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Abstract

The number of protein sequences being deposited in databases is currently growing
rapidly as a result of larggcale high throughput genome sequencing efforts. A large
proportion of these sequences have no experimentally determined struktsioe.

relatively few have high quality, specific, experimentally determined functions.

Due to the time, cost and technical complexity of experimental procedures for the
determination of protein function this situation is unlikely to change in the near
future. Therefore, one of the major challenges for bioinformatics is the ability to
automatically assign highly accurate, higfecificity functional information to these
unknown protein sequences. As yet this problem has not been successfully solved to
a level both acceptable in terms of detailed accuracy and reliability for use as a basis

for detailed biological analysis on a genome wide, automatedtlmighghput scale.

This research thesis aims to address this shortfall through the provision and
benchmaking of methods that can be used towards improving the accuracy ef high

specificity protein function prediction from enzyme sequences. The datasets used in
these studies are multiple alignments of evolutionarily related protein sequences,

identified throgh the use of BLAST sequence database searches.

Firstly, a number of nostandard amino acid substitution matrices were used to re
score the benchmark multiple sequence alignments. A subset of these matrices were
shown to improve the accuracy of specifiimction annotation, when compared to

both the original BLAST sequence similarity ordering and a random sequence

selection model.

Following this, two established methods for the identification of functional
specificity determining amino acid residues (fS{)Rvere used to identify regions
within the aligned sequences that are functionally and phylogenetically informative.
These localised sequence regions were then usedstmre the aligned sequences
and provide an assessment of their ability to imprave $pecific functional

annotation of the benchmark sequence sets.

Finally, a machine learning approach (support vector machines) was followed to

evaluate the possibility of identifying fSDRs, which improve the annotation
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accuracy, directly from alignments closely related protein sequences without prior
knowledge of their specific functional stypes. The performance of this SVM
based method was then assessed by applying it to the automatic functional

assignment of a number of well studied classes nfraes.
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Chapter 1  Introduction and Background

1.1 Protein Function

The native state conformation of a protein is essentialt$obiblogical activity.
Because the structure of the native state is defined by the amino acid seguence
follows that the precise biological function of a protein is strongly dependant on both
sequence and structural properties. Protein function eaa thifficult concept to
rigorously and unambiguously define and categorise. A general biological

description of protein function usually involves a description on three levels:

1 Biological Function: This describes the effects of the protein on the entire
organism,;

1 Cellular Function: This level provides a description of the interactions and
pathways that a protein is involved in on a cellular level; and

1 Molecular Function: Providing a description of the precise biochemical activity

of a proteinat a molecular level

A number of functional classification schemes have been proposed towards solving

the function categorisation problem, a number of which are described below.

Functional Specificity

The subcategorisation of function leads iacreasingly more detailed, specific
descriptions of functions that proteins can perform. Thergfiie concept of

functional specificity can be thought of as a hierarchical classification, moving from

a general, not very snmearefoi)c deds car ipprtoigorne
detailed description of a protein (such

detailed form of description and classification that is of major interest in this thesis.

1.1.1 Protein Function Classification Schemes

Several schmes for the description and classification of proteins and their functional
properties have been developed (Ouzounis et al., 2003; Whisstock and Lesk, 2003;
Riley, 1998). The aim of functional classification schemes is the descriptive

categorisation of siilar protein functions. There have been attempts which both
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concentrate on single organism categorisation (generally associated with a particular
genome sequencing project) and also more general classification schemes that either
apply to all types of mteins or a particular stype such as the enzymes. 1 will

concentrate below on two widely used schemes: the enzyme commission and gene

ontology classification schemes.

1.1.1.1 Enzyme Commission Classification Scheme

The enzyme commission (EC) classificatienai hierarchical classification scheme

for the description of enzyme function and catalysed reactions. This is a well
established and widely used scheme, the specific details of which can now be found
online (ttp://www.chem.gmul.ac.uk/iubmb/enzyme/A database resource, called
ENZYME (Bairoch, 1993; Bairoch, 2000), is available, which provides links from

the EC descriptions to associated protein sequence databases, such as UniProt
(Apweiler et al. 2004).

The structure of the EC naming scheme takes on the form of a four level hierarchy
(EC A.B.C.D). The top level (A) consists of six principal enzyme classes, these are:
(1) EC 171 the Oxidoreductases; (2) ECi2the Transferases; (3) EC i3the
Hydrolases; (4) EC 4 the Lyases; (5) EC b the Isomerases; and (6) EQ Ghe
Ligases. The other levels atependenon the principal class and sclassify each

into progressively more detailed specifics regarding the enzyme reaction catalysed.

The prollems associated with this classification scheme, with respect to its use as a
description of protein function are well documented (Whisstock and Lesk, 2003;
Babbitt, 2003). The main point of caution is that the EC scheme nomenclature was
designed as a wagf describing the reactions catalysed and not specifically the
sequence or structural features of the proteins which catalyse them. A further point
of note, especially important in terms of automated function prediction and
annotation mendtoidenali sditshteanitfew bet ween
descriptions (Pawlowski et al., 2000). For example, when comparing proteins which
have different substrates, it is not always clear from the description the precise
degree of difference in the biochemicahctions or the functional properties of the
proteins involved. Generally this is overlooked and a simple correlation is assumed
between the level of functional specificity and the number of matching values in the

four-level EC hierarchy. This problerof functional distance between alternate
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protein functions is one that is important when considering the specific accuracy

levels and therefore the benchmarking of protein function prediction methods.

1.1.1.2 The Gene Ontology

A more general and detailed classifion scheme for all classes of proteins is
provided by the gene ontology (GO) project (Ashburner et al., 2000). The gene
ontology is designed as a structured ontology with three sections describing the
biological processes, cellular components and bio& functions of the associated

genes or gene products. GO terms are represented by a directed acyclic graph
(DAG) in which the level of functional specificity increases as the graph is
descended from a more gener almore $pacicsi f i c a
functi on at Figure @lshoivd ad 6verviesvdfesome of the terms at the

top of the GO hierarchy for each of the three main categories. A more detailed view

of the ontology can be browsed using the interactive tools availahli@e

(www.geneontology.orng

root

molecular biological cellular

function process component
catalytic binding growth cell
activity | |

cell growth membrane

hydrolase
activity
Figure 1.1. Exampleshowing a selection ajene ontologyterms For

clarity, not all possible gene antaiions are shown at each level.

Concerted efforts are currently underway to provide detailed GO annotations for
genes and gene products in major sequence databases and for particular genomes
(Gene Ontology Annotation (GOA) project (Camon et al., 2004)). Also, evidence
codes are being ad in the gene ontology for recording the source of the

annotations. This is particularly important for judging the quality and reliability of
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the annotated data, especially when benchmarking the reliability of automated
methods. There are a number ofdewnce codes provided for inferring the source,
however, the most important distinction is between those that have arisen from

expert human manual annotation and those from automated methods.

The gene ontology is currently the most comprehensive geneassifadation
available for proteins and is becoming the standard for use in annotation projects and
prediction experiments. However, the complexity of the gene ontology requires
careful consideration when measuring functional distances, especially gatdse

to the levels of functional specificity.

1.1.2 Classification of Protein Sequence and Structure

Through evolutionary analysis of the sequence and structural properties of proteins,
patterns and relationships become apparent, allowing classification miige$aof
homologous proteins (Orengo and Thornton, 2005). In general it is possible to
consider the classification of proteins using clustering algorithms based on sequence
or structural similarity measures to define hierarchies. The categories range fr
general, commonly shared properties at high similarity, to a finer granularity when
considering lower levels of similarity. With respect to understanding protein
function these classifications can provide important information, as often there is
correltion between sequence, structural and functional similarity (Todd et al., 1999).
However, the level of sequence and structural similarity is not always a reliable
measure of function, meaning more powerful methods of analysis are required,

especially whe considering specific detailed functional properties.

1.1.3 Evolution and Protein Function

Central to the creation of new protein functions are evolutionary mechaarsins
homologous relationships. The continuing accumulation of sequence and structural
information is producing significant breakthroughs in the understanding and methods
used for analysis of evolutionary aspects of protein sequence, structure and function.

Some important concepts relevant to this area are described below.

1.1.3.1 Evolutionary Divergence

During gene replication, mutations can arise in the DNA sequences, producing either

synonymous or nesynonymous substitutions. Due to the redundancy of the genetic
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code some mutations within codons will produce no change in the translated amino
acid sguence (synonymous substitutions). However, others will produce mutations
in the translated amino acid sequences (nonsynonymous substitutions). Synonymous
substitutions are important when analysing changes in DNA sequences, especially
when measuring rageof evolutionary change. The emphasis of this work, however,

is on the functions of proteins and therefore nonsynonymous mutations are those of

most interest.

The gradual accumulation of mutations from a common ancestor through the process
of natural sedction is known as divergence. This is the mechanistic basis for both
the diversity and similarity seen between groups of homologous proteins when they
are classified into sequence, structural and functional families. An understanding of
the effects ofltese mutations is vital for studying changes of functional specificity
between homologous proteins and the subsequent development of methods for

accurate prediction of function from sequence.

1.1.3.2 Gene Duplication

A key mechanism in the development of new protiinctions is that of gene
duplication (Ohno, 1970; Taylor and Raes, 2004). Whenever a duplication event
occurs, a redundant copy of the gene is created within the organism. Like other
mutation events, gene duplication can be advantageous, delet@riaestral. In
general a duplicated gene will be free from evolutionary constraints to undergo
divergence, possibly leading to the development of a new specific function without
impairing the fitness of the organism. Although the gene pair will beecklay a
single common ancestor, the two copies may evolve along different pathways

creating separation of function, leading to new proteinfanbtionalisation.

There are many reported examples of divergent evolution producing changes in the
specificity d protein function (Whisstock and Lesk, 2003). A commonly used
example is that of the serine proteinases. This is a good example of the possibilities
of functional divergence because it shows examples of both the gradual change in
specificity through grdual mutational divergence and also large changes in function
through point mutations of small numbers of important functional residues (Patthy,
1999).
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1.1.3.3 Orthologous and Paralogous Relationships

An important consideration when analysing the evolutionaryotyisbf genes,
proteins and their functions is the effect of speciation. Two definitions (Fitch, 1970)
are required to describe the relationship between genes in different species and gene

pairs within the same species:

Orthologs: Are genes in differentepomes that have been created by the separation

of species, through speciation;

Paralogs: Are genes in the same genome that have been created by gene duplication

events.

Identification and discrimination between orthologous and paralogous prot@ns is
important aredor the study and prediction of specific protein functions and also to
the field of comparative genomics. The availability of complete genome sequences
makes possible attempts to identify and classify orthologous proteins. One approach
to this is the clusters of orthologous groups (COGs) method (Tatusov et al., 1997,
Tatusov et al., 2003), which uses anaghinstall BLAST based sequence similarity
search to identify sets of proteins that occur in at least three different divergent

genomes

Orthologous proteins generally carry out identical or at least very similar functions in
their respective genome, because of this, their identification and categorisation
be of particular importance when considering methods for the prediction afdonc
Accurate differentiation of orthologs and paralogs at different evolutionary distances
should provide important information for the separation of specific functional

groupings.

1.1.3.4 Sequence Similarity Database Searching

Fast, reliable and efficient solutions are required to identify similarities and possible
evolutionary relationships between large numbers of protein sequences. Database
search techniques have been developed for this purpose, taking a query sequence as
input to provide similarity measures to all other sequences in the search database.
The first methods developed for this purpose were FASTA (Pearson and Lipman,
1988) and BLAST (Altschul et al., 1990), which provided improvements in speed
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over dynamic progimming methods. The efficiency gains of these methods are
provided by the upseocofselmewchi steichinilques w
patterns of consecutive characters of length k in the query and the search database
sequences. A local alignntefnom these seed patterns is then generated to provide

similarity scores and identify high scoring pairs (HSPs) of sequences.

An important feature of these methods is their use of a robust statistical framework

for calculating the significance of matchketween the query and aligned sequences.

A value called the expect value-{alue) is used as the basis for this through the use

of extreme value statistics. It representsrtbimber of times that you would expect

to getthe match score observéxktween a pair of sequenckg chance using a
database of known size. Parameters such as the database size and aligned sequence
lengths affect this value and should be taken into account when interpreting the

output (Jones and Swindells, 2002).

To improwe the sensitivity and allow the reliable identification of more distant
sequence homologues, powerful profil@sed search techniqgues have been
developed. These provide identification of possible homologues at lower values of
sequence identity, within &gion commonly known as the twilight zone (Feng and
Doolittle, 1996). Profile based (Gribskov et al., 1987) and probabilistic methods for
sensitive database searching are based on the residue conservation patterns observed
from multiple sequence alignment A widely used extension to the BLAST
algorithm is PSBLAST (Altschul et al., 1997; Schaffer et al., 2001), which
implements an algorithm that carries out iterated database searches using sequence

profiles generated from position specific scoring neagi(PSSMs).

Other sensitive search techniques have been developed that use hidden Markov
models (HMM) (Eddy, 1996) to generate probabilistic models of residue
conservation. Although these methods are more sensitive than the PSSM based
profile methods (sth as PSBLAST) they are also more computationally

expensive.

1.1.3.5 Multiple Sequence Alignments

Multiple sequence alignments (MSASs) provide a powerful method for the analysis of

evolutionary relationships between families of protein sequences. Columns of

24



consgrved properties within multiple alignments generally indicate structurally and
functionally important regions. A number of methods have been developed towards
improving the overall sensitivity of multiple alignment approaches (such as:
CLUSTALW (Thompsonet al., 1994); TCOFFEE (Notredame et al., 2000); and
Gotoh, 1999). The most commonly used is progressive alignment, which is based on
heuristics that attempt to exploit evolutionary relationships between homologous
sequences through the use of a gurde.t The heuristic nature of these algorithms
does not guarantee an optimised set of alignments but the advantages of speed and

computational efficiency provided compensate for this.

1.2 Automatic Protein Function Prediction

Accurate, reliable and fully autated methods for the prediction of protein function

are of major importance in the area of computational biology and bioinformatics
analysis. Its importance continues to grow in tandem with the continuing growth of
available sequence data from hitfinouchput genome sequencing projects (Lander

et al., 2001; Venter et al., 2001) and structural data from structural genomics projects
(see website: http://sg.pdb.org). The difference between available sequence and
structural data is significant. As of Janu&809, there are 6,964,485 sequences in
UniProt release version 39.6 (Apweiler et al., 2004) compared to 55,271 solved
structures in the PDB (13an2009) (Berman et al., 2000). With regards to available
functional annotation data, statistics from the egemtology annotation (GOA
UniProt version 67.0) project (Camon et al., 2004) show that there are currently
86,332 distinct proteins that have been manually annotated with GO functional
terms. There is clearly a need for automated annotation methodsplersent the

data currently available. A number of good reviews are available (Whisstock and
Lesk, 2003; Rost, 2003; Valencia, 2005; Watson et al., 2005) covering a range of
areas important for prediction and annotation. Here, the aim is to providailadiet
discussion, related to my research, of previous work carried out on sequence based
methods for protein function prediction. Particular attention is focussed on methods
for accurately discriminating specific functions between homologous groups of

proteins.
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1.3 Sequence Homology Based Function Prediction
Methods

1.3.1 Homology Transfer

The principle method for identifying the function of an unknown protein sequence is
through the use of database similarity search techniques such as BLAST (Altschul et
al., 1990)or PSIBLAST (Altschul et al., 1997). A typical approach would be to
assign the function of a closely related homolog to that of an unknown query, using a
particular threshold of sequence similarity or statistical significance for deciding the

reliability of the annotation transfer.

1.3.1.1 Analysis of the Correlation between Sequence, Structure and

Functional Similarity

A number of research groups have systematically analysed the correlation between
protein sequence similarity and the level of functional caagiem. Studies of this

kind aim to provide a measure of the accuracy and error associated with using
sequence similarity thresholds for the transfer of function. The variation in the
analytical methods used has led to discrepancy for specific threfletvdsen levels

of sequence similarity measure and functional conservation (Valencia, 2005).
However, a general trend is observed in all the results. As the sequence similarity
increases the level of functional conservation also increases, showingekatamrr
between similarity of sequence and function (Wilson et al., 2000). Although this is
also true for differing levels of functional specificity, in general, the more specific
the level of function the higher the sequence similarity required forlatore and

therefore accurate transfer of function.

1.3.1.2 Analysis of Single-Domain Proteins

An early study by Hegyi and Gerstein (1999) of the relationship between SCOP

(Murzin et al., 1995) structural domains and their enzyme function (as specified by

the enzyne commission (EC) classification scheme) showed a correlation between

major SCOP fold classes and broad functional categories. This analysis was then
extended to other structural and functional classification schemes for a detailed
analysis of the yeasgenome, with an observed feldnction correlation for a

number of functional properties. Martin et al. (1998) also investigated the
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relationship between general EC class and the CATH fold classification. In this
study it was found that the fold was tteld more closely to the ligand type rather

than top level EC number classification.

This work was followed by a number of studies that attempted to get firm threshold
values for functional annotation transfer at varying levels of functional specifitity. |

is difficult to make direct comparisons between all these due to the different methods
and functional classification schemes used; however, a summary of these results

highlights certain trends:

1 Wilson et al. (2000) showed (using a combined ENZYME and BASE
(Gelbart et al., 1994) functional classification scheme) that precise function was
conserved down to 40% sequence identity and broad functional class down to
around 25%.

1 Devos and Valencia (2000) used both EC numbers and -Bnoskeywords as
measurs of functional equivalence. Concentrating on the EC conservation
results (these are commonly used and therefore more easily comparable between
other studies, also the change in level of specificity is easier to see) they state that
above 70% sequence id#y is required for reliable transfer of all 4 EC
numbers, 5&70% for the conservation of the first 3 EC numbers, and that below

30% assignments of function based on sequence identity become problematic.

1 Todd et al. (2001) carried out a similar studyDevos and Valencia, using single
and multtdomain proteins from CATH (Orengo et al., 1997), with EC numbers
as the measure of functional conservation. The results show that the first three
EC numbers are conserved with an accuracy of 90% above a 3@¥#nseq
identity threshold and that above 40% variation in the fourth EC number

becomes rare.

1.3.1.3 Extension of Analysis to Include Multi-Domain Proteins

Due to the importance of muiiomain proteins, especially in eukaryotic genome
analysis, some of the aboveethods have been extended to incorporate multi
domain proteins. Hegyi and Gerstein (2001) extended their earlier work (Hegyi and
Gerstein, 1999) and that of Wilson et al. (2000), including both single and multi

domain proteins in a similar analysis. Mwdbmain proteins were again taken from
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SwissProt and identified as those showing a match to at least two domains of known
structure belonging to different SCOP superfamilies. Functional categories were
defined using SwisBrot keywords. The results shed that there was significantly
more conservation of accurate transfer of approximate function for the single (67%)
domain proteins compared to the muldmain (35%), although this value rose to

80% when two domain folds are shared.

Rost (2002) approaeld an analysis of sequence similarity and conservation of EC
numbers in the SwisBrot database (Apweiler et al., 2004) with the aim of reducing

the effect of the inherent bias in the sequence databases. This bias is proposed to
arise from experimental &$ in the type of sequence data deposited and also high
levels of sequence redundancy. The results obtained by Rost show a clear difference
to those of earlier studies, suggesting that the sequence identity threshold required
for accurate functional anradton transfer is higher than previously reported. With
more than 70% sequence identity required for accurate transfer of all four levels of

EC numbers.

Tian and Skolnick (2003) followed this study, also using enzymes, taking into
account bias in both ftional and sequence properties. This method proposed that
a further bias exists in terms of the represented enzyme functional groupings in
SwissProt. The figures they obtained were not as pessimistic as those of Rost
(2002), but still showed less comgation than most of the other studies previously
discussed suggesting a 60% sequence identity threshold for accurate transfer of all

four EC number levels.

The studies of Rost (2002) and Tian and Skolnick (2003) both also looked at the
correlation of BIAST and PSBLAST E-values with enzyme functional
conservation. These show the same general trend seen in the correlation with
sequence identity. As statistical significance of the matches decreases, the reliability
of specific functional prediction alsgecreases, and even at particularly significant
(low) E-values there are still examples that show incorrect functional conservation.
These findings are particularly important because they show that even statistically
very significant matches, obtaineafn powerful homology recognition techniques,

can produce incorrect functional assignment.
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Although arguments relating to the best datasets to use and the corresponding correct
process for removal of bias will most probably continue, the general conclusion is
clear. Sequence similarity methods are generally a good indicator of general
function, however, they become less reliable when either the level of specificity
required is increased or the similarity is reduced. Caution is therefore required when
using simple transfer of homology techniques for functional annotation, especially

when consideng high specificity applications (Devos and Valencia, 2001).

1.3.2 Sources and Extent of Database Annotation Errors

A major concern of automatic annotation efforts is the proliferation of erroneous
functional database annotations (Brenner, 1999; Devos ardndi@ 2001;
lliopoulis et al., 2003). Possible reasons proposed for the source of the mistakes in
annotation include: insufficient level of sequence similarity used for the annotation;
typographical errors; and use of previous incorrect annotationseferannotation.

An analysis of the propagation of database errors has been carried out using
mathematical modelling techniques which suggests that the annotation errors may
grow at an exponential rate with the growth of database sizes (Gilks et al., 2002)
Guidelines for successful annotation strategies are described by lliopoulis et al.
(2003). Probably the most important of these is the clear indication and reliability of
the source annotation, which constitutes an important part of the GO annotation
project and also the detailed information fields in SviRsst. Levels of reliability

for automated annotation results can be given depending on whether the source
annotation is from a manual expert annotation or a previous automated annotation.
A further source of improvement to the quality of annotations, discussed by
Ouzounis and Karp (2002), is the regulararamotation of databases. The time
consuming nature of this type of procedure necessitates full automation providing

further weight to the neeaif high-quality automated tools for functional annotation.

1.3.3 Low Specificity Automated Function Prediction

A number of methods have been proposed for automated high throughput annotation
of genome sequences. Generally these are based on the understatdimeydhare
problems with the homology based approaches, however, for a large number of
annotations, especially when considering more general, lower functional specificity,

the accuracy is acceptable.
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1.3.3.1 GeneQuiz

One of the earliest automated functioaahotation systems w&eneQuiZAndrade

et al., 1999) and consists of a combination of sequence similarity (BLAST and
FASTA) and rulebased processing algorithms for annotation of both general and
more specific functional class. A wslie with details bfull genome analyses is
available (http://jura.ebi.ac.uk:8765/ey@nequiz/). An overview of the system

shows a general methodology common in many of the automated systems:

1 A sequence similarity threshold is initially applied to select the most similar

sequence pairs to the unknown query sequence;

1 Analysis of existing functional annotations (in the caseGeheQuizthis is
through rule based lexical analysis of functional keywords and EC numbers) is
carried out to obtain a consensus result of the mbablke function descriptions

to apply to the query sequence;

1 Application of annotation to query sequence, sometimes with an indication to the

level of reliability of the assignment;

1 Option for further manual analysis and editing of the result through fise o
addi ti onal Asupport met hods o, such as,
database searches.

Assignment of function using a method likkeneQuizshows some improvement
over -hiitop homol ogy transfer because the
based on a combination of sequence similarity, database quality and source
annotation quality.

1.3.3.2 Automatic Annotation of TTEMBL Database

An important system to consider is one underpinning the automated annotation of
the TrEMBL (Apweiler et al.,, 2004) sectioaf the UniProt protein database
resource. The algorithmic details and information flow of the system are described
in detail elsewhere (Moller et al., 1999; Fleischmann et al., 1999; Kretschmann,
2001), but a look at the overview of the methods used shosmilar (but more
complex) integrated rulbased processing approach to thatG¥neQuiz An

important consideration in the design of this system was that the aim of TrEMBL is
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to eventually move all sequences into the related Siigsdatabase; thdoge the
rules used for automated annotation are used to help inform the manual annotation

procedure.

1.3.3.3 PEDANT (Protein Extraction, Description and Analysis Tool)

The aim of PEDANT (Riley et al., 2006 http://pedant.gsf.de) is to produce a
software systemapable of a number of genome scale sequence analysis tasks. This
includes automated analysis of protein function based ongtigigency BLAST
sequence similarity searches to identify manually annotated homologous proteins for
function transfer. A numbeof different functional classification schemes are used,
including EC numbers. The system also assigns sequences according to COGs
(Tatusov et al., 2003) and carries out sequence motif and pattern detection searches
against a number of sequence motitatbases. Although the system provides
methods to prevent proliferation of potentially incorrect automatic annotations it is
still based on fairly simple sequence similarity based search techniques, and will
therefore suffer from the problems already désad when considering high

specificity predictions.

Recent efforts towards larggeale protein sequence annotation have concentrated on
the gene ontology (GO) framework as the basis for the functional classification (for
example: Xie et al., 2002; Martirt @l., 2004). Again, the main basis for these
methods is the use of similarity based search techniques with additional filters to
refine the predictions. Xie et al. (2002) describe a method that incorporates a
clustering algorithm based on the sequenlaniity and BLAST Evalues to group
proteins with potentially similar GO terms. The reliance of this method on text
parsing of annotation literature sources means that it is limited by the quality of the

text processing engine and the availability of gbi@iature sources.

The GOtcha method (Matrtin et al., 2004) is compared to thedopng BLAST hit

for each input sequence. The key factors related to this method are the accuracy and
confidence estimates provided for each annotation. Overall ththughmethod is

aimed at providing greater annotation coverage rather than a major improvement in

the level of specificity of predictions.

31



1.3.3.4 General Limitations

Most of the methods described above suffer from a number of limitations, especially
when consideng their application to higiguality, reliable and high specificity
function annotations. For some of the methods this is down to the fact that the
inherent design is for increased coverage of annotations, at a cost of a fairly general
level of specifidunctional classification.

A number of approaches have been proposed for a more detailed analysis of protein
function allowing the identification of specific functional siypes from groups of
closely related proteins. Many of these methods aim to takeantage of
information describing evolutionary relationships within protein families. These will

be the focus of the next section and are of most interest for this thesis.

1.3.4 High-Specificity Phylogenetic Approaches to Protein Function
Prediction

One of he main limitations of sequence homology transfer methods, for function
prediction, is their performance at identifying specific functional subfamilies in
closely related families of sequences. It has been shown that both phylogenetic
reconstruction (Eise 1998; Eisen and Wu, 2002; Sjolander, 2004; Johnson and
Church, 2000) and the identification of functionally determining residues
(Livingstone et al., 1993; Casari et al., 1995; Hannenhalli and Russell, 2000; del sol
Mesa, 2003; Lichtarge et al., 199@) functionally related protein families, through

the use of multiple sequence alignment (MSAs), can help towards improving the
specificity of protein function predictions. With the continued increase in available
protein sequences and full genome sequesate these evolutionary methods are

becoming more powerful and important for function analysis.

1.3.4.1 Phylogenetic Reconstruction Methods

Increased sequence information has led to an increase in the use of molecular
phylogenetic techniques for analysis and mtoh of protein function from
sequence. There are three reviews of particular importance in this area (Eisen, 1998;
Eisen and Wu, 2002; Sjolander, 2004), describing ways in which phylogeny can be
most effectively combined with sequence analysis to ingmethods for automated
function prediction. A closely related area of research, which is discussed in the next
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section, uses phylogenetic information to identify functionally important amino acid
residues.

The review by Sjolander (2004) provides an overview and discussiofigigee1.2)

of the important stages for the prediction of function using molecular phylogeny.
This methodology is an expanded form of that originally proposed by Eisen (1998).
Not al stages in this methodology are investigated during the experiments in this
thesis, however, it provides a good basis for discussion of some key areas and
previous work, related to the prediction of protein function using molecular

phylogeny based technigs.

Step 1. Identify

homologous sequences\ Step 2. Multiple Sequencs

/ Alignment (MSA)

[ —————3| Step 4. Identify Functionally

/ Determining Residues

T Step 6. Identify Orthologs ang

/ Paralogs
Step 7. Predict Function

Step 3. MSA Analysis

Step 5. Phylogenetic Analysi;

Figure 1.2. Flowchart showing the key stages in molecular phylogenetic
analysis of protein functionAdaptedfrom Sjolander (2004)

1.3.4.2 ldentification of Homologous Sequences

The first stage is the collection of sequences homologous to the unknown query
protein. Three potential limitations are highlighted when using homolog detection
for phylogenetic analysis; these af@ analysis of protein domains; (ii) possible
inclusion of false positives (nehomologs); and (iii) profile drift due to iterated
searches. The effects of the second and third problems can be reduced by a number
of means, the most obvious being the use of more conservative parameters when

including relatedsequences in the iterated homology search.

