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Abstract

Let k be an algebraically closed field of characteristic p > 0 and l a prime that is distinct from

p. Let f : S → C be a generically ordinary, semi-stable fibration of a projective smooth surface

S to a projective smooth curve C over k. Let F be a general fibre of f , which is a smooth

curve of genus g ≥ 2. We assume that f is generically strongly l-ordinary, by which we mean

that every cyclic étale covering of degree l of the generic fibre of f is ordinary. Suppose that

f is not locally trivial and is relatively minimal. Then deg f∗ωS/C > 0, where ωS/C is the

sheaf associated to the relative canonical divisor KS/C = KS − f ∗KC . Hence the slope of f ,

λ( f ) = K2
S/C/ deg f∗ωS/C is well-defined. Consider the push-out square

π1(F) //

��

π1(S ) //

��

Π(C)→ 1

πl
1(F) α // Π

where π1 is the algebraic fundamental group and πl
1 is the pro-l fundamental group. When f is

non-hyperelliptic and λ( f ) < 4, we show that the morphism πl
1(F)

α
→ Π is trivial.
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Chapter 1

Introduction

1.1 History

If algebraic curves were God’s creation, then algebraic surfaces were the Devils mischief.

-Federigo Enriques 1949.

This is a quote by Enriques while giving an account of the classification of complex alge-

braic surfaces. The classification problem has been the guiding principle of the theory of alge-

braic surfaces. The foundations of the theory were laid by A. Clebsh and M. Noether (1870),

who defined the first important invariants of algebraic surfaces: the geometric genus and the

canonical class. At the beginning of the 20th century, mathematicians such as Castelnuovo, En-

riques, Severi and many others, from the Italian school, had succeeded in creating an impressive

and essentially geometric theory of birational classification of algebraic surfaces. Around 1960,

after the development of the modern language of schemes and sheaves, Kodaira ([22], [23]) ex-

tended Enriques classification to the Enriques-Kodaira classification of all compact, complex

surfaces [4].

Over the next decade and a half, Mumford explored what he termed “pathologies of posi-

tive characteristic”: well-behaved results in characteristic zero that fail in positive characteris-

tic. Subsequently Mumford and Bomberi ([30], [8], [7]), in three fundamental papers, written

between 1969 and 1976, extended the Enriques-Kodaira classification of smooth projective sur-

faces from the case of complex surfaces to surfaces defined over an algebraically closed field of
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positive characteristic.

In 1966, Shafarevich ([37]) was the first to open up the possibility of a serious considera-

tion of an ”arithmetic surface” as a geometric object. The results of the theory of surfaces could

be used in the study of algebraic curves over function fields. The methods and underlying ideas

employed in the classification problem are intrinsically interesting, especially as we consider

extensions to characteristic p and the consequent tie-up with arithmetic problems. In this thesis

we extend a theorem on complex algebraic surfaces by Xiao to characteristic p.

The motivation for Xiao’s theorem was a particular “geographical problem” posed by Reid

([34], conjecture 4) in 1978.

Conjecture 1. Let S be a (smooth, projective) minimal surface of general type such that K2
S <

4χ(S ), where K2
S is the self-intersection of the canonical divisor on S , and χ(S ) is the Euler-

Poincare characteristic of S , then

(i) there is a finite étale cover S̃ such that π1(S̃ ) equals the π1 of a smooth curve of genus

equal to q(S̃ ); or in a weaker form

(ii) S is fibered over a smooth curve of genus q(S ).

Motivated by this conjecture, Xiao wrote the foundational paper [12] on surfaces fibered

over a curve. In this paper, he introduced a new and useful technique for studying complex

fibered surfaces. His method has been successfully used and generalised in several works to

the study of projective varieties over a curve ([3]). This thesis adapts his technique to the study

of fibered algebraic surfaces defined over an algebraically closed field of positive characteristic

and proves a characteristic p analogue of Xiao’s theorem .

1.2 A technique for studying fibered surfaces

Let S be a smooth, projective minimal surface of general type over C, with a given fibration

f : S → C (that is a morphism with connected fibres onto a smooth curve). Assume further

that S is relatively minimal with respect to f : that is, there is no (−1) rational curve contained



1.2. A technique for studying fibered surfaces 9

in the fibres and that f is non-isotrivial. Let F be a general fibre of f , which is a smooth curve

of genus g ≥ 2. We then have the following natural exact sequence of groups

π1(F)
α
→ π1(S )→ Π→ 1

where π1 is the algebraic fundamental group and Π is determined by π1(C) and the multiple

fibres of f . Xiao proved the following theorem:

Theorem 1.1 ([12], Theorem 1). In the above situation, suppose

K2
S < 4χ(OS ) + 4(g(C) − 1)(g − 1)

and f is non-hyperelliptic. Then the image of α is trivial.

The method that he developed to prove this theorem, involved using numerical data of lin-

ear systems on fibres of f , along with the Harder-Narasimhan filtration of locally free sheaves.

The key technique may be briefly summarised as follows:

Let D be a divisor on S such that E = f∗OS (D) is a locally free sheaf. If H is a subsheaf

of E, define the fixed part ofH to be the fixed part of the linear subsystem of |D+ f ∗A| induced

by sections ofH ⊗A, whereA is a sufficiently ample divisor on C. Next consider the Harder-

Narsimhan filtration of E. Then there exists a filtration of subsheaves

0 = E0 ⊂ E1 ⊂ ... ⊂ En = E

such that

(i) Ei/Ei−1 is semistable for every i.

(ii) µ(E1/E0) > µ(E2/E1)... > µ(En/En−1), where µ(Ei/Ei−1) is the slope of the locally free

sheaf Ei/Ei−1.

Now consider the special divisor KS/C , where KS/C is the relative canonical divisor KS −

f ∗KC andωS/C is the sheaf associated to it. We then have the following semi-positivity theorem:
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Theorem 1.2 ([11], Theorem 1.1.). If f : S → C is a fibration of a proper smooth surface to a

proper smooth curve over C, then all the quotient bundles of f∗ωS/C are of non-negative degree.

Furthermore if η is a torsion element in Pic(S ), then all the quotient bundles of f∗ωS/C ⊗ η

are also of non-negative degree. Take D = Dη, a divisor with class ωS/C ⊗η. Then E = f∗OS (D)

is a locally free sheaf. For each subsheaf Ei in the Harder-Narasimhan filtration of E, we

associate an effective divisor Zi, the fixed part of Ei as above. Thus we get a sequence of

effective divisors

Z1 ≥ Z2 ≥ ... ≥ Zn ≥ Zn+1 = 0.

If we denote the slopes of filtration by µi = µ(Ei/Ei−1), the semi-positivity theorem implies that

all µi are non-negative, and we have a non-negative sequence of rational numbers

µ1 > µ2 > ... > µn > µn+1 = 0.

He then showed that the divisor Ni := D−Zi−µiF is numerically effective, and hence D2 = K2
S/C

is bounded below by,

K2
S/C ≥

n∑
i=1

(di + di+1)(µi − µi+1),

where di = Ni · F, for a general fibre F. The inequality obtained by this method gives a new

relation involving numerical invariants of the fibration.

In the proof of his main theorem, Xiao showed that if the image of the fundamental group

of the fibre is not trivial, then there must exist a cyclic étale cover ψ : S̃ → S which corresponds

to a torsion element in Pic(S ), such that ηi|F is not trivial whenever ηi is not trivial. Then

using the above lower bound on K2
S/C and Clifford’s theorem on the dimension of special linear

systems, Xiao showed that the existence of such a torsion contradicts the hypothesis that the

fibration has low slope or equivalently the condition that K2
S/C < 4χ(OS ) + 4(g(C) − 1)(g − 1).

1.3 A characteristic p-version

We now assume that k is an algebraically closed field of characteristic p > 0 and adapt the above

technique to prove an analogous result in characteristic p. The method used above cannot be
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directly employed when the base field has positive characteristic. A pivotal result which fails in

positive characteristic is Xiao’s theorem of semi-positivity. However in a recent result, Jang has

proved that for a semi-stable fibration over a field of positive characteristic, if the generic fibre

is ordinary, then the semi-positivity theorem holds. The statement of the theorem is as follows:

Theorem 1.3 ([21], Theorem 1). Let k be a perfect field of positive characteristic p and let X be

a proper smooth surface over k. Assume X admits a generically ordinary semi-stable fibration

f : X → C to a smooth proper curve C over k. Then the maximal Harder-Narasimhan slope of

R1 f∗(OX) is non-positive.

Since Ri f∗OX is dual to f∗ωX/C , the Harder-Narasimhan slopes of f∗ωX/C are non-negative.

This semi-positivity result enables us to imitate Xiao’s methods in positive characteristic, pro-

vided the fibration is generically ordinary and semi-stable. However there are some side effects

of the assumption of generic ordinarity. Consider an étale Galois cover ψ : S̃ → S . By Stein

Factorisation, f induces a fibration f̃ : S̃ → C̃, with an induced Galois cover ψ : C̃ → C.

S̃
f̃ //

ψ

��

C̃

��
S

f // C

Ideally we would like the induced covering fibration f̃ to also be generically ordinary. However

this is not always true. To see this, we factor the morphism S̃ → S into two steps

S̃ → Ŝ → S ,

where Ŝ is the minimal desingularisation of the normalization of S ×CC̃, and the two morphisms

are both étale and Galois. The first map is determined by the quotient group of π1(F) related

to the restriction of ψ on F, and the second map is determined by changing the base. Since the

base-change of a generically ordinary fibration is generically ordinary, the induced morphism

Ŝ → C̃ is generically ordinary. Therefore the generic ordinarity of the morphism f̃ : S̃ → C̃

depends on the restriction

ψ : F̃ → F,
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to general fibres of f̃ and f . In general, although F is ordinary, ψ : F̃ → F need not be an

ordinary cover. It has been shown by Michel Raynaud in [33], that given a proper, smooth,

connected curve of genus g ≥ 2, it is possible to construct a finite Galois étale cover which is

not ordinary. Therefore covers of generically ordinary fibrations are not necessarily generically

ordinary.

As we would like to prove a characteristic p analogue of Xiao’s theorem, we note that we

are particularly interested in cyclic étale coverings S̃ of S corresponding to torsion elements in

Pic(S ). If η ∈ Pic(S )[n] then S̃ = Spec(⊕n−1
i=0 η

⊗i). This simple description of cyclic coverings

plays an important role in Xiao’s proof. In characteristic p, cyclic étale coverings have this

structure if n is coprime to p.

Therefore we need a sufficient condition for degree n (g.c.d (n, p) = 1) cyclic covers

of generically ordinary fibrations to be generically ordinary or equivalently for degree n cyclic

covers of ordinary curves to be ordinary. In [9], Bouw discusses the question of ordinary covers.

We have the following general result: if Xgen is the generic curve of genus g, that is the curve

corresponding to the generic point of the moduli space of genus g curves Mg then Xgen is

ordinary and further all abelian étale covers of Xgen are ordinary (See [41]).

Proposition 1.4. Let f : Y → Xgen be an étale cover whose Galois group G is abelian. Then Y

is ordinary.

The above observations leads us to define the notion of strong l-ordinarity:

Definition 1.5. Let l be a prime distinct from p. We define an ordinary curve B to be strongly

l-ordinary, when every l-cyclic étale cover of B is also ordinary.

Therefore if we assume that the generic fibre of our fibration is strongly l-ordinary, all l-

cyclic étale covers of S will be generically ordinary. In chapter 4, we argue that generic strong

l-ordinarity is a plausible condition. We are now ready to state the theorem:

Theorem 1.6. Let k be an algebraically closed field of characteristic p > 0 and l a prime that

is distinct from p. Let S be a smooth and projective surface over k. Assume that S admits a
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generically ordinary semi-stable fibration f : S → C to a smooth and projective curve C over

k that is not isotrivial, and that S is relatively minimal with respect to f . Let F be a general

fibre of f , which is a smooth curve of genus g ≥ 2. We assume that f is generically strongly

l-ordinary. Let KS/C = KS − f ∗KC be a relative canonical divisor. We have the following

commutative diagram of profinite groups,

π1(F) //

��

π1(S ) //

��

Π(C)→ 1

πl
1(F) // Π

where π1 is the étale fundamental group, πl
1 is the pro-l fundamental group and Π is the pushout

group. In the above situation, if K2
S/C < 4 deg( f∗ωS/C) and f is non-hyperelliptic, the image

πl
1(F)→ Π is trivial.

The proof of the theorem is roughly similar to Xiao’s proof of Theorem 1.2. When a

characteristic zero result breaks down in positive characteristic, we have been able to provide

alternate proofs to overcome the problem. For example the proof given by Xiao for nefness of

the divisor Ni relies on Hartshorne’s ([18] V.2.21) proof for ampleness of a divisor on a ruled

surface, which is only valid if characteristic of the base field k is zero. We suggest an alternate

proof for nefness in positive characteristic using a result by Lange [24].

1.4 Extending to arithmetic surfaces

Given an algebraic curve X defined over a number field E, one can construct a (minimal) arith-

metic surface f : χ → SpecOE which has X as generic fibre (SpecOE denotes the ring of

integers of E). For arithmetic surfaces, it is not possible to use classical intersection theory

as was defined over algebraically closed fields, since this would give a theory which is not

well defined for all divisor classes. In [2], Arakelov solved this problem by adding some ana-

lytic data in order to ”compactify” the base scheme and to ”complete” the arithmetic surface.

He defined an intersection theory for arithmetic divisors and reformulated everything in the

language of Hermetian line bundles. Arakelov intersection theory allows us to define the self-
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intersection of all arithmetic divisors. In particular we can define ω2
χ,Ar, where ωχ,Ar is the

line bundle ωχ/SpecZ = ωχ/SpecOE ⊗Oχ f ∗ωSpecOE/SpecZ equipped with the Arakelov metric:

which is a number of great importance. Szpiro ([40]) has shown by the Kodaira-Parshin con-

struction that an upper bound for ω2
χ,Ar for certain families of morphisms of arithmetic surfaces

{χP → Y}P∈Y(Ē) would imply bounds for the height of rational points of the curve Y , hence it

would yield an effective version of Mordell’s conjecture.

Extending the theorem to arithmetic surfaces would provide a useful way to relate the

Galois action of the fundamental group to the self-intersection number of the dualizing sheaf,

which may have interesting implications.

1.5 Outline

Chapter 2 contains preliminaries for the study of divisors, linear systems, fibrations, the relative

dualizing sheaf and the fundamental group. Chapter 3 is an exposition of Xiao’s paper ([12]) .

In Chapter 4 we define the problem in the positive characteristic case and present a proof of the

theorem.



Chapter 2

Definitions and background information

2.1 Notation

We will always be working with an algebraically closed field k. A scheme will be a noetherian,

integral, separated scheme of finite type over k.

We use the following standard notation of sheaves and schemes. We will denote the struc-

ture sheaf of a scheme X by OX and the sheaf associated to the presheaf of total quotient rings

of OX by KX . Let U be an open subset of a scheme X and F a sheaf on X then Γ(U,F ) denotes

the sections of the sheaf F on the open set U. The global sections of the sheaf F are denoted by

Γ(X,F ) or H0(X,F ). When X is a projective scheme over k and F a coherent OX-module, then

H0(X,F ) is a finite-dimensional k-vector space. We often denote the dimension of this vector

space by h0(F ).

