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Abstract 

The number of protein sequences being deposited in databases is currently growing 

rapidly as a result of large-scale high throughput genome sequencing efforts.  A large 

proportion of these sequences have no experimentally determined structure.  Also, 

relatively few have high quality, specific, experimentally determined functions. 

Due to the time, cost and technical complexity of experimental procedures for the 

determination of protein function this situation is unlikely to change in the near 

future.  Therefore, one of the major challenges for bioinformatics is the ability to 

automatically assign highly accurate, high-specificity functional information to these 

unknown protein sequences.  As yet this problem has not been successfully solved to 

a level both acceptable in terms of detailed accuracy and reliability for use as a basis 

for detailed biological analysis on a genome wide, automated, high-throughput scale. 

This research thesis aims to address this shortfall through the provision and 

benchmarking of methods that can be used towards improving the accuracy of high-

specificity protein function prediction from enzyme sequences.  The datasets used in 

these studies are multiple alignments of evolutionarily related protein sequences, 

identified through the use of BLAST sequence database searches. 

Firstly, a number of non-standard amino acid substitution matrices were used to re-

score the benchmark multiple sequence alignments.  A subset of these matrices were 

shown to improve the accuracy of specific function annotation, when compared to 

both the original BLAST sequence similarity ordering and a random sequence 

selection model. 

Following this, two established methods for the identification of functional 

specificity determining amino acid residues (fSDRs) were used to identify regions 

within the aligned sequences that are functionally and phylogenetically informative.  

These localised sequence regions were then used to re-score the aligned sequences 

and provide an assessment of their ability to improve the specific functional 

annotation of the benchmark sequence sets. 

Finally, a machine learning approach (support vector machines) was followed to 

evaluate the possibility of identifying fSDRs, which improve the annotation 
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accuracy, directly from alignments of closely related protein sequences without prior 

knowledge of their specific functional sub-types.  The performance of this SVM 

based method was then assessed by applying it to the automatic functional 

assignment of a number of well studied classes of enzymes. 
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Chapter 1 Introduction and Background 

1.1 Protein Function 

The native state conformation of a protein is essential for its biological activity.  

Because the structure of the native state is defined by the amino acid sequence, it 

follows that the precise biological function of a protein is strongly dependant on both 

sequence and structural properties.  Protein function can be a difficult concept to 

rigorously and unambiguously define and categorise.  A general biological 

description of protein function usually involves a description on three levels: 

¶ Biological Function:  This describes the effects of the protein on the entire 

organism; 

¶ Cellular Function :  This level provides a description of the interactions and 

pathways that a protein is involved in on a cellular level; and  

¶ Molecular Function:  Providing a description of the precise biochemical activity 

of a protein at a molecular level. 

 

A number of functional classification schemes have been proposed towards solving 

the function categorisation problem, a number of which are described below.   

Functional Specificity 

The sub-categorisation of function leads to increasingly more detailed, specific 

descriptions of functions that proteins can perform.  Therefore, the concept of 

functional specificity can be thought of as a hierarchical classification, moving from 

a general, not very specific description (such as ñenzymeò), to a progressively more 

detailed description of a protein (such as ñalcohol dehydrogenaseò).  It is this 

detailed form of description and classification that is of major interest in this thesis. 

1.1.1 Protein Function Classification Schemes 

Several schemes for the description and classification of proteins and their functional 

properties have been developed (Ouzounis et al., 2003; Whisstock and Lesk, 2003; 

Riley, 1998).  The aim of functional classification schemes is the descriptive 

categorisation of similar protein functions.  There have been attempts which both 



19 

 

concentrate on single organism categorisation (generally associated with a particular 

genome sequencing project) and also more general classification schemes that either 

apply to all types of proteins or a particular sub-type such as the enzymes.  I will 

concentrate below on two widely used schemes: the enzyme commission and gene 

ontology classification schemes.   

1.1.1.1 Enzyme Commission Classification Scheme 

The enzyme commission (EC) classification is a hierarchical classification scheme 

for the description of enzyme function and catalysed reactions.  This is a well 

established and widely used scheme, the specific details of which can now be found 

online (http://www.chem.qmul.ac.uk/iubmb/enzyme/).  A database resource, called 

ENZYME (Bairoch, 1993; Bairoch, 2000), is available, which provides links from 

the EC descriptions to associated protein sequence databases, such as UniProt 

(Apweiler et al., 2004).   

The structure of the EC naming scheme takes on the form of a four level hierarchy 

(EC A.B.C.D).  The top level (A) consists of six principal enzyme classes, these are: 

(1) EC 1 ï the Oxidoreductases; (2) EC 2 ï the Transferases; (3) EC 3 ï the 

Hydrolases; (4) EC 4 ï the Lyases; (5) EC 5 ï the Isomerases; and (6) EC 6 ï the 

Ligases.  The other levels are dependent on the principal class and sub-classify each 

into progressively more detailed specifics regarding the enzyme reaction catalysed. 

The problems associated with this classification scheme, with respect to its use as a 

description of protein function are well documented (Whisstock and Lesk, 2003; 

Babbitt, 2003).  The main point of caution is that the EC scheme nomenclature was 

designed as a way of describing the reactions catalysed and not specifically the 

sequence or structural features of the proteins which catalyse them.  A further point 

of note, especially important in terms of automated function prediction and 

annotation methods, is the ñfunctional distanceò between the specific functional 

descriptions (Pawlowski et al., 2000).  For example, when comparing proteins which 

have different substrates, it is not always clear from the description the precise 

degree of difference in the biochemical reactions or the functional properties of the 

proteins involved.  Generally this is overlooked and a simple correlation is assumed 

between the level of functional specificity and the number of matching values in the 

four-level EC hierarchy.  This problem of functional distance between alternate 

http://www.chem.qmul.ac.uk/iubmb/enzyme/
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protein functions is one that is important when considering the specific accuracy 

levels and therefore the benchmarking of protein function prediction methods.  

1.1.1.2 The Gene Ontology 

A more general and detailed classification scheme for all classes of proteins is 

provided by the gene ontology (GO) project (Ashburner et al., 2000).  The gene 

ontology is designed as a structured ontology with three sections describing the 

biological processes, cellular components and biological functions of the associated 

genes or gene products.  GO terms are represented by a directed acyclic graph 

(DAG) in which the level of functional specificity increases as the graph is 

descended from a more general classification at a óparentô node to a more specific 

function at a óchildô node.  Figure 1.1 shows an overview of some of the terms at the 

top of the GO hierarchy for each of the three main categories.  A more detailed view 

of the ontology can be browsed using the interactive tools available online 

(www.geneontology.org). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Example showing a selection of gene ontology terms.  For 

clarity, not all possible gene annotations are shown at each level. 

Concerted efforts are currently underway to provide detailed GO annotations for 

genes and gene products in major sequence databases and for particular genomes 

(Gene Ontology Annotation (GOA) project (Camon et al., 2004)).  Also, evidence 

codes are being used in the gene ontology for recording the source of the 

annotations.  This is particularly important for judging the quality and reliability of 

root 

molecular 

function 

biological 

process 

cellular 

component 

catalytic 

activity 

growth 

cell growth 

cell binding 

membrane 
hydrolase 

activity 

http://www.geneontology.org/


21 

 

the annotated data, especially when benchmarking the reliability of automated 

methods.  There are a number of evidence codes provided for inferring the source, 

however, the most important distinction is between those that have arisen from 

expert human manual annotation and those from automated methods. 

The gene ontology is currently the most comprehensive general classification 

available for proteins and is becoming the standard for use in annotation projects and 

prediction experiments.  However, the complexity of the gene ontology requires 

careful consideration when measuring functional distances, especially with regards 

to the levels of functional specificity. 

1.1.2 Classification of Protein Sequence and Structure 

Through evolutionary analysis of the sequence and structural properties of proteins, 

patterns and relationships become apparent, allowing classification into families of 

homologous proteins (Orengo and Thornton, 2005).  In general it is possible to 

consider the classification of proteins using clustering algorithms based on sequence 

or structural similarity measures to define hierarchies.  The categories range from 

general, commonly shared properties at high similarity, to a finer granularity when 

considering lower levels of similarity.  With respect to understanding protein 

function these classifications can provide important information, as often there is 

correlation between sequence, structural and functional similarity (Todd et al., 1999).  

However, the level of sequence and structural similarity is not always a reliable 

measure of function, meaning more powerful methods of analysis are required, 

especially when considering specific detailed functional properties. 

1.1.3 Evolution and Protein Function 

Central to the creation of new protein functions are evolutionary mechanisms and 

homologous relationships.  The continuing accumulation of sequence and structural 

information is producing significant breakthroughs in the understanding and methods 

used for analysis of evolutionary aspects of protein sequence, structure and function.  

Some important concepts relevant to this area are described below.   

1.1.3.1 Evolutionary Divergence 

During gene replication, mutations can arise in the DNA sequences, producing either 

synonymous or non-synonymous substitutions.  Due to the redundancy of the genetic 
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code some mutations within codons will produce no change in the translated amino 

acid sequence (synonymous substitutions).  However, others will produce mutations 

in the translated amino acid sequences (nonsynonymous substitutions).  Synonymous 

substitutions are important when analysing changes in DNA sequences, especially 

when measuring rates of evolutionary change.  The emphasis of this work, however, 

is on the functions of proteins and therefore nonsynonymous mutations are those of 

most interest. 

The gradual accumulation of mutations from a common ancestor through the process 

of natural selection is known as divergence.  This is the mechanistic basis for both 

the diversity and similarity seen between groups of homologous proteins when they 

are classified into sequence, structural and functional families.  An understanding of 

the effects of these mutations is vital for studying changes of functional specificity 

between homologous proteins and the subsequent development of methods for 

accurate prediction of function from sequence. 

1.1.3.2 Gene Duplication 

A key mechanism in the development of new protein functions is that of gene 

duplication (Ohno, 1970; Taylor and Raes, 2004).  Whenever a duplication event 

occurs, a redundant copy of the gene is created within the organism.  Like other 

mutation events, gene duplication can be advantageous, deleterious or neutral.  In 

general a duplicated gene will be free from evolutionary constraints to undergo 

divergence, possibly leading to the development of a new specific function without 

impairing the fitness of the organism.   Although the gene pair will be related by a 

single common ancestor, the two copies may evolve along different pathways 

creating separation of function, leading to new protein sub-functionalisation. 

There are many reported examples of divergent evolution producing changes in the 

specificity of protein function (Whisstock and Lesk, 2003).  A commonly used 

example is that of the serine proteinases.  This is a good example of the possibilities 

of functional divergence because it shows examples of both the gradual change in 

specificity through gradual mutational divergence and also large changes in function 

through point mutations of small numbers of important functional residues (Patthy, 

1999). 
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1.1.3.3 Orthologous and Paralogous Relationships 

An important consideration when analysing the evolutionary history of genes, 

proteins and their functions is the effect of speciation.  Two definitions (Fitch, 1970) 

are required to describe the relationship between genes in different species and gene 

pairs within the same species: 

Orthologs:  Are genes in different genomes that have been created by the separation 

of species, through speciation; 

Paralogs:  Are genes in the same genome that have been created by gene duplication 

events. 

Identification and discrimination between orthologous and paralogous proteins is an 

important area for the study and prediction of specific protein functions and also to 

the field of comparative genomics.  The availability of complete genome sequences 

makes possible attempts to identify and classify orthologous proteins.  One approach 

to this is the clusters of orthologous groups (COGs) method (Tatusov et al., 1997; 

Tatusov et al., 2003), which uses an all-against-all BLAST based sequence similarity 

search to identify sets of proteins that occur in at least three different divergent 

genomes. 

Orthologous proteins generally carry out identical or at least very similar functions in 

their respective genome, because of this, their identification and categorisation can 

be of particular importance when considering methods for the prediction of function.  

Accurate differentiation of orthologs and paralogs at different evolutionary distances 

should provide important information for the separation of specific functional 

groupings. 

1.1.3.4 Sequence Similarity Database Searching 

Fast, reliable and efficient solutions are required to identify similarities and possible 

evolutionary relationships between large numbers of protein sequences.  Database 

search techniques have been developed for this purpose, taking a query sequence as 

input to provide similarity measures to all other sequences in the search database.  

The first methods developed for this purpose were FASTA (Pearson and Lipman, 

1988) and BLAST (Altschul et al., 1990), which provided improvements in speed 
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over dynamic programming methods.  The efficiency gains of these methods are 

provided by the use of heuristic ñk-tupleò search techniques which look for matching 

patterns of consecutive characters of length k in the query and the search database 

sequences.  A local alignment from these seed patterns is then generated to provide 

similarity scores and identify high scoring pairs (HSPs) of sequences.   

An important feature of these methods is their use of a robust statistical framework 

for calculating the significance of matches between the query and aligned sequences.  

A value called the expect value (E-value) is used as the basis for this through the use 

of extreme value statistics.  It represents the number of times that you would expect 

to get the match score observed between a pair of sequences by chance, using a 

database of known size.  Parameters such as the database size and aligned sequence 

lengths affect this value and should be taken into account when interpreting the 

output (Jones and Swindells, 2002). 

To improve the sensitivity and allow the reliable identification of more distant 

sequence homologues, powerful profile-based search techniques have been 

developed.  These provide identification of possible homologues at lower values of 

sequence identity, within a region commonly known as the twilight zone (Feng and 

Doolittle, 1996).  Profile based (Gribskov et al., 1987) and probabilistic methods for 

sensitive database searching are based on the residue conservation patterns observed 

from multiple sequence alignments.  A widely used extension to the BLAST 

algorithm is PSI-BLAST (Altschul et al., 1997; Schaffer et al., 2001), which 

implements an algorithm that carries out iterated database searches using sequence 

profiles generated from position specific scoring matrices (PSSMs). 

Other sensitive search techniques have been developed that use hidden Markov 

models (HMM) (Eddy, 1996) to generate probabilistic models of residue 

conservation.  Although these methods are more sensitive than the PSSM based 

profile methods (such as PSI-BLAST) they are also more computationally 

expensive. 

1.1.3.5 Multiple Sequence Alignments 

Multiple sequence alignments (MSAs) provide a powerful method for the analysis of 

evolutionary relationships between families of protein sequences.  Columns of 
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conserved properties within multiple alignments generally indicate structurally and 

functionally important regions.  A number of methods have been developed towards 

improving the overall sensitivity of multiple alignment approaches (such as: 

CLUSTALW (Thompson et al., 1994); T-COFFEE (Notredame et al., 2000); and 

Gotoh, 1999).  The most commonly used is progressive alignment, which is based on 

heuristics that attempt to exploit evolutionary relationships between homologous 

sequences through the use of a guide tree.  The heuristic nature of these algorithms 

does not guarantee an optimised set of alignments but the advantages of speed and 

computational efficiency provided compensate for this. 

1.2 Automatic Protein Function Prediction 

Accurate, reliable and fully automated methods for the prediction of protein function 

are of major importance in the area of computational biology and bioinformatics 

analysis.  Its importance continues to grow in tandem with the continuing growth of 

available sequence data from high-throughput genome sequencing projects (Lander 

et al., 2001; Venter et al., 2001) and structural data from structural genomics projects 

(see website: http://sg.pdb.org).  The difference between available sequence and 

structural data is significant.  As of January 2009, there are 6,964,485 sequences in 

UniProt release version 39.6 (Apweiler et al., 2004) compared to 55,271 solved 

structures in the PDB (13-Jan-2009) (Berman et al., 2000).  With regards to available 

functional annotation data, statistics from the gene ontology annotation (GOA 

UniProt version 67.0) project (Camon et al., 2004) show that there are currently 

86,332 distinct proteins that have been manually annotated with GO functional 

terms.  There is clearly a need for automated annotation methods to supplement the 

data currently available.  A number of good reviews are available (Whisstock and 

Lesk, 2003; Rost, 2003; Valencia, 2005; Watson et al., 2005) covering a range of 

areas important for prediction and annotation.  Here, the aim is to provide a detailed 

discussion, related to my research, of previous work carried out on sequence based 

methods for protein function prediction.  Particular attention is focussed on methods 

for accurately discriminating specific functions between homologous groups of 

proteins. 
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1.3 Sequence Homology Based Function Prediction 

Methods 

1.3.1 Homology Transfer 

The principle method for identifying the function of an unknown protein sequence is 

through the use of database similarity search techniques such as BLAST (Altschul et 

al., 1990) or PSI-BLAST (Altschul et al., 1997).  A typical approach would be to 

assign the function of a closely related homolog to that of an unknown query, using a 

particular threshold of sequence similarity or statistical significance for deciding the 

reliability of the annotation transfer.   

1.3.1.1 Analysis of the Correlation between Sequence, Structure and 

Functional Similarity 

A number of research groups have systematically analysed the correlation between 

protein sequence similarity and the level of functional conservation.  Studies of this 

kind aim to provide a measure of the accuracy and error associated with using 

sequence similarity thresholds for the transfer of function.  The variation in the 

analytical methods used has led to discrepancy for specific thresholds between levels 

of sequence similarity measure and functional conservation (Valencia, 2005).  

However, a general trend is observed in all the results.  As the sequence similarity 

increases the level of functional conservation also increases, showing a correlation 

between similarity of sequence and function (Wilson et al., 2000).  Although this is 

also true for differing levels of functional specificity, in general, the more specific 

the level of function the higher the sequence similarity required for correlation and 

therefore accurate transfer of function. 

1.3.1.2 Analysis of Single-Domain Proteins 

An early study by Hegyi and Gerstein (1999) of the relationship between SCOP 

(Murzin et al., 1995) structural domains and their enzyme function (as specified by 

the enzyme commission (EC) classification scheme) showed a correlation between 

major SCOP fold classes and broad functional categories.  This analysis was then 

extended to other structural and functional classification schemes for a detailed 

analysis of the yeast genome, with an observed fold-function correlation for a 

number of functional properties.  Martin et al. (1998) also investigated the 
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relationship between general EC class and the CATH fold classification.  In this 

study it was found that the fold was related more closely to the ligand type rather 

than top level EC number classification. 

This work was followed by a number of studies that attempted to get firm threshold 

values for functional annotation transfer at varying levels of functional specificity.  It 

is difficult to make direct comparisons between all these due to the different methods 

and functional classification schemes used; however, a summary of these results 

highlights certain trends: 

¶ Wilson et al. (2000) showed (using a combined ENZYME and FLYBASE 

(Gelbart et al., 1994) functional classification scheme) that precise function was 

conserved down to 40% sequence identity and broad functional class down to 

around 25%. 

¶ Devos and Valencia (2000) used both EC numbers and Swiss-Prot keywords as 

measures of functional equivalence.  Concentrating on the EC conservation 

results (these are commonly used and therefore more easily comparable between 

other studies, also the change in level of specificity is easier to see) they state that 

above 70% sequence identity is required for reliable transfer of all 4 EC 

numbers, 50-70% for the conservation of the first 3 EC numbers, and that below 

30% assignments of function based on sequence identity become problematic.   

¶ Todd et al. (2001) carried out a similar study to Devos and Valencia, using single 

and multi-domain proteins from CATH (Orengo et al., 1997), with EC numbers 

as the measure of functional conservation.  The results show that the first three 

EC numbers are conserved with an accuracy of 90% above a 30% sequence 

identity threshold and that above 40% variation in the fourth EC number 

becomes rare. 

1.3.1.3 Extension of Analysis to Include Multi-Domain Proteins 

Due to the importance of multi-domain proteins, especially in eukaryotic genome 

analysis, some of the above methods have been extended to incorporate multi-

domain proteins.  Hegyi and Gerstein (2001) extended their earlier work (Hegyi and 

Gerstein, 1999) and that of Wilson et al. (2000), including both single and multi-

domain proteins in a similar analysis.  Multi-domain proteins were again taken from 
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Swiss-Prot and identified as those showing a match to at least two domains of known 

structure belonging to different SCOP superfamilies.  Functional categories were 

defined using Swiss-Prot keywords.  The results showed that there was significantly 

more conservation of accurate transfer of approximate function for the single (67%) 

domain proteins compared to the multi-domain (35%), although this value rose to 

80% when two domain folds are shared.  

Rost (2002) approached an analysis of sequence similarity and conservation of EC 

numbers in the Swiss-Prot database (Apweiler et al., 2004) with the aim of reducing 

the effect of the inherent bias in the sequence databases.  This bias is proposed to 

arise from experimental bias in the type of sequence data deposited and also high 

levels of sequence redundancy.  The results obtained by Rost show a clear difference 

to those of earlier studies, suggesting that the sequence identity threshold required 

for accurate functional annotation transfer is higher than previously reported.  With 

more than 70% sequence identity required for accurate transfer of all four levels of 

EC numbers. 

Tian and Skolnick (2003) followed this study, also using enzymes, taking into 

account bias in both functional and sequence properties.  This method proposed that 

a further bias exists in terms of the represented enzyme functional groupings in 

Swiss-Prot.  The figures they obtained were not as pessimistic as those of Rost 

(2002), but still showed less conservation than most of the other studies previously 

discussed - suggesting a 60% sequence identity threshold for accurate transfer of all 

four EC number levels. 

The studies of Rost (2002) and Tian and Skolnick (2003) both also looked at the 

correlation of BLAST and PSI-BLAST E-values with enzyme functional 

conservation.  These show the same general trend seen in the correlation with 

sequence identity.  As statistical significance of the matches decreases, the reliability 

of specific functional prediction also decreases, and even at particularly significant 

(low) E-values there are still examples that show incorrect functional conservation.  

These findings are particularly important because they show that even statistically 

very significant matches, obtained from powerful homology recognition techniques, 

can produce incorrect functional assignment. 
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Although arguments relating to the best datasets to use and the corresponding correct 

process for removal of bias will most probably continue, the general conclusion is 

clear.  Sequence similarity methods are generally a good indicator of general 

function, however, they become less reliable when either the level of specificity 

required is increased or the similarity is reduced.  Caution is therefore required when 

using simple transfer of homology techniques for functional annotation, especially 

when considering high specificity applications (Devos and Valencia, 2001).   

1.3.2 Sources and Extent of Database Annotation Errors 

A major concern of automatic annotation efforts is the proliferation of erroneous 

functional database annotations (Brenner, 1999; Devos and Valencia, 2001; 

Iliopoulis et al., 2003).  Possible reasons proposed for the source of the mistakes in 

annotation include: insufficient level of sequence similarity used for the annotation; 

typographical errors; and use of previous incorrect annotations for new annotation.  

An analysis of the propagation of database errors has been carried out using 

mathematical modelling techniques which suggests that the annotation errors may 

grow at an exponential rate with the growth of database sizes (Gilks et al., 2002).  

Guidelines for successful annotation strategies are described by Iliopoulis et al. 

(2003).  Probably the most important of these is the clear indication and reliability of 

the source annotation, which constitutes an important part of the GO annotation 

project and also the detailed information fields in Swiss-Prot.  Levels of reliability 

for automated annotation results can be given depending on whether the source 

annotation is from a manual expert annotation or a previous automated annotation.  

A further source of improvement to the quality of annotations, discussed by 

Ouzounis and Karp (2002), is the regular re-annotation of databases.  The time 

consuming nature of this type of procedure necessitates full automation providing 

further weight to the need for high-quality automated tools for functional annotation. 

1.3.3 Low Specificity Automated Function Prediction 

A number of methods have been proposed for automated high throughput annotation 

of genome sequences.  Generally these are based on the understanding that there are 

problems with the homology based approaches, however, for a large number of 

annotations, especially when considering more general, lower functional specificity, 

the accuracy is acceptable.     
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1.3.3.1 GeneQuiz 

One of the earliest automated functional annotation systems was GeneQuiz (Andrade 

et al., 1999) and consists of a combination of sequence similarity (BLAST and 

FASTA) and rule-based processing algorithms for annotation of both general and 

more specific functional class.  A web-site with details of full genome analyses is 

available (http://jura.ebi.ac.uk:8765/ext-genequiz/).  An overview of the system 

shows a general methodology common in many of the automated systems: 

¶ A sequence similarity threshold is initially applied to select the most similar 

sequence pairs to the unknown query sequence; 

¶ Analysis of existing functional annotations (in the case of GeneQuiz this is 

through rule based lexical analysis of functional keywords and EC numbers) is 

carried out to obtain a consensus result of the most reliable function descriptions 

to apply to the query sequence; 

¶ Application of annotation to query sequence, sometimes with an indication to the 

level of reliability of the assignment; 

¶ Option for further manual analysis and editing of the result through use of 

additional ñsupport methodsò, such as, multiple sequence alignments and motif 

database searches. 

Assignment of function using a method like GeneQuiz shows some improvement 

over ñtop-hitò homology transfer because the derived functional annotations are 

based on a combination of sequence similarity, database quality and source 

annotation quality. 

1.3.3.2 Automatic Annotation of TrEMBL Database 

An important system to consider is one underpinning the automated annotation of 

the TrEMBL (Apweiler et al., 2004) section of the UniProt protein database 

resource.  The algorithmic details and information flow of the system are described 

in detail elsewhere (Moller et al., 1999; Fleischmann et al., 1999; Kretschmann, 

2001), but a look at the overview of the methods used shows a similar (but more 

complex) integrated rule-based processing approach to that of GeneQuiz.  An 

important consideration in the design of this system was that the aim of TrEMBL is 
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to eventually move all sequences into the related Swiss-Prot database; therefore the 

rules used for automated annotation are used to help inform the manual annotation 

procedure. 

1.3.3.3 PEDANT (Protein Extraction, Description and Analysis Tool) 

The aim of PEDANT (Riley et al., 2005 ï http://pedant.gsf.de) is to produce a 

software system capable of a number of genome scale sequence analysis tasks.  This 

includes automated analysis of protein function based on high-stringency BLAST 

sequence similarity searches to identify manually annotated homologous proteins for 

function transfer.  A number of different functional classification schemes are used, 

including EC numbers.  The system also assigns sequences according to COGs 

(Tatusov et al., 2003) and carries out sequence motif and pattern detection searches 

against a number of sequence motif databases.  Although the system provides 

methods to prevent proliferation of potentially incorrect automatic annotations it is 

still based on fairly simple sequence similarity based search techniques, and will 

therefore suffer from the problems already discussed when considering high-

specificity predictions. 

Recent efforts towards large-scale protein sequence annotation have concentrated on 

the gene ontology (GO) framework as the basis for the functional classification (for 

example: Xie et al., 2002; Martin et al., 2004).  Again, the main basis for these 

methods is the use of similarity based search techniques with additional filters to 

refine the predictions.  Xie et al. (2002) describe a method that incorporates a 

clustering algorithm based on the sequence identity and BLAST E-values to group 

proteins with potentially similar GO terms.  The reliance of this method on text-

parsing of annotation literature sources means that it is limited by the quality of the 

text processing engine and the availability of good literature sources.  

The GOtcha method (Martin et al., 2004) is compared to the top-scoring BLAST hit 

for each input sequence.  The key factors related to this method are the accuracy and 

confidence estimates provided for each annotation.  Overall though, the method is 

aimed at providing greater annotation coverage rather than a major improvement in 

the level of specificity of predictions.  
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1.3.3.4 General Limitations 

Most of the methods described above suffer from a number of limitations, especially 

when considering their application to high-quality, reliable and high specificity 

function annotations.  For some of the methods this is down to the fact that the 

inherent design is for increased coverage of annotations, at a cost of a fairly general 

level of specific functional classification.   

A number of approaches have been proposed for a more detailed analysis of protein 

function allowing the identification of specific functional sub-types from groups of 

closely related proteins.  Many of these methods aim to take advantage of 

information describing evolutionary relationships within protein families.  These will 

be the focus of the next section and are of most interest for this thesis. 

1.3.4 High-Specificity Phylogenetic Approaches to Protein Function 

Prediction 

One of the main limitations of sequence homology transfer methods, for function 

prediction, is their performance at identifying specific functional subfamilies in 

closely related families of sequences.  It has been shown that both phylogenetic 

reconstruction (Eisen, 1998; Eisen and Wu, 2002; Sjolander, 2004; Johnson and 

Church, 2000) and the identification of functionally determining residues 

(Livingstone et al., 1993; Casari et al., 1995; Hannenhalli and Russell, 2000; del sol 

Mesa, 2003; Lichtarge et al., 1996) in functionally related protein families, through 

the use of multiple sequence alignment (MSAs), can help towards improving the 

specificity of protein function predictions.  With the continued increase in available 

protein sequences and full genome sequence sets these evolutionary methods are 

becoming more powerful and important for function analysis. 

1.3.4.1 Phylogenetic Reconstruction Methods 

Increased sequence information has led to an increase in the use of molecular 

phylogenetic techniques for analysis and prediction of protein function from 

sequence.  There are three reviews of particular importance in this area (Eisen, 1998; 

Eisen and Wu, 2002; Sjolander, 2004), describing ways in which phylogeny can be 

most effectively combined with sequence analysis to improve methods for automated 

function prediction.  A closely related area of research, which is discussed in the next 
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section, uses phylogenetic information to identify functionally important amino acid 

residues. 

The review by Sjolander (2004) provides an overview and discussion (see figure 1.2) 

of the important stages for the prediction of function using molecular phylogeny.  

This methodology is an expanded form of that originally proposed by Eisen (1998).  

Not all stages in this methodology are investigated during the experiments in this 

thesis, however, it provides a good basis for discussion of some key areas and 

previous work, related to the prediction of protein function using molecular 

phylogeny based techniques. 

 

Figure 1.2.  Flowchart showing the key stages in molecular phylogenetic 

analysis of protein function.  Adapted from Sjolander (2004). 

1.3.4.2 Identification of Homologous Sequences 

The first stage is the collection of sequences homologous to the unknown query 

protein.  Three potential limitations are highlighted when using homolog detection 

for phylogenetic analysis; these are: (i) analysis of protein domains; (ii) possible 

inclusion of false positives (non-homologs); and (iii) profile drift due to iterated 

searches.  The effects of the second and third problems can be reduced by a number 

of means, the most obvious being the use of more conservative parameters when 

including related sequences in the iterated homology search.   

1.3.4.3 Multiple Sequence Alignment 

High quality MSAs are essential for the accurate and reliable algorithmic 

reconstruction of phylogenetic trees.  A number of applications are available for 
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multiple sequence alignment; some commonly used ones are: CLUSTAL-W 

(Thompson et al., 1994); T-COFFEE (Notredame et al., 2000); MAFFT (Katoh et 

al., 2002); and MUSCLE (Edgar, 2004).  When considering automated approaches, a 

compromise must be reached between the quality of the alignments and the 

computational efficiency.  A further, computationally less demanding source of 

multiple sequence alignments is from the output of PSI-BLAST through use of the   

ïm 6 output parameter.  These are essentially a concatenation of the multiple pair-

wise sequence alignments identified by the sequence database search. 

Methods for assessing the quality and reliability of regions within multiple sequence 

alignments have been proposed (e.g. Tress et al., 2003).  This type of reliability 

analysis is important for the accurate detection of conserved functionally 

determining residues, which is discussed in detail below.  There have also been 

studies that look at reducing the level of sequence redundancy in multiple sequence 

alignments.  An interesting method based on the multi-dimensional QR factorisation 

of multiple sequence alignments has been proposed by Sethi et al. (2005).  This 

algorithm is specifically designed to reduce evolutionary redundancy in groups of 

homologous sequences to produce evolutionary optimal sequence sets for 

phylogenetic analysis. 