1.3.4.3 Multiple Sequence Alignment

High quality MSAs are essential for the accurate and reliable algorithmic

reconstruction of phylogenetic trees. A number of applications are available for
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multiple sequence alignmensome commonly used ones are: CLUSTAL
(Thompson et al., 1994);-COFFEE (Notredame et al., 2000); MAFFT (Katoh et

al., 2002); and MUSCLE (Edgar, 2004). When considering automated approaches, a
compromise must be reached between the quality of thenadigts and the
computational efficiency. A further, computationally less demanding source of
multiple sequence alignments is from the output of BISAST through use of the

i'm 6output parameter. These are essentially a concatenation of the multiple pai
wise sequence alignments identified by the sequence database search.

Methods for assessing the quality and reliability of regions within multiple sequence
alignments have been proposed (e.g. Tress et al.,, 2003). This type of reliability
analysis is impdant for the accurate detection of conserved functionally
determining residues, which is discussed in detail below. There have also been
studies that look at reducing the level of sequence redundancy in multiple sequence
alignments. An interesting metthdvased on the multdimensional QR factorisation

of multiple sequence alignments has been proposed by Sethi et al. (2005). This
algorithm is specifically designed to reduce evolutionary redundancy in groups of
homologous sequences to produce evolutionaptimal sequence sets for

phylogenetic analysis.

1.3.4.4 Phylogenetic Analysis and Tree Construction

Algorithmic methods for phylogenetic tree construction are well studied. Sjolander
(2004) concludes that the computational efficiencies of distance based meciorst
algorithms (such as neighbour joining) compared to character based (such as
maximum parsimony) make them more widely used and applicable te high
throughput computational analysis. A number of other factors can be highlighted
regarding the problems assessing the performance of different tree reconstruction
methods, such as, PHYLIP (http://evolution.genetics.washington.edu/phylip.html).
The main limitations are(i) lack of nonrsimulated test data and (ii) the necessary
tradeoff that is requiredbetween fast efficient computational methods and
robustness for higthroughput automated applicationk.is concluded that none of
themethods show any particular advantage in all cagéls the use ophylogenetic
bootstrap analysigFelsenstein, 19 combined with a number of multiple

alignment and tree construction methods recommended.
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An important step towards the inference of function from molecular phylogenetics is
the overlay of existing experimental information onto the reconstructed phytagene
tree containing query and related sequences. A crucial factor is the use of good
quality, manually verified, annotation data of the type available from databases like
SwissProt. Introduction of evidence tags in the gene ontology to track the sifurce

annotations is also an important development for these types of studies.

1.3.4.5 ldentifying Orthologous Relationships

Eisen (1998), Eisen and Wu (2002) and Sjolander (2004) highlight the importance of
distinguishing orthologs and paralogs in phylogeneticlistiof protein function.

This is an important task when considering ksgiecificity functional properties,
because if an ortholog to the query function can be identified then it is likely that
they will share identical (or at least very similar) spedifinctions. The clusters of
orthologous groupings (COGs) method is a resource of orthologous relationships
between proteins. Other methods developed for the identification of orthologs use
phylogenetic reconstruction methods rather than the sequentarigimof COGs
(Storm and Sonnhammer, 2002). These methods are likely to give more specific
functional information but may be limited for highroughput methods by increased
computational costs.

1.3.4.6 Prediction of Function

The final stage in the analysis pess is the actual prediction of likely function for

the unknown query protein sequence. Information gained from the earlier stages of
analysis should provide a culmination of evidence on which to base a reliable
prediction of the unknown protein functionThe best way in which to reliably
combine this information, to produce accurate ksghcificity predictions, will form

one of the main research topics of this thesis.

A number of methods have been developed towards improving the level of
automation ad level of prediction specificity. An early method Bayesian
Evolutionary Tree Estimation (BETE) (Sjolander, 1998jas applied to SH2
protein domains. The method creates profiles of each sequence in a multiple
alignment; an iterative partition algdrih then computes the total relative entropy
(TRE) between each profile, progressively grouping together the pairs with the
lowest TRE. The aim of this is to find an optimal partition of the phylogenetic tree
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of sequences, with the final sequence groupaugsesponding to subfamily specific
functional profiles. A change in the subfamily annotation of SWisd for the
SRC2_DROME protein was prompted by the analysis results from this method. The
BETE method has also been successfully used by Celera @snomannotation of

functional subfamilies (Sjolander, 2004).

Johnson and Church (2000) investigated the use of phylogenetic analysis to improve
the identification of specific ligartdinding functions in two related protein families
with similar folds lut different binding site specificities. This method was then
applied to other unknown sequences to try to identify specific lipamiing
functions. An interesting feature of this method is that the predictive power of the
phylogenetic trees for the wle domain sequences and those of just the binding cleft
were compared. Analysis of the results showed that whole domain sequence
similarity was not a good indicator of bindisgge specificity. In contrast the
phylogenetic groupings from the bindisgde sequence subset showed good
differentiation of the different binding specificities. A limitation of this method,
especially in terms of extending it to a more general automated approach, is that
prior knowledge of binding site locations is required gaccessful implementation.

One way in which this information could be obtained is through the use of
automated algorithms for the detection of functionally important residues. These are
discussed in detail below and form an integral part of this thesis.

1.3.5 Identification of Function Determining Residues

During evolutionary divergence of protein sequences functionally important residues
are conserved due to the pressures of natural selection. Methods for the
identification and analysis of the particular amiacids and their physiechemical

properties within these conserved regions are particularly important for prediction of

specific protein functions (Valdar, 2002).

1.3.5.1 Entropy

An important concept for the analysis of the level of conservation within regions o
aligned sequence residues is entropy. This is commonly defined using a measure of
the average uncertainty of an outcome, from information theory, called the Shannon
Entropy (Durbin et al., (1998)) (segquation 1.1
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0 BOwl 10Qw (equation 1.1)
Where:0 @ is the probability of observing the evens, , in a discrete set df
events. In the context of amino acid conservation, wk&eommonly taken to be
20 (the number of standard amino acidigré is complete conservation of one
amino acid type when the entropy is O and outcdmes certain. Conversely, the
entropy is maximised when all amino acids are equally likely and the outcome is

maximally uncertain.

1.3.5.2 Sequence Based Methods

Early work n the analysis of residue conservation was carried out by Livingstone
and Barton (1993). This method carries out hierarchical clustering of MSAs into
sequence subsets, based on criteria such as sequence identity and functional
similarity. Conservation sces for residues at each alignment position are then
calculated through a simple analysis of the physlwemical properties (Taylor,
1986) of each of the residues. The method was applied to an alignment of 67 SH2
domains, which led to correct identiftaan of phosphotyrosinbinding residues and

also conserved secondary structure elements.

A novel method- i Se g u e n c-a&plapedey Casari et al. (1995) represents

each sequence in a multiple alignment as a vector in a-thultme nsi on all s e
spaceo. The key feature of this method i
identify the characteristic residues and positions that define the functional
specificities of each protein subfamily. Projection of the conserved residues onto
lower dimension clusters allows the degree of conservation of the residues to be
visualised and measured by the distance of the sequence clusters (vector lengths)
from the centre of the space of principle components. An analysis of tHeaRas

Rho superfamily is sed as an example, showing how the direction of the vectors can

be used to define the specific residues of importance for the function of each
subfamily. Also, an application of the method to the reduction of phylogenetic tree
complexity by using only thedentified subset of specific functional residues is

shown.  The SequenceSpacenethod identified both the highly conserved
phosphotyrosine binding residues and more specific peptide binding residues,

therefore showing an increased specificity over thaivahgstone et al. (1993).
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1.3.5.3 Comparative Analysis of Methods

A study by Pazos et al. (1997) compared four methods for calculating tree
determinant residues: (BequenceSpagcéi) evolutionary trace (ET) (Lichtarge et

al., 1996); (iii) a method for compag subfamily conservation (Dorit et al., 1995);

and (iv) a method using sadfganising maps (SOM) of sequence clusters (Andrade

et al., 1997). SequenceSpacwas shown to be the most effective for the
determination of specific functional residues and 8exuenceSpacand SOM
methods were shown to be most stable to the inclusion of distantly related sequences

within the multiple alignment.

A more recent study (del sol Mesa et al.,, 2003) implemented three automatic
methods for the prediction of functionallymportant residues from protein
sequences. The primary goal of this study was a systematic, statistical assessment,
of the role tHettecmhnesanved rBsidaes can
functional specificity. This type of analysis is of pautar relevance because it
concentrates on methods for automated siggcificity functional analysis. The

three implemented methods are:

9 AThe Level E n tnrethiqu)y Th® endirhaimdod thig rBethod is to
study the conserved residues acting as specific functionadéteeminants using
a phylogenetic tree of the protein family. Different partitions of the tree are
investigated and the relative entropy is measuredni thhe most stable tree
level, which produces the most informative separation offaodilies. The
physicechemical properties of the amino acids are not explicitly taken into

account in this method;

T AThe Mutational B entethad)i ©he am dfiteis rhethddds ( MB
to calculate the mutational behaviour of potential-tteeerminant positions and
compare them to that of the whole sequence family. Mutational behaviour is
determined by evolutionary constraints and assessed using correlation snatrice
and rank correlation criteria. The aim of this study was to identify and separate
functional families using conserved residues. The hypothesis is that the
mutational behaviour of the treketerminant residues will be the same as the

whole set of familysequences; and
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9 iSequenceSpace Aut omethadd tThioia anMatontatedd O
implementation of theSequenceSpacmethod of Casari et al (1995). A
geometric clustering algorithm calculates an optimal number of clusters from the
initial PCA analyss and then attempts to identify positions relating to conserved

residues between subfamilies.

Each method was tested on two sets of-remlundant sequence families that have
known, single chain, representative structures in the PDBe set contasd 191
families (binding sites associated with various heteroatoms) while the other contains
112 (associated with annotated PDB SITE recori¢ith regards to the coverage of

the three methods, it is noted that there are some constraints dictated by the number
and level of conservation of the sequences representing each family grouping. The
MB-methodis unaffected by this and will always be able to predict some tree
determinants, whereas tlf&Smethodand Smethodare more sensitive to these
factors. The restd of this study are judged on the proximity of the identified
functional residues to either those heteroatoms deemed functionally important or
PDB sites. The results do not clearly stake a clainafgtof the three methods over

the other. IAfact, as a general rule, it was found that the intersection of prediction
results for two, or all three methods, increased the quality of the results. The results
were also complicated by their dependency on ype &and size of the functional
heteroatoms.

A more recent study by Pazos et al. (2006) explores the extension\Btheethod
to incorporate a functional similarity matrix into the correlation calculation of
mutational behaviour of sequences. This igmetally a supervised form of thdB-
method with prior functional grouping, and is discussed in more detaihapter4

of this thesis.

The ConSegmethod of Berezin et al. (2004) identifies functionally important
sequence residues through the incorporaf thei Ra t e 4algarithre. 0 This
algorithm uses the Maximum Likelihood method for phylogenetic tree
reconstruction, which, unlike the neighbgamning methods of phylogeny, takes
into account the rate of evolutionary divergence at particular repuokiBons. This

is, however, quite a computationally expensive algorithm when compared to some

the other methods previously discussed.
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1.3.6 Profile-Based Methods for Identification of Functional

Specificity
A group of related methods are those that attempotstruct sensitive profiles for
the specific identification of particular functional stypes. An early study on the
use and generation of sequence profiles was publishedribgk@v et al. (1987).
Following on from this work a number of profilmsedand HMM-based methods
have been developed to assist the general functional annotation of protein sequences.
These include the HMMbased approach of PFAM (Bateman et al., 2004), the
profile-based motif approach of PRINTS (Attwood et al., 2003), andriiegrated
database of resources provided by tools such as InterPro (Hunter et al., 2009).

These methods and their associated database resources are commonly used to help
determine the function of unknown protein sequences. However, due to the nature
of these methods, they are usually more suited to the annotation of general protein
function and care should be taken when annotating a more detailed, specific, level of
function (Whisstock and.esk 2003; Friedbeg, 2006). The main considerations

when using hese types of approaches are the level of coverage that they provide
when annotating function and also the number of sequence representatives used to

generate the profiles or HMMs.

For example, in the case of PFAM, the HMMs contained in the database are
generated at a protein domain level and are clustered into PFAM families using
homology based measures, rather than specific functional class. Therefore, it is
possible for single families of PFAM HMMs to contain sequences of different
specific functional sb-classes. The consequence of this, when using PFAM to
assign specific enzyme function, is that although the number of false positive
annotations at a more general level of enzyme classification should be reduced due
to the increased sequence coverapeytare more likely to be unsuitable for

determining more specific enzyme classes.

It is these potential limitations of the general profile and HMM based approaches
that led to the development of the BLA®&sed methods of specific enzyme

annotation inveggated in this thesis. They also led to the development of other
more sophisticated profile and HMM based methods for the specific purpose of

functional annotation that are discussed below.
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Three particularly important approaches, with regard to protaintibn prediction

and subsequent application to the improvement of the accuracy and level of
specificity, are those of Hannenhalli and Russell (2000), Tian and Skolnick (2004),
and Pazos and Sternberg (2004). Each of these methods is quite distinesand h

been applied to different datasets and functional classification schemes.

Hannenhalli and Russell (2000) describe a method for the identification of functional
subtypes and also functionally specific residue positions. Given a multiple
sequence alignent and information regarding the specific functional properties of
each sequence a set of hidden Markov model (HMM) profiles can be constructed to
represent each specific function. Potential functional specificity determining
residues are then identiflaising a relative entropy based measure, which takes into
account the likelihood that particular amino acids will be specifically associated with
one functional sultype over the others. A protein sequence of unknown specific
function can then be compar¢o the specific profiles to identify the most probable
specific function. Four large enzyme families (nucleotidyl cyclases, eukaryotic
protein kinases, lactate/malate dehydrogenases and tligesjproteases) with good
experimental information, regardj the specific functional properties, were used to
test the method. Examples were chosen that could not be separated by simple
sequence comparisons or phylogenetic tree comparison to demonstrate the power of
the method, with accuracies (for the four emeyfamilies listed above) of 96%
compared to 80% and 74% for sequence similarity and BLAST respectively. This
analysis was then extended to include 42 PFAM (Bateman et al., 2004) alignments
and was also shown to outperform both BLAST searching and sexjaenitarities

when identifying most of the specific functional subtypes.

The method of Tian and Skolnick (2004) uses a combined sybstd&fRICAZz
(Enzyme Function Inference by Combined Approachi four recognition methods

to improve the accuracy of enzgnfunction predictions, they are:

1. CHIEFc (Conservatiorcontrolled HMM lIterative Procedure for Enzyme
Family classification)This procedure consists of carefully built HMMs from
multiple sequence alignments of each enzyme family. A method, based on
information theory, is then used to identify functionally discriminating
residues (FDRs) for each enzyme family HMM derived by CHIEFc.
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2. Pairwise Sequence Identitx specific reliability threshold is used for each

enzyme family.

3. Recognition of FDRs in Multiple &fn enzyme familieSthis uses the same
Shannon entropy measure to identify FDRs as method (1) but PFAM

alignments are used in place of the CHIEFc generated HMMs.

4. Recognition of multiple high specificity PROSITE (Hulo et al.,, 2004)

Patterns

One of the mairoutcomes of this study is the importance, of the CHIEFc family
FDR recognition method, to the high accuracy recognition results that are obtained.
This is perhaps unsurprising as the CHIEFc method is purposely designed for the
accurate recognition of sgéc enzyme functions, defined by their annotated EC
numbers. As a result of this and the added effects of the other three methods, the
combined EFICAz approach shows high accuracy and high sensitivity during testing
on enzyme sequences in Swi®t andalso when applied to automatic annotation

of theE. coliK12 proteome. A comparison of enzyme function annotations made by
EFICAz and KEGG (KyotcEncyclopediaof Genes and Genomes) (Kanehisa and
Goto, 2000) for this genome showed that EFICAz predicted miére potential
enzyme coding genes at the specificity level of four EC numbers. The majority of
these in KEGG are either partially annotated (with 54 out of 69 showing correlation
with the partial annotations provided by EFICAz) or are marked as hymathet
proteins and did not have any annotation. These results suggest that EFFICAZ is
applicable to automated genome annotation and able to make novel specific enzyme

predictions.

The approach developed by Pazos and Sternberg (2004), known as
PHUNCTIONER, varies from the other two methods in that it uses multiple
structural alignments with the resultant profiles as the basis of its predictions and
recognition of functionally important areas. Also, the profiles used in this study are
based on the GO funchal classification scheme. Starting from a structural
alignment, proteins with the same annotated GO terms are extracted and grouped
together. Profiles of the functionally conserved residues for each GO term are

identified using a conservation score amgh entropy positions are filtered out.
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Position specific scoring matrices (PSSMs) are then created for each profile and the
performance for prediction of GO terms is compared to the use of sequence identity.
PHUNCTIONER is found to perform better thaime sequence homology based
method in most cases. This is especially true in cases of low (generally less than
20%) sequence identity. A further application of PHUNCTIONER was a
comparison to th&equenceSpaead the Mutational Behaviour (del sol Mesal.,

2003) methods for identification of functionally determining residues. The findings
indicate that the PHUNCTIONER method is able to identify residues that are related
to more general lowespecificity GO functional classification, whereas
Sequencgice and the mutational behaviour method identify residues that are

related to more specific functional properties.

Each of these approaches show good application to the prediction of protein function
and the identification of functionally determining hses for specific functional
subtypes. These methods all share a common limitation, which is their reliance on
pre-determined functional sufproups. The implementation of all three of these
methods depends on a prior knowledge and availability of acmurftiamount of
annotated sequence or structural representatives, with the same function, on which to

base the specific functional profiles.

1.3.7 Sequence and Structure Based Methods

The use of structural information in addition to sequence can provide adigt in

into the determination of specific functional residues and protein interfaces (Watson
et al., 2005; Lichtarge and Sowa, 2002; Filizola and Weinstein, 2005). These
methods generally share similar features to the sequence based approaches, with the
man difference being the requirement of representative, tireensional protein
structures, for the final analysis of the results. This is especially true for those
methods that rely on the spatial clustering of residues (Lichtarge et al., 1996;
Landgraf et al., 2001; Glaser et al., 2003) to assess the accuracy of predicted

functional residues within biochemically active sites.

1.3.7.1 Evolutionary Trace Method

The evolutionary trace method (ET) (Lichtarge et al.,, 1996) uses evolutionary

information available fron multiple sequence alignments to map predicted,
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functionally important residues, onto proteins of known structure. Through use of a
set of sequence percentage identity thresholds a multiple sequence alignment can be
partitioned into clusters to form a rdrogram (phylogenetic tree). A consensus
sequence can be obtained for the set of sequences either between or within each
cluster. This identifies those residues that are indicative of either the general
functional class (and therefore conserved in gelanumber of proteins), or those

that are only conserved within a subfamily (and therefore relate to the specific
function of the subfamily cluster)A number of extensions to the method have been
proposed that provide more robust statistical analysethefresults andalso

improved levels of automatidiMadabushi et al., 2002; Aloy et al., 2001)

There are a number of other approaches which have looked at utilising structural
information to improve the quality and specificity of functional sitentification

and protein function prediction (Watson et al., 2005). The method of Landgraf et al.
(2001) is described as an extension of the evolutionary trace, with one of the main
differences being that phylogenetic relationships are not used as inpbée
theoretical basis for not using phylogenetic information is that proteins with multiple
functional clusters could be averaged out in the phylogenetic tree, or highly
conserved residues associated with one function could overshadow those of a
secondey function. The evolutionary trace method is not designed to detect
secondary functional clusters; therefore the authors use a form of correlated mutation
analysis to highlight conserved clusters through regional similarity relationships.
This 3D cluste analysis technique has structural information at the core of the
functional analysis and is not of direct interest with regards to predicting function
from sequence information. However, the correlated mutation analysis that is part of
this method is ofnterest and (as we have seen above) has been shown by del sol
Mesa et al. (2003) and Pazos and Valencia (2006) to be successfully applicable to

sequence based studies of functional specificity.

Finally, an important consideration when attempting to iflefiinctionally active
conserved residues, from both sequence and structure, is the differentiation between
those that are structurally and functionally important (Chelliah et al., 2004). A
method incorporated int€onSegand ConSurf(Armon et al., 2001), which uses

neural network predictions to differentiate between buried and exposed residues in
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globular proteins, is one proposed solution to this. However, this assumes that
functional residues are always solvent accessible andoualed residues are

associated with structurally conserved regions. This is generally a difficult problem
to solve, due to the unavoidable ambiguity in classification of residues that are

responsible for structural or functional protein properties.

1.4 Non-Homology Based Methods for Function Prediction

It is worth briefly mentioning some methods for protein function prediction which
are not based primarily on sequence homology detection. One approach is that of
Jensen et al. (2003), which uses derived physihemical sequence properties
instead of sequence similarity. These sequence features are then used as input to a
system of neural networks for the prediction of GO classifications. The advantages
of this method are that it can predict functions for seges with no known
homologous relationships (orphan sequenckeyvever, the limitation is that the
predictions obtained are mostly low specificity general classificatio@ther
approaches to nelmomology based prediction of function through the usgrotein

protein interaction data have also been described (Marcotte, 2000). A further
method of interest in relation to sequence based homology prediction is that of
Espadaler et al. (2005). This method investigates a combined approach to the
combinationof sequence homology and protgirotein interaction data for use in

improving structural and functional annotation.

1.5 Overall Conclusions and Summary

The comparison of the many different approaches to automated function prediction,
especially those aimedwards improving the overall accuracy and specificity of the
functional annotations is an inherently difficult task. This is due to a number of
contributing factors:

1 The lack of an unambiguous description of protein function, especially when

trying to conpare levels of specificity; and

1 The lack of benchmark datasets that can be used as a clear way to distinguish,
compare and judge the performance of newly developed prediction methods
(Tetko et al., 2005).
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The efforts of the gene ontology consortium and dhaotation projects such as
GOA are making important contributions to the standardisation of how protein
functions are described and annotated within sequence databases. However,
problems still remain, even with this scheme, as to how best to compareasdre

the specific functional distance between two predicted functional terms. For
example, if the actual function of a proteirxiand the predicted function ys how

should the resulting accuracy of this prediction be measured? As has beerediscuss
earlier, the EC scheme gives a widely used way of estimating this by treating the
number of correctly predicted EC numbers as roughly comparable to levels of
functional specificity. This has a number of problems, (i) It is only applicable to
enzymes aah (i) it is possibly too simplistic and will cause valuable information to

be lost and not considered when assessing the results. The problem is possibly more
difficult when considering gene ontology terms. Due to the gbgsed architecture

of the GOhierarchy an intuitive way of measuring functional distance may be to
count the number of edges between terms, or possibly for comparing levels of
specificity, the depth of the termode in the graph could be used as a measurement.
The subjective naturef defining protein function makes this a problem that may not

be solvable in an exact way.

As we have seen in studies on the level of sequence similarity required for the simple
transfer of function via homology, clear levels of sequence similarity retjtore
specific levels of functional inference are difficult to agree upon. These problems of
firm comparisons are increased when comparing the many different techniques for
improving the prediction of functional specificity or identifying functionally
important residues. This is particularly problematic when looking at ways to
incorporate these techniques into an automated-thiglughput approach to high
specificity function prediction. Mainly because the question of which methods to

include to best adbve these aims is difficult to definitively answer.

It has been shown that the incorporation of evolutionary analysis of protein families,
through phylogeny, improves the accuracy of ksglecificity function prediction in
comparison to simple homologyatisfer methods (Eisen, 1998; Eisen and Wu, 2002;
Johnson and Church, 2000; and del sol Mesa, 2003). These methods also aid in the

identification of functionally important amino acid residues. However, there are
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many difficulties still to be overcome fdhe development of methods and their
integration into a fully automated solution to the problem of reliable, accurate, high

specificity protein function prediction from sequence.

The key aims of this literature review were: (i) to give a critical discanssfahe

area relating to automated prediction of protein function, with a concentration on
methods that have been used to improve the accuracy and specificity of the
prediction results; and (-ofth¢a rtthoe ahuitgohmaitc
methods for highspecificity function prediction from sequence. The most
satisfactory conclusion appears to be that there are a number of different methods
that show varying levels of ability to predict specific functional properties. The
comparative analys of Pazos et al. (1997) showed the superiority of the
SequenceSpaceethod for determining specific functional subgroups, however, this
method suffers from problems associated with the level of automation possible. The
later study of del sol Mesa (200B)plemented three automated methods (including

a semiautomated form oBequenceSparéor comparison and concluded that the
best results are obtained from combinations of the methods. The hidden Markov
model based suprofile method of Hannenhalli anduRsell (2000) has also been
shown to work well for both identifying specificity determining functional residues
and application to functional stiigpe prediction. It is these two studies, along with

the ideas contained in the salignment phylogenetic censtruction studies of
Johnson and Church (2000) that will form an important part of this thesis.

In conclusion, the best approach for a fully automated approach tesfnegificity

function prediction from sequence appears to be a combination of thwabpti
properties of a number of methods. Using evolutionary information relating to the
relationships between homologous protein sequences it should be possible to
accurately identify specific functional details that have been acquired through the
process bevolutionary divergence. Approaches to combining these methods and
extracting important algorithmic features in reliable, automated vWags a major

part of the research in this thesis. These ideas and methods are then extended to
investigate the fasibility of using machine learning techniques, namely support

vector machines (SVMs), to identify the function specificity determining residues
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(fSDRs) in a fully automated way, from multiple sequence alignments, without using

any prior knowledge of thaihctional suktypes of the constituent sequences.

1.6 Outline of Research Thesis

The major aim of this research was the development and assessment of methods for
use in an integrated and automated system for the prediction of detailed, specific,
protein molealar functions, from sequence information. In a review of the literature

a number of methods have been described which investigate function prediction,
using sequence information and algorithmic techniques, for improving the accuracy
of specific functionkinference. However, to my knowledge, there are at present no
methods that successfully combine these features into onghnalghput, accurate

and robust fully automated system for the prediction of specific protein functions.

The overall goal of thisesearch was the development and investigation of methods
for re-evaluating the sequence similarity of homologous proteins to generate an
improved scoring method for assessing functional similarity. An overview is
presented, infigure 1.3, of the main sages involved in this processFirst, a
sequence database homology search is carried out using a query protein sequence of
unknown molecular function. An MSA is returned from this along with an
associated sequence similarity score (such as a BLA®IIUE) for each sequence,
which is used to order the sequences by similarity to the query. Using a homology
transfer method for function prediction, the query sequence would be assigned the
same function as the most significant annotated sequence above laritgimi
threshold. However, this will lead to incorrect annotations in circumstances where
the most significant sequence is not the same specific function as the query. A
simplified example of this is shown figure 1.3,where the query sequence (with
function =func_B shows a greater degree of sequence similarity to 3 sequences

(seql, seq2 and se®ith function =func_A

In a case such as this, additional properties must be taken into account to provide an
improved method for assessing functionahikarity between the query and the

group of sequences with function fanc_B. Methods are proposed that aim to
automatically identify amino acids that are indicative of evolutionary conservation
within groups of functionally specific proteins. This damthought of as a form of
Aphyl ogenetic filteringo of the aligned
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functionally determining, subet of aligned residues. The examplefigure 1.3
shows four aligned columns that have conserved residues witikinspecific

functional groupings and variation between.

It then becomes possible to calculate a new measure of sequence simuarity

only the sukset of amino acids most likely responsible for determining the specific
functional properties and thus reorder (or cluster) the sequences to provide an
improved measure of functional similarity. From the exampfegure 1.3 it can be

seen that when only considering the four aligned columns containing the fSDRs, the
query sequence is most closegtated to the group of sequences with function =

func_Band therefore predicted, correctly, to be of that specific function.
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Figure 1.3. Conceptual overview ofhe proposed methods of analysis

and key areas of investigation carried outhis research thesis
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With regards to the automatic identification of functional specificity determining sets
of residues, a disadvantage to the methods analysgthpier4, of this thesis, was

their requirement for prior knowledge of the specific functional classifications of the
sequences contained within the MSAs. This limits the use of these methods to
alignments of functionally weltharacterised sequences, thus pmémg a more
general approach to the classification problem and limiting the possible uses to a
much reduced sample space of functionally annotated sequences. To circumvent this
requirement it was suggested that machine learning methods, such as segoort v
machines (SVMs), could be used for the automatic identification of fSDRs in
multiple sequence alignments. The analyisighapter 5 investigates the feasibility

of using SVMs towards automatically identifying fSDRs and thus the possibility of
incorporating this identification into a fully automated system for improving the

specific functional classification of enzyme sequences.

The target audience of the methods analysed in this thesis is expected to be
researchers and genome annotators, who ameaply interested in accurate, high
specificity, functional genome annotation, when close homologs with differing
specific functional properties are available to provide an evolutionary analysis.
Although the analysis within this thesis concentratesherfiinctional classification

of enzyme molecular function, it is expected that the methods would be generally
applicable to other types of proteins. To test this hypothesis, however, an alternative
benchmark set of protein sequences and the use of refemational classification

schemes would be required.