A surface will be a noetherian, integral scheme X of dimension 2 over k, endowed with a

projective flat morphism onto a base scheme S that is regular, connected, of dimension 1. We

can regard X as a family of curves parameterised by S (more geometric point of view) or as an

extension of the generic fibre XK into a scheme over S (more arithmetic point of view).

Let S be a Dedekind scheme. We call an integral, projective, flat S -scheme π : X → S of

dimension 1, a fibered suface over S . The generic point of S wil be denoted by η and the fibre

over η will be denoted by Xη and is called the generic fibre. The fibre over a closed point s ∈ S

is called a closed fibre. We will say that X is a normal (resp. regular) fibered surface, if X is
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normal (resp. regular).

2.2 Divisors

The notion of a divisor provides a very useful tool for studying the intrinsic geometry of a

scheme. We also introduce the classical notion of linear systems, which are just the set of

effective divisors linearly equivalent to a divisor. We also define ampleness and nefness for

divisors. The definitions and results presented in this section can be found in [18], II. Sect. 6

and 7 and [27]

2.2.1 Weil and Cartier divisors

Weil divisors

This is a more intuitive and geometrical definition of divisors as linear combinations of co-

dimension one subschemes on regular noetherian schemes. More generally, let X be a scheme

such that all of its local rings are regular in co-dimension one, we can then define the notion of

Weil divisors. A prime divisor on X is a closed integral subscheme Y of co-dimension one.

Definition 2.1. A Weil divisor is an element of the free abelian group WDiv X generated by

the prime divisors. We write a divisor a D =
∑

niYi, where the Yi are prime divisors, the ni are

integers, and only finitely many ni are different from zero. If all the ni ≥ 0, we say that D is

effective.

Let η be the generic point of a prime divisor Y , then the local ring Oη,X is a discrete

valuation ring with quotient field K, the function field of X, since X is regular. Let νY denote

the valuation in Oη,X . If f ∈ K∗ be any nonzero rational function on X. Then νY ( f ) is an integer.

If it is positive, we say that f has a zero along Y of that order; if it is negative, we say that f has

a pole along Y of order −νY ( f ).

Definition 2.2. Let f ∈ K∗. We define the divisor of f , denoted by ( f ), by

( f ) =
∑

νY ( f )Y
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This is well defined since νY ( f ) = 0 for all except finitely many Y on a regular noetherian

scheme. Such a divisor is called a principal Weil divisor.

Two Weil divisors D1 and D2 are said to be linearly equivalent if D1 − D2 is principal.

Definition 2.3. The degree of a Weil divisor D =
∑

niYi is defined to be
∑

ni.

Cartier divisors

Cartier divisors extend the above notion of divisor to an arbitrary scheme. The motivating idea

is that a divisor should be something which locally looks like the divisor of a rational function.

Definition 2.4. Let X be a scheme. We denote the group Γ(X,K∗X/O
∗
X) by Div(X). The elements

of Div(X) are called Cartier divisors on X. Therefore a divisor D on X is the collection of local

data {(Ui, fi)}, where the open sets {Ui} form an open cover of X and for each i, fi ∈ Γ(Ui,K
∗
X)

such that for each i, j, fi/ f j ∈ Γ(Ui ∩ U j,O
∗
X).

Definition 2.5. A Cartier divisor on a scheme X is called effective, if it is in the image of the

map Γ(X,OX ∩ K
∗
X)→ Γ(X,K∗X/O

∗
X). We denote an effective divisor by writing D ≥ 0.

Remark. (i) Let D1,D2 be two Cartier divisors represented by {(Ui, fi)}i and {(V j, g j)} j. Then

D1 + D2 is represented by {(Ui ∩ V j, fig j)}i, j.

(ii) We have D ≥ 0 if and only if it can be represented by {(Ui, fi)}i with fi ∈ OX(Ui). It is

principal if it can be represented by (X, f ).

Definition 2.6. Let f ∈ Γ(X,K∗X), then its image in Div(X) is called a principal Cartier divisor.

We say that two Cartier divisors D1 and D2, are linearly equivalent if D1 − D2 is principal

(Note we use addition to express the group operation in the group Div(X), mostly for historical

reasons, even though the operation in K∗X/O
∗
X is multiplicative). We then write D1 ∼ D2. The

group of Cartier divisors modulo linear equivalence is denoted by CaCl

For a general Cartier divisor, we use definition of the length of module to determine the

degree.
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Definition 2.7. Let A be a noetherian ring of dimension 1 and f ∈ A a regular element. Then the

length of A/ f A as an A- module is finite. Therefore we can define a map f 7→ lengthA(A/ f A),

which can be extended to a map Frac(A)∗ → Z and whose kernel contains the invertible ele-

ments of A. We therefore obtain a group homomorphism

multA : Frac(A)∗/A∗ → Z.

Let X be a locally Noetherian scheme. Let D ∈ Div(X) be a Cartier divisor. For any point

x ∈ X of codimension 1, the stalk of D at x belongs to (K∗/O∗X)x = Frac(OX,x)∗/O∗X,x. We can

therefore define

multx(D) := multOX,x(Dx)

as above.

Let U be an open and everywhere dense subset of X such that D|U = 0. Then any x ∈ X

of codimension 1 such that multx(D) , 0 is a generic point of X\U. This implies that in any

affine open subset of X, there are only a finite number of points x of codimension 1 such that

multx(D) , 0.

Definition 2.8. Let X be a smooth curve over a field k. Let D ∈ Div(X) be a Cartier divisor.

The degree of D is defined to be

deg D =
∑

multx(D)[k(x) : k]

Let φ : X → Y be a morphism of schemes. We would like to inverse image and direct

image of divisors across a morphism.

Definition 2.9. If we want to define the inverse image of a Cartier divisor on Y , it suffices that

we have a natural morphism KY → φ∗KX . If f is a flat morphism, then we have a natural

morphism KY → φ∗KX derived from the natural morphism OY → φ∗OX . In this case, we

have a morphism from K∗Y/O
∗
Y → φ∗(K∗X/O

∗
X) We then define the inverse image of a divisor

D ∈ H0(K∗Y/O
∗
Y ) by a morphism φ as its image in H0(K∗X/O

∗
X).
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Invertible sheaves

Definition 2.10. Let X be a scheme. A sheaf F is said to be locally free over X, if there exists

an open covering {Ui} such that F |Ui is a free OX |Ui-module. The rank of F on Ui is the number

r ∈ Z+, where F |Ui ∼ OX |
r
Ui

. If X is connected, then r is constant for all Ui and is called the

rank of the locally free sheaf. A locally free sheaf F of rank 1 is called an invertible sheaf.

Definition 2.11. Let X be a scheme. Given an invertible sheaf L, we can define its dual sheaf,

L∨ = Hom(L,OX) such that L ⊗ L∨ � OX . We define the group Pic(X) to be the group of

isomorphism classes of invertible sheaves on X, under the operation ⊗.

Definition 2.12. To a Cartier divisor D = {(Ui, fi)}we associate an invertible subsheaf OX(D) ⊂

KX , defined by OX(D)(Ui) = f −1
i OX(Ui). We therefore get a map Div(X)→ Pic(X). Further by

this association, given two divisors D1 and D2 on a scheme X, the sheaf associated to the sum

of two divisors D1 + D2 is the tensor product of the sheaves OX(D1) ⊗ OX(D2).

Proposition 2.13 ([18], II.6.15). If X is an integral scheme, then Pic(X) � CaCl(X).

Definition 2.14. Let η be an invertible sheaf on X. Then η is a torsion element of Pic(X) if there

exists a positive integer k such that η⊗k � OX .

The next theorem gives the useful condition under which we can relate the two different

notions of divisors.

Theorem 2.15 ([18] II.6.11). Let X be an integral, separated noetherian scheme, all of whose

local rings are unique factorization domains (locally factorial). Then the group of Weil divisors

on X is isomorphic to the group of Cartier divisors on X and furthermore the principal Weil

divisors correspond to the principal Cartier divisors under this isomorphism.

Remark. Since a regular local ring is a unique factorization domain, this theorem applies in

particular to any regular integral separated noetherian scheme.
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2.2.2 Linear systems

Given a divisor D on a X with non-zero global sections, we will see that the set of global sections

of OX(D) correspond to effective divisors all linearly equivalent to D. This leads to the notion

of linear systems which were the historical way of studying divisors, especially on non-singular

projective varieties. It is a certain set of effective divisors all linearly equivalent to each other.

We will assume that X is a non-singular projective variety for the rest of this subsection.

Therefore the notion of Weil divisor and Cartier divisor are equivalent. We also have a one-to-

one correspondence between Pic(X), the isomorphism class of invertible sheaves and CaCl(X),

the linear equivalence of divisors. Finally for any invertible sheaf L on X, the global sections

Γ(X,L) form a finite-dimensional k-vector space ([18] II,5.19).

Definition 2.16. Let L be an invertible sheaf on X with a non-zero global section s ∈ Γ(X,L).

We define the divisor of zeros (s)0 associated to s in the following way: Take a covering of X

such that L has a local trivialisation. Then for each open affine subset Ui ⊂ X, s maps to a

regular function fi on Ui. We take the effective divisor {(Ui, fi)} defined in this manner to be

divisor of zeros (s)0.

The following proposition gives the correspondence between global sections of an invert-

ible sheaf and effective divisors that are linearly equivalent on a variety.

Proposition 2.17 ([18], II.7.7). Let X be a nonsingular projective variety over the algebraically

closed field k. Let D0 be a divisor on X and let L = OX(D0) be the corresponding invertible

sheaf. Then:

(a) for each nonzero s ∈ Γ(X,L), the divisor of zeros (s)0 is an effective divisor linearly

equivalent to D0;

(b) every effective divisor linearly equivalent to D0 is (s)0 for some s ∈ Γ(X,L); and

(c) two sections s, s′ ∈ Γ(X,L) have the same divisor of zeros if and only if there is a λ ∈ k∗

such that s′ = λs.
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Definition 2.18. Let X be a non-singular projective scheme. By a divisor on a scheme we

mean a Cartier divisor. For a divisor D on a scheme X, we denote by |D| the set of all effective

divisors on X linearly equivalent to D. This is called a complete linear system. From the above

proposition, we see that every non-vanishing global section of OX(D) defines an element of

|D|, namely its divisor of zeros, and conversely every element of |D| is the divisor of zeros of

a non-vanishing section of OX(D), well defined up to scalar multiplication. Thus |D| can be

naturally identified with the projective space associated to the vector space Γ(X,OX(D)). We

denote dim H0(X,L(D)) by l(D), so that the dimension of |D| is l(D) − 1.

Definition 2.19. A linear subset L of |D| is called a linear system on X, when L corresponds to

a vector subspace V ⊂ Γ(X,OX(D)), where V = {s ∈ Γ(X,OX(D)|(s)0 ∈ L} ∪ {0}. The dimension

of the linear system L is its dimension as a linear projective variety. Hence dim L = dim V − 1.

Definition 2.20. The support of a divisor D, Supp D, is defined to be the set of points x ∈ X at

which the local equation fi is not a unit in the stalk OX,x. It is the union of the prime divisors of

D.

Definition 2.21. A point P is a base point of a linear system L(⊂ |D|) if P ∈ Supp D for all

D ∈ L.

Definition 2.22. We define the base locus Bs(L) of a linear system L to be the maximal closed

subscheme of X contained in Supp D, for all D ∈ L.

For a surface X, the base locus Bs(L) consists of zero-dimensional and one-dimensional

components. The fixed part of L is the one-dimensional locus of Bs(L). We denote it by F.

Then L−F B {D′−F : D′ ∈ L} is a linear system with no fixed part. We call L−F the variable

part of L. Note that the finite number of base points forming the zero-dimensional locus of

Bs(L) is the base locus Bs(L − F) of L − F. We call these points the isolated fixed points of L.

Lemma 2.23 ([18], II.7.8). Let L be a linear system on X corresponding to the subspace V ⊂

Γ(X,L). Then a point p ∈ X is a base point of L if and only if sp ∈ mpLp for all s ∈ V. In

particular, L is base point free if and only if L is generated by global sections.
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Definition 2.24. Let i : Y ↪→ X be a closed immersion of nonsingular projective varieties over

k. If L is a linear system on X, we define the restriction of L on Y , denoted L|Y as follows. The

linear system L corresponds to an invertible sheaf L on X, and a sub-vector space V ⊂ Γ(X,L).

We take the invertible sheaf i∗L = L ⊗ OY on Y , and we let W ⊂ Γ(Y, i∗L) be the image of V

under the natural map Γ(X,L)→ Γ(Y, i∗L). Then i∗L and W define the linear system L|Y .

Note that even if L is a complete linear system L|Y may not be complete.

2.2.3 Cyclic coverings

The cyclic cover trick is a powerful technique, which we will use often use in this thesis. The

general theory on cyclic covers in arbitrary characteristic was given in [16] (Section 3.5, pg.

22). We discuss here the construction of such covers.

Theorem 2.25. Let X be a variety defined over k, and L a line bundle on X. Suppose given a

positive integer m ≥ 1, (where if char k is p > 0 then p - m) plus a non-zero section

s ∈ Γ(X,L⊗m)

defining a divisor D on X which is either effective or zero. Then there exists a finite flat cyclic

covering

φ : Y → X,

where Y is a scheme having the property tha the pullback L′ = φ∗L of L carries a section

s′ ∈ Γ(Y,L′) with (s′)m = φ∗s.

The divisor D′ = (s′)0 maps isomorphically to D. Moreover if X and D are non-singular, then

so too are Y and D′.

For proof see [25] or [16]]. For a local description of this covering we can take an affine

variety X and a non-zero regular function s ∈ Γ(X,OX) which defines a divisor D on X. Start

with the product X ×A1 of X and the affine line. Taking t for the coordinate on A1, consider the
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subvariety Y ⊆ X × A1 defined by taking the equation tm − s = 0:

{tm − s = 0} = Y

φ
&&MMMMMMMMMMMM ⊆ X × A1

{{xx
xx

xx
xx

x

X

The natural mapping φ : Y → X is a cyclic covering branched along D. Setting s′ = t|Y , one

has the equality

(s′)m = φ∗s.

One can globalize the above argument to obtain a global covering, or a more elegant solution

can be obtained by taking

Y = Spec⊕n−1
j=0L

− j,

where SpecA of a quasi-coherent OX-algebra is as described in [18] II.5.

If D , 0 and reduced, Y is an m-cyclic covering of X that is branched along D. If D = 0,

we must take m minimal (i.eL is exactly of order m in Pic(X)), to obtain a connected unramified

cyclic covering Y of X.

2.3 Relative dualizing sheaf

In this section we define a very useful and extremely important divisor called the canonical

divisor, and its associated sheaf, the canonical sheaf, of a scheme X. We then define the relative

dualizing sheaf of X over S , and note that it coincides with the canonical sheaf when f : X → S

is a flat morphism between projective varieties (see [27]). It is a very important invariant as

there are many fundamental results associated to it, such as: the adjunction formula, Serre

duality and the Riemann-Roch formula. We are particularly interested in this divisor as we use

it extensively in the proof of our main theorem.