1.3.4.4 Phylogenetic Analysis and Tree Construction 

Algorithmic methods for phylogenetic tree construction are well studied.  Sjolander 

(2004) concludes that the computational efficiencies of distance based reconstruction 

algorithms (such as neighbour joining) compared to character based (such as 

maximum parsimony) make them more widely used and applicable to high-

throughput computational analysis.  A number of other factors can be highlighted 

regarding the problems in assessing the performance of different tree reconstruction 

methods, such as, PHYLIP (http://evolution.genetics.washington.edu/phylip.html).  

The main limitations are: (i) lack of non-simulated test data and (ii) the necessary 

trade-off that is required between fast efficient computational methods and 

robustness for high-throughput automated applications.  It is concluded that none of 

the methods show any particular advantage in all cases, with the use of phylogenetic 

bootstrap analysis (Felsenstein, 1985) combined with a number of multiple 

alignment and tree construction methods recommended. 
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An important step towards the inference of function from molecular phylogenetics is 

the overlay of existing experimental information onto the reconstructed phylogenetic 

tree containing query and related sequences.  A crucial factor is the use of good 

quality, manually verified, annotation data of the type available from databases like 

Swiss-Prot.  Introduction of evidence tags in the gene ontology to track the source of 

annotations is also an important development for these types of studies.   

1.3.4.5 Identifying Orthologous Relationships 

Eisen (1998), Eisen and Wu (2002) and Sjolander (2004) highlight the importance of 

distinguishing orthologs and paralogs in phylogenetic studies of protein function.  

This is an important task when considering high-specificity functional properties, 

because if an ortholog to the query function can be identified then it is likely that 

they will share identical (or at least very similar) specific functions.  The clusters of 

orthologous groupings (COGs) method is a resource of orthologous relationships 

between proteins.  Other methods developed for the identification of orthologs use 

phylogenetic reconstruction methods rather than the sequence similarity of COGs 

(Storm and Sonnhammer, 2002).  These methods are likely to give more specific 

functional information but may be limited for high-throughput methods by increased 

computational costs. 

1.3.4.6 Prediction of Function 

The final stage in the analysis process is the actual prediction of likely function for 

the unknown query protein sequence.  Information gained from the earlier stages of 

analysis should provide a culmination of evidence on which to base a reliable 

prediction of the unknown protein function.  The best way in which to reliably 

combine this information, to produce accurate high-specificity predictions, will form 

one of the main research topics of this thesis.  

A number of methods have been developed towards improving the level of 

automation and level of prediction specificity.  An early method - Bayesian 

Evolutionary Tree Estimation (BETE) (Sjolander, 1998) - was applied to SH2 

protein domains.  The method creates profiles of each sequence in a multiple 

alignment; an iterative partition algorithm then computes the total relative entropy 

(TRE) between each profile, progressively grouping together the pairs with the 

lowest TRE.  The aim of this is to find an optimal partition of the phylogenetic tree 
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of sequences, with the final sequence groupings corresponding to subfamily specific 

functional profiles.  A change in the subfamily annotation of Swiss-Prot for the 

SRC2_DROME protein was prompted by the analysis results from this method.  The 

BETE method has also been successfully used by Celera Genomics for annotation of 

functional subfamilies (Sjolander, 2004).  

Johnson and Church (2000) investigated the use of phylogenetic analysis to improve 

the identification of specific ligand-binding functions in two related protein families 

with similar folds but different binding site specificities.  This method was then 

applied to other unknown sequences to try to identify specific ligand-binding 

functions.  An interesting feature of this method is that the predictive power of the 

phylogenetic trees for the whole domain sequences and those of just the binding cleft 

were compared.  Analysis of the results showed that whole domain sequence 

similarity was not a good indicator of binding-site specificity.  In contrast the 

phylogenetic groupings from the binding-site sequence subset showed good 

differentiation of the different binding specificities.  A limitation of this method, 

especially in terms of extending it to a more general automated approach, is that 

prior knowledge of binding site locations is required for successful implementation.  

One way in which this information could be obtained is through the use of 

automated algorithms for the detection of functionally important residues.  These are 

discussed in detail below and form an integral part of this thesis. 

1.3.5 Identification of Function Determining Residues 

During evolutionary divergence of protein sequences functionally important residues 

are conserved due to the pressures of natural selection.  Methods for the 

identification and analysis of the particular amino acids and their physico-chemical 

properties within these conserved regions are particularly important for prediction of 

specific protein functions (Valdar, 2002). 

1.3.5.1 Entropy 

An important concept for the analysis of the level of conservation within regions of 

aligned sequence residues is entropy.  This is commonly defined using a measure of 

the average uncertainty of an outcome, from information theory, called the Shannon 

Entropy (Durbin et al., (1998)) (see equation 1.1). 
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Ὄὢ Вὖὼ ÌÏÇὖὼ                           (equation 1.1) 

Where: ὖὼ  is the probability of observing the event, ὼ , in a discrete set of k 

events.  In the context of amino acid conservation, where k is commonly taken to be 

20 (the number of standard amino acids), there is complete conservation of one 

amino acid type when the entropy is 0 and outcome, k, is certain.  Conversely, the 

entropy is maximised when all amino acids are equally likely and the outcome is 

maximally uncertain. 

1.3.5.2 Sequence Based Methods 

Early work in the analysis of residue conservation was carried out by Livingstone 

and Barton (1993).  This method carries out hierarchical clustering of MSAs into 

sequence subsets, based on criteria such as sequence identity and functional 

similarity.  Conservation scores for residues at each alignment position are then 

calculated through a simple analysis of the physico-chemical properties (Taylor, 

1986) of each of the residues.  The method was applied to an alignment of 67 SH2 

domains, which led to correct identification of phosphotyrosine-binding residues and 

also conserved secondary structure elements.   

A novel method - ñSequenceSpaceò - developed by Casari et al. (1995) represents 

each sequence in a multiple alignment as a vector in a multi-dimensional ñsequence 

spaceò.  The key feature of this method is the use of principal component analysis to 

identify the characteristic residues and positions that define the functional 

specificities of each protein subfamily.  Projection of the conserved residues onto 

lower dimension clusters allows the degree of conservation of the residues to be 

visualised and measured by the distance of the sequence clusters (vector lengths) 

from the centre of the space of principle components.  An analysis of the Ras-Rab-

Rho superfamily is used as an example, showing how the direction of the vectors can 

be used to define the specific residues of importance for the function of each 

subfamily.  Also, an application of the method to the reduction of phylogenetic tree 

complexity by using only the identified subset of specific functional residues is 

shown.  The SequenceSpace method identified both the highly conserved 

phosphotyrosine binding residues and more specific peptide binding residues, 

therefore showing an increased specificity over that of Livingstone et al. (1993). 
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1.3.5.3 Comparative Analysis of Methods 

A study by Pazos et al. (1997) compared four methods for calculating tree-

determinant residues: (i) SequenceSpace; (ii) evolutionary trace (ET) (Lichtarge et 

al., 1996); (iii) a method for comparing subfamily conservation (Dorit et al., 1995); 

and (iv) a method using self-organising maps (SOM) of sequence clusters (Andrade 

et al., 1997).  SequenceSpace was shown to be the most effective for the 

determination of specific functional residues and the SequenceSpace and SOM 

methods were shown to be most stable to the inclusion of distantly related sequences 

within the multiple alignment. 

A more recent study (del sol Mesa et al., 2003) implemented three automatic 

methods for the prediction of functionally important residues from protein 

sequences.  The primary goal of this study was a systematic, statistical assessment, 

of the role that conserved ñtree-determinantò residues can play in identifying 

functional specificity.  This type of analysis is of particular relevance because it 

concentrates on methods for automated high-specificity functional analysis.  The 

three implemented methods are: 

¶ ñThe Level Entropy Methodò (S-method) ï The main aim of this method is to 

study the conserved residues acting as specific functional tree-determinants using 

a phylogenetic tree of the protein family.  Different partitions of the tree are 

investigated and the relative entropy is measured to find the most stable tree-

level, which produces the most informative separation of sub-families.  The 

physico-chemical properties of the amino acids are not explicitly taken into 

account in this method;   

¶ ñThe Mutational Behaviour Methodò (MB-method) ï The aim of this method is 

to calculate the mutational behaviour of potential tree-determinant positions and 

compare them to that of the whole sequence family.  Mutational behaviour is 

determined by evolutionary constraints and assessed using correlation matrices 

and rank correlation criteria.  The aim of this study was to identify and separate 

functional families using conserved residues.  The hypothesis is that the 

mutational behaviour of the tree-determinant residues will be the same as the 

whole set of family sequences; and 
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¶ ñSequenceSpace Automization Methodò (SS-method) ï This is an automated 

implementation of the SequenceSpace method of Casari et al (1995).  A 

geometric clustering algorithm calculates an optimal number of clusters from the 

initial PCA analysis and then attempts to identify positions relating to conserved 

residues between subfamilies. 

Each method was tested on two sets of non-redundant sequence families that have 

known, single chain, representative structures in the PDB.  One set contained 191 

families (binding sites associated with various heteroatoms) while the other contains 

112 (associated with annotated PDB SITE records).  With regards to the coverage of 

the three methods, it is noted that there are some constraints dictated by the number 

and level of conservation of the sequences representing each family grouping.  The 

MB-method is unaffected by this and will always be able to predict some tree-

determinants, whereas the SS-method and S-method are more sensitive to these 

factors.  The results of this study are judged on the proximity of the identified 

functional residues to either those heteroatoms deemed functionally important or 

PDB sites.  The results do not clearly stake a claim for any of the three methods over 

the other.  In-fact, as a general rule, it was found that the intersection of prediction 

results for two, or all three methods, increased the quality of the results.  The results 

were also complicated by their dependency on the type and size of the functional 

heteroatoms. 

A more recent study by Pazos et al. (2006) explores the extension of the MB-method 

to incorporate a functional similarity matrix into the correlation calculation of 

mutational behaviour of sequences.  This is essentially a supervised form of the MB-

method, with prior functional grouping, and is discussed in more detail in chapter 4 

of this thesis. 

The ConSeq method of Berezin et al. (2004) identifies functionally important 

sequence residues through the incorporation of the ñRate4Siteò algorithm.  This 

algorithm uses the Maximum Likelihood method for phylogenetic tree 

reconstruction, which, unlike the neighbour-joining methods of phylogeny, takes 

into account the rate of evolutionary divergence at particular residue positions.  This 

is, however, quite a computationally expensive algorithm when compared to some 

the other methods previously discussed. 
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1.3.6 Profile-Based Methods for Identification of Functional 

Specificity 

A group of related methods are those that attempt to construct sensitive profiles for 

the specific identification of particular functional sub-types.  An early study on the 

use and generation of sequence profiles was published by Gribskov et al. (1987).  

Following on from this work a number of profile-based and HMM-based methods 

have been developed to assist the general functional annotation of protein sequences.   

These include the HMM-based approach of PFAM (Bateman et al., 2004), the 

profile-based motif approach of PRINTS (Attwood et al., 2003), and the integrated 

database of resources provided by tools such as InterPro (Hunter et al., 2009). 

These methods and their associated database resources are commonly used to help 

determine the function of unknown protein sequences.  However, due to the nature 

of these methods, they are usually more suited to the annotation of general protein 

function and care should be taken when annotating a more detailed, specific, level of 

function (Whisstock and Lesk, 2003; Friedberg, 2006).  The main considerations 

when using these types of approaches are the level of coverage that they provide 

when annotating function and also the number of sequence representatives used to 

generate the profiles or HMMs. 

For example, in the case of PFAM, the HMMs contained in the database are 

generated at a protein domain level and are clustered into PFAM families using 

homology based measures, rather than specific functional class.  Therefore, it is 

possible for single families of PFAM HMMs to contain sequences of different 

specific functional sub-classes.  The consequence of this, when using PFAM to 

assign specific enzyme function, is that although the number of false positive 

annotations at a more general level of enzyme classification should be reduced due 

to the increased sequence coverage, they are more likely to be unsuitable for 

determining more specific enzyme classes. 

It is these potential limitations of the general profile and HMM based approaches 

that led to the development of the BLAST-based methods of specific enzyme 

annotation investigated in this thesis.  They also led to the development of other 

more sophisticated profile and HMM based methods for the specific purpose of 

functional annotation that are discussed below. 
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Three particularly important approaches, with regard to protein function prediction 

and subsequent application to the improvement of the accuracy and level of 

specificity, are those of Hannenhalli and Russell (2000), Tian and Skolnick (2004), 

and Pazos and Sternberg (2004).  Each of these methods is quite distinct and has 

been applied to different datasets and functional classification schemes.  

Hannenhalli and Russell (2000) describe a method for the identification of functional 

sub-types and also functionally specific residue positions.  Given a multiple 

sequence alignment and information regarding the specific functional properties of 

each sequence a set of hidden Markov model (HMM) profiles can be constructed to 

represent each specific function.  Potential functional specificity determining 

residues are then identified using a relative entropy based measure, which takes into 

account the likelihood that particular amino acids will be specifically associated with 

one functional sub-type over the others.  A protein sequence of unknown specific 

function can then be compared to the specific profiles to identify the most probable 

specific function.  Four large enzyme families (nucleotidyl cyclases, eukaryotic 

protein kinases, lactate/malate dehydrogenases and trypsin-like proteases) with good 

experimental information, regarding the specific functional properties, were used to 

test the method.  Examples were chosen that could not be separated by simple 

sequence comparisons or phylogenetic tree comparison to demonstrate the power of 

the method, with accuracies (for the four enzyme families listed above) of 96% 

compared to 80% and 74% for sequence similarity and BLAST respectively.  This 

analysis was then extended to include 42 PFAM (Bateman et al., 2004) alignments 

and was also shown to outperform both BLAST searching and sequence similarities 

when identifying most of the specific functional subtypes. 

The method of Tian and Skolnick (2004) uses a combined system ï EFICAz 

(Enzyme Function Inference by Combined Approach) - of four recognition methods 

to improve the accuracy of enzyme function predictions, they are: 

1. CHIEFc (Conservation-controlled HMM Iterative Procedure for Enzyme 

Family classification): This procedure consists of carefully built HMMs from 

multiple sequence alignments of each enzyme family.  A method, based on 

information theory, is then used to identify functionally discriminating 

residues (FDRs) for each enzyme family HMM derived by CHIEFc. 
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2. Pairwise Sequence Identity: A specific reliability threshold is used for each 

enzyme family. 

3. Recognition of FDRs in Multiple Pfam enzyme families: This uses the same 

Shannon entropy measure to identify FDRs as method (1) but PFAM 

alignments are used in place of the CHIEFc generated HMMs. 

4. Recognition of multiple high specificity PROSITE (Hulo et al., 2004) 

Patterns 

One of the main outcomes of this study is the importance, of the CHIEFc family 

FDR recognition method, to the high accuracy recognition results that are obtained.  

This is perhaps unsurprising as the CHIEFc method is purposely designed for the 

accurate recognition of specific enzyme functions, defined by their annotated EC 

numbers.  As a result of this and the added effects of the other three methods, the 

combined EFICAz approach shows high accuracy and high sensitivity during testing 

on enzyme sequences in Swiss-Prot and also when applied to automatic annotation 

of the E. coli K12 proteome.  A comparison of enzyme function annotations made by 

EFICAz and KEGG (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa and 

Goto, 2000) for this genome showed that EFICAz predicted 114 more potential 

enzyme coding genes at the specificity level of four EC numbers.  The majority of 

these in KEGG are either partially annotated (with 54 out of 69 showing correlation 

with the partial annotations provided by EFICAz) or are marked as hypothetical 

proteins and did not have any annotation.  These results suggest that EFFICAz is 

applicable to automated genome annotation and able to make novel specific enzyme 

predictions. 

The approach developed by Pazos and Sternberg (2004), known as 

PHUNCTIONER, varies from the other two methods in that it uses multiple 

structural alignments with the resultant profiles as the basis of its predictions and 

recognition of functionally important areas.  Also, the profiles used in this study are 

based on the GO functional classification scheme.  Starting from a structural 

alignment, proteins with the same annotated GO terms are extracted and grouped 

together.  Profiles of the functionally conserved residues for each GO term are 

identified using a conservation score and high entropy positions are filtered out.  
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Position specific scoring matrices (PSSMs) are then created for each profile and the 

performance for prediction of GO terms is compared to the use of sequence identity.  

PHUNCTIONER is found to perform better than the sequence homology based 

method in most cases.  This is especially true in cases of low (generally less than 

20%) sequence identity.  A further application of PHUNCTIONER was a 

comparison to the SequenceSpace and the Mutational Behaviour (del sol Mesa et al., 

2003) methods for identification of functionally determining residues.  The findings 

indicate that the PHUNCTIONER method is able to identify residues that are related 

to more general lower-specificity GO functional classification, whereas 

SequenceSpace and the mutational behaviour method identify residues that are 

related to more specific functional properties. 

Each of these approaches show good application to the prediction of protein function 

and the identification of functionally determining residues for specific functional 

subtypes.  These methods all share a common limitation, which is their reliance on 

pre-determined functional sub-groups.  The implementation of all three of these 

methods depends on a prior knowledge and availability of a sufficient amount of 

annotated sequence or structural representatives, with the same function, on which to 

base the specific functional profiles. 

1.3.7 Sequence and Structure Based Methods 

The use of structural information in addition to sequence can provide added insight 

into the determination of specific functional residues and protein interfaces (Watson 

et al., 2005; Lichtarge and Sowa, 2002; Filizola and Weinstein, 2005).  These 

methods generally share similar features to the sequence based approaches, with the 

main difference being the requirement of representative, three-dimensional protein 

structures, for the final analysis of the results.  This is especially true for those 

methods that rely on the spatial clustering of residues (Lichtarge et al., 1996; 

Landgraf et al., 2001; Glaser et al., 2003) to assess the accuracy of predicted 

functional residues within biochemically active sites. 

1.3.7.1 Evolutionary Trace Method 

The evolutionary trace method (ET) (Lichtarge et al., 1996) uses evolutionary 

information available from multiple sequence alignments to map predicted, 
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functionally important residues, onto proteins of known structure.  Through use of a 

set of sequence percentage identity thresholds a multiple sequence alignment can be 

partitioned into clusters to form a dendrogram (phylogenetic tree).  A consensus 

sequence can be obtained for the set of sequences either between or within each 

cluster.  This identifies those residues that are indicative of either the general 

functional class (and therefore conserved in a larger number of proteins), or those 

that are only conserved within a subfamily (and therefore relate to the specific 

function of the subfamily cluster).  A number of extensions to the method have been 

proposed that provide more robust statistical analyses of the results and also 

improved levels of automation (Madabushi et al., 2002; Aloy et al., 2001).  

There are a number of other approaches which have looked at utilising structural 

information to improve the quality and specificity of functional site identification 

and protein function prediction (Watson et al., 2005).  The method of Landgraf et al. 

(2001) is described as an extension of the evolutionary trace, with one of the main 

differences being that phylogenetic relationships are not used as input.  The 

theoretical basis for not using phylogenetic information is that proteins with multiple 

functional clusters could be averaged out in the phylogenetic tree, or highly 

conserved residues associated with one function could overshadow those of a 

secondary function.  The evolutionary trace method is not designed to detect 

secondary functional clusters; therefore the authors use a form of correlated mutation 

analysis to highlight conserved clusters through regional similarity relationships.  

This 3D cluster analysis technique has structural information at the core of the 

functional analysis and is not of direct interest with regards to predicting function 

from sequence information.  However, the correlated mutation analysis that is part of 

this method is of interest and (as we have seen above) has been shown by del sol 

Mesa et al. (2003) and Pazos and Valencia (2006) to be successfully applicable to 

sequence based studies of functional specificity. 

Finally, an important consideration when attempting to identify functionally active 

conserved residues, from both sequence and structure, is the differentiation between 

those that are structurally and functionally important (Chelliah et al., 2004).  A 

method incorporated into ConSeq and ConSurf (Armon et al., 2001), which uses 

neural network predictions to differentiate between buried and exposed residues in 
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globular proteins, is one proposed solution to this.  However, this assumes that 

functional residues are always solvent accessible and all buried residues are 

associated with structurally conserved regions.  This is generally a difficult problem 

to solve, due to the unavoidable ambiguity in classification of residues that are 

responsible for structural or functional protein properties. 

1.4 Non-Homology Based Methods for Function Prediction 

It is worth briefly mentioning some methods for protein function prediction which 

are not based primarily on sequence homology detection.  One approach is that of 

Jensen et al. (2003), which uses derived physico-chemical sequence properties 

instead of sequence similarity.  These sequence features are then used as input to a 

system of neural networks for the prediction of GO classifications.  The advantages 

of this method are that it can predict functions for sequences with no known 

homologous relationships (orphan sequences); however, the limitation is that the 

predictions obtained are mostly low specificity general classifications.  Other 

approaches to non-homology based prediction of function through the use of protein-

protein interaction data have also been described (Marcotte, 2000).  A further 

method of interest in relation to sequence based homology prediction is that of 

Espadaler et al. (2005).  This method investigates a combined approach to the 

combination of sequence homology and protein-protein interaction data for use in 

improving structural and functional annotation. 

1.5 Overall Conclusions and Summary 

The comparison of the many different approaches to automated function prediction, 

especially those aimed towards improving the overall accuracy and specificity of the 

functional annotations is an inherently difficult task.  This is due to a number of 

contributing factors: 

¶ The lack of an unambiguous description of protein function, especially when 

trying to compare levels of specificity; and 

¶ The lack of benchmark datasets that can be used as a clear way to distinguish, 

compare and judge the performance of newly developed prediction methods 

(Tetko et al., 2005). 
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The efforts of the gene ontology consortium and the annotation projects such as 

GOA are making important contributions to the standardisation of how protein 

functions are described and annotated within sequence databases.  However, 

problems still remain, even with this scheme, as to how best to compare and measure 

the specific functional distance between two predicted functional terms.  For 

example, if the actual function of a protein is x and the predicted function is y, how 

should the resulting accuracy of this prediction be measured?  As has been discussed 

earlier, the EC scheme gives a widely used way of estimating this by treating the 

number of correctly predicted EC numbers as roughly comparable to levels of 

functional specificity.  This has a number of problems, (i) It is only applicable to 

enzymes and (ii) it is possibly too simplistic and will cause valuable information to 

be lost and not considered when assessing the results.  The problem is possibly more 

difficult when considering gene ontology terms.  Due to the graph-based architecture 

of the GO hierarchy an intuitive way of measuring functional distance may be to 

count the number of edges between terms, or possibly for comparing levels of 

specificity, the depth of the term-node in the graph could be used as a measurement.  

The subjective nature of defining protein function makes this a problem that may not 

be solvable in an exact way. 

As we have seen in studies on the level of sequence similarity required for the simple 

transfer of function via homology, clear levels of sequence similarity required for 

specific levels of functional inference are difficult to agree upon.  These problems of 

firm comparisons are increased when comparing the many different techniques for 

improving the prediction of functional specificity or identifying functionally 

important residues.  This is particularly problematic when looking at ways to 

incorporate these techniques into an automated high-throughput approach to high-

specificity function prediction.  Mainly because the question of which methods to 

include to best achieve these aims is difficult to definitively answer. 

It has been shown that the incorporation of evolutionary analysis of protein families, 

through phylogeny, improves the accuracy of high-specificity function prediction in 

comparison to simple homology transfer methods (Eisen, 1998; Eisen and Wu, 2002; 

Johnson and Church, 2000; and del sol Mesa, 2003).  These methods also aid in the 

identification of functionally important amino acid residues.  However, there are 



47 

 

many difficulties still to be overcome for the development of methods and their 

integration into a fully automated solution to the problem of reliable, accurate, high-

specificity protein function prediction from sequence. 

The key aims of this literature review were: (i) to give a critical discussion of the 

area relating to automated prediction of protein function, with a concentration on 

methods that have been used to improve the accuracy and specificity of the 

prediction results; and (ii) the highlighting of current ñstate-of-the-artò automated 

methods for high-specificity function prediction from sequence.  The most 

satisfactory conclusion appears to be that there are a number of different methods 

that show varying levels of ability to predict specific functional properties.  The 

comparative analysis of Pazos et al. (1997) showed the superiority of the 

SequenceSpace method for determining specific functional subgroups, however, this 

method suffers from problems associated with the level of automation possible.  The 

later study of del sol Mesa (2003) implemented three automated methods (including 

a semi-automated form of SequenceSpace) for comparison and concluded that the 

best results are obtained from combinations of the methods.  The hidden Markov 

model based sub-profile method of Hannenhalli and Russell (2000) has also been 

shown to work well for both identifying specificity determining functional residues 

and application to functional sub-type prediction.  It is these two studies, along with 

the ideas contained in the sub-alignment phylogenetic reconstruction studies of 

Johnson and Church (2000) that will form an important part of this thesis. 

In conclusion, the best approach for a fully automated approach to high-specificity 

function prediction from sequence appears to be a combination of the optimal 

properties of a number of methods.  Using evolutionary information relating to the 

relationships between homologous protein sequences it should be possible to 

accurately identify specific functional details that have been acquired through the 

process of evolutionary divergence.   Approaches to combining these methods and 

extracting important algorithmic features in reliable, automated ways, form a major 

part of the research in this thesis.  These ideas and methods are then extended to 

investigate the feasibility of using machine learning techniques, namely support 

vector machines (SVMs), to identify the function specificity determining residues 
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(fSDRs) in a fully automated way, from multiple sequence alignments, without using 

any prior knowledge of the functional sub-types of the constituent sequences. 

1.6 Outline of Research Thesis  

The major aim of this research was the development and assessment of methods for 

use in an integrated and automated system for the prediction of detailed, specific, 

protein molecular functions, from sequence information.  In a review of the literature 

a number of methods have been described which investigate function prediction, 

using sequence information and algorithmic techniques, for improving the accuracy 

of specific functional inference.  However, to my knowledge, there are at present no 

methods that successfully combine these features into one high-throughput, accurate 

and robust fully automated system for the prediction of specific protein functions. 

The overall goal of this research was the development and investigation of methods 

for re-evaluating the sequence similarity of homologous proteins to generate an 

improved scoring method for assessing functional similarity.  An overview is 

presented, in figure 1.3, of the main stages involved in this process.  First, a 

sequence database homology search is carried out using a query protein sequence of 

unknown molecular function.  An MSA is returned from this along with an 

associated sequence similarity score (such as a BLAST E-value) for each sequence, 

which is used to order the sequences by similarity to the query.  Using a homology 

transfer method for function prediction, the query sequence would be assigned the 

same function as the most significant annotated sequence above a similarity 

threshold.  However, this will lead to incorrect annotations in circumstances where 

the most significant sequence is not the same specific function as the query.  A 

simplified example of this is shown in figure 1.3, where the query sequence (with 

function = func_B) shows a greater degree of sequence similarity to 3 sequences 

(seq1, seq2 and seq3) with function = func_A.    

In a case such as this, additional properties must be taken into account to provide an 

improved method for assessing functional similarity between the query and the 

group of sequences with function = func_B.  Methods are proposed that aim to 

automatically identify amino acids that are indicative of evolutionary conservation 

within groups of functionally specific proteins.  This can be thought of as a form of 

ñphylogenetic filteringò of the aligned sequence columns, to create a more relevant, 
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functionally determining, sub-set of aligned residues.  The example in figure 1.3 

shows four aligned columns that have conserved residues within the specific 

functional groupings and variation between.   

It then becomes possible to calculate a new measure of sequence similarity - using 

only the sub-set of amino acids most likely responsible for determining the specific 

functional properties - and thus re-order (or cluster) the sequences to provide an 

improved measure of functional similarity.  From the example in figure 1.3, it can be 

seen that when only considering the four aligned columns containing the fSDRs, the 

query sequence is most closely related to the group of sequences with function = 

func_B and therefore predicted, correctly, to be of that specific function. 
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Figure 1.3. Conceptual overview of the proposed methods of analysis 

and key areas of investigation carried out in this research thesis. 
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With regards to the automatic identification of functional specificity determining sets 

of residues, a disadvantage to the methods analysed in chapter 4, of this thesis, was 

their requirement for prior knowledge of the specific functional classifications of the 

sequences contained within the MSAs.  This limits the use of these methods to 

alignments of functionally well-characterised sequences, thus preventing a more 

general approach to the classification problem and limiting the possible uses to a 

much reduced sample space of functionally annotated sequences.  To circumvent this 

requirement it was suggested that machine learning methods, such as support vector 

machines (SVMs), could be used for the automatic identification of fSDRs in 

multiple sequence alignments.  The analysis, in chapter 5, investigates the feasibility 

of using SVMs towards automatically identifying fSDRs and thus the possibility of 

incorporating this identification into a fully automated system for improving the 

specific functional classification of enzyme sequences. 

The target audience of the methods analysed in this thesis is expected to be 

researchers and genome annotators, who are primarily interested in accurate, high 

specificity, functional genome annotation, when close homologs with differing 

specific functional properties are available to provide an evolutionary analysis.  

Although the analysis within this thesis concentrates on the functional classification 

of enzyme molecular function, it is expected that the methods would be generally 

applicable to other types of proteins.  To test this hypothesis, however, an alternative 

benchmark set of protein sequences and the use of relevant functional classification 

schemes would be required. 

In summary, the analyses presented in this thesis aim to investigate automatic, 

computationally efficient methods for the transformation of sequence similarity 

scores into a measure of functional similarity, which provides a reliable and accurate 

measure of specific enzyme functional classification.   
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Chapter 2 Investigation into the Functional 

Conservation of Enzyme 

Sequences and Dataset 

Definitions 

2.1 Introduction and Aims 

The work of Rost (2002), Tian and Skolnick (2003), and Todd et al. (2001), among 

others, shows that the level of correlation between protein function and sequence 

similarity measures follow a common relationship; where the accuracy for functional 

transfer becomes greater with a higher level of sequence similarity.  The work in this 

section aims to provide an initial investigation into the level of error involved when 

using homology based sequence similarity measures for the assignment of protein 

function and provide the source for the benchmark datasets of multiple sequence 

alignments used within this thesis.  An important factor of this work was the 

investigation of homology transfer when applied to the prediction of high-specificity 

protein function.  The functional classification chosen for this analysis was the 

Enzyme Classification (EC) scheme.  This method of classification was chosen 

because it has already been widely used with good success in the studies mentioned 

above (Rost, 2002; Tian and Skolnick, 2003; Todd et al., 2001) and provides a 

relatively simple and effective way of computationally measuring the level of 

functional specificity.  Through comparison of the number of shared EC numbers 

between the input query sequence and the homologous sequences obtained from a 

database similarity search, an understanding of the level of specific function 

prediction at varying sequence similarity thresholds can be obtained. 

