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Abstract

Background: The loss of noradrenergic neurones of the locus coeruleus is a major feature of Alzheimer’s disease
(AD). Dopamine b-hydroxylase (DBH) catalyses the conversion of dopamine to noradrenaline. Interactions have
been reported between the low-activity -1021T allele (rs1611115) of DBH and polymorphisms of the pro-
inflammatory cytokine genes, IL1A and IL6, contributing to the risk of AD. We therefore examined the associations
with AD of the DBH -1021T allele and of the above interactions in the Epistasis Project, with 1757 cases of AD and
6294 elderly controls.

Methods: We genotyped eight single nucleotide polymorphisms (SNPs) in the three genes, DBH, IL1A and IL6. We
used logistic regression models and synergy factor analysis to examine potential interactions and associations with
AD.

Results: We found that the presence of the -1021T allele was associated with AD: odds ratio = 1.2 (95%
confidence interval: 1.06-1.4, p = 0.005). This association was nearly restricted to men < 75 years old: odds ratio =
2.2 (1.4-3.3, 0.0004). We also found an interaction between the presence of DBH -1021T and the -889TT genotype
(rs1800587) of IL1A: synergy factor = 1.9 (1.2-3.1, 0.005). All these results were consistent between North Europe
and North Spain.

Conclusions: Extensive, previous evidence (reviewed here) indicates an important role for noradrenaline in the
control of inflammation in the brain. Thus, the -1021T allele with presumed low activity may be associated with
misregulation of inflammation, which could contribute to the onset of AD. We suggest that such misregulation is
the predominant mechanism of the association we report here.

Background
Noradrenergic neurones in Alzheimer’s disease
The loss of noradrenergic neurones of the locus coeru-
leus is a striking feature of sporadic Alzheimer’s disease
(AD). A gradual, moderate loss is found with ageing in
healthy people [1-3], but a more dramatic loss is seen in

AD. A meta-analysis [4] showed similarly high losses of
noradrenergic neurones (24 studies) as of cholinergic
neurones (33 studies), with losses four times greater than
those of dopaminergic cells in AD. Noradrenergic neu-
rones project from the brainstem to innervate wide areas
of the forebrain [5]. Levels of noradrenaline (NA, norepi-
nephrine) in target regions have also sometimes been
reported lowered in ageing [6,7], e.g. in the hippocampus
and hypothalamus. They have generally been found to be
further reduced in AD [8-13], e.g. in the hippocampus,
hypothalamus, caudate nucleus, putamen and neocortex,
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although not in one small study [14]. Both the loss of
noradrenergic neurones [15] and that of NA in target
regions [8,13,16] have been correlated with the severity
of the disease. Changes in the noradrenergic system in
AD are reviewed in Hermann et al 2004 [17].

Dopamine b-hydroxylase -1021C/T
Dopamine b-hydroxylase (DBH) catalyses the conversion
of dopamine to NA. Its activity is also reduced in post-
mortem hippocampus and neocortex in AD [18,19],
without correlating with the loss of noradrenergic neu-
rones [19]. Variation in DBH activity both in serum and
in CSF has been reported to be over 80% heritable [20].
The single nucleotide polymorphism (SNP), -1021C/T
(rs1611115), has been identified as the main predictor of
DBH activity in plasma [21,22]. It is responsible for
~30% to ~50% of the considerable variation in such
activity between people, as replicated in several different
populations [21,23-27]. The -1021T allele contributes to
greatly lowered DBH activity through codominant
inheritance [21]. In view therefore of the chronic inflam-
mation seen in the AD brain [28,29] and of the anti-
inflammatory role of NA [30], Mateo et al 2006 [31]
investigated interactions between the -1021T allele and
SNPs of the regulatory regions of the pro-inflammatory
cytokine genes, IL1A and IL6. They reported interac-
tions between DBH -1021TT and both IL1A -889T
(rs1800587) and IL6 -174GG (rs1800795). In the Epista-
sis Project, we recently confirmed [32] reported interac-
tions between the inflammation-related cytokine genes,
IL6 and IL10, that contribute to the development of AD.
We therefore now decided also to examine the interac-
tions between DBH and both IL1A and IL6 in the Epis-
tasis Project, with 1757 cases of AD and 6294 controls.
In view of the age and sex differences that have been
reported in brain inflammation in the elderly [33], and
of the relevant influence of sex steroids [34], we also
examined possible interactions of DBH with age and
sex. We found an association of the low-activity DBH
-1021T allele with the risk of AD.