2.3.1 Modules of relative differential forms

Definition 2.26. Let B be an A-algebra. The module of differential forms of B over A is a

B-module Ω1
B/A endowed with an A-derivation d : B → Ω1

B/A having the following universal

property:
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For any B-module M and any A-derivation d′ : B → M, there exists a unique homomorphism

of B-modules φ : Ω1
B/A → M s.t. d′ = φ ◦ d

B
d′ //

d
��

M

Ω1
B/A]

φ

=={{{{{{{{

Here is a construction of a module of relative differential forms. Let F be a free B-module

generated by the symbols db, b ∈ B. Let E be generated by {da, a ∈ A} ∪ {d(b1 + b2) − db1 −

db2} ∪ {db1b2 − b1db2 − b2db1}. Then

Ω1
B/A = F/E

d : B → Ω1
B/A

b 7→ db

2.3.2 Sheaves of relative differentials (of degree 1)

Definition 2.27. Let f : X → Y be a morphism of schemes. There exists a unique quasi-

coherent sheaf Ω1
X/Y on X such that for any affine open subset V of Y , any affine open subset U

of f −1(V) and any x ∈ U, we have

Ω1
X/Y |U � (Ω1

OX(U)/OY (V))
∼

(Ω1
X/Y )x � Ω1

OX,x/OY, f (x)

We can construct Ω1
X/Y in the following manner:

∆ : X → X ×Y X is a locally closed immersion. ∆(X) is closed in an open subset U of X ×Y X.

Let I = ker∆# be the sheaf of ideals defining the closed subset ∆(X) in U. Then

Ω1
X/Y � ∆

∗(I/I2)

2.3.3 The canonical sheaf

Definition 2.28. Let f : X → Y be an immersion into a scheme. Let V be an open subscheme

of Y such that f factors through a closed immersion i : X → V and let J be the sheaf of ideals
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defining i. The conormal sheaf is defined as follows,

CX/Y := i∗(J/J2).

We also define the normal sheaf, denoted by NX/Y as follows:

NX/Y := C∨X/Y .

Let f : X → Y be a morphism. For any r ≥ 1, the quasi-coherent sheaf Ωr
X/Y :=

∧r Ω1
X/Y

is the sheaf of differentials of order r.

Definition 2.29. Let Y be a locally noetherian scheme and f a quasi-projective locally complete

intersection. i : X → Z an immersion into a scheme Z that is smooth over Y . We define the

canonical sheaf of the morphism X → Y to be the invertible sheaf

ωX/Y := Det(CX/Z)∨ ⊗OX i∗(Det(Ω1
Z/Y ))

This definition is independent of the immersion into Z.

Theorem 2.30 ([27], 6.4.9). Let f : X → Y, g : Y → Z be quasi-projective locallly complete

intersections

(i) (Adjunction Formula) We have a canonical isomorphism

ωX/Z � ωX/Y ⊗OX f ∗ωY/Z

(ii) (Base Change) Let Y ′ → Y be a morphism. Let X′ := X ×Y Y ′ and let p : X′ → X be

the first projection. If either Y ′ → Y or X → Y is flat, then X′ → Y ′ is a local complete

intersection and we have a canonical isomorphism

ωX′/Y′ � p∗ωX/Y

Remark. For a smooth morphism f : X → Y of relative dimension d,

ωX/Y =

d∧
ΩX/Y .
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In particular, if X is a non-singular variety over k of dimension n, then we define the canonical

sheaf of X, denoted by ωX , to be

ωX =

n∧
ΩX/k.

2.3.4 Relative dualizing sheaf

Let f : X → Y be a proper morphim to a locally noetherian scheme Y , with fibres of dimen-

sion ≤ r. let F , G b quasi-coherent sheaves on X. For any affine open subset V of Y , each

homomorphism φ : F | f −1(V) → G| f −1(V) induces a homomorphism

Hr( f −1(V),F | f −1(V))
Hr(φ)
→ Hr( f −1(V),G| f −1(V)).

This defines a canonical bilinear map

f∗HomOX (F ,G) × Rr f∗F → Rr f∗G.

Definition 2.31. We define the dualizing sheaf (or r-dualizing sheaf) for f to be a quasi-

coherent sheaf ω f on X, endowed with a homomorphism of OY -modules

tr f : Rr f∗ω f → OY

such that for any quasi-coherent sheaf F on X, the natural bilinear map

f∗HomOX (F , ω f ) × Rr f∗F → Rr f∗ω f
tr f
→ OY

induces an isomorphism

f∗HomOX (F , ω f ) � HomOY (Rr f∗F ,OY ).

The existence of the dualizing sheaf is a difficult question, but the next theorem proves the

existence of the dualizing sheaf for projective morphisms.

Theorem 2.32 ([27], 6.4.30). Let f : X → Y be a projective morphism to a locally noetherian

scheme Y, with fibres of dimension ≤ r. Then the r-dualizing sheaf exists.
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The final theorem in this section proves the isomorphism between the dualizing sheaf and

the canonical sheaf when f is flat.

Theorem 2.33 ([27], 6.4.32). Let Y be a locally noetherian scheme, and let f : X → Y be a flat

projective locally compete intersection of relative dimension r. Then the r-dualizing sheaf ω f

is isomorphic to ωX/Y . In particular if f is smooth, then ω f � Ω
r
X/Y .

Remark. Let f : X → S be a fibered surface. Then by the above theorem, ωS/C is the relative

dualizing sheaf of f . Further taking F to be the structure sheaf on S , we get

f∗HomOX (OS , ωS/C) � HomOC (R1 f∗OS ,OC).

or equivalently

f∗ωS/C � R1 f∗O∨S .

2.4 Fibered surfaces

Fibered surfaces are relative curves over a Dedekind scheme (we assume that S is of k-

dimension 1). In this section we recall some properties of fibered surfaces, intersections on

fibered surfaces [27], and of semi-stable and generically ordinary fibrations [21].

2.4.1 Properties of fibres

Definition 2.34. Let S be a Dedekind scheme. We call an integral, projective, flat S -scheme

π : X → S of dimension 2, a fibered suface over S . The generic point of S wil be denoted by

η and the fibre over η will be denoted by Xη and is called the generic fibre. The fibre over a

closed point s ∈ S is called a closed fibre. We will say that X is a normal (resp. regular) fibered

surface, if X is normal (resp. regular).

Definition 2.35. We will call a regular fibered surface X → S over a Dedekind scheme S of

dimension 1 an arithmetic surface.

Definition 2.36. Let π : X → S be a fibered surface or a fibration with connected fibres from

a smooth surface X to a smooth projective curve S . We say that π is smooth if all the fibres
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are smooth, isotrivial if all the smooth fibers are mutually isomorphic, and locally trivial if it is

smooth and isotrivial.

We now list some elementary properties of fibres. A detailed discussion of fibered surfaces

can be found in [27], section 8.3. A few of these results are recalled here to remind ourselves

of the properties we need.

Lemma 2.37 ([27] 4.4.16). Let S be a Dedekind scheme with generic point η, and let X → S

be a dominant morphism of finite type with X irreducible. Then for any s ∈ S such that Xs , 0,

we have Xs equidimensional of dimension dim Xη.

Lemma 2.38 ([27] 8.3.3). Let S be a Dedekind scheme, with generic point η. Let X → S be a

fibered (resp. normal fibered) surface. Then Xη is an integral (resp. normal) curve over K(S ).

For any s ∈ S , Xs is a projective curve over k(s).

Proposition 2.39 ([27] 8.3.4). Let π : X → S be a fibered surface over a Dedekind scheme of

dimension 1.

(a) Let x be a closed point of the generic fibre Xη. Then ¯{x} is an irreducible closed subset of

X, finite and surjective to S .

(b) Let D be an irreducible closed susbset of X. If dim D = 1, then either D is an irreducible

component of a closed fibre, or D = ¯{x} where x is a closed point of Xη.

(c) Let x0 be a closed point of X, then dim OX,x0 = 2.

Definition 2.40. Let π : X → S be a fibered surface over a Dedekind scheme S . Let D be

an irreducible Weil divisor. We say that D is horizontal if dim S = 1 and if π|D : D → S is

surjective. If π(D) is reduced to a point, we say that D is vertical. More generally we will say

that an arbitrary Weil divisor is horizontal (resp. vertical) if its components are horizontal (resp.

vertical). We say that a cartier divisor is horizontal or vertical if the associated Weil divisor is

horizontal or vertical.
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Corollary 2.41 ([27] 8.3.6). Let π : X → S be a fibered surface over a Dedekind scheme S of

dimension 1. Let s ∈ S . then the following properties are true.

(a) The fibre Xs is a projective curve over k(s), and we have the equality of arithmetic genera

pa(Xx) = pa(Xη).

(b) If Xη is geometrically connected, then the same holds for Xs.

(c) If Xη is geometrically integral, then the canonical homomorphism OS → π∗OX is an

isomorphism.

(d) Let us suppose that X is a regular scheme. Then the morphisms X → S and Xs →

Spec k(s) are local complete intersections, and we have the relation ωXs/k(s) = ωX/S |Xs

between the dualizing sheaves.

Proposition 2.42. Let f : X → S be a fibered surface from a smooth, projective surface X onto

a smooth projective curve S over an algebraically closed field k with connected fibres. Then

OS → π∗OX is an isomorphism.

Proof. From 2.38, we see that Xη is an integral curve over k. Therefore by 2.41 (c), we get the

result. �

Proposition 2.43 ([27] 8.3.11). Let π : X → S be a fibered surface over a Dedekind scheme S .

We suppose that the generic fibre Xη is smooth. Then there exists a non-empty open susbset V

of S such that π−1(V) → V is smooth. In other words, Xs is smooth over k(s) except maybe for

a finite number of s.

The following lemma proves that base change of a regular fibered surface by a finite mor-

phism that is unramified on the singular fibres is a regular fibered surface.

Lemma 2.44. Let f : X → S be a generically smooth fibration from a proper smooth surface

X to a proper smooth curve S . If S ′ is a smooth curve and ψ : S ′ → S is a flat and finite

morphism, that is unramified on the singular fibres of f , then X′ = X ×S S ′ is smooth over k.
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Proof. Consider the fibre product

X′ = X ×S S ′
f ′ //

φ

��

S ′

ψ

��
X

f // S .

Let y ∈ X′ be a point.

case(i) φ(y) lies on a smooth fibre of f .

Define T = {x ∈ X|X f (x) is a smooth fibre over k( f (x))}. Then T is open in X, and f |T :

T → S is smooth. The base change of a smooth morphism is smooth and y ∈ T ×S S ′.

Therefore f ′ is smooth at y and S ′ → k is smooth, hence X′ is smooth at y.

case(ii) φ(y) lies on a singular fibre of f .

In this case, ψ is unramified over f (φ(y)). Therefore there exists open neighbourhoods

U′ ⊂ S ′ and U ⊂ S such that ψ|U′ : U′ → U is étale and hence smooth. Again since the

base change of a smooth morphism is smooth, X ×U U′ → X is smooth and y ∈ X ×U U′.

Therefore φ is smooth at y and X → k is smooth, hence X′ is smooth at y.

�

The next result is an important proposition that we will use repeatedly in our thesis. It

proves the existence of an intermediate scheme such that a morphism can be expressed as one

with connected fibres, followed by a finite morphism.

Proposition 2.45 (Stein Factorization, [18] III Cor 11.5.). Let f : X → Y be a projective

morphism to a locally Noetherian scheme Y.

(a) f factors into g : X → Z and h : Z → Y such that g has only geometrically connected

fibres and h is finite.

(b) We can factor f as in (a) with moreover OZ � g∗OX . This implies that Z is unique up to

isomorphism.
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2.4.2 Intersection of two divisors on a surface

We are interested in studying the internal geometry of a surface and like in the case of curves,

use divisors to do so. We assume that X is a nonsingular projective surface over an algebraically

closed field k. There is a unique symmetric bilinear pairing Pic X × Pic X → Z, which is nor-

malized by requiring that for any two irreducible nonsingular curves C,D meeting transversally,

C.D is just the number of intersection points of C and D.

The main tool in proving this theorem is Bertini’s Theorem, which allows us to move any

two divisors in their linear equivalence class, so that they become differences of irreducible

nonsingular curves meeting transversally.

Theorem 2.46 (Bertini’s Theorem, [18] II.8.18.). Let X be a nonsingular closed subvariety

of Pn
k , where k is an algebraically closed field. Then there exists a hyperplane H ⊂ Pn

k , not

containing X, and such that the scheme H ∩ X is regular at every point. (In fact, if dim X ≥ 2,

then H∩X is connected, hence irreducible, and so H∩X is a non singular variety.) Furthermore,

the set of hyperplanes with this property forms an open dense subset of the complete linear

system |H|, considered as a projective space.

Lemma 2.47 ([18] V.1.2). Let C1, ...,Cr be irreducible curves on the surface X, and let D be a

very ample divisor. Then almost all curves D′ in the complete linear system |D| are irreducible,

nonsingular, and meet each of the Ci transversally.

Lemma 2.48 ([18] V.1.3). Let C be an irreducible nonsingular curve on X, and let D be any

curve meeting C transversally. Then

#(C ∩ D) = degC(OX(D) ⊗ OC).

The intersection pairing is defined by the following properties:

Theorem 2.49 ([18] V.1.1). There is a unique pairing Div X × Div X → Z, denoted by C.D for

any two divisors C,D, such that
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(1) if C and D are nonsingular curves meeting transversally, then C.D = #(C ∩ D), the

number of points of C ∩ D,

(2) it is symmetric: C.D = D.C,

(3) it is additive: (C1 +C2).D = C1.D +C2.D, and

(4) it depends only on the linear equivalence classes: if C1 ∼ C2 then C1.D = C2.D.

Definition 2.50. If D is any divisor on the surface X, we can define the self-intersection number

D.D, usually denoted by D2.

Definition 2.51. Let X be a projective nonsingular surface over an algebraically closed field k.

Let ωX/k be the canonical sheaf on the surface. Any divisor K in the linear equivalence class

corresponding to ωX/k is called a canonical divisor. Then K2, the self-intersection of K is a

number dependent only on X and is an invariant of X.

The following result gives a method of calculating the intersection number of two curves

C,D with no common irreducible component. If P ∈ C ∩ D, then we define the intersection

multiplicity (C.D)P of C and D at P to be the length of OP,X/( f , g), where f and g are local

equations of C and D at P.

Proposition 2.52 ([18] V.1.4). IF C and D are curves on X having no common irreducible

component, then

C.D =
∑

P∈C∩D

(C.D)P.

2.4.3 Intersection and morphisms

We study the behaviour of intersection numbers with respect to morphisms of fibered surfaces.
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2.4.3.1 Projection formula

Let X, Y two schemes, and let f : X → Y be a proper morphism. For any prime cycle Z on X,

we set W = f (Z) and

f∗Z =


[K(Z) : K(W)]W, if K(Z) is finite over K(W)

0, otherwise

By linearity we define a homomorphism f∗ from the group of cycles on X to the group of cycles

on Y .

Proposition 2.53 ([27] 9.2.11). Let f : X → Y be a surjective projective mophism of Noethe-

rian integral schemes. We suppose that [K(X) : K(Y)] = n is finite. Then for any Cartier divisor

D on Y, we have

f∗[ f ∗D] = n[D].

Theorem 2.54 ([27] 9.2.12). Let f : X → Y be a dominant morphism of regular fibered surfaces

over S . Let C (resp. D) be a divisor on X (resp, on Y). Then the following properties are true.

