra boundaries.

In our study, we chose to address the problem of thin layers and spread inhomogeneities

in combining the BEM and FEM. This association has already been tested in the fields of

continuum mechanics [41], elastostatics [42, 43], electromagnetics [44], etc. For example in

the study by Guyot et al [41], the BEM is used for the modelling of the two surfaces in direct

contact, where the FEM is not converging correctly (thin layer). On the other hand, the known
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inhomogeneous structure and the thickness of the pipe’s shell in Kortschak et al’s study [44]

allows a simpler treatment with the FEM. However, no reported attempt had ever been made to

combine these methods in the field of optical imaging.

2.1.1 Finite Element Method in DOT

2.1.1.1 Origin and history

First mention The physical models used to represent reality are infinite-dimensional partial

differential equations, on which only few purely analytical methods can be applied to reach

the solution. These analytical schemes are only able to be used adequately in a small number

of trivial cases. The idea lying behind a FEM is to reduce a complex problem to a finite-

dimensional system by dividing it in a large number of elements and searching the system’s

solutions as a linear combination of highly regular shape functions associated to these elements.

Before 1953, the most commonly used method for the solving of complex engineering

problems, especially in the mechanical and aeronautical engineering fields was the FDM. This

technique is not using a discretization of the system’s shape, but of the space, since it needs a

regular grid to be applied [45]. Unfortunately, the assumptions needed to be able to write the

problems in this form are numerous [46] and prevents it to be applied to complex configurations

such as those met in aerodynamics [47].

It was not an easy task for the post-war computational engineers and scientists of the early

1950s to switch from the FDM to the FEM. In the first problem ever reported to be solved by

the FEM, the stiffness problem of the delta wing [47], the pioneer of this approach, Clough, first

attempted to model the wing with 1D elements without success. It is then his supervisor Turner

who had the idea to extend the “elements” to create a 2D mesh, the first ever recorded. Their

work is presented in the original paper on what was then called the Boeing Direct Stiffness

Method [48].

The FEM comes from a mostly recent background as stated in the introduction of [49] and

contains many areas with research incentives. However, we will focus exclusively on its usage

in DOT.

2.1.1.2 Features and advantages

Basic principle The FEM in DOT is used for the forward model, i. e. to compute the en-

ergy density within the diffuse media and relate it to a simulated detection. For details on the

reconstruction method, see section 4.2.

When placed in this section of the DOT problem, the FEM allows to define regions with

mismatching optical properties (absorption and scattering inhomogeneities) with an accuracy
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depending on the fineness of the mesh. All the operators of the diffusion equation are developed

on element-wise shape functions of various types [37], with linear and quadratic functions being

the most used. The diffusion equation in frequency domain, as in eq.(3.12), can then be written

with a system matrix (M) operating on the energy density (ϕ) on the left-hand side and a nodal

source term (Q) on the right-hand side:

Mϕ = Q (2.1)

Actually, the M matrix represents the action of the diffusion operators (see section 3)

which is, depending on the solving algorithm, inverted explicitly or optimized in a least-squares

formulation.

From the nodal energy density distribution on the surface of the system, one can find

the approximated detected signal by multiplying this energy density by a nodal measurement

distribution, as in eq.(4.6).

Advantages The main advantages over the other numerical techniques such as the FDM [27,

26] or the FVM [29] are its ability to model very complex 3D structures relatively easily, thanks

to the high sparsity of the resulting forward model matrix [50], as well as taking in account

boundary effects.

The matrix’s sparsity comes from the fact that only adjacent elements (those who share

one or more nodes) have a non-zero shape function product. Since all the diffusion operators

have to be discretized on this basis of shape functions, the resulting matrix becomes very sparse

with only very few non-zero values per row.

de facto, the FEM has become a standard for the treatment of (real) systems which have

a complex geometry and a highly inhomogeneous background such as the breast [19, 51], the

fingers [52], small animal imaging [14], the neonatal brain [40] and parts of the adult brain [53].

These abilities especially show up when two imaging modalities are combined, for instance

when MRI segmented regions are used as a background information in the reconstruction [54].

2.1.1.3 Applications and current trend in the volume integral-based DOT

Premature infants The historical application of the FEM in a “close-to-clinical” optical to-

mography setting is the problem solved by Hebden et al [40]. This milestone is one of the most

important in the establishment of the FEM as a practically usable computational technique.

Premature infants often suffer from ischemia-related blood vessel damage or haemorragia

due to perinatal conditions [55]. Normally, the observation and diagnosis of their state must

be done early enough (ideally within 15 hours from the birth [56]) to assess the actions to be
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taken before irreversible brain damage is inflicted by the injury. The only techniques applica-

ble in such contexts are ultrasound-based technologies such as color Doppler-ultrasonography

[57] and MRI-based techniques such as described by Ferriero [58]. Unfortunately, few mater-

nities can afford MRI scans for premature babies in such short periods of time after birth, and

reliable and portable ultrasonography techniques designed to be used in an intensive care unit

environment are still in development.

In the case of optical tomography using the FEM, the intrinsic high heterogeneity of an

actual premature infant brain seems to require a deep insight into the modelling technique. To

find a contrast between an heterogeneous background and an heamorragia does not require a

perfect knowledge of the anatomy of the baby. Hebden et al managed to recover the asymmetry

of an hypoxic-ischemic injury in an infant’s brain while taking as a reference for their perturba-

tive DOT reconstruction approach a balloon filled with an homogeneous intralipid solution. In

addition to that, the FEM mesh used was representing a baby doll’s head warped onto a helmet

of sources and detectors.

We will see that part of our planned work coincides with this study and the improvement

of the head model used for the computation.

Other research groups have worked on this subject recently, and we would want to single

out the study by Heiskala et al [59], in which they assessed the importance of the optical pa-

rameters distribution in the reconstruction using simulation on Monte Carlo-based data. They

concluded that although an heterogeneous representation of the neonatal head in the mesh does

contribute to accuracy, a layers-based technique gives more accurate results, especially in terms

of depth recovery.

Adult brain The adult brain, especially the uppermost layer, the cerebral cortex, was inves-

tigated by Bluestone et al [53]. They recovered changes in the hemoglobin concentration in

superficial areas of the brain using the FEM for the reconstruction.

However, this biological tissue is very thick for near-infrared light to pass through. The

depth limite of breast imaging (see paragraph 2.1.1.3) for example is overtaken by the neces-

sary source-detector distance due to the human head’s shape and goes down to about 1.5 cm.

This theoretical limit comes out of a sensitivity study for the use of the current FEM in this

case by Dehghani et al [60] on a large-scale (whole head of 90000 nodes mesh) simulation.

Experimentally, this value varies between 5 and 10 mm [61] or slightly more [62] up to 15-20

mm. This is very close to the size of the extracerebral layers, which varies between 8 [62]

and 14 mm [63]. It means that only the superficial layer of the adult brain (cortex), which is

very largely flat (at the resolutions achieved by DOT), is imaged. Due to these limitations, the
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current clinical applications of the investigations on this system in tomography are few, if any.

The optical topography mode is further described in chapter 7.

Another study where layers played an important role is the series of experiments by Hup-

pert et al [64] where they reached an outstanding 3D positioning precision of oxy- and deoxy-

hemoglobin rate change targets on the brain surface. According to the article’s authors, it shows

similar patterns to the fMRI findings. Although not being DOT, it used a layered forward model

FEM code designed for DOT: NIRFAST [19, 65], a package similar to TOAST.

Limbs, joints and muscles The capacity of DOT with the FEM to image absorption differences

in bones and oxygenation in muscles allows its application range to reach the area of movement

effect observation and articulation damage assessment. Arthritis, for example, is a major disease

[66] of which the effects on the joints and articulation can be seen through changes in the

absorption and scattering coefficients [67, 68] using these techniques.

Thanks to its versatility, especially in the case of a reference-free (non-linear, see section

4.3) problem solving, the FEM was used in a study by Xu et al [52] in which they recovered

acceptable scattering and absorption coefficients for the bone and synovia in healthy finger

joints. This first attempt was followed by more extensive studies using the RTE and Monte-

Carlo Simulations by A. Hielscher’s group [26]. These studies do not involve the FEM or the

diffusion approximation.

Hillman et al also made a breakthrough in this field by imaging the arm activity during

exercise with DOT [69]. Activation patterns have been proven to be visible, even within the

context of the Diffusion Approximation (DA), using the FEM.

Breast Imaging This area is one of the earliest application of optical imaging. It has been

reported as being employed by Cutler in 1929 to observe lesions in the breast [70]. It was then

called diaphanoscopy, and consisted simply in observing the inner structures of the breast with

visible light.

Since then, considerable improvement have been made and the 3D resolution, thanks to the

FEM, has been reached. The first report of such an achievement with pure optical tomography

(an ultrasound aided one had been done before [71]), in a Continuous Wave (CW) framework,

was made by Jiang et al [72]. Using the FEM, they recovered the characteristic signals of

two tumors. Although, because of the CW setting, absorption and scattering were not properly

separated [73].

Because of the growing concerns on breast cancer [74] particularly and also on other

pathologies [75] affecting this organ, widespread efforts are made to improve the specificity

and accuracy of DOT and FMT in this field. The depth limit has been pushed back to about 4-5
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cm. The seminal work of Choe et al [10] proves that DOT can detect the effect of chemotherapy

(or the absence of effect) earlier in the therapy than MRI using the FEM and the DA (see also

[76]).

Small Animal Imaging The Fluorescence Molecular Tomography/X-Ray Computed

Tomography (FMTXCT) scanner which is developed by some members of our research group

in collaboration with our european partners (FMTXCT project) is designed to perform mouse,

rat and rabbit imaging for the monitoring of animal models of human diseases. In fact, recent

developments in genetic engineering [77] have allowed the emerging of an intensive effort

on studying human diseases this way, and investigate them with in vivo, non-invasive optical

imaging [78, 79].

However, the reliability and accuracy of the optical tomography, and more specifically of

the DA in this field is debated by some. For example, Klose et al [80] expressed concerns about

its use in setups where the sources and detectors are close to each other and where very thin

layers are present. One will notice that they are using the FDM which itself is less adapted to

the complex geometries met in small animal imaging compared to the FEM [50].

Focusing on DOT using the FEM and the DA, we realize that this method is indeed appli-

cable, since it is the basis of a significant part of the studies [81]. In the particular case of in

vivo small animal imaging where the proper treatment of the complex geometry requires a fine

analysis, unlike the compressible/easily immersible breast which geometry can be modified for

example, anatomical data is obtained prior to the actual in vivo optical tomography. Then, a

FEM mesh is generated and, depending on the resolution required and the expected accuracy of

the reconstruction algorithm, the segmented mesh is assigned background optical properties.

One should distinguish two types of tomographic optical imaging in the case of small

animals. First, the endogenous contrast imaging, similar to what we saw before, where the scat-

tering and absorption coefficients are recovered (sometimes at multiple wavelengths [82]) They

can lead to various values in the environment such as the concentration of oxidised hemoglobin

versus the concentration of deoxy-hemoglobin, depending on the information available [83, 84].

The exogenous contrast can be achieved through the use of fluorescent [85, 86, 87, 88] or

bioluminescent probes [89] mainly. Companies, such as QUIDD S.A.S. (QUantitative Imaging

for Drug Development with their QUIDD Optical System scanner, Saint-Etienne du Rouvray,

France), Visen Medical (with their FMT Scanner, Woburn, Massachussets, USA) and Caliper

Life Sciences (with their IVIS Spectrum scanner, Hopkinton, Massachussets, USA) develop

such probes along with their associated FMT scanner. This modality is the most looked upon

by external players, since the 2D fluorescence imaging was, and is, still of primary importance
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Figure 2.1: Double diffuse optical tomography forward model of FMT (FP: Forward Problem)
in a MOBIIR scheme (Model-Based Iterative Image Reconstruction [2, 3, 4])

in a number of pharmaceutical applications along with the new 3D abilities that FMT provides

[90, 91]. The monitoring of animal models of diseases and its response to chemical stimuli

such as induced by engineered chemicals is a long lasting area of research and a key step in the

development of drugs [92, 93].

Small animal imaging is the main modality in which exogenous contrast is met [17]. In

the particular case of fluorescence, two different problems must be adressed:

- the excitation problem

• Source: excitation light source

• Outcome: photon density in the medium

- the fluorescence problem

• Source: fluorophores excited by the photon density in the medium found in

the previous problem

• Outcome: final signal

This combination constitutes the FMT forward model (see Figure 2.1). In the case of biolumi-

nescence, the forward problem is reduced to the fluorescence problem: the technique is then

called Bioluminescence Molecular Tomography (BMT) [94].

2.1.1.4 Limits of a volume mesh-based method

Void (non-scattering) regions It is well-known that the FEM fails to recover proper optical

parameters when confronted by void regions [95]. This is due to the failure of the DA formula-

tion it models. The integral equations have to be modified to take in account the low-scattering

region in order to correctly represent the phenomenon observed in this case [96]. This includes

the Cerebro-Spinal Fluid (CSF) layer present between the grey matter and the skull [97, 5]. In

our work, however, the CSF is not taken in account at any time. This is a common custom in



2.1. The Finite Element and Boundary Element Methods in Diffuse Optical Tomography 29

the tomography of the neonatal brain [40, 98]. In adults, it can significantly alter the results by

modifying the shape of the measurements’ sensitivity as seen in Okada et al [5]. As we will

see in a subsequent section, the CSF’s influence can be taken in account by restraining the re-

construction to the outer cortex layer, the only reachable region of the adult brain. Once more,

the CSF cannot be properly modelled with the diffusion approximation alone [96, 99, 100],

especially with complex geometries such as a multi-layered model of the neonate’s head. The

BEM-FEM presents an advantage over the FEM in this particular problem, since it has been

proven that, a formulation very interpretable as a BEM-FEM hybrid equivalent has been com-

bined with a radiosity-diffusion model of the propagation of photons in the CSF, the forward

model can be matched against a more rigorous technique based on the RTE [96]. However, no

attempt to implement this has been made in our work.

Thin layers The treatment of thin layers by the FEM on complex geometries requires the

generation of a large number of small elements which in addition have a sometimes strong dis-

continuity in optical properties inherent to the layered structure. This effort should be avoided,

since it generates a computational weight which slows down the overall solving process.

We do not consider here the actual computational effort made to generate the meshes which

is very comparable between surface and volume meshes when using the appropriate tools. We

rather speak about the optimization process needed to obtain a mesh which properly represents

the layered nature of the biological media. Volume meshes like the one presented in [101] are

not easy to obtain since some tetrahedra in the thin layers have to be very small to fit in them.

Large disparities in element sizes have been proven to have a negative effect on the interpolation

error [102, 103] (by compromising the conditioning of the system matrix, for example), and the

only stable solution would be a very fine meshing all over the geometry. Such mesh densities

are sometimes unpractical and ask for an additional computational effort. However, this is the

solution we chose to compare the BEM-FEM results with a FEM solution later in this thesis and

in the article we have published. Actually, as it can be seen in the reconstruction pictures (see

section 6.2), the skull layer is so thin at some points that almost no grid element was found being

completely inside it. This resulted in an extrapolation to the grid base which does not exhibit to

the naked eye any skull layer. In fact, this layer is present in the values given to the absorption

and scattering around it which differ from the “pure” scalp or “pure” brain. One can argue

that, in order to really get to a point where every layer is easily recognisable everywhere in the

mesh, an even higher mesh density should have been used for the restricted FEM. This would

have severely altered the Jacobian building time and might even have proven the restricted FEM

slower than the BEM-FEM.
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Computational effort One might argue that there are no alternatives to a finer mesh when

wanting to represent thin layers, if we want to stay in the diffusion theory framework. It is true

that it was the case in the 1990s, when techniques like the BEM, which “skips” the treatment of

homogeneous volumes and only considers their boundary in an integrated manner, were slow

and not very distinguishable from the FEM [104]. Actually, although a boundary meshing

involves obviously less unknowns, the linear equations to solve in the forward model are more

complicated. In our particular DOT case, we will see that, with the current implementations,

the FEM generates sparse system matrices while the BEM generates full ones. However, we

will also see in the next subsection that recent advances in the numerical implementation of the

BEM changes the mathematical landscape in its favor.