Methods
Study population
The Epistasis Project aims primarily to replicate interac-
tions that have been reported to affect the risk of AD.
Sample-sets were drawn from narrow geographical regions
with relatively homogeneous, Caucasian populations, by
seven AD research groups: Bonn, Bristol, Nottingham,
OPTIMA (Oxford), Oviedo, Rotterdam and Santander.
Sample characteristics by geographical region are given in
Additional file 1: Table S1. All AD cases were diagnosed
“definite” or “probable” by CERAD or NINCDS-ADRDA
criteria. AD cases were sporadic, i.e. possible autosomal
dominant cases were excluded, based on family history.

The median ages (interquartile ranges) of AD cases were
79.0 (73.0-85.2) and of controls were 76.9 (71.3-83.0).
Fuller details of our sample-sets are given elsewhere [32].
Ethical approval was obtained by each of the participating
groups (Additional file 1: Table S2).

Genotyping
Blood samples were taken after written informed con-
sent had been obtained from the subjects or their repre-
sentatives. Genotyping for the six centres other than
Rotterdam (below) was performed at the Wellcome
Trust Sanger Institute, using the iPLEX Gold assay
(Sequenom Inc.). Whole genome amplified DNA was
used for 82% of samples; genomic DNA was used for
the 18% of samples that were not suitable for whole
genome amplification. A Sequenom iPLEX, designed for
quality control purposes, was used to assess genotype
concordance between genomic and whole genome
amplified DNA for 168 individuals. Assays for all SNPs
were designed using the eXTEND suite and MassAR-
RAY Assay Design software version 3.1 (Sequenom
Inc.). Samples were amplified in multiplexed PCR reac-
tions before allele specific extension. Allelic discrimina-
tion was obtained by analysis with a MassARRAY
Analyzer Compact mass spectrometer. Genotypes were
automatically assigned and manually confirmed using
MassArray TyperAnalyzer software version 4.0 (Seque-
nom Inc.). Gender markers were included in all iPLEX
assays as a quality control metric for confirmation of
plate/sample identity. Genotyping of DBH intron 10 A/
G (rs1611131) and IL6 intron 2 A/G (rs2069837) was
carried out using KASPar technology by KBioscience
http://www.kbioscience.co.uk. No SNPs were imputed.
Genotyping in the Rotterdam cohort was done on Ver-

sion 3 Illumina-Infinium-II HumanHap550 SNP array
(Illumina, San Diego, USA) and additionally, SNPs were
imputed using MACH software http://www.sph.umich.
edu/csg/abecasis/MACH/ with HapMap CEU Release 22
as a reference [35]. The reliability of imputation was esti-
mated for each imputed SNP with the ratio of expected
and observed dosage variance (O/E ratio). Only samples
with high-quality extracted DNA were genotyped; 5974
were available with good quality genotyping data; 5502 of
these had reliable phenotypes. For this study, DBH exon
3 Ala197Thr (rs5320), IL1A exon 5 Ala114Ser (rs17561)
and IL6 intron 2 A/G (rs2069837) were genotyped, and
the other SNPs (Table 1) were imputed.