In summary, the analyses presented in this thesis aim to investigate automatic,
computationally efficient methods for the transformation of sequence similarity
scores into a measure of functional saritly, which provides a reliable and accurate

measure of specific enzyme functional classification.
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Chapter 2  Investigation into the Functional
Conservation of Enzyme
Sequences and Dataset

Definitions

2.1 Introduction and Aims

The work of Rost (2002), Tian and Skolnick (2003), and Todd et al. (2001), among
others, shows that the level of corradatibetween protein function and sequence
similarity measures follow a common relationship; where the accuracy for functional
transfer becomes greater with a higher level of sequence similarity. The work in this
section aims to provide an initial investiiga into the level of error involved when

using homology based sequence similarity measures for the assignment of protein
function and provide the source for the benchmark datasets of multiple sequence
alignments used within this thesis. An importanttdacof this work was the
investigation of homology transfer when applied to the prediction ofs$pglificity

protein function. The functional classification chosen for this analysis was the
Enzyme Classification (EC) scheme. This method of classditatvas chosen
because it has already been widely used with good success in the studies mentioned
above (Rost, 2002; Tian and Skolnick, 2003; Todd et al.,, 2001) and provides a
relatively simple and effective way of computationally measuring the level of
functional specificity. Through comparison of the number of shared EC numbers
between the input query sequence and the homologous sequences obtained from a
database similarity search, an understanding of the level of specific function

prediction at varyingeqquence similarity thresholds can be obtained.

Most previous studies of this type have aimed to identify detailed relationships
between sequence similarities (such as percentage sequence identity or statistical E
value scores) to obtain definitive thregheklues for varying levels of sequence and
functional conservation. This study also provides an understanding of these
properties but aims to concentrate on the areas of high functional specificity, by
looking at the correlation between sequence home®agund the correlation to the

conservation of all four numbers in the EC classification hierarchy. A further aim is
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to provide a set of benchmark examples where the-digho r i nhgi t ot, o pt 0 &
At arget 0 sequenc-B8LASTohbmokgysearddods nab identdy aP S |
protein sequence with the same specific function as the query sequence.

2.2 Methods

221 Coll ection of Atargetodo Enzyme Sequenc

The method followed for the collection and identification of enzyme sequences for
analysis is based on that of Tiand Skolnick (2003) and Rost (2002). The Swiss

Prot (version 46) section of the UniProt (Apweiler et al., 2004) (version 4.0)
sequence database was used as the source of the analysis sequences. From the
SwissProt database, which contained 168,297 sempgera total of 43,572 enzyme
sequences with fully annotated EC codes at all 4 levels of the hierarchy were

I denti fied. These enzyme sequences in t

the following way:

1 All sequences that have annotated EC numbers t he fADescri pti on
their records in the SwidRrot database were identified, sequences which fulfil

any of the following criteria were then removed from the final target set:

1. They contain incomplete EC annotations and therefore undetermined
numbers (e.g. EC 1.2:3would be classed as an incomplete annotation and

therefore removed);

2. They have multiple EC annotations and are therefore defined as

multifunctional enzymes;

3. Contain any of the following Keywor
Keywio (KW) o f-Pebd Of,fiBwpabhedi cal o, 0
by homol ogyo, Aby similarityo),;

=]

3t

4. Are identified as fragments and there
the SwissPr ot fADescription (DE)o field.

This process identified 45,164 sequences. All 100% identical sequences were then
identified and a single, randomly selected, representative of each sequence cluster
was kept in the dataset. This reduced the target set by a further 1592 sequences to
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prodwce the final enzyme sequence set of 43,572 sequences. These sequences
consist of 1901 distinct enzyme classes measured to all four levels of EC specificity.
These were tagged and identified as fta
database used ingh ne x t stage and are referred t
places in this thesis. These criteria were used to ensure that all of the sequences
added to the target set had associated functional annotation data which was complete
and most importantly,o f a hi gh guality, -sd@athaiam ead
annotations in the Swid3rot database.

2.2.2 ldentification of Homologous Sequences

After identification and extraction of t
dataset a PSBLAST (Altschul et al., 997) database search was carried out to
identify homologues for each of the 43,572 target enzymes. This was so that the
level of functional inference from sequence similarity search measures could be
assessed. A PELAST search was carried out for eaoh the target enzyme
sequences against the UniProt (Swisst + TTEMBL) database (version 4.0), which
contained 1,757,967 sequences. To improve database search efficiency and reduce
the number of false positives, each input sequence was filtered usii®E® low
complexity filter (Wootton and Federheri996) and all of the sequences in the
search database were filtered using the low complexity,-treamsbrane and coiled

coil filter options of theofilt application (Jones and Swindells, 2002). $§kquence
database search was carried out using 3 iterations eBIP’SST (version 2.2.10),

using the default iteration inclusion valué parameter) of 0.001 and an output E
value threshold of 10. Also, the maximum number of sequences included in the
BLAST search output and resultant multiple sequence alignments (MSAs), was set
at 5000 using thév andib command line parameters. Finally, with regards to
compositionbased sequence statisticsvhich are calculated from the sequence
composition of the dabase sequences (Schaffer et al., 20Ghg default setting,
which includes these calculations, was applied through the settingidgfdbemand

line parameter-{ T). All other search parameters were left unchanged from the
default settings of PSBLAST (blastpgyp version 2.2.10.

The resulting output list of detected homologues was then filtered to remove all

sequences not identified as belonging to
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sequence dataset. This was so that comparisons could be be@dsen the
functions of the query sequences and those identified as homologues in the PSI
BLAST search.

2.2.3 Definition of EC Conservation Accuracy

The method used to calculate the accuracy of specific EC functional conservation,
with respect to sequence slarity measures, is described eguation2.1. This is
based on the method used by Rost (2002), slightly adapted to take into account

ranges of similarity thresholds.

aMatching g
e

C All =
Where:ii Ma t c tsignifigsdthe number of funatnally matching sequence pairs

Accuracy=100* (equation 21)

within a defined range of sequence similarity threshold valuesfiafd dignifies

the number of all sequence pairs within this same range.

2.2.4 Calculation of Global Sequence Identity

A full NeedlemarnWunsch pahwise sequencdignment algorithm fleedleman and

Wunsch 1970) was used to calculate a global percentage identity score between the
guery sequence and all Aitargetd sequence
needleapplication from the EMBOSS (Rice et al., 2000jtware suite was used

with the default parameters: BLOSUM®62 substitution matrix; gap open penalty of

10.0; and gap extension penalty of 0.5.

2.3 Results and Discussion

2.3.1 Level of EC Functional Conservation

A comparison between the level of EC functional coretésm and sequence
similarity measures (PSBLAST E-value and global sequence identity) was carried
out to assess threshold levels for reliable, accurate transfer of specific enzyme
function by homology. The first step in the analysis of the data wassastigation

of the level of functional conservation with respect to the observe®PAST E-

values between each of the identified qutamget pairs. The method described in
section2.2.3 was used to calculate the accuracy of functional transfer, within E

value ranges, which were calculated by taking the minus of the log (to base 10) of
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the Evalue. The results of this analysis are shown in the grapgure 2.1 for the

two levels reldhg to the most specific level of functional correlation available with
the EC classification scheme. These: diig the first three EC numbers are
conserved (EC3: n.n4), and (ii) all four EC numbers are conserved (EC4: n.n.n.n).

It can be seen frorfigure 2.1 that as the level of functional specificity increases
(from EC3: n.n.n.to EC4: n.n.n.n), the accuracy of functional transfer using the
PSIBLAST E-value decreases. Overall these results seem to agree quite closely
with those of Rost (2002) ihis study of ' iteration PSIBLAST E-values. The
results show that even at very statistically significaivakies, commonly used for
functional transfer (such as 1b=> -log(E-value)=50), the accuracy of exact
specific function prediction (all four®& numbers are conserved) is only just slightly
greater than 90%. Similarly, the results comparing EC conservation accuracy to
sequence identity, ifigure 2.2 show that even at levels above 50% identical

residues, the accuracy of specific functional tianis less than 100%.

When considering the correlation between sequence identity and functional
conservation, these results agree most closely with those of Todd et al. (2001). The
results reported by Rost (2002) are much more pessimistic and reparptverds

of 70% sequence identity (local sequence identity reported frorBES$T) is
needed to transfer all 4 EC numbers with comparable levels of accuracy. A more
recent study by Tian and Skolnick (2003) reports yet another different threshold
requirenent of 60% sequence identity (global sequence identity) for at least 90%
accuracy for the same level of specific function transfer between sequence pairs.
The main differences between the results of these studies is thought to lie in the
disparate way irwhich the datasets from each have been formed, especially with
regards to the particular thresholds that have been applied for sequence and

functional redundancy removal.
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The aim of this study was not an exhaustive comparison between the many methods
and previous studies carried out in this area because this has been discussed
extensively in previous wkr However, the results shown figure 2.1 andfigure

2.2 do achieve the aim of highlighting the problems, which have been previously
reported (Todd et al., 2001; Rost, 2002; Tian and Skolnick, 2003), regarding the use
of sequence homology for specifignictional inference. These are that it is not a
simple matter to make a definitive prediction of enzyme function, based on simple
sequence similarity measures and that the disparate nature of the datasets used makes

it difficult to even agree on the behktesholds to use (Valencia, 2005).

2.3.2 Functional Analysisof PSFBLAST -t bp Sequences

A common approach to assigning the function of an unknown protein sequence is
through the transfer of function from a previously annotated homologous sequence
with themost sign-shitoantsegiieoape similarity s
used to assess the number of correct predictions that would be expected when
simulating the prediction of the specifi
way. As expedd, the results showed that a majority of cases (42453 (out of 43572)

in the first iteration and 41637 (out of 43572) in the final iteration) are examples of a
correct prediction from the top RBLAST hit (rank position one). This was
expected due to tHarge amount of potential sequence redundancy within the source
SwissProt database. There are however a number of examples where this is not the
case and the first correct specific functional sequence result occurs at rank position
(ordered with respecto decreasing statistical significance of the sequence
alignments) two or lower, with 354 and 1214 examples in the first and final
iterations respectively. A third case, which make up the remainder of the examples,

is where no correct functional hits afeund. These types of examples are not
considered further in this work as they are not suitable for use in the discrimination
between the specific functional stypes of sequence homologues.

Interestingly, it is the SLiteration PSIBLAST results which give the largest number

of correct examples, with respect to a specific functional match at all 4 levels of the

EC hierarchy. Also, this means that in a number of cases the iterat&LRST

process actually causes aader i or ati on of the fthnadatdi.ona

An interesting discussion on the effect of #BRIAST iteration on functional transfer
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is provided by Tian and Skolnick (2003). They show that thalkes of closely

related querssequence pairslfave 70% identity) tend to increase in later iterations,

but decrease for those below 70%. This result suggests that some thought must be
made as to whether an iterated database search is the best approach to annotation of
specific enzyme function, andsb, the Evalues used to interpret the results must be

carefully considered in the context of the iteration from which they came.

The relatively low number ofi i n ¢ o rsagwece éxamples is likely due to the
inherent bias within the Swid3rot databas and t he associated
sequences. Both Rost (2002) and Tian and Skolnick (2003) give detailed discussions
of these estimated database redundancy issues. For this study | have not pursued the
effects of potential bias any further becauss ot definitively clear if, or how, any
potential sequence redundancy should be removed. This is especially true when
considering the use of multiple sequence alignments and the associated evolutionary
information in later stages of this work, becauselevel of evolutionary divergence
observed in certain sequence residues can be crucial when determining the specific
functional subktype. Also, it was decided to concentrate on the alignments generated
by the f'iteration of the PSBLAST sequence datase search. This is because of

the results described above, related to the deterioration in functional inference in the
later iterations and also because in this work it is the more closely related sequences
that are of most interest. Therefore, the abkean iterated search to identify and
include more distantly related sequences, in the resulting MSAs, is of lesser

importance for this study.

2.4 Collection and Definition of Datasets

One of the main aims af h e -hilittoop f uncti onal icatoadfgsi s wi
set of data that could be used as an experimental benchmark for comparing the
performance of specific function prediction techniques investigated in this thesis. It

was decided that this data should consist of examples thatfshow ¢ o specdic t 0
function prediction when transferring th
from PSIBLAST. This was deemed an appropriate form of benchmark because it
simulates real problem cases likely to be encountered by a researcher attempting to

determine the specific function of an unknown protein sequence. Therefore, any
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automated approach which consistently improves on the accuracy of this simple

homology based method should be highlighted by this benchmark.

The approaches to the benchmark skttecollection are described below. Two

different methods are described. This is because, due to limitations in the size and
guality of the Ainitial o dataset, it wa s
coll ect a much | acogect benshenark exdmplgs.a Thie ideftai ¢ i a |
content of each of these datasets is a set of MSAs, generated {BLARST,

through the use of thiem 6 command line parameter. These MSAs were used for

the benchmark studies because they are very computationatiem®tffito generate

and are of a good quality.

Unlessstatedotherwise all MSAs analysed are generated from thieetation of a

PSEBLAST database search (using thlastpgpexecutable version 2.2.10), which
is the same as a gappBUAST database searchTherefore the notation: BLAST
and PSIBLAST is used interchangeably.

241 Coll ection of the Al nitial o Benchmark

2.4.1.1 Method

The initial approach taken to identify a benchmark dataset for use in testing and
validati on, focused dmcar seltietcd egin esgiibcstei
obtained from the BLASEnalysis It was decided to extract this subset from the
examples which showed predorct éotnh fiteml t s
final PSFEBLAST iteration results. This restriction wasade because it meant that

the sequence ranking and associated MSAs for both of the iterations could be
compared if required in later studies. Two further criteria were used in an attempt to
improve the dataset quality: (i) the removal of all exampthes share zero EC
numbers between the query and the highe:
cases from the dataset which highlight potential problems related to potentially
misleading functional distances in the EC nomenclature; and (ii) the removal of
examples which had less than 5 sequences with the same specific function as the

guery in the multiple alignments.
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2412 Properties of the Al nitial 0 Dat aset

The above steps led to a final dataset containing 126 sets -®&LAST multiple
sequence alignments. d$e represent 76 distinct 4 digit EC classes, with all 6 of the
general enzyme classes being represenilus dataset will be referred to as the

Ainitial 0o dataset in any |l ater discussi 0l

2.4.2 Collection and Definition of Expanded A Ar t i fi ci al 6 Benchi

Datasets

2421 0Overview of NnArtificial o Dataset Cr ea

Due to the smal/l size of the Ainitial o d.
a second, expanded, benchmark dathset the PSIBLAST analysis, by using a

much lager set of aligned target sequences. The construction of this dataset was
done via the pognodification of a subset of MSAs that satisfied particular criteria

of the original43,572database searches. Again, the main aim of this dataset was the
collection of examples which show an incorrect specific functional comparison

bet ween the query and the most significal
that this situation can be simulated by removing all of the sequences found in the
database search,hieh have the same specific EC function as the query and are
classed as more significant than the first incorrect sequence hit. An overview of the
method is shown ifigure 2.3. After removal of these fic
of examples remaintha pr oduce an #Aincorrecto predi
the most significant remaining sequence from the BLAST output. To provide
reference to the fact that these datasets consist of ordered multiple sequence
alignments- where the topanked (f) syuence i s al wingosectof a d
specific function to the query sequencelatasets of this form are described as
AAIILStINCORREC® t hr oughout the thesis. Al t ho
Anaturall ydo occurring iinsequence databaseesgascmp | e s
they should be of a high enough quality to provide an accurate prediction
benchmark. Indeed, the nature of the S¥Asst database from which the target

enzymes were collectedi s it sel f an fndarti humeroual 6 co

biases from historical and research origins (Rost, 2002).
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query function A query function A

seq_1 function A seq_4 function B

seq_2 function A seq_5 function B

seq_3 function A seq_6 function A

seq_4 function B .| seq_7 function A

seq_5 function B "] seq_8 function C

seq_6 function A seq_9 function B

seq_7 function A seq_10 function A

seq_8 function C :

seq_9 function B Original Modi fied fi

seg_10 function A BLAST output BLAST output
Figure 2.3. Overview of the process used to create the artificial
AAll 1st]l NCORRECTO dataset exampl es. The

shows an example where the threest significant sequences (seq_1, seq_2,

seq_3) have the same function as the query but not as seq_4. Removing these
three sequences produces the modified @Ain
seq_4 is now the most significant, 4@mked, sequence hit.

The source data for this dataset was the 43572BRAST searches obtained from

the target sequences. All analysis of the output sequence properties is confined to

the sequence homologs identified in tHePSFBLAST iteration. The process was

as follov s : (i) 28#4onempmpl es whese ¢hat hawanmov e d  (
target sequences in the output) ( i i ) -clobr2rOelc tfica lddx ampl es wer
those that have only target sequences with the same specific function as the query in

the output) This identified a reduced set of 28087 examples.

2.4.2.2 Method Used to Ensure a Minimum Level of Functional Diversity in

the Benchmark Multiple Sequence Alignments

Two further restrictions for inclusioint h BISAffunctional diversity criteria- were
thenapplied: (i) only include examples with at least 10 target sequences with the
same specific function as the query and are less significant than the first incorrectly
matching target sequence. This reduced the dataset to 6114 examples; and (ii) only
include examples with at least 10 target sequences having a different specific
function to that of the quer yartficiallihi s | e
All1stINCORRECd exampl es t hat successfully sat
inclusion of MSAs within the benchmark datasets of BEAST generated multiple
sequence alignments. The choice of 10 sequence examples was partly arbitrary, but
mainly influenced by the fact that it was the number used by Hannenhalli and
Russell (2000) when selectiig~AM (Bateman et al., 2004) based MSAs, for a
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similar analytical purpose. This is an improved method of ensuring a degree of
functional diversity within the MSAs, when compared to that used for the definition

of the Ainitial o dataset.

2.4.2.3 The MUERY.enzymes.41890 Seguence Set

This set of 4189 enzyme sequences that were used as the query sequences in the
generation of these exampPUERY.enzymesilB9 be r
sequence set throughout this thesihey show a good distribution of 140 dmsti

EC classes measured to 4 levels of functional specificity and all 6 general EC classes
are represented. Further consideration of the-mamesentation of certain specific
functions is addressed and discussed when required while interpreting particul

results at later analysis stages in the thesis.

The bulk of the benchmark analysis, results and conclusions in this thesis are from
datasets that have been defined using this particular source set of 4189 query enzyme
sequences. In general, thesesisinof multiple sequence alignments that have been
generated through the use of alternative-BISAST sequence database search
parameters, allowing comparative analysis between each of the datasets. The

procedures used to define these datasets arelwkxbanidetail below.

2424 Met hods Used t o D-eAflilnles ttl NeC ORREtCITfOI cDiaa
of MSAs

In this section the procedures are described that are used to define some benchmark
datasets of MSAs that are repeatedly used throughout the experimentshedhss

These aralefined atthis point to avoid unnecessary repetition at later stages. An
associated standardized naming convention, used to refer to each of the particular
datasets, is also explained. The core methodology used for thBLRST
seqence database search was essentially identical to that previously discussed in
this chapter. There were a number of alterations to particular parameters, which are
discussed at relevant points, and for clarity the full procedure that was followed is
repeded below.

The AQUERY.enzymes.4189 s e q uvera aised as the input query protein
sequences. A PELAST database search was then carried out for each of the 4189

target enzyme sequences against the UniProt (Swats+ TrEMBL) database
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(version 4.0),which contained 1,757,967 sequences. Each input sequence was
filtered using the SEG low complexity filte¥Mootton and Federhed996) and all

of the sequences in the search database were filtered using the low complexity, trans
membrane and coilecbil filter options of thepfilt application (Jones and Swindells,
2002). The sequence database search was carried out using 1 iteration of PSI
BLAST version 2.2.10, using an iteration inclusion valtke garameter) of 0.001

and the default BLOSUM62 amino agdbstitution matrix, with a gap open penalty

of -11 and gap extension penalty-df Also, the maximum number of sequences
included in the BLAST search output and resultant MSAs, was set at 5000 using the
v andib command line parameters. Further, thega content of each of these
datasets is a set of MSAs, generated by thigetation of PSIBLAST, through the

use of théd m 6command line parameter.

The resulting MSAs were then filtered to remove all sequences not identified as
functionallyannotat d it ar get 0 édrnMMaMMSAe taegeen ecaag y me
Finally, each of the resulting 4189 BLAST MSAs were processed using the
AAIILStINCORREC® ar t i f i c i-nsodificaticn pracedere, foffowesd by the

AMSA functional diversity criteria .

A further two parameters were also used in the generation of the BLAST based
MSAs. These are: (i) whetheompositionbased statistics were utilised during the
database search, through the setting ofi theommand line parameteand (ii) the

level of the Evalue output threshold parameter, which controls the sequences that
are included in the final MSAs through the statistical significance of the sequence
similarity between the query and target enzymes. The particular values used for
these parameters eardefined with each of the specific dataset definitions given

below.

With regards to the use of compositibased statistics when generating the MSAs, a
discussion related to the reasons for altering this parameter usage is provided in the

next chapter.

As for the output Evalue threshold parameter, originally the default value of 10 was
used. However, due to the nature of the faghcificity function assignment goals

of this thesis, it was later decided to use a more stringently filtered dataset of MSAs,
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by applying a lower threshold of 0.001A lower Evalue threshold provides
alignments that contain sequences with more significant sequence similarity to the
query sequence. An outcome of this more stringent alignment filtering is that the
MSAs will gererally contain fewer sequence homologs and functional false
positives. It follows that the number of dataset examples that satisfiiiBA
functional diversity criteria, used to ensure a minimum level of functional diversity
within the MSAs of the datass, is also reduced as thev&8lue output threshold is
reduced.

2.4.2.5 Dataset Naming Scheme

To avoid confusion and increase clarity, each of the BLAST generated datasets of
MSAs are named using a standardized naming scheme. The elements of this have
been chose to highlight key dataset features and creation parameters that will be
discussed at particular experimental stages during this study, namely:
AAIILstINCORREC® - the MSAs have been modified wusing the
AAIILStINCORREC® ar t i fi ci al d aefiia sTedvmpasitiopbeaded on pr
sequence statistics have been used during the sequence database search through
setting theit parameter tor (true); itFO T compositiorbased sequence statistics

have NOT been used during the sequence database search thrdinghtlset t

parameter toF ( f a | BLOPUYMEDhi refers to the particular amino acid
substitution matrix used for the database search (in this example the BLOSUM62
mat r maske@ 1 the residues in the resultant MSAs still contain the sequence
masking ued to aid the database searthynmasked i all of the sequences in the
MSAswerepospr ocessed to replace alll masked i
original amino acid residues from the source, target, SRiigsprotein sequences, to
gener at ed d uM3Ineaimaé indicates that the output¥alue threshold,

which controls the sequence similarity to the query sequence of the MSA sequences,

is set as less than or equahto

2426 Then Al | 1 st | NCOshRiRERQQOosition-Based Statistics
Datasets

Two datasets of key interest in this thesis have been created when using
compositionbased sequence statistics in the BLAST search. These are both the
masked and unmasked forms of the dataset that used the defallieBMSA output
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threshold of 10. Thes are referred to as the

AAlI'l 1st |l NCORRECT.t T. BLOSUM62. maskand . E100
AAl Il 1st | NCBRRBFUEE&IunmaskedE 1datasets respectivelyfter the

application of thdi MS A t ar get eandiklbsdNCORRECS ra rntgiof i ci
dataset posmodification p ocedur es, f MBA fanstermhl diveysityt he
criteriao , both of these datasets <contain ¢t}
properties of the 4189 query sequences that define these datasets have already been
di scussed QUERY.dnames.dlBd s equé@nce set sectiol

2427 Thein Al | 1 st | NCWiR&&IECOMposition-Based Statistic:

Datasets

Four additional datasets used in this thesis were created without using comgposition
based sequence statistics in the BLAST search. These are both the masked and
unmasked forms of datasets that usedakie MSA output thresholds of 10 and
0.001.

After the application ofth MS A t ar get eandiklbseNCORREEC®e r i ng o
artificial dataset posmodification procedures, followed by h éMSAffunctional

diversity criteria0 , the masked and unmasvaleed=1d at as e
threshold, each contain the same 4054 MSA examples. These are referred to as the
AAIILstINCORRECT.tBLOSUM62masked E 1 0 0 and
AAIILstINCORRECT.tBLOSUM62.unmaskedE 1 datasets.

When using an Evalue threshold <= 0.001, to define which sequences will be part of

the generated MSAsand t he appl AltsdNCORRECOo fartthd i @i
datasetposnodi fi cat i on pVvSA furetibnal deversityncdterid thee A
number of MSA examples in the datasets is reduced to 3527. The masked and
unmasked forms of these datasets are referred to as the
AAIILstINCORRECT.tF.BLOSUM62.masked.EO®O01 and the
AAIILstiINCORRECT.tF.BLOSUM62.unmasked.EOGdatasets respectivelysee

Appendix for more detailed description of these datasets)

2.5 Conclusions

The work in this chapter has aimed to serve two purposes. Firstly, the collection of a

large set of enzyme sequences, to allow a study of the functional conservation
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accuracy 6 homology transfer, at high levels of functional specificity through the
use of standard sequence homology measures. Secondly, the use of this data to
identify datasets that are suitable for the benchmarking of methods intended for
improving the prediobn of specific enzyme function.

The assessment of the level of enzyme function conservation demonstrates that even
close sequence similarity relationships do not suffice to allow confident transfer of
specific function in all cases. When placed in consgpar to the many previous
studies discussed above, some of which draw far more pessimistic conclusions for
comparable sequence similarity thresholds, the need can be seen for more powerful
methods of discriminating between very similar functionatclaB®s. It is the aim

of this thesis to investigate some of these methods. Through the use of multiple
alignments of homologous sequences it is proposed that sequence features specific to
a particular function can be used to separate the different functigpak.
Evolutionary relationships between groups of homologous sequences, with the same
function, can be used to identify amino acid residues that play an essential role in the
specific function of the proteins. These are commonly referred to as haictio
specificity determining residues (fSDRs) and will form a central point of the work in

this thesis.

Benchmark datasets have been defined and identified from the analysis carried out
above. These are composed of examples where the most significamiceeoagch

from a PSIBLAST database search is not of the same specific function as the query
sequence. Therefore, they fulfill criteria for the assessment of alternative methods

that are designed to improve the discrimination of specific functional slagsen

compared to simple thresheida s ed sequence similarity 1
dataset was first identified for use as a benchmark comparison dataset. However, a

| arger series of Aartificial o datasets w
i ni ti al o dataset and are used when asses
thesis. This is because they contain more sequence examples and enzyme functions

on which to base the results, lending greater weight to any statistical conclusions
drawnfrom these studies. The larger datasets have also been constructed in a way to

provide a guarantee of nAsufficiento func
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of the examples, with which to aid the analysis of the multiple alignments and the

identification of particular inherent evolutionary relationships.

In conclusion, themain goal of this research is to develop and analyse automated
techniques for improved higspecificity function prediction, using groups of closely
related aligned homologo@mnzyme sequences. The initial studies carried out in this
chapter show why this is an important and timely research problem and also define

benchmark datasets to help achieve this goal.
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Chapter 3  The Use of Alternative Amino Acid
Substitution Matrices for
Rescoring the Functional

Similarity of Enzyme Sequences

3.1 Introduction

As shown in the previous chapter, it is not always the case that the most significant
sequence hit, found through a database search, will have the same specific enzyme
function as the query sequence. Neither is a simple sequemtait/ threshold
sufficient for consistent, high accuracy, functional annotation of protein sequences.
The aim of the work in this chapter is the investigation of different scoring metrics,
for improved assignment of specific function, when comparatig¢aesults from a
sequence similarity database search. The hypothesis is that this may provide
improved functionally specific ordering of the identified homologous sequences,
based on additional sequence features to those used in the statistical fomolog

measures of the original database search.

It has been shown that si#mplty dgsiomg at Ise ¢
database search for the prediction of a specific enzyme function can lead to
significant levels of incorrect annotation. It leetefore both important and timely,

to investigate ways in which groups of sequence homologues identified in a database
search, can be scored andraeked to improve, both the confidence and the

accuracy of the predictions for the specific function ofgbery sequence.

3.1.1 Overview of Alignment Rescoring Method

A general conceptual overview and the aims behind the alignmestormg
procedure used in this chapter are discussed in this section. A diagrammatic
overview of this procedure is shown figure 31. It should be noted that similar,
comparable procedures, for the purpose of functionalgcoeing the sequence
alignment ordering, are also used to analyse the performance of alternative methods

that are investigated in later chapters.
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The first thre@ stages depicted ifigure 3.1 are related to the collection and
alignment of relevant sequence homologs. This procedure is discussed in detail
within chapter 2and is also included in this overview diagram to provide context
with respect to the functional -ranking of the identified sequences. An iterative
procedure is then carried out to-geore each of the sequences in the multiple

sequence alignment (MSA)sing a particular scoring method.