2.1.2 Boundary Element Method in DOT and FMT

2.1.2.1 Origin and basic principle

Actually, as mentioned in subsection 2.1.1.1, the first FEM problem solved was actually using

2D surface elements to represent a 3D thin volume. The BEM goes beyond this approach

by considering integrated quantities over the volume. It was proposed very early on as an

alternative to the FEM, and was actually “born” in the UK, thanks to the pioneering work of

two researchers from the Imperial College London, Jaswon and Symm [105, 106]. From its

“boundary integral equation” initial name it became the BEM in Brebbia et al’s pioneering

work [107].

One has to wait until Ripoll’s seminal work [108, 109] to see a surface integral formulation

being applied with success to the DOT problem. And before the unique shape-based reconstruc-

tion scheme developed by Zacharopoulos et al [9], reconstruction methods with the BEM were

not comparable in shape accuracy to the FEM, although fundamental differences still remain.

However, one will notice that the BEM in DOT still suffers from severe slowness as seen in the

second figure of [110] for example. It has been tested on various models, from a human head

model [24] or a mouse head model [111] to a small animal’s chest phantom [112]. It still lacks

in vivo tests.

The advances made from these early works are summarized in [33].

In its modern form, the BEM uses Green’s second equality [32] which enables us to di-

rectly and simultaneously compute the photon density and flux on the surface. It thus needs

only to discretize surfaces and the continuity in the volumes is automatically ensured. This is a

reduction of dimensionality [113, 114].
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2.1.2.2 Advantages

Mesh generation Not meshing the inner part of a system considerably reduces the modelling

time and allows an easier consideration of adaptative techniques [34]. It avoids the presence of

a large number of thin elements. It significantly facilitates the handling of infinite and semi-

infinite domains as well.

In the particular treatment of data from patients, which involves the treatment of changing

biological media geometries due to the anatomical features of each subject, the BEM eases the

process of adapting the discretization meshes. Actually, in our work (see subsection 6.2.1), we

used this particular ability to generate the patient-specific meshes presented.

Computational accuracy Green’s second equality gives the photon density simultaneously

with its normal derivative on the surface, the photon flux, contrary to the FEM. A separated

processing of the photon density to obtain the flux needed for the computation of the intensity

measurements on optical detectors introduces an additional error level in a volume integral-

based framework.

Treatment of non-scattering regions Compared to the FEM, it can directly handle void regions

and provide accurate results [35]. However, these considerations are outside the DA framework.

2.1.2.3 Fundamental limitations

Matrix handling Although the treatment of less nodes obviously reduces the number of un-

knowns and of equations, the BEM matrix is very densely filled. In a regular approach, like the

one used so far in DOT, the BEM matrix is non-symmetric [24]. In addition to that, it suffers

from intrinsic ill-conditioning [33].

Non-straightforward reconstruction One of the fundamental assumptions made in BEM is

that the space optical properties are region-wise constant. This complicates the inverse prob-

lems, as we saw before, and the level of detail and flexibility reached with volume mesh or

volume grid-based methods is never fully reacheable.

2.1.3 BEM-FEM Combination

2.1.3.1 Reported attempts and formulation

Combining the BEM and FEM is common in many areas of computational physics, such as

acoustics [115, 116], electromagnetics [117, 44] and of course its “birthplace”, continuum me-

chanics [42, 118, 119, 120, 121, 122]. However, there is not any record of the combined usage

of these methods in DOT.

It is actually some of the co-inventors of the FEM, Zienkiewicz et al, experts in compu-

tational mechanics, who first stated a numerical formulation for the BEM-FEM combination



2.2. Optical Topography and Cortical Mapping 32

BEM Link FEM
FP Solution Search <Elleithy et al’s Method [123]> FP Solution Search

Variables’ Definition <Our Method> Variables’ Definition
Matrix Form <Our Method> Matrix Form

<Sikora’s Method[33]>
Discretisation <Sikora’s Method> Discretisation

Weak Formulation Weak Formulation
Boundary Conditions <Our Method> Boundary Conditions

<Sikora’s Method>
Local Formulation Local Formulation

Table 2.1: BEM-FEM formulation representation showing the different links established be-
tween FEM and BEM - the higher the link, the weaker it becomes (FP: Forward Problem)

[36]. It was then applied to a number of problems in mechanics and elsewhere, as we saw

in the list above. However, one will notice that almost each team of researchers invented its

own BEM-FEM combination formulation and conditions. These approaches mainly differ in

the level where the bound is created, either in a simple equality constraint on the values on the

boundary, or a more sophisticated condition on the unknown function and its derivative on the

boundary, or an iterative scheme leaving intact the matrices, etc. Sikora [33], in the beginning

of his digression about the BEM-FEM combination, and Elleithy et al [123], in the literature

review of their article, outline dozens of different formulations that we will not enumerate here.

Each physical problem has different laws prevailing at the boundary, and Descartes’ law of re-

fraction (Snell’s law) on an index mismatch boundary are very different from the laws applying

on the boundaries of a Poiseuille flow. We will expose later (Section 3) in this thesis the chosen

formulation, specific to the DOT problems, and its application.

We listed some formulations in a layered table 2.1 which represents the different levels of

computation.

2.2 Optical Topography and Cortical Mapping

2.2.1 Origin of NIRS

2.2.1.1 Basic principles

It is in 1977 that Jöbsis [124] had the idea to use infrared light to have an insight on the oxy-

genation of vital organs. In most of the optical topography/DOCM/NIRS problems, the quantity

which is monitored is the Hemoglobin/Total Hemoglobin ratio (HbO2/Hbtotal) or the Deoxy-

Hemoglobin/Total Hemoglobin ratio closely related to the absorption coefficient. Some re-

searchers also use different metrics and compute the actual concentrations of HbO2 and HHb.

It gives an insight on the oxygenation and can indirectly measure the activation of a region. This
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Figure 2.2: The difference between tomography and topography: tomography considers slices
(from the Greek tomos, “section”) like the one which goes accross the layers while topography
(from the Greek topos, “place”) refers to the mapping of a surface

technique should not be confused with the diffuse optical tomography we have spoken about so

far (see Figure 2.2).

The technique is called spectroscopy because of the fact that this ratio cannot be deter-

mined by a measurement at a single wavelength. In fact, as depicted in Figure 1.2, finding these

variables requires the computation of the absorption of the investigated tissue at two wave-

lengths at least. This procedure also allows to reduce the scattering effects [125]. The link

between the attenuation in a measurement ∆A, a change in the absorption coefficient ∆µa, and

changes in the concentration of chromophores was established later by Delpy et al [126] from

a Beer-Lambert law. They called this expression the modified Beer-Lambert law:

∆µa =
∆A× ln10
ρ×DPF

= ε∆C (2.2)

where ρ represents the distance between the detector and the source, Differential Pathlength

Factor (DPF) represents the derivative of the attenuation by the absorption coefficient (estimated

by simulation), ε is the matrix of the specific absorption coefficients for each chromophore at

the different wavelengths and ∆C is the vector of chromophore concentration changes. When

possible, the DPF can also be derived from time domain measurements [127]. This method can

be extended to more than two layers (the DPF becomes the Partial Differential Pathlength (PDP)

[63]) and the number of measurements to take increases with the number of layers added to

the model. Such considerations allow the use of the continuous wave instruments to find the

oxygenation ratio in tissue. They have the advantages of having a very fast response time below

1s [128] and have less motion restriction than the devices as the one used for the experiments in
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Figure 2.3: Penetration of a measurement in pink with the probed area of the cortex in purple -
this is inspired from the findings of [5]

this thesis (time domain). They are currently the most readily available commercially and very

large versions of them with multiple source-detector couples exist [129, 130, 131].

Other methods of computing the absorption, hence the oxygenation, have been developed

[132] and another one will be described later in subsection 2.2.1.3. It is even possible, with

sophisticated optimization techniques and spatially resolved spectroscopy, to obtain the scaled

absorption and oxygenation in the tissues investigated [133, 134, 135].

There are actually no standard approaches for the analysis of functional Near Infra-Red

Spectroscopy (fNIRS) data [125].

2.2.1.2 The particular case of the brain

Most of the current efforts in fNIRS are concentrated on the adult brain. Usually, an array of

sources and detectors emitting NIR light at levels of 5-10 mW [64] are applied. The brain of

an adult human, when probed with a NIR device, is thought to behave like a multi-layered slab

[5] (see Figure 2.3). Due to the optical properties of the latter, particularly due to the presence

of a CSF layer, the light cannot reach deeper than 5-10mm according to some [136, 61] (see

subsection 2.1.1.3).

The models used are mainly linear, like the modified Beer-Lambert law and the results

of the reconstruction depend strongly on the model. Errors of 5 to 11% on the absorption
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coefficient can be introduced by the uncertainty on the thickness of the upper layer [137] (in

a two-layered model, it represents the skull/scalp extracerebral layer). When the thickness of

this layer increases or the source-detector distance increases, the spatial resolution decreases

linearly but the contrast falls exponentially [136, 138]. A good review of the optical parameters

assigned to these layers can be found in [139].

Part of the solution is usually found with the input of a very sophisticated technique, most

commonly a Monte-Carlo based method (examples: [140, 61, 141]), to compute a few key

parameters, such as the PDP or the Mean-Time of flight Sensitivity Factor (MTSF), the time-

domain counterpart of the PDP, as we will see later. These Monte-Carlo techniques are too

often poorly documented and each laboratory has his own code. Some tend to favor complicated

models with a lot of layers, which do not have any biological meaning [62], some others just

separate an extra-cerebral and an intra-cerebral layer [136] and a very large part of the literature,

as we will see in subsection 2.2.2 considers the pathlengths as just parameters already put into

a commercial machine (example: [142]). However, the most impressive results obtained so far

have used alternative techniques with a multi-layered anatomical model, close to ours [64, 143].

The method has its limits and for example, the modified Beer-Lambert law, if based on

two distances, remains the best method to compute the changes in absorption in the cerebral

area as long as the upper layer (in a slab model) does not exceed a thickness of 1.4cm and does

not thin below 0.8cm [63] which is not a large range.

In order to cope with the limitations of the CW techniques, various methods have been de-

signed. One of the most readily available machine, the Hitachi ETG-4000 (http://www.hitachi-

medical.co.jp/english/products/opt/etg4000/index.html) is able to image up to 52 channels at

the same time (see [144]), enabling the CW technique to probe a larger area. However, one must

bear in mind that the maps given by this machine are based on atlases and tabulated data, not on

the individual subject, despite the apparent simplicity, speed and insight it is said to give into the

cognitive processes [145]. A more careful usage is possible, when registering fiducials based ei-

ther on the 10-20 Electro-Encephalography (EEG) system [146, 147, 148] or custom positions.

MATLAB routines exist to perform such operations (http://brain.job.affrc.go.jp/wordpress/).

They compute the coordinates of the probed brain in the MNI-Talairach (Montréal Neurological

Institute atlas) space as stated by Singh et al [149] and Tsuzuki et al [150].

One can also simply increase the redundancy of the measurements. This is the solution

chosen by Boas et al [151], for instance. It is also possible to increase the accuracy by using

statistical methods to analyse the data, such as the Generalized Linear Model [152, 153], which

considers the signal’s temporal varations rather than its amplitude and is the standard analysis
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method for fMRI [154], Statistical Parametric Mapping [155, 156] or the Wavelet-Minimum

Length Description [157]. These methods, however interesting, will not be detailed here, be-

cause they are out of the scope of our study.

2.2.1.3 Alternative topographical methods

Time-domain optical topography Despite the fact that they are more expensive than most CW

systems, a large number of time-domain imagers and other spectrometers have been developed

for this [158, 159, 160, 161, 162, 163]. All these machines are able to record the arrival of

photons at a picosecond level (rather than the ms of the CW systems) and are based on Time-

Correlated Single-Photon Counting (TCSPC) units (see our Multichannel Opto-electronic Near-

infrared System for Time-resolved Iterative Reconstruction (MONSTIR) system described in

subsection 4.1.1).

One of the leading groups in this domain use a linear model derived from the modified

Beer-Lambert law. H. Wabnitz and A. Steinbrink developed an analysis method based on the

moments of the Temporal Point Spread Function (TPSF) [62, 164, 165, 166]. They include the

mean, variance and total number of photons. More particularly, the variance of the TPSF has

been proven to have a selective sensitivity to deep absorption changes and is deemed by them

as being suitable for the representation of cerebral signals, while the total number of photons is

sensitive to extra and intra-cerebral changes. Using moments allows to get rid of the influence

of the instrument response function as well as the timing drift (for the variance).

Their analysis method extends the modified Beer-Lambert law by introducing time-

dependent partial differential pathlengths computed with Monte-Carlo simulations using the

RTE. However, the background optical properties are computed using an analytical expression

on the averaged TPSF over time. For the absorption coefficient, they have developed a method

to separate the extra-cerebral from the intra-cerebral layers [167]. Their goal is to obtain the

oxygenation rate around the particular optode, not to reconstruct actual functional cortical im-

age because they would then need more accurate values for their background optical properties.

Instead, they do what is called “depth selective analysis” where the information from the mo-

ments and the time windows from the instrument are combined to observe selected layers of the

head.

A. P. Gibson and C. E. Elwell’s group rather use the TOAST package to reconstruct actual

images of the observed region [168]. Like the German group, a pad of sources and detectors

(much smaller than the Hitachi ones) are placed on the subject’s head, and time-domain data is

acquired. Then, the data is analysed with a tomography package, which, because of the flatness

of the pad, cannot provide accurate depth resolution but can produce 2D images. The model of
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the section of the head under investigation is a multi-layered slab such as in [63].

There exists an intimate link between the time domain and phase measurements (described

in section 4.1.1), not only because having the former implies having the latter through a Fourier

transform, but also because the phase shift is linearly related to the mean optical path length

[169].

Anatomy-based or mixed modalities The most sophisticated methods of analysis include data

from other modalities, mostly MRI. We will particularly see that, in our case, the phantom

studies in section 7.3 use data from X-Ray CT while our in vivo experiment (section 7.4) uses

an atlas mesh built from MRI data.

As far as accuracy is concerned, the best studies so far have relied on MRI-derived data

and analysis methods. Abdelnour et al [64, 170], for example, have used a Finite Element

Method (FEM) model for the propagation of light through tissue in a biologically accurate 5

tissue types model of the head. The fidelity to the anatomical features was ensured by the use of

a well-known MRI tool, Freesurfer [171] which contains an atlas of the adult head. However,

since the FEM gives a volume solution, the surface one has to be extracted in order to perform

actual DOCM. Our model aims to simplify a similar process by integrating the photon density

on the volume within the model itself. The solution that it outputs is a surface density. Another

example of this combination is found in a study by Y. Tong and B. Frederick [172] where the

fMRI analysis tools have been used with the Blood-Oxygen-Level Dependent (BOLD) signal

being replaced by the fNIRS data. Studies by Custo et al [173] and Caffini et al [174] also show

the successful use of MRI-derived data for the geometry of the adult head in a similar context.

It is also possible to simply co-register MRI and optical data as is often done with interpo-

lated oxygenation maps [175, 176, 142]. We will see later why this is easily criticable.

EEG is also a popular method to associate with fNIRS. Its 10-20 system allows to register

the NIRS data to the brain without the help of any anatomical measurement. Some commercial

machines, such as the Hitachi one mentioned before have an embedded parallel EEG recording

board and use this correspondence to register the NIRS on their atlas. In addition to the frequent

allusions to the 10-20 positions in the NIRS articles, one can find many studies where the

methods have been explicitly practically combined [177, 178, 179, 180].

2.2.1.4 Criticism

This part is strongly inspired by a very comprehensive review by Y. Hoshi [125].

Chromophores When we look at the full picture, in a biological tissue, it is actually not only the

hemoglobin which produces the absorption signal observed, but rather a collection of molecules

(water, lipids, some proteins, melanin, collagen, etc.). Some consider that HHb, HbO2 and
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H2O are the main chromophores and should be included in the computation, a consideration

which leads to changes in the final value of the oxygenation, as reported by Leung et al [133].

Some others [125] see the CytOx (cytochrome C oxidase) and Mb (myoglobin) as being the

contributors to consider alongside the hemoglobin. Particularly, the oxidation status of the

CytOx has been found to correlate with estimated changes in cerebral oxygen delivery [181].