Statistical analysis
We assessed associations with logistic regression models,
controlling for age, gender, study centre and the ε4 allele
of apolipoprotein E (APOEε4), using R Version 2.10.1
(R Foundation for Statistical Computing, Vienna, Austria).
The adjusted synergy factors [36] were derived from the
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interaction terms in those models. Since both -1021TT
and -1021TC are associated with reduced plasma DBH
activity, although the former more so than the latter, we
combined the two genotypes in all analyses, i.e. using a
model that assumes that the -1021T allele is dominant.
For reasons of power, it is usual to use minor-allele-domi-
nant models in interaction analyses, even where a codomi-
nant model might produce a better fit. This is the almost
invariable practice with the APOEε4 allele.
Heterogeneity among centres was controlled thus. We

first fitted a model including random effect terms by
centre, which accounts for correlated (clustered) obser-
vations within populations while avoiding estimating
extra parameters in the regression models. We then
fitted centre as a fixed effect term with six contrasts.
We compared the goodness of fit of both approaches
using Akaike’s Information Criterion, which penalises
the model’s likelihood by a function of the number of
parameters in the model. We found that the model with
fixed effect terms by centre was preferable and used it
to control for different frequencies between populations.
Overdispersion was controlled by fitting generalized lin-
ear models with a quasi-binomial family with logit link.
Where the overall synergy factor was significant at p <

0.05, the seven individual centres and the two geogra-
phical regions, North Europe and North Spain, were
also examined. In view of the genetic differences found
between North and South Europe in previous studies
[37-39] and in the Epistasis Project (Table 1, Additional
file 1: Table S1, and [40]), we included separate analyses
for North Europe and North Spain. North Europe here
comprises Bonn, Bristol, Nottingham, Oxford and Rot-
terdam; North Spain comprises Oviedo and Santander.

Power calculations were based on the observed
synergy factor values. A Cox proportional hazards
model, with a frailty term to account for centre differ-
ences, controlling also for sex and APOE4, was fitted to
see whether the DBH -1021T allele was associated with
the onset age of AD, after confirming the assumption of
proportional hazards. Comparisons of allelic frequencies
between North Spain and North Europe were by Fisher’s
exact test. Linkage disequilibrium data were estimated
using the R genetics library http://cran.r-project.org/
web/packages/genetics/index.html. All tests of signifi-
cance and power calculations were two-sided.

Results
The data
Table 1 shows the allelic frequencies and patterns of link-
age disequilibrium of the eight studied SNPs in controls.
There were differences between North Europe and North
Spain in allelic frequencies of five SNPs. IL1A -889C/T
and exon 5 Ala114Ser were in almost 100% linkage dise-
quilibrium. Genotype distributions of the eight SNPs in
AD and controls from each of the seven centres are
shown in Additional file 1: Table S3; allelic frequencies
by country are given in Additional file 1: Table S4.
Hardy-Weinberg analysis was performed for both cases
and controls, both in the Rotterdam samples and in the
samples from the other six centres, which were geno-
typed by the Sanger Institute. In three of these 32
analyses, the samples were not in Hardy-Weinberg equi-
librium, compared with two as would be expected by
chance. Those three sample-sets were all AD cases from
the six centres: IL1A -889C/T (p = 0.03) and intron 6 A/
C (p = 0.004), and IL6 -174G/C (p = 0.02). Since another

Table 1 Studied SNPs

Gene SNP Minor allele frequency in controls Linkage disequilibrium in controls

North Europe North Spain Difference (p) With North Europe North Spain

D’ r2 D’ r2

DBH rs1611115 -1021C/T 20.7% (T) 19.7% (T) 0.47 rs5320 0.994 0.015 0.994 0.017

rs 5320 Exon 3
Ala197Thr

5.3% (A, Thr) 6.0% (A, Thr) 0.38 rs1611131 0.257 0.002 0.393 0.003

rs1611131 Intron 10
A/G

29.4% (G) 24.5% (G) 0.002 rs1611115 0.295 0.055 0.250 0.047

IL1A rs1800587 -889C/T 29.2% (T) 25.4% (T) 0.01 rs17561 0.999 0.994 0.989 0.971

rs17561 Exon 5
Ala114Ser

29.2% (T, Ser) 25.6% (T, Ser) 0.02 rs3783550 0.997 0.185 0.999 0.145

rs3783550 Intron 6
A/C

31.2% (C) 29.8% (C) 0.39 rs1800587 0.994 0.185 0.999 0.144

IL6 rs1800795 -174G/C 41.1% (C) 32.8% (C) 4 × 10-7 rs2069837 0.999 0.055 0.998 0.049

rs2069837 Intron 2
A/G

7.3% (G) 9.3% (G) 0.03

SNP = single nucleotide polymorphism, DBH = dopamine b-hydroxylase, IL1A = interleukin-la, IL6 = interleukin-6, D’ = ratio of observed linkage disequilibrium to
maximum possible linkage disequilibrium, r2 = correlation coefficient.