Most previous studies of this type have aimed to identify detailed relationships 

between sequence similarities (such as percentage sequence identity or statistical E-

value scores) to obtain definitive threshold values for varying levels of sequence and 

functional conservation.  This study also provides an understanding of these 

properties but aims to concentrate on the areas of high functional specificity, by 

looking at the correlation between sequence homologues and the correlation to the 

conservation of all four numbers in the EC classification hierarchy.  A further aim is 
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to provide a set of benchmark examples where the high-scoring ñtop-hitò, to a 

ñtargetò sequence, obtained from a PSI-BLAST homology search does not identify a 

protein sequence with the same specific function as the query sequence. 

2.2 Methods 

2.2.1 Collection of ñtargetò Enzyme Sequences 

The method followed for the collection and identification of enzyme sequences for 

analysis is based on that of Tian and Skolnick (2003) and Rost (2002).  The Swiss-

Prot (version 46) section of the UniProt (Apweiler et al., 2004) (version 4.0) 

sequence database was used as the source of the analysis sequences.  From the 

Swiss-Prot database, which contained 168,297 sequences, a total of 43,572 enzyme 

sequences with fully annotated EC codes at all 4 levels of the hierarchy were 

identified.  These enzyme sequences in the ñtargetò sequence set were identified in 

the following way: 

¶ All sequences that have annotated EC numbers in the ñDescription (DE)ò field of 

their records in the Swiss-Prot database were identified, sequences which fulfil 

any of the following criteria were then removed from the final target set: 

1. They contain incomplete EC annotations and therefore undetermined 

numbers (e.g. EC 1.2.3.- would be classed as an incomplete annotation and 

therefore removed); 

2. They have multiple EC annotations and are therefore defined as 

multifunctional enzymes; 

3. Contain any of the following keywords in the ñDescription (DE)ò or 

ñKeyword (KW)ò field of Swiss-Prot (ñprobableò, ñhypotheticalò, ñputativeò, 

ñby homologyò, ñby similarityò); 

4. Are identified as fragments and therefore contain the keyword ñfragmentò in 

the Swiss-Prot ñDescription (DE)ò field. 

This process identified 45,164 sequences.  All 100% identical sequences were then 

identified and a single, randomly selected, representative of each sequence cluster 

was kept in the dataset.  This reduced the target set by a further 1592 sequences to 
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produce the final enzyme sequence set of 43,572 sequences.  These sequences 

consist of 1901 distinct enzyme classes measured to all four levels of EC specificity.  

These were tagged and identified as ñtargetò sequences in the sequence search 

database used in the next stage and are referred to as ñtargetò sequences at later 

places in this thesis.  These criteria were used to ensure that all of the sequences 

added to the target set had associated functional annotation data which was complete 

and most importantly, of a high quality, obtained from the ñgold-standardò 

annotations in the Swiss-Prot database. 

2.2.2 Identification of Homologous Sequences  

After identification and extraction of the fully annotated enzyme ñtargetò sequence 

dataset a PSI-BLAST (Altschul et al., 1997) database search was carried out to 

identify homologues for each of the 43,572 target enzymes.  This was so that the 

level of functional inference from sequence similarity search measures could be 

assessed.  A PSI-BLAST search was carried out for each of the target enzyme 

sequences against the UniProt (Swiss-Prot + TrEMBL) database (version 4.0), which 

contained 1,757,967 sequences.  To improve database search efficiency and reduce 

the number of false positives, each input sequence was filtered using the SEG low 

complexity filter (Wootton and Federhen, 1996) and all of the sequences in the 

search database were filtered using the low complexity, trans-membrane and coiled-

coil filter options of the pfilt application (Jones and Swindells, 2002).  The sequence 

database search was carried out using 3 iterations of PSI-BLAST (version 2.2.10), 

using the default iteration inclusion value (-h parameter) of 0.001 and an output E-

value threshold of 10.  Also, the maximum number of sequences included in the 

BLAST search output and resultant multiple sequence alignments (MSAs), was set 

at 5000 using the ïv and ïb command line parameters.  Finally, with regards to 

composition-based sequence statistics - which are calculated from the sequence 

composition of the database sequences (Schaffer et al., 2001) - the default setting, 

which includes these calculations, was applied through the setting of the ït command 

line parameter (-t T).  All other search parameters were left unchanged from the 

default settings of PSI-BLAST (blastpgp) version 2.2.10. 

The resulting output list of detected homologues was then filtered to remove all 

sequences not identified as belonging to the functionally annotated ñtargetò enzyme 
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sequence dataset.  This was so that comparisons could be made between the 

functions of the query sequences and those identified as homologues in the PSI-

BLAST search. 

2.2.3 Definition of EC Conservation Accuracy 

The method used to calculate the accuracy of specific EC functional conservation, 

with respect to sequence similarity measures, is described in equation 2.1.  This is 

based on the method used by Rost (2002), slightly adapted to take into account 

ranges of similarity thresholds. 

ö
÷

õ
æ
ç

å
=

All

Matching
Accuracy *100    (equation 2.1) 

Where: ñMatchingò signifies the number of functionally matching sequence pairs 

within a defined range of sequence similarity threshold values; and ñAllò signifies 

the number of all sequence pairs within this same range. 

2.2.4 Calculation of Global Sequence Identity 

A full Needleman-Wunsch pair-wise sequence alignment algorithm (Needleman and 

Wunsch, 1970) was used to calculate a global percentage identity score between the 

query sequence and all ñtargetò sequences identified in the database search.  The 

needle application from the EMBOSS (Rice et al., 2000) software suite was used 

with the default parameters: BLOSUM62 substitution matrix; gap open penalty of 

10.0; and gap extension penalty of 0.5.  

2.3 Results and Discussion 

2.3.1 Level of EC Functional Conservation 

A comparison between the level of EC functional conservation and sequence 

similarity measures (PSI-BLAST E-value and global sequence identity) was carried 

out to assess threshold levels for reliable, accurate transfer of specific enzyme 

function by homology.  The first step in the analysis of the data was an investigation 

of the level of functional conservation with respect to the observed PSI-BLAST E-

values between each of the identified query-target pairs.  The method described in 

section 2.2.3 was used to calculate the accuracy of functional transfer, within E-

value ranges, which were calculated by taking the minus of the log (to base 10) of 
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the E-value.  The results of this analysis are shown in the graph in figure 2.1 for the 

two levels relating to the most specific level of functional correlation available with 

the EC classification scheme.  These are: (i) the first three EC numbers are 

conserved (EC3: n.n.n.-); and (ii) all four EC numbers are conserved (EC4: n.n.n.n).  

It can be seen from figure 2.1 that as the level of functional specificity increases 

(from EC3: n.n.n.- to EC4: n.n.n.n), the accuracy of functional transfer using the 

PSI-BLAST E-value decreases.  Overall these results seem to agree quite closely 

with those of Rost (2002) in his study of 1
st
 iteration PSI-BLAST E-values.  The 

results show that even at very statistically significant E-values, commonly used for 

functional transfer (such as 10
-50

 => -log(E-value)=50), the accuracy of exact 

specific function prediction (all four EC numbers are conserved) is only just slightly 

greater than 90%.  Similarly, the results comparing EC conservation accuracy to 

sequence identity, in figure 2.2 show that even at levels above 50% identical 

residues, the accuracy of specific functional transfer is less than 100%.  

When considering the correlation between sequence identity and functional 

conservation, these results agree most closely with those of Todd et al. (2001).  The 

results reported by Rost (2002) are much more pessimistic and report that upwards 

of 70% sequence identity (local sequence identity reported from PSI-BLAST) is 

needed to transfer all 4 EC numbers with comparable levels of accuracy.  A more 

recent study by Tian and Skolnick (2003) reports yet another different threshold 

requirement of 60% sequence identity (global sequence identity) for at least 90% 

accuracy for the same level of specific function transfer between sequence pairs.  

The main differences between the results of these studies is thought to lie in the 

disparate way in which the datasets from each have been formed, especially with 

regards to the particular thresholds that have been applied for sequence and 

functional redundancy removal. 
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Figure 2.1. Graph showing the accuracy, using equation 2.1, of function 

prediction using PSI-BLAST E-values, obtained from sequence pairs in the 1
st
 

iteration of the database search results. Where, EC3:n.n.n.- are the results for 

the first three EC numbers predicted correctly; and EC4:n.n.n.n for all four EC 

numbers correctly predicted. 

 

Figure 2.2. Graph showing the accuracy, using equation 2.1, of function 

prediction using global sequence identity, obtained from sequence pairs in the 

1
st
 iteration of the database search results. Where, EC3:n.n.n.- are the results 

for the first three EC numbers predicted correctly; and EC4:n.n.n.n for all four 

EC numbers correctly predicted. 
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The aim of this study was not an exhaustive comparison between the many methods 

and previous studies carried out in this area because this has been discussed 

extensively in previous work.  However, the results shown in figure 2.1 and figure 

2.2 do achieve the aim of highlighting the problems, which have been previously 

reported (Todd et al., 2001; Rost, 2002; Tian and Skolnick, 2003), regarding the use 

of sequence homology for specific functional inference.  These are that it is not a 

simple matter to make a definitive prediction of enzyme function, based on simple 

sequence similarity measures and that the disparate nature of the datasets used makes 

it difficult to even agree on the best thresholds to use (Valencia, 2005). 

2.3.2 Functional Analysis of PSI-BLAST ñtop-hitò Sequences 

A common approach to assigning the function of an unknown protein sequence is 

through the transfer of function from a previously annotated homologous sequence 

with the most significant, ñtop-hitò, sequence similarity score.  This approach was 

used to assess the number of correct predictions that would be expected when 

simulating the prediction of the specific function of the ñtargetò sequence set in this 

way.  As expected, the results showed that a majority of cases (42453 (out of 43572) 

in the first iteration and 41637 (out of 43572) in the final iteration) are examples of a 

correct prediction from the top PSI-BLAST hit (rank position one).  This was 

expected due to the large amount of potential sequence redundancy within the source 

Swiss-Prot database.  There are however a number of examples where this is not the 

case and the first correct specific functional sequence result occurs at rank position 

(ordered with respect to decreasing statistical significance of the sequence 

alignments) two or lower, with 354 and 1214 examples in the first and final 

iterations respectively.  A third case, which make up the remainder of the examples, 

is where no correct functional hits are found.  These types of examples are not 

considered further in this work as they are not suitable for use in the discrimination 

between the specific functional sub-types of sequence homologues.   

Interestingly, it is the 1
st
 iteration PSI-BLAST results which give the largest number 

of correct examples, with respect to a specific functional match at all 4 levels of the 

EC hierarchy.  Also, this means that in a number of cases the iterated PSI-BLAST 

process actually causes a deterioration of the functional accuracy of the ñtop-hitò.  

An interesting discussion on the effect of PSI-BLAST iteration on functional transfer 
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is provided by Tian and Skolnick (2003).  They show that the E-values of closely 

related query-sequence pairs (above 70% identity) tend to increase in later iterations, 

but decrease for those below 70%.  This result suggests that some thought must be 

made as to whether an iterated database search is the best approach to annotation of 

specific enzyme function, and if so, the E-values used to interpret the results must be 

carefully considered in the context of the iteration from which they came.   

The relatively low number of ñincorrectò sequence examples is likely due to the 

inherent bias within the Swiss-Prot database and the associated ñtargetò enzyme 

sequences.  Both Rost (2002) and Tian and Skolnick (2003) give detailed discussions 

of these estimated database redundancy issues.  For this study I have not pursued the 

effects of potential bias any further because it is not definitively clear if, or how, any 

potential sequence redundancy should be removed.  This is especially true when 

considering the use of multiple sequence alignments and the associated evolutionary 

information in later stages of this work, because the level of evolutionary divergence 

observed in certain sequence residues can be crucial when determining the specific 

functional sub-type.  Also, it was decided to concentrate on the alignments generated 

by the 1
st
 iteration of the PSI-BLAST sequence database search.  This is because of 

the results described above, related to the deterioration in functional inference in the 

later iterations and also because in this work it is the more closely related sequences 

that are of most interest.  Therefore, the use of an iterated search to identify and 

include more distantly related sequences, in the resulting MSAs, is of lesser 

importance for this study.  

2.4 Collection and Definition of Datasets 

One of the main aims of the ñtop-hitò functional analysis was the identification of a 

set of data that could be used as an experimental benchmark for comparing the 

performance of specific function prediction techniques investigated in this thesis.  It 

was decided that this data should consist of examples that show ñincorrectò specific 

function prediction when transferring the function from the top ñtargetò sequence hit 

from PSI-BLAST.  This was deemed an appropriate form of benchmark because it 

simulates real problem cases likely to be encountered by a researcher attempting to 

determine the specific function of an unknown protein sequence.  Therefore, any 
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automated approach which consistently improves on the accuracy of this simple 

homology based method should be highlighted by this benchmark. 

The approaches to the benchmark dataset collection are described below.  Two 

different methods are described.  This is because, due to limitations in the size and 

quality of the ñinitialò dataset, it was decided to develop an alternative method to 

collect a much larger set of ñartificialò incorrect benchmark examples.  The data 

content of each of these datasets is a set of MSAs, generated by PSI-BLAST, 

through the use of the ïm 6 command line parameter.  These MSAs were used for 

the benchmark studies because they are very computationally efficient to generate 

and are of a good quality. 

Unless stated otherwise all MSAs analysed are generated from the 1
st
 iteration of a 

PSI-BLAST database search (using the blastpgp executable - version 2.2.10), which 

is the same as a gapped-BLAST database search.  Therefore the notation: BLAST 

and PSI-BLAST is used interchangeably. 

2.4.1 Collection of the ñInitialò Benchmark Dataset 

2.4.1.1 Method 

The initial approach taken to identify a benchmark dataset for use in testing and 

validation, focused on a selected subset of the ñincorrectò, ñtop-hitò predictions, 

obtained from the BLAST analysis.  It was decided to extract this subset from the 

examples which showed incorrect ñtop-hitò prediction results in both the first and 

final PSI-BLAST iteration results.  This restriction was made because it meant that 

the sequence ranking and associated MSAs for both of the iterations could be 

compared if required in later studies.  Two further criteria were used in an attempt to 

improve the dataset quality:  (i) the removal of all examples that share zero EC 

numbers between the query and the highest ranked ñtargetò sequence, to remove 

cases from the dataset which highlight potential problems related to potentially 

misleading functional distances in the EC nomenclature; and (ii) the removal of 

examples which had less than 5 sequences with the same specific function as the 

query in the multiple alignments. 
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2.4.1.2 Properties of the ñInitialò Dataset 

The above steps led to a final dataset containing 126 sets of PSI-BLAST multiple 

sequence alignments.  These represent 76 distinct 4 digit EC classes, with all 6 of the 

general enzyme classes being represented.  This dataset will be referred to as the 

ñinitialò dataset in any later discussions involving its use. 

2.4.2 Collection and Definition of Expanded ñArtificialò Benchmark 

Datasets 

2.4.2.1 Overview of ñArtificialò Dataset Creation Method 

Due to the small size of the ñinitialò dataset described above, it was decided to create 

a second, expanded, benchmark dataset from the PSI-BLAST analysis, by using a 

much larger set of aligned target sequences.  The construction of this dataset was 

done via the post-modification of a subset of MSAs that satisfied particular criteria 

of the original 43,572 database searches.  Again, the main aim of this dataset was the 

collection of examples which show an incorrect specific functional comparison 

between the query and the most significant enzyme ñtargetò sequence.  It is proposed 

that this situation can be simulated by removing all of the sequences found in the 

database search, which have the same specific EC function as the query and are 

classed as more significant than the first incorrect sequence hit.  An overview of the 

method is shown in figure 2.3.  After removal of these ñcorrectò sequence hits, a set 

of examples remain that produce an ñincorrectò prediction of function, when using 

the most significant remaining sequence from the BLAST output.  To provide 

reference to the fact that these datasets consist of ordered multiple sequence 

alignments - where the top-ranked (1
st
) sequence is always of a different ñincorrectò 

specific function to the query sequence - datasets of this form are described as 

ñAll1stINCORRECTò throughout the thesis.  Although these are not examples of 

ñnaturallyò occurring incorrect examples, from a protein sequence database search, 

they should be of a high enough quality to provide an accurate prediction 

benchmark.  Indeed, the nature of the Swiss-Prot database - from which the target 

enzymes were collected ï is itself an ñartificialò construct containing numerous 

biases from historical and research origins (Rost, 2002). 
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Figure 2.3. Overview of the process used to create the artificial 

ñAll1stINCORRECTò dataset examples.  The original BLAST output (left) 

shows an example where the three most significant sequences (seq_1, seq_2, 

seq_3) have the same function as the query but not as seq_4.  Removing these 

three sequences produces the modified ñincorrectò BLAST output (right) where 

seq_4 is now the most significant, top-ranked, sequence hit. 

The source data for this dataset was the 43572 PSI-BLAST searches obtained from 

the target sequences.  All analysis of the output sequence properties is confined to 

the sequence homologs identified in the 1
st
 PSI-BLAST iteration.  The process was 

as follows: (i) 284 ñempty-setò examples were removed (i.e. those that have no 

target sequences in the output); (ii) 15201 ñall-correctò examples were removed (i.e. 

those that have only target sequences with the same specific function as the query in 

the output).  This identified a reduced set of 28087 examples.   

2.4.2.2 Method Used to Ensure a Minimum Level of Functional Diversity in 

the Benchmark Multiple Sequence Alignments 

Two further restrictions for inclusion ï the ñMSA functional diversity criteriaò - were 

then applied: (i) only include examples with at least 10 target sequences with the 

same specific function as the query and are less significant than the first incorrectly 

matching target sequence.  This reduced the dataset to 6114 examples; and (ii) only 

include examples with at least 10 target sequences having a different specific 

function to that of the query.  This led to the identification of 4189 ñartificial ï 

All1stINCORRECTò examples that successfully satisfy all of the criteria set for the 

inclusion of MSAs within the benchmark datasets of PSI-BLAST generated multiple 

sequence alignments.  The choice of 10 sequence examples was partly arbitrary, but 

mainly influenced by the fact that it was the number used by Hannenhalli and 

Russell (2000) when selecting PFAM (Bateman et al., 2004) based MSAs, for a 

query    function A 

seq_1    function A 

seq_2    function A 
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similar analytical purpose.  This is an improved method of ensuring a degree of 

functional diversity within the MSAs, when compared to that used for the definition 

of the ñinitialò dataset.  

2.4.2.3 The ñQUERY.enzymes.4189ò Sequence Set 

This set of 4189 enzyme sequences that were used as the query sequences in the 

generation of these examples, will be referred to as the ñQUERY.enzymes.4189ò 

sequence set throughout this thesis.  They show a good distribution of 140 distinct 

EC classes measured to 4 levels of functional specificity and all 6 general EC classes 

are represented.  Further consideration of the over-representation of certain specific 

functions is addressed and discussed when required while interpreting particular 

results at later analysis stages in the thesis.   

The bulk of the benchmark analysis, results and conclusions in this thesis are from 

datasets that have been defined using this particular source set of 4189 query enzyme 

sequences.  In general, these consist of multiple sequence alignments that have been 

generated through the use of alternative PSI-BLAST sequence database search 

parameters, allowing comparative analysis between each of the datasets.  The 

procedures used to define these datasets are described in detail below. 

2.4.2.4 Methods Used to Define the ñArtificial - All1stINCORRECTò Datasets 

of MSAs 

In this section the procedures are described that are used to define some benchmark 

datasets of MSAs that are repeatedly used throughout the experiments in this thesis.  

These are defined at this point to avoid unnecessary repetition at later stages.  An 

associated standardized naming convention, used to refer to each of the particular 

datasets, is also explained.  The core methodology used for the PSI-BLAST 

sequence database search was essentially identical to that previously discussed in 

this chapter.  There were a number of alterations to particular parameters, which are 

discussed at relevant points, and for clarity the full procedure that was followed is 

repeated below.   

The ñQUERY.enzymes.4189ò sequences were used as the input query protein 

sequences.  A PSI-BLAST database search was then carried out for each of the 4189 

target enzyme sequences against the UniProt (Swiss-Prot + TrEMBL) database 
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(version 4.0), which contained 1,757,967 sequences.  Each input sequence was 

filtered using the SEG low complexity filter (Wootton and Federhen, 1996) and all 

of the sequences in the search database were filtered using the low complexity, trans-

membrane and coiled-coil filter options of the pfilt application (Jones and Swindells, 

2002).  The sequence database search was carried out using 1 iteration of PSI-

BLAST version 2.2.10, using an iteration inclusion value (-h parameter) of 0.001 

and the default BLOSUM62 amino acid substitution matrix, with a gap open penalty 

of -11 and gap extension penalty of -1.  Also, the maximum number of sequences 

included in the BLAST search output and resultant MSAs, was set at 5000 using the 

ïv and ïb command line parameters.  Further, the data content of each of these 

datasets is a set of MSAs, generated by the 1
st
 iteration of PSI-BLAST, through the 

use of the ïm 6 command line parameter.   

The resulting MSAs were then filtered to remove all sequences not identified as 

functionally annotated ñtargetò enzyme sequences ï ñMSA target enzyme filteringò.  

Finally, each of the resulting 4189 BLAST MSAs were processed using the 

ñAll1stINCORRECTò artificial dataset post-modification procedure, followed by the 

ñMSA functional diversity criteriaò. 

A further two parameters were also used in the generation of the BLAST based 

MSAs.  These are: (i) whether composition-based statistics were utilised during the 

database search, through the setting of the ït command line parameter; and (ii) the 

level of the E-value output threshold parameter, which controls the sequences that 

are included in the final MSAs through the statistical significance of the sequence 

similarity between the query and target enzymes.  The particular values used for 

these parameters are defined with each of the specific dataset definitions given 

below. 

With regards to the use of composition-based statistics when generating the MSAs, a 

discussion related to the reasons for altering this parameter usage is provided in the 

next chapter. 

As for the output E-value threshold parameter, originally the default value of 10 was 

used.  However, due to the nature of the high-specificity function assignment goals 

of this thesis, it was later decided to use a more stringently filtered dataset of MSAs, 
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by applying a lower threshold of 0.001.  A lower E-value threshold provides 

alignments that contain sequences with more significant sequence similarity to the 

query sequence.  An outcome of this more stringent alignment filtering is that the 

MSAs will generally contain fewer sequence homologs and functional false 

positives.  It follows that the number of dataset examples that satisfy the ñMSA 

functional diversity criteriaò, used to ensure a minimum level of functional diversity 

within the MSAs of the datasets, is also reduced as the E-value output threshold is 

reduced. 

2.4.2.5 Dataset Naming Scheme 

To avoid confusion and increase clarity, each of the BLAST generated datasets of 

MSAs are named using a standardized naming scheme.  The elements of this have 

been chosen to highlight key dataset features and creation parameters that will be 

discussed at particular experimental stages during this study, namely: 

ñAll1stINCORRECTò - the MSAs have been modified using the 

ñAll1stINCORRECTò artificial dataset creation procedure; ñtTò ï composition-based 

sequence statistics have been used during the sequence database search through 

setting the ït parameter to T (true); ñtFò ï composition-based sequence statistics 

have NOT been used during the sequence database search through setting the ït 

parameter to F (false); ñBLOSUM62ò ï refers to the particular amino acid 

substitution matrix used for the database search (in this example the BLOSUM62 

matrix); ñmaskedò ï the residues in the resultant MSAs still contain the sequence 

masking used to aid the database search; ñunmaskedò ï all of the sequences in the 

MSAs were post-processed to replace all masked ñXò amino acid residues with the 

original amino acid residues from the source, target, Swiss-Prot protein sequences, to 

generate ñunmaskedò MSAs; and ñEnò ï indicates that the output E-value threshold, 

which controls the sequence similarity to the query sequence of the MSA sequences, 

is set as less than or equal to n. 

2.4.2.6 The ñAll1stINCORRECT ï Using Composition-Based Statisticsò 

Datasets 

Two datasets of key interest in this thesis have been created when using 

composition-based sequence statistics in the BLAST search.  These are both the 

masked and unmasked forms of the dataset that used the default E-value MSA output 
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threshold of 10.  These are referred to as the 

ñAll1stINCORRECT.tT.BLOSUM62.masked.E10ò and 

ñAll1stINCORRECT.tT.BLOSUM62.unmasked.E10ò datasets respectively.  After the 

application of the ñMSA target enzyme filteringò and ñAll1stINCORRECTò artificial 

dataset post-modification procedures, followed by the ñMSA functional diversity 

criteriaò, both of these datasets contain the same 4189 MSA examples.  The 

properties of the 4189 query sequences that define these datasets have already been 

discussed in the earlier ñQUERY.enzymes.4189ò sequence set section. 

2.4.2.7 The ñAll1stINCORRECT ï Without Composition-Based Statisticsò 

Datasets 

Four additional datasets used in this thesis were created without using composition-

based sequence statistics in the BLAST search.  These are both the masked and 

unmasked forms of datasets that used E-value MSA output thresholds of 10 and 

0.001.   

After the application of the ñMSA target enzyme filteringò and ñAll1stINCORRECTò 

artificial dataset post-modification procedures, followed by the ñMSA functional 

diversity criteriaò, the masked and unmasked datasets, which use the E-value<=10 

threshold, each contain the same 4054 MSA examples.  These are referred to as the 

ñAll1stINCORRECT.tF.BLOSUM62.masked.E10ò and 

ñAll1stINCORRECT.tF.BLOSUM62.unmasked.E10ò datasets. 

When using an E-value threshold <= 0.001, to define which sequences will be part of 

the generated MSAs, and the application of the ñAll1stINCORRECTò artificial 

dataset post-modification procedure and the ñMSA functional diversity criteriaò, the 

number of MSA examples in the datasets is reduced to 3527.  The masked and 

unmasked forms of these datasets are referred to as the 

ñAll1stINCORRECT.tF.BLOSUM62.masked.E0.001ò and the 

ñAll1stINCORRECT.tF.BLOSUM62.unmasked.E0.001ò datasets respectively (see 

Appendix I for more detailed description of these datasets).   

2.5 Conclusions 

The work in this chapter has aimed to serve two purposes.  Firstly, the collection of a 

large set of enzyme sequences, to allow a study of the functional conservation 
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accuracy of homology transfer, at high levels of functional specificity through the  

use of standard sequence homology measures.  Secondly, the use of this data to 

identify datasets that are suitable for the benchmarking of methods intended for 

improving the prediction of specific enzyme function. 

The assessment of the level of enzyme function conservation demonstrates that even 

close sequence similarity relationships do not suffice to allow confident transfer of 

specific function in all cases.  When placed in comparison to the many previous 

studies discussed above, some of which draw far more pessimistic conclusions for 

comparable sequence similarity thresholds, the need can be seen for more powerful 

methods of discriminating between very similar functional sub-classes.  It is the aim 

of this thesis to investigate some of these methods.  Through the use of multiple 

alignments of homologous sequences it is proposed that sequence features specific to 

a particular function can be used to separate the different functional types.  

Evolutionary relationships between groups of homologous sequences, with the same 

function, can be used to identify amino acid residues that play an essential role in the 

specific function of the proteins.  These are commonly referred to as functional 

specificity determining residues (fSDRs) and will form a central point of the work in 

this thesis. 

Benchmark datasets have been defined and identified from the analysis carried out 

above.  These are composed of examples where the most significant sequence match 

from a PSI-BLAST database search is not of the same specific function as the query 

sequence.  Therefore, they fulfill criteria for the assessment of alternative methods 

that are designed to improve the discrimination of specific functional classes when 

compared to simple threshold-based sequence similarity methods.  An ñinitialò 

dataset was first identified for use as a benchmark comparison dataset.  However, a 

larger series of ñartificialò datasets were subsequently defined, which supersede the 

ñinitialò dataset and are used when assessing the performance of the methods in this 

thesis.  This is because they contain more sequence examples and enzyme functions 

on which to base the results, lending greater weight to any statistical conclusions 

drawn from these studies.  The larger datasets have also been constructed in a way to 

provide a guarantee of ñsufficientò functional diversity within the aligned sequences 
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of the examples, with which to aid the analysis of the multiple alignments and the 

identification of particular inherent evolutionary relationships. 

In conclusion, the main goal of this research is to develop and analyse automated 

techniques for improved high-specificity function prediction, using groups of closely 

related aligned homologous enzyme sequences.  The initial studies carried out in this 

chapter show why this is an important and timely research problem and also define 

benchmark datasets to help achieve this goal. 
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Chapter 3 The Use of Alternative Amino Acid 

Substitution Matrices for 

Rescoring the Functional 

Similarity of Enzyme Sequences 

3.1 Introduction 

As shown in the previous chapter, it is not always the case that the most significant 

sequence hit, found through a database search, will have the same specific enzyme 

function as the query sequence.  Neither is a simple sequence similarity threshold 

sufficient for consistent, high accuracy, functional annotation of protein sequences.  

The aim of the work in this chapter is the investigation of different scoring metrics, 

for improved assignment of specific function, when compared to the results from a 

sequence similarity database search.  The hypothesis is that this may provide 

improved functionally specific ordering of the identified homologous sequences, 

based on additional sequence features to those used in the statistical homology 

measures of the original database search. 

It has been shown that simply using the most significant ñtop-hitò from a sequence 

database search for the prediction of a specific enzyme function can lead to 

significant levels of incorrect annotation.  It is therefore both important and timely, 

to investigate ways in which groups of sequence homologues identified in a database 

search, can be scored and re-ranked to improve, both the confidence and the 

accuracy of the predictions for the specific function of the query sequence. 

3.1.1 Overview of Alignment Rescoring Method 

A general conceptual overview and the aims behind the alignment re-scoring 

procedure used in this chapter are discussed in this section.  A diagrammatic 

overview of this procedure is shown in figure 3.1.  It should be noted that similar, 

comparable procedures, for the purpose of functionally re-scoring the sequence 

alignment ordering, are also used to analyse the performance of alternative methods 

that are investigated in later chapters. 
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The first three stages depicted in figure 3.1 are related to the collection and 

alignment of relevant sequence homologs.  This procedure is discussed in detail 

within chapter 2 and is also included in this overview diagram to provide context 

with respect to the functional re-ranking of the identified sequences.  An iterative 

procedure is then carried out to re-score each of the sequences in the multiple 

sequence alignment (MSA), using a particular scoring method.   

 

Query 

Sequences 

from dataset

PSI-BLAST 

database 

search

Output MSAs from database search

(ordered by statistical significance of alignment)

for each sequence n in MSA

{seq1; seq2; é; seqN}

Calculate 

new score for 

seqn

Re-order sequences using 

new score

Assign specific function 

to query sequence

 

Figure 3.1. Diagrammatic overview of the alignment rescoring 

procedure. 
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In this chapter, the re-scoring method comprises pair-wise comparisons between the 

query sequence and the high scoring ñtargetò sequence homologs, from each of the 

MSAs in the benchmark datasets.  These pair-wise comparisons are carried out using 

well-established protein sequence alignment metrics.  Once all of the sequences 

within each MSA have been evaluated they can then be re-ordered, using the newly 

calculated score.  Predictions for the specific functional class of the query sequence 

can then be made based upon this new sequence ordering. 