Moreover, this chromophore is also less susceptible to extra-cerebral contamination [182]. Its

disadvantage is that its redox state only changes under severe hypoxic conditions [183]. In our

study, only the absorption coefficient will be computed, but these assessments emphasize the

fact that a more complete theory for the interpretation of the NIRS signal is needed.

Localization of the sampled region This matter is apparently the subject of intense debates,

since the different publications do not agree with each other as we have seen with the size of the

layers over the investigated region (see subsection 2.1.1.3). Okada et al [5] have clearly demon-

strated that the region lies within the cortex and not beyond, providing normal thicknesses for

the layers, even if the CSF is present. However, the contamination of the NIRS signal by ex-

tracerebral sources, particularly coming from the physiological (non-cerebral) response to any

movement or emotion supposed to be imaged in the cortex [184, 185, 186, 187]. Evidence

has been brought forward to argue that a method is more sensitive to intracranial signals than

the other. The variance of the TPSF is said to be mostly sensitive to intra-cerebral activation

[62, 166]. Some others just increase the number of optodes and/or put wider gaps between them

to separate the signals, but they have not been proven right [130, 131]. It is also argued that

spatially resolved spectroscopy has a high sensitivity to intra-cranial changes [188]. Statistical

techniques can as well have an impact on the localization of the change monitored [189].

Quantification of the investigated variable/comparison between experiments Despite some

claims that the fNIRS and the fMRI can be compared [190], it has been proven many times that

the NIRS signal quantitative accuracy is highly unreliable. There is, in particular, no quantita-

tive link between the BOLD signal and the NIRS one [191, 192].

In addition to this, most of the time, the DPF (or any related quantity) is supposed to be

constant in the experiment, especially between different source-detector pairs. This is actu-

ally wrong [126, 125], and, particularly in the case of CW measurements, it is not possible to

compare the amplitude of data and to give any insight on the absolute value of the investigated

variable.

Even time domain and frequency domain measurements, which are looking at the optical

path length, cannot actually detect transient local signals which do not modify it. Actually, the

ratio of the partial path length (part of the path followed by a photon which is in the cortex) to the
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mean total path length varies with every measurement [193] and this makes the concentration

changes being always under-estimated.

The absorption coefficient change computed in a NIRS experiment can also be challenged,

since the measured quantity is partial [194, 165]. Its value is always lower than what it should

be [195], due to the partial volume effect arising from the focal nature of a NIRS measurement

[196, 192].

Conventional interpolation based approach The shortcut taken by many research groups,

such as Ye’s [156], Takeuchi’s [142], etc. [175, 176, 197], to interpolate the values computed

between measurements to create brain maps is dangerous. No theory of diffuse optical imaging

can justify such a move, since the definition of the scattering forbids such a computation. It is

much more prudent, when no proper 3D modelling of the diffusion events is available to draw

maps without interpolation like in [143] where the positions of the optodes are just lit, without

any interpolated values in between.

Despite all this criticism, the fNIRS has been proven to be a reliable technique when

compared to modalities which are better understood, like PET [198, 199, 200] or fMRI [201,

202]. It has also found applications in many domains, from medicine to psychology. Even the

DOT, on which much of this report discusses, is coming from a deeper understanding of the

NIRS techniques.

2.2.2 Current applications of NIRS

For psychologists/neurophysiologists Despite the fact that it is impossible to compare two CW

measurements and that many assumptions made to develop the commercially available NIRS

devices, many studies have been made on high cognitive processes using the NIRS. It actually

provides a relatively cheap (cheaper than the fMRI) way of investigating phenomenon which

are difficult to detect (or interpret). The areas of observation include:

• Mental illnesses: [203, 204]

• Developmental psychology: [205, 206, 175, 207, 208]

• Linguistics: [209, 210, 211]

• Other cognitive processes: [212, 213, 214]

For physicians NIRS is not yet a totally reliable diagnosis instrument but it is used in a large

extent by research groups to get more information about some dysfunctions in the brain. It

also provides an insight into the attitude coordination and muscle-brain interaction, although

the extra-cerebral signal becomes more important in such cases. A few portable devices have
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been developed to enable NIRS to do what fMRI cannot, i. e. record data on the go, while the

subject is walking or moving in other challenging situations [215, 216].

The areas of investigations include:

• Chirurgy: [217]

• Oxygenation monitoring: [218, 219, 220, 221]

• Pediatrics: [222, 223, 224, 225]

• Muscle-brain coordination: [226, 197, 227, 228, 215]

2.3 Acceleration methods for the BEM

The Boundary Element Method, due to the fullness of its discretized matrix has been deemed,

in the DOT community, as slow and thus a secondary method compared to the FEM or other

faster similar techniques such as the Kirchhoff Approximation [25, 229]. However, there exist

acceleration methods for the BEM. They could allow the DOCM and potentially also the BEM-

FEM to be competitive in computational time, not only in meshing ease.

We describe here the two main acceleration methods, the Adaptive Cross-Approximation

(ACA) and the Fast Multipole Method (FMM). We have chosen the FMM and it is the only

technique described in chapter 8.

2.3.1 ACA

The Adaptive Cross-Approximation [230, 231, 232, 233] is based on the algebraic decomposi-

tion of the BEM matrix. If the nodes are well-organized, i. e. if the node index and the distance

between the nodes are correlated, the BEM matrix has a diagonal band with values far larger

than at the perpendicular extremities as illustrated in [230]. This property is exploited in the

technique to separate the important blocks from the large low rank matrices which are widely

off-diagonal.

Central blocks are generated as-is while the off-diagonal are decomposed following a par-

ticular scheme which simplifies the computation. The expected speed improvement is very

similar to what would be expected by the single-level fast multipole method we will describe

later. For the fully pivoted ACA, the gain is from O(N3) [234] for the complete BEM to O(N2)

for the accelerated one [232] with N being the number of degrees of liberty (in the problems

presented in this report, the number of nodes).

Nevertheless, one should remember that the ACA decomposition is algebraic and does not

take in account the geometry and physical properties of the system, contrary to the FMM. There
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has been attempts to integrate the geometry of the problem and thus optimize the ACA, with an

algorithm built for symmetrical media. Besides, the ACA is not as developed and tested as the

FMM [234].

2.3.2 FMM

A breakthrough to improve the speed of the BEM technique was made by Greengard et al when

they first described a new fast acceleration technique in their seminal paper of 1987 [235].

It was later implemented in 3D by Schmidt and Lee [236]. The FMM [237, 238, 239, 240,

235, 241, 242] consists in separating the near and far interactions and decompose the equation

matrix-vector products into a sum of vectors on the unit sphere and a sparse matrix-vector

product. The only remaining integrals are on the close nodes. No system matrix is computed

fully explicitly, because only matrix-vector products are actually output.

The expected improvements range from an acceleration to O(N
3
2 ) operations for the single-

level FMM to the maximum acceleration possible for the BEM which is O(Nlog(N)) for the

multi-level FMM.

2.4 Hypotheses: forward model improvement

My Ph.D. is focusing on a novel approach for the forward model, using a combined BEM-FEM

and a BEM DOCM scheme. The justification and detailed explanation of the method’s content

is provided in the following chapters of the thesis. We also show improvements to the existing

BEM technique through the completion of the development of a single-level FMM.

All these quoted techniques have no precedent usage record in the DOI/DOT field. They

actually all come from Continuum Mechanics [243, 36] except the FMM [235]. Their basic

principles, which will be innovatively changed to fit our purposes, and the hypotheses we want

to prove are outlined in the following paragraphs.

BEM-FEM (Chapters 3 - 6)

Our first hypothesis is that the BEM-FEM is a more easily accurate forward model method

than the existing FEM while still being very versatile. It combines the meshing and adaptabil-

ity of the BEM method with the reconstruction simplicity and accuracy of the FEM. Its worth

is proven in this thesis through a large number of benchmark results. We first assess the ef-

fect of the presence of the FEM part of the problem on the BEM-FEM results by comparing

them with an analytical solution in some simple cases. We then test the script on numerous

meshes and complex geometrical configurations representing some of the major DOT’s areas

of investigation.

The second part of our tests is based on previous publications of our research group. They
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are done on two experiments, one with a multi-layered phantom and the other with data from

an in vivo experiment. All the reconstructions in this thesis are done using a linear single-step

approach with assumed background optical properties for the layers.

BEM DOCM (Chapter 7)

The second hypothesis is that using the BEM eases the reconstruction of cortical maps from

optical data and anatomical information. We believe that this new method allows a better inter-

pretation of the experiments compared to the existing interpolations methods. This should be

particularly visible in the localization accuracy. We also show its usage in simulated, phantom

and in vivo contexts. The simulation highlights the integration-based nature of the technique,

by showing its intimate link with the characteristics of the measurements, more particularly

the Photon Measurement Density Function (PMDF). The phantom and in vivo results, though

based on the same data than the previous technique, highlight different aspects. They also show

the accuracy of the method.

BEM Acceleration (Chapter 8)

Our third and last hypothesis is that the FMM is adaptable to optical imaging, despite the

challenges brought by the introduction of a significantly imaginary wave number.

The FMM’s background is described in details in this thesis. Through a clustering of

the elements of the surface mesh and some mathematical scheme to reduce the number of

operations to perform, a significant speed improvement is achieved. The adaptation of the

FMM to the Diffusion Equation (DE) is not straightforward. It requires us to return to the

basic principles and explain the whole decomposition. After the description, speed tests are

performed on various geometries.

A simplified BEM code able to handle experimentally available sources is also associated

to it in order to further accelerate the method. It is only used to illustrate the FMM and no

reconstruction is performed.



Chapter 3

BEM-FEM Theory and Numerical Problem

Formulation

Principle of the method In this chapter, we will start by describing the Diffusion Approxima-

tion, then the BEM and FEM we intend to use throughout my thesis. Then, we will explain

how we bind them together by making the intrinsic relationship between the energy density and

the flux of photons coming partly from the BEM and partly from the FEM computation. The

original idea was suggested in an unpublished note by S. Arridge [244], from which most of

this chapter is inspired.

3.1 Diffuse Optical Imaging framework

We are now going to establish in an heuristic way the complete standard model which governs

all scattering problems, from optics to thermics, or astrophysics or meteorology: the RTE. It

was established in its modern form by S. Chandrashekhar [245].

Let’s consider an arbitrary diffusive volume in which an electromagnetic light wave passes

(see Figure 3.1). The radiative energy balance on this volume is the following, taking care of

each individual term and without approximations:

• Input and intrinsic energy:

– entry of photons and transport of the directional energy density

– internal sources

– incoming scattered photons

• Output and losses

– absorption

– scattered photons from the inside going outside the volume
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Figure 3.1: Sketch of a unit sphere of scattering volume described when writing the energy
density balance equation (RTE 3.1)

One can then write the following radiative energy balance equation (temporal form):

(
1
c

∂

∂ t
+ ŝ ·∇+ µtr(r)

)
φ(r, ŝ, t) = µs(r)

∫
S2

Θ(ŝ, ŝ′)φ(r′, ŝ′, t)dS(r)+q(r, ŝ, t) (3.1)

This equation is the RTE, with:

- c: speed of light (in m · s−1)

- t: time (in s)

- ŝ: vector on the considered unit sphere S2, taken in the point where the photon

density is computed

- φ(r, ŝ, t): density of photons passing through the point at position r going along

the direction ŝ at time t (in W ·m−2)

- S2: unit sphere

- ŝ′: other normal vectors on S2

- µtr: transport coefficient (sum of µa and µs, in m−1)

- Θ: phase function determining the way the photons are scattered (example: tells

about the directionality) - the anisotropy parameter g that we define in our diffusion

model is actually the first order approximation of Θ

- q: internal source (in W ·m−3)

To actually be able to write the diffusion approximation equation, one needs to pass through

many simplification steps.

If we decompose the equation’s solution on a basis of spherical harmonics [2], and take

in account only the zeroth and first order of these functions, we make the assumption that
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the radiance is quasi-isotropic (we do not discuss here the anisotropic diffusion equation). This

approximation is also called the P1 approximation of the RTE. It leads us to this set of equations,

with q0 isotropic and q1anisotropic components of the sources:

(
1
c

∂

∂ t
+ µa(r))Φ(r, t)+∇ ·J(r, t) = q0(r, t) (3.2)

(
1
c

∂

∂ t
+

1
3D

)J(r, t)+
1
3

∇Φ(r, t) = q1(r, t) (3.3)

with

D =
1

3(µa + µs(1−g))
(3.4)

diffusion coefficient, which comprises the anisotropy effects, at the first order of the phase

function,

J =
∫

S2
ŝφ(r, ŝ, t)dS (3.5)

photon current and

Φ(r, t) =
∫

S2
φ(r, ŝ, t)dS (3.6)

photon density.

Then, we consider that the sources present in the medium, if any, emit an isotropic way

(q1 = 0) and that the non-stationary variation of the radiative flux is negligible before the en-

ergy density gradient, i. e. that the transport length ltr = 3D is lower than the flux’s character-

istic variation length. We could consider the anisotropic effects in the diffusion approximation

framework itself by defining a diffusion tensor instead of a diffusion coefficient. This approach

has not been developed in my work, but Heino et al detail it in their 2003 publication [246].

All the approximations outlined before lead us to write these basic equations:

Steady-state

J(r) =−D∇Φ(r) (3.7)

−∇ ·D∇Φ(r)+ µaΦ(r) = q0(r) (3.8)

Time-domain
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J(r, t) =−D∇Φ(r, t) (3.9)

−∇ ·D∇Φ(r, t)+ µaΦ(r, t)+
1
c

∂Φ(r, t)
∂ t

= q0(r, t) (3.10)

Frequency-domain

J(r,ω) =−D∇Φ(r,ω) (3.11)

−∇ ·D∇Φ(r,ω)+(µa +
ιω

c
)Φ(r,ω) = q0(r,ω) (3.12)

In most of the following, only the frequency-domain formulation will be used. It is mainly

because this type of data is easier to handle and yields sufficient information for our study. More

considerations for choosing this modality rather than the historical time-domain for clinical

applications especially are explained in [247, 248]. There is also consistently more noise in

time-domain data, especially since it explores a larger frequency band (up to several GHz)

than the frequency-domain data (the sources cannot be modulated at such frequencies with the

current technology). However, one should remember that the time-domain measurement data,

the TPSF (see subsection 4.1.1) has a higher information content than the amplitude and phase

data coming from a frequency domain approach [125].

Speaking about the steady-state equation, the information drawn out of such experiments

have been proven insufficient for the reconstruction of both the scattering and absorption coef-

ficients simultaneously [73].

Boundary conditions - Milne’s problem To properly implement the diffusion approximation,

we realize that we need to introduce an additional parameter. As we have seen above, the

diffusion approximation is only applicable at “large” distances (the transport length has to be

larger than the light beam’s characteristic variation length) within the scattering medium, a

condition which is definitely not satisfied on the boundary. Nonetheless, we know that only the

surface is imaged. It means that, since the raw solution is not acceptable on the surface, we

need to somehow “force” the solution to be accurate there while staying in this diffusion theory

framework.

One can actually find a simple solution to this problem which bears E. Milne’s name with

a Robin-type boundary condition: defining an extrapolation coefficient ze on each point of the

surface, i. e. an extrapolated surface (at a distance lext = 2zeD, the extrapolation length of the

actual surface) on which the solution would converge to zero [249, 250]. This length can be

defined through many less approximated means. For example, one can solve the RTE on a
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simple geometry: the semi-infinite diffusive medium. This ze then allows the solution of the

diffusion approximation to fit the RTE’s solution on the surface. An example of this approach

is given in an article by Kienle [251]. The other way to solve Milne’s problem, is the definition

of a relationship between the radiative flux and the energy density, both being computed when

solving the diffusion approximation problem on the surface:

[Φ+2zeν̂ ·J]
Γ

= 0 (3.13)

ν̂ here represents the normal vector on the considered point on the surface Γ. Popescu et al

[252] show the correspondence between the two approaches, as stated in the above formula

3.13.

Detailed computations of the extrapolation length can be found in articles by Contini et

al [253] and by Case and Zweifel in a more general radiative transport context [254]. In fact,

it depends on the mismatch between the refraction indices of the two media surrounding the

interface. In the rest of this study, the refraction index will be considered constant everywhere

and equal to that of the vacuum.

In summary, the extrapolation length’s usage is two-fold:

It is defines a necessary but virtual entity, the extrapolated surface on which the energy

density is zero in the framework of the diffusion approximation.