Results in bold are significant at p < 0.05.
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SNP, Arg535Cys in exon 11 of DBH (rs6271), has also
been reported to influence plasma DBH activity [23,24],
although much less so than -1021C/T, we performed pre-
liminary analysis of that SNP on data from six centres, i.e.
excluding Rotterdam.

Associations of DBH -1021TT+TC with AD
DBH -1021TT+TC versus CC was associated with AD
overall: odds ratio = 1.2 (95% confidence interval: 1.06-
1.4, p = 0.005). There were interactions with sex and
age (Table 2). The interaction with sex was significant
overall and in North Europe, while that with age was
significant overall and in North Spain. In view of those
interactions, we stratified our analyses by age and by
sex. Those stratified analyses established that the
observed association of DBH -1021TT+TC with AD in
the population was due to an association nearly
restricted to men < 75 years old: odds ratio = 2.2 (1.4-
3.3, 0.0004) (Table 3). Similar results were obtained in
North Europe and North Spain (Table 4). The DBH
-1021T allele was not associated with onset age of AD.

Interactions with IL1A and IL6
We found an interaction between DBH -1021TT+TC
and IL1A -889TT (Table 5): synergy factor = 1.9 (1.2-
3.1, 0.005). This interaction was consistent between
North Europe and North Spain. We also found a possi-
ble interaction between DBH -1021TT+TC and IL6
-174GG (Table 5), but only in North Europe: synergy
factor = 1.5 (1.07-2.0, 0.02) (Table 5). We also analysed
the results for DBH -1021TT+TC and IL1A -889TT
when stratified by each other (Table 6). Those analyses
showed that each risk factor was only associated with
AD in the presence of the other factor.

Other DBH SNPs: exon 3 Ala197Thr (rs5320), intron 10 A/
G (rs1611131) and exon 11 Arg535Cys (rs6271)
There were no main effects of any of these SNPs. The
overall odds ratio for 197Ala homozygotes (versus

carriers of one or two copies of Thr) was 1.01 (0.8-1.25,
0.9) and for intron 10 AA (versus AG+GG) was 0.97
(0.85-1.1, 0.7). However, the interaction of 197Ala
homozygotes with sex was slightly stronger than that of
-1021TT+TC, but only in Northern Europeans: synergy
factor = 2.3 (1.4-3.9, 0.001). The only apparently signifi-
cant result for intron 10 AA was an interaction with
age, only in Northern Spanish, very similar to that of
-1021TT+TC: synergy factor = 2.1 (1.1-3.95, 0.025). The
only apparently significant result in the preliminary ana-
lysis of Arg535Cys was probably due to chance (data
not shown).

Discussion
Interpretation of results
We have shown a clear association between the presence
of the DBH -1021T allele and AD (Table 4): odds ratio
for -1021TT+TC versus CC = 1.2 (1.06-1.4, 0.005), con-
trolling for centre, age, sex and APOE ε4 genotype. This
association was nearly restricted to men < 75 years old:
2.2 (1.4-3.3, 0.0004). The interactions with sex and age
were both significant (p = 0.01 and 0.03, respectively,

Table 2 Interactions of DBH -1021TT+TC versus CC with sex and age in AD risk

Interaction Dataset Numbers Power* Adjusted† synergy factor (95% CI, p)

Controls AD

With sex All 6201 1611 88% 1.4 (1.1-1.9, 0.01)

North Europe 5708 1109 78% 1.6 (1.1-2.1, 0.006)

North Spain 493 502 32% 1.3 (0.7-2.5, 0.4)

With age All 6200 1611 85% 1.4 (1.04-1.9, 0.03)

(± 75 years) North Europe 5708 1109 73% 1.3 (0.9-1.8, 0.2)

North Spain 492 502 32% 2.1 (1.1-3.9, 0.02)

DBH = dopamine b-hydroxylase, AD = Alzheimer’s disease, CI = confidence interval.