3.1.2 Amino Acid Substitution Matrices 

An important consideration when aligning protein sequences and assessing their 

subsequent level of similarity, is the method used for scoring the similarity between 

each of the aligned amino acid residues.  Evolution determines the structural and 

functional features of proteins and it is the mutation of amino acid residues that is the 

main driving force.  It therefore follows that, in general, more similar protein 

sequences are closer in an evolutionary sense and hence show more closely 

correlated features of specific function.   

Analysis of the pattern and rate of change of amino acids during evolutionary 

divergence was first carried out by Dayhoff (1978).  Due to the fact that certain 

groups of amino acids display similar physical and/or chemical properties (Taylor, 

1986), the probability of mutations being accepted through natural selection is 

greater the more similar the properties are.  This becomes clear when considering the 

need for structural and functional continuity and the likely deleterious effects of a 

large change in observed amino acid properties during mutation, due to a disruption 

of function.   

Through the alignment of multiple sequences from large numbers of related proteins 

a probabilistic evolutionary model of the expected mutations from one amino acid to 

another can be developed.  A number of methods and datasets have been used to 

calculate scoring matrices for particular features and evolutionary distances between 

proteins (Dayhoff, 1978; Henikoff and Henikoff, 1992; Jones et al., 1992), some of 

which are discussed below.  The simple residue identity type of matrix is first 

described, followed by two commonly used methods; the percent accepted mutation 

(PAM) matrices (Dayhoff, 1978) and the BLOSUM series of matrices (Henikoff and 

Henikoff, 1992). 
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The form of an amino acid substitution matrix is usually that of a symmetrical matrix 

of 20 rows by 20 columns, one for each of the 20 common types of amino acid 

residues.  This leads to 210 distinct entries consisting of 190 row and column 

pairings where the amino acid residues are not the same and 20 further pairings 

along the matrix diagonal where they are.   

3.1.2.1 IDENTITY Matrix  

A simple form of substitution matrix is the identity matrix, which consists of a score 

of one between identical amino acids in an alignment and zero for all other residue 

comparisons.  Although there is no specific evolutionary theory associated with this 

type of scoring scheme, its simplicity and close association with the commonly used 

percentage identity measure between sequences means that it is sometimes used for a 

simple scoring of alignments.  The main problem with this matrix is that it rewards 

and penalises all matched and mismatched residues to the same degree.  This is done 

regardless of the similarities in physico-chemical properties of amino acids or their 

likelihood of mutation.  The following models of amino acid substitution scoring 

attempt to address these deficiencies. 

3.1.2.2 PAM Matrices 

The model for generating PAM substitution matrices was developed by Dayhoff 

(1978) using alignments of closely related groupings of homologous protein 

sequences with at least 85% sequence identity.  Due to the high level of sequence 

similarity within the groups any observed mutations of the amino acids did not 

significantly affect the function of the proteins.  The next step was to count the 

number of observed mutations between all pairs of amino acid types, within all the 

protein groups, allowing an empirical measure of the probability of mutation for 

each pair of amino acids to be calculated.  Finally this data was normalised to 

remove any bias caused by amino acid composition, mutation rate or sequence 

length.  These calculated amino acid relative mutabilities are those expected within 

the evolutionary time period defined as 1 PAM unit.  For ease of computation these 

are usually represented in the substitution matrix in their logarithm of odds (log-

odds) form, which describes the ratio of the observed frequency of amino acid 

substitutions divided by the frequency expected by chance.  Due to the fact that the 

model of evolutionary mutation used was a Markov process, it is possible to 
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calculate larger PAM-N distances through matrix multiplication of the values in the 

PAM-1 matrix.  

3.1.2.3 BLOSUM Matrices 

Another commonly used set of substitution matrices for protein sequence alignment 

and similarity scoring is the BLOSUM series (Henikoff and Henikoff, 1992).  The 

method used to generate these matrices shows a number of important differences to 

that of the Dayhoff PAM model of amino acid evolution and is based on a larger 

dataset of protein sequences.  Rather than start with very closely related sequences 

and extrapolate to more divergent ones, the Henikoffs approached the problem by 

starting with a more divergent set of protein sequences from more than 500 protein 

families.  Using these family alignments, ñblocksò of sequence patterns, without 

gaps, were extracted from the particular families and added to a database.  The 

scoring matrices were then calculated using the log-odds of the types of substitutions 

found in the conserved pattern of blocks.  The different forms of BLOSUM-N 

matrices (such as BLOSUM62 and BLOSUM50, where N is 62 and 50 respectively) 

are calculated by first grouping all sequences, within a block, that show an aligned 

sequence identity above a particular threshold.  Each group is then represented by a 

single sequence with a weighted average of the observed amino acid substitutions 

within the group.  For example, the commonly used BLOSUM62 matrix consists of 

amino acid substitution data calculated from block patterns that have all sequences, 

with greater than or equal to 62% identity, clustered into one averaged sequence 

representative.  This reduces the contribution to the matrix from more closely related 

sequence members of an aligned protein family. 

It is important to note that it is not possible to extrapolate from one BLOSUM-N 

matrix to another as with the PAM matrices, because they are not based on an 

evolutionary Markovian model.  Therefore it is only possible to calculate BLOSUM-

N matrices from empirical data of aligned blocks of sequences of the required 

similarity levels as described above. 

It is has been found that the BLOSUM62 matrix generally gives the best overall 

performance for sequence alignment and sensitive sequence database searching, 

hence the reason that this matrix is currently used as the default amino acid 

substitution scoring model in BLAST and PSI-BLAST. 
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3.2 Methods 

3.2.1 Datasets 

In this section I will describe the benchmark datasets that are employed to assess the 

performance of each alignment re-scoring method.  The datasets consist of ordered 

sets of MSAs that are used to determine the specific enzyme prediction accuracy of 

each re-scoring method.  A number of alternative datasets are described, for which 

three main differences in their method of generation are highlighted.  These 

differences are related to the particular amino acid substitution matrices that are 

used, in the BLAST database search, to generate the MSAs in each of the datasets.  

Three different matrices (BLOSUM62, PAM160 and PAM30) are used to allow an 

investigation into the effect that their use as the database search matrices would have 

on the functional classification accuracy of the resulting MSAs.  In addition, they are 

used to assess the effects on the functional classification accuracies, of the order in 

which the particular database search and alignment re-scoring matrices are applied in 

the functional re-scoring assessment procedure.  The reasons for selecting these 

particular substitution matrices are discussed in detail, in both the relevant method 

and results and discussion sections below.  For the datasets in which the detailed 

methods are not specified below, the methods used to generate the datasets have 

been previously defined in detail in chapter 2. 

3.2.1.1 ñArtificialò Dataset Using Composition-based Sequence statistics in 

BLAST Database Search 

Both the masked ï ñAll1stINCORRECT.tT.BLOSUM62.masked.E10ò ï and the 

unmasked - ñAll1stINCORRECT.tT.BLOSUM62.unmasked.E10ò ï forms of the 

4189 BLAST generated MSAs from these datasets were used in the following 

analysis. 

3.2.1.2 Refinement of the ñArtificialò Dataset by Removal of Effect Due to 

Composition-Based Sequence Statistics 

Additional datasets of MSAs were generated, without the use of composition-based 

sequence statistics during the sequence database search and with an output E-value 

threshold of 0.001 used to control the sequences included in the output MSAs.  Both 

the masked ï ñAll1stINCORRECT.tF.BLOSUM62.masked.E0.001ò ï and the 
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unmasked - ñAll1stINCORRECT.tF.BLOSUM62.unamsked.E0.001ò ï forms of the 

3527 BLAST generated MSAs from these datasets were used in the following 

analysis (see Appendix I for more detailed description of these datasets).  

3.2.1.3 Generation of a Dataset of MSAs Using a PAM160 Sequence 

Database Search Matrix 

A dataset of MSAs was generated through the use of the PAM160 matrix in a PSI-

BLAST protein sequence database search.  The steps used in the methodology were 

as close as possible to those previously described when using the BLOSUM62 

substitution matrix.  For clarity, the PSI-BLAST search procedure and parameters 

used is repeated below.   

As before, the PSI-BLAST database search was carried out, for each of the 4189 

target enzymes in the ñQUERY.enzymes.4189ò sequence set, against the UniProt 

(Swiss-Prot + TrEMBL) database (version 4.0).  Each input sequence was filtered 

using the SEG low complexity filter (Wootton and Federhen, 1996) and all of the 

sequences in the search database were filtered using the low complexity, trans-

membrane and coiled-coil filter options of the pfilt application (Jones and Swindells, 

2002).  The sequence database search was carried out using 1 iteration of PSI-

BLAST (version 2.2.10), an output E-value threshold of 0.001 and the PAM160 

substitution matrix.  Composition-based sequence statistics were not used during the 

database search, hence the ït parameter was set as ït F.  

The version of PSI-BLAST used does not implicitly contain support for the PAM160 

substitution matrix.  Because of this it was necessary to determine the most suitable 

gap penalty parameters to use in the database search.  In comparisons, by Henikoff 

and Henikoff (1992), between the PAM and BLOSUM series of matrices, the 

PAM160 matrix is shown to be most closely comparable to the BLOSUM62 matrix.  

Using this information and that from Reese and Pearson (2002), which suggests 

similar effective gap penalties for the two matrices, I decided to use the same gap 

open and gap extension penalties, of -11 and -1 respectively, that were used in the 

database search with the BLOSUM62 matrix. 

An MSA post-processing procedure identical to that used for the BLOSUM62 

generated MSAs was then carried out.  Firstly, the resulting MSAs were filtered to 
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remove all sequences not identified as ñtargetò enzyme sequences (see chapter 2).  

Next, each of the MSAs were processed using the ñAll1stINCORRECTò artificial 

dataset post-modification procedure and finally the ñMSA functional diversity 

criteriaò was applied (both of these procedures are defined in chapter 2).   

This resulted in a dataset consisting of 3100 PSI-BLAST generated MSAs, whose 

query sequences represent coverage of 88 distinct EC classes.  During associated 

analysis and discussion throughout this thesis, the sequence residue masked and 

unmasked forms of this dataset will be referred to as the 

ñAll1stINCORRECT.tF.PAM160.masked.E0.001ò and 

ñAll1stINCORRECT.tF.PAM160.unmasked.E0.001ò datasets respectively (see 

Appendix I for more detailed description of these datasets). 

3.2.1.4 Generation of a Dataset of MSAs Using a PAM30 Sequence 

Database Search Matrix 

One further dataset of MSAs was generated for analysis in this chapter.  In this case, 

a PAM30 substitution matrix was used in the PSI-BLAST sequence database search.  

Unless specified otherwise, the steps used in the generation of these PAM30 based 

MSAs are identical to those used in the PAM160 based BLAST MSAs, detailed 

above. 

The important difference in this dataset generation method was that a PAM30 

substitution matrix was used in the PSI-BLAST database search.  As with the 

PAM160 case, above, the version of PSI-BLAST used does not implicitly contain 

support for the PAM30 substitution matrix.  Therefore, it was again necessary to 

determine the most suitable associated gap penalty parameters for use in the database 

search.  The parameters decided upon were: -9 for the gap opening; and -1 for the 

gap extension penalty.  These were selected because two previous studies (Altschul 

et al., 2001; and Frommlet et al., 2004), which investigate the effects of sequence 

alignment scoring schemes on statistical alignment parameters, both recommend the 

use of these gap scoring parameters with the PAM30 substitution matrix.  

An MSA post-processing procedure, identical to that used for the PAM160 

generated MSAs, was then carried out.  This resulted in a dataset consisting of 2110 

PSI-BLAST generated MSAs, whose query sequences represent coverage of 82 
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distinct EC classes.  During associated analysis and discussion throughout this thesis, 

the sequence residue masked and unmasked forms of this dataset will be referred to 

as the ñAll1stINCORRECT.tF.PAM30.masked.E0.001ò and 

ñAll1stINCORRECT.tF.PAM30.unmasked.E0.001ò datasets respectively (see 

Appendix I for more detailed description). 

3.2.2 Calculation of Alignment Scores Using Non-Standard Amino 

Acid Substitution Matrices  

A method was developed for the parsing of the PSI-BLAST generated multiple 

alignments.  Each of the individual pair-wise alignments, between the query and high 

scoring ñtargetò sequences from the database search, were then re-scored using a 

selected set of amino acid substitution matrices.  The substitution matrices used in 

the experimental analysis were: 

¶ IDENTITY matrix: This consisted of just two different score entries for all amino 

acid pairings s(i, j): 

¶ s(i, j) = 1 where i = j  

¶ s(i, j) = 0 where i Í j 

¶ PAM matrices: A number of PAM matrix evolutionary distances were used in 

this analysis, ranging from: PAM10 to PAM250 in increments of 10 PAM units. 

¶ BLOSUM matrices: A variety of BLOSUM matrices were also used in the 

analysis: (BLOSUM30 to BLOSUM60 in increments of 5; BLOSUM62; 

BLOSUM70 to BLOSUM90 in increments of 5; and BLOSUM100) 

All of the PAM and BLOSUM series of matrices used were downloaded from the 

following website (ftp://ftp.ncbi.nih.gov/blast/matrices/).  The PAM matrices were 

calculated using "pam" Version 1.0.6 [28-Jul-93] and the BLOSUM matrices were 

calculated from the BLOCKS 5.0 database, at the required sequence cluster 

percentage level. 

3.2.2.1 Alignment Re-Scoring Procedure 

The procedure used in these experiments for re-scoring each pair-wise alignment, 

between query and target sequence in the MSAs, closely follows that shown in 

ftp://ftp.ncbi.nih.gov/blast/matrices/
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figure 3.1.  Each of the individual pair-wise alignments were extracted and all of the 

aligned residue pairs were then re-scored using the scores defined in each of the 

distinct substitution matrices described above.  It is important to note that it is the 

local alignments, generated by PSI-BLAST, that are used in this analysis and that no 

re-alignment of the sequences is carried out.  A simplified overview of this process, 

consisting of only two pair-wise alignments, is shown in figure 3.2.  This particular 

example shows two short alignments and the resulting score obtained from using the 

BLOSUM62 matrix to score each of the aligned residues between the query and 

sequence_n.  In this case the alignment score of the query with sequence_2 is greater 

than with sequence_1.  Therefore, using this scoring scheme, sequence_2 would be 

ranked as a closer specific functional match to the query than sequence_1. 

 

Figure 3.2. A simplified schematic overview, showing the way that pair-

wise sequence alignments are functionally re-scored, using different amino 

acid substitution matrices (in this particular case BLOSUM62 is used). 

3.2.2.2 Treatment of Insertions and Deletions 

Insertions and deletions of amino acids play an important role in protein evolution. 

They give rise to ñgappedò sections to provide optimal alignments between 

sequences.  In this analysis two different approaches were taken to the treatment of 

gaps in the alignments when calculating the re-scored values. 

Un-gapped: This method scores all residues aligned to gap positions as 0 

Gapped: This method uses the same affine gap penalty model as that used in the 

BLAST algorithm and is defined below in equation 3.1 

extendopenn gngG *)1( -+=                               (equation 3.1) 

where Gn is the overall gap penalty, gopen is the penalty for opening a gap, n is the 

number of consecutive gaps and gextend is the penalty for extending a gap.  In both the 

                                                    score  

Query               L  L  A  R  F  Q  V  R  M  G  P 

Sequence_1          I   L  G  Y  M  Q  F  R  K  G  P  

BLOSUM62 score     2  4   0 - 2  0  5 - 1  5 - 1  6  7   25  

 

Query               L  L  A  R  F  Q  V  R  M  G  P 

Sequence_2         L  L  G  L  F  Q  N  R  Y  G  P 

BLOSUM62 score     4  4  0 - 2  6  5 - 3  5 - 1  6  7   31  
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ñun-gappedò and ñgappedò form of analysis the starting and trailing gaps were 

removed from the ends of all the alignments before carrying out the rescoring 

calculations. 

3.2.3 Assessing Prediction Accuracy 

3.2.3.1 Top-hit Method 

To assess the improvement in prediction accuracy when re-scoring the MSAs, a 

simple ñtop-hitò approach was taken.  This is where the specific function of the 

query sequence is assigned the same specific function as the sequence with the 

highest score from the pair-wise re-scoring procedure.  If the specific functional 

classes are the same (to a degree of all 4 numbers in the EC hierarchy), then the 

result is defined as a ñcorrectò prediction of specific function, otherwise the result is 

defined as an ñincorrectò prediction.   

Exceptions to these outcomes are seen when a group of sequences have equal scores, 

producing a set of tied ranking positions.  A group of this kind contains two or more 

members that may (or not) have the same specific function.  If the members all have 

the same specific function, and it is the same as the query sequence, then this is 

classed as a correct prediction.  Alternatively, if none of them have the same specific 

function as the query then this is classed as incorrect.  A third case is where the 

sequences in the ñtied-rankò group have two or more different functional classes and 

one of them is the same specific function as the query sequence; in this case it is not 

possible to differentiate between the correct and incorrect examples and therefore 

can be classed as ñundecidableò.  For all practical purposes, these types of 

ñundecidableò examples should be classified as ñincorrectò when considering the 

functional prediction results, as they cannot be separated from those that are correct 

using the available information from the defined scoring scheme.  In this analysis, 

these ñundecidableò examples are indeed treated as ñincorrectò predictions. 

3.2.3.2 Definition of a Random Sequence Selection Model for Specific 

Function Prediction 

A random model of a simple naive prediction system was defined to provide a 

baseline comparison with the ñtop-hitò function prediction results obtained from the 

different re-scoring methods.  This was based upon the concept of randomly 
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permuting the ranked results of the sequence homologues in each of the MSAs in the 

dataset.  The prediction result was then determined to be correct or incorrect through 

functional comparison between the specific EC classification of the query sequence 

and the randomly permuted ñtop-hitò. 

A simple, computationally inexpensive way of modelling these random permutations 

is through the calculation of the probability of randomly selecting a functionally 

correct sequence (where all 4 levels of the EC hierarchy are equal between the query 

and randomly selected sequence) from each MSA.  The resulting probability 

calculation, for each MSA, is shown in equation 3.2. 

all

correct
correctrandom

n

n
P =_

                                        (equation 3.2) 

Where: Prandom_correct is the probability of a randomly assigned, correct, functional 

prediction; ncorrect is the number of sequences in the MSA with the same (correct) 

specific function as the query sequence; and nall is the total number of sequences in 

the particular MSA of interest. 

3.2.3.3 Bootstrap Re-sampling Analysis of Results 

A computational statistical re-sampling method, known as the ñbootstrapò (Efron 

and Gong, 1983), was used to allow the accurate calculation of statistical properties 

from data distributions that are not normally distributed.  The central limit theorem 

states that the distribution of a sample of calculated means approximates a normal 

distribution, when the number of data points is large.  Standard statistical 

calculations can then be made on the resulting, normally distributed, bootstrap re-

sampled data.  

Sample Mean 

The sample arithmetic mean, x , is calculated using equation 3.3 
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1
                                               (equation 3.3) 

where n  is the number of data points in the sample and ix  is the value of data point 

i . 
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Standard Error 

The standard error is a metric that is commonly used to approximate the dispersion 

of a sample statistic, such as the sample mean.  The bootstrap sample statistics were 

used in this calculation, following the method of Good (1999).  The standard error 

(se) can be defined as the square-root of the unbiased estimate of the sample variance 

(see equation 3.4). 

( )statisticsbootstrapiancese _var=                       (equation 3.4) 

Equation 3.5 shows the detailed method of calculation used to compute the standard 

error (se) of a sample containing B bootstrap values 
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qq                                 (equation 3.5) 

Where 
bq
Ĕ is the bootstrap value, b, and bq

Ĕis the mean of these bootstrap values. 

Outline of the Bootstrap Re-sampling Procedure 

The general bootstrap procedures used for the experimental analysis of both the 

random model and the alignment re-scoring methods are described below, where the 

number of bootstrap repetitions, B, is 10000 in all of the bootstrap calculations. 

Using the Random Model Data 

¶ For a dataset of N MSA examples, calculate the distribution of the N 

probabilities for ñrandom correct predictionò, calculated using equation 3.2. 

¶ Bootstrap: (repeat steps 1 and 2, B times, storing the mean sample estimate from 

each bootstrap replicate in a vector, M, of length B) 

1. Randomly select n (where n=N/2) data-points, with replacement, from the 

original sample distribution of Prandom_correct values. 

2. Calculate, using equation 3.3, the mean of the Prandom_correct bootstrap sample 

values and add to vector M. 

¶ Finally, calculate the standard error (se) of the bootstrap statistics contained in 

M. 
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Using the Alignment Re-scoring Top-hit Prediction Data 

¶ For a dataset of N MSA examples, apply the re-scoring method, evaluate whether 

the functional ñtop-hitò prediction result is ñcorrectò or ñincorrectò.  The dataset 

will then consist of ncorrect and nincorrect examples. 

¶ Bootstrap (repeat steps 1 and 2, B times, storing the calculated sample estimate 

from each bootstrap replicate in a vector, M, of length B) 

1. Randomly select n (where n=N/2) data-points, with replacement, from the 

original sample distribution of N (ncorrect and nincorrect) examples. 

2. Calculate the fraction of correct examples in the bootstrap sample and add to 

vector M. 

¶ Finally, calculate the standard error (se) of the bootstrap statistics contained in 

M. 

3.2.4 Calculation of PAM Distance from Sequence Percentage Identity 

A PAM 1 mutation matrix is defined to be a specific measure of a unit of 

evolutionary distance.  Therefore, it is possible to define a function that calculates 

the relationship between PAM evolutionary distances and the changes in amino acid 

sequence identity.  In this chapter these calculations were carried out using the 

PerIdentToPam() function that is available in the Darwin interpreted computer 

language suite of software tools (Gonnet et al., 2000).  This function carries out an 

iterative procedure using Newton's method for solving equations (see the following 

section of the Darwin user manual for further details: 

http://www.inf.ethz.ch/personal/gonnet/DarwinManual/node155.html). 

3.2.5 Query Sequence Clustering 

The input query sequences that were used as input to the BLAST database search 

and MSA generation were clustered based on the level of sequence identity through 

the use of the CD-HIT algorithm (Li and Godzik, 2006).  The clustering was done 

for each of the separate query sequence sets identified by the three dataset generation 

methods described above.  A range of percentage sequence identity levels were used 

for the clustering (40% - 90% in intervals of 10%) and the recommended default 

parameters were used for all.  The longest sequence in each cluster was used as the 
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representative.  A summary of the cluster properties, at each defined level of 

sequence identity, is given in the relevant section of results. 

3.3 Results and Discussion 

3.3.1 Benchmark Prediction Results Using the Artificial Datasets 

An initial analysis of the 4189 MSA examples, in the 

ñAll1stINCORRECT.tT.BLOSUM62.masked.E10ò dataset, was carried out to ensure 

the correct functioning of the alignment re-scoring algorithm.  The same amino acid 

substitution matrix, gap scoring algorithm and gap penalty values, as those employed 

for the BLAST generation of the alignments, were used for the alignment re-scoring.  

These were: BLOSUM62; the affine gap penalty scoring method described in 

equation 3.1; and a gap opening (gopen) value of -11 and gap extension (gextend) value 

of -1, respectively. 

As has been described previously, the way in which the MSAs in the artificial 

datasets have been modified ensures that none of them generate a correct ñtop-hitò 

functional prediction result, when considering all 4 levels of the EC classification 

scheme and the sequences have been ranked in ascending E-value order.  Therefore, 

the hypothesis was that by using a score matrix and gap penalty parameters in the re-

scoring algorithm, equivalent to those used in the sequence alignment during the 

BLAST database search, an identical sequence ranking should be observed for each 

of the MSAs.  This was however not the case, as a significant number (2045 out of 

4189, or a proportion of 0.49 correct predictions) of examples in the re-scored 

ñAll1stINCORRECT.tT.BLOSUM62.masked.E10ò dataset, showed a correct 

functional sequence ñtop-hitò after the functional alignment re-ranking, when using 

the BLOSUM62 re-scoring matrix and the gapped scoring model.   

These results clearly show that the alignment re-scoring algorithm was not producing 

the expected results during the calibration of the benchmark dataset.  This was 

problematic because it indicated a possible flaw within the re-scoring algorithm, 

preventing the establishment of a true, reproducible, benchmark comparison between 

the BLAST generated predictions and those from the re-scored alignments.  The 

reasons for these discrepancies are investigated and discussed further in the 

following section. 
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3.3.1.1 Testing and Calibration of Benchmark Datasets Used for Assessing 

the Prediction Accuracy of the Functional Re-scoring Algorithm 

The alignment re-scoring algorithm was carefully tested to ensure that the expected 

alignment score, for each of the pair-wise alignments, was being calculated.  The 

results from this test showed that the algorithm was generating the expected results 

when using the specified gap scoring model and amino acid substitution matrix.  

However, comparisons between these calculated alignment scores, and the ñrawò 

BLAST alignment scores, showed differences that caused the functional ranking 

discrepancies in the benchmark dataset. 

This finding indicated that the differences between the BLAST alignment scores and 

those calculated with my re-scoring algorithm must be explained by additional 

parameters in the BLAST alignment score calculations that were not being 

incorporated into the alignment re-scoring algorithm.  Analysis of the parameters 

used in the BLAST search highlighted the use of sequence composition-based 

statistics calculations (controlled through the use of the command line ït argument), 

during the generation of the BLAST alignments, as the reason for the observed 

discrepancies.  It was found ï using the 

ñAll1stINCORRECT.tF.BLOSUM62.masked.E10ò dataset - that, when compared to 

no use, composition-based statistics can generate slightly different alignment scores.  

This can lead to varying statistical significance scores and subsequent differences in 

the rankings of the sequence homologs identified with BLAST.    This was the 

reason for the observed differences between the ñtop-hitò function prediction results 

of the BLAST MSAs, when using composition-based statistics and those from the 

alignment re-scoring algorithm, when using identical substitution matrices and gap 

scoring models.    

To correct these differences I decided to define an alternative benchmark dataset of 

MSAs, still generated by BLAST, but without the use of composition-based 

statistics.  This solution was chosen because it allows for an exact reproduction of 

the aligned sequence ordering, and associated ñtop-hitò function prediction results, 

when using the re-scoring algorithm.  It also provides a simpler implementation for 

the alignment re-scoring algorithm because there is no requirement to explicitly 

calculate the additional effects due to the composition-based sequence statistics.   
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In summary, when composition-based statistics are not used to generate the 

alignments, the benchmark re-scoring results are equivalent between both the 

BLAST-based and alignment re-scoring methods, when using an equivalent 

substitution matrix, gap scoring model and penalties.  Therefore, for the remainder of 

this chapter, the experimental analysis only uses datasets that contain MSAs that 

have been generated without the use of composition-based sequence statistics.   Also, 

at this point, a decision was made to concentrate all further analysis on MSAs 

created through the use of a more stringent output E-value threshold of 0.001, 

namely the MSAs in the ñAll1stINCORRECT.tF.BLOSUM62.masked.E0.001ò and 

the ñAll1stINCORRECT.tF.BLOSUM62.unmasked.E0.001ò datasets.  This was 

found to not alter the general results and experimental trends observed during the 

following analysis. 

3.3.2 Definition of a Simple Random Sequence Selection Model for 

Function Prediction 

During the analysis in this chapter, comparisons are made between the function 

prediction results from alternative alignment re-scoring methods and those from 

associated random sequence selection models.  As described in the methods, the 

random model used for this comparison is based on the probability of randomly 

selecting a sequence, from a multiple alignment, that has the same specific function 

as the query sequence.  The aim of these comparisons is to assess the difference in 

prediction performance between the re-scored analysis results and the baseline 

provided by the random model.  Where necessary the random model is defined 

alongside the associated dataset and analysis under discussion.  Also, in table 3.1, a 

summary of the dataset size, bootstrap parameters and calculated mean and standard 

error (se) statistics is given for the random sequence selection models of each dataset 

used in this analysis.  

3.3.2.1 Probability Distributions and Bootstrapping of the Random Sequence 

Selection Model 

In general, the probabilities for the correct prediction of specific enzyme function, 

using a model of uniform random sequence selection from each of the MSAs in a 

dataset, follow a non-normal sample distribution.  Due to this, the bootstrap method 
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can be used (see methods) to calculate associated statistical properties of the 

distribution, such as the sample mean and standard error.   

When calculating the bootstrap statistics for the 

ñAll1stINCORRECT.tF.BLOSUM62.(un)masked.E0.001ò datasets, the number of 

bootstrap replicates, B, used was 10000 and the sample size for each replicate was 

1764, which is approximately half of the 3527 MSA examples in the dataset.  The 

resulting statistics, shown in table 3.1, for the random sequence selection model for 

this dataset show a bootstrap mean of 0.502 and a standard error of +/- 0.006. 

Dataset No. of 

MSAs 

(N) 

(bootstrap) 

Sample 

Size (N/2) 

(bootstrap) 

mean +/- se 

All1stINCORRECT.tF.BLOSUM62.E10 4054 2027 0.475 +/- 0.006 

All1stINCORRECT.tF.BLOSUM62.E0.001 3527 1764 0.502 +/- 0.006 

All1stINCORRECT.tF.PAM160.E0.001 3100 1550 0.522 +/- 0.007 

All1stINCORRECT.tF.PAM30.E0.001 2110 1055 0.572 +/- 0.008 

Table 3.1. Summary of the dataset size, bootstrap sample size and 

calculated mean and standard error (se) statistics for the random sequence 

selection model for each associated dataset of MSAs used in this analysis. 

3.3.3 The Effect on the Top-Hit Prediction Performance of Using 

Alternative Substitution Matrices to Re-score the MSAs 

The aim of this section is to analyse the effect, on the performance of the ñtop-hitò 

function prediction results, of using alternative amino acid substitution matrices with 

the alignment re-scoring algorithm.  A thorough investigation of the IDENTITY 

matrix and the BLOSUM and PAM series of amino acid substitution matrices, 

defined in the methods, is carried out. 