It defines also a zone in which the singularity of Green’s function is manageable. For

example, in the case of the spheres described in section 5.1, the point sources were not put

exactly on the outer sphere but slightly inside it, at a distance from the surface which is of the

order of magnitude of the extrapolation length. This problem does not occur with the Gaussian

sources, since the highest frequencies of Green’s function are not taken in account in the inverse

Fourier transform (see subsection 4.1.2).

3.2 Collocation Boundary Element Method formulation

3.2.1 Integral equations (frequency-domain)

We divide the scattering domain Ω into a piecewise uniform collection of volumes Ωi, 0≤ i≤

nΩ, with Ω0 being the outermost one. Interfaces between subdomains define surfaces Γi, 0 ≤

i≤ nΓ with Γ0 the outer domain boundary (see Figure 3.2). A given surface Γ j for j > 0 is the

interface between two subdomains Ω j+ and Ω j−. The closed boundary of a subdomain is given

by a set of surfaces ∂Ωi =∪ j∈BiΓ j where Bi is the index of surfaces that comprise the boundary

of Ωi.

We define the wave number in each subdomain as such:
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Figure 3.2: Division of the diffusive domain Ω in subregions Ωi

ϖi =
(µa,i + ιω

c
Di

) 1
2 with here ι

2 =−1 (3.14)

where the square root is taken with a positive real part to ensure physically realistic asymptotic

behaviour.

We define Green’s functions for each subdomain as solutions of the point source problem

in an infinite medium which has the subdomain’s optical parameters:

4Gi(r,r′;ω)−ϖ
2
i Gi(r,r′;ω) =−δ (r− r′) with Gi(r,r′;ω)||r|→∞ = 0

⇒ Gi(r,r′;ω) =
1

4π

e−ϖi|r−r′|

|r− r′|
(3.15)

The diffusion equation (3.3) and Milne’s boundary condition (3.13 and [252]) are enforced

in the volume and at the surface of each individual subdomain.

To simplify the BEM equations we adopt a similar notation to [24] and define:

- φi: solution of the diffusion equation within the subdomain Ωi

- Qi: source in subdomain Ωi

- qi: source on the surface convolved with Green’s function Gi

- le: extrapolation length

- U j: density φ restricted to surface Γ j

- Vj: normal current ν̂i ·J restricted to Γ j
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- ν̂ j: normal vector to Γ j

Milne’s boundary condition is then written on the outer subdomain which is only surrounded

by the air:

U0 + leV0 = J− (3.16)

where J− is an incoming flux.

When we apply Green’s second theorem to subdomain Ωi assuming that the boundary of

this domain consists of surfaces Γ j and Γ j′ , we obtain the following:

φi(r) =
∫

Γ j

Gi(r,r′)
Di

Vj(r′)−∂ jGi(r,r′)U j(r′)dS j(r′)

−
∫

Γ j′
Gi(r,r′)

Di
Vj′(r′)−∂ j′Gi(r,r′)U j′(r′)dS j′(r′)

+
∫

Ωi
Gi(r,r′)Qi(r′)d3r′

(3.17)

where we used the notation ∂i := ν̂i ·∇ for brevity.

The boundary integral equations are then obtained when r′ approaches Γi or any inner

surface to the subdomain Ωi.

We define the following operators mapping functions on Γ j′ , to functions on Γ j with j, j′ ∈

Bi:

A
(i)
j, j′U =

∫
Γ j′

∂ j′Gi(r j,r′j′)U(r′j′)dS(r′j′), (3.18)

B
(i)
j, j′V =

∫
Γ j′

Gi(r j,r′j′)
Di

V (r′j′)dS(r′j′). (3.19)

Let us use the properties of the layer potential operators [255, 256] to handle singularities

that occur due to the nature of the Green’s function eq.(3.15) and consider the limits as r ap-

proaches Γi from each side of the interface. Each surface Γ j, j > 0 gives rise to two equations

which we write as:

1
2

U j + ∑
j′∈B j+

s j′
(
B

( j+)
j, j′ Vj′−A

( j+)
j, j′ U j′

)
= 0 (3.20)

and this equation when r approaches the boundary Γ j from the outside:

1
2

U j− ∑
j′∈B j−

s j′
(
B

( j−)
j, j′ Vj′−A

( j−)
j, j′ U j′

)
= 0 (3.21)

where s j =±1 is an indicator as to whether ν̂ j points into or out of region Ω j±. Using eq.(3.16)
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to eliminate V0 results in 2nΓ−1 Boundary Integral Equation (BIE) as detailed in [24].

One notices that eq.(3.20) and eq.(3.21) present singular integrals, due to the form taken by

Green’s function. The factor 1
2 arises due to the method by which the singularities are removed.

It has been calculated [113, 257, 33, 256] for smooth boundaries and thanks to simple physical

considerations, adding a new constraint for the BEM-treated volumes. In fact, for the sharp

corners, other values exist depending on their nature [33].

3.2.2 Discrete system and numerical implementation

The discrete BEM system is obtained from the BIE by choosing a basis representation for the

functions Ui and Vi, and an observation set for the layer potential functions. Following [24], we

use a piecewise polynomial basis for Ui, Vi defined on the surfaces Γi and a collocation method

for the observation set. Each surface Γ j is discretised by n j vertices N j,k;k = 1...n j, with U j

and Vj approximated by the nodal basis functions {u j,k}:

U j(r)≈
n j

∑
k′=1

U j,k′u j,k′(r), Vj ≈
n j

∑
k′=1

Vj,k′u j,k′(~r) (3.22)

The discretisation of the operators (3.18) and (3.19) leads to n j×n j′ dense matrices A(i)
j j′ ,

B(i)
j j′ , with entries

A(i)
j j′(k,k

′) =
∫

Γ j′
δ (N j,k)A

(i)
j, j′u j′,k′dS j′ , (3.23)

B(i)
j j′(k,k

′) =
∫

Γ j′
δ (N j,k),B

(i)
j, j′u j′,k′dS j′ (3.24)

with k′ ∈ 1...n j′ and k ∈ 1...n j.

In the actual implementation, the basis functions are quadratic, and the singular integrals

are treated as described in [9].

Writing f0 = U0, f j =

 U j

Vj

 we can write the BEM system in matrix form as:
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

K00 K01 0 . . . 0 . . . 0 0

K10 K11 K12 . . . 0 . . . 0 0
...

...
...

. . . . . . . . . 0 0

0 0 0 . . . K j j′ . . . 0 0
...

...
... . . . . . .

. . . 0 0

0 0 0 . . . . . . . . . KnΓnΓ−1 KnΓnΓ





f0

f1

f2
...

f j
...

fnΓ−1

fnΓ



=



q0

0

0
...

0
...

0

0



(3.25)

For j > 0 the diagonal blocks take the form

K j j =

 1
2I− s jA

( j+)
j j s jB

( j+)
j j

1
2I+ s jA

( j−)
j j −s jB

( j−)
j j

 (3.26)

and the off-diagonal blocks take the form

K j j′ =



 −s j′A
( j+)
j j′ s j′B

( j+)
j j′

0 0

 j, j′ ∈ B j+ 0 0

s j′A
( j−)
j j′ −s j′B

( j−)
j j′

 j, j′ ∈ B j−

0 otherwise.

(3.27)

Making use of eq.(3.16) to eliminate V0 we have the particular cases

K00 =
1
2
I+A(0)

00 +
1
le

B(0)
00 , (3.28)

K01 =
(
−A(0)

01 B(0)
01

)
, (3.29)

K10 =

 A(0)
01 + 1

le
B(0)

10

0

 . (3.30)

We will not investigate the case of Galerkin BEM, for this thesis does not involve any

re-writing of this part of the forward problem, even if the next formulation, the FEM part, is a

Galerkin FEM.
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3.3 Galerkin Finite Element Method formulation

We first summarize the FEM solution to eq.(3.12). We consider a domain Ω divided into PFEM

elements τk;k = 1 . . .PFEMwith nFEM nodes Nk;k = 1 . . .nFEM, with φ approximated by the

nodal basis functions uk:

φ(r;ω) = φ
h(r;ω)≈

nFEM

∑
k=1

φk(ω)uk(r). (3.31)

For convenience, let us arrange for the first nΓ to be located on the boundary Γ and the

remaining nint = nFEM−nΓ to be on the interior of Ω.

In the Galerkin formulation, the errors resulting from using φ h in place of φ in eq.(3.12)

are made orthogonal to the nFEM-dimensional Hilbert space spanned by the basis functions

{uk}. By application of the divergence theorem and using the representation of the eq.(3.31),

we get the following relation:

nFEM

∑
k′=1

K(k,k′)φk′−
∫

Γ

uk(r)D(r)ν̂ ·∇φ
h(r;ω)dS(r) = qk (3.32)

where K(k,k′) is a matrix element of the system matrix KFEM and is given by

K(k,k′) =
∫

Ω

[D(r)∇uk(r) ·∇uk′(r)+
(

µa(r)+
ιω

c

)
uk(r)uk′(r)]dr (3.33)

and

qk =
∫

Ω

uk(r)Q0(r;ω)dr. (3.34)

Using the Robin condition eq.(3.16) in eq.(3.32), we get

nFEM

∑
k′=1

K(k,k′)φk′ +
1
le

nΓ

∑
k′=1

M(k,k′)φk′ = qk−
1
le

J− (3.35)

where M(k,k′) are the elements of a matrix M given by

M(k,k′) =
∫

Γ

uk(r)uk′(r)dS(r) (3.36)

and

J−k =
∫

Γ

uk(r)J−(r;ω)dS(r). (3.37)

If we make use of the splitting of nodes between the interior and the boundary we can

write the discrete system as:
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 K∂Ω∂Ω + 1
le

M KΩ∂Ω

KΩ∂Ω KΩΩ

 φ∂Ω

φΩ

=

 q∂Ω + J−

qΩ

 . (3.38)

3.4 BEM-FEM Formulation

Surface-flux condition We set these equalities coupling the FEM and the BEM on the surface

of each BEM-FEM boundary subdomain:

φ
FEM
∂Ωi

(r;ω) = UBEM
j (r;ω), (3.39)

Di(r)ν̂ j ·∇φ
FEM
∂Ωi

(r;ω) =−V BEM
j (r;ω). (3.40)

The above eq.(3.40) means that the gradient of the approximated energy density φ FEM
∂Ωi

(r;ω) on

the inner surface (or the outer) multiplied by the diffusion coefficient and its outer normal ν̂ j is

equal to the inner flux coming from the volume −V BEM
j (r;ω) (treated with BEM) surrounding

(or totally surrounded by) this surface. This fundamental association of the BEM with the flux

and the FEM with the energy density is a consequence of the difference existing between these

schemes in the treatment of the flux. Indeed, in a volume integral-based approach, the flux can

be computed only by deriving it from the energy density while in a BEM scheme, it is computed

along with the energy density, as we saw in the previous sections.

Collocation BEM/Galerkin FEM matrix construction If we associate i = j′ for the surface

∂Ωi, we modify eq.(3.26) to

K̃ j j =

 1
2I− s jA

( j+)
j j s jB

( j+)
j j

KFEM
∂Ω∂Ω

−M

 (3.41)

and eq.(3.27) similarly. Then eq.(3.25) is augmented by introducing extra variables φi,k;k =

1 . . .nint to give



K00 . . . 0 0 . . .
...

. . . . . . . . . . . .

0 . . . K̃ j j′ KFEM
Γ j′Ωi

. . .

0 . . .
(

KFEM
ΩiΓ j′

0
)

KFEM
ΩiΩi

. . .

...
...

...
...

. . .





f0
...

f j′

φi
...


=



q0

0
...

0
...


. (3.42)
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Figure 3.3: Example two layers BEM-FEM matrix occupancy plot; 1: BEM matrix for the first
layer, 2: FEM matrix of the second layer’s surface nodes, 3: Galerkin matrix of the second
layer’s surface nodes, 4 and 5: FEM matrix between the second layer’s surface nodes and its
inner nodes, 6: FEM matrix of the second layer’s inner nodes

All matrix blocks are dense apart from the KFEMand M matrices. Figure 3.3 shows a practical

example of such a construction.

Note In the practical implementation, we sometimes eliminate the flux from the variables by

taking the Schur complement [258] of the matrix. This allows us to achieve at least two goals:

• Getting rid of the ambiguity of computing the energy density and the corresponding flux

(derivative) at the same point

• Reducing the size of the problem and then the computational time

For example, in two layers, the simplification is performed as in eqs.(3.43, 3.44).


A00

0 + 1
2I+ B00

0
2D0

A01
0 −B01

0
D0

A10
0 + B10

0
2D0

A11
0 + 1

2I −B11
0

D0

0 A1 + 1
2I B1

D1




U0

U1

V1

=


Q

0

0

 (3.43)

⇒

 A00
0 + 1

2I+ B00
0

2D0
A01

0 + B01
0 B−1

1
D0D1

(A1 + 1
2I)

A10
0 + B10

0
2D0

A11
0 + 1

2I+ B11
0 B−1

1
D0D1

(A1 + 1
2I)

 U0

U1

=

 Q

0

 (3.44)

3.5 Meshing task

The meshing task is considerably reduced with the BEM-FEM compared to a full FEM, as

aforementioned in 2.1.1.4. In a DOT FEM or BEM system preparation phase, the BEM-FEM
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Figure 3.4: Schematic view of the meshing task associated to high resolution DOT

allows to skip some time-consuming steps. Most of the time, a high resolution DOT com-

putation starts with some information on the diffusive media geometry coming from another

modality, preferably an anatomical one, such as XCT [173, 259] or MRI [75, 260, 39]. The

mesh is then built from this data using segmentation tools such as Freesurfer [171] or Brain-

suite [261]. Usually, the optodes/CCD camera/sources position is also known and integrated

into the computation. In the particular case of contact tomography, their position can be used

to infer the geometry. In our work, as described in section 5.3.2, we took an atlas generated

from MRI and warped it on the surface described by the optodes’ positions before creating

the meshes. The whole process is described on Figure 3.4 whose three large upper branches

represent three ways of generating the meshes.

In the BEM-FEM framework, the warping is simplified since it can be applied to the sur-

face meshes alone without a significant change in the volume-integral treated region, providing

that one knows that the region of interest has a stable geometry. Warping volumes is far more

complicated than warping surfaces [262, 263, 264, 265, 266].

Since some MRI-based atlases already exist for the neonatal head, we only had to generate

surface and volume meshes and used the following packages:

• NETGEN [267]: for surface and volume mesh generation



3.5. Meshing task 56

• TETGEN (http://tetgen.berlios.de): for volume mesh generation



Chapter 4

Measurements and Reconstruction

This thesis is focused on improving the forward model of Diffuse Optical Tomography. This is

why we will only briefly describe the reconstruction model and measurement apparatus used.

The reconstruction method has actually already been published in details, and in a more

general setting, in [268]. In all our simulations and experiments, we will only consider the

linear reconstructions of small targets (perturbative approach). The optical properties of the

surrounding diffusing media (background properties) are deemed constant and known.

4.1 Measurements

4.1.1 Apparatus and data

All optical measurements used in this thesis are acquired through optodes (optical fibers)

which are alternatively used as sources and detectors. The device used is the optical scanner

MONSTIR [269]. It is a TCSPC instrumentation with 32 I/O channels.

MONSTIR’s main output are the Temporal Point Spread Functions (see [126]) or his-

tograms of the time of flight of the photons sent through the turbid media studied. They usually

have the form shown in Figure 4.1. From these time-domain measurements, it is possible to ob-

tain frequency domain data through a simple Fourier transform. The latter type of data is easier

to handle. The phase shift and amplitude are derived from the complex value of the Fourier

transform at the desired frequency in the Fourier domain.

4.1.2 Source model

As it can be seen in eq.(3.17), the light sources in the diffusive media, in the BEM formulation

adopted here are not represented by the simple distribution of the energy density generated by

them but by a convolution of this distribution with Green’s function. This convolution has to be

performed on all the surfaces that the source illuminates.