* power to detect a synergy factor of 1.4, as in the overall dataset, at p < 0.05.
† All analyses controlled for centre, age, sex and genotype of apolipoprotein E ε4.

Results in bold are significant at p < 0.05.

Table 3 Odds ratios of AD for DBH -1021TT+TC vs CC,
stratified by sex and by age

Subset Adjusted* odds ratios of AD
(95% CI, p)

Men 1.6 (1.2-2.0, 0.0002)

Women 1.05 (0.9-1.2, 0.60)

All < 75 years 1.6 (1.2-2.2, 0.001)

All > 75 years 1.06 (0.9-1.3, 0.47)

Men < 75 years 2.2 (1.4-3.3, 0.0004)

Men > 75 years 1.35 (0.98-1.8, 0.06)

Women < 75 years 1.3 (0.9-1.9, 0.24)

Women > 75 years 0.95 (0.8-1.2, 0.66)

AD = Alzheimer’s disease, DBH = dopamine b-hydroxylase, CI = confidence
interval.

* All analyses controlled for centre, age, sex and genotype of apolipoprotein
E ε4.

Results in bold are significant at p < 0.05.
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Table 2). Table 3 shows that the effect of age was consis-
tent between men and women and the effect of gender
was consistent between the two age groups. All these
results were consistent between North Europe and North
Spain (Tables 2 &4). We therefore believe these associa-
tions to be real. However, large numbers will be needed
to replicate these interactions (see the power estimates in
Tables 2 &5).
We also found a probable interaction between the

presence of DBH -1021T and IL1A -889TT (Table 5),
thus partially replicating Mateo et al 2006 [31], who
reported an interaction between DBH -1021TT and
IL1A -889T. The synergy factors were consistent
between North Europe and North Spain (Table 5). Also,
each risk factor, i.e. DBH -1021T and IL1A -889TT, was
only associated with AD risk in the presence of the
interacting factor (Table 6), thus indicating epistasis.
However, although the results were consistent in the
three largest sample-sets, Rotterdam, Santander and
OPTIMA, models for the smaller sample-sets proved
unreliable. Thus we can only describe this interaction as
probable, not definite. The IL1A -889TT genotype has
been found to increase transcriptional activity in assays
of promoter function [41,42]. Meta-analyses [43-45]
have shown heterogeneity between studies, but a possi-
ble, weak association of the -889T allele with AD: odds

ratio = 1.07 (0.99-1.16) (23 Sept 2010, 29 sample-sets:
http://www.alzgene.org/).
We also found a possible interaction between DBH

-1021T and IL6 -174GG, partially replicating that between
DBH -1021TT and IL6 -174GG reported by Mateo et al
[31]. However, in this case the interaction was only seen in
North Europe and the results were inconsistent between
the two European regions (Table 5) and between the
seven centres. Thus, this apparent interaction may not be
real. The only apparently significant results for the other
two DBH SNPs studied in our full dataset, exon 3
Ala197Thr (rs5320) and intron 10 A/G (rs1611131), were
somewhat inconsistent, precluding any firm conclusions.
The -1021T allele has consistently been associated

with strikingly reduced plasma DBH activity [21,23-27].
The allele partially disrupts consensus transcriptional
motifs for n-MYC and MEF-2 [26]. When DBH promo-
ter/reporters were cotransfected with n-MYC or MEF-2,
the allele affected the response [26]. The allele is thus
functional and, although we cannot assume that it has
the same effect in the brain as in the plasma, we may
plausibly speculate that it does also have some influence
on DBH activity in the brain. DBH catalyses the conver-
sion of dopamine to NA. The -1021C/T SNP may there-
fore affect levels of both catecholamines. However,
although reduced levels of NA are seen in AD brain