Also studied are some of the additional parameters that may affect the alignment re-

scoring results, such as sequence residue masking and the gap scoring of the 

alignments.  Alongside these analyses are comparisons to the associated function 

prediction results, from the baseline random sequence selection model, of the dataset 

under investigation. 
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3.3.3.1 Comparison Between the Substitution Matrices When Using MSAs 

Containing Sequence Masking 

For this analysis the òAll1stINCORRECT.tF.BLOSUM62.masked.E0.001ò dataset 

was used, with sequence residue masking still present in the functionally filtered 

MSAs.  The effect of the amino acid substitution matrices, on the alignment re-

scoring results, are compared using the gap scoring model of equation 3.1, with the 

same gap penalties as those used in the original BLAST search: gopen = -11 and 

gextend = -1 and also with an ñun-gappedò scoring model where gopen = 0 and gextend = 

0.  Both the number, and proportion, of correct function prediction results for a 

representative set of IDENTITY, BLOSUM-N and PAM-N substitution matrices are 

shown in table 3.2.  All four levels of EC functional classification of the top scoring 

aligned sequences in each re-ranked MSA, are used to predict the specific enzyme 

function of the query sequences.  
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 Gapped (-11, -1) Un-gapped (0, 0) 

Re-score 

Matrix  

Number 

(proportion) 

Correct 

 

(bootstrap)  

mean 

proportion 

correct +/- se 

Number 

(proportion) 

Correct 

(bootstrap) 

mean 

proportion 

correct +/- se 

IDENTITY 1819 (0.52) 0.516 +/- 0.012 1844 (0.52) 0.523 +/- 0.012 

BLOSUM30 1507 (0.43) 0.427 +/- 0.012 1909 (0.54) 0.541 +/- 0.012 

BLOSUM40 1467 (0.42) 0.416 +/- 0.012 1945 (0.55) 0.552 +/- 0.012 

BLOSUM50 1306 (0.37) 0.370 +/- 0.011 1907 (0.54) 0.541 +/- 0.012 

BLOSUM60 809 (0.23) 0.229 +/- 0.010 1845 (0.52) 0.523 +/- 0.012 

BLOSUM62 0 (0.00) 0.000 +/- 0.000 1850 (0.52) 0.524 +/- 0.012 

BLOSUM70 1291 (0.37) 0.366 +/- 0.011 1882 (0.53) 0.533 +/- 0.012 

BLOSUM80 1544 (0.44) 0.438 +/- 0.012 1898 (0.54) 0.538 +/- 0.012 

BLOSUM90 1589 (0.45) 0.450 +/- 0.012 1882 (0.53) 0.534 +/- 0.012 

BLOSUM100 1744 (0.49) 0.494 +/- 0.012 1906 (0.54) 0.540 +/- 0.012 

PAM10 2002 (0.57) 0.568 +/- 0.012 2053 (0.58) 0.582 +/- 0.012 

PAM20 2018 (0.57) 0.572 +/- 0.012 2124 (0.60) 0.602 +/- 0.011 

PAM30 2043 (0.58) 0.579 +/- 0.012 2165 (0.61) 0.614 +/- 0.012 

PAM40 2032 (0.57) 0.576 +/- 0.012 2134 (0.61) 0.605 +/- 0.012 

PAM50 2049 (0.58) 0.581 +/- 0.012 2086 (0.59) 0.591 +/- 0.012 

PAM60 2017 (0.57) 0.572 +/- 0.012 2043 (0.58) 0.579 +/- 0.012 

PAM80 1946 (0.55) 0.552 +/- 0.012 1979 (0.56) 0.561 +/- 0.012 

PAM100 1828 (0.52) 0.518 +/- 0.012 1985 (0.56) 0.563 +/- 0.012 

PAM120 1780 (0.51) 0.505 +/- 0.012 1935 (0.55) 0.549 +/- 0.012 

PAM140 1721 (0.49) 0.488 +/- 0.012 1934 (0.55) 0.548 +/- 0.012 

PAM160 1712 (0.49) 0.485 +/- 0.012 1928 (0.55) 0.547 +/- 0.012 

PAM180 1635 (0.46) 0.464 +/- 0.012 1899 (0.54) 0.538 +/- 0.012 

PAM200 1600 (0.45) 0.453 +/- 0.012 1904 (0.54) 0.540 +/- 0.012 

PAM220 1660 (0.47) 0.471 +/- 0.012 1911 (0.54) 0.542 +/- 0.012 

PAM240 1658 (0.47) 0.470 +/- 0.012 1886 (0.54) 0.535 +/- 0.012 

Table 3.2. A comparison between the number, and proportion, of 

correct functional prediction results for a representative set of substitution 

matrices used for alignment re-scoring.  All results for the number of correct 

predictions are out of a possible 3527.  Also shown are the corresponding 

mean and standard error (se) results calculated from the bootstrap analysis.  

Results from both gapped and un-gapped gap re-scoring models are shown, 

where gap penalties of (gopen = -11 and gextend = -1) and (gopen = 0 and gextend = 0) 

were used respectively. 
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IDENITITY Matrix 

When using the IDENTITY matrix, with the ñgapped (-11, -1)ò gap scoring model, 

to re-score the MSAs in the òAll1stINCORRECT.tF.BLOSUM62.masked.E0.001ò 

dataset, the proportion and number of correct predictions is 0.52 (1819/3527), see 

table 3.2.  

BLOSUM-N Matrices 

The results, in table 3.2, for the ñgapped (-11, -1)ò re-scoring analysis, clearly show 

that the expected minimum - of 0 correct predictions - is obtained when the 

BLOSUM62 matrix is used in the alignment re-scoring algorithm.  Also, as the N 

value of the BLOSUM-N matrices is both increased and decreased, the number of 

correct predictions increases.  This is, perhaps, to be expected, as the definition of 

the benchmark dataset only allows for the identification of examples that either 

improve, or do not alter, the accuracy of function prediction.  There also appears to 

be some correlation between an increasing number (or proportion) of correct 

predictions and the distance of the BLOSUM-N N value from the BLOSUM62 

matrix used to calibrate the dataset.  For the BLOSUM-N matrices, the maximum 

fraction of correct predictions, 0.49 (1744/3527), is obtained by re-scoring the 

alignments using the BLOSUM100 matrix. 

PAM-N Matrices 

The prediction results, in table 3.2, for the ñgapped (-11, -1)ò re-scoring analysis 

when using the PAM-N matrices show quite a different trend to those of the 

BLOSUM-N.  Most noticeably, there is no clear minimum for the matrices in the   

series that is comparable to that of the BLOSUM-N results.  This is most striking for 

the PAM160 matrix, which is the suggested PAM series equivalent to the 

BLOSUM62 matrix (Henikoff and Henikoff, 1992), because it does not show a 

comparable prediction performance, of 0 correct predictions, to that of BLOSUM62.  

The minimum fraction of correct predictions is observed with the PAM200 matrix, 

whereas, the maximum fraction of correct predictions, 0.58 (2049/3527), is obtained 

by re-scoring the alignments with the PAM50 matrix.   
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3.3.3.2 Applying Bootstrap Analysis to the Alignment Re-scoring Results 

To obtain a more statistically accurate assessment for the mean fraction of correct 

prediction results, and the associated standard error, a bootstrap analysis was carried 

out on the results from the òAll1stINCORRECT.tF.BLOSUM62.masked.E0.001ò 

dataset.  The bootstrap parameters used were the same as those for the associated 

random model, where the number of replicates, B, was 10000 and the sample size of 

each replicate was 1764 - approximately half the number of MSA examples, 3527, in 

the dataset.  Unless otherwise stated, all remaining analysis comparisons and 

discussion in this chapter will refer to the bootstrapped form of the function 

prediction results. 

The bootstrap analysis results, with the mean and standard error (se) values for a 

representative set of the IDENTITY, BLOSUM-N and PAM-N substitution matrices, 

are shown in table 3.2.  With regards to the results from the ñgapped (-11, -1)ò gap 

scoring model, it can be seen that the mean and standard error for the BLOSUM62 

results is 0.  This is to be expected as all the examples are defined to be incorrect 

predictions with this score matrix, which leads to no variation in the sample 

distribution of predictions used for the bootstrap.  Overall, both with and without 

bootstrapping, the trends of the re-scoring results for all of the substitution matrices 

are similar.   

Maximum predictive performance is still seen when using the PAM50 matrix, with a 

mean proportion of 0.581 correct predictions.  Although there is now significant 

overlap, of the standard error bars, with the results from PAM10 to PAM40 and 

PAM60.  Each one of these ñoptimalò matrices shows a large improvement, in the 

proportion of correct predictions, when compared to the random sequence selection 

model, which has a mean value of 0.502, shown in table 3.1. 

3.3.3.3 Comparisons Between the Masked and Unmasked Alignments  

As discussed previously, sequence masking was used for the BLAST search and 

generation of the MSAs in the benchmark dataset.  To investigate the effects of 

sequence masking on the prediction results, the alignments were modified to replace 

all masked sequence residues, with the amino acid residues present in the associated 

source protein sequences extracted from the Swiss-Prot database.  The key 

observation to take from these alignment rescoring results, is the consistent 
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improvement in the proportion of correct functional ñtop-hitò predictions for all of 

the substitution matrices investigated, when comparing the respective results from 

the alignments containing un-masked with those containing masked sequence 

residues.  Overall, the trends in the prediction results are similar to those of the 

masked sequences, with significant improvement (within 1 standard error difference) 

shown for all of the matrices, except those results from using the PAM10 matrix.  

The remaining analyses focus on the results from re-scoring the un-masked versions 

of the MSAs from each dataset. 

The optimal predictive performance, for the 

òAll1stINCORRECT.tF.BLOSUM62.unmasked.E0.001ò dataset, is now seen when 

using the PAM30 matrix to re-score the unmasked sequence alignments, with a 

bootstrapped mean proportion of 0.606 correct predictions and a standard error of +/- 

0.012.  This provides a small increase, of 0.025, for the proportion of correct 

function predictions, when compared to the results from using the PAM50 matrix to 

re-score the masked alignments.  Also shown is an improvement, of 0.104, in the 

mean proportion of correct predictions, when compared to the random sequence 

selection model, mean value, of 0.502, shown in table 3.1. 

3.3.3.4 Comparison Between the ñGappedò and ñUn-gappedò Models for 

Alignment Re-scoring 

All of the results shown so far incorporate a ñgappedò scoring method into the 

alignment re-scoring algorithm, which uses an identical scoring model and 

parameters to that of the default gapped BLAST algorithm with the BLOSUM62 

search matrix.  In this section, the ñun-gappedò method, which scores all residues 

aligned with gaps as 0, was used to calculate a comparable set of alignment scores 

(see methods).   

The results, shown in figure 3.3, provide a comparison between the use of the 

ñgappedò and ñun-gappedò models for scoring sequence alignment gaps in the 

ñAll1stINCORRECT.tF.BLOUSM62.unmasked.E0.001ò dataset.  It can be seen from 

these results that a significant increase in the proportion of correct predictions is 

obtained when the ñun-gappedò gap scoring model is used for the alignment 

rescoring.  This is true for the IDENTITY and all of the BLOSUM-N and PAM-N 

substitution matrices investigated.  The clearest example of this is in the difference 
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between the numbers of correct predictions when using the BLOSUM62 matrix with 

the ñun-gappedò model.  When using gap-scores of gopen = -11 and gextend = -1, the 

masked dataset shows 0 correct predictions, whereas the unmasked dataset has a 

mean proportion of 0.218 correct predictions.  However, with the ñungappedò 

method (where gopen = 0 and gextend = 0), the mean proportion of correct predictions 

increases to 0.524 and 0.560, for the masked and unmasked alignments respectively.  

Further, for the BLOSUM-N matrices, a clear difference can be seen between the 

trends in prediction results for the gapped and un-gapped scoring models.  When 

using the un-gapped model there is little difference between the proportions of 

correct predictions for the different BLOSUM-N matrices, especially when taking 

the overlap of the standard error of the mean into consideration.  This is in contrast 

to the results, described above, for the gapped model of the BLOSUM-N alignment 

re-scoring.  The trends for the PAM-N matrices are similar overall to those seen in 

the gapped model but show a consistently improved performance.   

A further observation is highlighted by the comparison of these un-gapped prediction 

results to the associated random sequence selection model, where all of the mean 

values, for the proportion of correct predictions from the un-gapped BLOSUM-N 

and PAM-N re-scoring results, show a significant improvement when compared to 

the random model.  This is also the case for the results for the IDENTITY matrices 

and the gapped results from the PAM-N matrices, when N is less than 170. 

The optimal prediction result, for all matrices investigated when using the un-gapped 

model with unmasked sequence alignments, was 0.631, which was observed with the 

PAM30 matrix and can be seen in figure 3.3. 
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Figure 3.3. A comparison of the proportion of correct predictions 

obtained for each of the specified substitution matrix re-scoring methods.  The 

proportions of correct predictions are the bootstrap mean values, shown with 

the corresponding standard error bars.  Results are shown for the gapped (-

11,-1) and un-gapped (0,0) alignment re-scoring of the 

Al1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, when using the 

IDENTITY, BLOSUM-N and PAM-N substitution matrices.  Also shown is the 

associated random sequence selection model for the dataset, where the dotted 

lines show 1 standard error deviation from the mean. 

 

3.3.3.5 Comparison Between the Re-Scoring the Alignments from the 

ñOriginalò and ñArtificialò Datasets 

To assess whether these observed results were dependent on the nature of the 

ñartificial ï All1stINCORRECTò dataset of alignments, a control experiment was 

carried out.  In the previous section, it was shown that the PAM30 matrix was the 

optimally performing matrix for re-scoring the 3527 unmasked alignments from the 

ñAll1stINCORRECTò dataset.  However, due to the ñartificialò nature of the 

benchmark dataset used it is not clear whether these results are concealing a potential 

decrease in performance when re-scoring alignments that already have a correct 

specific functional hit as the top-ranked sequence.  Therefore, the ñoriginalò BLAST 

MSAs (i.e., prior to the generation of the ñartificialò dataset, described in section 

2.4.2) were re-scored using the PAM30 matrix.  These were then compared to the 
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results obtained from re-scoring the ñoriginalò unmasked MSAs with the 

BLOSUM62 matrix. 

When using gap-scores of gopen = -11 and gextend = -1, the unmasked ñoriginalò 

dataset showed 3459 (out of 3527) and 3465 (out of 3527) correct predictions, when 

re-scoring with the BLOSUM62 and PAM30 matrices, respectively.  In comparison, 

when using the ñun-gappedò scoring model (gopen = 0 and gextend = 0) the unmasked 

ñoriginalò dataset showed 3454 (out of 3527) and 3463 (out of 3527) correct 

predictions, when re-scoring with the BLOSUM62 and PAM30 matrices, 

respectively. 

These results show that, for both the gapped and un-gapped models, there is a small 

increase in the proportion of correct predictions when using the PAM30 matrix 

instead of the BLOSUM62 to re-score the ñoriginalò alignments.  However, the key 

observation from these results is that the use of a PAM30 matrix, when compared to 

the BLOSUM62 matrix used in the BLAST search, does not have a detrimental 

effect when re-scoring alignments that contain a large proportion of examples that 

are originally ñcorrectò.  This result, therefore, provides validation for the use of the 

ñAll1stINCORRECTò artificial datasets as a benchmark in this thesis. 

3.3.4 Investigation into the Effect of the Amino Acid Substitution 

Matrix Used in the BLAST Search on the Top-Hit Prediction 

Accuracy 

In the alignment re-scoring analysis discussed above, the BLOSUM62 amino acid 

substitution matrix was used in the BLAST sequence database search that generated 

the MSAs in each dataset.  It was shown that the overall optimum performance, for 

specific enzyme function prediction, was obtained from re-scoring the MSAs using 

the PAM30 substitution matrix.  To investigate whether this observed prediction 

improvement was due to the specific ordered combination of BLOSUM62 and 

PAM30 matrices, this analysis was followed by investigating the use of the PAM 

equivalent of the BLOSUM62 matrix in the BLAST search procedure. 



95 

 

3.3.4.1 Analysis of the Dataset Obtained from Using the PAM160 Matrix in 

the Sequence Database Search 

The PAM160 matrix is regarded as the closest PAM equivalent to the BLOSUM62 

matrix (Henikoff and Henikoff, 1992).  The following section analyses the effects of 

re-scoring the MSAs, from the ñAll1stINCORRECT.tF.PAM160.masked.E0.001ò 

and ñAll1stINCORRECT.tF.PAM160.unmasked.E0.001ò datasets, with the same set 

of non-standard amino acid substitution matrices used in the previous analysis of the 

òBLOSUM62 generatedò datasets.   

The main purpose of this analysis is to ascertain whether similar trends of function 

prediction performance are seen, when using the PAM series equivalent of the 

BLOSUM62 matrix to generate the source dataset MSAs.  Specifically, whether 

there is a similar peak in performance when the lower N values (such as 30) of the 

PAM-N series matrices are used in the re-scoring.  The hypothesis is that this will 

test whether the enhanced prediction performance is due to: (i) a particular combined 

property of the BLOSUM62 and low PAM-N matrices; or (ii) due to a more general 

case of prediction enhancement that is present regardless of whether a BLOSUM or 

PAM series matrix is used for the generation of the BLAST-based MSAs. 

All of the following analysis was carried out on the ñbootstrappedò form of the 

prediction results.  For the derivation of these, the number of bootstrap replicates, B, 

used was 10000 and the sample size for each replicate was 1550 - half the number of 

3100 MSA examples in the dataset.  The random sequence selection model, for the 

ñAll1stINCORRECT.tF.PAM160.(un)masked.E0.001ò datasets, was calculated using 

the same bootstrap parameters.  The statistical parameters of which, are summarised 

in table 3.1. 

3.3.4.2 Comparisons Between the Re-scoring of the ñMaskedò and ñUn-

maskedò Alignments 

As in the previous analysis, a set of ñunmaskedò MSAs were generated, through the 

replacement of all masked sequence residues with the amino acid residues present in 

the associated protein sequences extracted from the Swiss-Prot database.  The 

general trends were recorded between the prediction results for the ñmaskedò and 

ñun-maskedò sequence alignments.  These were observed to be very similar to the 

trends seen between the ñmaskedò and ñun-maskedò datasets generated from using 
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BLOSUM62 as the BLAST search matrix.  Specifically, the prediction results for the 

un-masked datasets show a similar, consistent improvement, over the results from 

the masked datasets, when using identical substitution matrices for the alignment re-

scoring.  For brevity, these comparison results are not shown and the remainder of 

the analysis in this section will focus on the un-masked dataset of MSAs. 

3.3.4.3 Comparisons Between the ñGappedò and ñUn-gappedò Models for 

Alignment Re-scoring 

Before discussing the comparisons between the results from the re-scoring of the 

alignments using the ñgappedò and ñun-gappedò scoring model, it is of interest to 

first look at the trends and results from re-scoring using just the ñgappedò model.  As 

in the previous analyses the gap-score parameters of gopen = -11 and gextend = -1 are 

used with the gap scoring model defined in equation 3.1.  Again, these specific 

parameters were chosen because they are the same as those used in the BLAST 

sequence database search used to generate the MSAs.  

The ñgappedò prediction results, for the 

ñAll1stINCORRECT.tF.PAM160.unmasked.E0.001ò dataset, are shown in figure 

3.4.  It can be seen that the minimum prediction result, with a mean value of 0.202, is 

a result of using the PAM160 matrix to re-score the alignments.  This is expected 

because, due to the way in which the dataset has been defined when using the 

PAM160 matrix, all of the top ranking sequences show a different, ñincorrectò, 

specific function to the query sequence.  This is a similar result to that shown 

previously, when re-scoring the 

ñAll1stINCORRECT.tF.BLOSUM62.unmasked.E0.001ò dataset, with the 

BLOSUM62 matrix that was also used in the BLAST search to generate the MSAs. 

The key observation that we can take from these results is the presence of a clear 

peak in prediction performance, when using the PAM-N matrices of PAM10, 

PAM20 and PAM30 with the ñun-gappedò alignment re-scoring model.  This is 

similar to the trend seen when re-scoring the 

ñAll1stINCORRECT.tF.BLOSUM62.unmasked.E0.001ò MSAs, using equivalent re-

scoring parameters.  Thus, indicating that the use of a second, low PAM-N re-

scoring substitution matrix, improves the specific function prediction performance of 

BLAST MSAs generated from both BLOSUM62 and PAM160 matrices. 



97 

 

Comparison of the ñgappedò prediction results with those from the ñun-gappedò 

model (where the gap-score parameters gopen = 0 and gextend = 0) is shown in figure 

3.4.  These results show that, for most of the substitution matrices used, a significant 

increase in the proportion of correct predictions is obtained when the ñun-gappedò 

gap scoring model is used for the alignment rescoring.  Interestingly, when using the 

PAM matrices, ranging from PAM10 to PAM70, there is no significant difference 

between the corresponding ñgappedò and ñun-gappedò results. 

With regards to the alignment re-scoring results obtained from the IDENTITY 

matrix, neither the gapped or un-gapped results are particularly large, with the 

proportion of correct predictions equivalent to and slightly larger than the associated 

random model values, respectively. 

When comparing these results with the random model, it is possible to see, from 

figure 3.4, that all of the prediction results from using the ñun-gappedò model are 

significantly better.  Whereas in the case of the ñgappedò model only one BLOSUM 

series matrix, BLOSUM100, and the PAM10 to PAM70 range of matrices show a 

clear, significant improvement, over the random sequence selection model. 

The optimal prediction result shows a mean value, for the proportion of correct 

predictions, of 0.611, which was obtained by using the PAM30 matrix with the 

ñgappedò form of the alignment re-scoring algorithm.  There is, however, no 

significant difference between both the gapped and un-gapped function prediction 

results when using either of the PAM10, PAM20, or PAM30 substitution matrices. 
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Figure 3.4. A comparison of the proportion of correct predictions 

obtained for each of the specified substitution matrix re-scoring methods.  The 

proportions of correct predictions are the bootstrap mean values, shown with 

the corresponding standard error bars.  Results are shown for the gapped (-

11,-1) and un-gapped (0,0) alignment re-scoring of the 

Al1stINCORRECT.tF.PAM160.unmasked.E0.001 dataset, when using the 

IDENTITY, BLOSUM-N and PAM-N substitution matrices.  Also shown is the 

associated random sequence selection model for the dataset, where the dotted 

lines show 1 standard error deviation from the mean. 

3.3.4.4 Comparison Between Results from Re-Scoring the BLOSUM62 and 

PAM160  BLAST Generated Multiple Alignments 

To conclude this part of the analysis, let us compare the prediction results that were 

obtained from re-scoring the MSAs generated from using both the BLOSUM62 and 

PAM160 matrices in the PSI-BLAST database search.  It has been shown that there 

are similar peaks in function prediction results, for both the BLOSUM62 and 

PAM160 generated MSAs, when using the lower PAM-N matrices (where N is in 

the range between 10 and 50) to re-score the MSAs.  Specifically, in both datasets, 

the PAM30 matrix provides the largest proportion of correct specific enzyme 

function predictions.  In the case of the PAM160 generated alignments the ñgappedò 

model was optimal, whereas for the BLOSUM62 generated alignments the ñun-

gappedò model was shown to be optimal. 
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Overall, re-scoring the BLOSUM62 generated MSAs - 

ñAll1stINCORRECT.tF.BLOSUM62.unmasked.E0.001ò - with a PAM30 matrix, 

when compared with the equivalent results from the PAM160 generated alignments - 

ñAll1stINCORRECT.tF.PAM160.unmasked.E0.001ò - that have been re-scored 

using the PAM30 substitution matrix, shows: (i) a larger mean proportion of correct 

specific enzyme function predictions, of 0.631, when compared to 0.611; and (ii) a 

larger improvement over the associated random sequence selection model, of 0.129, 

when compared to 0.089. 

The main conclusion to draw from these results is that an improvement in specific 

function prediction results is observed, for both the BLOSUM62 and PAM160 

BLAST generated alignment datasets, when using an additional PAM30 re-scoring 

matrix.  This indicates that these results are not simply an artefact of the MSAs in the 

BLOSUM62 generated dataset.  Nor are they only due to the specific combination of 

using a BLOSUM62 matrix to generate the BLAST MSAs followed by a low PAM-

N matrix to functionally re-score the alignments.  This shows that the use of an 

additional, carefully selected, substitution matrix can provide a consistent 

improvement, in the annotation of specific enzyme function. 

3.3.4.5 Analysis of the Dataset Obtained from Using the PAM30 Matrix in 

the Sequence Database Search 

Following on from the previous analyses, which looked at the effects of functionally 

re-scoring BLAST alignments generated with equivalent BLOSUM and PAM amino 

acid substitution matrices, a set of experiments were carried out to compare the 

effect of functionally re-scoring BLAST alignments generated with a PAM30 search 

matrix.  The reason for selecting the PAM30 matrix to generate BLAST-based 

MSAs, was that it has been shown to be the best performing functional re-scoring 

substitution matrix, when applied to both the BLOSUM62 and PAM160 BLAST 

generated alignments, and could therefore be used to explore the following 

outcomes:  (i) whether the PAM30 generated MSAs would show a comparable peak 

in prediction performance when using a BLOSUM62 and/or PAM160 matrix in the 

alignment re-scoring procedure; (ii) whether the PAM30 generated MSAs would 

show a comparable peak in prediction performance when using matrices other than 

the BLOSUM62 or PAM160 matrices in the subsequent alignment re-scoring 
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procedure; or (iii) whether the PAM30 generated MSAs would show no comparable 

improvement in specific enzyme function prediction performance when using any of 

the alternative alignment re-scoring matrices. 

The working hypotheses used for this analysis were the following.  If outcome (i) 

was shown to be true, then it would suggest the presence of complementary 

information between the pair of BLAST creation and alignment re-scoring matrices.  

Thus resulting in an equivalent enhancement of function prediction performance, 

independent of the order in which the matrices are applied in the alignment creation 

and re-scoring procedures.  Outcome (ii) would indicate that the alignment re-

scoring process had a more unpredictable pattern of behaviour, which is dependent 

on the specific identity and ordering of the pair of matrices used in the alignment 

creation and subsequent re-scoring procedures.  And outcome (iii) would provide 

further evidence that MSAs, generated through BLAST database searches using 

either BLOSUM62 or PAM160 matrices, coupled with subsequent re-scoring with a 

PAM30 substitution matrix, show the most effective way of observing an 

improvement in the specific functional annotation of enzyme sequences. 

The All1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset, containing 2110 

MSAs, was used for the analysis in these experiments.  The bootstrap parameters 

were: B=10000 for the number of bootstrap replicates; and a bootstrap replicate size, 

1055, which is half the number of MSAs in the dataset under analysis.  The details of 

the random sequence selection model associated with this dataset is summarised in 

table 3.1. 

Like all previous analysis in this chapter, a series of comparisons were carried out to 

assess the differences between the alignment re-scoring function prediction results 

when altering the re-scoring matrices and gap scoring parameters.  I will summarise 

the trends observed and highlight the key findings from these parameter variations 

that are of relevance to a comparison between these prediction results and those 

obtained from the BLOSUM62 and PAM160 generated BLAST alignments. 
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Comparison Between the ñGappedò and ñUn-gappedò Models for  Alignment 

Re-scoring 

A procedure similar to that used for the gapped and un-gapped re-scoring of the 

BLOSUM62 and PAM160 PSI-BLAST generated alignments was followed here.  

Here, the gap-score parameters of gopen = -9 and gextend = -1 are used in the gap 

scoring model that is defined in equation 3.1.  Again, these parameters were chosen, 

for use in the alignment re-scoring with the alternative substitution matrices, because 

they are the same as those used in the BLAST sequence database search that 

generated the alignments.  The ñun-gappedò model again scores both the gopen and 

gextend gap-score parameters equal to 0 during the alignment re-scoring.  A 

comparison of the Al1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset re-scoring 

results is provided in figure 3.5. 

For the ñgappedò prediction results, when using the PAM re-score matrices, there is 

a clear minimum seen, when applying the PAM30 matrix to the alignment re-scoring 

algorithm, which results in a bootstrap mean value of 0.227 for the proportion of 

functionally correct predictions.  This was expected, due to the way in which the 

ñAll1stINCORRECT.tF.PAM30.unmasked.E0.001ò dataset was defined.  As in the 

previous analyses of BLOSUM62 and PAM160 BLAST generated datasets, there is 

a sharp increase in correct predictions when using matrices of both lower and higher 

ñNò (BLOSUM-N or PAM-N) values than the particular type of matrix used for the 

dataset generation.  For the PAM10 matrix and the PAM-N matrices, with N values 

greater than 150, the results approach a level of specific function prediction that is 

close to that of the random sequence selection model.  

With respect to the BLOSUM series of matrices, the results for the ñgappedò model 

show that the proportion of correct predictions, for all of the BLOSUM matrices, are 

within or below the standard error range of the associated random sequence selection 

model.  Therefore, there is not a minimum of a comparable magnitude to the PAM30 

matrix result, or a clear maximum corresponding to the BLOSUM62 re-score results. 

Interestingly, for this dataset, the overall maximum proportion of correct predictions, 

of 0.621, is obtained when re-scoring with the IDENTITY matrix, using the gapped 

(-9, -1) form of the alignment re-scoring method. 
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A brief analysis of the results from using the ñun-gappedò alignment of re-scoring, 

shows a broadly flat distribution of mean values for the proportion of correct 

predictions.  This is the case when using both the BLOSUM and PAM series of 

matrices in the re-scoring algorithm.  The results range from a minimum mean 

prediction value of 0.567, for the BLOSUM75 matrix, to a maximum mean 

prediction value of 0.577, for the BLOSUM60 matrix, when using the BLOSUM-N 

matrices.  And similar results that range from a minimum mean prediction value of 

0.553, for the PAM10 matrix, to a maximum mean prediction value of 0.575, for the 

PAM140 matrix, when using the PAM-N matrices to re-score the alignments.  The 

corresponding un-gapped re-scoring results for the IDENTITY matrix are found to 

be less than the results for the random sequence selection model. 

 

Figure 3.5. A comparison of the proportion of correct predictions 

obtained for each of the specified substitution matrix re-scoring methods.  The 

proportions of correct predictions are the bootstrap mean values, shown with 

the corresponding standard error bars.  Results are shown for the gapped (-9,-

1) and un-gapped (0,0) alignment re-scoring of the 

Al1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset, when using the 

IDENTITY, BLOSUM-N and PAM-N substitution matrices.  Also shown is the 

associated random sequence selection model for the dataset, where the dotted 

lines show 1 standard error deviation from the mean. 
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In summary, when re-scoring the PAM30 based BLAST MSAs, there are no trends 

in either the ñgappedò or ñun-gappedò results, when using the PAM-N or BLOSUM-

N re-score matrices, that show a significant prediction peak that is comparable to the 

results obtained from re-scoring the BLOSUM62 or PAM160 generated BLAST 

MSAs.  There is, however, a clear peak when using the IDENTITY matrix with the 

gapped form of the alignment re-scoring algorithm, which is a new observation for 

the All1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset, when compared to the 

alignment re-scoring results obtained from the previous datasets. 

3.3.4.6 Comparison Between Results from Re-Scoring the BLOSUM62, 

PAM160 and PAM30 BLAST Generated Datasets 

It is now possible to compare and contrast the enzyme function prediction results 

obtained from re-scoring the MSAs, generated via PSI-BLAST, using the 

BLOSUM62, PAM160 and PAM30 substitution matrices in the sequence database 

search.  For clarity, I have chosen to only include in this comparison a representative 

subset of results from each of the datasets analysed.  These selected subsets are: (i) 

the ñun-gappedò re-scoring results from the 

ñAll1stINCORRECT.tF.BLOSUM62.unmasked.E0.001ò dataset; (ii) the ñun-

gappedò re-scoring results from the 

ñAll1stINCORRECT.tF.PAM160.unmasked.E0.001ò dataset; and (iii) the ñgappedò 

re-scoring results from the ñAll1stINCORRECT.tF.PAM30.unmasked.E0.001ò 

dataset.  These were chosen because they highlight the key alignment re-scoring 

trends and results from each of the three datasets and alternative substitution 

matrices investigated. 