Query
Sequences
from dataset

v

PSI-BLAST
database
search

Output MSAs from database search
(ordered by statistical significance of alignment)

v

for each sequence nin MSA
{seql; seq2; é ; seqN}

v

Calculate
new score for
seqn

v

Re-order sequences using
new score

v

Assign specific function
to query sequence

Figure 3.1. Diagrammatic overview of thealignment rescoring
procedure.
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In this chapter, the recoring method comprises pawise comparisons between the
guery seqgquence and seduencelhomglbgs, fanceach aofghe it ar
MSAs in the benchmark datasets. Thesewa&e comparisons are carried out using
well-established protein sequence alignment metrics. Once all of the sequences
within each MSA have been evaluated they can then-bedezed, using the newly
calculated score. Predictions for the specific functional class of the query sequence

can then be made based upon this new sequence ordering.

3.1.2 Amino Acid Substitution Matrices

An important consideration when aligning protein seqasnand assessing their
subsequent level of similarity, is the method used for scoring the similarity between
each of the aligned amino acid residues. Evolution determines the structural and
functional features of proteins and it is the mutation of amai r@sidues that is the

main driving force. It therefore follows that, in general, more similar protein
sequences are closer in an evolutionary sense and hence show more closely

correlated features of specific function.

Analysis of the pattern and rate#f change of amino acids during evolutionary
divergence was first carried out by Dayhoff (1978). Due to the fact that certain
groups of amino acids display similar physical and/or chemical properties (Taylor,
1986), the probability of mutations being apted through natural selection is
greater the more similar the properties are. This becomes clear when considering the
need for structural and functional continuity and the likely deleterious effects of a
large change in observed amino acid propertiesgunutation, due to a disruption

of function.

Through the alignment of multiple sequences from large numbers of related proteins
a probabilistic evolutionary model of the expected mutations from one amino acid to
another can be developed. A numbemudthods and datasets have been used to
calculate scoring matrices for particular features and evolutionary distances between
proteins (Dayhoff, 1978; Henikoff and Henikoff, 1992; Jones et al., 1992), some of
which are discussed below. The simple residientity type of matrix is first
described, followed by two commonly used methods; the percent accepted mutation
(PAM) matrices (Dayhoff, 1978) and the BLOSUM series of matrices (Henikoff and
Henikoff, 1992).
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The form of an amino acid substitution matriugially that of a symmetrical matrix

of 20 rows by 20 columns, one for each of the 20 common types of amino acid
residues. This leads to 210 distinct entries consisting of 190 row and column
pairings where the amino acid residues are not the same ahdti2€r pairings

along the matrix diagonal where they are.

3.1.2.1 IDENTITY Matrix

A simple form of substitution matrix is the identity matrix, which consists of a score

of one between identical amino acids in an alignment and zero for all other residue
comparsons. Although there is no specific evolutionary theory associated with this
type of scoring scheme, its simplicity and close association with the commonly used
percentage identity measure between sequences means that it is sometimes used for a
simple scoing of alignments. The main problem with this matrix is that it rewards

and penalises all matched and mismatched residues to the same degree. This is done
regardless of the similarities in physichemical properties of amino acids or their
likelihood d mutation. The following models of amino acid substitution scoring

attempt to address these deficiencies.

3.1.2.2 PAM Matrices

The model for generating PAM substitution matrices was developed by Dayhoff
(1978) using alignments of closely related groupings of diogous protein
sequences with at least 85% sequence identity. Due to the high level of sequence
similarity within the groups any observed mutations of the amino acids did not
significantly affect the function of the proteins. The next step was to ¢bant
number of observed mutations between all pairs of amino acid types, within all the
protein groups, allowing an empirical measure of the probability of mutation for
each pair of amino acids to be calculated. Finally this data was normalised to
remove ay bias caused by amino acid composition, mutation rate or sequence
length. These calculated amino acid relative mutabilities are those expected within
the evolutionary time period defined as 1 PAM unit. For ease of computation these
are usually represésd in the substitution matrix in their logarithm of odds {log
odds) form, which describes the ratio of the observed frequency of amino acid
substitutions divided by the frequency expected by chance. Due to the fact that the

model of evolutionary mutatiomused was a Markov process, it is possible to
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calculate larger PAMN distances through matrix multiplication of the values in the
PAM-1 matrix.

3.1.2.3 BLOSUM Matrices

Another commonly used set of substitution matrices for protein sequence alignment
and similariy scoring is the BLOSUM seriegiénikoff and Henikoff 1992. The

method used to generate these matrices shows a number of important differences to
that of the Dayhoff PAM model of amino acid evolution and is based on a larger
dataset of protein sequenceRather than start with very closely related sequences
and extrapolate to more divergent ones, the Henikoffs approached the problem by
starting with a more divergent set of protein sequences from more than 500 protein
families. Using these family aligrennt s , Abl ockso of sequen
gaps, were extracted from the particular families and added to a database. The
scoring matrices were then calculated using theoldds of the types of substitutions
found in the conserved pattern of blocks.heTdifferent forms of BLOSUM
matrices (such as BLOSUM62 and BLOSUMS50, where N is 62 and 50 respectively)
are calculated by first grouping all sequences, within a block, that show an aligned
sequence identity above a particular threshold. Each grobpnsrépresented by a
single sequence with a weighted average of the observed amino acid substitutions
within the group. For example, the commonly used BLOSUM62 matrix consists of
amino acid substitution data calculated from block patterns that havejadirees,

with greater than or equal to 62% identity, clustered into one averaged sequence
representative. This reduces the contribution to the matrix from more closely related

sequence members of an aligned protein family.

It is important to note that it is not possible to extrapolate from one BLOSUM
matrix to anotheras with the PAM matrices, because they are not based on an
evolutionaryMarkovian model. Therefore it is only possible to calculate BLOSUM
N matrices from mpirical data of aligned blocks of sequences of the required

similarity levels as described above.

It is has been found that the BLOSUM®62 matrix generally gives the best overall
performance for sequence alignment and sensitive sequence database searching,
hence the reason that this matrix is currently used as the default amino acid
substitution scoring model in BLAST and PBLAST.
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3.2 Methods

3.2.1 Datasets

In this section | will describe the benchmark datasets that are employed to assess the
performance of each ghment rescoring method. The datasets consist of ordered
sets of MSAs that are used to determine the specific enzyme prediction accuracy of
each rescoring method. A number of alternative datasets are described, for which
three main differences in themethod of generation are highlighted. These
differences are related to the particular amino acid substitution matrices that are
used, in the BLAST database search, to generate the MSAs in each of the datasets.
Three different matrices (BLOSUM62, PAM16Md PAM30) are used to allow an
investigation into the effect that their use as the database search matrices would have
on the functional classification accuracy of the resulting MSAs. In addition, they are
used to assess the effects on the functionabifieation accuracies, of the order in
which the particular database search and alignmesgaeng matrices are applied in

the functional rescoring assessment procedure. The reasons for selecting these
particular substitution matrices are discussedatail, in both the relevant method

and results and discussion sections below. For the datasets in which the detailed
methods are not specified below, the methods used to generate the datasets have

been previously defined in detail éhapter 2

3211 AAritalfd cDat aset U-bpasad@eqiencngadissidsini o n
BLAST Database Search

Both the masked A Al | 1st | NCORRE Cihasked E BL &8 thMM6 2

unmasked- A Al | 1 st | NCORRE C.inmasHed B 1 © ®richM 6f2the

4189 BLAST generated MSAs from thesgatasets were used in the following

analysis.

3212 Refi nement of the AArtificial o Datase

Composition-Based Sequence Statistics

Additional datasets of MSAs were generated, without the use of compésitseal
sequence statistics dinig the sequence database search and with an outmlu&
threshold of 0.001 used to control the sequences included in the output MSAs. Both
the maskedi AAll1stINCORRECT.tF.BLOSUM62.masked.EO®OL and the
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unmasked NAIILstINCORRECT.tBLOSUMG62.unanmed.E0.00d i forms of the
3527 BLAST generated MSAs from these datasets were used in the following

analysis(seeAppendix for more detailed description of these datasets)

3.2.1.3 Generation of a Dataset of MSAs Using a PAM160 Seqguence

Database Search Matrix

A dataset of MSAs was generated through the use of the PAM160 matrix in a PSI
BLAST protein sequence database search. The steps used in the methodology were
as close as possible to those previously described when using the BLOSUMG62
substitution matrix. &t clarity, the PSBLAST search procedure and parameters

used is repeated below.

As before, the PSBLAST database search was carried out, for each of the 4189
target enzymes in thB QUE RY . e n z ysemrience4sdt,8against the UniProt
(SwissProt + TEMBL) database (version 4.0). Each input sequence was filtered
using the SEG low complexity filteM{ootton and Federheni996) and all of the
sequences in the search database were filtered using the low complexity, trans
membrane and coilecbil filter options of thepfilt application (Jones and Swindells,
2002). The sequence database search was carried out using 1 iteration of PSI
BLAST (version 2.2.10), an output-¥alue threshold of 0.001 and the PAM160
substitution matrix. Compositiebased sequenatatistics were not used during the

database search, hencethparameter was set asF.

The version of PSBLAST used does not implicitly contain support for the PAM160
substitution matrix. Because of this it was necessary to determine the ntalstesui

gap penalty parameters to use in the database search. In comparisons, by Henikoff
and Henikoff (1992), between the PAM and BLOSUM series of matrices, the
PAM160 matrix is shown to be most closely comparable to the BLOSUMG62 matrix.
Using this infornation and that from Reese and Pearson (2002), which suggests
similar effective gap penalties for the two matrices, | decided to use the same gap
open and gap extension penalties;df and-1 respectively, that were used in the
database search with the BEUM62 matrix.

An MSA postprocessing procedure identical to that used for the BLOSUMG62

generated MSAs was then carried out. Firstly, the resulting MSAs were filtered to
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remove all sequences not i dentchaptar 2d as 0
Next,each of t he MSAs weAlléstiINCORREE@Ds saerdt iufsiicnig
dataset posmodi fi cati on pr oc eMSArfunctioaah diversity nal |y
criteria0 was applied (both ofchépterdse procedur

This resulted in a datasebnsisting of 3100 PBLAST generated MSAs, whose
query sequenceepresent coverage of 88 distinct EC classes. During associated
analysis and discussion throughout this thesis, the sequence residue masked and
unmasked forms of this dataset will be redd to as the
AAlIl 1st | NCORR En@3kedt BO. . POAOM106 O and

AAl 1l 1st | NCORR Eu@riasked-E OP. AOMAtEE#IS respectively(see
Appendix ffor more detailed description of these datasets)

3.2.1.4 Generation of a Dataset of MSAs Using a PAM30 Sequence

Database Search Matrix

One further dataset of MSAs was generated for analysis in this chapter. In this case,
a PAM30 substitution matrix was used in the-BEAST sequence database search.
Unless specified otherwise, the steps used in the generation of thesbhaked

MSAs are identical to those used in the PAM160 based BLAST MSAs, detailed
above.

The important difference in this dataset generation method was that a PAM30
substitution matrix was used in the HBIAST database search. As with the
PAM160 case, laove, the version of PELAST used does not implicitly contain
support for the PAM30 substitution matrix. Therefore, it was again necessary to
determine the most suitable associated gap penalty parameters for use in the database
search. The parametersailed upon were9 for the gap opening; and for the

gap extension penalty. These were selected because two previous studies (Altschul
et al.,, 2001; and Frommlet et al., 2004), which investigate the effects of sequence
alignment scoring schemes ontstiacal alignment parameters, both recommend the

use of these gap scoring parameters with the PAM30 substitution matrix.

An MSA postprocessing procedure, identical to that used for the PAM160
generated MSAs, was then carried otihis resulted in a daset consisting of 2110

PSIBLAST generated MSAs, whose query sequenegsesent coverage of 82
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distinct EC classes. During associated analysis and discussion throughout this thesis,
the sequence residue masked and unmasked forms of this datasetreféirizsl to
as the AAI T 1st | NIERPARIRE&Ked EO. 00 1 cand
AAI Il 1st | NCRARIR.EGd@sked E O . O Galagets respectively (see

Appendix for more detailed description)

3.2.2 Calculation of Alignment Scores Using Non-Standard Amino

Acid Substitution Matrices
A method was developed for the parsing of the-BISAST generated multiple
alignments. Each of the individual pase alignments, between the query and high
scoring Atargetodo sequences fscovethusindiee dat ¢
seleted set of amino acid substitution matrices. The substitution matrices used in

the experimental analysis were:

1 IDENTITYmatrix This consisted of just two different score entries for all amino
acid pairingss(i, j):

1 s(i, j) = 1wherei = |
7 s(,j)=Owherei | j

1 PAM matrices:A number of PAM matrix evolutionary distances were used in
this analysis, ranging from: PAM10 to PAM250 in increments of 10 PAM units.

1 BLOSUM matrices:A variety of BLOSUM matrices were also used in the
analysis: (BLOSUM30 to BLSUMG60 in increments of 5; BLOSUMG62;
BLOSUM70 to BLOSUM9O0 in increments of 5; and BLOSUM100)

All of the PAM and BLOSUM series of matrices used were downloaded from the
following website ftp:/ftp.ncbi.nh.gov/blast/matricek/ The PAM matrices were

calculated usingpam" Version 1.0.6 [28ul-93] and the BLOSUM matrices were
calculated from the BLOCKS 5.0 database, at the required sequence cluster

percentage level.

3.2.2.1 Alignment Re-Scoring Procedure

The procedure used in these experiments fescoging each paiwise alignment,
between query and target sequence in the MSAs, closely follows that shown in

1


ftp://ftp.ncbi.nih.gov/blast/matrices/

figure 3.1. Each of the individual paivise alignments were extracted and all of the

aligned re&lue pairs were then 1scored using the scores defined in each of the

distinct substitution matrices described above.

It is important to note that it is the

local alignments, generated by FBIAST, that are used in this analysis and that no

re-alignmentof the sequences is carried out. A simplified overview of this process,

consisting of only two paiwise alignments, is shown figure 3.2 This particular

example shows two short alignments and the resulting score obtained from using the

BLOSUMG62 matix to score each of the aligned residues betweemtieey and

sequence_.nIn this case the alignment score of ¢uerywith sequence_ greater

than withsequence .1 Therefore, using this scoring schersequence_2vould be

ranked as a closer specifunctional match to the query thaequence .1

score
Query L LARFIOQVRMGEP
Sequence_1 I L G Y M QF R K G P
BLOSUM®62score 24 0-205 -15 -167 25
Query L LARFIOQVRMGEP
Sequence_2 L L GL F QNI RY GP
BLOSUM®62score 440 -265 -35 -167 31
Figure 3.2. A simplified schematic overview, showing the way that pair

wise sequence alignments afienctionally re-scored, using different amino
acid substitution matrices (in this particular case BLOSUM®62 is used).

3.2.2.2 Treatment of Insertions and Deletions

Insertions and deletions of amino acids play an important role in protein evolution.

They gi ve

r

S e

t o

Agappedo

secti

ons

sequences. In this analysis two different approaches were taken teatmeetnt of

gaps in the alignments when calculating thegered values.

Un-gapped:This method scores all residues aligned to gap positions as 0

Gapped:This method uses the same affine gap penalty model as that used in the

BLAST algorithm and is defined below éguation 3.1

Gn = gopen+ (n - l)* Oextend

whereG, is the overall gap penaltggpenis the penalty for openg a gapn is the

(equation 31)

number of consecutive gaps amgkenqdiS the penalty for extending a gap. In both the
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Afugappandidg a p pfend of analysis the starting and trailing gaps were
removed from the ends of all the alignments before carrying outethmoning

calculations.
3.2.3 Assessing Prediction Accuracy

3.2.3.1 Top-hit Method

To assess the improvement in prediction accuracy wheacareng the MSAs, a
simpl#&ai idbompproach was taken. This is
query sequence is assigned #@me specific function as the sequence with the
highest score from the pawise rescoring procedure. If the specific functional
classes are the same (to a degree of all 4 numbers in the EC hierarchy), then the
result is defined asfic o r r mredittion of specific function, otherwise the result is

defined as afii n c o rpreediatidn.o

Exceptions to these outcomes are seen when a group of sequenceguadseores,
producing a set of tied ranking positions. A group of this kind contains two or more
members that may (or not) have the same specific function. If the members all have
the same specific function, and it is the same as the query sequence, then this is
classed as a correct prediction. Alternatively, if none of them have the same specific
function as the query then this is classed as incorrect. A third case is where the
seqguences-ramkohgriobupettave two or more di
one of them is the same specific function as the query sequence; in this case it is not
possible to differentiate between the correct and incorrect examples and therefore
can be cluagdseed.d &ds lalefiractical purposes, these types of
Aundeciekaabmpdoes should be classified as
functional prediction results, as they cannot be separated from those that are correct
using the available information from the defined scoring scheme. In this analysis,

thesei un d e coiekabnpd es are indeed treated as i

3.2.3.2 Definition of a Random Sequence Selection Model for Specific

Function Prediction

A random model of a simple naive prediction system was defined to provide a
baseline c¢ompatdhii $mtiorfpuadiction rasdite obtéined fpom the

different rescoring methods. This was based upon the concept of randomly
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permuting the ranked results of the sequence homologues in each of the MSAs in the
dataset. The prediction result was then determinée worrect or incorrect through
functional comparison between the specific EC classification of the query sequence
and the randovrliyt oOper muted Atop

A simple, computationally inexpensive way of modelling these random permutations
is through the calcuteon of the probability of randomly selecting a functionally
correct sequence (where all 4 levels of the EC hierarchy are equal between the query
and randomly selected sequence) from each MSA. The resulting probability
calculation, for each MSA, is shovimequation3.2.

P — Neorrect (equation 3.2

random correct —
r’|all

Where: Prandom_correctiS the probability of a randomly assigned, correct, functional
prediction; Neorrect IS the number of sequences in the MSA with the samee@®
specific function as the query sequence; ands the total number of sequences in

the particular MSA of interest.

3.2.3.3 Bootstrap Re-sampling Analysis of Results

A computational statistical tea mpl i ng met hod, known as
and Gong]1983), was used to allow the accurate calculation of statistical properties
from data distributions that are not normally distributed. The central limit theorem
states that the distribution of a sample of calculated means approximates a normal
distribution, when the number of data points is large. Standard statistical
calculations can then be made on the resulting, normally distributed, bootstrap re

sampled data.

Sample Mean

The sample arithmetic meag,, is calculated usingquatian 3.3

I
1
Sk

a x (equation 3.3
i=1

where n is the number of data points in the sample and the value of data point
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Standard Error

The standard error is a metric that is commonly used to approximate the dispersion
of a sample statistic, such as the sample mean. The bootstrap sample statistics were
used in this calculation, following the method of Good (1999). The standard error
(se can be defined as the squaoet of the unbiased estimate of the sample variance

(seeequation3.4).

se=,/variancebootstrap_statistics) (equation 3.%

Equation3.5 shows the detailed method of calculation used to compute the standard

error 66 of a sample containing bootstrap values

se—\/ 1 B% Eg (equation 3.%

Wherezfb is the bootstrap valué, andcl/:—b is the mean of these bootstrap values.

Outline of the Bootstrap Re-sampling Procedure

The general bootstrap procedures used for the experimental analysis of both the
random model and the alignmentseoring methods are described below, where the

number of bootstrap repetitior, is 10000 irall of the bootstrap calculations.

Using the Random Model Data

1 For a dataset oN MSA examples, calculate the distribution of tin
probabilities for ArandomegquatonBZ2ct predi

1 Bootstrap: (repeat steps 1 and B times, storig the mean sample estimate from

each bootstrap replicate in a vectdr, of lengthB)

1. Randomly selech (wheren=N/2) datapoints, with replacement, from the

original sample distribution drandom_correcivalues.

2. Calculate, using@quation3.3, the mean ofhe Prandom_correctbOOtstrap sample

values and add to vectht.

1 Finally, calculate the standard error (se) of the bootstrap statistics contained in
M.
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Using the Alignment Re-scoring Top-hit Prediction Data

1 For a dataset dff MSA examples, apply the4soring method, evaluate whether
the funchioboaapré@é@diopti on result i s HAcorr

will then consist 0fcorrect aNdNincorrect €Xamples.

1 Bootstrap (repeat steps 1 and B,times, storing the calculated sample estimate
from each bootstrap replicate in a vecidr,of lengthB)

1. Randomly selech (wheren=N/2) datapoints, with replacement, from the

original sample distribution dfl (Ncorrect @NdNincorrec) €Xamples.

2. Calculat the fraction of correct examples in the bootstrap sample and add to
vectorM.

1 Finally, calculate the standard error (se) of the bootstrap statistics contained in
M.

3.2.4 Calculation of PAM Distance from Sequence Percentage Identity

A PAM 1 mutation matrix isdefined to be a specific measure of a unit of
evolutionary distance. Therefore, it is possible to define a function that calculates
the relationship between PAM evolutionary distances and the changes in amino acid
sequence identity. In this chapter thesdculations were carried out using the
PerldentToPam()function that is available in the Darwin interpreted computer
language suite of software tools (Gonnet et al., 200®)s function carries out an
iterative procedure using Newton's method for s@wequations (see the following
section of the Darwin user manual for further details:

http://www.inf.ethz.ch/personal/gonnet/DarwinManual/node 155 )atml

3.2.5 Query Sequence Clustering

The input query sequences that were used as input to the BLAST databake sear
and MSA generation were clustered based on the level of sequence identity through
the use of the CIHIT algorithm (Li and Godzik, 2006). The clustering was done

for each of the separate query sequence sets identified by the three dataset generation
metods described above. A range of percentage sequence identity levels were used
for the clustering (40% 90% in intervals of 10%) and the recommended default

parameters were used for.allThe longest sequence in each cluster was used as the
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representatie. A summary of the cluster properties, at each defined level of

sequence identity, is given in the relevant section of results.

3.3 Results and Discussion

3.3.1 Benchmark Prediction Results Using the Artificial Datasets

An initial analysis of the 4189 MSA examples in the
AAl 1l 1stl NCORRE Crhasked E BdatasstUNdGcArried out to ensure

the correct functioning of the alignmentgeoring algorithm. The same amino acid

substitution matrix, gap scoring algorithm and gap penalty values, as those employed

for the BLAST generation of the alignments, were used for the alignmenbring.
These were: BLOSUMG62; the affine gap penalty scoring method described in
equation3.1; and a gap openin@dpen vValue of-11 and gap extensioleengd Value

of -1, respectively.

As has been described previously, the way in which the MSAs in the artificial

dat aset s have been modified ensufhaed 0t hat

functional prediction result, when considering all 4 levels of the EC classification

scheme anthe sequences have been ranked in ascenduadugé order. Therefore,

the hypothesis was that by using a score matrix and gap penalty parameters-in the re

scoring algorithm, equivalent to those used in the sequence alignment during the

BLAST database sezh, an identical sequence ranking should be observed for each

of the MSAs. This was however not the case, as a significant number (2045 out of

4189, or a proportion of 0.49 correct predictions) of examples in tseored
AAl 1l 1st |l NCORRE Crheskedl E B Qdar&sét,M&Hdbwed a correct

functional -hd &@ueanfctee ri ttohpe -ranking, ivheo usiad al

the BLOSUMG62 rescoring matrix and the gapped scoring model.

These results clearly show that the alignmergo@ing algorithm was ng@roducing

the expected results during the calibration of the benchmark dataset. This was

problematic because it indicated a possible flaw within thscoeing algorithm,

preventing the establishment of a true, reproducible, benchmark comparison between

the BLAST generated predictions and those from thscoeed alignments. The

reasons for these discrepancies are investigated and discussed further in the

following section.
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3.3.1.1 Testing and Calibration of Benchmark Datasets Used for Assessing

the Prediction Accuracy of the Functional Re-scoring Algorithm

The alignment rescoring algorithm wasarefully tested to ensure that the expected
alignment score, for each of the pailse alignments, was being calculated. The

results from this test showed that thecaithm was generating the expected results

when using the specified gap scoring model and amino acid substitution matrix.
However, compari sons between these <cal cl
BLAST alignment scores, showed differences that catisedfunctional ranking

discrepancies in the benchmark dataset.

This finding indicated that the differences between the BLAST alignment scores and
those calculated with my 4&coring algorithm must be explained by additional
parameters in the BLAST alignnterscore calculations that were not being
incorporated into the alignment-seoring algorithm. Analysis of the parameters
used in the BLAST search highlighted the use of sequence compdmsed
statistics calculations (controlled through the use ottiramand lind t argument),

during the generation of the BLAST alignments, as the reason for the observed
discrepancies. It was found i using the

AAl Il 1st |l NCORRE Cihasked E Bda@sstliit R®hen compared to

no use, compositichased statist&ccan generate slightly different alignment scores.
This can lead to varying statistical significance scores and subsequent differences in
the rankings of the sequence homologs identified with BLAST. This was the
reason for the observed differenceshbete n t-het édt bpncti on predi
of the BLAST MSAs, when using compositisased statistics and those from the
alignment rescoring algorithm, when using identical substitution matrices and gap

scoring models.

To correct these differencéslecided to define an alternative benchmark dataset of
MSAs, still generated by BLAST, but without the use of compositiased

statistics. This solution was chosen because it allows for an exact reproduction of

the aligned sequence ordering, and assoeial -hiittoop f uncti on predi
when using the rscoring algorithm. It also provides a simpler implementation for

the alignment rescoring algorithm because there is no requirement to explicitly

calculate the additional effects due to the cosmmonbased sequence statistics.
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In summary, when compositidrased statistics are not used to generate the
alignments, the benchmark-seoring results are equivalent between both the
BLAST-based and alignment -seoring methods, when using an equavl
substitution matrix, gap scoring model and penalties. Therefore, for the remainder of
this chapter, the experimental analysis only uses datasets that contain MSAs that
have been generated without the use of compodié@ed sequence statistics. AAls

at this point, a decision was made to concentrate all further analysis on MSAs
created through the use of a more stringent outpuél&e threshold of 0.001,
namely the MSAs in thé Al INCGRRECT.tF.BLOSUM62.masked.E0®Gihd

the i Al INCGRRECT.tBBLOSUM62.unmasked.EO.GD1datasets.  This was
found to not alter the general results and experimental trends observed during the

following analysis.

3.3.2 Definition of a Simple Random Sequence Selection Model for

Function Prediction

During the analysis in thishapter, comparisons are made between the function
prediction results from alternative alignmentsmring methods and those from
associated random sequence selection models. As described in the methods, the
random model used for this comparison is basedhe probability of randomly
selecting a sequence, from a multiple alignment, that has the same specific function
as the query sequence. The aim of these comparisons is to assess the difference in
prediction performance between thespored analysisesults and the baseline
provided by the random model. Where necessary the random model is defined
alongside the associated dataset and analysis under discussion. #fdbte 311, a
summary of the dataset size, bootstrap parameters and calculatedndesiandard

error (se) statistics is given for the random sequence selection models of each dataset

used in this analysis.

3.3.2.1 Probability Distributions and Bootstrapping of the Random Sequence

Selection Model

In general, the probabilities for the correcegiiction of specific enzyme function,
using a model of uniform random sequence selection from each of the MSAs in a

dataset, follow a nenormal sample distribution. Due to this, the bootstrap method
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can be usedsee methods}o calculate associated stdital properties of the

distribution, such as the sample mean and standard error.

When calculating the bootstrap statistics for the

A Al INCGRRECT.tF.BLOSUM62.(un)masked.EO@datases, the number of
bootstrap replicatedd, used was 10000 and thansple size for each replicate was
1764, which is approximately half of the 3527 MSA examples in the dataset. The
resulting statistics, shown table 3.1, for the random sequence selection model for
this dataset show a bootstrap mean of 0.502 and a sfagrdar of +/ 0.006.

Dataset No. of | (bootstrap) (bootstrap)
MSAs Sample mean +£ se
(N) Size (/2)

All1stiNCORRECT.tF.BLOSUM62.E10 4054 2027 0.475 +£ 0.006
All1stINCORRECT.tF.BLOSUM62B01 | 3527 1764 0.502 +# 0.006
All1stINCORRECT.tRPAM160EOQ.001 3100 1550 0.522 +# 0.007
All1stiNCORRECT.tRPAM3QE0.001 2110 1055 0.572 +£0.008

Table 3.1. Summary of the dataset size, bootstrap sample size and

calculated mean and standard error (se) statistics for the random sequence
selection model for each associatiataset of MSAs used in this analysis.

3.3.3 The Effect on the Top-Hit Prediction Performance of Using

Alternative Substitution Matrices to Re-score the MSAs

The aim of this section is to an-aliy®e th
function predictio results, of using alternative amino acid substitution matrices with

the alignment rescoring algorithm. A thorough investigation of the IDENTITY

matrix and the BLOSUM and PAM series of amino acid substitution matrices,

defined in the methods, is carriedt.