Table 4 Odds ratios of AD for DBH -1021TT+TC vs CC in certain subsets

Subset Adjusted* odds ratios of AD (95% CI, p)

All North Europe North Spain

All 1.2 (1.06-1.4, 0.005) 1.2 (1.05-1.4, 0.01) 1.3 (0.97-1.7, 0.08)

Men 1.6 (1.2-2.0, 0.0002) 1.7 (1.3-2.2, 0.0002) 1.5 (0.9-2.55, 0.12)

All < 75 years 1.6 (1.2-2.2, 0.001) 1.55 (1.1-2.2, 0.02) 1.8 (1.04-3.0, 0.03)

Men < 75 years 2.2 (1.4-3.3, 0.0004) 2.2 (1.3-3.8, 0.002) 1.9 (0.8-4.4, 0.12)

AD = Alzheimer’s disease, DBH = dopamine b-hydroxylase, CI = confidence interval.

* All analyses controlled for centre, age, sex and genotype of apolipoprotein E ε4.

Results in bold are significant at p < 0.05.

Table 5 Interactions of DBH -1021TT+TC vs CC with variants of IL1A and IL6 in AD risk

Interaction with Dataset Numbers Power* Adjusted† synergy factor (95% CI, p)

Controls AD

IL1A -889TT
vs TC+CC

All 6137 1535 93% 1.9 (1.2-3.1, 0.005)

North Europe 5678 1078 87% 1.7 (1.02-2.8, 0.04)

North Spain 459 457 32% 3.4 (0.9-12.3, 0.07)

IL6 -174GG
vs GC+CC

All 6161 1565 95% 1.3 (0.98-1.7, 0.07)

North Europe 5692 1084 88% 1.5 (1.07-2.0, 0.02)

North Spain 469 481 44% 0.94 (0.5-1.7, 0.85)

The first column indicates the models used to represent the SNPs, IL1A -889T/C and IL6 -174G/C, in the analyses of interactions with DBH -1021C/T.

AD = Alzheimer’s disease, DBH = dopamine b-hydroxylase, CI = confidence interval.

* Power to detect a synergy factor of 1.9 (first interaction) or 1.5 (second interaction) at p < 0.05.
† All analyses controlled for centre, age, sex and genotype of apolipoprotein E ε4.

Results in bold are significant at p < 0.05.
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[8-13], raised levels of dopamine have generally not been
found [8,12,13]. We will therefore base the discussion
below on the hypothesis that the association of the
-1021T allele with AD risk is mainly due to an effect on
NA levels in the brain.

The control of inflammation in the brain
One likely result of changed DBH activity is misregula-
tion of inflammation in the brain. The mechanisms that
control inflammation in the brain differ from those in the
periphery; an important part of the former control sys-
tem is the noradrenergic network (reviewed in [30]). The
anti-inflammatory role of NA has been shown in cultured
cells and rodent brains (reviewed in [30]). Raised levels of
NA reduced activation of astrocytes [46] and microglia
[47-49], and lowered expression of pro-inflammatory
cytokines [47-50] and chemokines [50]. Noradrenergic
depletion increased production of pro-inflammatory
cytokines [51] and chemokines [52], and activation of
astrocytes [53] and microglia [51], and impaired micro-
glial phagocytosis of b-amyloid [50]. Astrocytes are con-
sidered major targets of noradrenaline in the brain
(reviewed in [54,55]), through their b2-adrenoceptors
[46,54], which activate the cyclic AMP pathway [54,56],
which may lead to the activation of peroxisome prolifera-
tor-activated receptors (PPARs) [56-58]. These receptors
down-regulate expression of pro-inflammatory genes
(PPARg: [59]; PPARδ: [60]). The importance of the cyclic
AMP pathway in AD was underlined by the recent iden-
tification of the cyclic AMP-response element-binding
protein as the transcription factor of most relevance to
networks of AD-related genes [61]. The inhibition of the
pro-inflammatory transcription factor, nuclear factor �B,
by its endogenous inhibitor, I�B, may also mediate the
anti-inflammatory effects of NA [62-64]. However, the
anti-inflammatory role of NA remains controversial [53]
and it may even have pro-inflammatory actions in certain