The proportion of correct predictions of enzyme function obtained from re-scoring 

the alignments from these three selected subsets, along with the associated random 

sequence selection models, are shown in figure 3.6a, along with an enlarged view of 

the results when using the IDENTITY and PAM-N matrices, shown in figure 3.6b.  

In both figures, the different re-scoring methods are shown on the horizontal axis and 

the proportion of correct results for the specific enzyme function prediction shown 

on the vertical axis. 
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Figure 3.6 (a) 
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Figure 3.6. A comparison of the proportion of correct enzyme function 

predictions for each of the specified substitution matrix re-scoring methods.  

The proportions of correct predictions are the bootstrap mean values, shown 

with the corresponding standard error bars.  Results are shown for the un-

gapped (0,0), un-gapped (0,0) and gapped (-9,-1) alignment re-scoring of the 

Al1stINCORRECT.tF.BLOSUM62.unmasked.E0.001, 

Al1stINCORRECT.tF.PAM160.unmasked.E0.001 and 

Al1stINCORRECT.tF.PAM30.unmasked.E0.001  datasets, respectively.  Also 

shown are the associated random sequence selection models for each these 

datasets, where the dotted lines show 1 standard error deviation from the 

mean. (a) Shows all the results for the IDENTITY, BLOSUM-N and PAM-N 

substitution matrices and also the random sequence selection model.  (b) Shows 

an enlarged view of just the IDENTITY and PAM-N matrix re-scoring results 

and the random sequence selection model. The legend information shown in (a) 

is also relevant for (b). 

This comparison provides an overview of some of the key points that have been 

discussed so far.  We can best see from figure 3.6(b) that ñun-gappedò re-scoring of 

the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 alignments, with the 

PAM30 substitution matrix, produces the largest proportion of 0.631 correct 

predictions.  In addition, this PAM30 re-score result shows a larger difference than 

any of the other methods, of 0.129, between the mean value of the re-score 

prediction result and the mean of the associated random sequence selection model.  

Also, figure 3.6(a) shows the difference between the general trends in prediction 

Figure 3.6 (b) 
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results between the three MSA generation methods investigated.  In the case of the 

results from the un-gapped re-scoring of both the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 and 

All1stINCORRECT.tF.PAM160.unmasked.E0.001 datasets, the peaks in prediction 

performance when using the lower PAM-N matrices are clear.  These peaks start to 

become apparent when re-scoring with PAM-N matrices with N values of 70 and 

below.  In contrast, the òAll1stINCORRECT.tF.PAM30.unmasked.E0.001ò 

generated results do not show any similar peaks with any of the comparable 

BLOSUM-N or PAM-N re-score methods used.  But, these results do show an 

improved predictive performance when using the IDENTITY in the alignment re-

scoring algorithm, which is almost comparable to that of the un-gapped PAM30 re-

scoring results from the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 

dataset. 

3.3.5 Effect from Clustering the Dataset Query Sequences 

A series of sequence clusters were defined, using six thresholds of sequence 

percentage identity (90%, 80%, 70%, 60%, 50%, and 40%), by clustering the query 

sequences used to create each of the three BLAST-generated sets of MSAs (see 

Appendix I for more detailed description of these datasets).  The aim of this was to 

investigate the effect that any potential bias, due to sequence redundancy within the 

query sequences used to create the benchmark datasets, may have on the accuracy 

and trends of the alignment re-scoring prediction results.  To some extent, this 

consideration has already been factored into the previous analysis through the 

repeated bootstrap sampling of the prediction results.  A summary of the sequence 

identity clustering thresholds and the number of sequence clusters generated is given 

for each of the datasets, in table 3.3, where a 100% identity threshold refers to the 

dataset compositions prior to any CD-HIT sequence clustering.  The number of 

sequence clusters produced at each threshold, for each distinct dataset, also defines 

the number of MSAs that constitute the datasets at each of the sequence identity 

thresholds. 
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% identity threshold 40% 50% 60% 70% 80% 90% 100% 

Dataset: All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 

sequence clusters 721 1038 1392 1701 2131 2622 3527 

Dataset: All1stINCORRECT.tF.PAM160.unmasked.E0.001 

sequence clusters 608 869 1174 1440 1826 2270 3100 

Dataset: All1stINCORRECT.tF.PAM30.unmasked.E0.001 

sequence clusters 403 582 766 925 1191 1503 2110 

Table 3.3. A summary of the number of clusters generated for each of 

the three datasets at each of the specified sequence identity clustering 

thresholds. 

For each set of ñclusteredò sequence alignments within each dataset, a repeat of the 

previous alignment re-scoring experimental analysis was carried out, using the same 

IDENTITY, BLOSUM and PAM substitution matrices.  Overall, the prediction 

results from the alternatively clustered subsets of the three MSA datasets were found 

to show similar trends to the previously discussed results, obtained without query 

sequence clustering.  A point of note is that the standard error deviation becomes 

progressively larger as the sequence identity threshold used in the clustering is 

lowered.  This is to be expected because it causes the number of examples in the 

datasets to decrease, which means that the bootstrap statistics are calculated on 

progressively smaller sample distributions.  An example of this can be seen in figure 

3.7, which shows how the proportions of correct predictions are altered when using 

the un-gapped re-scoring model on the alignments from the sequence identity 

clustered subsets of the òAll1stINCORRECT.tF.BLOSUM62.unmasked.E0.001ò 

dataset.  For clarity, only the results from the 40%, 60%, 80%, and 100% sequence 

identity clustered subsets are shown.  These results show that the overall trends in 

the prediction results, through consideration of the mean proportions, are similar for 

each of the cluster thresholds used.  It can been seen, however, that as the clustering 

threshold is lowered, the best performing re-scoring method on this particular dataset 

becomes the PAM40, rather than the PAM30 matrix, previously identified when re-

scoring the un-clustered sets of MSAs.  Also, these results highlight the increasing 

lengths of the standard error bars as the sequence threshold is lowered, which leads 

to greater overlap between results from alternative re-scoring methods. 
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Figure 3.7. Comparison of the proportion of correct predictions from the 

un-gapped alignment re-scoring results from a selection (40%, 60%, 80%, and 

100%) of the sequence clustered subsets of the 

òAll1stINCORRECT.tF.BLOSUM62.unmasked.E0.001ò dataset. 

A comparison is shown, in figure 3.8, between the results from re-scoring the three 

BLAST generated datasets after a 40% sequence identity threshold has been applied 

to the constituent query sequences.  These results provide an overview of the results 

obtained from both the gapped and un-gapped scoring models, when using the 

IDENTITY, BLOSUM and PAM matrices.  Also shown are the associated random 

model statistics for each one of the three clustered datasets. 
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Figure 3.8. A comparison of the proportion of correct predictions 

obtained for each of the specified substitution matrix re-scoring methods.  The 

proportions of correct predictions are the bootstrap mean values, shown with 

the corresponding standard error bars.  Results are shown for the 

Al1stINCORRECT.tF.BLOSUM62.unmasked.E0.001, 

Al1stINCORRECT.tF.PAM160.unmasked.E0.001 and 

Al1stINCORRECT.tF.PAM30.unmasked.E0.001 datasets, after a 40% sequence 

identity threshold has been applied to the query sequences.  Also shown are the 

associated random sequence selection models for each of these datasets, where 

the dotted lines show 1 standard error deviation from the mean. 

The results from the 40% sequence identity threshold are shown because they were 

found to display the largest deviation from the results seen previously when no 

sequence clustering was used.  Although, from the comparisons in this graph it can 

be seen that the overall trends in the re-scoring results are broadly comparable to 

those obtained from the datasets where no sequence identity clustering has been 

applied.  A good example of this is seen when analysing the results from re-scoring 

the òAll1stINCORRECT.tF.BLOSUM62.unmasked.E0.001ò and 

òAll1stINCORRECT.tF.PAM160.unmasked.E0.001ò alignments with the PAM-10 to 

PAM-50 set of matrices, which show comparable improvements in performance. 

There are, however, some notable exceptions to this, primarily concerning the results 

from re-scoring the òAll1stINCORRECT.tF.PAM30.unmasked.E0.001ò dataset when 
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a 40% sequence cluster threshold has been applied.  These are highlighted in more 

detail below, with the aid of figure 3.9.  This graph provides a clearer comparison 

between the PAM-N and IDENTITY re-scoring matrix results.  Comparisons are 

shown between the re-scoring results from the 

òAll1stINCORRECT.tF.BLOSUM62.unmasked.E0.001ò and 

òAll1stINCORRECT.tF.PAM30.unmasked.E0.001òdatasets, with two sequence 

identity cluster thresholds (100% and 40%), when using the IDENTITY and 

PAM10-N matrices with both gapped and un-gapped scoring models.  With regards 

to the gapped form of the re-scoring algorithm, it can be seen that the proportion of 

correct predictions is consistently greater for the MSA subset clustered at 40% query 

sequence identity than for the un-clustered (100%) dataset.  In contrast, the results 

from the un-gapped re-scoring model are generally more closely correlated when the 

query sequence clustering is applied. 

Of particular interest is the relatively large increase in the proportion of correct 

predictions seen when applying the PAM150 and PAM160 re-scoring matrices, with 

the gapped scoring model, to the 40% query sequence clustered subset of the 

ñAll1stINCORRECT.tF.PAM30.unmasked.E0.001ò dataset.  This is an interesting 

observation because it shows the possible start of a peak in prediction performance, 

when using the PAM-N matrix (PAM160) that is most closely related to the 

BLOSUM62 matrix used to generate the BLAST MSAs in the comparison dataset.   

These results slightly contradict the previous comparisons between the results from 

the three BLOSUM62, PAM160 and PAM30 BLAST generated MSA datasets, 

without taking into consideration any query sequence clustering.  The lack of a 

corresponding prediction peak when re-scoring the 

òAll1stINCORRECT.tF.PAM30.unmasked.E0.001ò dataset with BLOSUM62 or 

PAM160 initially indicated that there was no complementary improvement in 

specific enzyme prediction performance, when reversing the order of application of 

the BLAST search and re-scoring substitution matrices.  The new observations, 

shown in figure 3.9, indicate that there may be some level of complementary 

information in the PAM30/PAM160 pair of matrices that was previously being 

masked by the potential query sequence redundancy of the dataset.  This is not as 

clear as the corresponding performance peaks with lower PAM-N re-score matrices.  
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Also, when re-scoring the 40% sequence identity clustered 

òAll1stINCORRECT.tF.PAM30.unmasked.E0.001ò MSAs, with a BLOSUM62 

matrix, an expected peak is not seen.  Furthermore, the sharp decrease in correct 

predictions when using the PAM170 matrix could be an indication that we are 

simply seeing an artefact of the 40% sequence clustered subset of the 

òAll1stINCORRECT.tF.PAM30.unmasked.E0.001ò dataset.  It is also possible to see 

that the IDENTITY matrix continues to produce the largest number of correct 

predictions regardless of the threshold of query sequence identity applied to the 

òAll1stINCORRECT.tF.PAM30.unmasked.E0.001ò dataset.  These results are shown 

in more detail in table 3.4. 

 

Figure 3.9. A comparison of the proportion of correct predictions 

obtained for each of the IDENTITY and PAM-N matrix re-scoring methods.  

The proportions of correct predictions are the bootstrap mean values.  Results 

are shown for the Al1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 and 

Al1stINCORRECT.tF.PAM30.unmasked.E0.001 datasets, after both 100% and 

40% sequence identity thresholds have been applied to the query sequences. 

To conclude this analysis, a summary is given in table 3.4, which highlights the re-

scoring methods that provide the largest number of correct specific enzyme function 

predictions for each of the datasets and the associated query sequence clustered 



112 

 

subsets (of 100%, 80%, 60% and 40%) investigated.  A number of observations can 

be drawn from these results.  Each of the three datasets of MSAs that were 

investigated, show that similar re-scoring matrices provide the optimal level of 

specific enzyme function annotation, when applying different sequence identity 

clustering thresholds to the query sequences.  In the case of the results for the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, the optimal results are 

obtained when using either a PAM30 matrix (with 100% sequence identity 

clustering) or a PAM40 matrix, with an un-gapped (0,0) gap-scoring method.  

Similarly, the optimal results for the 

All1stINCORRECT.tF.PAM160.unmasked.E0.001 dataset are seen when using either 

a PAM20 or PAM30 re-scoring matrix, but in this case there is also an additional 

variation, with the sequence identity clustering threshold, in the gap scoring model 

that provides these results.  Finally, the results for the 

All1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset show that the IDENTITY 

matrix, with a gapped (-9,-1) gap scoring model, is generally the best re-scoring 

method.  Overall, the results from re-scoring the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, consistently show a 

larger mean proportion of correct enzyme function predictions, with the largest value 

of 0.652 seen for the subset of MSAs generated when the query sequence cluster 

threshold is 40% and a PAM40 re-scoring matrix with an ungapped (0,0) scoring 

model is used. 
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BLAST search 

matrix used to 

generate 

dataset 

Optimal 

re-score 

matrix  

Gap Penalties 

(gopen, gext) 

 (bootstrap)  

mean 

proportion 

correct +/- se 

Number 

Correct (out 

of) 

Query sequence cluster threshold = 100% 

BLOSUM62 PAM30 (0, 0) 0.631 +/- 0.012 2226 (3527) 

PAM160 PAM30 (-11, -1) 0.611 +/- 0.012 1894 (3100) 

PAM30 IDENTITY (-9, -1) 0.621 +/- 0.015 1310 (2110) 

Query sequence cluster threshold = 80% 

BLOSUM62 PAM40 (0, 0) 0.632 +/- 0.015 1347 (2131) 

PAM160 PAM20 (0, 0) 0.604 +/- 0.016 1103 (1826) 

PAM30 IDENTITY (-9, -1) 0.585 +/- 0.020 697 (1191) 

Query sequence cluster threshold = 60% 

BLOSUM62 PAM40 (0, 0) 0.645 +/- 0.018 898 (1392) 

PAM160 PAM20 (0, 0) 0.621 +/- 0.020 729 (1174) 

PAM30 PAM160 (-9, -1) 0.607 +/- 0.025 465 (766) 

Query sequence cluster threshold = 40% 

BLOSUM62 PAM40 (0, 0) 0.652 +/- 0.025 470 (721) 

PAM160 PAM20 (-11, -1) 0.648 +/- 0.028 394 (608) 

PAM30 IDENTITY (-9, -1) 0.634 +/- 0.034 256 (403) 

Table 3.4. A summary of the re-scoring methods that give the optimal 

specific enzyme functional predictive performance for each of the MSA datasets 

and a selected set of associated query sequence clustered subsets.  The column 

- BLAST search matrix used to generate dataset ï specifies the amino acid 

substitution matrices used in the sequence database search to generate the 

particular dataset of MSAs under consideration.  The columns ï optimal re-

score matrix and gap penalties ï show the re-score methods and gap scoring 

models that give the best predictive performance for the dataset under 

investigation.  Bootstrap values for both the mean proportion, with standard 

error (se), and number of correct predictions are shown for each identified 

method. 
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Overall, the additional results obtained in this section - from clustering the query 

sequences used to generate the MSAs in the datasets - indicate that the potential 

sequence redundancy is not distorting the true trends in the alignment re-score 

prediction results.  Some notable exceptions to this have been highlighted, such as 

the results seen for the All1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset, 

when the query sequence identity cluster threshold is 40%, which may be worthy of 

further study.   

3.3.6 Investigation of Potential Correlation Between the Conservation 

of Enzyme Functional Specificity and the PAM Evolutionary 

Distance 

The aim of this section is to investigate whether there is any correlation between the 

optimal re-scoring lower PAM-N (such as PAM30) substitution matrices and the 

conservation of specific enzyme function at the associated PAM evolutionary 

distances.  This was done by using the sequence identities, calculated in the analysis 

of chapter 2 ï section 2.3.1, shown in figure 2.2, as input to the PerIdentToPam() 

function from the Darwin application.  This data was used because it provides a 

large-scale study of the relationships between pair-wise sequence similarity (and 

hence PAM evolutionary distance) and enzyme functional class conservation.  

Therefore providing a logical extension of the function conservation studies 

presented in chapter 2.  The outcome of this was figure 3.10, which shows the 

variation of enzyme function conservation, with respect to the PAM evolutionary 

distance, between pairs of aligned enzyme sequences.  Because this thesis is 

focussed on high functional specificity, the analysis is restricted to the accuracy of 

conservation at the first three and all four levels of the EC functional classification 

hierarchy.   
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Figure 3.10. Graph showing the functional conservation accuracy, using 

PAM distances between enzyme sequence pairs from the 1
st
 iteration of the 

database search results. Where, EC3:n.n.n.- are the results for the first three 

EC numbers predicted correctly; and EC4:n.n.n.n for all four EC numbers 

correctly predicted. 

When considering the results for the conservation of all 4 levels of EC numbers 

(EC4: n.n.n.n), a functional conservation accuracy of 95-100% is observed when the 

PAM distance is less than 100.  Between PAM distances of 100 and 200 the 

accuracy decreases to approximately 40-45%, where it remains for PAM distances 

greater than 200.  These results indicate that there is no clear, unique correlation 

between the low PAM10-PAM50 evolutionary distances and the accuracy of specific 

enzyme function conservation, which is what might possibly be expected from the 

outcome of the PAM matrix re-scoring results.  There is however, a clear decrease in 

accuracy when the PAM distance is 100 and greater.  This could be of relevance 

because this is the PAM distance at which the peaks in function prediction 

performance begin to become apparent when re-scoring the PAM160 and 

BLOSUM62 generated MSAs.  However, this particular signal is perhaps not strong 

or convincing enough to provide a reason for the specific function prediction 

improvements shown for the alignment re-scoring when using the lower N-value 

(such as PAM10-PAM50), PAM-N matrices. 
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A
c
c
u

ra
c
y
 (

%
) 



116 

 

3.4 Conclusions 

In this chapter a number of automated approaches have been presented that 

investigate the utilisation of alternative amino acid substitution matrices for 

improving the specific functional classification of enzyme sequences.  The aim of 

this work was mainly two-fold: (1) to assess any improvement in the function 

prediction accuracy of a PSI-BLAST generated sequence significance ordering, 

through the use of additional amino acid substitution matrices to functionally re-

score the aligned sequences; and (2) to identify any general, significant trends in the 

analyses that are correlated with the variation of the substitution matrices used. 

Three methods for generating datasets of multiple sequence alignments have been 

investigated.  Each dataset was the result of a gapped BLAST sequence database 

search that used one of either: BLOSUM62; PAM160; or PAM30 as the search 

amino acid substitution matrix.  The constituent MSAs were then modified, to define 

a series of benchmark datasets, where the enzyme sequence with the most significant 

sequence similarity to the query protein is classified as functionally incorrect.  The 

purpose of these benchmark sets was to assess the effect of subsequent sequence re-

scoring and re-ranking methods on the accuracy of specific enzyme function 

annotation.  An IDENTITY matrix and a wide selection of BLOSUM and PAM 

amino acid substitution matrices were employed to carry out this analysis.  Also 

investigated were the effects on the functional re-scoring results of: sequence residue 

masking; gap score penalties; and the generation of MSA subsets using clusters 

based on the sequence identity of the query sequences. 

Initially, the analysis focussed on the sequence alignments obtained from using a 

BLOSUM62 matrix in the gapped BLAST search ï the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset.  From these it was 

shown that the MSAs containing un-masked amino acid residues gave consistently 

larger proportions of correct function predictions, irrespective of the particular 

substitution matrix re-scoring method used.  Similarly, the ñun-gappedò form of the 

alignment re-scoring algorithm, in which all residues aligned with gaps were scored 

as zero, consistently outperformed the method that used identical gap penalties to 

those used in the original BLAST search.  Overall, the best performing method for 

specific functional classification of these MSAs is the one which uses the PAM30 
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matrix and an ñun-gappedò gap scoring model, without sequence residue masking.  

This resulted in a maximum mean value, for the proportion of correct specific 

functional classifications, of 0.631 (or 2226/3527 correct classifications).  In 

addition, there is a more general trend towards improved classification results when 

using PAM-N matrices that have progressively lower N values, culminating in the 

optimal peak observed with the PAM30 matrix.  This trend is seen for both the 

gapped (-11, -1) and un-gapped (0, 0) alignment re-scoring results. 

Further, a control experiment was carried out to assess whether the results were also 

valid when using the original ñnon-artificialò dataset of alignments.  In this, the 

PAM30 matrix continued to show an improvement in the number of correct 

predictions, when compared to the BLOSUM62 matrix.  This showed that the 

PAM30 matrix does not have a detrimental effect when re-scoring alignments that 

contain examples that are originally ñcorrectò and helps to validate the use of the 

ñAll1stINCORRECTò artificial dataset as a benchmark dataset in this thesis. 

Following on from these observations, an analysis was conducted to assess whether 

the above phenomena of improved functional classifications were a unique property 

of the sequence alignments in the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset.  One way in which 

this was approached was by using the PAM series equivalent of a BLOSUM62 

matrix, which is PAM160, when generating the benchmark MSAs.  These 

alignments were then subjected to an identical set of re-scoring analyses, where 

similar trends were observed.  Also, the optimum number of correct specific enzyme 

function classifications occurred when using the same PAM30 substitution matrix 

that produced the maximum for the BLOSUM62 based alignments.  A difference in 

the case of the PAM160 alignments was that it was the gapped (-11, -1), rather than 

un-gapped (0, 0), re-scoring model that gave the maximum proportion of correct 

classifications, equal to 0.611 (or 1894/3100 correct classifications).  However, it 

was shown that the comparable PAM30 re-score results from the un-gapped model 

were almost identical and fall within one standard error of deviation of the gapped 

results.  Although the maximum proportion of correct predictions is larger in the 

BLOSUM62 than the PAM160 generated MSAs, with a small difference between 

the means, of 0.020, these analyses do indicate that the re-scoring of multiple 
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sequence alignments with low N value PAM matrices, specifically a PAM30 matrix, 

results in an increased number of correct specific enzyme sequence classifications, 

when compared to the other substitution matrices investigated.  This suggests that 

the lower PAM-N matrices do show a general improvement in specific functional 

classification of enzyme sequences, when either a BLOSUM62 or PAM160 matrix is 

used to generate the datasets, and the results are not simply due to an artefact of the 

BLOSUM62 substitution matrix used in the BLAST MSA generation. 

To complete this analysis, the same process was again followed, using PAM30 as the 

substitution matrix in the BLAST sequence database search.  The aim of this was to 

assess whether there would be a comparable improvement, in correct function 

prediction results, when using a low PAM-N matrix for the initial MSA generation, 

followed by a BLOSUM62 or PAM160 matrix for alignment re-scoring.  The results 

from this analysis did not show a comparable peak in prediction results when using 

either the BLOSUM62 or PAM160 matrices to re-score the PAM30 generated 

MSAs.  In-fact, there were no clear peaks of specific function prediction 

improvement for any of the BLOSUM-N or PAM-N substitution matrices 

investigated.  However, when using the IDENTITY matrix, with the gapped (-9, -1) 

scoring model, an optimal value of 0.621 for the mean proportion of correct 

functional predictions was observed.  This result is comparable to the two optimal 

results, described above, from re-scoring the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 and 

All1stINCORRECT.tF.PAM160.unmasked.E0.001 datasets. 

A further study was then carried out to investigate the effect that any potential 

sequence redundancy, within the query sequences used to create the benchmark 

datasets, may have on the accuracy and trends of the alignment re-scoring prediction 

results.  For this, a number of sub-datasets, on which the alignment re-scoring 

experiments were repeated, were generated using a variety of sequence identity 

thresholds.  The outcome of these additional analyses showed similar results and 

trends for each of the sequence identity cluster thresholds used.  An exception to this 

was seen when the MSAs were used from the subset of the 

All1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset, defined using a 40% 
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sequence identity threshold, where an increase in specific functional classification 

accuracy is seen when using a PAM160 re-score matrix.   

In general, the results obtained from the alignment re-scoring experiments indicate 

that the order in which the particular pair of matrices are applied, for MSA 

generation and subsequent re-scoring, is important for improving the specific 

enzyme classification.  This is shown by the fact that there was mostly no 

complementary improvement in performance, when reversing the order of 

application of the BLOSUM62 matrix for BLAST MSA generation and PAM30 for 

subsequent sequence alignment re-scoring.  Although, the exceptions seen for the 

40% sequence identity clustered subset of MSAs, indicate that there may be some 

complementary information in the pair of BLOSUM and PAM matrices used and 

this phenomenon could be worthy of further study. 

A possible explanation for these observations may be found in the intended uses for 

the particular types of amino acid substitution matrices and therefore the methods 

used to generate them.  The BLOSUM series of matrices are generally used (and 

found to be optimal) in sequence database searches, such as BLAST, because they 

tend to generate better quality alignments and provide improved levels of homology 

detection.  This is in contrast to the PAM matrices which are often used to assess the 

evolutionary origin of sequences and for modelling evolutionary changes across a 

family of proteins (Mount, 2004).  Therefore, the optimal performing PAM matrices 

may be related to the level of evolutionary distance between the homologous 

sequences in the specific alignments, thus, providing additional information that 

improves the specific functional classification of the more closely related sequence 

homologues.  The results from the comparisons between PAM evolutionary distance 

and the accuracy of specific EC conservation indicate a possible correlation of this 

type.  However, the correlation signal is quite weak and further study would be 

required before any firm conclusions could be stated regarding these results.  

It has also been shown that the results from re-scoring the alignments containing no 

sequence residue masking are a consistent improvement over those containing the 

residue masking used in the original database search.  A possible reason for this 

performance improvement could be that the sequence masking, used in the sequence 

database search, improves the homolog detection, by reducing the false positives 
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identified from similarities to masked sequence regions of low information content, 

whereas the subsequent re-scoring of the un-masked locally aligned sequence 

regions provides additional sequence information that improves the specific 

functional ordering of the homologous enzyme sequences. 

In summary, the results presented in this section highlight some areas of 

improvement for the accuracy of specific functional assignment, when compared to 

the sequence similarity based, statistical significance ordering of a BLAST database 

search.  For the BLOSUM62 and PAM160 BLAST generated MSAs, there is a 

definite trend towards an increase in correct prediction results when using the lower 

evolutionary distances of the PAM-N matrices, where a maximum is observed for 

the PAM substitution matrix of 30/40 PAM units.  The next chapter aims to improve 

on these results by implementing a more refined procedure, based on sequence 

evolution and additional phylogenetic information, for the selection of particular 

residues to use in the sequence scoring function. 
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Chapter 4 Identification of Functional 

Specificity Determining Residues 

4.1 Introduction 

In the previous chapter, methods based on alternative amino acid substitution 

matrices, were investigated for re-scoring the functional similarity of aligned 

homologous enzyme sequences.  However, these approaches did not take in to 

consideration the particular amino acid residues that are most likely to be responsible 

for the specific functional behaviour of the proteins.  In this chapter, the aim is to 

investigate and benchmark a selection of methods that have been developed to do 

precisely that and then investigate their use for the improvement of specific enzyme 

function annotation.     

The hypothesis used in these approaches is based on the knowledge that the 

functional divergence of proteins is determined by selective pressures during 

molecular evolution.  In general, new functions arise in paralogous proteins through 

the fixation, via natural selection, of a number of key amino acid mutations that are 

functionally beneficial (Ohno, 1970; Taylor and Raes, 2004; Conant and Wolfe, 

2008).  This is a particularly important means for the diversification of the substrate 

binding specificity and the biochemical mechanisms of enzymes.  Closely related 

enzyme sequences, such as those used in this study, are therefore well suited to the 

identification of amino acid changes that highlight functional differences.  This is 

especially true when considering the (often small number of) mutations responsible 

for thermodynamically favourable binding of a particular substrate instead of other 

substrates that are chemically similar. 

Considering these observations, regarding the mechanism for the evolution of 

specific protein functions, it would appear important to develop computational 

methods to identify these particular residues.  An additional driving force is the fact 

that it is time-consuming and economically expensive to identify each of these 

residues through experimental methods (Saghatelian and Cravatt, 2005).  Most 

computational approaches to this problem are based on comparisons between 

multiple sequence alignments (MSAs) containing groups of functionally identical or 
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similar sequences.  Due to the fact that divergent evolution is believed to be much 

more common than convergent evolution of function (Patthy, 1999) these sequences 

are generally obtained through homology recognition techniques. 

In this chapter, I have implemented and investigated the performance of two 

methods for the identification of residues that determine functional specificity.  Both 

of these have been previously published and take quite different approaches to 

solving the problem.  The methods chosen and discussed below are: (i) the ñfunc-

MBò method (Pazos et al., 2006); and (ii) the ñprofile-HMMò based method 

(Hannenhalli and Russell, 2000).  In an earlier study (del sol Mesa et al., 2003), three 

methods for identifying functionally determining residues were compared.  A 

benchmark was devised that used the distances from predicted residues to bound 

ligands and hetero atoms to assess the accuracy.  It was concluded that there was 

little difference between the performances of the three methods and furthermore, 

suggested that a combined approach would be expected to be optimal.  It was 

therefore decided to investigate a modified form of the MB method used in that 

study, which was later described by Pazos et al. (2006).  A non-parametric rank 

correlation coefficient is used in this method to assess the correlation between 

specific function and amino acid similarities.  This method was chosen over the 

others because, it was relatively simple to fully automate - which is in contrast to the 

SequenceSpace based method - and also because it contained an implicit 

representation of the sequence phylogeny. 

The profile-HMM method was chosen primarily because it has been used previously, 

with some success, for the identification of residues determining specific function 

and the subsequent prediction of function using a subset of these residues.  This 

method uses the probability of observing certain residues, within specific functional 

groupings, to identify the residues most likely to be responsible for the definition of 

specific functions, meaning that this approach is quite different to the non-parametric 

rank-order correlation based MB methods. 

The main aims for the work in this chapter were primarily three-fold: 

1. The implementation and investigation of methods for identifying fSDRs in 

groups of functionally related enzyme sequences; 
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2. The provision of a benchmark that compares the ability of selected fSDR 

subsets, from each of these methods, to improve the functional clustering and 

specific function prediction accuracy for enzyme sequences; and 

3. Demonstrate the performance of the methods when applied to a well-studied 

example of enzymes that have differing substrate specificities. 

These studies have also been designed to enable the definition of a ñgold-standardò 

subset of computationally identified fSDRs.  That is, they provide an optimal 

predictive performance, with regards to their use in the assignment of correct 

specific enzyme function to the query sequence.  This dataset of fSDRs are then used 

in the experiments of chapter 5, to investigate the feasibility of using machine 

learning techniques to identify fSDRs in MSAs, without prior knowledge of the 

functional sub-types of the constituent sequences of the alignments. 

4.2 Methods 

4.2.1 Datasets 

As in the previous studies, presented in chapter 3, the datasets used for the following 

experimental analysis consist of multiple alignments of enzyme sequences.  Two 

datasets of MSAs were used for the studies contained within this chapter.  To assess 

the performance of the fSDR based sub-alignment re-scoring methods, the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, which consists of 

3527 BLAST generated MSAs, was used in the following analysis.  Additionally, a 

single MSA from the ñinitialò dataset is used to provide a detailed investigation of a 

specific example, which contains aligned sequences from the lactate and malate 

dehydrogenase classes of enzymes.  The methods used to generate both of these 

datasets are the same as those used previously in this thesis and are defined in detail 

in chapter 2.   