Also studied are some of the additional parameters that may affect the alignment re

scoring results, such as sequence residue masking and the gap scoring of the
alignments. Alongside these analyses are comparisons to the associated function
predicton results, from the baseline random sequence selection model, of the dataset

under investigation.
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3.3.3.1 Comparison Between the Substitution Matrices When Using MSAsS

Containing Sequence Masking

For t hi s a&AlsINGOGRRECT.tF.BLOSUMGRasked E 0 . @daded

was used, with sequence residue masking still present in the functionally filtered
MSAs. The effect of the amino acid substitution matrices, on the alignment re
scoring results, are compared using the gap scoring moeejuation3.1, with the

samegap penalties as those used in the original BLAST seakgh: = -11 and
Jextena=-land al s o -gna pphe daon  sficuonr iggegs Oanuigignd= wWher e
0. Both the number, and proportion, of correct function prediction results for a
representatie set of IDENTITY, BLOSUMN and PAMN substitution matrices are

shown intable 3.2. All four levels of EC functional classification of the top scoring

aligned sequences in eachramked MSA, are used to predict the specific enzyme

function of the query sequences.
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Gapped ¢11,-1)

Un-gapped (0, 0)

Re-score Number (bootstrap) Number (bootstrap)
Matrix (proportion) mean (proportion) mean
Correct proportion Correct proportion

correct +/- se correct +/- se
IDENTITY 1819 (0.52) | 0.516 +£0.012 | 1844 (0.52) | 0.523 +£0.012
BLOSUMS30 1507 (0.43) | 0.427 +£0.012 | 1909 (0.54) | 0.541 +£0.012
BLOSUMA40 1467 (0.42) | 0.416 +£0.012 | 1945 (0.55) | 0.552 +/0.012
BLOSUMS50 1306 (0.37) | 0.370 +£0.011 | 1907 (0.54) | 0.541 +/0.012
BLOSUMG60 809 (0.23) | 0.229 +/0.010 | 1845 (0.52) | 0.523 +/0.012
BLOSUM®62 0 (0.00) 0.000 +£0.000 | 1850(0.52) | 0.524 +£0.012
BLOSUM70 1291 (0.37) | 0.366 +£0.011 | 1882 (0.53) | 0.533 +/ 0.012
BLOSUMS80 1544 (0.44) | 0.438 +/0.012 | 1898 (0.54) | 0.538 +/ 0.012
BLOSUMO90 1589 (0.45) | 0.450 +£0.012 | 1882 (0.53) | 0.534 +£0.012
BLOSUM100 | 1744 (0.49) | 0.494 +/0.012 | 1906 (0.54) | 0.540 +£0.012
PAM10 2002 (0.57) | 0.568 +£0.012 | 2053 (0.58) | 0.582 +£0.012
PAM20 2018 (0.57) | 0.572 +£0.012 | 2124 (0.60) | 0.602 +£0.011
PAM30 2043 (0.58) | 0.579 +/0.012 | 2165 (0.61) | 0.614 +£0.012
PAM40 2032 (0.57) | 0.576 +£0.012 | 2134 (0.61) | 0.605 +#0.012
PAM50 2049 (0.58) | 0.581 +£0.012 | 2086 (0.59) | 0.591 +£0.012
PAM60 2017 (0.57) | 0.572 +£0.012 | 2043 (0.58) | 0.579 +£0.012
PAMS80 1946 (0.55) | 0.552 +£/0.012 | 1979 (0.56) | 0.561 +#0.012
PAM100 1828 (0.52) | 0.518 +£0.012 | 1985 (0.56) | 0.563 +£0.012
PAM120 1780 (0.51) | 0.505 +£0.012 | 1935 (0.55) | 0.549 +£0.012
PAM140 1721 (0.49) | 0.488 +£0.012 | 1934 (0.55) | 0.548 +£0.012
PAM160 1712 (0.49) | 0.485 +£0.012 | 1928 (0.55) | 0.547 +£0.012
PAM180 1635 (0.46) | 0.464 +£0.012 | 1899 (0.54) | 0.538 +/ 0.012
PAM200 1600 (0.45) | 0.453 +£0.012 | 1904 (0.54) | 0.540 +£0.012
PAM220 1660 (0.47) | 0.471 +/0.012 | 1911 (0.54) | 0.542 +{ 0.012
PAM240 1658 (0.47) | 0.470 +£0.012 | 1886 (0.54) | 0.535 +£0.012

Table 3.2. A comparison between theumber, and proportion, of

correct functional prediction results for a representative set of substitution
matrices used for alignment-georing. All results for the number of correct
predictions are out of a possible 3527. Also shown are the corresgpndi
mean and standard error (se) results calculated from the bootstrap analysis.
Results from both gapped and-gapped gap rescoring models are shown,
where gap penalties ofidpen= -11 andgexiend= -1) @aNd(Gopen= 0 and gexiena= 0)

were used respecely.
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IDENITITY Matrix

When wusing the | DENTI TY¥1l1,ria)tor i gxa p wsi ctohr itnhge
torescore the MBE#KSCORRECTtRBLOSYMGRasked EO. 001 0
dataset, the proportion and number of correct predictions is 0.52 (1819/35%27), se
table3.2.

BLOSUM-N Matrices

The results, inable3.2, f or t hH,-1i)gosqmreg ahalysis, clearly show
that the expected minimum of O correct predictions is obtained when the
BLOSUMG62 matrix is used in the alignmentgeoring algoritm. Also, as the N
value of the BLOSUMN matrices is both increased and decreased, the number of
correct predictions increases. This is, perhaps, to be expected, as the definition of
the benchmark dataset only allows for the identification of examplesettieer
improve, or do not alter, the accuracy of function prediction. There also appears to
be some correlation between an increasing number (or proportion) of correct
predictions and the distance of the BLOSWWN value from the BLOSUMG62
matrix used tccalibrate the dataset. For the BLOSUNMmatrices, the maximum
fraction of correct predictions, 0.49 (1744/3527), is obtained bscoeng the
alignments using the BLOSUM100 matrix.

PAM-N Matrices

The prediction results, itable 3.2, f or t H-&1,-%)g @spqoirey danalysis
when using the PAMN matrices show quite a different trend to those of the
BLOSUM-N. Most noticeably, there is no clear minimum for the matrices in the
series that is comparable to that of the BLOSNMesults. This is i striking for

the PAM160 matrix, which is the suggested PAM series equivalent to the
BLOSUMG62 matrix (Henikoff and Henikoff, 1992), because it does not show a
comparable prediction performancé,0 correct predictions, to that of BLOSUMG62.
The minimumfraction of correct predictions is observed with the PAM200 matrix,
whereas, the maximum fraction of correct predictions, 0.58 (2049/3527), is obtained

by re-scoring the alignments with the PAM50 matrix.
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3.3.3.2 Applying Bootstrap Analysis to the Alignment Re-scoring Results

To obtain a more statistically accurate assessment for the mean fraction of correct
prediction results, and the associated standard error, a bootstrap analysis was carried
out on the r AfstINGORRECT.tle.BLOSUMGRasked=0.00D

dataset. The bootstrap parameters used were the same as those for the associated
random model, where the number of replicaBsyas 10000 and the sample size of

each replicate was 1764pproximately half the number of MSA examples, 3527, in

the dataet. Unless otherwise stated, all remaining analysis comparisons and
discussion in this chapter will refer to the bootstrapped form of the function
prediction results.

The bootstrap analysis results, with the mean and standard error (se) values for a
representative set of the IDENTITY, BLOSUM and PAMN substitution matrices,

are shown irtable 3.2. With regards to t-Hel)reesqdpg s
scoring model, it can be seen that the mean and standard error for the BLOSUM62
results is 0. Tis is to be expected as all the examples are defined to be incorrect
predictions with this score matrix, which leads to no variation in the sample
distribution of predictions used for the bootstrap. Overall, both with and without
bootstrapping, the trends the rescoring results for all of the substitution matrices

are similar.

Maximum predictive performance is still seen when using the PAM50 matrix, with a

mean proportion of 0.581 correct predictions. Although there is now significant
overlap, of thestandard error bars, with the results from PAM10 to PAM40 and
PAMG6 O . Each one of these fioptimal 6 matr
proportion of correct predictions, when compared to the random sequence selection

model, which has a mean value0d502, shown irtable3.1.

3.3.3.3 Comparisons Between the Masked and Unmasked Alignments

As discussed previously, sequence masking was used for the BLAST search and
generation of the MSAs in the benchmark dataset. To investigate the effects of
sequence masking on the prediction results, the alignments were modified to replace
all masked sequee residues, with the amino acid residues present in the associated
source protein sequences extracted from the SWiss database. The key

observation to take from these alignment rescoring results, is the consistent
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improvement in the proportion ofcar e ct f u nhcitti oo nparl e diitcotpi on s
the substitution matrices investigated, when comparing the respective results from
the alignments containing tmasked with those containing masked sequence
residues. Overall, the trends in the predictierults are similar to those of the
masked sequences, with significant improvement (within 1 standard error difference)
shown for all of the matrices, except those results from using the PAM10 matrix.

The remaining analyses focus on the results frososang the uamasked versions

of the MSAs from each dataset.

The optimal predictive performance, for the
OAllI1stINCORRECT.tF.BLOSUMGHmasked E 0 . @adlated, is now seen when
using the PAM30 matrix to fscore the unmasked sequence alignments, with a
boottrapped mean proportion of 0.606 correct predictions and a standard error of +/
0.012. This provides a small increase, of 0.025, for the proportion of correct
function predictions, when compared to the results from using the PAM50 matrix to
re-score themasked alignments. Also shown is an improvement, of 0.104, in the
mean proportion of correct predictions, when compared to the random sequence

selection model, mean value, of 0.502, showralne 3.1.

3334 Compari son Between t-heppé&ddasddldde and 0

Alignment Re-scoring

Al l of the results shown so far i ncorpo
alignment rescoring algorithm, which uses an identical scoring model and
parameters to that of the default gapped BLAST algorithm with the BLOSUMG62
search matri x. -bappead rhethad, whiehcstores all residuése i u |
aligned with gaps as 0, was used to calculate a comparable set of alignment scores

(see methods).

The results, shown ifigure 3.3 provide a comparison between the usethaf
Agappedo-gampediou nmodel s f or scoring sequ
AAl Tl 1st |l NCORREC.inmasked BQ O0aGd446 7 can be seen from

these results that a significant increase in the proportion of correct predictions is
obtained whent he -gfapmpedo0 gap scoring mod el i s
rescoring. This is true for the IDENTITY and all of the BLOSYNVand PAMN

substitution matrices investigated. The clearest example of this is in the difference
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between the numbers of correcegictions when using the BLOSUMG62 matrix with

t he-giapmpedo model .-scorétofgpm = Ubandygensd 4, fthe
masked dataset shows O correct predictions, whereas the unmasked dataset has a
mean proportion of 0.218 correct predictions.o Wwe v er , with the
method (Wher@open= 0 andgexena= 0), the mearproportion of correct predictions
increases to 0.524 and 0.560, for the masked and unmasked alignments respectively.
Further, for the BLOSUMN matrices, a clear difference che seen between the
trends in prediction results for the gapped anebapped scoring models. When
using the urgapped model there is little difference between the proportions of
correct predictions for the different BLOSUN matrices, especially when ialg

the overlap of the standard error of the mean into consideration. This is in contrast
to the results, described above, for the gapped model of the BL@$Ehgnment
re-scoring. The trends for the PAM matrices are similar overall to those seen in

the gapped model but show a consistently improved performance.

A further observation is highlighted by the comparison of thesgapped prediction
results to the associated random sequence selection model, where all of the mean
values, for the proportionf correct predictions from the tgapped BLOSUMN

and PAMN re-scoring results, show a significant improvement when compared to
the random model. This is also the case for the results for the IDENTITY matrices
and the gapped results from the PAWVmatrices, when N itessthan170.

The optimal prediction result, for all matrices investigated when using tgapped
model with unmasked sequence alignments, was 0.631, which was observed with the

PAM30 matrix and can be seenfigure 3.3
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Figure 3.3. A comparison of the proportion of correct predictions

obtained for each of the specified substitutioatrix re-scoring methods. The
proportions of correct predictions are the bootstrap mean values, shown with
the corresponding standard error bars. Reéswdre shown for the gapped (
11-1) and ungapped (0,0) alignment +scoring of the
Al1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 dataset, when using the
IDENTITY, BLOSUMN and PAMN substitution matrices. Also shown is the
associated random sequence sétecmodel for the dataset, where the dotted
lines show 1 standard error deviation from the mean.

3.3.3.5 Comparison Between the Re-Scoring the Alignments from the

fnOriginal o and AArtificial o Dataset s

To assess whether these observed results dependent on the@ature ofthe
AartiifAl ¢ilatt | NCORRECTO dat aset of al i gnme
carried out. In the previous section, it was shown that the PAM30 matrix was the
optimally performing matrix for r&scoring the 3527 unmasked alignments from the

AAll 1st ]l NCORRECTO dataset. However, du
benchmark dataset used it is not clear whether these results are concealing a potential
decrease in performance whensporing alignments that already have a correct

specific funcional hitasthetop anked sequence. Therefore
MSAs (1 .e., prior to the gener asedaiomn of

2.4.2 were rescored using the PAM30 matrix. These were then compared to the
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results obtained frma rescor i ng t he Aoriginal O unma
BLOSUMG62 matrix.

When using gascores ofgopen = -11 and Qextenda = -1, the unmasked fic
dataset showed 3459 (out of 3527) and 3465 (out of 3527) correct predictions, when
re-scoring with the BLOSUMZ2 and PAM30 matrices, respectively. In comparison,

when usiwa@apiplee 0f 8 ggenE O @aNdgmadt 6)Ithe gnmasked
Aoriginal 0 dataset showed 3454 (out of
predictions, when rscoring with the BLOSUMB and PAM30 matrices,

respectively.

These results show that, for both the gapped anghpped models, there is a small

increase in the proportion of correct predictions when using the PAM30 matrix
instead of the BLOSUM62to®c or e t he A omis.i Hpwava,lthe kemp | i g nn
observation from these results is that the use of a PAM30 matrix, when compared to

the BLOSUMG62 matrix used in the BLAST search, does not have a detrimental

effect when rescoring alignments that contain a large proportion of exasripiat

are or i gi n dhislresultfthrereforqrevidés &validation fothe use of the
PAIILStINCORREC® ar t i f isasialbehchmagkinahss thesis.

3.3.4 Investigation into the Effect of the Amino Acid Substitution
Matrix Used in the BLAST Search on the Top-Hit Prediction
Accuracy

In the alignment rescoring analysis discussed above, the BLOSUM62 amino acid
substitution matrix was used in the BLAST sequence database search that generated
the MSAs in each dataset. It was shown that the ovgrathom performance, for
specific enzyme function prediction, was obtained frorsa@ring the MSAS using

the PAM30 substitution matrix. To investigate whether this observed prediction
improvement was due to the specific ordered combination of BLOSUM62 and
PAM30 matrices, this analysis was followed by investigating the use of the PAM
equivalent of the BLOSUMG62 matrix in the BLAST search procedure.
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3.3.4.1 Analysis of the Dataset Obtained from Using the PAM160 Matrix in

the Sequence Database Search

The PAM160 matrixs regarded as the closest PAM equivalent to the BLOSUMG62
matrix (Henikoff and Henikoff, 1992). The following section analyses the effects of
re-scoring the MSAs, from thé&All1stiINCORRECT.tlPAM160masked EO . 0 0 1 0
andi Al | 1 st | NCORR Eu@riaskedE 0 .P AdtAsBts) with the same set

of nonstandard amino acid substitution matrices used in the previous analysis of the
OBLOSUM62 generatedo dataset s.

The main purpose of this analysis is to ascertain whether similar trends of function
prediction perfomance are seen, when using the PAM series equivalent of the
BLOSUMG62 matrix to generate the source dataset MSAs. Specifically, whether
there is a similar peak in performance when the lower N values (such as 30) of the
PAM-N series matrices are used ire ttescoring. The hypothesis is that this will

test whether the enhanced prediction performance is due to: (i) a particular combined
property of the BLOSUMG62 and low PAIM matrices; or (ii) due to a more general
case of prediction enhancement that is gmésegardless of whether a BLOSUM or

PAM series matrix is used for the generation of the BLAG$ed MSAs.

Al | of the following analysis was <carri
prediction results. For the derivation of these, the number o$toaptreplicates,

used was 10000 and the sample size for each replicate was H&5¢he number of

3100 MSA examples in the dataset. The random sequence selection model, for the
AAIl Tl 1st |l NCORRE@Imagkdd .EP A K@l was calculated using

the same bootstrap parameters. The statistical parameters of which, are summarised

in table3.1.

3.3.4.2 Comparisons Betweenthe Re-s cor i ng of t he -iMasked?o

maskedo Alignments

As in the previous anal y ®pgenerated, thoowghtheof A u
replacement of all masked sequence residues with the amino acid residues present in

the associated protein sequences extracted from the -Bmisdatabase. The
gener al trends were recorded mastkwaeledn atnhde
Aumaskedodo sequence alignments. These we

~

trends seen betweemasghedd maastkedet sange mairn
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BLOSUMG62 as the BLAST search matrix. Specifically, the prediction results for the

un-masked datasets show a similar, consistent improvement, over the results from
the masked datasets, when using identical substitution matrices for the alignment re
scoring. For brevity, these comparison results are not shown and the remainder of

the analgis in this section will focus on the tmasked dataset of MSAs.

3343 Compari sons Bet ween tghaep pie@adp pveoddoe | asn df

Alignment Re-scoring

Before discussing the comparisons between the results from-go@neg of the
alignments wusangd -ghiabpep efdiga pspceodd ng model ,
first look at the trends and results fromsr&ce or i ng using just the |
in the previous analyses the gsqpre parameters Ofpen = -11 andgexend= -1 are

used with the gap scoring melddefined inequation3.1. Again, these specific
parameters were chosen because they are the same as those used in the BLAST

sequence database search used to generate the MSAs.

The Agappedo prediction resul i
AAl 1l 1st |l NCORR Eu@niasked-E OP. AQMEE) are shown ifigure

3.4. It can be seen that the minimum prediction result, with a mean value of 0.202, is

a result of using the PAM160 matrix to-seore the alignments. This is expected
because, due to the way in which the datasetbe&s defined when using the
PAM160 matri x, al | of the top ranking s
specific function to the query sequence. This is a similar result to that shown
previously, when rescoring the

AAl T 1st | NCELEQFIMEQunniagkd E O . 0 Odataset, with the
BLOSUMG62 matrix that was also used in the BLAST search to generate the MSAs.

The key observation that we can take from these results is the presence of a clear
peak in prediction performance, when using the PKXMnatrices of PM10,
PAM20 and PAM36awiptehd 0t tadsdoringn mozlel.t This &
similar to the trend seen when -georing the

AAl Il 1st |l NCELAFIMEunniaskedE 0 . MBAE,aising equivalent re
scoring parameters. Thus, indicating that the use of andedow PAMN re-

scoring substitution matrix, improves the specific function prediction performance of
BLAST MSAs generated from both BLOSUM62 and PAM160 matrices.
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Comparison of the fAgappedo predappedao r
model (wherghe gapscore parameteigypen= 0 andgextena= 0) is shown infigure

3.4 These results show that, for most of the substitution matrices used, a significant
increase in the proportion of a@amprmpedtd pr
gap scoring radel is used for the alignment rescoring. Interestingly, when using the

PAM matrices, ranging from PAM10 to PAM70, there is no significant difference

=)}

bet ween the cor r es pgoanpdpi endgo firgeaspupletdso. and

With regards to the alignment-seoring reslts obtained from the IDENTITY
matrix, neither the gapped or gapped results are particularly large, with the
proportion of correct predictions equivalent to and slightly larger than the associated

random model values, respectively.

When comparing theseesults with the random model, it is possible to see, from
figure 3.4 t hat al | of the predgapgpeodo rmeddlt s
significantly better. Whereas in the ca
series matrix, BLOSUM100, andg¢iPAM10 to PAM70 range of matrices show a

clear, significant improvement, over the random sequence selection model.

The optimal prediction result shows a mean value, for the proportion of correct
predictions, of 0.611, which was obtained by using the PAN@rix with the
Agappedo f or m o-corihghatgoritarh. i Gheren &s,nhHowewverg no
significant difference between both the gapped andapped function prediction
results when using either of the PAM10, PAM20, or PAM30 substitution matrices.
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Figure 3.4. A comparison of the proportion of correct predictions
obtained for each of the specified substitution matrisaering methods. The
proportions of correct predictions are the bootstrap mean values, shown with
the corresponding standard error bars. Reswte shown for the gapped (
11-1) and ungapped (0,0) alignment +scoring of the
Al1stINCORRECT.tF.PAM160.unmasked.E0.001 dataset, when using the
IDENTITY, BLOSUMN and PAMN substitution matrices. Also shown is the
associated random sequence selectiwdel for the dataset, where the dotted
lines show 1 standard error deviation from the mean.

3.3.4.4 Comparison Between Results from Re-Scoring the BLOSUMG62 and
PAM160 BLAST Generated Multiple Alignments

To conclude this part of the analysis, let us compar@tdiction results that were
obtained from rescoring the MSAs generated from using both the BLOSUM62 and
PAM160 matrices in the PELAST database search. It has been shown that there
are similar peaks in function prediction results, for both the BLOS2NAd
PAM160 generated MSAs, when using the lower RNMnatrices (where N is in
the range between 10 and 50) tesoere the MSAs. Specifically, in both datasets,

the PAM30 matrix provides the largest proportion of correct specific enzyme

function predidt o n s . I n the case of the PAM160 ¢
mo d e | was opti mal, whereas for the BLOS
gappedo model was shown to be opti mal
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Overall, rescoring the BLOSUMG62 generated MSAs -

AAl Tl 1st]l NCORREQidnmasked BQ O® @Withéa PAM30 matrix,
when compared with the equivalent results from the PAM160 generated alignments
AAl 1l 1st | NCORR EuBriasked-E OP. AOMItiSOOhave been +scored
using the PAM30 substitution matrix, shows: (i) a larger mean proportion of correct
specific enzyme function predictions, of 0.631, when compared to 0.611; and (ii) a
larger improvement over the associated random sequencacselacidel, of 0.129,

when compared to 0.089.

The main conclusion to draw from these results is that an improvement in specific
function prediction results is observed, for both the BLOSUM62 and PAM160
BLAST generated alignment datasets, when using ani@a@itPAM30 rescoring
matrix. This indicates that these results are not simply an artefact of the MSAs in the
BLOSUMG62 generated dataset. Nor are they only due to the specific combination of
using a BLOSUMG62 matrix to generate the BLAST MSAs followedbgw PAM

N matrix to functionally rescore the alignments. This shows that the use of an
additional, carefully selected, substitution matrix can provide a consistent

improvement, in the annotation of specific enzyme function.

3.3.4.5 Analysis of the Dataset Obtained from Using the PAM30 Matrix in
the Sequence Database Search

Following on from the previous analyses, which looked at the effects of functionally
re-scoring BLAST alignments generated with equivalent BLOSUM and PAM amino
acid substitution matrices, set of experiments were carried out to compare the
effect of functionally rescoring BLAST alignments generated with a PAM30 search
matrix. The reason for selecting the PAM30 matrix to generate BLAESEd
MSAs, was that it has been shown to be the bedbpning functional rescoring
substitution matrix, when applied to both the BLOSUM62 and PAM160 BLAST
generated alignments, and could therefore be used to explore the following
outcomes: (i) whether the PAM30 generated MSAs would show a comparable peak
in prediction performance when using a BLOSUMG62 and/or PAM160 matrix in the
alignment rescoring procedure; (ii) whether the PAM30 generated MSAs would
show a comparable peak in prediction performance when using matrices other than
the BLOSUM62 or PAM160 mrices in the subsequent alignmentscering
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procedure; or (iii) whether the PAM30 generated MSAs would show no comparable
improvement in specific enzyme function prediction performance when using any of

the alternative alignment+scoring matrices.

The working hypotheses used for this analysis were the following. If outcome (i)
was shown to be true, then it would suggest the presence of complementary
information between the pair of BLAST creation and alignmeisicoging matrices.

Thus resulting in arequivalent enhancement of function prediction performance,
independent of the order in which the matrices are applied in the alignment creation
and rescoring procedures. Outcome (ii) would indicate that the alignment re
scoring process had a more unpectable pattern of behaviour, which is dependent
on the specific identity and ordering of the pair of matrices used in the alignment
creation and subsequentgeoring procedures. And outcome (iii) would provide
further evidence that MSAs, generated tlgloBLAST database searches using
either BLOSUM®62 or PAM160 matrices, coupled with subsequestaeng with a
PAM30 substitution matrix, show the most effective way of observing an

improvement in the specific functional annotation of enzyme sequences.

The All1lstINCORRECT.tF.PAM30nmasked0.001 dataset, containing 2110
MSAs, was used for the analysis in these experiments. The bootstrap parameters
were: B=10000 for the number of bootstrap replicates; and a bootstrap replicate size,
1055, which is half theumber of MSAs in the dataset under analysis. The details of
the random sequence selection model associated with this dataset is summarised in
table3.1.

Like all previous analysis in this chapter, a series of comparisons were carried out to
assess theifferences between the alignmentseoring function prediction results
when altering the rscoring matrices and gap scoring parameters. | will summarise
the trends observed and highlight the key findings from these parameter variations
that are of releance to a comparison between these prediction results and those
obtained from the BLOSUMG62 and PAM160 generated BLAST alignments.
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Comparison Between t-hepp&dppbBldoebsdf dtun
Re-scoring

A procedure similar to that used for the gagpand urgapped rescoring of the
BLOSUM62 and PAM160 PSBLAST generated alignments was followed here.

Here, the gayscore parameters @pen = -9 and gexenda = -1 are used in the gap

scoring model that is defined @guation3.1. Again, these paranets were chosen,

for use in the alignment+gcoring with the alternative substitution matrices, because

they are the same as those used in the BLAST sequence database search that
generated the addmpmenkentmodelThaegysiemd scor e
Oextend gapscore parameters equal to O during the alignmerdcoeing. A
comparison of thé&l1stiNCORRECT.tF.PAM30.unmasked.EO.@@fiaset rescoring

results is provided ifigure 3.5

For the fAgappedo predi ct i-stcoe matécesuthetess, whe
a clear minimum seen, when applying the PAM30 matrix to the alignmecbrang

algorithm, which results in a bootstrap mean value of 0.227 for the proportion of
functionally correct predictions. This was expected, due to the wayhich the

i AlstiNCORRECT.tF.PAM30nmaskedt0 . O @dtaset was defined. As in the

previous analyses of BLOSUMG62 and PAM160 BLAST generated datasets, there is

a sharp increase in correct predictions when using matrices of both lower and higher

i N BLOSUM-N or PAM-N) values than the patrticular type of matrix used for the
dataset generation. For the PAM10 matrix and the MAMatrices, with N values

greater than 150, the results approach a level of specific function prediction that is

close to that of theandom sequence selection model.

With respect to the BLOSUM series of mat
show that the proportion of correct predictions, for all of the BLOSUM matrices, are
within or below the standard error range of the assedirandom sequence selection

model. Therefore, there is not a minimum of a comparable magnitude to the PAM30

matrix result, or a clear maximum corresponding to the BLOSUM&Zoee results.

Interestingly, for this dataset, the overall maximum proportibcorrect predictions,
of 0.621, is obtained when-seoring with the IDENTITY matrix, using the gapped

(-9, -1) form of the alignment recoring method.
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A brief analysis of tglae prea@ou latl ss@pimgiemt u D if

shows a broadlyflat distribution of mean values for the proportion of correct
predictions. This is the case when using both the BLOSUM and PAM series of
matrices in the rscoring algorithm. The results range from a minimum mean
prediction value of 0.567, for the BL@™M75 matrix, to a maximum mean
predictionvalue of 0.577, for the BLOSUM®6Matrix, when using the BLOSUNI
matrices. And similar results that range from a minimum mean prediction value of
0.553, for the PAM10 matrix, to a maximum mean prediction valie5i1b, for the
PAM140 matrix, when using the PAM matrices to rescore the alignments. The
corresponding wgapped rescoring results for the IDENTITY matrix are founal

be less thathe results for the random sequence selection model.
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Figure 3.5. A comparison ofthe proportion of correct predictions
obtained for each of the specified substitution matrisaering methods. The
proportions of correct predictions are the bootstrap mean values, shown with
the corresponding standard error bars. Results are showth&gapped-Q.-

1) and ungapped (0,0) alignment  +®coring of the
Al1stINCORRECT.tF.PAM30.unmasked.E0.001 dataset, when using the
IDENTITY, BLOSUMN and PAMN substitution matrices. Also shown is the
associated random sequence selection model fordteset, where the dotted
lines show 1 standard error deviation from the mean.
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In summary, when recoring the PAM30 based BLAST MSAs, there are no trends

in either thgappagpedesolt & gNowvBLOSUMUSI ng
N re-score matrices, that show a significant prediction peak that is comparable to the
results obtaing from rescoring the BLOSUM62 or PAM160 generated BLAST

MSAs. There is, however, a clear peak when using the IDENTITY matrix with the
gapped form of the alignment-seoring algorithm, which is a new observation for

the All1stiINCORRECT.tF.PAM30nmaskedE0.001dataset, when compared to the
alignment rescoring results obtained from the previous datasets.