conditions [65-67]. Nevertheless, the predominant evi-
dence suggests a mainly anti-inflammatory, regulatory
role of NA in the brain. This role is weakened in ageing
[1-3] and seriously disrupted in AD [4]. Thus, elderly
non-demented carriers of the DBH -1021T allele with
presumed low activity may be more vulnerable to low-
grade inflammation in the brain. This effect has been
reported to be stronger in elderly men < 80 years old
[33], consistent with our results.

Other potential mechanisms
In cell cultures and rodent brains, brain-derived neuro-
trophic factor (BDNF) has been reported: to be induced by
NA in astrocytes and neurones [68-71]; to exert certain
neuroprotective actions (reviewed in [72]); and to promote
synaptic plasticity and contribute to learning and memory
(reviewed in [73]). BDNF levels have been found to be
decreased in the postmortem hippocampus and neocortex
[74-76] in AD. A large recent meta-analysis of the BDNF
Val66Met polymorphism [77] found that the Met allele
was associated with AD in women, but not men.
Noradrenergic neurones also produce and secrete other

neuromodulators and neurotrophins (reviewed in [78]).
These neurones also have roles in glial energy metabo-
lism [54,55] and the maintenance of the microvasculature
[79,80] and of the blood-brain barrier [81]. NA has
actions against oxidative stress [57,82,83] and against
excitotoxicity [84,85]. Downstream of NA, the cyclic
AMP pathway has neuroprotective and antioxidant
actions in neuronal cultures [86,87]. NA protects against
the neurotoxicity of b-amyloid (reviewed in [88]). How-
ever, potentially pathogenic contributions of NA to AD
have also been reported [65,67,89].

Conclusions
Our results support an association of the functional
DBH -1021T allele with increased risk of AD in men

Table 6 Odds ratios of AD for the DBH and IL1A variants*, when stratified by each other

Odds ratio of AD for:- In the subset:- Numbers Adjusted† odds ratio of AD (95% CI, p)

Controls AD

DBH -1021TT+TC IL1A -889TC+CC CC: 3546 CC: 862 1.1 (0.99-1.3, 0.07)

vs CC TT+TC: 2077 TT+TC: 516

IL1A -889TT CC: 340 CC: 87 2.25 (1.4-3.6, 0.0008)

TT+TC: 174 TT+TC: 70

IL1A -889TT DBH -1021CC TC+CC: 3546 TC+CC: 862 0.95 (0.7-1.3, 0.76)

vs TC+CC TT: 340 TT: 87

DBH -1021TT+TC TC+CC: 2077 TC+CC: 516 1.8 (1.3-2.6, 0.0009)

TT: 174 TT: 70

AD = Alzheimer’s disease, DBH = dopamine b-hydroxylase, IL1A = interleukin-1a, CI = confidence interval.

* DBH -1021TT+TC vs CC and IL1A -889TT vs TC+CC.
† All analyses controlled for centre, age, sex and genotype of apolipoprotein E ε4.

Results in bold are significant at p < 0.05.
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< 75 years. Any of the above neuroprotective effects of
NA (reviewed in [90]) may influence that risk and that
association. However, there is considerable evidence for
the role of NA in the control of inflammation in the
brain (reviewed in [30]). In view therefore also of the
likely interaction between DBH and the pro-inflamma-
tory gene, IL1A, we suggest that the predominant,
although not sole, mechanism of the above association
with AD is misregulation of inflammation in the brain.
There is substantial evidence that inflammation is an
early, pre-clinical factor in the development of AD
(reviewed in [91]). We have previously proposed [32]
that inflammation is not only a reaction to the pathol-
ogy of AD, but contributes to its onset. Our present
results support that view.

Additional material

Additional file 1: Combarros et al 2010: The dopamine b-
hydroxylase -1021C/T polymorphism is associated with the risk of
Alzheimer’s disease in the Epistasis Project.
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