4.2.2 The Functional Mutational Behaviour ñfunc-MBò Method 

The idea behind this method was originally inspired by the mutational behaviour 

(MB)-method described by del sol Mesa et al. (2003).  In this method, a rank 

correlation coefficient is used to identify positions, within a multiple protein 

sequence alignment, that show correlation with the mutational behaviour of the 
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whole group of homologous sequences.  The hypothesis being that a larger 

correlation coefficient indicates aligned positions that most closely resemble the 

mutational pattern of the sequence family, hence identifying the positions most 

important to the specific phylogenetic relationships between the sequences.  An 

extension of this method, which was recently studied by Pazos et al. (2006), 

investigates the correlation between the specific functional class and the individual 

residues in an aligned column.  The method is referred to as the Xdet method in the 

original paper by Pazos et al. (2006), but will be referred to as the ñfunc-MBò 

method in this thesis, so as to maintain a similar naming scheme with the previously 

published ñMB-methodò, which has been discussed in other parts of this thesis.  The 

aim of the func-MB method is to identify the residues that have a mutational 

behaviour closely correlated to variations in specific functional properties.  The 

implementation details, which differ slightly to those described by Pazos et al. 

(2006), are described below. 

4.2.2.1 Implementation of the func-MB Method 

For each pair of sequences in the MSA, a matrix of values, S, was constructed to 

represent the specific ñfunctional similarityò (or distance) between them.  

Calculation of the functional similarities was done by looking at the number of EC 

code description levels each of the compared enzyme sequences had in common.  

For example, if all 4 EC numbers were conserved between a pair of sequences then 

the associated matrix value would be ó4ô, conservation of the first 3 numbers yields a 

value of ó3ô, with values of ó2ô and ó1ô being used for conservation of 2 and 1 EC 

number respectively.  Finally, a value of ó0ô was used when the 1st EC number was 

not common between the sequences.  A matrix of these values was calculated once 

for a particular MSA. 

Then, for each of the aligned columns, a corresponding ñamino acid similarity 

matrixò, A, is calculated, with the same number of elements as the functional 

similarity matrix, to measure the similarity between each of the residue pairs.  An 

amino acid substitution matrix is used as a measure of ñmutational similarityò 

between each of the amino acid pairs in the columns.  Both the BLOSUM62 and 

PAM30 substitution matrices were used in the work presented here, but any other 

measure of similarity can be easily integrated into this method. 
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To calculate the correlation between the functional and residue similarities, the 

Spearman-rank order correlation coefficient, ci, (Press et al., 1992) was calculated 

for each of the aligned columns, i, in the MSA, using the following equation:  

ὧ
Ӷ
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Ӷ

Ӷ
ȟ

Ӷ
ȟ

                  (equation 4.1) 

where the rank order of amino acid similarity in sequence x and sequence y, at 

position i, is represented by Axyi ; the rank order of functional similarity in sequence x 

and y is represented by Sxy ; and the average rank position of these amino acid and 

functional matrices is given by A  and S  respectively. 

4.2.3 The Functional Profile-HMM Based Method 

An alternative method for identifying functionally specific residues has been 

proposed by Hannenhalli and Russell (2000).  The basis of this method is the 

identification of amino acids that are more likely to be conserved within groups of 

sequences with the same function, but differ between them.  Starting from an 

alignment of sequences, containing proteins of different molecular functions, a set of 

alignments are created, each containing only sequences with a single specific 

function.  A hidden Markov model (HMM) profile was created for each of these 

functional sub-alignments using the hmmbuild application provided with the 

HMMER application (version 2.3.2 ï http://hmmer.wustl.edu).  The default 

parameters were used in the creation of all profiles.   

The profiles output by hmmbuild are in log-odds form.  Because the aim of this 

method is to calculate the probability of a particular type of amino acid occurring in 

one profile, compared to all others, these scores were converted into probabilities.  

For each aligned column, i (with a match state in the profile HMM), the probability 

of occurrence of amino acid, x, in specific function s, was calculated, 
s

xiP, .  From the 

resulting probability profiles, the relative residue conservation between profiles was 

calculated using the relative entropy (Durbin et al., 1998) of each alignment position, 

defined as follows: 

http://hmmer.wustl.edu/
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where, the relative entropy for a specific function s, at position i is defined as 
s

iRE

and is calculated from the summation of the contribution from all residue types x at 

this position.  The union of all specific functional types, except for s, is denoted by Ȅ, 

with the probability of occurrence of amino acid x at position i in this combined 

alignment, represented by 
s

xiP
Ĕ

, .  The relative entropy of an alignment position can be 

thought of as a measure of the degree of conservation at that position, in a specific 

function s, when compared to all other functions, Ȅ.   

Two further calculations were required to assess the importance of each alignment 

position.  The first determines the cumulative relative entropy, CRE, at each 

alignment position, i:   

ä=
s

s

ii RECRE                                       (equation 4.3) 

which aims to assess the discriminatory role of alignment position i, when summing 

the relative entropy contributions over all the specific functional types.  Finally, a Z-

score is used to assess the overall significance of the cumulative relative entropies, 

when considered in context to all the aligned positions in the MSA.   

s

m-
= i

i

CRE
Z                                       (equation 4.4) 

Where, ɛ and ů are the mean and standard deviation of the CRE for all positions in 

the multiple sequence alignment.  A larger Z-score indicates greater significance for 

that aligned column and therefore indicates it is more likely to be a determinant of 

specific function. 

4.2.4 The Sub-Alignment Re-scoring Procedure 

This section provides a description of the methods used to select sub-sets of the 

aligned columns, from each of the MSAs in a particular dataset, that are predicted to 

determine specific enzyme function (fSDRs).  First, however, a description is 

provided of the procedure that is subsequently used to functionally re-score the 
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aligned sequences through the incorporation of those selected sub-sets of aligned 

columns. 

4.2.4.1 The fSDR-based Sub-alignment Functional Re-scoring Procedure 

The previously described method, of section 3.2.2.1 (see also the method flowchart 

in figure 3.1), is built upon here to propose an alternative method for sequence re-

scoring and re-ranking to determine the functional similarity between a query 

sequence and related, aligned enzyme sequences.  This method is based on the re-

scoring of sub-alignments of amino acid residues that have been extracted from the 

full MSAs in the input datasets.  An overview of this procedure is shown below in 

figure 4.1.  This shows a simplified overview of the proposed method for the 

identification of fSDRs and their subsequent use in generating a functionally more 

informative sub-alignment of amino acids for use in improving classification 

accuracy. 

 

Figure 4.1. Simplified overview diagram of the proposed fSDR-based 

sub-alignment generation, extraction and functional re-scoring procedure. 

In this method an MSA of evolutionarily related sequences is obtained from a 

sequence database search, the columns (c4 and c8 in the example shown in figure 4.1) 

containing potential fSDRs are identified and then extracted to generate a ñsub-

alignmentò of sequences.  These consist of the same number of aligned sequences as 
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the full MSA, but a smaller, selected subset, of the aligned columns.  Each of the 

individual pair-wise sub-set of alignments, between the query and aligned enzyme 

sequences, are then evaluated using the scores from the amino acid substitution 

matrix used for the sequence re-scoring.  For these studies the BLOSUM62 and 

PAM30 substitution matrices were used to score the pair-wise residue similarities, 

however, only the results from using the PAM30 matrix are shown in the following 

analyses.  After the re-scoring of the sub-alignments has been completed the 

sequences are then re-ordered and their specific functional similarity to the query 

sequence is assessed.  The simplified example, shown in figure 4.1, highlights the 

key concepts behind this approach.  It shows a hypothetical situation in which the 

original functional sequence ordering from the database search generates a (ñrank 

globalò) sequence ordering where the top-ranked sequence (s1) has a different 

function (fB) to that of the query sequence (Q), which has function (fA), and therefore 

results in an incorrect functional classification.  However, once the sequences have 

been re-ranked, using the identified fSDRs (ñrank fSDRsò), the top-ranked sequence 

now shows the same specific function as the query and therefore results in an 

improved and correct functional classification of the query sequence. 

4.2.4.2 Methods for Selecting Aligned Subsets of fSDRs 

Three methods were used to select subsets of aligned residue columns from each of 

the MSAs in the dataset, for use in the subsequent fSDR-based sub-alignment re-

scoring procedure:  (i) the selection of aligned columns using a cut-off threshold, 

obtained from the column score ï the ñcolumn score thresholdò method; (ii) the 

selection of N aligned columns, using the N highest ranking column scores ï the 

ñtop-Nò method; and (iii) the selection of aligned columns using the top X 

percentage of the highest ranking column scores ï the ñtop-X percentò method.  In 

all three, the column scores are the values obtained from either the Spearman-rank 

order correlation coefficient or the Z-score, depending on whether the fSDR 

identification method used was the func-MB or profile-HMM, respectively. 

4.2.5 The Treatment of Gaps in the Sequence Alignments 

There are three stages in the sub-alignment re-scoring procedure where the methods 

used for scoring gaps in the sequence alignments must be considered.  Each stage is 
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defined separately below and where necessary the particular fSDR column 

identification method of relevance is indicated. 

4.2.5.1 The Aligned Column Gap Percentage Threshold of Inclusion 

A method for the pre-filtering of aligned columns from the MSAs was used, based 

on the percentage of gap residues that are contained within a particular column of all 

types of aligned residues.  This method removes all aligned columns from the MSA, 

prior to the application of the fSDR identification methods, which contain more than 

a defined percentage of gaps.  This is referred to as the ñcolumn gap percentage 

threshold (colgap_percent)ò and where relevant the specific thresholds used are 

stated alongside the discussion of the results. 

4.2.5.2 Gap Score Penalty Used for Calculating the Amino Acid Similarity 

Matrix in the func-MB Method 

When defining the amino acid similarity matrix, A (see equation 4.1), required for 

calculating the aligned column correlation coefficients for the func-MB method, it is 

necessary to consider aligned residue pairs that may contain gaps.  For the following 

analysis, the method of Pazos et al. (2006) was used, where a gap score of 0 was 

used for scoring all of the aligned amino acid pairs that contain gaps. 

4.2.5.3 Gap Score Penalty Used for the Sub-Alignment Re-scoring  

In the following analysis, a single gap penalty of 0 is used for all aligned residue 

pairs that contains gaps when re-scoring the fSDR-based sub-alignments of 

sequences. 

4.2.6 Methods for Assessing the Accuracy of fSDR-Based Prediction 

of Specific Enzyme Function 

4.2.6.1 Top-hit Method 

The ñtop-hitò assessment method was again used to assess the functional 

classification accuracy resulting from the functional re-scoring of the enzyme 

sequences, when using fSDR-based sequence sub-alignments.  It is conceptually the 

same method as that used previously in chapter 3 (section 3.2.3.1).  This classifies a 

prediction as correct if the specific enzyme functional class of the query sequence is 
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the same as that of the sequence with the highest score, after the sub-alignment based 

functional sequence re-ranking. 

4.2.6.2 Calculation of the Proportion of ñCorrectò Specific Enzyme 

Predictions 

The same method as that in chapter 3 was used for calculating the proportion of 

ñcorrectò specific enzyme predictions (or classifications) obtained from the ñtop-hitò 

assessment method.  This is defined as proportioncorrect  in equation 4.5, where: correctn  

is the number of ñcorrectò predictions observed from the ñtop-hitò assessment 

method and N is the number of MSA examples in the dataset that were used in the 

analysis. 

N

n
correct correct

proportion=                                       (equation 4.5) 

4.2.6.3 Bootstrap Re-sampling Analysis of Top-hit Results 

The same bootstrap statistical re-sampling method (Efron and Gong, 1983), which 

was previously described in chapter 3 - section 3.2.3.3, is again used in this chapter 

to analyse the statistical significance of the functional classification results obtained 

from the fSDR-based sub-alignment sequence re-scoring.   

4.2.6.4 Definition of a Random Sequence Selection Model for Specific 

Enzyme Function Assignment 

A random sequence selection model was again used to provide a baseline 

comparison with the ñtop-hitò function prediction results obtained from the fSDR-

based sub-alignment re-scoring result.  This was identical to the method described in 

chapter 3 (section 3.2.3.2), which is based upon the concept of randomly permuting 

the ranked results of the sequence homologues in each of the MSAs in the dataset.  

The functional classification result was then determined to be correct or incorrect 

through functional comparison between the specific EC classification of the query 

sequence and the randomly permuted ñtop-hitò.  For a detailed definition of this 

selection procedure please refer back to section 3.2.3.2, in chapter 3.   
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4.2.6.5 Random Selection of Subsets of Aligned Residue Columns 

An additional random model ï the ñrandom column selection methodò - was also 

used for the assessment of the fSDR-based sub-alignment functional classification 

results in this chapter.  This method implements a randomised procedure for aligned 

column selection, using a similar logic to the identification of the fSDR-based 

subsets of aligned residue columns described above.  However, for this random 

selection no regard was given to the actual likelihood of the columns being 

associated with specific enzyme functional properties (i.e. they are not necessarily 

high scoring fSDRs).  So, unlike with the profile-HMM and func-MB methods, the 

columns were (randomly) selected without first ranking them based on the calculated 

fSDR significance scores.  Therefore, from each one of the ñcompleteò MSAs, a 

subset of n aligned amino acid columns was randomly selected (using a uniform 

distribution to randomly select aligned columns from the MSA), without 

replacement.  The number, n, of aligned columns was selected in the same way as for 

the fSDR-based ñtop-Nò and ñtop-X percentò column selection methods described 

above, in section 4.2.4.2.  Leading to a randomly selected (ñrandom-Nò or ñrandom-

X percentò) sub-alignment of sequences, containing n aligned columns of amino 

acids.  This type of model does not naturally lend itself to producing a randomly 

selected subset of aligned columns that are directly comparable to the ñcolumn score 

thresholdò method of sub-alignment generation and therefore one is not provided. 

4.2.7 Query Sequence Clustering 

An identical procedure to that used in chapter 3 (section 3.2.5) was followed to 

analyse the effects of query sequence identity clustering on the enzyme functional 

classification accuracies.  The clustering was again done through the use of the CD-

HIT algorithm (Li and Godzik, 2006), on the 3527 query sequences that were used to 

generate the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset of MSAs.  

A range of percentage sequence identity levels were used for the clustering (from 

40% to 90% in intervals of 10%) and the recommended default parameters, for the 

CD-HIT application, were used for each sequence identity threshold levels.  Again 

the longest sequence was used as the representative from each cluster.  A summary 

of the cluster properties, at each defined level of sequence identity for the 

All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, is provided in table 

3.3. 
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4.3 Results and Discussion 

4.3.1 Benchmark of Functional Re-scoring Prediction Results Using 

the fSDR-based Sub-Alignments 

This section provides a large-scale investigation into how effective the func-MB and 

profile-HMM fSDR identification methods are for improving the classification 

accuracy of the specific function of enzyme sequences.  This builds on the results 

from the previous analyses, presented in chapter 3, which investigated the effects of 

using all of the aligned sequence information, and alternative amino acid substitution 

matrices, to functionally re-score the aligned enzyme sequences.   

The 3527 MSAs from the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 

dataset were used as the benchmark dataset in all of the following analyses.  This 

particular dataset was chosen for two reasons.  Firstly, this dataset was one of those 

used previously in the alternative amino acid re-scoring experiments, discussed in 

chapter 3, allowing a direct comparison between those results and the ones obtained 

in the following fSDR-based functional re-scoring experiments.  Secondly, this 

dataset was selected over the others investigated in chapter 3 because it was shown 

to give the largest overall improvement in specific enzyme function classification 

accuracy, when using a PAM30 amino acid substitution matrix to re-score the 

aligned sequences. 

For this analysis, both the func-MB and profile-HMM methods for fSDR aligned 

column identification were applied to each of the MSAs in the dataset.  Selected 

subsets of these columns were then used to re-score the similarity of the aligned 

sequences to the query, allowing assessment of the accuracy of this approach for 

specific enzyme classification.  Comparisons were then made between the 

classification results from using these fSDR-based subsets, with those previously 

obtained from re-scoring all of the aligned sequence residues with alternative amino 

acid substitution matrices. 

The selection of the particular columns to include in the subsets of aligned residues 

was controlled by a number of alternative methods.  For both the func-MB and 

profile-HMM methods, three approaches were used to select the columns for 

inclusion - based on the significance based ordering of the Spearman-rank order 
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correlation coefficients and Z-scores, from each of the fSDR identification methods 

respectively.  Each of the selection methods aim to identify slightly different subsets 

of aligned columns and therefore investigate the best method and associated 

parameters for improving the enzyme classification accuracy. 

One method used was the ñtop-Nò method, which selects a set of aligned columns of 

fixed size, N, based on the ranking of the aligned column scores from the fSDR 

identification methods.  A number of values of N were used for each of the MSAs in 

the dataset and the overall effect on the specific enzyme classification performance 

was assessed for each.  A similar method ï the ñtop-X percentò method - was used to 

select a subset of aligned columns based on a percentage, X, of all aligned columns 

in each of the MSAs.  Therefore, this method, unlike the ñtop-Nò method, will not 

generally select the same number of aligned columns for each of the applied subset 

X percentage selection thresholds.  Finally, a method was used that applies a 

threshold based on the calculated value of the aligned column correlation 

coefficients, or Z-scores, from the associated fSDR identification methods, to 

generate the sub-alignments.  Again, as in the ñtop-X percentò method, this ñscore 

thresholdò selection criteria may generate different numbers of columns in each sub-

alignment obtained from the MSAs in the dataset. 

The assessment method used for the correct classification of specific enzyme 

function, when using selected sub-sets of fSDR columns, was the same ñtop-hitò 

sequence re-scoring method that was used in chapter 3.  For both of the fSDR 

identification methods the bootstrap form of the results were analysed, which allows 

robust calculation of the mean proportion of correct functional classifications, and 

the associated standard errors, for each of the functionally re-scored subsets of fSDR 

sub-alignments. 

4.3.1.1 The func-MB Method 

When using the func-MB method to identify potential functional specificity 

determining residues it was expected that the way in which gaps are treated in the 

multiple sequence alignments could make an important contribution to the particular 

columns identified.  There are three stages in the func-MB based analysis procedure 

where the gap handling has been considered:   
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¶ The selection of which aligned columns should be included when calculating the 

fSDR significance score ï ñthe column gap percentage threshold of inclusionò; 

¶ The way in which gaps were scored during the calculation of the fSDR 

correlation scores for the func-MB method; and 

¶ The way in which gaps were scored during the re-scoring of the enzyme 

sequences in the fSDR-based sub-alignments. 

A number of gap percentage thresholds were used; ranging from no filtering 

(colgap_percent = 100%) to the removal of all columns containing any gaps 

(colgap_percent = 0%), in intervals of 10%.  This provides a pre-filtering step for 

each of the input MSAs.  

When constructing the residue correlation matrices for the aligned columns a score 

of 0 was used for the similarity between any amino acid residues aligned with gaps.  

This was selected because it was the value used in the study by Pazos et al. (2006). 

In the case of the third point, for the following studies it was decided to use a score 

of 0 for all of the pair-wise sequence re-scoring comparisons between any of the 

amino acid types and alignment gaps.  This value was chosen for the sequence 

alignment re-scoring stage of the analysis because of the reasons provided earlier in 

the methods section of this chapter.  

The ñTop-Nò Method for fSDR-based Sub-Alignment Generation 

For the ñtop-Nò method of fSDR selection and sub-alignment generation a series of 

thresholds for the value of N were used.  The effects (on the proportion of correct 

classifications of enzyme function) of gradually increasing the number of aligned 

columns, selected from each MSA for inclusion in the resulting sequence sub-

alignments, are shown in figure 4.2.  That is, the horizontal axis represents the 

number of columns, N, of aligned residues that were included in the sub-alignments 

for functional re-scoring.  These were selected through the use of an ordered ranking 

of the Spearman-rank order correlation coefficients calculated by the func-MB 

method, from which the fSDRs with the highest N (ñtop-Nò) correlation coefficients 

were used to generate the sub-alignments of N aligned columns.  These results also 

show the effects of varying the aligned ñcolumn gap percentage threshold of 
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inclusionò, which serves the purpose of removing aligned columns with particular 

proportions of alignment gaps prior to the functional re-scoring analysis.  All of the 

results show the bootstrap values of the mean proportion of correct functional 

assignment and the bootstrap calculation of the standard error deviation from the 

means.  To maintain a consistent comparison with the previous bootstrap analyses 

carried out in this thesis, the parameters for the number of bootstrap repetitions, B, 

was 10000 and the bootstrap sample size of each replicate was 1764 - approximately 

half the number of MSA examples, 3527, in the dataset.  Also highlighted in figure 

4.2 are the bootstrap statistics for the random sequence selection model associated 

with the All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset that is being 

analysed.  This is the same random sequence selection model that was used and 

defined in chapter 3 (see section 3.3.2). 
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Figure 4.2. A comparison showing the proportion of correct functional 

predictions obtained as the ñtop-Nò threshold, used to select the subsets of 

fSDRs used in the functional re-scoring, was varied.  The horizontal axis ï 

ñSpearman-Rank Order Correlation Coefficient ótop-Nô Thresholdò ï 

represents the number of aligned columns, with the N highest scoring 

Spearman-rank order correlation coefficients, that were included in the 

sequence sub-alignments.  The proportions of correct predictions are the 

bootstrap mean values, shown with the corresponding standard error bars.  

Enzyme classification results are shown for re-scoring the 

colgap_percent=0%, colgap_percent=20%, colgap_percent=40%, 

colgap_percent=60%, colgap_percent=80% and colgap_percent=100% 

filtered variations of sequence sub-alignments.  Also shown is the associated 

random sequence selection model for the dataset, where the dotted lines show 1 

standard error deviation from the mean. 

From these results, shown in figure 4.2, it can be seen that when using a small sub-

set of aligned columns (for example, when N=5) a minimum is observed in the 

proportion of correct predictions.  As the number of columns included in the re-

scored sub-alignments is increased, the number of correct enzyme classifications 

also increases until a maximum is reached, after which point the classification 

accuracy gradually decreases while the number of included columns in the alignment 

subset continues to be increased.  The actual value of N at which the maximum 

proportion of correct enzyme classifications is obtained is dependent on the value of 

the ñcolgap_percentò threshold of inclusion.    Figure 4.2 shows that the trends, 
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with respect to the correlation between sub-alignment size N and the resulting 

proportion of correct predictions, are very similar for each of the different ñcolumn 

gap percentage threshold of inclusionò thresholds used for the MSA filtering.  A 

further, more detailed, analysis of these results is provided below and summarised in 

table 4.1. 

Before this, a number of more general observations related to the results from the 

top-N sub-alignment re-scoring results, shown in figure 4.2, can be explored.  It can 

be seen that the proportions of correct functional predictions, when using the most 

stringent threshold for pre-filtering aligned columns from the MSAs that contain 

gaps (colgap_percent = 0%), are considerably less than those when using a higher 

threshold (such as colgap_percent = 20% and greater).  An explanation for this 

difference can be provided through a more detailed analysis of the underlying data 

that was used to calculate the bootstrapped proportions of correct and incorrect 

enzyme classifications after sequence re-rescoring. 

When re-scoring and subsequently re-ranking the sequences contained within each of 

the sub-alignments, there are a number of possible outcomes when considering a 

ñtop-hitò approach to assessing the accuracy of the resulting specific functional 

classification.  These outcomes can be categorised into 2 general states (either: (i) a 

ñcorrectò; or (ii) an ñincorrectò functional classification) but on closer inspection 

they can also be considered to possess six distinct properties: (i) ñtop-rank (correct)ò 

ï where the top ranked sequence has the same (ñcorrectò) specific enzyme class as 

the query and has a unique score when compared to the other re-scored sequences; 

(ii) ñtop-rank (incorrect)ò - where the top ranked sequence has a different 

(ñincorrectò) specific enzyme class to the query; (iii) ñtied-rank same-function 

(correct)ò ï where the top ranked sequence shares the same ñtiedò score (and 

therefore rank) with one or more other sequences, which all have the same 

(ñcorrectò) enzyme functional class as the query; (iv) ñtied-rank different-function 

(correct and incorrect)ò => ñundecidable (incorrect)ò ï where the top ranked 

sequence has the same ñtiedò score (and therefore rank) with one or more other 

sequences, which have both the same (ñcorrectò) and different (ñincorrectò) enzyme 

functional classes as the query.  This in essence means that the sequence re-scoring 

result is ñundecidableò when using the available information and therefore must be 
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classed overall as an ñincorrectò classification result; (v) ñtied-rank different-

function (incorrect)ò ï where the top ranked sequence has the same ñtiedò score (and 

therefore rank) with one or more other sequences, which all have a different 

(ñincorrectò) functional class when compared with the query; and (vi) ñempty subset 

(incorrect)ò ï where the criteria for fSDR-based aligned column selection does not 

select any columns for inclusion in the sequence sub-alignment.  This therefore 

means that no sequence re-scoring can be carried out due to the fact that the sub-

alignment is ñemptyò and the classification result is by definition ñincorrectò. 

If these six more detailed classification outcomes are analysed for the top-N results 

presented in figure 4.2, it becomes possible to get an understanding of the reasons 

for the comparatively poor performance of the colgap_percent = 0% classification 

results.  The variation in these properties with each value of N used to generate the 

ñtop-Nò sub-alignments is shown in figure 4.3.  This clearly shows that the number 

of ñempty subset (incorrect)ò examples increases as the ñcolumn gap percentage 

threshold (colgap_percent)ò parameter is made more stringent (i.e. decreased).  This 

is especially prominent for the results shown when using the most restrictive gap 

inclusion threshold of colgap_percent = 0%.  On reflection this is perhaps not a 

particularly surprising observation, because such a stringent threshold does not allow 

for a single gap to be present in the aligned columns selected for the sequence sub-

alignments.  It therefore follows that there will be increasing numbers of MSAs in 

the analysed dataset that do not contain any aligned columns that satisfy the gap 

percentage pre-filtering criteria, culminating in the extreme case of no gaps allowed 

in any of the selected columns.  This hypothesis is borne out by the results in figure 

4.3(f) where a colgap_percent threshold of 0% results in 14% (494 out of 3527) of 

the generated sub-alignments being ñemptyò.  In contrast, as the colgap_percent 

threshold is increased to 10% then only 5% (176 out of 3527) of MSAs generate 

ñemptyò sub-alignments, and further, once the colgap_percent threshold is at 50% 

and above, hardly any (i.e. approximately 0%) ñemptyò sub-alignments are being 

generated. 
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Figure 4.3. A series of graphs showing the variation of the proportions of 

observed predictions with the specified top-N sub-alignment threshold, for the 

six distinct prediction outcomes (a) shows the ñtop-rank (correct)ò results; (b) 

shows the ñtop-rank (incorrect)ò results; (c) shows the ñtied-rank same-

function (correct)ò results; (d) shows the ñundecidable (incorrect)òresults; (e) 

shows the ñtied-rank different-function (incorrect)ò results; and (vi) shows the 

ñempty subset (incorrect)ò results.  For each of these graphs the results for re-

scoring the colgap_percent=0%, colgap_percent=10%, colgap_percent=50% 

and colgap_percent=100% pre-filtered sequence sub-alignments are shown. 
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It is possible that this phenomenon could be due to a number of factors, such as the 

level of evolutionary diversity included within the sequence alignments or 

potentially misaligned sequences - leading to the incorrect placement of gaps.  These 

possible contributing factors are not explored any further here, but they may be 

features worthy of further study when considering the selection of particular columns 

for inclusion in sequence sub-alignments. 

A further point to make (with regards to the lower proportions of ñcorrectò enzyme 

classifications that are observed when the colgap_percent threshold is decreased) 

relates to the method of calculation used for the proportions of correct predictions.  

The presence of the ñemptyò sub-alignments (described above) suggests an 

alternative method for calculating these proportions, using a modified value for N in 

equation 4.5.  Where, instead of simply using the dataset size, a more refined (ñre-

normalisedò) form of calculation could use the number of dataset examples minus 

the number of ñemptyò sub-alignment examples for which it is not possible to 

calculate a re-scored classification result.  This modified form of equation 4.5 is 

presented in equation 4.7  

)( _ subsetempty

correct

proportion
nN

n
correct

-
=                                       (equation 4.7) 

where: correctn  and N are the same as in equation 4.5 and subsetemptyn _  is the number of 

MSA examples that generate ñempty subset (incorrect)ò results.  

The corresponding proportion of correct classifications obtained from using the 

method in equation 4.7 are shown (in parenthesis) in table 4.1, alongside those 

calculated through the use of equation 4.5.  It can be seen that for these re-

normalised results the proportion of correct classifications increases for all of those 

sub-alignments that have had a more stringent colgap_percent threshold applied (i.e. 

colgap_percent <= 40%), due to the presence of a certain number of ñempty subsetò 

examples.  It should, however, be noted that, by definition, the actual number of 

correct classifications, at each top-N threshold, was unchanged.  

These results show that the difference between the optimal classification accuracies 

for the sub-alignments, which have been pre-filtered with a more stringent gap filter, 
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is greatly reduced when applying this alternative accuracy assessment method.  In 

particular, for the colgap_percent=0% sub-alignments, the difference between the 

optimal correct proportions and those of the overall optimal performance (i.e. where 

colgap_percent=60%) is reduced from 0.150 to 0.049.  Likewise, for the 

colgap_percent=10% results, the difference is reduced from 0.070 to 0.031.  This is 

still a statistically significant difference, due to the standard error deviation of 0.011 

(see table 4.6), but it does highlight a potentially informative alternative method for 

comparing the results of the classifications. 

With the aid of the results shown in figure 4.3, it is now possible to explore the 

reasons for the slightly counter-intuitive observations, seen in figure 4.2, which show 

a clear minimum in the proportion of  correct enzyme classifications when using the 

smallest subset (N=5) of aligned columns.  This was surprising because it was 

expected that the subsets consisting of aligned columns, with the strongest 

correlations between amino acid type and enzyme function, would show the most 

accurate separation of the specific functional classes in the MSA and therefore the 

largest proportion of ñcorrectò ñtop-hitò functional classifications.  This was, 

however, not the case, mostly due to the larger proportion of examples with an 

ñundecidable (incorrect)ò result, when using the top-5 rather than the top-10 ranked 

column correlation coefficients.  Where, for all of the colgap_percent thresholds 

investigated there was a sharp reduction in ñundecidable (incorrect)ò examples and a 

corresponding increase in ñtop-rank (correct)ò examples when re-scoring sub-

alignments generated from the top-5 and top-10 ranked correlation coefficients, 

respectively. 
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colgap_percent  

(%) 

(optimal)  

ñtop-Nò (N) 

(bootstrap) mean 

proportion of correct 

predictions 

(bootstrap) mean 

number of correct 

predictions 

0 15 0.617 (0.718) 2176 

10 15 0.697 (0.736) 2458 

20 15 0.722 (0.747) 2546 

30 20 0.746 (0.751) 2631 

40 30 0.759 (0.764) 2677 

50 30 0.764 (0.764) 2695 

60 30      0.767 (0.767) (*)  2705 

70 30 0.764 (0.764) 2695 

80 30 0.765 (0.765) 2698 

90 30 0.765 (0.765) 2698 

100 30 0.765 (0.765) 2698 

Table 4.1. A comparison between the optimal bootstrap results (mean 

proportion and number of correct ñtop-hitò specific enzyme predictions) and 

the top-N subset size that generates them, for each of the colgap_percent 

thresholds applied. All results for the number of correct predictions are out of a 

possible dataset size of 3527. (*) indicates the overall maximum predictive 

performance.  The values in parenthesis are the corresponding ñre-

normalisedò proportions (see text) of correct classifications calculated with 

equation 4.7. 