(a) For any divisor E on X such that f (Supp E) is finite, we have E · f ∗D = 0.

(b) Suppose that C or D is vertical. Then

C · f ∗D = f∗C · D Projection Formula,

where f∗C is a Cartier divisor on Y.

(c) The extension K(X)/K(Y) is finite. Let C be a vertical divisor on Y. Then f ∗C is vertical

and we have

f ∗C · f ∗D = [K(X) : K(Y)]C · D.

Note. There is a unique pairing DivQ X × DivQ X → Q, denoted by C.D for any two divisors

C,D, which is defined via extension of scalars from the analogous product on Div(X).

Definition 2.55. A Q−divisor D is called numerically effective (nef), if D.C ≥ 0 for all irre-

ducible curves C on X.
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2.4.4 Relatively minimal surfaces

In this section we include a brief overview of minimal surfaces.

Definition 2.56. Let X → S be a regular fibered surface. A prime divisor E on X is called

an exceptional divisor (or (-1)-curve) if there exists a regular fibered surface Y → S and a

morphism f : X → Y of S -schemes such that f (E) is reduced to a point, and that f : X\E →

Y\ f (E) is an isomorphism. In other words, an exceptional divisor is an integral curve that can

be contracted to a regular point. Let us note that as f (E) is a closed point , its image in S is also

a closed point. Hence E is a vertical divisor.

Definition 2.57. We say that a regular fibered surface X → S is relatively minimal if it does not

contain an exceptional divisor. We say that X → S is minimal if every birational map of regular

fibered S -surfaces Y d X is a birational morphism. A minimal fibered surface is relatively

minimal.

Under sufficiently general conditions, we have the following result about the existence of

a minimal surface in a class of birational surfaces.

Theorem 2.58 ([27] 9.3.24). Let X → S be a relatively minimal arithmetic surface, with

generic fibre Xη verifying pa(Xη) ≥ 1. Then X is minimal.

Theorem 2.59 ([27] 9.3.26). Let X → S be an arithmetic surface with pa(Xη) ≥ 1. Let KX/S

be a canonical divisor, then X → S is minimal if and only if KX/S is numerically effective.

We also have the additional nice property that being minimal is preserved under étale base

change.

Proposition 2.60 ([27] 9.3.28). Let X → S be an arithmetic surface such that pa(Xη) ≥ 1.

Let S ′ → S be a morphism. Let us suppose that S ′ → S is étale surjective, or that S is the

spectrum of a discrete valuation ring R and that S ′ = Spec R̂. Then X → S is minimal if and

only if X′ = X × S ′ → S ′ is minimal.
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2.4.5 Minimal desingularization

Definition 2.61. Let X be a reduced locally Noetherian scheme. A proper birational morphism

π : Z → X with Z regular is called a desingularization of X. If π is an isomorphism above every

regular point of X, we say that it is a desingularization in the strong sense.

Theorem 2.62 ([27] 8.3.51). Let X → S be a fibered surface. Let us suppose that dim S = 1

and that X has a smooth generic fibre. Then X admits a desingularization in the strong sense.

Definition 2.63. Let Y be a Noetherian scheme. We call a desingularization morphism Z → Y

such that every other desingularization morphism Z′ → Y factors throught Z′ → Z → Y a min-

imal desingularization of Y . If Y is already regular then it is its own minimal desingularization.

Proposition 2.64 ([27] 9.3.32). Let Y → S be a normal fibered surface. If Y admits a desingu-

larization, then it admits a minimal desingularization. More precisely, if X → Y is a desingu-

larization such that no exceptional divisor of X is contained in the exceptional locus of X → Y,

then it is a minimal desingularization.

2.4.6 Semi-stable fibrations

In the main theorem of this thesis, we are mostly concerned with generically smooth semi-stable

fibrations. In this section we give a quick introduction to semi-stable curves and its properties.

Definition 2.65. A proper curve S over k is called semi-stable if

(a) S is connected and reduced.

(b) Any singular point of S is an ordinary double point.

Definition 2.66. Let f : X → S be a morphism of finite type to a scheme S . We say that f is

semi-stable, or that X is a semi-stable curve over S , if

(a) f is flat.

(b) The fibre Xs is a semi-stable curve over k(s).
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Proposition 2.67 ([27] 10.3.15). Let f : X → S be a semi-stable curve over a scheme S .

(a) Let S ′ → S be a morphism. Then X × S ′ → S ′ is semi-stable.

(b) If S is locally Noetherian, then X → S is a locally complete intersection.

(c) If S is a Dedekind domain and if the generic fibre of X → S is normal, then X is normal.

2.4.7 Generic ordinarity

We are interested in generically ordinary semi-stable fibrations π : X → S , since [21] has re-

cently shown that for such fibrations, all the quotient bundles of π∗ωX/S are of non-negative

degree. This is a crucial component of our main theorem, and here we present a brief introduc-

tion to such fibrations. Assume that k is a perfect field of positive characteristic p. In the case

that S is an 1-dimensional non-singular scheme over k, we always assume that a semistable

curve X → S is generically smooth and X is smooth over k. The definitions in this section can

be found in [21].

Definition 2.68. Let X be a scheme over k. We call the morphism FX : X → X induced by the

ring homomorphism OX → OX : a 7→ ap the absolute Frobenius of X.

Let S be a scheme over k and π : X → S an S -scheme. We let Xp denote the fibered

product X ×S S , where the second factor S is endowed with the structure of an S -scheme via

FS : S → S . We will endow Xp with the structure of an S -scheme given by the second

projection q : X ×S S → S . Let us denote the first projection by φ : Xp → X. We have a

communicative diagram

X
FX //

π

��

X

π

��
S

FS // S

There therefore exists a morphism of S -schemes FX/S : X → Xp making the folllowing
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diagram commutative:

X
π

  A
AA

AA
AA

A

X

FX

>>}}}}}}}}FX/S //

π
  A

AA
AA

AA
A Xp //

q
��

φ

OO

S

S
FS

>>}}}}}}}}

Definition 2.69. We call the morphism of S -schemes FX/S : X → Xp as above the relative

Frobenius or the standard Frobenius.

Let X be a smooth and proper variety defined over k. Denote byΩ·X/k the DeRham complex

of X/k. Then FX/k∗(Ω
·
X/k) is a OXp-linear complex of coherent OXp-modules. The image of

FX/k∗Ω
i−1
X/k → FX/k∗Ω

i
X/k is denoted by BiΩX/k or BiΩ when there is no risk of confusion. Each

BiΩ is a vector bundle on Xp.

Definition 2.70. X is ordinary (Bloch-Kato ordinary) if HiB jΩX/k = 0 for all i and j.

We can extend the definition of ordinarity to any proper smooth morphism of schemes of

characteristic p.

Definition 2.71. Let f : X → S be a proper smooth morphism of schemes of characteristic p.

The image Bi
X/S of FX/S ∗Ω

i−1
X/S → FX/S ∗Ω

i
X/S is a vector bundle on Xp. We define X/S to be

ordinary if Ri f∗(B
j
X/S ) = 0 for all i and j

This definition of ordinarity can be further extended to a semi-stable morphism over a

discrete valuation ring of characteristic p > 0 as follows [19] [20]. Let A be a discrete valuation

ring. Let S = Spec A and s ∈ S is the closed point. Let f : X → S be a semi-stable fibration.

Let U ⊂ X be he smooth locus of f : X → S and u : U ↪→ X be the inclusion. Then X\U is of

codimension at least 2, hence

ω·X/S = u∗Ω·U/S

is a complex of locally free sheaves on X and ωi
X/S = ∧

iω1
X/S . When X is given as

Spec A[x1, . . . , xn]/(x1, . . . , xr − t) étale locally, ω1
X/S is the free module of rank n − 1, gen-
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erated by

dx1/x1, . . . dxr/xr, dxr+1, . . . , dxn

with the relation
r∑

i=1

dxi/xi = 0.

If the relative dimension of f is d, the highest wedge product ωd
X/S is the relative dualizing sheaf

of f : X → S . Now assume A is of characteristic p > 0 and Xp is the base change of X by the

Frobenius morphism of S . Let F : X → Xp be the relative Frobenius morphism. Then F∗ω·X/S

is anOXp-linear complex and the usual Cartier isomorphism C−1 : Ωi
U p/S → H

iF∗Ω·U/S extends

to an isomorphism [19]

C−1 : ωi
U p/S → H

iF∗Ω·U/S .

Here ωi
Xp/S = F∗(ωi

X/S ). Note that ωd
Xp/S is the dualizing sheaf for Xp → S when d is the

relative dimension. The image and the kernel of the differentials of the complex F∗ω·X/S are

denoted by BiωX/S , and ZiωX/S respectively. They are OXp-coherent sheaves and flat over S . In

particular the Cartier isomorphism at i = 0 induces

0→ OXp → F∗OX → B1ωX/S .

Definition 2.72. A proper semi-stable morphism f : X → S is ordinary if H j(BiωX/S ) = 0 for

all i and j.

Remark. (a) Since BiωX/S are flat over S , f is ordinary if and only if H j(Xs, BiωX/S |Xs) = 0

for all i, j when Xs is the special fibre. This definition depends on entire X → S , and not

only on the special fibre.

(b) But if f is smooth, f is ordinary if and only if the special fibre is ordinary.

(c) If the relative dimension of f is 1 and the residue field is perfect, f is ordinary if and only

if the Frobenius morphism on H1(OXs) is bijective, hence the ordinarity depends only on

the special fibre.
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Since all the above arguments are local on the base S , all the results are still valid if we

replace the base S by a smooth curve over a field of positive characteristic. Let C be a smooth

proper curve over a perfect field k of positive characteristic and π : X → C be a proper semi-

stable morphism. Since each BiωX/C is flat over C, by semi-continuity, the set of points s ∈ C

satisfying X ⊗OC OXs is ordinary forms an open set in C.

Definition 2.73. Let π : X → C be a proper semi-stable morphism. We say that π is generically

ordinary or that the generic fibre of π is ordinary if at least one closed fibre of π is ordinary.

Proposition 2.74 ([19], Pro 1.2). Generic ordinarity is preserved under base change.

2.5 Algebraic fundamental group

The algebraic fundamental group is a generalization of Galois theory and the topological fun-

damental group. We first define finite étale covers which is a good generalization of finite

separable extensions of a field and finite covering maps in topology. Then we define the no-

tion of geometric points and the geometric fibre functor, and finally the algebraic fundamental

group.

2.5.1 Finite étale coverings

Definition 2.75. A morphism f : A → B between local rings (A,m) and (B, n) is etale if f is

flat (i.e. B is a flat A- module), and B/ f (m)B → A/m is a finite separable field extension. Let

f : Y → X be a morphism between noetherian schemes. Then f is etale if f is locally etale at

every point of Y .

Example. Let k be a field and X = Spec(k). A finite etale morphism to X is the spectrum

of a k-algebra, R, where R is a finite product of finite separable field extensions of k. i.e.

R = Spec(
∏

i Li). We will call R an etale k-algebra.

Remark. A finite morphism φ : Y → X etale if φ is flat and the fibre Yp over every point p ∈ X

is the spectrum of a finite etale k(p)-algebra.
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Proposition 2.76. The following properties are true for étale morphisms.

(a) The composite of two etale morphisms is etale.

(b) Any base change of an etale morphism is etale.

(c) If φ ◦ ψ and φ are etale, then so is ψ.

Proposition 2.77 ([38] 5.2.7). Let φ : X → S be a finite and locally free morphism. The

following are equivalent.

(a) The morphism φ is étale.

(b) The sheaf of relative differentials Ω1
X/S is 0.

(c) The diagonal morphism ∆ : X → X ×S X coming from φ is an isomorphism of X onto an

open and closed subscheme of X ×S X.

Definition 2.78. Given a morphism of schemes φ : X → S , define Aut(X|S ) to be the group of

scheme automorphisms of X preserving φ.

Definition 2.79. Let φ : X → S be an affine surjecive morphism of schemes, and G ⊂ Aut(X|S )

a finite subgroup. Define a ringed space G\X and a morphism π : X → G\X of ringed spaces

as follows. The underlying topological space of G\X is to be the quotient of X by the action of

G, and the continuous map of π the natural projection. Then define the structure of G\X as the

subsheaf (π∗OX)G of G-invariant elements in π∗OX .

Proposition 2.80 ([38] 5.3.6). The ringed space G\X constructed above is a scheme, the

morphism π is affine and surjective, and φ factors as φ = ψ ◦ π with an affine morphism

ψ : G\X → S . The scheme G\X over S is the quotient of X by G.

Proposition 2.81 ([38] 5.3.7). Let φ : X → S be a connected finite étale cover, and G ⊂

Aut(X|S ) a finite group of S -automorphisms of X. Then X → G\X is a finite étale cover of G\X,

and G\X is a finite étale cover of S .
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Definition 2.82. A geometric point of a scheme X is defined as a morphism x̄ : Spec(Ω) → X

where Ω is a separably closed field. In other words a geometric point is given by a topological

point x ∈ X and an embedding of the residue field k(x) in Ω

Definition 2.83. Given a morphism φ : Y → X and a geometric point x̄ : Spec(Ω) → X, the

geometric fibre Xx̄ of φ over x̄ is defined to be the set of lifts ψ

Y

��
Spec(Ω)

ψ

;;wwwwwwwww
x̄ // X

Definition 2.84. We define a connected finite étale cover X → S to be Galois if its S -

automorphism group acts transitively on geometric fibres.

Proposition 2.85 ([38] 5.3.8). Let φ : X → S be a finite étale Galois cover. If Z → X is a

connected finite étale cover fitting into a commutative diagram

X
f //

p

��?
??

??
??

Z
q
��

S

then f : X → Z is a finite étale Galois cover, and actually Z ' H/X with some subgroup H of

G = Aut(X|S ). In this way we get a bijection between subgroups of G and intermediate covers

Z as above. The cover q : Z → S is Galois if and only if H is a normal subgroup of G, in which

case Aut(Z|S ) ' G/H.

Proposition 2.86 ([38] 5.3.9). Let φ : X → S be a connected finite étale cover. Then there is

a morphism π : P → X such that φ ◦ π : P → S is a finite Galois cover, and moreover every

S -morphism from a Galois cover to S factors through P.
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2.5.2 Fundamental group

Definition 2.87. Let FetX be the category whose objects are finite etale covers (Y → X) of the

scheme X and the morphisms are morphisms of schemes over X,

Y ′ //

  @
@@

@@
@@

Y

��
X

Given a morphism φ : Y → X and a geometric point x̄ : Spec(Ω) → X, we defined the

geometric fibre Xx̄ of φ over x̄ is defined to be the set of lifts ψ

Y

��
Spec(Ω)

ψ

;;wwwwwwwww
x̄ // X

or equivalently it is defined to be the fibre product Y×X Spec(Ω) induced by x̄ : Spec(Ω)→

X.

Definition 2.88. Let FetX be the category of finite etale covers of the scheme X. Fix a geometric

point x̄ : Spec(Ω) → X. For an object Y of FetX , we consider the geometric fibre Yx̄ as

defined above and denote it by Fibx̄(Y). Given a morphism Y ′ → Y in FetX there is an induced

morphism from Fibx̄(Y ′)→ Fibx̄(Y) which comes from

Y ′

��

// Y

����
��

��
��

Spec(Ω)

;;vvvvvvvvv
// X

Therefore we can define a functor Fibx̄ from the category FetX to the category of sets, that

we call the fibre functor at the geometric point x̄.