3.3.4.6 Comparison Between Results from Re-Scoring the BLOSUM62,
PAM160 and PAM30 BLAST Generated Datasets

It is now possible to compare and contrast the enzigmetion prediction results
obtained from rescoring the MSAs, generated via HRIAST, using the
BLOSUMG62, PAM160 and PAM30 substitution matrices in the sequence database
search. For clarity, | have chosen to only include in this comparison a repirigsentat

subset of results from each of the datasets analysed. These selected subsets are: (i)

t he -gfawprm e d 0 -scoringr e results from the
AAll 1st ]l NCORREC.inmasked BQL OGdUaMéLs e t ; i i) t
gappedo -scoringr e results from the
AAl Il 1st | NERARBSEWMaskedEO . d@alaset ; and (iii)

re-scoring results from theidl Al | 1 st | NCRARIBORGriBskedEO . 00 1 0
dataset. These were chosen because they highlight the key alignrsentimg
trends and results from each of the three s#dta and alternative substitution

matrices investigated.

The proportion of correct predictions of enzyme function obtained frestcaeng

the alignments from these three selected subsets, along with the associated random
sequence selection models, arevahan figure 3.6a along with an enlarged view of

the results when using the IDENTITY and PAWmatrices, shown ifigure 3.6b.

In both figures, the different +&coring methods are shown on the horizontal axis and
the proportion of correct results forettspecific enzyme function prediction shown

on the vertical axis.
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*  All1stINCORRECT.tF. BLOSUMEZ unmasked.E0.001, UNGAPPED (0.0)
*  AllstINCORRECT.tF. PAM160.unmasked.E0.001, UNGAPPED (0,0)

& AlMstiNCORRECT tF_PAMA30.unmasked.E0.001, GAPPED (-9.-1)
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Proportion of Correct Predictions

"7 Figure 3.6(b)
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Figure 3.6. A comparison of the proportion of correct enzyme function
predictions for each of the specified substitution matrksaering methods.

The propotions of correct predictions are the bootstrap mean values, shown
with the corresponding standard error bars. Results are shown for the un
gapped (0,0), wgapped (0,0) and gappeed(-1) alignment rescoring of the
Al1stINCORRECT.tF.BLOSUM62.unmaskedoaQ,
Al1stINCORRECT.tF.PAM160.unmasked.E0.001 and
Al1stINCORRECTEF.PAM30.unmasked.E0.001 datasets, respectively. Also
shown are the associated random sequence selection models for each these
datasets, where the dotted lines show 1 standard error dawvidtom the

mean. (a) Shows all the results for the IDENTITY, BLOSUEInd PAMN
substitution matrices and also the random sequence selection model. (b) Shows
an enlarged view of just the IDENTITY and PAMmatrix rescoring results

and the random sequemeselection model. The legend information shown in (a)

is also relevant for (b).

This comparison provides an overview of some of the key points that have been

discussed so far. We can best see ffigore 3.6(b)t h a t-g afipupne-staringrofe

the

All1stiNCORRECT.tF.BLOSUMGx:maskede0.001 alignments, with the

PAM30 substitution matrix,produces the largest proportion of 0.631 correct

predictions. In addition, this PAM30-sxore result shows a larger difference than

any of the other methods, of129, between the mean value of thescere

prediction result and the mean of the associated random sequence selection model.

Also, figure 3.6a) shows the difference between the general trends in prediction
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results between the three MSA generation nuthavestigated. In the case of the
results from the tgapped rescoring of both the
All1stiNCORRECT.tF.BLOSUMG62.unmasked.E0.001 and
All1stINCORRECT.tRPAM16Qunmasked.EQ.00datasets, the peaks in prediction
performance when using the lower PAVmatrices are clear. These peaks start to

become apparent when-seoring with PAMN matrices with N values of 70 and

below In contrast, thedo Al | 1st |l NCORRECT.tF. PAM3O0.

generated results do not show any similar peaks with any of the comparable
BLOSUM-N or PAM-N re-score methods used. But, these results do show an
improved predictive performance when using the IDENTITY in the alignment re
scoring algorithm, which is almost comparable to that of thgapped PAM30 re
scoring results from theAlllstiNCORRECT.tF.BLOSUM62.unmasked.E0.001

dataset

3.3.5 Effect from Clustering the Dataset Query Sequences

A series of sequence clusters were defined, using six thresholds of sequence
percentage identity (90%, 80%, 70%, 60%, 50%, and 40%), by clustering the query
sequences used to create each of the three Bige®&rated sets of MSASsee
Appendix Ifor more detailed description of these datasei)e aim of this was to

investigate the effect that any potential bias, due to sequence redundancy within the

query ®quences used to create the benchmark datasets, may have on the accuracy

and trends of the alignment-seoring prediction results. To some extent, this
consideration has already been factored into the previous analysis through the
repeated bootstrap sahmg of the prediction results. A summary of the sequence
identity clustering thresholds and the number of sequence clusters generated is given
for each of the datasets, table 3.3, where a 100% identity threshold refers to the

dataset compositions prido any CDHIT sequence clustering. The number of

sequence clusters produced at each threshold, for each distinct dataset, also defines

the number of MSAs that constitute the datasets at each of the sequence identity
thresholds.
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% identity threshold | 40% | 50% | 60% | 70% | 80% | 90% | 100%
Dataset: All1stiNCORRECH.BLOSUMs2.unmaskede0.001
sequence clusters | 721 | 1038| 1392| 1701 | 2131| 2622| 3527
Dataset: All1stiNCORRECI.PAM160unmaskede0.001
sequence clusters | 608 | 869 | 1174| 1440| 1826| 2270| 3100
Dataset:AllLstiINCORRECTF.PAM30unmaskede0.001
sequence clusters | 403 | 582 | 766 | 925 | 1191| 1503| 2110

Table 3.3. A summary of the number of clusters generated for each of
the three datasets at each of the specified sequence identity clustering
thresholds.

For each set of Aclusteredo sequence al.
previous alignment kscoring experimental analysis was carried out, using the same
IDENTITY, BLOSUM and PAM substitution matrices. Overall, the prediction
results from lhe alternatively clustered subsets of the three MSA datasets were found
to show similar trends to the previously discussed results, obtained without query
sequence clustering. A point of note is that the standard error deviation becomes
progressively largr as the sequence identity threshold used in the clustering is
lowered. This is to be expected because it causes the number of examples in the
datasets to decrease, which means that the bootstrap statistics are calculated on
progressively smaller sampiisstributions. An example of this can be seefigare

3.7, which shows how the proportions of correct predictions are altered when using
the ungapped rescoring model on the alignments from the sequence identity
clustered subsets of thé Al | 1 st | NCORREICOSUM6 2. unmaske
dataset. For clarity, only the results from the 40%, 60%%,&nhd 100% sequence
identity clustered subsets are shown. These results show that the overall trends in
the prediction results, through consideration of the npeaportions, are similar for

each of the cluster thresholds used. It can been seen, however, that as the clustering
threshold is lowered, the best performingsoering method on this particular dataset
becomes the PAMA40, rather than the PAM30 matrixyiptesly identified when re

scoring the ustlustered sets of MSAs. Also, these results highlight the increasing
lengths of the standard error bars as the sequence threshold is lowered, which leads

to greater overlap between results from alternativecogng methods.
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Figure 3.7. Comparison of the proportion of correct predictions from the
unrgapped alignment recoring results from a selection (40%, 60%, 80%, and
100%) of the sequence clustered  subsets of the

OAl |l 1st| NCORRECT.tF. BLOSUM62. unmasked. EO.

A comparison is shown, ifigure 3.8 between the results from-seoring the three
BLAST generated datasets after a 40% sequence identity threshold has been applied
to the constituent query sequences. These results provide an overview of the results
obtaired from both the gapped and-gapped scoring models, when using the
IDENTITY, BLOSUM and PAM matrices. Also shown are the associated random
model statistics for each one of the three clustered datasets.
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Figure 3.8. A comparison of the proportion of correct predictions

obtained for each of the specified substitution matrisaering methods. The
proportions of correct predictions are the bootstrap mean vakiesynwith

the corresponding standard error bars. Résulare shown for the
Al1stINCORRECT.tF.BLOSUM62.unmasked.E0.001,
Al1stINCORRECT.tF.PAM160.unmasked.E0.001 and
Al1stINCORRECT.tF.PAM30.unmasked.E0.001 datasets, after a 40% sequence
identity threshold has been applied to the query sequences. Also shala are
associated random sequence selection models for each of these datasets, where
the dotted lines show 1 standard error deviation from the mean.

The results from the 40% sequence identity threshold are shown because they were
found to display the largesteviation from the results seen previously when no
sequence clustering was used. Although, from the comparisons in this graph it can
be seen that the overall trends in thescering results are broadly comparable to
those obtained from the datasets veheo sequence identity clustering has been
applied. A good example of this is seen when analysing the results frerorieg

the OAIl1stINCORRECT.tF.BLOSUM®62.unmasked.E0001 and
0All1stINCORRECT.tF.PAM160.unmasked.EO®alignments with the PAM.O to
PAM-50 set of matrices, which show comparable improvements in performance.

There are, however, some notable exceptions to this, primarily concerning the results
from re-scoring thedAll1stiINCORRECT.tF.PAM30.unmasked.EO®ddataset when
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a 40% sequence cluster threshold has been applied. These are highlighted in more
detail below, with the aid diigure 3.9 This graph provides a clearer comparison
between the PAMN and IDENTITY rescoring matrix results. Comparisons are
shown between he rescoring results from the
0AllI1stINCORRECT.tF.BLOSUM®62.unmasked.E0001 and
0AIll1stINCORRECT.tF.PAM30.unmasked.EO®dfdtasets, with two sequence
identity cluster thresholds (100% and 40%), when using the IDENTITY and
PAM10-N matrices with both gappexhd unrgapped scoring models. With regards

to the gapped form of the-seoring algorithm, it can be seen that the proportion of
correct predictions is consistently greater for the MSA subset clustered at 40% query
sequence identity than for the-alusered (100%) dataset. In contrast, the results
from the ungapped rescoring model are generally more closely correlated when the

qguery sequence clustering is applied.

Of particular interest is the relatively large increase in the proportion of correct
predictions seen when applying the PAM150 and PAM168c@ing matrices, with

the gapped scoring model, to the 40% query sequence clustered subset of the
AAIILstINCORRECT.tF.PAM30.unmasked.EO®01 d at as et . This is
observation because it shotie possible start of a peak in prediction performance,

when using the PAMN matrix (PAM160) that is most closely related to the
BLOSUMG62 matrix used to generate the BLAST MSAs in the comparison dataset.

These results slightly contradict the previousparisons between the results from
the three BLOSUM62, PAM160 and PAM30 BLAST generated MSA datasets,
without taking into consideration any query sequence clustering. The lack of a
corresponding prediction peak when -sEoring the
OAlIl 1st | NCORRE @h.mtalk .k AlMased with0 BLOSUM62 or
PAM160 initially indicated that there was no complementary improvement in
specific enzyme prediction performance, when reversing the order of application of
the BLAST search and 4gcoring substitution matrices.The new observations,
shown infigure 3.9 indicate that there may be some level of complementary
information in the PAM30/PAM160 pair of matrices that was previously being
masked by the potential query sequence redundancy of the dataset. This is not as
clear as the corresponding performance peaks with lower-RABscore matrices.
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Figure 3.9. A comparison of the proportion of correct predictions

obtained for each of the IDENTITY

and PAMmatrix rescoring methods.

The proportions of correct predictions are the bootstnaganvalues. Results
are shown for the AI1stINCORRECT.tF.BLOMG2.unmasked.E0.001 and

Al1stINCORRECT.tF.PAM30.unmask

ed.E0.001 datasets, after both 100% and

40% sequence identity thresholds have been applied to the query sequences.

To conclude this analysis, a summary is givetable 3.4, which highlights the re

soring methods that provide the largest number of correct specific enzyme function

predictions for each of the datasets a

nd the associated query sequence clustered
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subsets (of 100%, 80%, 60% and 40%) investigated. A number of observations can
be drawn fromthese results. Each of the three datasets of MSAs that were
investigated, show that similar-seoring matrices provide the optimal level of
specific enzyme function annotation, when applying different sequence identity
clustering thresholds to the quesgquences. In the case of the results for the
All1stINCORRECT.tBLOSUM62unmasked.E0.00dataset, the optimal results are
obtained when using either a PAM30 matrix (with 100% sequence identity
clustering) or a PAM40 matrix, with an gapped (0,0) gapcoring method.
Similarly, the optimal results for the
All1stINCORRECT.tRPAM16Qunmasked.E0.00dataset are seen when using either

a PAM20 or PAM30 rescoring matrix, but in this case there is also an additional
variation, with the sequence identity ckishg threshold, in the gap scoring model
that provides these results. Finally, the results for the
All1stINCORRECT.tPAM3Qunmasked.EO.00flataset show that the IDENTITY
matrix, with a gapped-9,-1) gap scoring model, is generally the bessaering
method. Overall, the results from -seoring the
All1stINCORRECT.tBLOSUM62unmasked.E0Q.00Hataset, consistently show a
larger mean proportion of correct enzyme function predictions, with the largest value
of 0.652 seen for the subset of MSAs generatednathe query sequence cluster
threshold is 40% and a PAM40-seoring matrix with an ungapped (0,0) scoring

model is used.
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BLAST search
matrix used to
generate
dataset

Optimal
re-score
matrix

Gap Penalties
(gopen gext)

(bootstrap)
mean
proportion
correct +/- se

Number
Correct (out
of)

Query sequence

cluster threshold = 100%

BLOSUM®62 PAM30 0, 0) 0.631+/-0.012 | 2226 (3527)
PAM160 PAM30 (-11,-1) 0.611 +/0.012 | 1894 (3100)
PAM30 IDENTITY (-9,-1) 0.621 +/0.015 | 1310 (2110)
Query sequence cluster threshold = 80%

BLOSUM®62 PAM40 0, 0) 0.632 +/ 0.015 | 1347 (2131)
PAM160 PAM20 0, 0) 0.604 +/ 0.016 | 1103 (1826)
PAM30 IDENTITY (-9,-1) 0585+/-0.020 | 697 (1191)
Query sequence cluster threshold = 60%

BLOSUMG62 PAM40 0, 0) 0.645 +/0.018 | 898 (1392)
PAM160 PAM20 0, 0) 0.621 +/0.020 | 729 (1174)
PAM30 PAM160 (-9,-1) 0.607+/- 0.025 | 465 (766)
Query sequence cluster threshold = 40%

BLOSUMG62 PAM40 0, 0) 0.652 +£0.025 | 470 (721)
PAM160 PAM20 (-11,-1) 0.648 +/- 0.028 | 394(608)
PAM30 IDENTITY (-9,-1) 0.634 +/0.034 | 256 (403)

Table 3.4. A summary of the rscoring methods that give the optimal

specific enzyme functional predictive performance for each of the MSA datasets

and a selected set of associated query sequence clustered subsets. The column

- BLAST search matrix used to generatdageti specifies the amino acid
substitution matrices used in the sequence database search to generate the
particular dataset of MSAs under consideration. The columaoptimal re

score matrix and gap penalti#ésshow the rescore methods and gap scayin
models that give the best predictive performance for the dataset under

investigation.

Bootstrap values for both the mean proportion, with standard

error (se), and number of correct predictions are shown for each identified

method.
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Overall, the addibnal results obtained in this sectierirom clustering the query
sequences used to generate the MSAs in the datasedgate that the potential
sequence redundancy is not distorting the true trends in the alignmstdree
prediction results. Some table exceptions to this have been highlighted, such as
the results seen for thAll1stiNCORRECT.tlPAM3Qunmasked.E0.00Hataset,
when the query sequence identity cluster threshold is 40%, which may be worthy of

further study.

3.3.6 Investigation of Potential Correlation Between the Conservation
of Enzyme Functional Specificity and the PAM Evolutionary

Distance

The aim of this section is to investigate whether there is any correlation between the
optimal rescoring lower PAMN (such as PAM30) substitution miats and the
conservation of specific enzyme function at the associated PAM evolutionary
distances. This was done by using the sequence identities, calculated in the analysis
of chapter2 i section2.3.1, shown infigure 2.2, as input to thd?erldentToParf)
function from the Darwin application. This data was used because it provides a
largescale study of the relationships between -page sequence similarity (and
hence PAM evolutionary distance) and enzyme functional class conservation.
Therefore prouing a logical extension of the function conservation studies
presented irchapter 2 The outcome of this wafsgure 3.10, which shows the
variation of enzyme function conservation, with respect to the PAM evolutionary
distance, between pairs of alignedzgme sequences. Because this thesis is
focussed on high functional specificity, the analysis is restricted to the accuracy of
conservation at the first three and all four levels of the EC functional classification

hierarchy.
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Figure 3.10. Graph showing the functional conservation accuracy, using
PAM distances between enzyme sequence pairs front'therdtion of the
database search results. Where, EC3:n-mane the results for the first three
EC numbers predicted correctly; and EC4:n.n.n.n for all four EC numbers
correctly predicted.

When considering the results for the conservation of all 4 levels of EC numbers
(EC4: n.n.n.n), a functional conservation accurac9®100% is observed when the
PAM distance is less than 100. Between PAM distances of 100 and 200 the
accuracy decreases to approximately48@o, where it remains for PAM distances
greater than 200. These results indicate that there is no clear, unigelation
between the low PAME®PAMS0 evolutionary distances and the accuracy of specific
enzyme function conservation, which is what might possibly be expected from the
outcome of the PAM matrix fscoring results. There is however, a clear decrease in
accuracy when the PAM distance is 100 and greater. This could be of relevance
because this is the PAM distance at which the peaks in function prediction
performance begin to become apparent wherscoeing the PAM160 and
BLOSUMG62 generated MSAs. Howevéhnjs particular signal is perhaps not strong

or convincing enough to provide a reason for the specific function prediction
improvements shown for the alignments@ring when using the lower-\alue

(such as PAM1PAM50), PAM-N matrices.
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3.4 Conclusions

In this chapter a number of automated approaches have been presented that
investigate the utilisation of alternative amino acid substitution matrices for
improving the specific functional classification of enzyme sequences. The aim of
this work was mainly twdold: (1) to assess any improvement in the function
prediction accuracy of a PBILAST generated sequence significance ordering,
through the use of additional amino acid substitution matrices to functionally re
score the aligned sequences; and (2) to iyeany general, significant trends in the

analyses that are correlated with the variation of the substitution matrices used.

Three methods for generating datasets of multiple sequence alignments have been
investigated. Each dataset was the result ofppeyh BLAST sequence database
search that used one of either: BLOSUM62; PAM160; or PAM30 as the search
amino acid substitution matrix. The constituent MSAs were then modified, to define

a series of benchmark datasets, where the enzyme sequence withttegnificsant
sequence similarity to the query protein is classified as functionally incorrect. The
purpose of these benchmark sets was to assess the effect of subsequent sequence re
scoring and rganking methods on the accuracy of specific enzyme fumcti
annotation. An IDENTITY matrix and a wide selection of BLOSUM and PAM
amino acid substitution matrices were employed to carry out this analysis. Also
investigated were the effects on the functionadaering results of: sequence residue
masking; gapscore penalties; and the generation of MSA subsets using clusters

based on the sequence identity of the query sequences.

Initially, the analysis focussed on the sequence alignments obtained from using a
BLOSUMG62 matrix in  the gapped BLAST  searchi the
All1stINCORRECT.tF.BLOSUM62.unmasked.EO.@Btaset. From these it was

shown that the MSAs containing -mmasked amino acid residues gave consistently

larger proportions of correct function predictions, irrespective of the particular
substitution matrix rsca i ng met hod wuseeédg.appidmi Ifarrimy ,o-
alignment rescoring algorithm, in which all residues aligned with gaps were scored

as zero, consistently outperformed the method that used identical gap penalties to
those used in the original BLASsearch. Overall, the best performing method for

specific functional classification of these MSAs is the one which uses the PAM30
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matri x a@qappendoiugap scoring model , wi t ho
This resulted in a maximum mean value, fbe tproportion of correct specific
functional classifications, of 0.631 (or 2226/3527 correct classifications). In
addition, there is a more general trend towards improved classification results when
using PAMN matrices that have progressively lower Nues, culminating in the

optimal peak observed with the PAM30 matrix. This trend is seen for both the

gapped{11,-1) and uagapped (0, 0) alignment-sEoring results.

Further, a control experiment was carried out to assess whether the results were also
valid when usi nar ttihfei carail @i ndadt afsrean of a l
PAM30 matrix continued to show an improvement in the number of correct
predictions, when compared to the BLOSUMG62 matrix. This showed that the
PAM30 matrix does not have dgetrimental effect when fgcoring alignments that
contain examples that are originally HfAco
AAll 1st ]l NCORRECToO artificial dataset as

Following on from these observations, anlgsia was conducted to assess whether
the above phenomena of improved functional classifications were a unique property
of the sequence alignments in the
All1stINCORRECT.tF.BLOSUM62.unmasked.EO.@@taset. One way in which
this was approached was by wugithe PAM series equivalent of a BLOSUMG62
matrix, which is PAM160, when generating the benchmark MSAs. These
alignments were then subjected to an identical set -st@eng analyses, where
similar trends were observed. Also, the optimum number of ¢@pecific enzyme
function classifications occurred when using the same PAM30 substitution matrix
that produced the maximum for the BLOSUM®62 based alignments. A difference in
the case of the PAM160 alignments was that it was the gappkdX), rather han
un-gapped (0, 0), rscoring model that gave the maximum proportion of correct
classifications, equal to 0.611 (or 1894/3100 correct classifications). However, it
was shown that the comparable PAM36scere results from the tgapped model
were almosidentical and fall within one standard error of deviation of the gapped
results. Although the maximum proportion of correct predictions is larger in the
BLOSUMG62 than the PAM160 generated MSAs, with a small difference between

the means, of 0.020, thesmalyses do indicate that the-georing of multiple
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sequence alignments with low N value PAM matrices, specifically a PAM30 matrix,
results in an increased number of correct specific enzyme sequence classifications,
when compared to the other substitutioatrices investigated. This suggests that
the lower PAMN matrices do show a general improvement in specific functional
classification of enzyme sequences, when either a BLOSUM62 or PAM160 matrix is
used to generate the datasets, and the results asenpdy due to an artefact of the
BLOSUMG62 substitution matrix used in the BLAST MSA generation.

To complete this analysis, the same process was again followed, using PAM30 as the
substitution matrix in the BLAST sequence database search. The aim oaghie w
assess whether there would be a comparable improvement, in correct function
prediction results, when using a low PANImatrix for the initial MSA generation,
followed by a BLOSUM®62 or PAM160 matrix for alignmentseoring. The results

from this andysis did not show a comparable peak in prediction results when using
either the BLOSUM62 or PAM160 matrices to-seore the PAM30 generated
MSAs. Infact, there were no clear peaks of specific function prediction
improvement for any of the BLOSUM or PAM-N substitution matrices
investigated. However, when using the IDENTITY matrix, with the gapitedl()
scoring model, an optimal value of 0.621 for the mean proportion of correct
functional predictions was observed. This result is comparable to thepgtmal
results, described above, from -georing the
All1stINCORRECT.tF.BLOSUM62.unmasked.E0.001 and
All1stINCORRECT.tF.PAM160.unmasked.EO.G@fasets.

A further study was then carried out to investigate the effect that any potential
sequence redundancwithin the query sequences used to create the benchmark
datasets, may have on the accuracy and trends of the alignrseotirey prediction
results. For this, a number of sdhtasets, on which the alignmentseoring
experiments were repeated, wagenerated using a variety of sequence identity
thresholds. The outcome of these additional analyses showed similar results and
trends for each of the sequence identity cluster thresholds used. An exception to this
was seen when the MSAs were used frome thsubset of the
All1stINCORRECT.tF.PAM30.unmasked.EQ.0QAtaset, defined using a 40%
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sequence identity threshold, where an increase in specific functional classification

accuracy is seen when using a PAM16@cere matrix.

In general, the results obtained from the alignmersicoging experiments indicate

that the order in which the particular pair of matrices are applied, for MSA
generation and subsequentseoring, is important for improving the specific
enzyme classifidion. This is shown by the fact that there was mostly no
complementary improvement in performance, when reversing the order of
application of the BLOSUMG62 matrix for BLAST MSA generation and PAM30 for
subsequent sequence alignmenscering. Although, He exceptions seen for the
40% sequence identity clustered subset of MSAs, indicate that there may be some
complementary information in the pair of BLOSUM and PAM matrices used and
thisphenomenoicould be worthy of further study.

A possible explanation fahese observations may be found in the intended uses for
the particular types of amino acid substitution matrices and therefore the methods
used to generate them. The BLOSUM series of matrices are generally used (and
found to be optimal) in sequence a@laase searches, such as BLAST, because they
tend to generate better quality alignments and provide improved levels of homology
detection. This is in contrast to the PAM matrices which are often used to assess the
evolutionary origin of sequences and foodarelling evolutionary changes across a
family of proteins (Mount, 2004). Therefore, the optimal performing PAM matrices
may be related to the level of evolutionary distance between the homologous
sequences in the specific alignments, thus, providing iaddit information that
improves the specific functional classification of the more closely related sequence
homologues. The results from the comparisons between PAM evolutionary distance
and the accuracy of specific EC conservation indicate a possibldatimn of this

type. However, the correlation signal is quite weak and further study would be

required before any firm conclusions could be stated regarding these results.

It has also been shown that the results frorec@ing the alignments contaigimo

sequence residue masking are a consistent improvement over those containing the
residue masking used in the original database search. A possible reason for this
performance improvement could be that the sequence masking, used in the sequence

databasesearch, improves the homolog detection, by reducing the false positives
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identified from similarities to masked sequence regions of low information content,
whereas the subsequent-seoring of the ummasked locally aligned sequence
regions provides adddnal sequence information that improves the specific
functional ordering of the homologous enzyme sequences.

In summary, the results presented in this section highlight some areas of
improvement for the accuracy of specific functional assignment, whenacethfo

the sequence similarity based, statistical significance ordering of a BLAST database
search. For the BLOSUM62 and PAM160 BLAST generated MSAs, there is a
definite trend towards an increase in correct prediction results whenthsitogver
evolutionary distances of the PAM matrices, where a maximum is observed for

the PAM substitution matrix of 30/40 PAM units. The next chapter aims to improve
on these results by implementing a more refined procedure, based on sequence
evolution and additional ylogenetic information, for the selection of particular

residues to use in the sequence scoring function.
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Chapter 4  Identification of Functional

Specificity Determining Residues

4.1 Introduction

In the previous chapter, methods based on alternative amino acid substitution
matrices, were investigated for-seoring the functinal similarity of aligned
homologous enzyme sequences. However, these approaches did not take in to
consideration the particular amino acid residues that are most likely to be responsible
for the specific functional behaviour of the proteins. In thigptdra the aim is to
investigate and benchmark a selection of methods that have been developed to do
precisely that and then investigate their use for the improvement of specific enzyme

function annotation.

The hypothesis used in these approaches iedbasm the knowledge that the
functional divergence of proteins is determined by selective pressures during
molecular evolution. In general, new functions arise in paralogous proteins through
the fixation, via natural selection, of a number of key aming awtations that are
functionally beneficial (Ohno, 1970; Taylor and Raes, 2004; Conant and Wolfe,
2008) This is a particularly important means for the diversification of the substrate
binding specificity and the biochemical mechanisms of enzymes. el¢loslated
enzyme sequences, such as those used in this study, are therefore well suited to the
identification of amino acid changes that highlight functional differences. This is
especially true when considering the (often small number of) mutatiopsnsble

for thermodynamically favourable binding of a particular substrate instead of other
substrates that are chemically similar.

Considering these observations, regarding the mechanism for the evolution of
specific protein functions, it would appear portant to develop computational
methods to identify these particular residues. An additional driving force is the fact
that it is timeconsuming and economically expensive to identify each of these
residues through experimental metho@adhatelian and r@vatt 2005). Most
computational approaches to this problem are based on comparisons between

multiple sequence alignments (MSASs) containing groups of functionally identical or
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similar sequences. Due to the fact that divergent evolution is believedniodie
more common than convergent evolution of function (Patthy, 1999) these sequences

are generally obtained through homology recognition techniques.

In this chapter, | have implemented and investigated the performance of two
methods for the identificatioof residues that determine functional specificity. Both

of these have been previously published and take quite different approaches to
solving the problem. The methods chosen and discussed below are:f{if theen c
MB omethod (Pazos et al., 2006); anid ¢the i p r oH M M obased method
(Hannenhalli and Russell, 2000). In an earlier study (del sol Mesa et al., 2003), three
methods for identifying functionally determining residues were compared. A
benchmark was devised that used the distances fromcfmeédiesidues to bound
ligands and hetero atoms to assess the accuracy. It was concluded that there was
little difference between the performances of the three methods and furthermore,
suggested that a combined approach would be expected to be optimabks |
therefore decided to investigate a modified form of the MB method used in that
study, which was later described by Pazos et al. (2006). Apa@metric rank
correlation coefficient is used in this method to assess the correlation between
specific tuinction and amino acid similarities. This method was chosen over the
others because, it was relatively simple to fully automatkich is in contrast to the
SequenceSpackased method- and also because it contained an implicit

representation of the sespuce phylogeny.