In the simple case of the Dirac distribution as a source, the effective term is the classic

Green’s function, as presented in [24]. However, in the present work, we were trying to mimic
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Figure 4.1: Experimental Temporal Point Spread Function

the experimental results, i.e. the optical fibers of the optical scanner MONSTIR, which we

commonly modelled with Gaussian distributions (e.g. in [270]). We perform this operation in

the Fourier space:

q0(r;ω) =
∫

Ω0

G0(r,r′)Q0(r′)d3r′

⇒ q0(r;ω) = F̂ (FG0(k))⊗FQ0(k))) (4.1)

providing the source is on the outer surface, as in all the experiments presented in this report.

The variable k is here the Fourier variable and has the dimension of a wave number, although it

is different from the subdomain wave number ϖi defined in eq.(3.14).

The expressions of the Fourier transforms are as follows:

FG0(k) =
1

(µa− ι
ω

c )+D0k2 (4.2)

FQ0(k) =
Pσ√

2π
e−

k2σ2
2 (4.3)

for a normalized Gaussian source of power P and width σ .

This computation, apparently simple, is not actually easy to carry out, because the mesh

on which the values are computed is not a regular grid. The theory of non-uniform Fourier

transform seems to be needed in this case [271]. However, we developed another way of per-

forming the convolution. It is possible, by using detailed tables of the value of q0 for a large
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number of radii, from the simple inversion described in eq.(4.1) to the actual value of this BEM

source at all points of the mesh. For each node, a value is picked in a look-up table which

corresponds to the closest distance to the center of the real space. The table is generated by the

inverse Fourier transform and a spline interpolation for intermediary values. This technique is

simple to implement using only the existing Fast Fourier Transform (FFT) tools, providing one

can create a set of evaluations of the source term at enough distances to the center of the space

to give every node a sensible source value.

4.2 Reconstruction method

The difference between the resting state x0 with set optical properties (background) and the

activated state x1is assumed to be linearly related to the difference in measurements y0 and y1

through a sensitivity matrix, the Jacobian [2, 272] W :

δy = Wδx, (4.4)

where x represents a vector of all optical parameters considered in the inversion, and y represents

the vector of all measurements from all sources. Further, we consider the scenario in [98],

wherein the change in optical parameters is considered to be in the absorption parameter only

and that the measurements are the logarithmic amplitude ln(A) and the phase θ of the complex

valued flux J+. This means that eq.( 4.4) is now written:

δ

 ln(A)

θ

= Wδ µa. (4.5)

The experimental derivation of the data is obtained using a time-domain measurement system,

MONSTIR [269], whose output data is Fourier transformed and sampled at a single modulation

frequency [98]. To obtain the corresponding numerical model we introduce the measurement

operator:  ylnA
d,s

yθ
d,s

=

 Re

Im

 logMdfs =

 Re

Im

 logMdK−1qs, (4.6)

where qs is the model for the sth source distribution K is either the FEM or the BEM-FEM

matrix, and Md defines the integration of the photon current J+ = V0 over the aperture of the

detector d. Since the assumption in the BEM-FEM model is that the image variation is restricted

just to the domain Ωi, we define a regular nx×ny×nz grid over the entire domain Ω and a basis

{bk} as the set of trilinear interpolation functions with value unity on each grid point falling
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within Ωi and zero on each neighbouring point. Using these definitions, we define the Jacobian

matrix as:  W lnA
ds,k

W θ
ds,k

=

 Re

Im

<
φ

+
Ωi,dφΩi,s

yd,s
,bk >, (4.7)

where φ
+
Ωi,d , φΩi,s are the forward and adjoint fields within Ωi from source s and detector d

respectively.

The solution to the image reconstruction problem is considered as the solution of the linear

inversion:

(W TCyW +αCx)δx = WCT
y δy, (4.8)

where Cy, Cx are the inverse covariance matrices of the assumed measurement noise model, and

image prior distribution respectively, and α is a regularization parameter.

In this paper, we take Cx = I the identity matrix, which corresponds to a zero-order

Tikhonov regularization scheme, and Cy = diag[1/lnA,1/θ ], where lnA, θ are the average ini-

tial errors in log amplitude and phase respectively [268]. Eq.(4.8) is solved using the GMRES

or the Minimal Residual Method (MINRES) solvers in MATLAB with a tolerance of 10−6.

Regularisation parameter α is chosen using the L-curve method [273] or a derivative of it.

Restricted FEM Many times in this thesis, we will refer to a reconstruction method called

“restricted FEM”. This means that the reconstruction model outlined here is applied to only a

fraction of the nodes of the FEM, while the others have fixed optical properties. In eq.(4.7),

this is translated as φ referring only to the energy density field computed on these nodes. In the

context of this study, they always correspond to the equivalent volume-integral treated region in

the BEM-FEM, although, due to the need for a good computational accuracy, the FEM nodes

are more numerous.

This operation is performed in order to ensure the comparability between the BEM-FEM

and the FEM.

4.3 Alternative reconstruction techniques

Non-linear reconstruction This kind of inverse problem will not be thoroughly explained here,

since it is actually not met in our research and only mentioned in this thesis.

When the evolution from the resting state x0 to the activated state x1 is not considered

linear, the solution is obtained through an iterative process. This is actually a more general

way of solving the DOT problem, since the dependency of the measurements to the optical

parameters is not linear. An initial guess is first created from the information available. It can

be a homogeneous background, for example. Generally, the objective function of eq.(4.9) with
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Figure 4.2: Shape-based reconstruction using the BEM: first (top) and last (bottom) iteration.
The guess is in orange and the target is in green - adapted from [6]

its regularization term Ψ(x) (Ψ(x) = ||x||2 in the zeroth order Tikhonov case) is then optimized

through a second or higher order of approximation. The main difference in the usage of the

solvers based on descent methods (such as GMRES) is in the introduction of a line search

step where the displacement on the direction of gradient decrease has to be found through an

additional optimization process.

H = ||y−Kx||2 +αΨ(x) (4.9)

Other methods which are not based on a descent algorithm exist [272].

Shape-based reconstruction and BEM Few attempts were made to reconstruct targets in a

pure BEM framework and they have succeeded only on synthetic data. Arridge et al [6] used

a shape-based non-linear method which iteratively generated shapes for a single target until

convergence (see Figure 4.2). This process is computationally expensive and requires the user

to know the number of perturbations present in the medium. Besides, it has only be successfully

tested with the FEM on experimental data by Zacharopoulos et al [274].
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BEM-FEM Simulation Results

5.1 Forward Model - spheres

We benchmark here the accuracy of the forward model on simple analytically-computable prob-

lems where frequency domain data (modulated intensity) is computed. The analytical solution

is derived from the algorithm used in a previous publication [24]. It is based on a decompo-

sition of the solution in spherical layers on a basis of modified spherical Bessel functions and

spherical harmonics.

In all our forward model results, no detectors are considered, the energy density is com-

puted on all the nodes of the mesh and displayed as such.

5.1.1 Two concentric spheres

In this subsection, only the innermost sphere is treated with a volume-integral formulation.

We used a spherical volume mesh of 3554 volume nodes, 2146 volume elements, 1270

surface nodes and 634 surface elements. The outer sphere’s surface mesh is the same as the

inner sphere surface mesh as depicted on Figure 5.1.

Although the spheres were relatively small (2.5 cm radius for the outer sphere and 1.25 cm

for the inner sphere), the optical properties were characteristic of a regular biological medium:

µ ′0s = 1mm−1, µ0
a = 0.01mm−1, n0 = 1; µ ′1s = 0.5mm−1, µ1

a = 0.02mm−1, n1 = 1. The fre-

quency was f = 100MHz.

The forward model (Figure 5.2) shows a perfect agreement with the BEM, and comes very

close to the analytical solution. We avoided to put the point source directly on the surface but at

a transport length from it because of the singularity it would create in the equation 3.17, since

the source model includes a direct division by the distance between the nodes and the point

source. Only the amplitude graph is scaled by a factor to fit the solutions on the outer sphere at

the angle 91.4° and help in the overall understanding.
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Figure 5.1: Cut through the meshes setting in the spherical cases (left: two concentric spheres;
right: three concentric spheres with a volume meshed shell)

Figure 5.2: Forward model results on two concentric spheres (crosses: analytical model, contin-
uous lines: BEM and BEM-FEM models which are superposed) - on the left, the log amplitude
results can be seen against the angle to the source in degrees - on the right, it is the phase in
radians against the angle to the source in degrees. Notice that the energy densities (log intensity
and phase) on the two surfaces are plotted together. They can be identified by considering that
the smaller the value of the log intensity at 0° and the larger the value of the phase at 0°, the
deeper the surface.
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5.1.2 Volume meshed shell

Here, it is a spherical shell, in between two BEM-treated volumes (see Figure 5.1) which was

simulated.

As in the previous setting, the outer sphere surface mesh is the same than the outer surface

of the shell but the innermost surface mesh differs from it. There were 35398 volume nodes,

23680 volume elements, 3906 surface nodes and 3808 surface elements.

Speaking about the physical properties of the system, the inner and innermost radii were

the same as in the previous setting but the additional outer sphere had a radius of 3.25 cm.

The optical properties were also similar with µ
′outer
s = 1mm−1, µouter

a = 0.01mm−1; µ
′inner
s =

0.5mm−1,µ inner
a = 0.02mm−1; µ

′innermost
s = 1mm−1,µ innermost

a = 0.01mm−1. The plot is visible

on Figure 5.3. Once more, the amplitude results have been scaled in an identical fashion to the

two-layers model to fit the analytical solution.

5.2 Forward Model - complex geometry - neonatal baby head

This case is in the continuation of a previous study by Sikora et al [24]. We used the same

meshes (see Figure 5.4) and a NETGEN-generated volume mesh for the inner part of the

brain. In the results shown in Figure 5.5, the optical properties are these of the article’s case

1, which are µ
′brain
s = 1.25mm−1, µbrain

a = 0.0178mm−1, µ
′skull
s = 1mm−1, µskull

a = 0.01mm−1

and µ
′scal p
s = 0.8mm−1, µ

scal p
a = 0.0149mm−1. The source has been placed behind the head of

the subject. Notice that the intensity of the source and its exact placement are different from the

ones used in [24].

A further analysis could have led us to compare our results with a Monte-Carlo simulation

similar to [59] but we relied on the accuracy of the BEM code instead [24] throughout this

thesis, since it was itself tested against a Monte-Carlo simulation.

5.3 Reconstruction results

The computations presented here are all perturbation reconstructions where the optical proper-

ties of the regions are considered as known a priori. It is only localised absorption coefficient

changes which are reconstructed. The scattering coefficients are set throughout.

5.3.1 Concentric spheres

We placed an absorption blob of size 1.4mm (x) by 1.4 mm (y) by 12.4mm (z) in the center in

z of the innermost sphere of a three-layered model and slightly out-centered in x and y with a

contrast of 3.6:1, i. e. µ
′blob
s = 0.61mm−1, µblob

a = 0.05mm−1. We used the mesh shown in Fig-

ure 5.6, which allows a precise reconstruction and is typical of a problem difficult to solve with
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Figure 5.3: Forward model results on three concentric spheres (stars: analytical model, circles:
BEM-FEM model, continuous line: BEM model) - on top, the log amplitude results can be seen
against the angle to the source in degrees - on the bottom, it is the phase in radians against the
angle to the source in degrees. Notice that the energy densities (log intensity and phase) on the
three surfaces are plotted together. They can be identified by considering that the smaller the
value of the log intensity at 0° and the larger the value of the phase at 0°, the deeper the surface.
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Figure 5.4: Meshes used for the neonatal baby head problem (left: original meshes, right: cut
through the newly generated brain’s volume mesh of 8174 volume nodes, 5285 volume elements
- its surface is the same as the original brain surface mesh)

the FEM, i.e. with very thin layers between spheres of radii 44, 47 and 50 mm. It was success-

fully recovered as shown in Figure 5.7. The 32 sources and 32 detectors were arranged in a ring

around the equator of the spheres in a 1 source - 1 detector equally spaced pattern. The opti-

cal parameters were close to a neonatal human head µ
′brain
s = 0.61mm−1, µbrain

a = 0.014mm−1,

µ
′skull
s = 0.625mm−1, µskull

a = 0.024mm−1 and µ
′scal p
s = 1.4mm−1, µ

scal p
a = 0.016mm−1. A 1%

Gaussian noise was added to the synthetic data generated with the model.

Some results present negative absorption: this is due to the noise present in the simulated

data. It generates artefacts which can lead to such problems, since the values the absorption

coefficient can take are not constrained. One should also remember that this is a difference

measurement, and that what is displayed is the difference between the optical absorption coef-

ficient changes and the background optical properties.

5.3.2 Neonatal head

A volume mesh for the inner part of the brain was generated from Γ2 using NETGEN [267].

The setup consists of 12 sources and 30 detectors positioned in an helmet-shaped distribution

as described in Figure 5.8. The minimum source-detector distance is 14mm and the maximum

is 114 mm. In order to provide a fair comparison to the in vivo measurements in section 6.2, we

used only 258 out of the 360 possible measurements. The actual experiment is detailed in this

same section.

For the restricted FEM (see 4.2) reconstruction, the mesh is quadratic tetrahedral, with

100789 nodes and 69357 elements but the reconstruction was restricted to the 43280 nodes

brain region which was obtained by cutting through the bulk mesh volume with the warped
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BEM

BEM-FEM

Figure 5.5: BEM (top) and BEM-FEM (bottom) forward model results on the neonatal head.
In these two sets of pictures, the three top graphs show the log intensity while the three bottom
graphs show the phase
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Figure 5.6: Cut through the meshes setting in the three layers case - the innermost mesh has
14993 volume nodes, 10240 volume elements, 2562 surface nodes and 1280 surface elements
and the inner and outer meshes are scaled versions of the coarser mesh presented before

BEM surfaces. A 31336 nodes skull layer and a 26173 scalp layer were also created by the

same process. The BEM-FEM mesh is made of a much coarser mesh with 2806 surface nodes

and 1402 surface elements for the scalp layer, 3294 surface nodes and 1646 surface elements

for the skull layer, 2098 surface nodes and 1048 surface elements for the brain region of the

BEM mesh and 6719 volume nodes and 4192 volume elements for the FEM brain mesh. The

entire FEM mesh is mapped to a regular grid of voxels while, in the case of the BEM-FEM

reconstruction, only the brain region is actually mapped to voxels. In the displaying process,

however, both solutions and all meshes are mapped to similar voxel grids for comparison.

The reconstructions shown in Figure 5.9 are obtained with optical parameters close to a

neonatal human head µ
′brain
s = 0.61mm−1, µbrain

a = 0.014mm−1, µ
′skull
s = 0.625mm−1, µskull

a =

0.024mm−1 and µ
′scal p
s = 1.4mm−1, µ

scal p
a = 0.016mm−1. When comparing the two methods

on simulated data, we found that the BEM-FEM is as accurate as the FEM with the maximum

of the reconstructed blob distributions being both about 3mm away from the target.
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Figure 5.7: Reconstruction on the three concentric spheres model (slices 5-29 of 32 in z in the
reconstruction volume which fits the inner volume integral-treated sphere only) - on top: recon-
structed absorption distribution on the three layers model with a 0th order Tikhonov regularisa-
tion term α = 4×10−3×Trace(Jacobian2); on the bottom: ground truth with the background
in blue and the target in red (0.05mm−1 absorption)
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Figure 5.8: Partial 3D view of the optodes on the scalp mesh; the sources are in red and the
detectors in blue
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Figure 5.9: Simulated reconstructions on the baby head model (a, b and c: 3D views of BEM-
FEM, FEM and ground truth reconstruction isosurfaces in head models; d, e and f: BEM-FEM,
FEM and ground truth slices in the reconstructed absorption volume



Chapter 6

BEM-FEM Experimental Results

6.1 Baby head phantom

6.1.1 Experimental setup

In this section, we decided to test the methods on a baby head phantom [7]. It consists of a head

model in which a diffusive liquid is put. The container has the shape and size of a baby head.

A cavity of a size comparable to a baby’s brain has been made inside to put the liquid. Figure

6.1 describes how the system looks.

I carried out the experiment and analyzed the data in collaboration with Dr. Louise Enfield.

We fitted our 32 sources and detectors helmet [40, 275, 276, 98] on this resin doll and filled the

“brain” area with a liquid with non-matching optical properties. We then recorded time-domain

data (TPSFs [126]) through 29 sources and detectors. This data was Fourier-transformed to 10

MHz frequency-domain data with the embedded software of our MONSTIR [269] scanner (see

subsection 4.1.1). Of the potential 841 measurements, 473 were kept for their consistency.