Let us now define a morphism of functors. Let C and D be two categories and F and G

be two covariant functors from C to D. A morphism of functors φ : F → G is a rule where to

each object X of C we associate a morphism φX : F(X) → G(X) such that for any morphism

f : X → Y between objects of C, the following diagram is commutative.
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F(X)
φX //

F( f )
��

G(X)

G( f )
��

F(Y)
φY

// G(Y)

An automorphism of a functor F is a morphism of functors with a two sided inverse.

Definition 2.89. Given a scheme X and a geometric point x̄ : Spec(Ω) → X we define the

algebraic fundamental group π1(X, x̄) as the automorphism group of the fibre functor Fibx̄ on

FetX .

Remark. The category FetX forms an inverse system and we may view it as an indexing set for

the image of the fibre functor. As Y ranges over all finite etale coverings of X, the fibre sets

Fibx̄(Y) over the geometric point x̄ form a projective system of finite sets. Given an automor-

phism σ ∈ Aut(Fibx̄) and a morphism f : Y ′ → Y the following diagram is commutative

Fibx̄(Y ′) σ //

Fibx̄( f )
��

Fibx̄(Y ′)

Fibx̄( f )
��

Fibx̄(Y) σ
// Fibx̄(Y)

So an automorphism of the fibre functor is the group of compatible system of (auto)morphisms

{Fibx̄(Y)→ Fibx̄(Y)} indexed by the elements of the category FetX .

2.5.3 Properties of the algebraic fundamental group

The algebraic fundamental group is a profinite group

We define a profinite group as an inverse limit of an inverse system of finite groups with discrete

topology. For a prime number p, a pro − p group is an inverse limit of finite p-groups.

Theorem 2.90 (Grothendieck, [38] 5.4.2). Let S be a connected scheme, and s̄ : Spec(Ω)→ S

a geometric point.

1. The group π1(S , s̄) is profinite, and its action on Fibs̄(X) is continuous for every X in

FetS .
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2. The functor Fibs̄ induces an equivalence of FetS with the category of finite continuous left

π1(S , s̄)-sets. Here connected covers correspond to sets with transitive π1(S , s̄)-action,

and Galois covers to finite quotients of π1(S , s̄).

[Szamuely]

Definition 2.91. Let X be a connected scheme with geometric point x̄. The p-part of the fun-

damental group π1(X, x̄) is defined as the inverse limit of finite quotients of p-power order.

Functoriality w. r. t. base point preserving morphisms

This property follows quite naturally from the definition of the fundamental group using base

points. Let S and S ′ be connected schemes equipped with geometric points s̄ : Spec(Ω) → S

and s̄′ : Spec(Ω)→ S ′. Let φ : S ′ → S with φ ◦ s̄′ = s̄. Then φ induces a functor FetS to FetS ′

by mapping objects X to the base change X ×S S ′.

Here we observe that the universal property of fibre products gives a set bijection between

Fibs̄(X) and Fib(̄s′)(X×S S ′). Each lift ψ′ : SpecΩ→ X×S S ′ of s̄′ : SpecΩ→ S ′ corresponds

to a lift ψ : SpecΩ→ X, since

X ×S S ′

��

// X

��
Spec(Ω)

ψ′
99rrrrrrrrrr
// S ′ // S .

Conversely given a lift

X

��
Spec(Ω)

;;wwwwwwwww
// S

and the geometric point s̄ : Spec(Ω)→ S ′, the universal property of fibre products gives a lift

X ×S S ′

��
Spec(Ω)

99rrrrrrrrrr
// S ′
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Further we observe that given a set-automorphism from Fib(̄s′)(X×S S ′)→ Fib(̄s′)(X×S S ′)

we get an set-automorphism Fibs̄(X) → Fibs̄(X). The definition of the functor induced by φ

from FetS to FetS ′ causes the bijection to be functorial in X. Therefore we have a map

φ∗ : π1(S ′, s̄′)→ π1(S , s̄)

It is a continuous homomorphism of profinite groups.

Proposition 2.92 ([38] 5.5.4). Given the homomorphism φ∗ as above,

(a) The map φ∗ is injective if and only if for every connected finite étale cover X′ → S ′

there exists a finite étale cover X → S and a morphism Xi → X′ over S ′, where Xi is a

connected component of X ×S S ′.

In particular, if every connected finite étale cover X′ → S ′ is of the form X ×S S ′ → S ′

for a finite étale cover X → S , then φ is injective.

(b) The map φ∗ is surjective if and only if for every connected finite étale cover X → S the

base change X ×S S ′ is connected as well.

Exactness of the fundamental sequence

Theorem 2.93 ([38] 5.6.1). Let X be a quasi-compact and geometrically connected scheme

over a perfect field k, and let x̄ be a geometric point of X̄. Then the sequence of profinite groups

1→ π1(X̄, x̄)→ π1(X, x̄)→ Gal(k)→ 1

induced by the maps X̄ → X and X → Spec(k) is exact.

[Szamuely, pg 149]

The short exact sequence is considered to be an analogue to the fibre exact sequence of

homotopy groups. That is X → Spec k is a family, and X̄ is a fibre above Spec K̄ → Spec K.

Theorem 2.94 ([38] 5.6.4). Let f : X → S be a proper separable morphism of connected

schemes, with Y locally Noetherian. Let x → X be a geometric point, with image s → S . Then
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the following sequence of homomorphisms of groups is exact:

π1(X̄s, x)→ π1(X, x)→ π1(S , s)→ 1

If f is not separable, then the fibres may not be reduced, i.e. there may be multiple fibres...

2.6 Vector bundles

In this section we examine vector bundles and locally free sheaves on schemes. There is a one-

to-one correspondence between vector bundles and locally free sheaves. We will further define

stable and semi-stable bundles and Harder Narsimhan filtration.

2.6.1 Vector bundles and locally free sheaves

Definition 2.95. A vector bundle of rank r over a curve C is a variety E together with a mor-

phism π : E → C such that there exists an open affine covering Ui of C and isomorphisms

φi : (π)−1(Ui)→ Ui × A
r

where Ar denotes the affine space of dimension r and such that in the intersections Ui ∩U j, the

composition

φ j(φi)−1|Ui∩U j = (Id, φi, j), φi, j ∈ GL(r)

is given by linear maps.

Theorem 2.96 ([6] 1.7). There is a natural one to one correspondence between vector bundles

and locally free sheaves over a curve.

Note. As a result of this theorem, we will interchangebly use the terms vector bundles and

locally free sheaves.

Definition 2.97. The determinant bundle of a vector bundle E of rank r (or a locally free sheaf

of rank r), is defined as the rth - wedge product of the bundle or the sheaf.

Definition 2.98. Let X be a projective scheme over a field k, and let F be a coherent sheaf on

X. We define the Euler characteristic of F by

χ(F ) =
∑

(−1)i dimk Hi(X,F ).
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Definition 2.99. The degree of a vector bundle E of rank r on a curve C of genus g is defined

as the degree of the associated locally free sheaf which is in turn defined as

deg(E) = χ(E) − rχ(OC) = χ(E) − r(1 − g)

The degree of a locally free sheaf can also be defined as the degree of the determinant bundle.

Lemma 2.100 ([6] 1.16). If E1, E2 are locally free sheaves of ranks r1, r2, then deg(E1 ⊗ E2) =

r1deg(E2) + r2deg(E1).

Lemma 2.101 ([6] 1.18). If E is a locally free sheaf on a curve C, there exists a positive divisor

D on C such that E(D) is generated by global sections.

2.6.2 Semi-stable bundles and Harder-Narasimhan filtration

Definition 2.102. The slope of a vector bundle or a locally free sheaf E on a curve C is defined

as µ(E) = deg E
rank E .

Definition 2.103. A locally free sheaf or bundle E is said to be semi-stable if for every locally

free subsheaf or subbundle E′ of E, the inequality

µ(E′) ≤ µ(E)

holds (and it is called stable if the above inequality is strict).

Remark. It is sufficient in this definition to look at subbundles E′ ⊂ E, i.e. locally free sub-

sheaves such that the quotient E/E′ is also locally free.

Lemma 2.104 ([6] 3.4). Let C be a smooth projective curve. Then the following hold.

(a) If E is semi-stable bundle of negative degree then E has no global sections.

(b) If E is semi-stable then so is its dual E∨.

(c) If E is semi-stable then so is E ⊗ L, for every invertible sheaf L
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The next theorem is perhaps the most important result of this section, and crucial to for the

proof of our main theorem.

Theorem 2.105 ([26] 5.4.2). Every locally free sheaf E has a unique Harder-Narasimhan fil-

tration. This is a filtration of locally free subbundles

0 = E0 ⊂ E1 ⊂ . . . ⊂ En = E

such that

(a) Ei/Ei−1 is semi-stable for every i = 1, . . . n, and

(b) the slopes µi = µ(Ei/Ei−1) form a decreasing sequence

µ1 > . . . > µn.



Chapter 3

A technique for studying fibered surfaces

In [12], Xiao developed a new and useful method to study complex fibered algebraic surfaces.

This chapter is devoted to understanding the techniques used in the above paper with a view

towards extending the result to characteristic p.

We assume that S is a smooth, projective, minimal surface of general type, with a fibration

f : S → C onto a smooth curve C over C. Therefore f has connected fibres. We assume that f

is not isotrivial. Let F be a general fibre of f , which is a smooth curve of genus g ≥ 2. We also

assume that f is relatively minimal, namely that there is no −1-curve contained in the fibres of

f . The inclusion F → S induces the following natural exact sequence of groups,

π1(F)
α
→ π1(S )→ Π→ 1.

where π1 is the algebraic fundamental group and Π is determined by π1(C) and the multiple

fibres of f . We can now state Xiao’s main theorem:

Theorem ([12], Theorem 1). In the above situation, suppose

K2
S < 4χ(OS ) + 4(g(C) − 1)(g − 1)

and f is non-hyperelliptic. Then the image of α is trivial.

3.1 Definitions and technical results

In this section we will review results in Xiao’s paper that are required in the proof of the main

theorem. These are essentially properties of the relative dualising sheaf, and some numerical
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results.

3.1.1 Properties of the relative dualising sheaf

Recall the relative dualizing sheaf ωS/C , which is the sheaf associated to the relative canonical

divisor KS/C := KS − f ∗KC . All the Harder-Narasimhan slopes of f∗ωS/C are non-negative.

This semi-positivity theorem was proved by Xiao in an earlier paper [11].

Theorem 3.1 ([11] Theorem 1.1). Let S be a surface that is smooth and projective over C,

f : S → C

a fibration. Then the direct image of the relative dualizing sheaf, f∗ωS/C , is locally free of rank

equal to the genus g of a general fibre of f , and for all locally free quotients E of f∗ωS/C , we

have deg(E) ≥ 0. In particular deg( f∗ωS/C) ≥ 0.

Proposition 3.2 ([12]). Let f be a fibration as in the theorem above. We then have:

deg f∗ωS/C = χ(OS ) − (g(C) − 1)(g − 1).

Proof. By Serre duality we have ( f∗ωS/C)∨ � R1 f∗OS , hence

deg( f∗ωS/C) = − deg(R1 f∗OS ).



3.1. Definitions and technical results 51

deg(R1 f∗OS ) = χ(R1 f∗OS ) − rank(R1 f∗OS )χ(OC), [6] 1.14

= χ(R1 f∗OS ) − g(1 − g(C))

deg( f∗ωS/C) = −χ(R1 f∗OS ) − g(g(C) − 1)

= −(h0(C,R1 f∗OS ) − h1(C,R1 f∗OS )) − (g(C) − 1)

+ (g(C) − 1) − g(g(C) − 1)

= h1(C,R1 f∗OS ) − h0(C,R1 f∗OS ) − g(C) + 1 − (g − 1)(g(C) − 1)

= h1(C,R1 f∗OS ) − h0(C,R1 f∗OS ) − h1(C, f∗OS ) + h0(S ,OS )

− (g − 1)(g(C) − 1)

= h2(S ,OS ) − h1(S ,OS ) + h0(S ,OS ) − (g − 1)(g(C) − 1)

= χ(OS ) − (g − 1)(g(C) − 1)

�

We are particularly interested in the properties of the push-forward of the relative dualising

sheaf twisted by a non-vertical torsion element in Pic(S ). If η is a torsion element in Pic(S ) such

that ηi|F is not trivial whenever ηi is not trivial, we call η a non-vertical torsion.

Lemma 3.3 ([12]). Let η be a non-trivial non-vertical torsion in Pic(S ). Then f∗(ωS/C ⊗ η)

is also locally free and has rank g − 1 and degree equal to f∗ωS/C . It also has non-negative

quotients.

Proof. Let η be a n-torsion element in Pic(S ) such that ηi|F is not trivial whenever ηi is not

trivial. Then η corresponds to an étale cover ψ : S̃ → S (Theorem 2.25). By Stein Factorization

(Theorem 2.45) f induces a fibration,

f̃ : S̃ → C̃,

where C̃ = Spec(( f ◦ ψ)∗OS̃ ). But

( f ◦ ψ)∗OS̃ = f∗(⊕n−1
i=0 η

i) = ⊕n−1
i=0 f∗ηi
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Since η is locally free of rank one, flat over C, and H0(F, η|F) = 0, by Grauert’s theorem ([18]

III 12.9), we have f∗ηi = 0,∀1 ≤ i < n. We have also assumed that f∗OS = OC , therefore

C̃ = Spec(⊕n−1
i=0 f∗ηi) = Spec(OC) = C. We then have

f̃∗ωS̃ /C = f∗(⊕n
i=1(ωS/C ⊗ η

⊗i)) = ⊕n
i=1 f∗(ωS/C ⊗ η

⊗i).

Since f∗(ωS/C ⊗ η) is a direct summand of a locally free sheaf, it is locally free.

Claim:. rank f∗(ωS/C ⊗ η) = g − 1.

We have,

rank f∗(ωS/C ⊗ η) = dim H0(F, (ωS/C ⊗ η)|F), -Grauert’s Theorem

= H0((η∨)|F) − deg((η∨)|F) + g − 1 -Riemann Roch

= g − 1

Claim:. deg f∗(ωS/C ⊗ η) = deg f∗(ωS/C).

We first show that χ(S , ωS/C ⊗ η) = χ(C, f∗ωS/C ⊗ η) and then use Riemann Roch to prove the

claim.

(R1 f∗ωS/C ⊗ η)∨ = HomOC (R1 f∗ωS/C ⊗ η,OC)

= f∗(HomOS (ωS/C ⊗ η, ωS/C)), definition of dualising sheaf, [27] 6.4.18

= f∗η∨, since the canonical map is locally an isomorphism

= 0, since f∗η = 0 and η is locally free.

We thus have Ri f∗(ωS/C ⊗ η) = 0 for all i > 0. Therefore

Hi(S , ωS/C ⊗ η) � Hi(C, f∗ωS/C ⊗ η)

and hence

χ(S , ωS/C ⊗ η) = χ(C, f∗ωS/C ⊗ η).
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Applying Riemann Roch to the locally free sheaf f∗(ωS/C ⊗ η) on C, we have

χ( f∗(ωS/C ⊗ η)) = deg( f∗(ωS/C ⊗ η) + (g − 1)(1 − g(C)).

