Campbell, R;
Capek, CM;
Gazarian, K;
MacSweeney, M;
Woll, B;
David, AS;
McGuire, PK;
(2011)
The signer and the sign: Cortical correlates of person identity and language processing from point-light displays.
Neuropsychologia
, 49
(11)
3018 - 3026.
10.1016/j.neuropsychologia.2011.06.029.
Preview |
PDF
1319006.pdf Download (867kB) |
Abstract
In this study, the first to explore the cortical correlates of signed language (SL) processing under point-light display conditions, the observer identified either a signer or a lexical sign from a display in which different signers were seen producing a number of different individual signs. many of the regions activated by point-light under these conditions replicated those previously reported for full-image displays, including regions within the inferior temporal cortex that are specialised for face and body-part identification, although such body parts were invisible in the display. Right frontal regions were also recruited - a pattern not usually seen in full-image SL processing. This activation may reflect the recruitment of information about person identity from the reduced display. A direct comparison of identify-signer and identify-sign conditions showed these tasks relied to a different extent on the posterior inferior regions. Signer identification elicited greater activation than sign identification in (bilateral) inferior temporal gyri (BA 37/19), fusiform gyri (BA 37), middle and posterior portions of the middle temporal gyri (BAs 37 and 19), and superior temporal gyri (BA 22 and 42). Right inferior frontal cortex was a further focus of differential activation (signer > sign).These findings suggest that the neural systems supporting point-light displays for the processing of SL rely on a cortical network including areas of the inferior temporal cortex specialized for face and body identification. While this might be predicted from other studies of whole body point-light actions (Vaina, Solomon, Chowdhury, Sinha, & Belliveau, 2001) it is not predicted from the perspective of spoken language processing, where voice characteristics and speech content recruit distinct cortical regions (Stevens, 2004) in addition to a common network. In this respect, our findings contrast with studies of voice/speech recognition (Von Kriegstein, Kleinschmidt, Sterzer, & Giraud, 2005). Inferior temporal regions associated with the visual recognition of a person appear to be required during SL processing, for both carrier and content information. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Archive Staff Only
View Item |