The profile-HMM method was chosen primarily because it has been used previously,
with some success, for the identification of residues determining specific function
and the subsequent prediction of function using a subset of these resithss.
method uses the probability of observing certain residues, within specific functional
groupings, to identify the residues most likely to be responsible for the definition of
specific functions, meaning that this approach is quite different to tirparametric
rank-order correlation based MB methods.

The main aims for the work in this chapter were primarily tHodd:

1. The implementation and investigation of methods for identifying fSDRs in

groups of functionally related enzyme sequences;
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2. The provison of a benchmark that compares the ability of selected fSDR
subsets, from each of these methods, to improve the functional clustering and

specific function prediction accuracy for enzyme sequences; and

3. Demonstrate the performance of the methods whenealpp a wellstudied

example of enzymes that have differing substrate specificities.

These studies have also been desagdaddodo
subset of computationally identified fSDRs. That is, they provide an optimal
predictve performance, with regards to their use in the assignment of correct
specific enzyme function to the query sequence. This dataset of fSDRs are then used

in the experiments othapter 5 to investigate the feasibility of using machine

learning techniqueso identify fSDRs in MSAs, without prior knowledge of the
functional subktypes of the constituent sequences of the alignments.

4.2 Methods

4.2.1 Datasets

As in the previous studies, presentedhapter 3 the datasets used for the following
experimental analysisoasist of multiple alignments of enzyme sequences. Two
datasets of MSAs were used for the studies contained within this chapter. To assess
the performance of the fSDR based -glignment rescoring methods, the
All1stINCORRECT.tBLOSUM62.unmasked.E0.00dataset, which consists of

3527 BLAST generated MSAs, was used in the following analysis. Additionally, a
single MSA from théi i n i daiasetlistused to provide a detailed investigation of a
specific example, which contains aligned sequences fromatttaté and malate
dehydrogenase classes of enzymes. The methods used to generate both of these
datasets are the same as those used previously in this thesis and are defined in detail
in chapter 2

4.2.2 The Functional Mutational Behaviour ii f u-N B dMethod

The idea behind this method was originally inspired by the mutational behaviour
(MB)-method described by del sol Mesa et al. (2003). In this method, a rank
correlation coefficient is used to identify positions, within a multiple protein

sequence alignmenthdt show correlation with the mutational behaviour of the
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whole group of homologous sequences. The hypothesis being that a larger
correlation coefficient indicates aligned positions that most closely resemble the
mutational pattern of the sequence famitgnce identifying the positions most
important to the specific phylogenetic relationships between the sequences. An
extension of this method, which was recently studied by Pazos et al. (2006),
investigates the correlation between the specific functiolaalks and the individual
residues in an aligned column. The method is referred to a&dtenethod in the
original paper by Pazos et al. (2006), but will be referred to asitheuNhB:0
method in this thesis, so as to maintain a similar naming schetméhwipreviously
publishedi MBne t h, avlich has been discussed in other parts of this th@sie

aim of the funcMB method is to identify the residues that have a mutational
behaviour closely correlated to variations in specific functional propertidse
implementation details, which differ slightly to those described by Pazos et al.
(2006), are described below.

4.2.2.1 Implementation of the func-MB Method

For each pair of sequences in the MSA, a matrix of valBesias constructed to

represent the specifici f uncti onal similarityo (or
Calculation of the functional similarities was done by looking at the number of EC

code description levels each of the compared enzyme sequences had in common.

For example, if all 4 EC numbers were served between a pair of sequences then

the associated matrix value would be 0406
value of 0636, with values of 6206 and 01¢
number respecti vel wasusedwhanaHellsg EC namberadsu e o
not common between the sequences. A matrix of these values was calculated once

for a particular MSA.

Then, for each of the aligned col umns,
mat r A, Xsocalculated, with the sameumber of elements as the functional
similarity matrix, to measure the similarity between each of the residue pairs. An
amino acid substitution matrix is wused
between each of the amino acid pairs in the columnsth Bie BLOSUMG62 and

PAM30 substitution matrices were used in the work presented here, but any other

measure of similarity can be easily integrated into this method.
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To calculate the correlation between the functional and residue similarities, the
Spearmasrank order correlation coefficient;, (Press et al., 1992) was calculated

for each of the aligned columnigjn the MSA, using the following equation:

&) (equationd.1)

where the rank order of amino acid similarity in sequex@nd sequencg, at
positioni, is represented by ; the rank order of functionaimilarity in sequence

andy is represented b$, ; and the average rank position of these amino acid and

functional matrices is given t A and S respectively.

4.2.3 The Functional Profile-HMM Based Method

An alternative method for identifying functionally specific residues has been
proposed by Hannenhalli and Russell (2000). The basis of this method is the
identification of amino acids that are more likely to be conserved within groups of
sequences with & same function, but differ between them. Starting from an
alignment of sequences, containing proteins of different molecular functions, a set of
alignments are created, each containing only sequences with a single specific
function. A hidden Markov mod€HMM) profile was created for each of these
functional sukalignments using thehmmbuild application provided with the

HMMER application (version 2.3.2 http:/hmmer.wustl.edu The default

parameters were usedtime creation of all profiles.

The profiles output byommbuildare in logodds form. Because the aim of this
method is to calculate the probability of a particular type of amino acid occurring in
one profile, compared to all others, these scores weneeded into probabilities.

For each aligned column(with a match state in the profile HMM), the probability

of occurrence of amino acid, in specific functiors, was calculatec R%. From the
resulting probability profiles, the legive residue conservation between profiles was
calculated using the relative entropy (Durbin et al., 1998) of each alignment position,

defined as follows:
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(equation4.2)

where the relative entropy for a specific functignat positioni is defined a: RE®

and is calculated from the summation of the contribution from all residue xygtes

this position. The union of all specific functional types, excepsfors denot ed b
with the probability of occurrence of amino acidat positioni in this combined

alignment, represented IPi,Ex. The relative entropy of an alignment position can be
thought of as a measure of the degree of congervat that position, in a specific

functions;, when compared to all other functi ol

Two further calculations were required to assess the importance of each alignment
position. The first determines the cumulative relative entrdpRE, at each

alignment positionj:

CRE = j RE° (equations.3)

which aims to assess the discriminatory role of alignment posjtwhen summing
the relative entropy contributions over all the specific functional typesall{i a Z
score is used to assess the overall significance of the cumulative relative entropies,
when considered in context to all the aligned positions in the MSA.
CRE- m ,
Z :L (equationd.4)
s

Where,l0cearaemdt he mean and standard devi at
the multiple sequence alignment. A largescore indicates greater significance for
that aligned column and therefore indicates it is more likely to be a determinant of

specific functon.

4.2.4 The Sub-Alignment Re-scoring Procedure

This section provides a description of the methods used to selesetsubf the
aligned columns, from each of the MSAs in a particular dataset, that are predicted to
determine specific enzyme function (fSDRs)-irst, however, a description is

provided of the procedure that is subsequently used to functionadigore the
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aligned sequences through the incorporation of those selectesbtsubf aligned

columns.

4.2.4.1 The fSDR-based Sub-alignment Functional Re-scoring Procedure

The previously described method, s#ction3.2.2.1 (see also the method flowchart

in figure 3.1, is built upon here to propose an alternative method for sequence re

scoring and reanking to determine the functional similarity between a query

sequence and related, aligned enzyme sequences. This method is based -on the re

scoring of sukalignments of amino acid residues that have been extracted from the

full MSAs in the input datasets. An overview of this procedure is shown below in
figure 4.1 This shows a simplified overview of the proposed method for the

identification of fSDRs and their subsequent use in generating a functionally more

informative subkalignment of amino acids for use in improving classification

accuracy.
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the full MSA, but a smaller, selected subset, of the aligned columns. Edoh o

individual pairwise subset of alignments, between the query and aligned enzyme
sequences, are then evaluated using the scores from the amino acid substitution
matrix used for the sequence-seoring. For these studies the BLOSUM62 and

PAM30 substution matrices were used to score the -page residue similarities,

however, only the results from using the PAM30 matrix are shown in the following
analyses. After the ygecoring of the sulalignments has been completed the
sequences are theneedeed and their specific functional similarity to the query
sequence is assessed. The simplified example, shofigune 4.1, highlights the

key concepts behind this approach. It shows a hypothetical situation in which the
original functional sequence omdé¢ ng fr om t he database sea
gl obal 0) sequence -ranketesequemags hak @ rdiferenth e t o
function (g) to that of the query sequend@)(which has functionff), and therefore

results in an incorrect functionalassification. However, once the sequences have
beenre anked, wusing the i dent i fankeddsequesd@Rs ( fi
now shows the same specific function as the query and therefore results in an

improved and correct functional classificatiof the query sequence.

4.2.4.2 Methods for Selecting Aligned Subsets of fSDRs

Three methods were used to select subsets of aligned residue columns from each of

the MSAs in the dataset, for use in the subsequent fig3ed sualignment re

scoring procedure: (ifhe selection of aligned columns using a-afiitthreshold,

obtained from the column scoiet he A col umn score thresho
selection ofN aligned columns, using thid highest ranking column scorésthe

it-olp met hod; a n don d¢f ialigneyl colurhne usiee thee g X
percentage of the highest ranking column scoresh e -XAi tpepr cent 0 met hc
all three, the column scores are the values obtained from either the Speaninan

order correlation coefficient or the-store, dependg on whether the fSDR

identification method used was thencMB or profile-HMM, respectively.

4.2.5 The Treatment of Gaps in the Sequence Alignments

There are three stages in the slignment rescoring procedure where the methods

used for scoring gaps indlsequence alignments must be considered. Each stage is
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defined separately below and where necessary the particular fSDR column

identification method of relevance is indicated.

4.2.5.1 The Aligned Column Gap Percentage Threshold of Inclusion

A method for the prdiltering of aligned columns from the MSAs was used, based
on the percentage of gap residues that are contained within a particular column of all
types of aligned residues. This method removes all aligned columns from the MSA,
prior to the application of the fSDR identification methods, which contain more than
a defined percentage of gaps. This is referred to aé theo | u mpercegtage
threshold (colgap_percend and where relevant the specific thresholds used are
stated alongsid#he discussion of the results.

4.2.5.2 Gap Score Penalty Used for Calculating the Amino Acid Similarity
Matrix in the func-MB Method

When defining the amino acid similarity matrii,(see equation 4.1yequired for
calculating the aligned column correlation caménts for thefuncMB method, it is
necessary to consider aligned residue pairs that may contain gaps. For the following
analysis, the method of Pazos et al. (2006) was used, where a gap score of 0 was

used for scoring all of the aligned amino acid g#iat contain gaps.

4.2.5.3 Gap Score Penalty Used for the Sub-Alignment Re-scoring

In the following analysis, a single gap penalty of O is used for all aligned residue
pairs that contains gaps when-sa@ring the fSDRbased sufalignments of

seqguences.

4.2.6 Methods for Assessing the Accuracy of fSDR-Based Prediction
of Specific Enzyme Function

4.2.6.1 Top-hit Method

The -fiitop assessment met hod was again
classification accuracy resulting from the functionaiscering of the enzyme
sequencesyhen using fSDRbased sequence sabignments. It is conceptually the
same method as that used previouslghapter 3(section3.2.3.]). This classifies a

prediction as correct if the specific enzyme functional class of the query sequence is
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the same @athat of the sequence with the highest score, after thaligmment based

functional sequence 1@anking.

4.2.6.2 Calculation o f t he Proportion of AfCorrect o ¢

Predictions

The same method as that echapter3 was used for calculating the proportioh
Acorrecto specific enzyme predicthiotnss (o0

assessment method. This is defineicorrect in equation4.5, where: n

proportior correct
is the number of Acorrect o -hprt &diacstsieosnssm:
method ancN is the number of MSA examples in the dataset that were used in the

analysis.

j— r-]COI’I’EC'[ H
COITeCt,,, orion= N (equatbn 4.5

4.2.6.3 Bootstrap Re-sampling Analysis of Top-hit Results

The same bootstrap statisticals@mpling method (Efron and Gong, 1983), which
was previously described thapter 3- section3.2.3.3 is again used in this chapter
to analyse the statistical sifjpance of the functional classification results obtained

from the fSDRbased sualignment sequence-szoring.

4.2.6.4 Definition of a Random Seguence Selection Model for Specific

Enzyme Function Assignment

A random sequence selection model was again usegrdoide a baseline
compari son -twiittd ftdrec tihitoomp predi cti on resu
based sualignment rescoring result. This was identical to the method described in
chapter 3(section3.2.3.2, which is based upon the concept of randomly permuting

the ranked results of the sequence homologues in each of the MSAs in the dataset.
The functional classification result was then determined to be correct or incorrect
through functional comparison teeeen the specific EC classification of the query
sequence and the rhintdiooml yFereramutded afit ed

selection procedure please refer backdation3.2.3.2 in chapter3.
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4.2.6.5 Random Selection of Subsets of Aligned Residue Columns

An additional random modél their andom col umn svea$a@&sot i on
used for the assessment of the fSBaged swalignment functional classification

results in this chapter. This method implements a randomised procedure for aligned
column séection, using a similar logic to the identification of the fSb&sed

subsets of aligned residue columns described above. However, for this random
selection no regard was given to the actual likelihood of the columns being
associated with specific enzynfienctional properties (i.e. they are not necessarily

high scoring fSDRs). So, unlike with tipeofile-HMM and funcMB methods, the

columns were (randomly) selected without first ranking them based on the calculated
fSDR significance scores. Therefore,d m each one of the AfAco
subset ofn aligned amino acid columns was randomly selected (using a uniform
distribution to randomly select aligned columns from the MSA), without
replacement. The number;,of aligned columns was selected in agne way as for

the fSDRbas e dNdOit ampeX fpteampent 6 col umn sel ectic
above, insection4.2.4.2 Leading to a raNdool yfisahedaH
X per c e-aignment o seduences, containingaligned columns of amino

adds. This type of model does not naturally lend itself to producing a randomly
selected subset of aligned columns that

t hreshol do -aiganmeht getheratidn arsl thérefore one is not provided.

4.2.7 Query Sequence Clustering

An identical procedure to that used d¢hapter 3(section3.2.5 was followed to
analyse the effects of query sequence identity clustering on the enzyme functional
classification accuracies. The clustering was again done through thetheeGi»

HIT algorithm (Li and Godzik, 2006), on the 3527 query sequences that were used to
generate théll1stiNCORRECT.tBLOSUM®62.unmasked.EO.O0@Ataset of MSAs.

A range of percentage sequence identity levels were used for the clustering (from
40% to D% in intervals of 10%) and the recommended default parameters, for the
CD-HIT application, were used for each sequence identity threshold.lexejain

the longest sequence was used as the representative from each éustenmary

of the cluster propées, at each defined level of sequence identity for the
All1stINCORRECT.tBLOSUMG62.unmasked.EO.OGlataset, is provided imable

3.3
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4.3 Results and Discussion

4.3.1 Benchmark of Functional Re-scoring Prediction Results Using
the fSDR-based Sub-Alignments

This sction provides a larggcale investigation into how effective thexcMB and
profile-HMM fSDR identification methods are for improving the classification
accuracy of the specific function of enzyme sequences. This builds on the results
from the previousnalyses, presented ¢hapter 3 which investigated the effects of
using all of the aligned sequence information, and alternative amino acid substitution

matrices, to functionally recore the aligned enzyme sequences.

The 3527 MSAs from theAlllstiINCORRECT.tBLOSUM®62.unmasked.E0.001
dataset were used as the benchmark dataset in all of the following analyses. This
particular dataset was chosen for two reasons. Firstly, this dataset was one of those
used previously in the alternative amincidare-scoring experiments, discussed in
chapter 3 allowing a direct comparison between those results and the ones obtained
in the following fSDRbased functional recoring experiments. Secondly, this
dataset was selected over the others investigatedaipter 3because it was shown

to give the largest overall improvement in specific enzyme function classification
accuracy, when using a PAM30 amino acid substitution matrix 4&coee the

aligned sequences.

For this analysis, both thieincMB and profileeHMM methods for fSDR aligned
column identification were applied to each of the MSAs in the dataset. Selected
subsets of these columns were then used-scaoee the similarity of the aligned
sequences to the query, allowing assessment of the accur#ag afpproach for
specific enzyme classification. = Comparisons were then made between the
classification results from using these fSD&sed subsets, with those previously
obtained from rescoring all of the aligned sequence residues with alternativeoamin

acid substitution matrices.

The selection of the particular columns to include in the subsets of aligned residues
was controlled by a number of alternative methods. For botHutneMB and
profile-HMM methods, three approaches were used to select chenms for

inclusion - based on the significance based ordering of the Speamaménorder
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correlation coefficients and-gcores, from each of the fSDR identification methods
respectively. Each of the selection methods aim to identify slightly diffenbisess
of aligned columns and therefore investigate the best method and associated

parameters for improving the enzyme classification accuracy.

One met hod ushda meatsh ad,e wWitiogph sel ect s a s
fixed size,N, based on the ranking of the aligned column scores from the fSDR
identification methods. A number of valueshivere used for each of the MSAs in

the dataset and the overall effect on the specific enzyme classification performance

was assessed for each.similar method t h e -Xfi tpoepr ¢ e n twas useel toh o d
select a subset of aligned columns based on a percentage, X, of all aligned columns

in each of the MSAs. T h e rNedf onreet,h otdh i swi rhe
generally select the samemhber of aligned columns for each of the applied subset

X percentage selection thresholds. Finally, a method was used that applies a
threshold based on the calculated value of the aligned column correlation
coefficients, or Zscores, from the associatedDiS identification methods, to
generate the sed | i gnment s. AXaiprer cant Dn mehbodt o
threshol dodo selection criteria may -gener a

alignment obtained from the MSAs in the dataset.

The assessent method used for the correct classification of specific enzyme
function, when using selected ssbet s of f SDR col unmist,0 was
sequence rscoring method that was used ¢hapter 3 For both of the fSDR
identification methods the bootap form of the results were analysed, which allows

robust calculation of the mean proportion of correct functional classifications, and

the associated standard errors, for each of the functionadlyored subsets of fSDR

subalignments.

4.3.1.1 The func-MB Method

When using thefuncMB method to identify potential functional specificity
determining residues it was expected that the way in which gaps are treated in the
multiple sequence alignments could make an important contribution to the particular
columns idetified. There are three stages in fthecMB based analysis procedure

where the gap handling has been considered:
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1 The selection of which aligned columns should be included when calculating the

fSDR significance scorifihe column gap percentagethnee | d of ;i ncl usi

1 The way in which gaps were scored during the calculation of the fSDR

correlation scores for tHfencMB method; and

9 The way in which gaps were scored during thesaering of the enzyme

sequences in the fSDBRased sualignments.

A number of gap percentage thresholds were used; ranging from no filtering
(colgap_percent= 100%) to the removal of all columns containing any gaps
(cagap_percent 0%), in intervals of 10%. This provides a {fiteering step for
each of the input MSAs.

When constructing the residue correlation matrices for the aligned columns a score
of 0 was used for the similarity between any amino acid residues aligned with gaps.

This was selected because it was the value used in the study by Pazos et al. (2006).

In the case of the third point, for the following studies it was decided to use a score
of O for all of the pahwise sequence +&coring comparisons between any of the
amino acid types and alignment gaps. This value was chosen for the sequence
alignment rescoiing stage of the analysis because of the reasons provided earlier in

the methods section of this chapter.

The ANOopMet h o d-bdsediSubfARbient Generation

For tiNe fneamod of f S DdiRgnmeatigenerationcarseriesofd s u b
thresholds for the value of N were used. The effects (on the proportion of correct
classifications of enzyme function) of gradually increasing the number of aligned
columns, selected from each MSA for inclusion in the resulting sequence sub
alignments, are shown ifigure 4.2. That is, the horizontal axis represents the

number of columns, N, of aligned residues that were included in thaligninents

for functional rescorng. These were selected through the use of an ordered ranking

of the Spearmanank order correlation coefficients calculated by foecMB

met hod, from which the -N&8PRsowréehathenhc
were used to generate the salignments of N aligned columns. These results also
show the effects of varying the aligne:q
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i nclusiono, which serves the purpose of
proportions of alignment gaps prior to the fuowtl rescoring analysis. All of the
results show the bootstrap values of the mean proportion of correct functional
assignment and the bootstrap calculation of the standard error deviation from the
means. To maintain a consistent comparison with theque bootstrap analyses
carried out in this thesis, the parameters for the number of bootstrap repefifions,
was 10000 and the bootstrap sample size of each replicate wasdpfidximately

half the number of MSA examples, 3527, in the dataset. ilgblighted infigure

4.2 are the bootstrap statistics for the random sequence selection model associated
with the All1stiINCORRECT.tBLOSUMG62.unmasked.EO0.O@htaset that is being
analysed. This is the same random sequence selection model that wasidused a

defined inchapter 3(seesection3.3.2).
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Figure 4.2. A comparison showing the proportion of correct functional
predictions obMNa@ai hkdesalsoltdh,e uwisteod t o sel ec
fSDRs used in the functional-seoring, was varied. The horizontakis
NnSpeaRank Order Correl alNd onThiCoieghdli dd ent
represents the number of aligned columns, with the N highest scoring
Spearmarsrank order correlation coefficients, that were included in the

sequence sublignments. The proportionsf correct predictions are the

bootstrap mean values, shown with the corresponding standard error bars.

Enzyme classification results are shown fore-scoring the
colgap_percent=0%, colgap_percent=20%, colgap_percent=40%,
colgap_percent=60%, colgap_perde80% and colgap_percent=100%

filtered variations of sequence sabgnments. Also shown is the associated

random sequence selection model for the dataset, where the dotted lines show 1

standard error deviation from the mean.

From these results, shownfigure 4.2, it can be seen that when using a small sub
set of aligned columns (for example, when N=5) a minimum is observed in the
proportion of correct predictions. As the number of columns included in the re
scored sulalignments is increased, the numlmé correct enzyme classifications
also increases until a maximum is reached, after which point the classification
accuracy gradually decreases while the number of included columns in the alignment
subset continues to be increased. The actual vali¢ aif which the maximum
proportion of correct enzyme classifications is obtained is dependent on the value of

thel c o | g a p _threshotd efiriclosion. Figure 4.2 shows that the trends,
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with respect to the correlation between glignment size N and the resulting
proportion of correct predictions, are v
gap percentage threshold of i nclusiono t
further, nore detailed, analysis of these results is provided below and summarised in
table4.1.

Before this, a number of more general observations related to the results from the
top-N subalignment rescoring results, shown figure 4.2, can be explored. It can

be seen that the proportions of correct functional predictions, when using the most
stringent threshold for pritering aligned columns from the MSAs that contain
gaps €olgap_percent 0%), are considerably less than those when using a higher
threshold(such ascolgap_percent 20% and greater). An explanation for this
difference can be provided through a more detailed analysis of the underlying data
that was used to calculate the bootstrapped proportions of correct and incorrect

enzyme classificatiorafter sequence fe@scoring.

When rescoring and subsequentlyranking the sequences contained within each of

the subalignments, there are a number of possible outcomes when considering a
At-apt 0 approach to assessi ngific fuhckonalaccur a
classification. These outcomes can be categorised into 2 general states (either: (i) a
Acorrect o; or (i) an fAincorrecto funct.i
they can also be considered to possess six distinct proparties:{fia ok (corr ec
iwhere the top ranked sequence has the s
the query and has a unigue score when compared to the cwared sequences;

(i i )-raintkop (i nonare the to) canked sequence has derdift
(Aincorrect o) speci fic enzragnmmeamdunct®os s t o
(corrienchte)roe t he top ranked sequence shar
therefore rank) with one or more other sequences, which all have the same
(Acorr ecet of)unecntz yorm a | c | a s gankaddferentturectioq uer vy ;
(correct and Il ncorrect ) i0where thefitoapnrdnéedi d a b |
sequence has the same Atiedod score (and
sequences, which have bothtkerme (ficorrect 6) and diff er e
functional classes as the query. This in essence means that the seqisencage

result is Aundecidableo when wusing the a
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cl assed overal |l sas f anatiiiarc erank @iffetebt; c [ &)

function T(wihreoer nehet tmop ranked sequence

therefore rank) with one or more other sequences, which all have a different

h

(Aincorrect o) functi otnfed U ersys; waredh (cwimp

(i nc ot where thg aiteria for fSDRased aligned column selection does not
select any columns for inclusion in the sequenceadighment. This therefore

means that no sequenceseoring can be carried out due the fact that the sub

alignment is fiemptyo and the classificat]

If these six more detailed classification outcomes are analysed for tie regults
presented irfigure 4.2, it becomes possible to get an understanding of the reasons
for the comparatively poor performance of ttwgap_percent 0% classification
results. The variation in these properties with each vali¢ uded to generate the

it-olp wligriments is shwn infigure 4.3. This clearly shows that the number

o f Afempty subset (i ncor r eluhn)gappeecentagep | e s

threshold(colgap_percent 6 par ameter i s made more stri

is especially prominent for the remilshown when using the most restrictive gap
inclusion threshold otolgap_percent 0%. On reflection this is perhaps not a
particularly surprising observation, because such a stringent threshold does not allow
for a single gap to be present in the adigrcolumns selected for the sequence sub
alignments. It therefore follows that there will be increasing numbers of MSAs in
the analysed dataset that do not contain any aligned columns that satisfy the gap
percentage préltering criteria, culminating irthe extreme case of no gaps allowed

in any of the selected columns. This hypothesis is borne out by the redigtgeén

4.3(f) where acolgap_percenthreshold of 0% results in 14% (494 out of 3527) of

C

the generated stbbl i gnment s bei ng 0 e mglgapdercent | n ¢
threshold is increased to 10% then only 5% (176 out of 3527) of MSAs generate

i e mp t yabgnneentd) and further, once thelgap_percenthreshold is at 50%

and above, hardly any (i .-aignmentp pre loeng mat el

generated.
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observed predictions with the specified-tésubalignmentthreshold, for the

six distinct predicti-oanlbutcomesctpd sdOLW
shows trhaenkit(oipncorrect) o r erany lsams ; (c) s h
function (correct)o results; (d) shows th
shavs t h eankidiffereetl unct i on (i ncorrect)o results
Aempty subset (incorrect)o resul-ts. For
scoring the colgap_percent=0%, colgap_percent=10%, colgap_percent=50%

and colgap_percent=100% pifdtered sequence stdlignments are shown.
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It is possible that this phenomenon could be due to a number of factors, such as the
level of evolutionary diversity included within the sequence alignments or
potentially misaligned sequenceteading to thencorrect placement of gaps. These
possible contributing factors are not explored any further here, but they may be
features worthy of further study when considering the selection of particular columns

for inclusion in sequence sttignments.

A furtherppi nt to make (with regards to the |
classifications that are observed when toégap_percenthreshold is decreased)

relates to the method of calculation used for the proportions of correct predictions.

The presence ot h e A e mmligyments s(dedcribed above) suggests an
alternative method for calculating these proportions, using a modified valtierior
equation4.5. Wher e, i nstead of simply using t
nor mal i sed o) tioh couldruseottie numddr of Wldtaset examples minus

the number o-dlignniiert neyxampled forswhioh it is not possible to
calculate a rescored classification result. This modified form emfuation4.5 is

presented irquatiord.7

n

CorreCtproportion: (N -n

corredt (equation 4.y
empty_subse)

where: n

correct

and N are the same as equationd.5 and N, sunse IS the number of

MSA examples that generate fAempty subset

The corresponding proportion of correct classifications obtained from using the
method inequation4.7 are shown (in parenthesis) table 4.1, alongside those
calculated through the use efjuation4.5. It can be seen that for these re
normalised resultthe proportion of correct classifications increases for all of those
subalignments that have had a more stringeigjap_percenthreshold applied (i.e.
colgap_percenk = 4 0 %) |, due to the presence of a
examples. It shod|l however, be noted that, by definition, the actual number of

correct classifications, at each {dpthreshold, was unchanged.

These results show that the difference between the optimal classification accuracies

for the subalignments, which have beenregdiltered with a more stringent gap filter,
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is greatly reduced when applying this alternative accuracy assessment method. In
particular, for thecolgap percent=0%subalignments, the difference between the
optimal correct proportions and those of theralteoptimal performance (i.e. where
colgap_percent=60% is reduced from 0.150 to 0.049. Likewise, for the
colgap_percent=10%esults, the difference is reduced from 0.070 to 0.031. This is
still a statistically significant difference, due to the staddaror deviation of 0.011
(seetable 4.6), but it does highlight a potentially informative alternative method for

comparing the results of the classifications.