Now applying Riemann Roch on S , we get

χ(ωS/C ⊗ η) =
1
2

D.(D − KS ) + χ(OS ),

where D has class ωS/C ⊗ η. Therefore we get,

deg( f∗(ωS/C ⊗ η)) = χ(OS ) + (g − 1)(g(C) − 1) +
1
2

D.(D − KS ).

By Lemma 3.2 we are done if we show that

1
2

D.(D − KS ) = −2(g − 1)(g(C) − 1).

Take D = KS/C + η = KS − f ∗KC + η, by abusing notation and using η to represent it, in its

equivalence class of divisors, we get,

1
2

D.(D − KS ) =
1
2

(KS/C + η)(KS − f ∗KC + η − KS )

=
1
2

(KS/C + η)(η − f ∗KC)

=
1
2

(−KS/C · f ∗KC + KS/C · η − f ∗KC · η + η · η)

= −2(g − 1)(g(C) − 1),

since the degree of η restricted to any curve is zero and the degree of KC and is 2g(C) − 2 and

the degree of the restriction of KS/C to a fibre F is 2g − 2.

Claim:. f∗(ωS/C ⊗ η) has non-negative quotients.

Finally we note that f∗(ωS/C ⊗ η) is a direct summand of f̃∗(ωS̃ /C). Then since f̃∗(ωS̃ /C) has

non-negative quotients, it implies that f∗(ωS/C ⊗ η) must also have non-negative quotients. �
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3.1.2 Slope of a fibration

The condition K2
S < 4χ(OS ) + 4(g(C) − 1)(g − 1) in Theorem 3, can be reinterpreted using the

notion of a slope of a fibration. We define the slope as follows: assume f is non-isotrivial.

Definition 3.4. Let f : S → C be a fibration with the above properties. Let ∆( f ) = deg( f∗ωS/C)

and let KS/C ≡ KS − f ∗KC be a relative canonical divisor. We then define the slope of the

fibration to be

λ( f ) =
K2

S/C

∆( f )
.

Note. The definition is well defined since deg f∗ωS/C > 0 by [4] Theorem III.17.3.

We also have,

K2
S/C = KS/C · KS/C

= (KS − f ∗KC) · (KS − f ∗KC)

= K2
S − 2KS · f ∗KC + ( f ∗KC)2

= K2
S − 2 deg(KC)KS · F

= K2
S − 8(g(C) − 1)(g − 1)

∆( f ) = χ(OS ) − (g(C) − 1)(g − 1)

Therefore the condition K2
S < 4χ(OS ) + 4(g(C) − 1)(g − 1) is equivalent to

λ( f ) < 4

Definition 3.5. Let S̃ be another surface, and ψ : S̃ → S be a surjective morphism. Then

ψ is called admissible if ωS̃ /C̃ = ψ∗ωS/C , where S̃ → C̃ is the morphism induced by Stein

factorisation.

Lemma 3.6 ([12]). Let ψ : S̃ → S be an admissible morphism, then λ( f̃ ) = λ( f ).

Proof.
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Claim:. K2
S̃ /C̃
= deg(ψ)KS/C · KS/C .

K2
S̃ /C̃ = ψ

∗KS/C · ψ
∗KS/C

= ψ∗(ψ∗KS/C .KS/C), Projection formula

= [K(S̃ ) : K(S )]KS/C · KS/C

= deg(ψ)KS/C · KS/C

Claim:. deg( f̃∗ωS̃ /C̃) = deg(ψ) deg( f∗ωS/C).

Let S ′ be the relatively minimal resolution of the singularities of S ×C C̃.

S ′
f̃

))RRRRRRRRRRRRRRRRRR
q

""F
FFFFFFF

ψ

��3
33

33
33

33
33

33
33

S × C̃
f̂ //

p
��

C̃

h
��

S
f // C

The result is true for the morphism S ′ → S , by Lemma 3 in [39]. We may therefore assume

that C̃ = C, and

S̃
f̃

��?
??

??
??

?

ψ

��
S

f // C.

The generalized Riemann-Roch theorem of Grothendieck ([18], Appendix A,Theorem 5.3)

gives,

ch
(∑

(−1)iRi f∗ωS/C
)
= f∗
(
ch(ωS/C) · td(T f )

)
where T f = ker(TS → TC) is the relative tangent sheaf of f .

Since R1 f∗ωS/C = OC , we have

deg
(
ch
(∑

(−1)iRi f∗ωS/C
))

1 = deg( f∗ωS/C).
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On the other hand,

f̃∗(ch(ωS̃ /C̃) · td(T f̃ )) = f∗ ◦ ψ∗(ch(ψ∗ωS/C) · td(T f̃ ))

= f∗ ◦ ψ∗(ψ∗ch(ωS/C) · td(T f̃ ))

= f∗(ch(ωS/C) · ψ∗td(T f̃ )), Projection Formula

= f∗(ch(ωS/C) · ψ∗td(ψ∗T f ))

= f∗(ch(ωS/C) · ψ∗(ψ∗(td(T f )))

= f∗(ch(ωS/C) · deg(ψ)td(T f ))

= deg(ψ) f∗(ch(ωS/C) · td(T f ))

�

Let S̃ be another surface, and ψ : S̃ → S be a surjective morphism as above.

Lemma 3.7 ([12]). Let S be a fibered surface f : S → C. Let S̃ → S be a surjective morphism

and C̃ → C the morphism induced by Stein Factorisation. We assume one of the following is

true.

(a) C̃ = C and ψ is unramified.

(b) The natural morphism C̃ → C is unramified on images of non-semistable fibres of f , and

S̃ equals the minimal desingularisation of the pull-back of f by ψ.

Then ψ is admissible, i.e. ωS̃ /C̃ = ψ
∗ωS/C .

Proof. (a) By the adjunction formula, [27],Theorem 6.4.9, we have

ωS̃ /C = ωS̃ /S ⊗ ψ
∗ωS/C

and

ωS̃ /S = ωS̃ ⊗ (ψ∗ωS )−1.

Since ψ is unramified, ωS̃ = ψ
∗ωS , which implies ωS̃ /S = OS̃ and hence the result.
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(b) Let Ŝ = S ×C C̃. Then since ψ is flat, by [27],Theorem 6.4.9,

ωŜ /C̃ = ψ
∗ωS/C .

By 2.44, the singularities of Ŝ only occur when a relative singular point of a semi-stable

fibre maps to a point on C which ramifies for ψ : C̃ → C. Then ψ is admissible by [39],

Lemma 3.b.

�

3.1.3 Fixed and moving parts

Definition 3.8. Let D be a divisor on S such that E = f∗OS (D) is a locally free sheaf on C and

H is a subbundle of E. We define the fixed and moving parts ofH in the following manner:

Choose a sufficiently ample sheafA, so thatH1 = H⊗A is generated by global sections. Then

the inclusionH ⊂ E induces the homorphisms

f ∗H1 → f ∗(( f∗OS (D)) ⊗ ∗A)→ OS (D) ⊗ f ∗A.

Let D be the linear subsystem of |D + f ∗A| corresponding to the global sections of H1. We

then define the fixed part ofH , Z(H), to be the fixed part of the linear system D on S . We also

define the moving part of H , M(H) = D − Z(H), and N(H) = D − Z(H) − µ f (H)F, where

µ f (H) is final Harder-Narasimhan slope ofH .

Remark. We note that the fixed part ofH is independent of the choice ofA. x is base point of

D, if all its global sections vanish at x. However the behaviour of these global sections at x, are

determined by the local sections ofH1 at f (x). SinceA is a very ample sheaf, and f is flat, the

sections of f ∗A do not contribute any base points.

Definition 3.9. On a fibre F′, the restriction ofH to F′ corresponds to a sublinear system, D|F′ ,

of dimension equal to the rank of H . This system consists of all divisors D′|F′ , where D′ ∈ D

is a divisor whose support does not contain F′.

We can define the fixed part of the restriction of H to F′ as the fixed part of the linear

system D|F′ , and the moving part ofH on F′, as D|F′ − Z(H|F′).
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Lemma 3.10. The restriction of Z(H) and M(H) to F′ is just the fixed and moving part of

sublinear system corresponding to the restriction ofH to F′.

Proof. If Z = Z(H) is the fixed part ofH , then Z ≤ D′ for all D′ ∈ D. By the definition of fixed

part of a linear system, Z|F′ ≤ Z(H|F′), as the fixed part is the unique largest effective divisor

contained in every divisor of the linear system.

On the other hand if p ∈ Supp(Z(H|F′)), then p ∈ Supp(F′) and p ∈ Supp(D′) for all D′ ∈ d

that do not contain F′. This implies that p ∈ Supp(D′) for all D′ ∈ D. Hence p is a base point

of D. Then either p ∈ Supp(Z) or p is a point in the zero-dimension part of the base locus of D.

In the latter case as there are only finitely many isolated base points, we can always choose

a fibre F′ which does not meet any of the isolated base points of D. �

Definition 3.11. We call a finite base extension ψ : C̃ → C good if it is unramified on images

of singular fibres of f .

Lemma 3.12. Let ψ : C̃ → C be a good base extension. We denote the pull-back of an object

by ψ by writing ˜over the object, except F̃ means a general fibre of f̃ . Then

(a) S̃ = S ×C C̃ is smooth.

(b) Ri f̃∗(OS̃ (D̃)) � ˜Ri f∗(OS (D)). In particular, if E = f∗OS (D) then Ẽ = f̃∗OS (D̃).

(c) Let H be a sheaf on C, then the pull-back of the fixed and moving parts of H is just the

fixed and moving parts of H̃ .

(d) Furthermore since the pull-back of a semi-stable vector bundle is semi-stable and by

uniqueness of the Harder filtration, the pull-back of the Harder filtration of E is the Harder

filtration of Ẽ, with

µ(Ẽi/Ẽi−1) = µ(Ei/Ei−1) · degψ.

In particular, µ f (Ẽ) = µ(E) · degψ.

(e) N(H) commutes with good base extensions.
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Proof. (a) Shown in lemma 2.44

(b) Since ψ is flat, it follows from [18], III.9.3.

(c) By (b), and viewing H̃ as a subsheaf of Ẽ, we get the result.

(d) Let F be a locally free sheaf on C. Then µ(F̃ ) = deg(ψ)µ(F ), since

deg(F̃ ) = deg(det (ψ∗F )) = deg(ψ∗(det F )) = deg(ψ) deg(F ),

and for a finite separable morphism between two smooth curves

rank (F̃ ) = rank (F ).

Therefore

µ(Ẽi/Ẽi−1) = µ(Ei/Ei−1) · degψ,

and in particular, µ f (Ẽ) = µ(E) · degψ.

Further since ψ is a separable, finite morphism, the pull back of the Harder-Narsimhan

filtration of E is the Harder-Narsimhan filtration of Ẽ, (Y. Miyaoka, Chern Classes and

Kodaira Dimension 3.2.) i.e. if

0 ⊂ E1 ⊂ ... ⊂ En = E

is the Harder-filtration of E then

0 ⊂ Ẽ1 ⊂ ... ⊂ Ẽn = Ẽ

is the Harder-Narsimhan filtration of Ẽ.

(e)

N(H̃) = D̃ − Z(H̃) − µ f (H̃)F̃

= D̃ − Z̃(H) − deg(ψ)µ f (H)F̃

= Ñ(H)

�
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Lemma 3.13 ([12]). Let D, E,H be defined as above. Then N(H) is a nef Q divisor.

The proof of this lemma relies quite heavily on the following result. Xiao has implicitly

proved it in theorem 1, in [11]. I will state it as a lemma here and reproduce the proof.

Lemma 3.14 ([11]). Let f : S → C be a fibration as above. Let E be a locally free sheaf of

positive degree on C. Then modulo a good base extension, E has a global section.

Proof. The theorem is proved in the following three steps:

(i) If rank(E) = 1, then modulo a good base extension, h0(E) , 0.

Since deg(E) > 0 and E is ample, there exists an integer n >> 0 such that the linear

system |E′⊗n| contains a reduced divisor D. D corresponds to an injection |E⊗n| → OC ,

which defines a ring structure on the sheaf

OC ⊕ E
⊗−1 ⊕ E⊗−2 ⊕ ... ⊕ E⊗−n+1

By hypothesis, Spec(OC⊕ ...⊕E
⊗−n+1) is a smooth curve C̃, with a cyclic cover π : C̃ → C

of degree n which is ramified along D. Let f̃ : S̃ → C̃ be the pull-back of f by π. We can

choose D such that the fibres of f above D are smooth. In this case S̃ is a smooth surface,

and Ẽ = π∗E is an invertible sheaf. But by construction, we have

h0(Ẽ) , 0.

(ii) Let E be a locally free sheaf of rank 2 over C, and deg(E) > 0. There exists a finite

covering π : C̃ → C which is etale over the images of the singular fibres of f , such that

the pull-back Ẽ of E has an invertible subsheaf of positive degree. Then we are done by

case(i).

Let P = P(E), and

0→ E1 → E → E2 → 0

a filtration of E such that the degree of E1 is maximal. P is a regular surface over C having

a section C0 corresponding to the filtration of E such that C2
0 = deg(E2) − deg(E1). We
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can assume

deg(E1) ≤ 0 < deg(E2).

Let a, b be two positive integers such that

− deg(E1) <
b
a
<

1
2

C2
0 (1)

By the Nakai Criterion on the amplitude ([18][1,V.2.21]), the divisor aC0 − bFin P is

ample, where F is a fibre of P over C. Hence for an integer n >> 0, there is a smooth and

irreducible divisor D in the system |naCo − nbF|. Let π : C̃ → C be a Galois cover which

is the factorisation due to the projection of D on C. (Since deg(π) = kn, k ∈ N+). We can

choose D and π such that over the ramified points of π over C, the fibres of f are smooth.

Let Ẽ = E ×C C̃, P̃ = P ×C C̃, with π : P̃→ P the cover induced by π. We have P̃ = P(Ẽ).

It is well known that π∗(D) is composed of the sections C1, ...,Cna over C̃ which are in the

same numerical class of Pic(P̃).

Since (π∗D)2 = knaD2, we have

C2
1 = (

1
na
π∗D)2 =

k
na

D2.

If

0→ Ẽ1 → Ẽ → Ẽ2 → 0

is the filtration of Ẽ corresponding to the section C1, we have

deg(Ẽ2) − deg(Ẽ1) = C2
1 =

k
na

(n2a2C2
0 − 2n2ab)

= kn(a. deg(E2) − a. deg(E1) − 2b).

On the other hand,

deg(Ẽ2) + deg(Ẽ1) = deg(Ẽ) = kna. deg(E)

= kna(deg(E1) + deg(E2)).
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which gives

deg(Ẽ1) = kn(a. deg(E1) + b) > 0, (by (1))

Thus Ẽ1 is the subsheaf we are looking for.

(iii) Let E be a locally free sheaf of positive degree over C. There exists a finite covering

π : C̃ → C étale above the images of the singular fibres of f , such that the pull-back Ẽ of

E has an invertible subsheaf of positive degree.

We will use recursion on the rank of E. Let rankE ≥ 3.