The phantom is composed of a two-part epoxy resin [277] (MY753 with XD716 hardener,

Ciba-Geigy Ltd) and is made from an anatomically realistic doll. Its average radius is close

to 3.8cm, which corresponds to a pre-term baby. In order to reproduce the optical properties

of a neonatal head, titanium dioxide has been added to reach a scattering coefficient of µ ′s =

1mm−1 and a near-infrared absorbing dye called Pro Jet 900 NP (Zeneca Ltd, Manchester,

United Kingdom) for an absorbing coefficient of µa = 0.01mm−1.

The non-matching liquid is made out of the same resin, but without hardener and with

a different percentage of titanium dioxide. We prepared 230g of resin, of which 227.9g was

MY753 with 1.86g of Pro Jet dye and 0.24g of scatterer. This solution, according to our knowl-

edge of the individual components has the optical properties µ ′s = 0.8mm−1, µa = 0.01mm−1.

We introduced a µa = 0.03mm−1 (and matching scattering coefficient) perturbation in the

form of a small cylinder (height and diameter: 7mm) in the liquid resin. It is attached to a thin
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Figure 6.1: Schematic cut through the experimental device adapted from [7]

steel rod, which measures about 20cm with a diameter of about 1mm in order to stay in place in

the resin. The rod is not visible and is ignored during the reconstruction because its dimension

is far below the resolution. Besides, it is opaque to photons at the wavelength used.

6.1.2 Mathematical setup

We have the exact geometrical properties of the phantom, thanks to an earlier XCT scan [7].

From the surfaces of these scans, we created new meshes for BEM-FEM and FEM. The pure

FEM mesh contains 139397 volume nodes and 97608 volume elements. On the other hand,

the surface meshes of the BEM-FEM, for the scalp, contains 4486 surface nodes and 2242

surface elements and for the inner layer that we will call the “brain”, 4814 surface nodes and

2406 surface elements. The volume-integral treated region of the BEM-FEM (here, the brain)

contains 10910 volume nodes and 6260 volume elements. A cut through the models can be

seen on Figure 6.2.

6.1.3 Results

In Figure 6.3, very clear results can be seen. A blob is recovered close to the bottom of the

“brain” region. This is in agreement with the Figure 6.1. Despite the lack of precision of the

shape recovered, which was expected, the BEM-FEM results is somewhat convincing. How-

ever, when looking at the FEM one, it appears that the resolution is much poorer. The reason

for this is unknown, especially when we consider the much better in vivo results in subsection

6.2.2.

The computation time was longer for the FEM (40 mins) than for the BEM-FEM (25 mins)
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Figure 6.2: Meshes used in the simulation, with the phantom facing down - (a): cut through the
FEM mesh; (b): cut through the BEM-FEM meshes; (c): surface of the FEM mesh; (d): surface
of the BEM mesh with the sources in red and the detectors in blue
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Figure 6.3: Experimental reconstruction on the phantom head model (a): 3D view of a BEM-
FEM reconstruction isosurface (only the scalp and brain are represented for convenience), (b):
Top view of that same BEM-FEM reconstruction isosurface, (c): BEM-FEM slice in the re-
constructed absorption, (d): 3D view of a restricted FEM reconstruction isosurface, (e): Top
view of that same restricted FEM reconstruction isosurface, (f): restricted FEM slice in the
reconstructed absorption.
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for the Jacobian building. All other steps were very comparable. This is mainly due to the high

resolution of the FEM mesh chosen.

This study is considered as a step towards the much deeper understanding brought by the

in vivo experiment and further analysis of the difference between the methods is found there.

6.2 In vivo results

6.2.1 Setup and experiment

After these successful testing of the BEM-FEM against the FEM in the aforementioned phan-

tom study, we went on to test the method on data from an in vivo motor response study on

pre-term babies as reported in [98, 276].

As the neonate is sleeping, his arm is moved: this stimulus activates area of the brain

corresponding to the action, here the motor cortex. Such a technique allows to use the linear

reconstruction theory, since we can have the data before (reference rest state) and during the

movement. In the present case, it is the right arm which is displaced.

The experimental setup consisted of 12 sources and 30 detectors, as presented earlier in

the Figure 5.8. 258 measurements were kept for the analysis out of the 360 possible ones.

All the meshes used here and the optical parameters are identical to the simulation in

subsection 5.3.2. The only difference is in the actual position of the activation, which is here in

the left hemisphere.

In the previous publication [98], the motor cortex’s activation was reconstructed with a

resolution of 10mm. Here, we took as a reference a restricted FEM reconstruction in which

the FEM is tuned to find a change in the absorption only inside the brain region. In such an

experiment, due to the setup and the nature of the subject, one only has the position of the

sources and detectors relative to an absolute origin. The actual attitude of the baby has to be

inferred from this data. The mesh is then warped onto the measurement cap using a method in

three steps:

1. Rigid body translation, rotation and stretching of the surface in 3D so that the surface

comes relatively close to the optodes, i.e. that the surface passes through the space

spanned by the optodes

2. Identification of the closest nodes on the surface mesh to each optode

3. Applying of a nonlinear thin-plate spline deformation which makes the surface mesh

passing through all the optodes whilst minimizing a bending energy expressed as the

square root of the second derivatives
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The details of this method can be found in a paper by Gibson et al [263].

6.2.2 Detailed results and comparison with FEM

As it can be seen in Figure 6.4, the comparison between the restricted FEM and the new BEM-

FEM reconstruction shows close results. The theoretical resolution of each solution is close

to 10mm if a Gaussian distribution is assumed. We also observe a 4mm distance between the

maxima of the two reconstructed absorption maps, a value which is well below the resolution.

6.3 Discussion on performance

Modeling light propagation in complex structures such as the brain must be done numerically,

most commonly using the FEM which requires a finite element mesh. Producing a high-quality

finite element mesh of the head is extremely difficult and is one of the issues restricting the

clinical useability of optical tomography. The problem of segmenting a magnetic resonance

image of the head is now largely solved, particularly in adults but it is still not straightforward

in babies. Even once the segmented image has been obtained, creating a finite element mesh

which can represent the light fields with sufficient accuracy is demanding.

As highlighted very early on by Beer [278], and confirmed later in many studies [44, 279]

one of the main advantages in principle of a mixed BEM-FEM formulation is the focus. In

the particular case of DOT, we usually know where (in which organ for example) the contrast

lies. By introducing prior information about the problem in the geometry of the solution itself,

we increase the accuracy of the results [280, 281, 282]. By restricting the reconstruction to a

particular organ, we also implicitly assume that there are no perturbations occuring in the other

regions. This could be a criticism of our work since it has been proven that the extracerebral

layers, especially in the case of motor activation, exhibit a change in absorption, due to the

peripheral blood movements related to the muscular effort [185, 184, 186, 187]. We consid-

ered these perturbations as negligible, since the babies are asleep and the movement is actually

applied to them, not originating from them (see subsection 6.2.1).

The BEM-FEM shows that it is possible to keep the FEM accuracy while easing the mesh-

ing task and reducing the problem’s size. Even in the extreme case of a relatively thin FEM

layer (here, the skull), the method does not fail. The result of the two techniques in the in vivo

case are comparable while being obtained very differently. We especially notice that the posi-

tion of the motor cortex is recovered with similar errors despite the fundamental difference in

the meshes’ constitution.

A more careful look at the method emphasizes the fact that a good match has to be found

between the small number of nodes and high structural information content needed in a BEM
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Figure 6.4: Experimental in vivo reconstruction on the baby head model (a): BEM-FEM slice
in the reconstructed absorption, (b): 3D view of a BEM-FEM reconstruction isosurface (only
the scalp and brain are represented for convenience), (c): Top view of that same BEM-FEM
reconstruction isosurface, (d): restricted FEM slice in the reconstructed absorption, (e): 3D
view of a restricted FEM reconstruction isosurface, (f): Top view of that same restricted FEM
reconstruction isosurface.
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mesh and the high resolution required in a FEM mesh. We tried to make a trade-off between

these parameters and the computational expense. The lower density of these BEM-FEM meshes

shows that one can avoid building the high resolution FEM mesh needed to reach an excellent

convergence in all the layers. In our particular case, the skull and scalp layers were very thin

(in the order of magnitude of 1mm in thickness in the upper part of the head). These kind

of volumes are difficult to mesh properly using the FEM, and one has to increase the overall

density of the mesh, as we did in the experimental study with about 13000 nodes (some surface

nodes and some volume nodes) in BEM-FEM compared to about 100000 volume nodes in

FEM.

One should also notice that the optical parameters in the layers around the volume-integral

treated region of interest have to vary smoothly between the layers in order to avoid a concentra-

tion of the photon-measurement density function outside from it [283]. This is more susceptible

to happen in a sharp piecewise-constant system, particularly when a low scattering region exists

[97, 5].

When attention is given to the remarks above, the BEM-FEM stands out as a new easier

choice when dealing with layered turbid media. It allows a simplification of the problem, espe-

cially through the avoidance of useless mesh generation, which actually enforces the anatomy

in the numerical method.

The BEM-FEM frees any Near Infra-Red Spectroscopy (NIRS)-based problem from the

partial volume effect (see subsection 2.2.1.4) by allowing a direct conversion of the absorption

coefficient to Hemoglobin concentration. This opens the road to a more reliable quantification

of the functional data obtained in DOI.

In the current implementation, the reconstruction times are the same between the FEM and

BEM-FEM, due to the restriction of the reconstruction volume to the volume-integral treated

region, and are below 2mins. However, one should keep in mind that, despite the reduction of

the number of unknowns when passing from the FEM to the BEM-FEM, the BEM-FEM is not

faster than the FEM. This is partly due to the BEM part of the solution which produces a dense

array while the FEM matrix is sparse. Nevertheless, let us remember that we are comparing a

newly written BEM-FEM code and a FEM code which has been optimized for this application

for more than ten years. In numerical terms, in the neonatal baby head case, the BEM-FEM

code currently takes 3 minutes to construct the forward model matrix (14 s in FEM) and 27

minutes (11 min in FEM) to build the Jacobian by computing the forward and adjoint fields.

Despite all this, when considering the time gained in the BEM-FEM mesh simplicity, the

advantages are still apparent.
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BEM Diffuse Optical Cortical Mapping

7.1 Theory of the Diffuse Optical Cortical Mapping with the BEM

Doing DOCM with our existing tools (see chapter 2.1) is straightforward. As we have seen in

subsection 2.2.1.3, tomographical tools can be used for topography. However, in our case, we

want more than a 2D map. Rather, our goal is here to end up with a 3D map of the cortex on its

surface.

Using a BEM, we develop a model for the mapping of photon densities between surfaces of

the multilayer representation, thus reconstructing what we introduce as an Equivalent Cortical

Absorption
(
µECA

a
)
. The BEM theory developed earlier in section 3.2 remains valid. The only

change is in the reconstruction method. We had before an intermediary space, the reconstruction

grid, in which the absorption coefficient was mapped. We now have to do the reconstruction

on the brain surface and thus eliminate the FEM part of the problem. The Jacobian of the new

problem is computed with the forward and adjoint fields on the innermost BEM surface. The

reconstruction space becomes the nodes of this surface. Our method suggests that it is possible

to overcome the fundamental limitations of functional optical topography and obtain reliable

maps of the cortex with a simple and fast algorithm.

Formulation

Like in section 4.2, we need to compute probe fields (from the sources and detectors). We

consider S inward directed photon currents at source locations {rs,s = 1 . . .S} so that

Qs =



Q(0)
s

0

0
...

0


. (7.1)
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Solution of the BEM system eq.(3.25) for each input source generates the cortical photon probe

densities {Φcortex
s ,s = 1 . . .S}. Now consider the secondary sources given by the product of the

probe fields and the activation in the brain, which, using Green’s identity, become

qs =



0

0

0
...

q(nΩ)
s


, where q(nΩ)

s (r) =
∫

ΩnΩ

GnΩ
(r,r′)µ

actvn
a (r′)Φ(nΩ)

s (r′)dr′ (7.2)

where Φ
(i)
s (r′) is the solution density in the ith layer for the source s. When dealing with nested

BEM regions representing a head, ΩnΩ
is the brain or the innermost region. Solution of eq.(3.25)

with the secondary sources q(nΩ)
s results in the secondary density Φactvn

s . The equivalent cortical

absorption is therefore modeled by

Φ
actvn
s = µ

ECA
a Φ

cortex
s . (7.3)

The ECA is a new concept which should be understood as a work in progress. As stated in

eq.(7.3), it is the ratio of two surface energy densities coming from BEM results. This means

that it does not have any unit, but rather corresponds to an attenuation due to the absorbers

contained in the cortical region.

The quantity Φcortex
s corresponds to the energy density on the surface of the cortex if there

were no absorbers inside. The quantity Φactvn
s corresponds to the energy density considering that

the activated brain is the source (q(nΩ)
s ) of the light. This means that Φactvn

s is attenuated by the

integrated absorption (µactvn
a ) coming from the activation which manifests itself by the cortical

map obtained with µECA
a . Basically, the ECA cannot be interpreted as a simple absorption

coefficient and further study is needed to be able to relate it to a Hemoglobin/Total Hemoglobin

ratio (HbO2/Hbtotal).

The inverse problem is solved in a similar fashion than described in chapter 4.

7.2 Simulation results - neonatal head model

The same meshes, optical properties and optode placement were used for the simulation as in

the BEM-FEM in-vivo case in subsection 5.3.2 and the DOCM one in section 7.4, the detail of

which are in the former. 258 measurements were kept for the analysis out of the 360 possible

ones as in the section 6.2. A spherical inclusion with µ inclusion
a = 0.034mm−1 and of diameter
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10mm was put inside the brain layer and moved along a surface normal deeper inside the mesh.

The BEM-FEM model was used to generate the data and 1% of white noise was added to it.

The regularisation parameter was set to α = 1.72×Tr[WTW].

The figures 7.1 and 7.2 show a trend of contrast increasing and diminishing, as the blob

varies in overlap with the Photon Measurement Density Function [284] of the optodes. As it

moves deeper inside the brain, the contrast decreases and the noise is reconstructed instead.

The pictures in Figure 7.1 and 7.4 have been generated by a projection of the solution on

a higher resolution brain mesh of 13498 surface nodes mesh for improved visualisation. Both

the coarse and fine resolution meshes were obtained from a model using data from MRI scans

of a neonate, courtesy of Tizzard et al [285].

The projection between meshes was implemented using the following steps:

1. Rigid body registration of the low and high resolution brain meshes;

2. Reparametrisation of both brain meshes to spherical coordinates;

3. Linear interpolation on the sphere of the values on the coarse mesh’s nodes onto the fine

mesh’s nodes using an equal-area planar map projection;

4. Reprojection of the fine mesh’s sphere to the fine brain mesh by converting back to Carte-

sian coordinates.

Notice that this is not an inverse crime, since a different model (BEM-FEM) is used to gener-

ate the data and a fair amount of noise is added. This explains the large amount of artefacts

observed.

7.3 Phantom results
We took the same phantom measurements and setup as the previously reported BEM-FEM

successful experiment (see section 6.1). The only differences are that the absorption change

is now reconstructed on the brain BEM surface and the regularization parameter was set to

α = 5.15×103×Tr[WTW]. The results are shown on Figure 7.3.

7.4 In vivo experimental results
Again, the BEM-FEM experiment of section 6.2 has been re-analyzed with the BEM DOCM.

All parameters were kept identical, except the Tikhonov regularization parameter.

In a previous publication [98], the motor cortex’s activation was reconstructed with a res-

olution of 10mm. As it can be seen in Figure 7.4, the activation has been localized on the brain
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Figure 7.1: Left to right and top to bottom, reconstructions of a Gaussian absorption target
simulated with the FEM (1% noise). The target is moved by 2mm from the surface of the brain
(top left) to 20mm below the surface. Notice that the ECA is dimensionless.

Figure 7.2: Evolution of the contrast, i.e. the difference absorption of the target divided by the
background absorption. The nominal value is 1.43.
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Figure 7.3: Side views of a cortical map of the “activated” phantom “brain” - the effect of the
blob inserted in the liquid resin is clearly visible

surface. The regularisation parameter was set to α = 0.97×Tr[WTW]. The lateralization of the

movement manifests itself by an increase in absorption in the hemisphere involved. A spatial

Full Width at Half Maximum (FWHM) of 6mm is observed for the equivalent cortical absorp-

tion due to activation. It shows that our method is able to provide qualitatively reliable DOCM

results, localized and characterized.