With the aid of the results shown figure 4.3, it is now possible to explore the

reasons for the slightly countrtuitive observations, seenfigure 4.2, which show

a clear minimum in the proportion of correct enzyme classifications when using the
smallest subset (N=5) of aligned columns. TWias surprising because it was
expected that the subsets consisting of aligned columns, with the strongest
correlations between amino acid type and enzyme function, would show the most
accurate separation of the specific functional classes in the MSA arelotle the

| argest proportihoint ooff umcdodrn me@atl 6 chitacpi f i
however, not the case, mostly due to the larger proportion of examples with an
Aundeci dabl e (i ncor r e estrgther thanetleeuspOtrankedvh e n u
column correlation coefficients. Where, for all of tbelgap_percenthresholds

i nvestigated there was a sharp reduction
correspondi ng -riamdkr e(@acser rierct i do-scqeng ssubp | e s !
alignments gnerated from the tep and toplO ranked correlation coefficients,

respectively.
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colgap_percent (optimal) (bootstrap) mean (bootstrap) mean
(%) fi t NB(N) proportion of correct number of correct
predictions predictions

0 15 0.617(0.718) 2176
10 15 0.697(0.736) 2458
20 15 0.722(0.747) 2546
30 20 0.746(0.751) 2631
40 30 0.759(0.764) 2677
50 30 0.764(0.764) 2695
60 30 0.767(0.767)(*) 2705
70 30 0.764(0.764) 2695
80 30 0.765(0.765) 2698
90 30 0.765(0.765) 2698
100 30 0.765(0.765) 2698

Table 4.1. A comparison between the optimal bootstrap results (mean

proportion

possible dataset size of 3527. (*) indicates the overall maximum predictive
val ues

performance.

nor mal i sedo

equation 4.7.

The results, shown itable 4.1, provide a summary of the optimal functionat re
scoring results for each of thec o | g a p _ @lignmente preliltér thresholds,
along with the number of high scoring aligned columns (fSDR§),which
contribute to the rscored sequence salignments without rmormalisation. Both

the mean proportion and number of correctly classified enzyme functions are shown

for comparison,

prediction results.

optimal predictive performances of the sallgnment methods show a minimum (of
0.617 (2176/3527)) when using tloelgap_percentthreshold of 0%, with sub

alignmentscontaining the tofl5 scoring columns.
(2705/3527)) when using a larger thresholdcofgap_percent= 60% with sub
alignments containing the te§D scoring columns.
subalignment rescoring methodaind associated parameters show an improvement

in performance when more than 30 of the high scoring fSDR columns are included in

the sequence stddignments.

and

The

nthmh e&r spfecdc di ceetinzymep pr e
the topN subset sizeéhat generates them, for each of the colgap_percent
thresholds applied. All results fehe number of correct predictions are out of a

proportions

where all
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It can be seen from the resultgale 4.1 that, overall, the

And a maximum (of 0.767

Further, none of the different
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The BXTPercent o MAlgmen GdherationSu b

The next method investigated for the automatic selection of which aligned columns
should be included in the sequence-alipnments for functional recoring was the
At-Xppercent o met hod. -Nch i metdh o d ed ess cfrriolne
because th@aumber of columns in each of the resulting-alignments is selected

based on a specified percentagé, of the columns with the highest scoring
Spearmasr ank order correlation cod&fof meitdotds .
t h e -Xitpoepr c eadtinogeneral tsdlects varying numbers of columns for each
subalignment, dependent on the particular percentage selection thresholged

for the inclusion of fSDRs and the query sequence length. The variations in the
bootstrapped mean values foretlproportions of correct enzyme classifications,

when usi niotper digmtpage t hr Bgarb 44 dThe ar e s
horizontal axis in this graph represents the percentégef aligned columns of

residues that were included in the salignmentsfor functional rescoring. These

were selected through the use of an ordered ranking of the Speamkaaorder

correlation coefficients, calculated by thenxcMB method, from which the fSDRs

with the highepercx¥tt Olit of ntsaovere esedatb i on ¢
generate the sequence sallgnments. Comparisons are also shown between these
results when using differentolgap_percentalignment prefiltering thresholds,

ranging (as in the topl results) from a value of 0% to 100%.

Overall,thersul t s were similar -N® metolsed,s hiownt ¢
the proportions and numbers of cbrteéct ¢
assessment of the sequences within thscoeed sufalignments. Initially, when

including a small peentage (i.e. when X is less than 5%) of the-gopring

columns in the sulblignments, the accuracy of classifications was generally low.
This observation was mostly due to an i
(incorrect) o0 ex amgye tereshold watuesnveré used. Pphes wase

true for each of theolgap_percenthresholds, apart from the exceptional results
obtained from using aolgap_percenthreshold of 0%. For brevity, a presentation

of these more detailed results, showingthevaat i on of the si x out

hito functional assessment met hod, has ni
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An additional point of note is the behaviour of thesre or i Fhg t ot gppr edi ct
results when all of the columns (i.e. X = 100%) are used to gerthetequence

Asab i gnment so. flywe 44, ahe achual preperton of conrect
predictions varies depending on thelgap_percenthreshold, however, it shows

that as expected the result for ttwgap percent 100%subalignment rescoring

is (approximatelyi due to minor bootstrap variations) the same asRA&130

UNGAPPED (0,0)re-scoring results that were observed for the same dataset, in

chapter3.
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Figure 4.4. A comparison showing the proportion of correct funcion
predictions ob«Xaipeedceas othéadr désloel d, used

subsets of fSDRs used in the functionadaering, was varied. The horizontal
axis i ASpeaRmak Order Correl adXxi per cCeooOretf&f i ci
T hr e s h eprabants the peentage of aligned columns from each MSA,
with the highest scoring Spearmeank order correlation coefficients, that
were included in the sequence sllygnments. The proportions of correct
predictions are the bootstrap mean values, shown with the gomesg
standard error bars. The enzyme classification results are showmefor
scoring the colgap_percent=0%, colgap_percent=20%, colgap_percent=40%,
colgap_percent=60%, colgap_percent=80% and colgap_percent=100%
filtered sequence stdlignments. Also rown is the associated random
sequence selection model for the dataset, where the dotted lines show 1
standard error deviation from the mean.
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A summary of the optimal functional -szoring results for each of the
icol gap _ghiggmentegrditted thresolds, along with the percentage of high
scoring aligned columns (fSDRs¥, that contribute to the +gcored sequence sub
alignments, is shown itable4.2. As f o-NoO t ligrimént resplts, both the
mean proportion and number of correctly clasdienzyme functions, obtained from
using -hheofnaepess men t-basekresdoning of thd dequencef SDR
subalignments, are shown for comparison. As usual, all results refer to the
bootstrap form of the prediction results. It can be semmn the table that, overall,

the optimal predictive performances of the slignment methods show a minimum

(of 0.592 (2088/3527)) when using thelgap_percenthreshold of 0%, with sub
alignments containing the tf0% of high scoring columns and a mawm (of
0.769 (2712/3527)) when using a larger thresholdadfjap_percent 90%, with
subalignments generated through the inclusion of the8&pof aligned columns.
There is, however, only a difference of 10 correct predictions in performance
between tls and the next lowest result of 0.766, when using the/%pof high
scoring aligned columns andtalgap_percenthreshold of 60%.

colgap_percent (optimal) (bootstrap) mean (bootstrap) mean
(%) fit Xp per ce| proportion of correct number of correct
predictions predictions

0 50% 0.592 2088
10 15% 0.691 2437
20 9% 0.711 2508
30 10% 0.739 2606
40 8% 0.751 2649
50 8% 0.761 2684
60 7% 0.766 2702
70 8% 0.763 2691
80 9% 0.763 2691
90 8% 0.769 (*) 2712
100 5% 0.752 2652

Table 4.2. A comparison between the optimal bootstrap results (mean

proportion and nthmbher spfecidiceetnztmep pr e
the -Xitpprcent o S wénsratdasthes,i fareeach bfathe

colgap_percent thresholds applied. All results for thember of correct

predictions are out of a possible dataset size of 3527. (*) indicates the overall

maximum predictive performance.
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Thefunc-MBiicol umn scor e t hr e sAligorhedt@&enbtatibpnh od f o |

One further method, based on flseacMB fSDR calwlation method, was used for
selecting aligned columns for the inclusion in sequenceakgbments. This
utiised a varying threshold, which was applied to the Spearardn order
correlation coefficients that were calculated for each of the alignednoslu
Therefore, only aligned columns with correlation coefficients greater than or equal to
the particular threshold were included in the sequencelsgiiments used for the
subsequent functional4szoring stage. The threshold was varied from a velGe0o
(essentially a random correlation between the residue similarities and specific
enzyme function) to a value of 1.0 (indicating perfect rank correlation between the
residue similarities and specific enzyme function). A graph of these results is shown
in figure 4.5. This graph shows that there is a rapid decrease in thaigniment re
scoring accuracy (as measured by the pr
using a progressively higher threshold for the correlation coefficients associated with

each aligned column.

To a certain extent these results were expected because, as the lower limit for
correlation coefficient defined inclusion to the sllgnments is made more

stringent, there will be fewer available columns that fulfil the selectiberiec The

sharpness, however, of the decline in functiond®or i ng accuracy ( uUs¢
hito assessment met hod) , when applying a
than 0.2, is perhaps surprising. This observation, seen fotokhp_ pecent

thresholds, shows that, in general, even though the correlation coefficients are of less
significaihmece 0 tblasedt epassi fication perfo
these less correlated columns in thescered sukalignments. Therefore, ghows

that, although the nature of the relationship between residue similarity and specific
function is generally (i.e. across all 3527 MSAs in the dataset) quite noisy and weak,

there is some informative signal present, but it is clearly not as cleasimpktk a
relationshi p ( wthtih-scoengeaccuthcy) as might bie aitiafiyt o p

expected and hoped for when using the current dataset.
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Figure 4.5. A comparison showing the proportion of correct functional
predictions obtained as th&pearmarRank order correlation coefficient
threshold, used to select the subsets of fSDRs used in the functisnafing,

was varied. For this, the aligned columns included in the sequence sub
alignments were those with an associated SpeafiR@ark orer correlation
coefficient greater than or equal to the threshold value shown on the horizontal
axis. The proportions of correct predictions are the bootstrap mean values,
shown with the corresponding standard error bars. The enzyme classification
resuls are shown for re-scoring the  colgap_percent=0%,
colgap_percent=20%, colgap_percent=40%, colgap_percent=60%,
colgap_percent=80% and colgap_percent=100% filtered sequence sub
alignments. Also shown is the associated random sequence selection model for
the dataset, where the dotted lines show 1 standard error deviation from the
mean.
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A more detailed analysis of these results, showrigare 4.6 (using a similar

analysis to that provided figure4.3f or t-Né f g Bighlightsssome of the

reasons for this sharp decrease in prediction accuracy as the threshold is increased.

It is clear, fromfigure 4.6, that the main cause for the decline in the number of
Acorrect o fhuncot icolnaasls ifftabgpnent esoosing)(isatliet er s
rapid increase in the number of HAempty s
column inclusion threshold is increased. There is also an additional contribution

fromi ncreasing nuableed examplineshedomdationh occ
coefficient threshold is increased above
enzyme classifications i s c o nalignmebtsi t e d t
(generally after a correlation coefficient threshold of®@.3 4 ) a ndeécict thlee & u
exampl es, whereas t he Iiiscaome efcu mc teixcamip | e
a compensatory increase. These results indicate that a Speamnkaorder

correlation coefficient threshold, greater than 0.2, does not (in general) include
enoudn columns to informativelydicr i mi nat e betwéem thkka mipulme
when usi Ahg ttoh emefithoopd t o assess t-bceredaccur a

subalignments of enzymes.
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Again, a summary of the optimal results for each of the analyskeghp_percent
thresholds is praded (seetable 4.3). These results essentially reinforce the
observations above, whidht hbasetat ubhbe
scoring results are obtained when using sequencalguments containing only

fSDRs with correlation coefficientécalculated via thduncMB method) that are

greater than or equal to 0.2. This was true focalljap_percenthresholds, except

those of 0%, with an overall maximum number and proportion of correct predictions,

of 0.719 (2536/3527), resulting wheolgap_percent= 80%. Although, it can be

seen that there is little difference between the results oncedligap percent

threshold reaches 50%.

colgap_percent (%) (optimal) (bootstrap) mean (bootstrap) mean
ficol umn proportion of number of correct
t hr es h o| correct predictions predictions
(Spearmanrank
order correlation
coefficient)
0 0.0 0.573 2021
10 0.2 0.673 2374
20 0.2 0.674 2377
30 0.2 0.691 2437
40 0.2 0.711 2508
50 0.2 0.715 2522
60 0.2 0.716 2525
70 0.2 0.716 2525
80 0.2 0.719 (* 2536
90 0.2 0.718 2532
100 0.2 0.718 2532
Table 4.3. A comparison between the optimal bootstrap results (mean

proportion and ntmhter egpeEwalictions)catd fit op
t he -sMBunccol umn correlation scoreo thr
sequence sublignments that generate them, for each of the colgap_percent
thresholds applied. All results for the number of correct predictions are out of a
possible dtaset size of 3527. (*) indicates the overall maximum predictive
performance.

4.3.1.2 The Profile-HMM Method

Following on from the methods of selection used above, fofutneMB method of
fSDR identification, a comparable set of analyses were carried outeqrdfile-

HMM method. Again, three alternative methods were used for selecting aligned
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columns to be included in the sequence-gaubi gnment s. T-Nese wel
At-Xpper centpofleeHMicbhemiA score threshol do
these ardased on the same selection procedure afutteMB method, except that

in the following analysis the aligned column selection is based on relative ranking of

the columns based on thesgores (rather than the Spearmnank order correlation

coefficient)calculated by therofile-HMM fSDR identification method.

For the profile-HMM method, the parameters used in the implementation of
Hannenhalli and Russell (2000) were applied in this study, therefore the default
settings ohmmbuildwere used, which meatitat all columns with greater than 50%

gap residues were not included in the profiles generated for each of the functional
subclasses. It may, however, in future work be informative to investigate changes
to the hmmbuild gap percentage inclusion threkhavhen carrying out further
analysis. As in théuncMB method for sequence satignment generation, it was
decided to use a score of 0 for all comparisons between any amino acid types and

gaps during the functional sequencescering phase of the awals.

The profile-HMM At -dlp, -NitBheorcent 0 and #dcolumn scor

Methods for Sub-Alignment Generation

Presented in this section are the resuftem using theprofile-HMM At -Blp , -At op

X Percento and dcol umnforthecfunctienal tedtariegoh ol d o
the enzyme sequence salignments, generated by tpeofile-HMM based method

for fSDR ident+shiitoataisecerssméhe meopod, wi

used to determine the accuracy of the resulting specific enzynséicktsons.

Results for the variation in the proportions of correct predictions with varying sub
alignment t hreshold sel-&ot iaonndX gpiapoepme ¢ e I ¢
profile-HMM sub-alignment selection methods, are showrfigure 4.8 and figure

4.9, respectively. For brevity, a similar graphical comparison of the results for the
enzymehiftitoopcl assi ficati on a-scora thr@shold iswi t h
not shown. It is, however, worth noting that they were observed to follow a pattern
similar to that seen when a threshold was applied tduheMB column scores

(using the Spearmamank order correlation coefficients) for sabgnment

generation (seBgure 4.5). That is, they exhibit a rapid decrease in the number (and

proportions) 6 correct classifications as the-g¢ore) fSDR column score threshold
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is increased. This decrease occurs after an initial peak, showing a proportion of
0.665 (2345/3527) correct predictions, when thecdre threshold used for sequence

subalignment gengation was greater than or equal to 0.5. As in finecMB

threshold analysis, this behaviour was mainly due to the increasing number of

nempty

procedure. A summary of these results,can g

subset

Wi

(i ncorr ect )-d@ignneert aesqoring s i n
t h

t he WNestanmler f

At-Xp per c ealighment seledtion methods (for theofile-HMM based fSDR
selection method) is provided table4.4.

Sub-alignment (optimal) (bootstrap) mean (bootstrap) mean
Selection Method Sub-alignment proportion of correct | number of correct
threshold predictions predictions
top-N N =35 0.673 (*) 2374
top-X percent X =30% 0.664 2342
Z-score column 0.5 0.665 2345

score threshold

Table 4.4.
and

number

A summary of the optimal bootstrap results (mean proportion

olfi tcoorgmpecai fitcopenzy me-

predicti

HMM based fSDR suélignment rescoring. The thresholds at which these

resul ts

i Zscore column

investigated.

performance.

ar e
score

obtained
threslgdob

aNroe
-aligniment

selection

Kht pvprr cfeont 0 e anh
methods

All results for the number of correct predictions are out of a
possible dataset size of 3527. (*) indicates the overall maximum predictive

It can be seen from these results,table 4.4, and the comparisons of different

methods, shown in botfigure 4.8 and figure 4.9, that theprofile-HMM method

generally performs worse, when using this particular dataset, than the comparable

enzyme classifications obtained from thwmcMB based sualignment rescoring.

It is not immediately clear why there is such a difference in performance between the

methods and thus further study into the optimisation of the parameters associated

with theprofile-HMM method as well as a more sophisticated filigqrocedure for
the input MSA data, prior to the application of fefile-HMM fSDR identification

method, may be worthwhile.

4.3.1.3 Investigating the Random Selection of Aligned Columns

A method was implemented to calculate the specific enzyme functionaficktgm

accuracy from sequence salignments that had been generated through random

selection of aligned columns from the MSAs in the dataset. The aim of this was to
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provide a comparison with both tipeofile-HMM andfuncMB based sualignment
re-scoing classification accuracies and also an assessment of their significance. The
reasoning being that if the enzyme classification accuracy from the-EaB&] sub
alignment rescoring was consistently better than that from the comparable randomly
selectedsubalignments, then it would show that the fSDRsed swalignment
selection procedure was providing additional information for the improvement of

functional classification.

As stated in the m&tohoadsd, -Rbroptehd ctemea o rad n
coumn selection methods, were used to generate the sequeneadigsunfents.

However, for this random selection no regard was given to the actual likelihood of

the columns being associated with specific enzyme functional properties (i.e. they

are not necessily high scoring fSDRs). So, unlike with tpeofile-HMM andfunc

MB methods, the columns were (randomly) selected without first ranking them based

on the calculated fSDR significance scores.

The results foNobanhd -Hh erdacmalighment seu

scoring are shown ifigure 4.7(a) andfigure 4.7(b), respectively. Both show the

effects (on the proportions of correct enzyme predictions) of applying different
colgap_percenMSA prefiltering thresholds, before the random column sebecti

was carried oNO.redhletAAiramadwmsi mil ar bet
appliedcolgap_percenthresholds, with overall maximum values of approximately

0. 6 seen for t he prpoot iboansse ddpf eocaay mec

predictions. Wih r egar ds tXo ptehec emnandemul t s, it
gradually tend towards the functidnal cl
all columns selected in the sequence-aubi gnment 6 resul t s, as

randomly selected damns is increased. This is to be expected, because the random
selection of all columns is the same as any other selection method for all aligned
columns, when using a ga&goring function (such as the 0 gap penalty used in this
sequence rscoring study)xhat does not depend on the sequential ordering of the
adjacent, aligned, amino acid residues (unlike that of an affine gap scoring function
withnonz er o gap penalty par amertaenkd-bdseFR n al
subalignment rescoring, therewere notable exceptions (especially prominent for

t he fAfXampekaoment 0 r esul t sfjter gap thrashoMdtofed®. usi n g
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Figure 4.7.

A comparison of the proportion of correct predictions

obtained at each of the (@i r an-lom and

( b-X

thresholds used for random sequence-aligmment generation.

Ppeandamo
For both of

these graphs, the proportions of correct predictions are the bootstrap mean

values, shown with the corresponding standard error bars.

Thgmenz

classification results are shown foe-scoring the randomly selected aligned

columns from the MSAs that have been filtered using

colgap_percent

thresholds of 4100% (in intervals of 10%). Also shown are the associated
random sequence selection modelsthe dataset, where the dotted lines show

1 standard error deviation from the mean.
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Also shown on both of these graphs is a comparison to the simple random sequence
selection model, which was introducedcimapter3. This has the same valueat all

subal i gnment f SDR col umn sel ecNiobomandhieé Ipc
X percento r e vecausei inig only edgpanddnts on the enzyme
classifications of the constituent sequences in the MSAs of the associated dataset.
From these restd, it can be seen that, in general, the functionakoging results

from random column selection, show a larger number of correct specific enzyme
classifications than the associated random sequence selection approach. This was
expected to a certain extt because it was shown, in the previous chapter, that the
functional rescoring results were better when using all of the aligned columns (with

a PAM30 matrix and gap scoring penalties of 0) rather than random sequence
selection. Therefore, although diea(randomly selected) subsets of these columns

are being assessed, in this case the resulting subsets of aligned residues are still

functionally more informative than a randomly selected sequence from the MSAs.

4.3.1.4 Comparisons between the Enzyme Seqguence Sub-Alignment

Functional Re-scoring Methods

To conclude this analysis, comparisons are shown between the different methods that
have been investigated so far for the lasgale functional rscoring and specific
classification of enzyme sequences. Theltefrom both thduncMB and profile-

HMM met hods, -Nd om@n dXt éGigpeorpc e nhiased sedbiéhée sub

alignment selection and functional-seoring, are compared, séigure 4.8 and

figure 4.9 respectively. With regards to thencMB calculated radlts, the particular
colgap_percentthresholds were selected that gave the best overall classification
performance. The&rmoe fcoornep,arficrons he hét os L
colgap_percent 60% were selected (see the optimal overall enzyme classification
accuracy results itable 4.1) and f eXr ptehrec efmtta@dp compari son
usingcolgap_percent 90% (see the optimal overall enzyme classification accuracy

results intable 4.2). Also included in both of these comparisons were: the optimal
predictive performance from the Aicol umn
Spearmasrank order correlation coefficient threshold was 0.2 {abk 4.3 - where
colgap_percent 80%) and the Acore was 0.5 (se@able4.4), for thefuncMB and

profile-HMM based methods respectively; the functionadaering results from the

Arandoe@mand -Kr apnedrocne-alignmentss uhle random sequence
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selection model (introduced in the analysis provigedhapter 3; and thePAM30
UNGAPPED(0, 0) method, which was shown to be the best performing functional
re-scoring method from the alternative amino acid substitution studies analysed in
chapter 3 when using all aligned amino acid residues of the meltgequence

alignments for the functional 1&coring assessment.
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Figure 4.8. A comparison of the proportion of correct predictions
obtained for the following selection of
scoring methods: (i) the fufAdB fA-Nd® p me t h o dcolggu peicanty a

threshold of60% (ii) the profleH MM oN®@ pmet hod; (ii-i) the op
MB fAcol umn score threshol d-tank rorder h o d , wh e

correlation coefficient is >= 0.2, using @lgap_percenthreshold of 8%; (iv)

the optimal profileHMM fAcolscemme t hreshol do- method,
score is >= 0.5; (v) the PAM30 UNGAPPED (0,0)seoring method, which

was identified as optimal performing in chapter 3;-¢vi i ) theNoArandom
column selection methods, usioglgap_percenthresholds 060%, 60% and

80%; and (ix) the random sequence selection method. Where shown the error

bars refer to 1 standard error deviation from the mean of the bapfsed

results, otherwise, just the mean value of the bootstrapped results are shown to

improve claity.

For t he-N@r amddo mRKr gpred cme nt 0 col umn sel ect
colgap_percent 50% threshold results are shown, to allow direct comparison with

those results from thprofile-HMM method, and theolgap percenthresholds of
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60% and 90% are included for comparison to the optiomadMB b as e dNOit o p
and -Atper cent 0 met hods, respectivel vy. Al
t he -hiiittoop assessment met hod to calcul ate
accuracy aer rescoring and rerdering the aligned enzyme sequences, and as usual

they are represented by the bootstrap calculations.

From the functionalrs cor i ng resul N®, aoiK Ipteolg etnh & Bl
alignment selection methods, a number of gg&ng observations can be made. It

can be seen, in botligure 4.8 and figure 4.9, that the rescoring results for the

optimal funcMB fSDR identification methods show an improvement over those of

the optimalprofile-HMM fSDR identification methods. Thdifferences in accuracy

between the bootstrapped mean of the proportion (and number) of correct enzyme
classifications are: 0.094 (331), for tmcMBfi t -8 p 0 peofileedHMM At -8 p O

results; 0.105 (370), for theuncMB it -8 p p e r ¢ epnofil@HMM i d -80p
percent o resul ts; funeMBIA Op. eOabdrk a(dér @atrélationf or t
t hr es hol dprofileeHMMXios cannrde t hr e s h o Fudthersitid . 50 r
al so possible to see a clear andaophsiitgoni f i
classifications, when using the optimal fSIbRsed sufalignments of enzyme
sequence (especially in the case of finecMB method), rather than theRAM30
UNGAPPED (0, Onethod, which was identified as optimaldnapter 3when using

all of the algned sequence residues to assess the functional classification accuracy of

the sequence fscoring procedure. The largest improvement, in proportion (and
number) of correct predictions, seen between these methods, is 0.136 (479), when

using thefuncMB fitop-8 p e r c -aligrtment rescoling method.

Comparisons between the fSBfased sualignment rescoring methods and the

two alternative random models (i.e., the random sequence selection model that was
introduced inchapter 3 and thNO famadlodikE mMmper cent 6 r an
column selection methods that were introduced in this chapter) clearly show
significant improvements in specific enzyme classification accuracies when using

the best performing sudlignment methods. This is especially true forfilmecMB

method, which has been shown to be a better performing method overall for this
benchmark dataset. Furthermore, the consistent improvement seen with the fSDR
based sulalignment selection rscoring methods, when compared to the
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comparable randomolumns sukalignment selection rscoring methods, indicates
that there is a clear, significant and functionally informative advantage to using
fSDR-based sequence sabgnments to reevaluate the specific enzyme function of

an unknown query sequence.
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Figure 4.9. A comparison of the proportion of correct predictions
obtained for the following selection of
scoring methods: (i) the fuAdB A-Koppercent o met hod usi
colgap_percenthreshold of 9%, (ii) the profileHMM 60t N@® met hod; (iii)
the optimal funeMB ficol umn score threshol-do met hod
rank order correlation coefficient is >= 0.2, usingcalgap_percenthreshold

of 80% (iv) the optimal profleHMM fAcebsamne threshol do met
where the Zcore is >= 0.5; (v) the PAM30 UNGAPPED (0,0)-seoring

method, which was identified as optimal performing in chapter 3yivihe
AiranBomcol umn sel ec tcolgam pencemtthresbalds of usi ng
50%, 80% and @%; and (ix) the random sequencdesgion method. Where

shown the error bars refer to 1 standard error deviation from the mean of the

bootstrapped results, otherwise, just the mean value of the bootstrapped results

are shown to improve clarity.

Also, thefuncMB results offigure 4.9 showthat even when including a quite large
percentage of aligned columns in the sequenceabgbments (such as 50% or

75%), there is still some (albeit much smaller) improvement observed in the overall

158



accuracy of the predictive performance. This is eraging and to be expected,
because any amount of enrichment of the aligned columns, with regards to the
correlation between residue similarities and specific function, would be expected to
improve the functional information signal in the resulting sequenbalignments.

This is indeed shown (again figure 4.9) by the gradual improvement in functional
classification accuracy as the percentage of lesser correlated aligned columns,
included in the rescored sequence salignments, is decreased, resultimgan
optimal performance at the already stated threshold of th8%op These results,
therefore, show that the specific enzyme functional classification accuracy clearly
benefits from the use of a particular, optimally defined, sequencaligmmentof
functionally important residues (especially when using fine-MB method for

fSDR identification). The most pertinent of these results are summarised for

comparison inable4.5.

Functional Re- (optimal) (bootstrap) mean (bootstrap) mean
scoring Method Sub-alignment | proportion of correct | number of correct
threshold predictions predictions
func-MB top-8% 0.769 (*) 2712
(colgap_percent=90%
profile-HMM top-35 0.673 2374
PAM30 UNGAPPED n/a 0.631 2226
(0,0)
random-N
colgap_percent=50% N =65 0.628 2215
colgap_percent=60% N =75 0.627 2211
colgap_percent=80% N=75 0.615 2169
random-X percent
colgap_percent=50% X =50% 0.627 2211
colgap_percent=80% X =35% 0.630 2222
colgap_percent=90% X=75% 0.635 2240
random sequence n/a 0.502 1771
selection
Table 4.5. A summary of the optimal bootstrap results from the

functional rescoring assessmentanalysed in this chapter (mean proportion

and number ehfi tcdo rsrpeeccti ffitcg.p¥Whezeyraleeantpr edi ct i o
the subalignment selection metlds and associated thresholds at which these

results were obtained are shown. All results for the number of correct

predictions are out of a possible dataset size of 3527. (*) indicates the method

with the overall maximum predictive performance.
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