Let λ(E) = deg(E)/ rank(E) the slope of E. Modulo a good base change, we may assume

that λ(E) is an integer. Let α be a real number defined in the following manner:

α = Sup


deg(Ẽ1)
λ(Ẽ)

; Ẽ pull-back of E by a suitable base change,

Ẽ1 an invertible subsheaf of Ẽ

It suffices to find a contradiction to the assumption that α ≤ 0.

Let α1 be the largest integer strictly less that α, α2 = α1 + 1 (then α2 ≥ α). Modulo

a suitable base change, we can suppose that E has an invertible subsheaf E1 such that

deg(E1) > α1λ(E). By hypothesis deg(E1) ≤ 0 < λ(E), then λ( E
E1

) > λ(E). Since

rank( E
E1

) = rank(E)−1, by the hypothesis applied to E
E1
⊗L, whereL is an invertible sheaf

of degree −λ(E), we can assume, after a suitable base change, that E
E1

has an invertible

sub-fibre E2 with deg(E2) > λ(E). Let E′ be the inverse image of E2 in E. We have a

filtration

0→ E1 → E
′ → E2 → 0

then

deg(E′) = deg(E1) + deg(E2) > (α1 + 1)λ(E) = α2λ(E)

Now by case (ii) applied to the sheaf E′ ⊗ L′ where L′ is invertible with deg(L′) =

− 1
2α2λ(E), we find a suitable base change π : C̃ → C such that π∗(E′) has an invert-
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ible subsheaf Ẽ′1 with deg(Ẽ′1) > 1
2α2λ(Ẽ) ≥ αλ(Ẽ), where Ẽ = π∗(E), contradicting the

definition of α.

�

We now return to the proof of the lemma that N(H) is nef.

Proof for nefness of N(H): We show that N(H) is nef by viewing it modulo good base exten-

sions as a limit of nef and effecive divisors. We will show that N(H) + εF is a nef Q-divisor

modulo good base extensions, for all rational numbers r. Note that given a good base extension

ψ : C̃ → C of degree d, N(H) + εF is nef if N(H̃) + εdF̃ is nef. In this proof ˜will always

denote the pull-back, except in the case F̃ which will be a general fibre of f̃ .

Let ε > 0. Consider the sheaf H ′ = H ⊗ OC((ε − µ f (H))p) We may assume that modulo

a good base extension, µ f (H) − ε is an integer. Also

µ f (H ′) = µ f (h) + µ f (OC(εp)) + µ f (OC(−µ f (H))) = ε > 0,

which implies that degH ′ > 0. Hence by the above lemma, we may assume that H ′ has a

global section.

Let B be the image of this global section in |N(H)+ εF|. We want to show B is nef modulo

a good base extension. To this end, it is sufficient to show that for every component A of B,

there exists a good base extension ψ : C̃ → C such that H0(H ′) has another global section

B′ such that it does not intersect A. The case where A is contained in a fibre of f has trivial

self-intersection, and so we may assume that A is not contained in a fibre. We may also assume

that the inverse image of A under a good base extension is irreducible, as we can always split

the components of B by base extensions till they cannot be split any further.

Consider the subsheaf G of H ′ which consists of all local sections, whose divisors in the

moving part contain A. Then for every open set U in C,

G(U) = {s ∈ H ′(U)|( f ∗s)A ∈ mALA},
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where L = OS (N(H) + εF) and A denotes the generic point of A in S . Since the moving part

has no fixed part, there must exist local sections of H ′ which do not contain A, and hence G

must be a proper subsheaf ofH ′.

Now B′ contains A if and only if the corresponding section in H0(H̃ ′) lies in G̃. Therefore

the lemma is reduced to showing that:

For any proper subbundle G of H ′, there is a good base extension ψ : C̃ → C such that

H0(H̃ ′) contains a section of positive degree not lying in G̃.

We show this by the above lemma with a minor modification. In fact, the cases of

rank(H ′) = 1 or 2 go without significant change. For the general case, we first suppose that

there is a section s of positive degree in H0(H ′), using the above lemma. If s does not lie in G

we are done; otherwise s generates a subbundle G1 of G. Then the image of G in H ′/G1 is a

proper subbundle, hence by induction hypothesis, we get an invertible subbundleH1 of positive

degree inH ′/G1 (modulo base extensions) which is not contained in the image og G. Now use

the proof of the rank 2 case to the inverse image ofH1 inH ′, and the lemma is shown. �

3.1.4 Technical lemmas

We need two additional technical lemmas for the main theorem

Lemma 3.15 ([12]). Let f : S → C as before, with a general fibre F. Let D be a divisor on S ,

and suppose that there is a sequence of effective divisors

Z1 ≥ Z2 ≥ ... ≥ Zn ≥ Zn+1 = 0

and a sequence of rational numbers

µ1 > µ2 > ... > µn > µn+1 = 0

such that for every i, N1 = D − Zi − µiF is a nef Q-divisor. Then

D2 ≥

n∑
i=1

(di + di+1(µi − µi+1),

where di = NiF.
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Proof. We have N2
i ≥ 0 since by assumption the Ni are nef Q-divisors. For i ≥ 2,

N2
i = Ni(D − Zi − µiF)

= Ni(Ni−1 + Zi−1 + µi−1F − Zi − µiF)

= Ni(Ni−1 + (Zi−1 − Zi) + (µi−1 − µi)F)

≥ Ni(Ni−1 + (µi−1 − µi)F), since Zi−1 ≥ Zi and Ni is nef

≥ (Ni−1 + (Zi−1 − Zi) + (µi−1 − µi)F)(Ni−1 + (µi−1 − µi)F)

≥ N2
i−1 + (Zi−1 − Zi)Ni−1 + (µi−1 − µi)Ni−1F + (µi−1 − µi)Ni−1F + (µi−1 − µi)(Zi−1 − Zi)F + (µi−1 − µi)2F2

≥ N2
i−1 + 2(µi−1 − µi)Ni−1F + (µi−1 − µi)(Zi−1 − Zi)F

≥ N2
i−1 + 2(µi−1 − µi)(2Ni−1F + (Zi−1 − Zi)F

≥ N2
i−1 + (di−1 + di)(µi−1 − µi)

�

Lemma 3.16 ([12]). Let D1, D2 be two numerically equivalent divisors on S such that Ni =

Di − Zi − µiF, i = 1, 2, is nef, where µ1, µ2 are rational numbers with µ1 ≥ µ2, and Z1,Z2 are

effective divisors. Let Z be the common part of Z1 and Z2 (i.e., Yi = Zi − Z) are two effecive

divisors without common component). Then

N = D2 − Z − µ2F

is nef.

Proof. For any curve B on S , there is a Yi which does not contain B. Hence

NB = NiB + YiB + (µi − µ2)FB ≥ NiB ≥ 0

Furthermore,

N2 + (N2 + Y2)2 = N2
2 + N2Y2 + NY2 ≥ N2

2 ≥ 0

�
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3.2 Deconstruction of the main theorem

Let p ∈ C such that f (F) = p and k(p) be the residue field of p. We have the following fibre

product.

F //

��

Spec(k(p))

��
S

f // C)

The injection of F into S induces the following natural exact sequence of groups

π1(F)
α
→ π1(S )→ π→ 1

The image of α, is a normal subgroup of π1(S ). The quotient π1(S )/Im(α) is a quotient of

π1(C−∆) (see [13], Section 2), where ∆ is the subset of C composed of images of multiple fibre

of f ; when f has no multiple fibres, π1(S )/Im(α) is canonically isomorphic to π1(C).

π1(C − ∆)

��
π1(F) α // π(S )

99ttttttttt
// Π

��
π1(C)

Given an étale Galois cover ψ : S̃ → S , f induces a fibration f̃ : S̃ → C̃, with an induced

Galois cover ψ : C̃ → C, by Stein Factorisation. Now if Ŝ is the minimal desingularization of

the normalization of S ×C C̃, ψ factors into two steps:

S̃ → Ŝ → S

where the composing maps are both étale and Galois. The first map is determined by the

quotient group of π1(F) related to the restriction of ψ on f and the second is the morphism

arising from the universal properties of desingularization and normalization.

The statement of the theorem is as follows.

Theorem 3.17. If f : S → C is a non-locally trivial (relatively minimal) fibration with λ < 4,

Im(α) is trivial when f is non-hyperelliptic.
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Proof. In his proof, Xiao first translates the question to the existence of non-vertical torsion

elements in Pic(S ) in the following manner.

Since α is a continuous map between profinite groups, Im(α) is a closed and normal subgroup of

π1(S ). If Im(α) has a finite quotient G � Im(α)/K, then by basic properties of profinite groups

(proposition 2.1.4, [35]), there exists open normal subgroups of π1(S ) of the form Im(α)U

and KU. These correspond to finite étale covers of S which corresponds to the following

commutative diagram between finite étale maps.

S̃

��?
??

??
??

?
G // S ′

��
S

Now by Stein Factorisation, the morphism S̃ → S can be factored into ψ ◦ f̃ such that f̃ :

S̃ → C̃ is a fibration and ψ : C̃ → C is an étale morphism. If Ŝ is the minimal desingularization

of S ×C C̃, then we can assume that the morphism S̃ → Ŝ is the one corresponding to G and we

get the following commutative diagram,

S̃
G

��=
==

==
==

��.
..

..
..

..
..

..
.. f̃

''NNNNNNNNNNNNNNN

Ŝ
f̂ //

��

C̃

��
S

f // C.

Since λ( f̂ ) ≤ λ( f ) < 4, we can replace f with f̂ . If G has a cyclic quotient, then we can

take the corresponding étale cover S̄ → S as a non-vertical torsion. Else we are reduced to the

case where G is non-cylic simple group. In this case we set up a non-vertical torsion in Pic(S )

by taking Ŝ to be the quotient of S by a cyclic subgroup H of odd order of G. We have reduced

to the case that if Im(α) is non-trivial then f is a fibration of slope < 4 having a non-vertical

torsion η of odd order.

We will now see that this is impossible using the lemmas proved above. Let Dη be an

effective divisor on S having class ωS/C ⊗ η and E = f∗ωS/C ⊗ η have a Harder filtration

0 = E1 ⊂ E2 ⊂ . . . ⊂ En = E
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Take

ri = rank(Ei)

µi = µ f (Ei) = µ(Ei/Ei=1)

Zi = Z(Ei)

Ni = N(Ei)

di = NiF

Let also Nn+1 = Dη, rn+1 = g− 1, Zn+1 = 0, µn+1 = 0, dn+1 = DηF. Nn+1 is a nef divisor, by [5].

Then by lemma 3.13 and semi-positivity of the slopes of the Harder-Narasimhan filtration, we

get the sequences

Z1 ≥ Z2 ≥ Z3 ≥ . . . ≥ Zn+1

µ1 > µ2 > µ3 > . . . > µn+1.

These satisfy the condition of lemma 3.15, which gives

K2
S/C = D2

η ≥

n∑
i=1

(di + di+1)(µi − µi+1) (3.1)

On the other hand,

∆( f ) = degE =
n∑

i=1

ri(µi − µi+1) (3.2)

Combining 3.1 and 3.2, we see that we will have λ ≥ 4 if

di + di+1 ≥ 4ri (3.3)

Now di is defined to be the degree of NiF. Since Ni is nef, we may assume NiF is effective and

also NiF ≤ Nn+1F = DηF = 2g − 2 hence NiF is a special divisor provided di , 0. Further the

dimension of the restriction of the linear system Ni to F is ri − 1. Now Clifford’s Lemma states

that, if D is an effective special divisor on a curve X, then

dim|D| ≤
1
2

deg D
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with equality if and only if either D = 0 or D = KF when X is non-hyperelliptic. Since NnF , 0

or NnF , KF ,

ri − 1 <
1
2

di

2ri − 2 < di

2ri − 1 ≤ di

Thus we have di ≥ 2ri − 1, i = 1, ..., n, except if d1 = 0, (and r1 = 1). We therefore only need to

handle the exceptional case d1 = 0, r1 = 1. We require condition 3.3 to be satisfied for all i to

prove the theorem. For 2 ≤ i ≤ n − 1 we have

di + di+1 ≥ 2ri − 1 + 2ri+1 − 1

≥ 2ri + 2(ri + 1) − 2

≥ 4ri

implying condition 3.3 is satisfied.

However the cases i = 1 and i = n are more delicate. In the case i = 1, d1+d2 ≥ 0+2r2−1.

If r2 = 2 then d1 + d2 ≥ 3. Therefore if d2 = 3 condition 3.3 will not be satisfied. In the case

i = n, we have dn ≥ 2rn − 1 = 2(g − 1) − 1 = 2g − 3 and dn+1 = 2g − 2, therefore

dn + dn+1 ≥ 2(g − 1) − 1 + 2g − 2

≥ 4(g − 1) − 1.

Thus if dn = 2g − 3 again condition 3.3 is not satisfied. Hence the theorem is proved except if

dn = 2g − 3 or d1 = 0, d2 = 3 (hence r1 = 1, r2 = 2).

We will first try to modify Nn so that dn > 2g − 3. Now dn is the degree of the linear

system |Nn|F | and dn = NnF = M( f∗ωS/C ⊗ η)F = 2g − 3. Nn = Dη − Z( f∗ωS/C ⊗ η) − µnF and

Z( f∗ωS/C ⊗ η) is the fixed part of |Dη|. We have defined the restriction of Z( f∗ωS/C ⊗ η) to F

to be the fixed part of the linear system E = f∗ωS/C ⊗ η restricted to F, which will be the fixed
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part of the linear system |Dη| restricted to F. Therefore

Nn|F = M(E)|F = Dη|F − Z(E)|F .

We may assume that for every torsion η, dn = 2g − 3 or equivalently the linear system |Dη|F |

has a base point pη. We fix an η and let p = pη. Let D be a divisor in |M(E)|F |.

2g − 3 = deg(D)

= deg(Dη|F − Z(E)|F)

= deg(KF) + deg(η|F − Z(E)|F)

= 2g − 2 − deg(Z(E)|F)

Therefore deg(Z(E)|F) = 1 which implies Z(E)|F = p, since we may assume Z(E)|F is effective.

Applying Riemann Roch to the divisor D, we get

h0(F,OF(D)) − h0(F,L(KF − D)) = deg D + 1 − g

g − 1 − h0(F,OF(KF − D)) = 2g − 3 + 1 − g

h0(F, )F(KF − D)) = g − 1 − 2g + 3 − 1 + g

h0(F,OF(KF − D)) = 1

Now KF − D is linearly equivalent to −η|F + p (we abuse notation to denote a divisor in the

class η|F by η|F itself) . Since h0(F,OF(KF − D)) = 1, the complete linear system | − η|F + p|

is nonempty. Hence | − η|F + p| is linearly equivalent to some effective divisor q of degree 1.

Therefore q is a point of F such that η|F = OF(p − q). Further note that η cannot have order

two. If it does then 2p ≡ 2q. However |2q| is a linear system of degree 2 and dimension 1.