The relation between the quantitative reconstruction and the volume absorption activation

is determined by the volume convolution in eq.(7.2), and varies with depth.

Speaking about performance, the computation of the Jacobian was completed in 27 min-

utes, a time which is still longer than the previous FEM computation (11 minutes) but actually

identical to the BEM-FEM. Although the BEM-FEM computation was a 3D reconstruction,

this indicates that the BEM DOCM, can be envisaged as a practical reconstruction method

comparable to the ones described before in subsection 2.2.1.3 for frequency domain data.

7.5 Discussion and conclusions

The DOCM addresses the problems arising from erroneous interpolation and gives an insight on

the localization of the sampled region. We developed a BEM DOCM method able to localize

the perturbations to the NIR signal originated from activation in the brain. By testing it on

simulated, phantom and in vivo data, we demonstrated its ability to accurately find the position

of the projection of these perturbations on the surface of the cortex. However, the dimensionless

ECA obtained with the BEM is not easily interpreted and transformed into a Hemoglobin/Total

Hemoglobin ratio (HbO2/Hbtotal). This drawback needs further analysis if the ECA is to be

used in a similar fashion than the absorption coefficient.

With our simple surfaces-based model, we did not explicitly model the influence of the
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Figure 7.4: Side and top views of a cortical map of the activated brain - the primary motor and
somatosensory cortices activation is clearly visible. This position corresponds to the arm region
as it can be seen in [8]. Notice that the two foci visible on the left hemisphere are not really
separated and that such features are below the resolution.

CSF, although this is also possible within a BEM framework. Instead we restricted the recon-

struction to the cortex, as this is the key feature of a measurement passing through this region

of the brain [5].

Setting up the BEM DOCM computation is simple, once anatomical data can be obtained.

This can be done with the deformation of an existing atlas respective to measured fiducials dur-

ing the experiment, like in our case, or with the help of individual anatomically-resolved scans

(MRI, X-Ray). The meshes coming out of MRI reconstruction programs such as BrainSuite

(http://brainsuite.usc.edu/) just need to be simplified (with a tool similar to the Türk/Lindström

memoryless surface mesh simplification algorithm [286] from the Computer Graphics Algo-

rithms Library algorithm embedded in the ISO2MESH [287] MATLAB package) and are ready

to use in our BEM DOCM code with minimum modification. As soon as a surface mesh is

obtained, which is usually the first step taken after segmentation, the BEM DOCM can be used.

After the initial building of a Jacobian for the problem, subsequent measurements on the same

subject could be analysed in real time, since the actual reconstruction time is less than one

second.



Chapter 8

An Acceleration Method for the BEM

8.1 Introduction

8.1.1 Principles of the FMM

Basic identity The FMM is based on a decomposition of an exponential radial function on a

basis of spherical Hankel and Bessel functions as described in the eq.(8.1), the addition theorem

found in [240, 288]. Since most of the FMM literature uses a notation different to ours, our wave

number ϖ is transformed into κ =−ιϖ . All the polynomials are taken as defined in [288]. This

identity is illustrated by the Figure 8.1 which also describes the variables.

e−ικ|X+d|

|X+d|
=−ικ

∞

∑
l=0

(−1)l(2l +1) jl(κd)h(2)
l (κX)Pl(d,X) (8.1)

with

- jl: Bessel function of degree l

- h(i)
l : spherical Hankel function of degree l of the ithkind, i = {1,2}

- Pl: Legendre polynomial of degree l

Since Bessel’s function is multiplied by a Legendre polynomial, the idea is to express this

multiplication through a plane wave decomposition with radiations going in all directions.

FMM decomposition From this theorem, one can write the starting equation of the FMM which

exhibits the separation of the terms coming from centers of cells (O1 and O2) from the terms

Figure 8.1: Decomposition of a radial operation between a point x and a point x’ - an inter-
mediary point O is used where |X| distance between x’ and O is far greater than |d|, distance
between O and x.
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coming from the individual nodes in the cells as seen in eq.(8.2), edited from [289]. A straight-

forward explanation of the process can be found in [239]. The sum on p is a (surface-) weighted

(wp) sum on unit vectors sp taken on the unit sphere (spherical quadrature), while the sum on L

is a serie.

e−ικ|x−y|

|x−y|
= ∑

p
wpe−ικ(sp,x−O1)TL,O1−O2(sp)e−ικ(sp,O2−y) (8.2)

in which T is the transfer function given by:

TL,O1−O2(sp) =
L

∑
l=0

κ(−ι)l+1(2l +1)
4π

h(2)
l (κ|O1−O2|)Pl(cos(sp,O1−O2))

The geometrical translation of these principles can be illustrated with the Figure 8.2.

Example An example with Green’s function (G) can help to understand what the underlying

maths are. Suppose that we want to solve eq.(8.3) on the surface Γ of Figure 8.2.

∫
Γ

G(r,r′)U(r)d2r = q(r) (8.3)

We define the matrix H with the entries Hkk′ =
∫

Γk′
G(rk,r′)d2r′, k corresponding to the element

index. In the particular case of the interaction between x and the points y, the computation of

matrix-vector multiplications is similar to the one described in eq.(8.4). It happens between one

node of the cell 1 where x belongs and whose center is O1, and all the nodes y of the cell 2

whose center is O2, C being the vincinity of O2, i. e. the cell 2. We notice that the shape and

test functions are simplified to the maximum.

HxyUy = ∑
p (unit sphere)

wp
[
e−ικ(sp,x−O1)TL,O1−O2(sp)

∫
Γ∩C(O2)

e−ικ(sp,O2−y)d2r′
]
Uy (8.4)

Some of the basic features of eq.(8.4) are of primary importance:

• This formula is a decomposition of Green’s function e−ικ‖r−r′‖

4π‖r−r′‖ to compute its product with

a vector

• T represents a diagonal form which contains the information about the physical problem’s

equation

– it is well-known in the Helmholtz and Laplace equations cases but not in the equa-
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Figure 8.2: Single-level FMM for the 2D domain in black. (a) Near interactions with the cell
1 in red, far interactions in green; (b) old matrix-vector mutiplication scheme illustrated with
black lines which underline the large number of operations to perform; (c) FMM matrix-vector
multiplication scheme
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Figure 8.3: Single-level cells, courtesy of Dr. M. Bonnet

tion of the diffusion approximation (equivalent to a Helmholtz equation with a sig-

nificantly imaginary wave number)

– T is also linked to p, the number of points taken on the unit sphere, since T has to

be reduced to its first terms in order to avoid a factorial divergence - this truncature

is a function of p

• The integrals, all non singular, are only performed within the cell 2 considered

8.1.1.1 Single level implementation

A single-level implementation of the FMM creates a 3D grid (see Figure 8.3) in which the

medium is contained. The FMM algorithm is then simply applied to the grid.

Compared to a normal full-matrix computation which requires O(N2)computations, this

only results in doing O(N
3
2 ) with N number of degrees of freedom [239].

8.1.1.2 Multilevel case

In the multilevel implementation, the explanation and development becomes much more diffi-

cult to do. It has been proven to reduce the complexity to its best known value of O(Nlog(N))

[289].

It uses an octree in subdividing the cells of the previous level in eight. The adjacent cells

table then evolves, leading to a change in the truncature of T and then of pmax itself. An upward

pass is first done in which values of the sum and truncature are passed from the leaf (lowest)

level to the level 2 (highest level consisting of a 4x4x4 grid). Then, a downward pass computes

the final value of 8.4. This process is described in more details in Chaillat et al article about

multilevel Fast Multipole-BEM [290].
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8.1.1.3 Preconditioning

The creation of the sparse matrix of near interactions allows the use of common preconditioners,

such as the Incomplete LU (ILU) [291, 292] from this matrix. Some other techniques have been

tested like the Frobenius-norm minimization preconditioner which requires, in the multilevel

FMM case, the creation of a second octree [293]. In all these cases, the complexity law is not

changed but the acceleration of the computation can be very significant. They also have never

been tested in the context of lossy media. However, in the context of this thesis, they have not

been studied.

8.1.1.4 Multidomain case

The particular treatment of nested regions is described later in this chapter .

The general multidomain case contains more empirical thinking. Actually, single-domain

computations are performed and the interactions between the domains are later taken in account

in a linear combination of the contributions to the matrix-vector product. This assembly of

weighting coefficients must include:

• the interface conditions (continuities and boundary conditions)

• a treatment of the triple points (belonging to more than two domains)

An example in a geological continuum mechanics case is detailed in Chaillat et al second pub-

lication [237].

8.1.2 Choice of the method

We have chosen to implement the single level FMM and to apply it to one or more of our BEM-

FEM or BEM DOCM cases. This choice has been made because of the small number of degrees

of liberty we would be dealing with (Ndo f < 105). The operations to perform are the following:

1. Division of the space in cells

2. Partial computation of the BEM Matrix (see section 8.3)

3. Computation of the Excitation vectors (Fourier transform of the basis functions)

4. Computation of the Transfer function

5. Fast Matrix-Vector multiplication - integration in GMRES or another solver

8.2 Simplified BEM with FMM
For the purpose of our study, we developed a new BEM code, which is identical to the existing

described in section 3.2 but which, instead of using quadratic shape functions uses constant
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functions over the elements. It is called VENOM.This is believed to result in a significant

acceleration of the computation and a simplification of the implementation of the FMM (see

subsection 8.4.1).

The difference with the previous code lies in the discretization, the integration scheme and

the whole numerical implementation in general. All the code is in MATLAB.

The discrete BEM system is obtained from the BIE by choosing a basis representation

for the functions Ui and Vi, and an observation set for the layer potential functions. We use a

piecewise constant basis for Ui, Vi defined on the surfaces Γi and a collocation method for the

observation set. Each surface Γ j is discretised by n j vertices N j,k;k = 1...n j, with U j and Vj

approximated by the basis values {u j,k} defined on each element:

U j(r)≈
n j

∑
k′=1

U j,k′u j,k′(r), Vj ≈
n j

∑
k′=1

Vj,k′u j,k′(r) (8.5)

The discretisation of the operators (3.18) and (3.19) leads to n j× n j′ dense matrices A(i)
j j′ ,

B(i)
j j′ , with entries

A(i)
j j′(k,k

′) =
〈

δ (N j,k),A
(i)
j, j′u j′,k′(r)

〉
Γ j

, (8.6)

B(i)
j j′(k,k

′) =
〈

δ (N j,k),B
(i)
j, j′u j′,k′(r)

〉
Γ j

(8.7)

with k′ ∈ 1...n j′ and k ∈ 1...n j.

In the actual implementation, the basis functions are constant, and the non-singular and

singular integrals are treated with Gaussian schemes, with integration points being taken re-

spectively on the triangle and the square [24, 9]. The planar triangular elements used result in

the existence of only one type of singular integrals, the one which involves Green’s function

and not its derivative. The integration of a function on an element is performed following this

formula:

∫
Γ

f (r)d2r→
∫

τ

f (r(ξ ))J(ξ )dξ →
7 or 36

∑
h=1

f (r(ξh))J(ξh)ah (8.8)

• In the triangle case, only a simple change from global (rx,ry,rz) to local coordinates

(ξ1,ξ2) is needed:

r = r1 +ξ1(r2− r1)+ξ2(r3− r1) (8.9)

where the superscript refers to the position of a node in the element and the Gaussian
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h ξ1,h ξ2,h ah

1 0.333333333333333 0.333333333333333 0.1125
2 0.059715871789769 0.470142064105115 0.0661970763942531
3 0.470142064105115 0.059715871789769 0.0661970763942531
4 0.470142064105115 0.470142064105115 0.0661970763942531
5 0.797426985353087 0.101286507323456 0.0629695902724136
6 0.101286507323456 0.797426985353087 0.0629695902724136
7 0.101286507323456 0.101286507323456 0.0629695902724136

Table 8.1: Gaussian points and weights for the triangle

h ξ1,h ξ2,h ah

1 -0.93246951420315202781 -0.93246951420315202781 0.17132449237917034504
2 -0.66120938646626451366 -0.66120938646626451366 0.36076157304813860757
3 -0.23861918608319690863 -0.23861918608319690863 0.46791393457269104739
4 0.23861918608319690863 0.23861918608319690863 0.46791393457269104739
5 0.66120938646626451366 0.66120938646626451366 0.36076157304813860757
6 0.93246951420315202781 0.93246951420315202781 0.17132449237917034504

Table 8.2: Gaussian points and weights for the square - they result in a concentration of points
around the singular corner of the sub-triangle which is a singular side in the square - see [9])

points and weights are in Table 8.1. The Jacobian is the area of the element.

• In the case of the singular integrations of Green’s function on the flat triangular elements,

the elements are divided in three sub-triangles. Each of them is then transformed in

squares, following [24, 9]. The conversion is simple:

r = r1 +
1
4
(1+ξ1)(1−ξ2)(r2− r1)+

1
4
(1+ξ1)(1+ξ2)(r3− r1) (8.10)

and the Gaussian points and weights are in Table 8.2. The Jacobian of this transformation

is J = 1
8(1+ξ1)∆ with ∆ being the area of the flat sub-triangle of the element of the mesh.

Considering these changes in the discretization, the VENOM matrix is built the same way than

the quadratic BEM (see subsection 3.2.2).

8.3 Theory of the FMM

8.3.1 Decomposition and solving procedure

The basic decomposition of a surface of which the so-called Coifman notation is taken from

[239]. It states that m refers to the cell index, α to the index of an element within a cell m and n

refers to the global index of an element. So, to each element corresponds a set of three numbers

n,m,α .

In order to simplify the notation, we also define the quantities:
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- θp: polar angle of the spherical quadrature point of index p = 1 . . .N

- Tp: FMM transfer function evaluated at the spherical quadrature point of index

p = 1 . . .N

- Nα
e : number of elements containing the node α

- ξγ : quadrature position of the non-singular BEM integration scheme of index γ =

{1 . . .Ne} in the designated elements

- ν̂γ : quadrature unit normal vector of the non-singular BEM integration scheme at

the position ξγ

- J(ξγ): value of the non-singular BEM quadrature Jacobian at the position ξγ

- aξγ
: quadrature weight of the non-singular BEM integration scheme at the position

ξγ

Green’s function When Green’s function is defined as:

G(r,r′) =
e−ικ‖r−r′‖

4π‖r− r′‖
(8.11)

Then its derivative along a normal unit vector ν̂ to the surface considered is written:

∂G
∂ν

= (1+ ικ‖r− r′‖) e−ικ‖r−r′‖

4π‖r− r′‖3 (r′− r, ν̂) (8.12)

Basic Fast Multipole decomposition - Gauss-Legendre quadrature Thanks to simulations

and additional work on quadratures on the unit sphere, we have chosen the decomposition

described in eq.(8.13). O and O’ are respectively the centers of the cell containing r and the cell

containing r′.

e−ικ‖r−r′‖

4π‖r−r′‖ = 1
4π

∑
N
p=1 wpTpe−ικ(sp,r−r′−OO′)

Tp = 1
4π

∑
L
l=0 κ(−ι)l+1(2l +1)h(2)

l (κ‖OO′‖)Pl( OO′
‖OO′‖ ,sp) (8.13)

One can also, of course, decompose the derivative as in eq.(8.14).

(1+ ικ‖r− r′‖) e−ικ‖r−r′‖

4π‖r− r′‖3 (r′− r, ν̂) =
−ικ

4π

N

∑
p=1

wpTpe−ικ(sp,r−r′−OO′)(sp, ν̂) (8.14)
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BEM integrals decomposition Once the expression of Green’s function and its derivative are

established, the writing of the A and B BEM integrals in section 3.2 and [24] is straightforward

as it can be seen in eq.(8.15), with α corresponding to the indices in the cell m (positions

noted r, center O) and β the indices in the cell m’ (positions noted r′, center O’). Nβ
e elements

contain the node β . One notices that the integration operation is trivial and does not contain

any singularity.