The results, shown in table 4.1, provide a summary of the optimal functional re-

scoring results for each of the ñcolgap_percentò alignment pre-filter thresholds, 

along with the number of high scoring aligned columns (fSDRs), N, which 

contribute to the re-scored sequence sub-alignments without re-normalisation.  Both 

the mean proportion and number of correctly classified enzyme functions are shown 

for comparison, where all results refer to the bootstrap form of the ñtop-hitò assessed 

prediction results.  It can be seen from the results in table 4.1 that, overall, the 

optimal predictive performances of the sub-alignment methods show a minimum (of 

0.617 (2176/3527)) when using the colgap_percent threshold of 0%, with sub-

alignments containing the top-15 scoring columns.  And a maximum (of 0.767 

(2705/3527)) when using a larger threshold of colgap_percent = 60%, with sub-

alignments containing the top-30 scoring columns.  Further, none of the different 

sub-alignment re-scoring methods and associated parameters show an improvement 

in performance when more than 30 of the high scoring fSDR columns are included in 

the sequence sub-alignments. 
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The ñTop-X Percentò Method for Sub-Alignment Generation 

The next method investigated for the automatic selection of which aligned columns 

should be included in the sequence sub-alignments for functional re-scoring was the 

ñtop-X percentò method.  This differs from the ñtop-Nò method described above, 

because the number of columns in each of the resulting sub-alignments is selected 

based on a specified percentage, X, of the columns with the highest scoring 

Spearman-rank order correlation coefficients.  Therefore, unlike the ñtop-Nò method, 

the ñtop-X percentò method, in general, selects varying numbers of columns for each 

sub-alignment, dependent on the particular percentage selection threshold, X,  used 

for the inclusion of fSDRs and the query sequence length.  The variations in the 

bootstrapped mean values for the proportions of correct enzyme classifications, 

when using the ñtop-Xò percentage threshold, are shown in figure 4.4.  The 

horizontal axis in this graph represents the percentage, X, of aligned columns of 

residues that were included in the sub-alignments for functional re-scoring.  These 

were selected through the use of an ordered ranking of the Spearman-rank order 

correlation coefficients, calculated by the func-MB method, from which the fSDRs 

with the highest X% (ñtop-X percentò) of correlation coefficients were used to 

generate the sequence sub-alignments.  Comparisons are also shown between these 

results when using different colgap_percent alignment pre-filtering thresholds, 

ranging (as in the top-N results) from a value of 0% to 100%.   

Overall, the results were similar to those shown for the ñtop-Nò method, in terms of 

the proportions and numbers of correct classifications resulting from the ñtop-hitò 

assessment of the sequences within the re-scored sub-alignments.  Initially, when 

including a small percentage (i.e. when X is less than 5%) of the top-scoring 

columns in the sub-alignments, the accuracy of classifications was generally low.  

This observation was mostly due to an increase in the number of ñempty subset 

(incorrect)ò examples, when low percentage threshold values were used.  This was 

true for each of the colgap_percent thresholds, apart from the exceptional results 

obtained from using a colgap_percent threshold of 0%.  For brevity, a presentation 

of these more detailed results, showing the variation of the six outcomes of the ñtop-

hitò functional assessment method, has not been included here. 
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An additional point of note is the behaviour of the re-scoring ñtop-hitò prediction 

results when all of the columns (i.e. X = 100%) are used to generate the sequence 

ñsub-alignmentsò.  As can be seen in figure 4.4, the actual proportion of correct 

predictions varies depending on the colgap_percent threshold, however, it shows 

that as expected the result for the colgap_percent = 100% sub-alignment re-scoring 

is (approximately ï due to minor bootstrap variations) the same as the PAM30 

UNGAPPED (0,0) re-scoring results that were observed for the same dataset, in 

chapter 3. 

 

Figure 4.4. A comparison showing the proportion of correct functional 

predictions obtained as the ñtop-X percentò threshold, used to select the 

subsets of fSDRs used in the functional re-scoring, was varied.  The horizontal 

axis ï ñSpearman-Rank Order Correlation Coefficient ótop-X percentô 

Thresholdò ï represents the percentage of aligned columns from each MSA, 

with the highest scoring Spearman-rank order correlation coefficients, that 

were included in the sequence sub-alignments.  The proportions of correct 

predictions are the bootstrap mean values, shown with the corresponding 

standard error bars.  The enzyme classification results are shown for re-

scoring the colgap_percent=0%, colgap_percent=20%, colgap_percent=40%, 

colgap_percent=60%, colgap_percent=80% and colgap_percent=100% 

filtered sequence sub-alignments.  Also shown is the associated random 

sequence selection model for the dataset, where the dotted lines show 1 

standard error deviation from the mean. 

(%) 
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A summary of the optimal functional re-scoring results for each of the 

ñcolgap_percentò alignment pre-filter thresholds, along with the percentage of high 

scoring aligned columns (fSDRs), X, that contribute to the re-scored sequence sub-

alignments, is shown in table 4.2. As for the ñtop-Nò sub-alignment results, both the 

mean proportion and number of correctly classified enzyme functions, obtained from 

using the ñtop-hitò assessment method after fSDR-based re-scoring of the sequence 

sub-alignments, are shown for comparison.  As usual, all results refer to the 

bootstrap form of the prediction results.  It can be seen from the table that, overall, 

the optimal predictive performances of the sub-alignment methods show a minimum 

(of 0.592 (2088/3527)) when using the colgap_percent threshold of 0%, with sub-

alignments containing the top-50% of high scoring columns and a maximum (of 

0.769 (2712/3527)) when using a larger threshold of colgap_percent = 90%, with 

sub-alignments generated through the inclusion of the top-8% of aligned columns.  

There is, however, only a difference of 10 correct predictions in performance 

between this and the next lowest result of 0.766, when using the top-7% of high 

scoring aligned columns and a colgap_percent threshold of 60%. 

colgap_percent 

(%)  

(optimal)  

ñtop-X percentò (X) 

(bootstrap) mean 

proportion of correct 

predictions 

(bootstrap) mean 

number of correct 

predictions 

0 50% 0.592 2088 

10 15% 0.691 2437 

20 9% 0.711 2508 

30 10% 0.739 2606 

40 8% 0.751 2649 

50 8% 0.761 2684 

60 7% 0.766 2702 

70 8% 0.763 2691 

80 9% 0.763 2691 

90 8%      0.769 (*) 2712 

100 5% 0.752 2652 

Table 4.2. A comparison between the optimal bootstrap results (mean 

proportion and number of correct ñtop-hitò specific enzyme predictions) and 

the ñtop-X percentò subset size that generates them, for each of the 

colgap_percent thresholds applied. All results for the number of correct 

predictions are out of a possible dataset size of 3527. (*) indicates the overall 

maximum predictive performance. 
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The func-MB ñcolumn score thresholdò Method for Sub-Alignment Generation 

One further method, based on the func-MB fSDR calculation method, was used for 

selecting aligned columns for the inclusion in sequence sub-alignments.  This 

utilised a varying threshold, which was applied to the Spearman-rank order 

correlation coefficients that were calculated for each of the aligned columns.  

Therefore, only aligned columns with correlation coefficients greater than or equal to 

the particular threshold were included in the sequence sub-alignments used for the 

subsequent functional re-scoring stage.  The threshold was varied from a value of 0.0 

(essentially a random correlation between the residue similarities and specific 

enzyme function) to a value of 1.0 (indicating perfect rank correlation between the 

residue similarities and specific enzyme function).  A graph of these results is shown 

in figure 4.5.  This graph shows that there is a rapid decrease in the sub-alignment re-

scoring accuracy (as measured by the proportions of ñcorrectò predictions) when 

using a progressively higher threshold for the correlation coefficients associated with 

each aligned column. 

To a certain extent these results were expected because, as the lower limit for 

correlation coefficient defined inclusion to the sub-alignments is made more 

stringent, there will be fewer available columns that fulfil the selection criteria.  The 

sharpness, however, of the decline in functional re-scoring accuracy (using the ñtop-

hitò assessment method), when applying a correlation coefficient threshold greater 

than 0.2, is perhaps surprising.  This observation, seen for all colgap_percent 

thresholds, shows that, in general, even though the correlation coefficients are of less 

significance, the ñtop-hitò based classification performance increases by including 

these less correlated columns in the re-scored sub-alignments.  Therefore, it shows 

that, although the nature of the relationship between residue similarity and specific 

function is generally (i.e. across all 3527 MSAs in the dataset) quite noisy and weak, 

there is some informative signal present, but it is clearly not as clean and simple a 

relationship (with regards to the ñtop-hitò re-scoring accuracy) as might be initially 

expected and hoped for when using the current dataset. 
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Figure 4.5. A comparison showing the proportion of correct functional 

predictions obtained as the Spearman-Rank order correlation coefficient 

threshold, used to select the subsets of fSDRs used in the functional re-scoring, 

was varied.  For this, the aligned columns included in the sequence sub-

alignments were those with an associated Spearman-Rank order correlation 

coefficient greater than or equal to the threshold value shown on the horizontal 

axis.  The proportions of correct predictions are the bootstrap mean values, 

shown with the corresponding standard error bars.  The enzyme classification 

results are shown for re-scoring the colgap_percent=0%, 

colgap_percent=20%, colgap_percent=40%, colgap_percent=60%, 

colgap_percent=80% and colgap_percent=100% filtered sequence sub-

alignments.  Also shown is the associated random sequence selection model for 

the dataset, where the dotted lines show 1 standard error deviation from the 

mean. 
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A more detailed analysis of these results, shown in figure 4.6 (using a similar 

analysis to that provided in figure 4.3 for the ñtop-Nò results), highlights some of the 

reasons for this sharp decrease in prediction accuracy as the threshold is increased.  

It is clear, from figure 4.6, that the main cause for the decline in the number of 

ñcorrectò functional ñtop-hitò classifications (after sub-alignment re-scoring) is the 

rapid increase in the number of ñempty subset (incorrect)ò examples as the aligned 

column inclusion threshold is increased.  There is also an additional contribution 

from increasing numbers of ñundecidableò examples, which occur as the correlation 

coefficient threshold is increased above 0.2.  Therefore, the increase in ñincorrectò 

enzyme classifications is contributed to by both the ñemptyò sub-alignments 

(generally after a correlation coefficient threshold of 0.3-0.4) and the ñundecidableò 

examples, whereas the ñcorrectò examples from ñtied ï same functionò do not show 

a compensatory increase.  These results indicate that a Spearman-rank order 

correlation coefficient threshold, greater than 0.2, does not (in general) include 

enough columns to informatively discriminate between the ñundecidableò examples, 

when using the ñtop-hitò method to assess the accuracy of the functionally re-scored 

sub-alignments of enzymes. 
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Figure 4.6.  A series of graphs showing the variation of the proportions 

of observed predictions with the specified Spearman-rank order ócorrelation 

coefficientô  sub-alignment threshold, for the six distinct prediction outcomes 

(a) shows the ñtop-rank (correct)ò results; (b) shows the ñtop-rank 

(incorrect)ò results; (c) shows the ñtied-rank same-function (correct)ò results; 

(d) shows the ñundecidable (incorrect)òresults; (e) shows the ñtied-rank 

different-function (incorrect)ò results; and (vi) shows the ñempty subset 

(incorrect)ò results.  For each of these graphs the results for re-scoring the 

colgap_percent=0%, colgap_percent=10%, colgap_percent=50% and 

colgap_percent=100% pre-filtered sequence sub-alignments are shown. 
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Again, a summary of the optimal results for each of the analysed colgap_percent 

thresholds is provided (see table 4.3).  These results essentially reinforce the 

observations above, which show that the optimal ñtop-hitò based functional re-

scoring results are obtained when using sequence sub-alignments containing only 

fSDRs with correlation coefficients (calculated via the func-MB method) that are 

greater than or equal to 0.2.  This was true for all colgap_percent thresholds, except 

those of 0%, with an overall maximum number and proportion of correct predictions, 

of 0.719 (2536/3527), resulting when colgap_percent = 80%.  Although, it can be 

seen that there is little difference between the results once the colgap_percent 

threshold reaches 50%.  

colgap_percent (%) (optimal) 

ñcolumn score 

thresholdò 

(Spearman-rank 

order correlation 

coefficient) 

(bootstrap) mean 

proportion  of 

correct predictions 

(bootstrap) mean 

number of correct 

predictions 

0 0.0 0.573 2021 

10 0.2 0.673 2374 

20 0.2 0.674 2377 

30 0.2 0.691 2437 

40 0.2 0.711 2508 

50 0.2 0.715 2522 

60 0.2 0.716 2525 

70 0.2 0.716 2525 

80 0.2      0.719 (*) 2536 

90 0.2 0.718 2532 

100 0.2 0.718 2532 

Table 4.3. A comparison between the optimal bootstrap results (mean 

proportion and number of correct ñtop-hitò specific enzyme predictions) and 

the ñfunc-MB column correlation scoreò threshold used to generate the 

sequence sub-alignments that generate them, for each of the colgap_percent 

thresholds applied. All results for the number of correct predictions are out of a 

possible dataset size of 3527. (*) indicates the overall maximum predictive 

performance. 

4.3.1.2 The Profile-HMM Method 

Following on from the methods of selection used above, for the func-MB method of 

fSDR identification, a comparable set of analyses were carried out for the profile-

HMM method.  Again, three alternative methods were used for selecting aligned 
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columns to be included in the sequence sub-alignments.  These were the ñtop-Nò, 

ñtop-X percentò and the ñprofile-HMM column score thresholdò methods.  Each of 

these are based on the same selection procedure as the func-MB method, except that 

in the following analysis the aligned column selection is based on relative ranking of 

the columns based on the Z-scores (rather than the Spearman-rank order correlation 

coefficient) calculated by the profile-HMM fSDR identification method. 

For the profile-HMM method, the parameters used in the implementation of 

Hannenhalli and Russell (2000) were applied in this study, therefore the default 

settings of hmmbuild were used, which meant that all columns with greater than 50% 

gap residues were not included in the profiles generated for each of the functional 

sub-classes.  It may, however, in future work be informative to investigate changes 

to the hmmbuild gap percentage inclusion threshold when carrying out further 

analysis.  As in the func-MB method for sequence sub-alignment generation, it was 

decided to use a score of 0 for all comparisons between any amino acid types and 

gaps during the functional sequence re-scoring phase of the analysis.   

The profile-HMM ñtop-Nò, ñtop-X Percentò and ñcolumn score thresholdò 

Methods for Sub-Alignment Generation 

Presented in this section are the results - from using the profile-HMM ñtop-Nò, ñtop-

X Percentò and ñcolumn score thresholdò methods - for the functional re-scoring of 

the enzyme sequence sub-alignments, generated by the profile-HMM based method 

for fSDR identification.  The ñtop-hitò assessment method, with bootstrapping, was 

used to determine the accuracy of the resulting specific enzyme classifications. 

Results for the variation in the proportions of correct predictions with varying sub-

alignment threshold selection parameters, for the ñtop-Nò and ñtop-Xò percent 

profile-HMM sub-alignment selection methods, are shown in figure 4.8 and figure 

4.9, respectively.  For brevity, a similar graphical comparison of the results for the 

enzyme ñtop-hitò classification accuracy with variation of the Z-score threshold is 

not shown.  It is, however, worth noting that they were observed to follow a pattern 

similar to that seen when a threshold was applied to the func-MB column scores 

(using the Spearman-rank order correlation coefficients) for sub-alignment 

generation (see figure 4.5).  That is, they exhibit a rapid decrease in the number (and 

proportions) of correct classifications as the (Z-score) fSDR column score threshold 
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is increased.  This decrease occurs after an initial peak, showing a proportion of 

0.665 (2345/3527) correct predictions, when the Z-score threshold used for sequence 

sub-alignment generation was greater than or equal to 0.5.  As in the func-MB 

threshold analysis, this behaviour was mainly due to the increasing number of 

ñempty subset (incorrect)ò examples in the sequence sub-alignment re-scoring 

procedure.  A summary of these results, along with the best performing ñtop-Nò and 

ñtop-X percentò sub-alignment selection methods (for the profile-HMM based fSDR 

selection method) is provided in table 4.4.  

Sub-alignment 

Selection Method 

(optimal) 

Sub-alignment 

threshold 

(bootstrap) mean 

proportion of correct 

predictions 

(bootstrap) mean 

number of correct 

predictions 

top-N N = 35      0.673 (*) 2374 

top-X percent X = 30% 0.664 2342 

Z-score column 

score threshold 

0.5 0.665 2345 

Table 4.4. A summary of the optimal bootstrap results (mean proportion 

and number of correct ñtop-hitò specific enzyme predictions) for the profile-

HMM based fSDR sub-alignment re-scoring.  The thresholds at which these 

results are obtained are shown for each of the ñtop-Nò, ñtop-X percentò and 

ñZ-score column score thresholdò sub-alignment selection methods 

investigated.   All results for the number of correct predictions are out of a 

possible dataset size of 3527. (*) indicates the overall maximum predictive 

performance. 

It can be seen from these results, in table 4.4, and the comparisons of different 

methods, shown in both figure 4.8 and figure 4.9, that the profile-HMM method 

generally performs worse, when using this particular dataset, than the comparable 

enzyme classifications obtained from the func-MB based sub-alignment re-scoring.  

It is not immediately clear why there is such a difference in performance between the 

methods and thus further study into the optimisation of the parameters associated 

with the profile-HMM method as well as a more sophisticated filtering procedure for 

the input MSA data, prior to the application of the profile-HMM fSDR identification 

method, may be worthwhile. 

4.3.1.3 Investigating the Random Selection of Aligned Columns 

A method was implemented to calculate the specific enzyme functional classification 

accuracy from sequence sub-alignments that had been generated through random 

selection of aligned columns from the MSAs in the dataset.  The aim of this was to 
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provide a comparison with both the profile-HMM and func-MB based sub-alignment 

re-scoring classification accuracies and also an assessment of their significance.  The 

reasoning being that if the enzyme classification accuracy from the fSDR-based sub-

alignment re-scoring was consistently better than that from the comparable randomly 

selected sub-alignments, then it would show that the fSDR-based sub-alignment 

selection procedure was providing additional information for the improvement of 

functional classification. 

As stated in the methods, both the ñrandom-Nò and ñrandom-X percentò aligned 

column selection methods, were used to generate the sequence sub-alignments.  

However, for this random selection no regard was given to the actual likelihood of 

the columns being associated with specific enzyme functional properties (i.e. they 

are not necessarily high scoring fSDRs).  So, unlike with the profile-HMM and func-

MB methods, the columns were (randomly) selected without first ranking them based 

on the calculated fSDR significance scores. 

The results for both the ñrandom-Nò and ñrandom-X percentò sub-alignment re-

scoring are shown in figure 4.7(a) and figure 4.7(b), respectively.  Both show the 

effects (on the proportions of correct enzyme predictions) of applying different 

colgap_percent MSA pre-filtering thresholds, before the random column selection 

was carried out.  The ñrandom-Nò results show similar behaviour for each of the 

applied colgap_percent thresholds, with overall maximum values of approximately 

0.6 seen for the proportions of correct (ñtop-hitò based) enzyme functional 

predictions.  With regards to the ñrandom-X percentò results, it can be seen that they 

gradually tend towards the functional classification accuracies for the ñX = 100% ï 

all columns selected in the sequence sub-alignmentò results, as the percentage of 

randomly selected columns is increased.  This is to be expected, because the random 

selection of all columns is the same as any other selection method for all aligned 

columns, when using a gap-scoring function (such as the 0 gap penalty used in this 

sequence re-scoring study) that does not depend on the sequential ordering of the 

adjacent, aligned, amino acid residues (unlike that of an affine gap scoring function 

with non-zero gap penalty parameters).  Finally, as with the ñtop-rankò fSDR-based 

sub-alignment re-scoring, there were notable exceptions (especially prominent for 

the ñrandom-X percentò results) seen when using the pre-filter gap threshold of 0%. 
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Figure 4.7. A comparison of the proportion of correct predictions 

obtained at each of the (a) ñrandom-Nò and (b) ñrandom-X percentò 

thresholds used for random sequence sub-alignment generation.  For both of 

these graphs, the proportions of correct predictions are the bootstrap mean 

values, shown with the corresponding standard error bars.  The enzyme 

classification results are shown for re-scoring the randomly selected aligned 

columns from the MSAs that have been filtered using colgap_percent 

thresholds of 0-100% (in intervals of 10%).  Also shown are the associated 

random sequence selection models for the dataset, where the dotted lines show 

1 standard error deviation from the mean. 

figure 4.7 (b) 

figure 4.7 (a) 
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Also shown on both of these graphs is a comparison to the simple random sequence 

selection model, which was introduced in chapter 3.  This has the same values - at all 

sub-alignment fSDR column selection thresholds and for both the ñtop-Nò and ñtop-

X percentò rescoring results - because it is only dependent on the enzyme 

classifications of the constituent sequences in the MSAs of the associated dataset.  

From these results, it can be seen that, in general, the functional re-scoring results 

from random column selection, show a larger number of correct specific enzyme 

classifications than the associated random sequence selection approach.  This was 

expected to a certain extent because it was shown, in the previous chapter, that the 

functional re-scoring results were better when using all of the aligned columns (with 

a PAM30 matrix and gap scoring penalties of 0) rather than random sequence 

selection.  Therefore, although smaller (randomly selected) subsets of these columns 

are being assessed, in this case the resulting subsets of aligned residues are still 

functionally more informative than a randomly selected sequence from the MSAs. 

4.3.1.4 Comparisons between the Enzyme Sequence Sub-Alignment 

Functional Re-scoring Methods  

To conclude this analysis, comparisons are shown between the different methods that 

have been investigated so far for the large-scale functional re-scoring and specific 

classification of enzyme sequences.  The results from both the func-MB and profile-

HMM methods, for ñtop-Nò and ñtop-X percentò fSDR-based sequence sub-

alignment selection and functional re-scoring, are compared, see figure 4.8 and 

figure 4.9 respectively.  With regards to the func-MB calculated results, the particular 

colgap_percent thresholds were selected that gave the best overall classification 

performance.  Therefore, for the ñtop-Nò comparisons the results when using 

colgap_percent = 60% were selected (see the optimal overall enzyme classification 

accuracy results in table 4.1) and for the ñtop-X percentò comparisons those from 

using colgap_percent = 90% (see the optimal overall enzyme classification accuracy 

results in table 4.2).  Also included in both of these comparisons were: the optimal 

predictive performance from the ñcolumn score thresholdò studies, where the 

Spearman-rank order correlation coefficient threshold was 0.2 (see table 4.3 - where 

colgap_percent = 80%) and the Z-score was 0.5 (see table 4.4), for the func-MB and 

profile-HMM based methods respectively; the functional re-scoring results from the 

ñrandom-Nò and ñrandom-X percentò sub-alignments; the random sequence 
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selection model (introduced in the analysis provided in chapter 3); and the PAM30 

UNGAPPED (0, 0) method, which was shown to be the best performing functional 

re-scoring method from the alternative amino acid substitution studies analysed in 

chapter 3, when using all aligned amino acid residues of the multiple sequence 

alignments for the functional re-scoring assessment. 

 

Figure 4.8. A comparison of the proportion of correct predictions 

obtained for the following selection of ñoptimalò functional sequence re-

scoring methods: (i) the func-MB ñtop-Nò method, using a colgap_percent 

threshold of 60%; (ii) the profile-HMM òtop-Nò method; (iii) the optimal func-

MB ñcolumn score thresholdò method, where the spearman-rank order 

correlation coefficient is >= 0.2, using a colgap_percent threshold of 80%; (iv) 

the optimal profile-HMM ñcolumn- score thresholdò method, where the Z-

score is >= 0.5; (v) the PAM30 UNGAPPED (0,0) re-scoring method, which 

was identified as optimal performing in chapter 3; (vi-vii) the ñrandom-Nò 

column selection methods, using colgap_percent thresholds of 50%, 60% and 

80%; and (ix) the random sequence selection method.  Where shown the error 

bars refer to 1 standard error deviation from the mean of the bootstrapped 

results, otherwise, just the mean value of the bootstrapped results are shown to 

improve clarity. 

For the ñrandom-Nò and ñrandom-X percentò column selection methods the 

colgap_percent = 50% threshold results are shown, to allow direct comparison with 

those results from the profile-HMM method, and the colgap_percent thresholds of 



157 

 

60% and 90% are included for comparison to the optimal func-MB based ñtop-Nò 

and ñtop-X percentò methods, respectively.  All of the results shown are from using 

the ñtop-hitò assessment method to calculate the specific functional classification 

accuracy after re-scoring and re-ordering the aligned enzyme sequences, and as usual 

they are represented by the bootstrap calculations. 

From the functional re-scoring results, of both the ñtop-Nò and ñtop-X percentò sub-

alignment selection methods, a number of interesting observations can be made.  It 

can be seen, in both figure 4.8 and figure 4.9, that the re-scoring results for the 

optimal func-MB fSDR identification methods show an improvement over those of 

the optimal profile-HMM fSDR identification methods.  The differences in accuracy 

between the bootstrapped mean of the proportion (and number) of correct enzyme 

classifications are: 0.094 (331), for the func-MB ñtop-30ò and profile-HMM ñtop-35ò 

results; 0.105 (370), for the func-MB ñtop-8 percentò and profile-HMM ñtop-30 

percentò results; and 0.054 (191), for the func-MB ñSpearman-rank order correlation 

threshold = 0.2ò and profile-HMM ñZ-score threshold = 0.5ò results.  Further, it is 

also possible to see a clear and significant improvement, in correct enzyme ñtop-hitò 

classifications, when using the optimal fSDR-based sub-alignments of enzyme 

sequence (especially in the case of the func-MB method), rather than the PAM30 

UNGAPPED (0, 0) method, which was identified as optimal in chapter 3 when using 

all of the aligned sequence residues to assess the functional classification accuracy of 

the sequence re-scoring procedure.  The largest improvement, in proportion (and 

number) of correct predictions, seen between these methods, is 0.136 (479), when 

using the func-MB ñtop-8 percentò sub-alignment re-scoring method. 

Comparisons between the fSDR-based sub-alignment re-scoring methods and the 

two alternative random models (i.e., the random sequence selection model that was 

introduced in chapter 3, and the ñrandom-Nò and ñrandom-X percentò random 

column selection methods that were introduced in this chapter) clearly show 

significant improvements in specific enzyme classification accuracies when using 

the best performing sub-alignment methods.  This is especially true for the func-MB 

method, which has been shown to be a better performing method overall for this 

benchmark dataset.  Furthermore, the consistent improvement seen with the fSDR-

based sub-alignment selection re-scoring methods, when compared to the 
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comparable random columns sub-alignment selection re-scoring methods, indicates 

that there is a clear, significant and functionally informative advantage to using 

fSDR-based sequence sub-alignments to re-evaluate the specific enzyme function of 

an unknown query sequence. 

 

Figure 4.9. A comparison of the proportion of correct predictions 

obtained for the following selection of ñoptimalò functional sequence re-

scoring methods: (i) the func-MB ñtop-X percentò method using a 

colgap_percent threshold of 90%; (ii) the profile-HMM òtop-Nò method; (iii) 

the optimal func-MB ñcolumn score thresholdò method, where the spearman-

rank order correlation coefficient is >= 0.2, using a colgap_percent threshold 

of 80%; (iv) the optimal profile-HMM ñcolumn- score thresholdò method, 

where the Z-score is >= 0.5; (v) the PAM30 UNGAPPED (0,0) re-scoring 

method, which was identified as optimal performing in chapter 3; (vi-vii) the 

ñrandom-Nò column selection methods, using colgap_percent thresholds of 

50%, 80% and 90%; and (ix) the random sequence selection method.  Where 

shown the error bars refer to 1 standard error deviation from the mean of the 

bootstrapped results, otherwise, just the mean value of the bootstrapped results 

are shown to improve clarity. 

Also, the func-MB results of figure 4.9 show that even when including a quite large 

percentage of aligned columns in the sequence sub-alignments (such as 50% or 

75%),  there is still some (albeit much smaller) improvement observed in the overall 

(%) 
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accuracy of the predictive performance.  This is encouraging and to be expected, 

because any amount of enrichment of the aligned columns, with regards to the 

correlation between residue similarities and specific function, would be expected to 

improve the functional information signal in the resulting sequence sub-alignments.  

This is indeed shown (again in figure 4.9) by the gradual improvement in functional 

classification accuracy as the percentage of lesser correlated aligned columns, 

included in the re-scored sequence sub-alignments, is decreased, resulting in an 

optimal performance at the already stated threshold of  the top-8%.  These results, 

therefore, show that the specific enzyme functional classification accuracy clearly 

benefits from the use of a particular, optimally defined, sequence sub-alignment of 

functionally important residues (especially when using the func-MB method for 

fSDR identification).  The most pertinent of these results are summarised for 

comparison in table 4.5. 

Functional Re-

scoring Method 

(optimal) 

Sub-alignment 

threshold 

(bootstrap) mean 

proportion of correct 

predictions 

(bootstrap) mean 

number of correct 

predictions 

func-MB 

(colgap_percent=90%) 

top-8%      0.769 (*) 2712 

profile-HMM  top-35 0.673 2374 

PAM30 UNGAPPED 

(0,0) 

n/a 0.631 2226 

random-N 

colgap_percent=50% 

colgap_percent=60% 

colgap_percent=80% 

 

N = 65 

N = 75 

N = 75 

 

0.628 

0.627 

0.615 

 

2215 

2211 

2169 

random-X percent 

colgap_percent=50% 

colgap_percent=80% 

colgap_percent=90% 

 

X = 50% 

X = 35% 

X = 75% 

 

0.627 

0.630 

0.635 

 

2211 

2222 

2240 

random sequence 

selection 

n/a 0.502 1771 

Table 4.5. A summary of the optimal bootstrap results from the 

functional re-scoring assessments analysed in this chapter (mean proportion 

and number of correct ñtop-hitò specific enzyme predictions).  Where relevant, 

the sub-alignment selection methods and associated thresholds at which these 

results were obtained are shown.  All results for the number of correct 

predictions are out of a possible dataset size of 3527. (*) indicates the method 

with the overall maximum predictive performance.  






































































































































































































































