Aαβ = −ικ

4Neπ
∑

N
p=1 wpTpe−ικ(sp,rα−O)

∑
Nβ

e
γ=1(sp, ν̂γ)∑ξγ

e−ικ(sp,O′−ξγ )J(ξγ)wξγ

Bαβ = 1
4Neπ

∑
N
p=1 wpTpe−ικ(sp,rα−O)

∑
Nβ

e
γ=1 ∑ξγ

e−ικ(sp,O′−ξγ )J(ξγ)wξγ
(8.15)

In the particular case of constant shape functions, the sum on γ is useless: α and β are element

indices.

Algorithm (inspired from [239], [240] and [289])

1. Division of the N nodes (or elements) mesh into
√

N cells

2. Building of a sparse BEM matrix which excludes interactions coming from non-adjacent

cells called M

(a) The non-adjacent cubic cells rule is always applicable and is translated by the exclu-

sion of interactions corresponding to couples of cells whose centers are separated

by a distance >
√

3a with a being the edge length [294, 295]

(b) In our particular MATLAB implementation, because of its size, the matrix is built

as a sparse structure

3. Computation of the converse excitation vectors eq.(8.16) - Coifman et al’s notation em-

phasizes the indices for the elements n(m,α) actually used in the program

Cn(m,α)(sp) = e−ικ(sp,rn(m,α)−Om) (8.16)

4. Computation of A and B excitation vectors eq.(8.17)

V A
n(m,α) = (sp, ν̂n)∑

7
h=1 e−ικ(sp,Om−ξh(n))ah

V B
n(m,α) = ∑

7
h=1 e−ικ(sp,Om−ξh(n))ah

(8.17)
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5. Computation of the transfer function eq.(8.18)

T A
p = −ικ

4π
wpTp

T B
p = 1

4π
wpTp

(8.18)

6. Solving of the problem by doing matrix-vector operations in an iterative solver which

computes A and B

(a) Computation of the far fields of the cells here with vector I (8.19)

SA
p(m) = ∑α V A

n(m,α)(sp)In(m,α)

SB
p(m) = ∑α V B

n(m,α)(sp)In(m,α)

(8.19)

(b) Computation of the Fourier components eq.(8.20) of the field in the neighbourhood

of the m cell
GA

p(m) = ∑m′ T A
p (m,m′)SA

p(m
′)

GB
p(m) = ∑m′ T B

p (m,m′)SA
p(m

′)
(8.20)

(c) Computation of the matrix-vector product eq.(8.21) - example of a single surface-

integral treated region

MI = M · I

MatrixIn(m,α) = MIn(m,α) +∑
N
p=1Cn(m,α)(sp)(

GB
p(m)
2D +GA

p(m))
(8.21)

In the software, the Lebedev quadrature of the sphere is used, due to its high efficiency in the

small number of points needed to integrate functions on the sphere [296]. The code which

generates the points has been written by Dr. R. Parrish. In practice, the quadrature weights

given have to be multiplied by sin(θp).

8.3.2 Specifics of the Diffusion Approximation

There exists a fundamental difference between the Diffusion Approximation and the other

aforementioned implementation of the FMM in seismology, electromagnetics, etc. Actually,

the DOT FMM-BEM has a partially real and partially complex wave number, and in practice, it

is mostly imaginary. This negatively impacts the convergence of the computation of the transfer

function, because of numerical approximations in the Hankel functions.

The particular case of a lossy space (influence of µa and f ) has been studied only by

Geng et al so far [240] in very simple single-layer geometries (half-space) and with a small

imaginary/real ratio (maximum 0.32, while our standard ratio is 9.7 when µs = 1mm−1, µa =
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Figure 8.4: Quadratic shape functions BEM (red) against constant shape functions BEM (blue)
on a sphere model - amplitude on the left and phase on the right with the distance to the source
in mm as an abscissa

0.01mm−1, f = 100MHz, n= 1). They found that the transfer function must be truncated so

that L is chosen large enough but must not greatly exceed |kOOmax
′|. This is ensured by the

non-adjacent cells rule [294, 295].

In our implementation, we actually realized that the impact is minimal and excellent con-

vergence rates were reached with relatively low L as seen in the following sections. A rule

of thumb is given in eq.(8.22), a formula clearly inspired from the usual computation of L

explicitly described in ([294]).

L = |κa
√

3+ ln(π +κa
√

3)|+6 (8.22)

8.4 Results

8.4.1 Accuracy of the constant shape functions BEM code

In order to validate the accuracy of VENOM against our quadratic BEM code [297], we tested

it on a simple 33mm radius high resolution sphere (17618 quadratic nodes and 8808 elements)

with these optical parameters: µs = 1mm−1, µa = 0.01mm−1, f = 100MHz, n= 1. The Gaus-

sian source is placed at the surface. The results are shown in Figure 8.4. The global errors in

L2-norm on both the amplitude and phase are around 1%. One however notices the limits of a

constant shape function approach and the fact that the discretization of VENOM is always lower

than the quadratic BEM’s because the former is element-based while the latter is node-based.
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MATRIX BUILDING/SETUP VENOM BEM Quadratic nodes Elements
Sphere 379s 802s 17618 8808

High resolution baby brain 204s 450s 13498 6748
Baby scalp 76s 162s 8190 4094
Baby skull 63s 131s 7374 3686
Baby brain 32s 64s 5130 2564

Mouse 101s 219s 9494 4746
SOLVING VENOM BEM

Sphere 6s 51s
High resolution baby brain 17s 138s

Baby scalp 6s 48s
Baby skull 5s 41s
Baby brain 3s 21s

Mouse 15s 191s

Table 8.3: Computational speed of VENOM vs BEM with Gaussian sources on the surface of
the meshes (GMRES solver)

Since the entire code is in MATLAB, we have performed a vectorization of nearly all the

operations and the use of only a single loop over the elements to build the system matrix. The

main idea is always to compute many vector-vector operations at the same time while keeping

all the different vectors in a single matrix and prohibiting any cross-talking. This code is faster

than the quadratic BEM in all configurations, including those outlined in the Table 8.3.

8.4.2 Acceleration of VENOM-FMM

The complete single-level FMM decomposition has been implemented using VENOM. This

yielded accelerations up to 2-3 times compared to the normal VENOM in all cases.

8.4.2.1 Implementation details

The practical writing of the matrix K (see 8.2) requires the splitting of the matrices A and B.

For example, in three layers, eq.(8.23) shows that A and B should be able to be separated into

parts in which the reference to the outer (0), the inner layer (1) and the innermost layer (2) is

known. However, in the algorithm described in 8.3.1, V A and V B are separated and indexed

along the cell number m. A cell, by its nature, can contain nodes in the outer and inner layers

alike. This is why, in the MATLAB script, we split the test vector (U0 U1 V1 U2 V2) as described

in eq.(8.24).
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K =



A00
0 + 1

2I+ B00
0

2D0
A01

0 −B01
0

D0
0 0

A10
0 + B10

0
2D0

A11
0 + 1

2I −B11
0

D0
0 0

0 A11
1 + 1

2I B11
1

D1
A12

1 −B12
1

D1

0 A21
1

B21
1

D1
A22

1 + 1
2I −B22

1
D1

0 0 0 A2 + 1
2I B2

D2


(8.23)

K
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8.4.2.2 Single layer code - algorithmic complexity

In order to assess the optimality of our algorithm, we tested the law exposed in [239] where a

single-level implementation of the FMM should have a computational time in N
3
2 of the degrees

of freedom of the problem. In our particular case, the number of degrees of freedom is the num-

ber of elements. We tested spheres of 634, 1280, 2536, 3840, 5568, 7424, 8808, 10144, 17920

and 20480 surface elements with the optical parameters µs = 1mm−1, µa = 0.01mm−1, n = 1

in the frequency domain with f = 100MHz. The reference density of elements was that of

the largest sphere (20480 elements and 50mm in radius): 0.65 elements per mm². A Gaussian

source (see section 4.1.2) of unit intensity was placed on every sphere’s surface.

Figure 8.5 shows that the law is respected in our algorithm. The fitting error, computed as

the relative difference between the points and the line in L2-norm is close to 1%.
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Figure 8.5: Evolution of the computational time of the FMM (blue) and VENOM (red) on
constant discretization density spheres

8.4.2.3 Neonatal head

We use here the original normal resolution mesh of a neonate’s head published by Tizzard et

al. [285]. The difference with the one described in subsection 5.2 is mainly the discretization

density. Furthermore, it is different from the one used in section 6.2 because no adaptation

to the particular case of a live baby by warping it onto the optodes (see subsection 6.2.1) has

been performed. However, the optical properties and frequency used were the same than in this

BEM-FEM in vivo study. In total, this surface mesh contains 4094 elements for the scalp, 3686

elements for the skull and 2564 elements for the brain, which here results in 16594 degrees of

freedom.

The forward model with a source on the surface shows a good agreement with VENOM

with a relative solution difference in L2-norm of 8.15∗10−9. The global amplitude error (com-

puted along the formula || |Solution|−|FMM Solution| ||
||Solution|| ) is 0.02% and the global phase error 0.2%

(computed with a similar scheme).

One should notice that, due to the amount of nodes involved, it is impossible to solve this

problem with the existing quadratic BEM code, even with a computer with 32Go of Random

Access Memory (RAM). In terms of computational speed the following results were obtained:

• 365s (FMM) versus 651s (VENOM) for the setup of the problem

• 101s (FMM) versus 347s (VENOM) for the solving
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The setup includes steps 1-5 of the FMM algorithm in subsection 8.3.1 versus the matrix build-

ing for VENOM. The solving for the FMM is the step 6.

8.5 Conclusions
The acceleration of the BEM code brought by the development of the FMM and VENOM opens

new perspectives for the usage of the BEM in optical imaging. So far, the mesh size has been a

major obstacle. Due to the nature of the BEM matrix (which is full as described in subsection

2.1.2.3), the number of degrees of freedom often had to be reduced from FEM meshes or the

like, as in [298]. With the FMM, this is not the case for most of the meshes like our three-layer

example.

The FMM can be used to accelerate the BEM in any context, including DOCM and BEM-

FEM. Both require, in a linear reconstruction context, the building of a Jacobian. This means

that only the solving time is a limiting factor when the Jacobian is built using the adjoint method

[2]. The FMM provides a very significant acceleration in this domain.

We understand that beyond 105 degrees of freedom, the single-level approach developed

here is not sufficient to be really interesting. The largest multi-layer problem tested is a three-

layered neonate’s head merely identical to the one presented in section 8.4 but of a higher

resolution, with in total 44356 degrees of freedom. The VENOM matrix could not fit into

memory but the FMM still worked. The solving time, however, started to become slightly long

(about 5 minutes for a source). One can imagine that doubling the number of degrees of freedom

would make the multi-level FMM advantageous. We indeed intend to develop this method for

DOI in the near future. This would enable us to work on very high resolution meshes which

would include detailed topographical information on the cortex, including more particularly the

sulci and gyri.
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Summary and future work

We have developed genuinely innovative numerical methods for diffuse optical imaging based

on the BEM who have proven their worth by supporting my initial hypotheses with trustworthy

results. Despite the intense work which has been needed to design them, they are now ready

to be used by researchers. This opens a new field of opportunities and in the near future, the

research in this domain will be easier to carry out and more adaptive, leading us closer to a

wider availability and usage of near-infrared techniques in the clinic.

On the BEM-FEM

The BEM-FEM has indeed been able to aggregate the advantages of the BEM, which are mainly

its meshing simplicity and adaptability, with the reconstruction simplicity and accuracy of the

FEM. It has shown that it does the work of a full FEM in a easier way (once the code is written)

and with a comparable accuracy. More particularly, it has been proven that a patient-dependent

technique relying on an atlas is possible and actually easy to foresee being implemented in more

experimental contexts.

Other advantages will be found when further work will be done on the BEM-FEM in its

integration with a radiosity technique to treat the problem of the non-scattering regions such

as the CSF (see paragraph 2.1.1.4). In combination with the FMM, the then FMM-FEM will

present a significant memory and time consumption improvement over the full FEM.

In this thesis, images were reconstructed using a linear single-step approach, after assum-

ing that the background optical properties of the BEM and FEM regions were known. This is

appropriate for optical tomography of brain function, and it will be straightforward to extend

the method to non-linear image reconstruction where the optical properties of the overlying

regions are treated as unknowns. This would push further the influence of the BEM-FEM in

the inverse problem by adding variables to the reconstruction and having background properties

determined by calculation and not by assumption and measurements from dead tissue as it is
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System Pre-requirements Subject-specific data Relevance of BEM-FEM
Infant brain Atlas Optode positions Strong
Adult brain Atlas Optode positions Strong

Breast MRI None Practically irrelevant*
Limbs and others** MRI/CT None None (no thin layers)

Small animal Atlas Outer surface at least Beyond our scope***

Table 9.1: BEM-FEM applications (the atlases are general structures derived from anatomical
obtained with MRI, CT or other techniques such as histology). *Except to treat separately a
matching fluid and the breast tissue in a setup similar to [10]. **Joints and muscles. ***In this
context, the modelling does not only involve thin layers but also entire organs which should
be treated with a surface-integral approach; this is more complicated than the nested regions
formulation presented in this thesis.

done nowadays.

Our new formulation, as presented in this thesis, requires the knowledge of the BEM lay-

ers’ optical properties and their approximate location in the overall biological medium. In our

in vivo reconstructions, this data is asssumed to be known at a sufficient level. Besides, other

experiments could be done with perturbations of known optical properties to compare the values

found with the BEM-FEM and the FEM. Our in vivo study does not include such a comparison

since the actual optical properties of the activation are unknown. In the more general case of

neural imaging, the inverse problem could be strongly modified, position of the thin layers cov-

ering the region of interest would need to be backed up by an anatomical investigation (XCT

or MRI-type atlas). This is also only relevant when actual clear layers exist and is especially

advantageous when they are thin (see Table 9.1).

We are thinking about using the BEM-FEM in the breast imaging and small animal imag-

ing environments. Indeed, the BEM-FEM could allow the simplification of the treatment of

matching fluids and other interfering layers appearing during the imaging of such subjects. In

the more specific case of small-animal imaging, it could also help to take in account the thin

layers surrounding the organ of interest, along with a simplified modelling of the neighbouring

structures.

On the BEM DOCM

We have also demonstrated that the BEM DOCM is a possible, reliable and easy to implement

alternative to the existing widely used Optical Topography techniques, if written in the con-

tinuity of my work. It also provides a certain localisation accuracy and adaptability abilities.

Despite the simple multi-layered model, it is possible to represent the basic structures of the

brain and even to indirectly take in account the influence of the CSF.

The ECA is currently not easily linked to the concentration of the different types of
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Hemoglobin. Once this link will be found, further work could be done on the reconstruc-

tion at multiple wavelengths and a comparison with the conventional NIRS techniques could

be performed. This would presumably display clearly the partial volume effect which affects

the NIRS results. As of now, only cortical maps using the conventional approach could be con-

structed to compare with the BEM DOCM maps. This could be particularly interesting when

comparing the number of artefacts between the two methods.

The remarks about the necessary a priori knowledge of the optical properties of the regions

made previously about the BEM-FEM are also relevant to the BEM DOCM. However, the BEM

DOCM presents the advantage over the BEM-FEM that it is possible to reconstruct the absorp-

tion on more than one surface. This could allow to monitor the changes on the extracerebral

layers.

The BEM DOCM is envisaged to be used in adults with a more limited optode coverage

of the scalp surface. Some data, correlated with other imaging modalities, has been acquired

and is going to be analysed soon. The speed of the reconstruction is also an advantage when

imaging the evolution of activations in the cortex, once the Jacobian has been pre-computed.

On the FMM
We hope that all these findings and possible usage of the BEM in DOI will soon not be tampered

any more with arguments concerning the computational speed of the BEM. Our acceleration

method, along with the simplifications performed on the code, have proven their efficiency on

the commonly met discretisation situations. With a single layer or in multi-layered contexts,

the single-level FMM has accelerated the BEM to more acceptable speeds.

We intend to further develop this technique and apply it systematically to the surface

integral-treated problems. In order to be able to work on even more accurate structures, even

to the extent of taking the raw high resolution MRI-generated meshes of the brain on a routine

basis, we believe that our FMM technique will be upgraded to a multilevel one with precon-

ditioners. They have been proven to accelerate the FMM dozens of times in other contexts in

addition to the improvement brought by a multilevel implementation. This requires a sustained

and difficult effort, due to the nature of the diffusion equation.
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