This contradicts the hypothesis that f is non-hyperelliptic, ([18] IV.5). Consequently η|2F =

OF(p′ − q′) with (p′ , q′). Note also that p , p′ else 2p − 2q ≡ p − q′, or 2q ≡ p + q′, again

contradicting the condition that F is non-hyperelliptic. We now assume that

µ f ( f∗ωS/C ⊗ η) ≤ µ f ( f∗ωS/C ⊗ η
2)
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Let Z′1 = Z( f∗ωS/C ⊗ η), Z′2 = Z( f∗ωS/C ⊗ η
2). Since Z′i F = 1, there is a unique section Ci in Z′i

such that C1 ∩ F = {p}, C2 ∩ F = {p′}, in particular C1 , C2. Now we can apply Lemma 3.16

and let Nn = Dη − Z − µnF, where Z is the common part of Z′1 and Z′2. Then dn = 2g − 2.

Next we consider the case d1 = 0, d2 = 3. We want to show

K2
S/C ≥ 4∆( f ).

We will do this by considering two cases; d3 = 5 and d3 ≥ 6. First we consider the case d3 = 5.

Since r3 = 3 we have 3 = r3 < rn = g − 1, hence g ≥ 5. The linear system |N3|F | is a g2
5 and

hence defines a map φ of F onto P2. The image of F is a plane curve B which is not contained

in any hyperplane. The degree of B is equal to B.H where H is a divisor in the class O(1).

However deg(φ∗O(1)) = 5 which implies B.H = 5. Hence B is a curve of degree 5. |N3|F |

has a sublinear system |N2|F | which is a g1
3. This implies that B has a double point. Then by a

Riemann-Hurwitz type formula for singular curves ([14]), we have g ≤ 5. Therefore g = 5, and

n = 4 and d4 = 8. Now if µ1 − µ2 ≤ µ3 − µ4, 3.1 and 3.2 give

K2
S/C ≥ 3(µ1 − µ2) + 8(µ2 − µ3) + 13(µ3 − µ4) + 16µ4

≥ 4(µ1 − µ2) + 8(µ2 − µ3) + 12(µ3 − µ4) + 16µ4

≥ 4∆( f )

On the other hand if µ1−µ2 ≥ µ3−µ4, we use Lemma 3.15 on the sequence {Z1,Z4, 0},{µ1, µ4, 0}

to get

K2
S/C ≥ 8(µ1 − µ4) + 16µ4 ≥ 4∆( f )

Now we consider the case when d3 ≥ 6. We now have two possibilities: if µ1−µ2 ≤ µ2−µ3,

then by 3.1 and 3.2,

K2
S/C ≥ 3(µ1 − µ2) + 9(µ2 − µ3) +

n∑
i=3

(di + di+1)(µi − µi+1)

≥ 4(µ1 − µ2) + 8(µ2 − µ3) + 4
n∑

i=3

(µi − µi+1)

= 4∆( f )
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otherwise use Lemma 3.15 on the sequences

{Z1,Z3,Z4, ...,Zn, 0}, {µ1, µ3, µ4, ..., µn, 0},

to get

K2
S/C ≥ 6(µ1 − µ3) +

n∑
i=3

(di + di+1)(µi − µi+1)

≥ 4(µ1 − µ2) + 8(µ2 − µ3) + 4
n∑

i=3

(µi − µi+1)

= 4∆( f )

�



Chapter 4

Fibered surfaces in characteristic p.

4.1 Introduction

In this chapter, we prove our main theorem which extends Xiao Gang’s technique for studying

fibered algebraic surfaces to characteristic p. We have described Xiao Gang’s technique over

the complex numbers in detail in the last chapter. For the rest of the section we will assume that

the base field k is an algebraically closed field of positive characteristic p, and l is a prime not

equal to p. We assume f : S → C over k, is a fibration with F a general fibre of genus g ≥ 2.

Given f : S → C and the induced exact sequence

π1(F)→ π1(S )→ Π(C)→ 1,

is it possible to say something about the image of the homomorphism π1(F)→ π1(S )?

4.2 Hiccups in characteristic p

We examine the classical results of the previous section that fail either mildly or spectacularly

in characteristic p. As we attempt to deal with these pathologies, we are able to formulate an

answer to the above question.

4.2.1 Semi-positivity

A pivotal result in the classical case is the semi-positivity result of the relative dualising sheaf.

It implies that all the Harder-Narasimhan slopes of f∗ωX/C are of non-negative degree.
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Theorem 4.1 ([11], Theorem1.1). If f : X → C is a fibration of a proper smooth surface to a

proper smooth curve over C, then all the quotient bundles of f∗ωX/C are of non-negative degree.

Moret-Bailly [29], p. 137 showed that this result is false in positive characteristic. In a

counterexample, he constructed a non-isotrivial semi-stable fibration of fiber genus 2, π : X →

P1 such that

R1π∗OX = OC(−p) ⊕ OC(1).

The failure of the semi-positivity theorem is the first problem in extending Xiao’s theorem to

positive characteristic. However a recent result on semi-positivity by Jang suggests the possi-

bility of overcoming the problem by studying generically ordinary fibrations. His result can be

stated as:

Theorem 4.2 ([21], Theorem 1). Let k be a perfect field of positive characteristic p and X a

proper smooth surface over k. Assume X admits a generically ordinary semi-stable fibration

f : X → C to a smooth proper curve C over k. Then the maximal Harder-Narasimhan slope of

R1 f∗(OX) is non-positive.

Therefore if we restrict our attention to generically ordinary semi-stable fibrations, all

the Harder-Narasimhan slopes of f∗ωX/C are of non-negative degree. We next examine some

consequences of these new assumptions.

4.2.2 Generically ordinary covers

We must check whether it is reasonable to restrict our attention to generically ordinary semi-

stable fibrations. For instance, are étale covers of generically ordinary semi-stable fibrations,

generically ordinary?

Let f : X → C be a generically ordinary semi-stable fibration and ψ : S̃ → S a finite

covering. We first factor the morphism S̃ → C using Stein Factorisation into a fibration S̃ → C̃
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and a Galois cover C̃ → C.

S̃
f̃ //

ψ

��

C̃

��
S

f // C

Ideally we would like the induced covering fibration f̃ to also be generically ordinary. However

this is not always true. To see this, we factor the morphism S̃ → S into two parts; the part that

is determined by the restriction of the map to a fibre and, the second part that is determined its

image in C, as follows:

S̃ → Ŝ → S ,

where Ŝ is the minimal desingularization of the normalization of S ×C C̃. Since the base change

of a generically ordinary fibration is generically ordinary, the induced morphism Ŝ → C̃ is

generically ordinary. Therefore the generic ordinarity of the morphism S̃ → C̃ depends on the

restriction of ψ to F, a general fibre of f . i.e.

ψ : F̃ → F,

In general ψ : F̃ → F need not be an ordinary cover, even if F is ordinary. It has been shown

by Raynaud ([33]Theorem 2) that given a proper, smooth, connected curve of genus g ≥ 2, it

is possible to construct a finite Galois étale cover, which is not ordinary. Madore discusses this

construction in [28] (Section 4, page 285).

Theorem 4.3 ([28], Theorem 4.1). Let k be an algebraically closed field of characteristiic

p > 0, and let X be the generic curve of any genus g ≥ 2 over k. Then there exists a Galois

cover of X with solvable Galois group of order prime to p that is not ordinary.

We thus need to find a suitable condition under which coverings of generically ordinary

fibrations are also generically ordinary. By the above discussion, this is equivalent to finding a

suitable condition for covers of ordinary curves to be ordinary. We examine a couple of these

results in turn, to determine a reasonable hypothesis for our theorem (c.f. [9], [31], [41], [33],

[10]).
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p-covers

A result about p-covers states that étale covers of an ordinary curve with Galois group a p-

group, are ordinary.

Theorem 4.4 ([10], Corollary 1.8.3). Let Y be a complete nonsingular connected curve over

an algebraically closed field of characteristic p and let Y → X be a finite étale galois covering

of degree a power of p. Then X is ordinary if and only if Y is ordinary.

This neat result suggests that we should perhaps restrict our attention to étale p-covers

of F, which would lead to a statement involving the pro-p fundamental group of the fibre

F. However we are keen to adapt Xiao’s method for the study of the fundamental group in

relation to the intersection number of the relative dualising sheaf. As was seen in 3.3 and 3.17,

a key element of Xiao’s classical technique takes advantage of the simple structure of a cyclic

covering, namely if Y → X is a cyclic étale cover, then there exists a torsion element L in

Pic(X) of order n such that Y = Spec(⊕n−1
i=0L

⊗i).

Unfortunately over a field of characteristic p > 0, cyclic covers ψ : Y → X with Galois

group a p-group do not have such a nice description. For example if degψ = p and ψ is an Artin-

Schreier cover that is locally given by an equation xp − x = a where a is a regular function on

X, [36]. Therefore although p-covers are always ordinary, they do not have the simple structure

we need, and so we cannot use them to adapt Xiao’s technique to characteristic p. This sort of

degeneration occurs only when the p divides the degree of the morphism.

So if l is a prime that is distinct from p, and the degree of ψ : Y → X is equal to l, then

there exists an invertible sheaf L on X, of order l, such that Y = Spec(⊕l−1
i=0L

⊗i), [16], 3.10. This

observation leads us to the study of the ordinarity l-cyclic covers.

l-cyclic covers

Let l be a prime distinct from p. In this section we introduce the notion of “strongly l-ordinary

curve”. We also show that “general” curves of given genus with level-l structure are strongly

l-ordinary. Let X be a smooth curve of genus g defined over k. We denote the Jacobian of X by



4.2. Hiccups in characteristic p 77

Jac(X). It is an abelian group scheme. Given a prime l distinct from p, the l-torsion Jac(X)[l] of

the Jacobian is the kernel of the multiplication-by-l morphism, and,

Jac(X)[l] � (Z/lZ)2g, [32] 4.6

Further there is a bijection between l-torsion points of Jac(X)[l] and unramified Z/lZ-Galois

covers of X. Finite quotients of π1(X,Z/lZ) correspond to unramified Z/lZ-Galois covers of X,

and by ([32] 4.7), we have

π1(X,Z/lZ) � H1(X,Z/lZ) � Jac(X)[l]

Let us consider the moduli spaceMg[l] of smooth stable genus g curves with full level l struc-

ture ([17], pg 37-38). A full level l structure on a curve X of genus g is a symplectic basis

{α1, . . . , αg, β
′
1 . . . , βg} for H1(X,Z/lZ): here symplectic means that, in terms of basis, the inter-

section pairing on H1(X,Z/lZ) has matrix of the form
0 Ig

−Ig 0


This data is equivalent to the choice of a basis (L1, . . . , L2g) of the space Jac(C)[l] of l-torsion

points in the Jacobian of C that is symplectic with respect to the Weil pairing of the space. The

rigidity provided by the level structure onMg[l] makes it a fine moduli space.

Theorem 4.5 ([1] Theorem 13.2). For m ≥ 3 and 2g − 2 + n ≥ 0 (n ∈ Z≥0), there exists a fine

moduli space scheme Mg,n[m] for smooth stable n-pointed curves with level m structure. In

particular there exists a universal curve with level structure overMg,n[m]. This moduli scheme

is smooth over Spec(Z[1/m]).

It follows thatMg,0[l] (orMg[l]) is a fine moduli scheme when l ≥ 3 and g ≥ 1, and hence

there exists a universal curve

C →Mg[l]
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with level l-structure representing the functor of smooth curves of genus g with such levels

([15] 1.7). FurtherMg[l] is smooth over SpecZ[1/l], and for every field k of characteristic not

dividing l the fiberMg[l] ⊗ Spec k is a regular variety.

Definition 4.6. Let X be an ordinary curve defined over k. We say that X has strong l-ordinarity

or is strongly l-ordinary when every connected étale cyclic covering of Y → X of degree l is

ordinary.

Proposition 4.7. For l ≥ 3, there exists a non-empty open set inMg[l] of strongly l-ordinary

curves defined over an algebraically closed field k.

Proof. As we have seen aboveMg[l] is a fine moduli space. Let C be the universal curve of

Mg[l]. Then it follows that C → Mg[l] is a proper smooth morphism. Let η be the geometric

generic point ofMg[l], and denote the algebraic curve above η by Cη. Then Cη is the generic

curve of genus g with level l structure.

Let V be the set of points s ∈ Mg[l] such that Cs is ordinary. By [31], we know that V is

open, and non-empty, since the generic curve, Cη is ordinary,

Now let D be the universal l-cover of C, i.e. D has the universal property that it factors

through any degree l covering of C. ThenD is the pull-back of the universal l-cover of Jac(X).

ThereforeD → C is also a proper smooth morphism with Galois group isomorphic to (Z/lZ)2g.

Every étale abelian cover of Cη is ordinary ([41], Theorem 3.1). In particular, the covering

Dη → Cη being abelian, is ordinary. Consider the proper smooth morphism D → Mg[l]. By

([19], Pro. 1.2), the set of points in s ∈ Mg[l], whose fibres Ds are ordinary, is an open set U

inMg[l]. We know that U is non-empty as η ∈ U.

Let W be the intersection of U and V . Then W is a non-empty open set. Let s ∈ W. We

want to show that Cs is strongly l-ordinary. Ds is an ordinary curve, and factors through every

étale l-cyclic covering T of Cs. Since the quotient of an ordinary curve is ordinary ([9], pg 275),

it follows that every such T is ordinary. Therefore Cs is strongly l-ordinary. �

Let B be a smooth projective scheme over k, and f : X → B a stable family of genus g
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curves. Then there exists a natural map B → Mg, which is uniquely determined by f . This

map send a point b ∈ B, to the moduli point corresponding to the fibre Xb of X above b. By

restricting to the smooth locus of f , we regard f as a smooth morphism. Then there exists an

étale base change B′ → B, such that the pull-back of the family f ′ : X′ → B′ has full level-l

structure. Therefore it is reasonable for us to assume that a general family of semi-stable stable

curves of genus g, has a generic fibre that is strongly l-ordinary.

4.2.3 Theorem statement

We are now in a position to state a theorem that will extend Xiao’s classical technique for

studying fibered surfaces to characteristic p.

Theorem 4.8. Let k be a algebraically closed field of characteristic p > 0 and l a prime that

is distinct from p. Let S be a smooth and projective surface over k. Assume that S admits a

generically ordinary semi-stable fibration f : S → C to a smooth and projective curve C over k

that is not isotrivial, and that S is relatively minimal with respect to f . We also assume that the

generic fibre of f is strongly l-ordinary. Let F be a general fibre of f , which is a smooth curve

of genus g ≥ 2. Let KS/C = KS − f ∗KC be a relative canonical divisor. We have the following

commutative diagram of profinite groups,

π1(F) //

��

π1(S ) //

��

Π(C)→ 1

πl
1(F) // Π

where π1 is the étale fundamental group, πl
1 is the pro-l fundamental group and Π is the pushout

group.

If K2
S/C < 4 deg( f∗ωS/C) and f is non-hyperelliptic, then the image πl

1(F)→ Π is trivial.

We keep the above assumptions on the fibration f : S → C for the remainder of the thesis.

4.2.4 Definitions and technical lemmas

Now that we have a theorem statement that is very similar to Xiao’s theorem in the classical

case, we investigate whether the results and technical lemmas used in Xiao’s technique extend
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to characteristic p. With the extra hypothesis of generic strong l-ordinariness, we are able to

extend all the results with some modifications.

Properties of the relative dualising sheaf

The first result that extends is the property that the direct image of the relative dualising sheaf

is locally free of rank equal to the genus of a general fibre, has degree equal to deg f∗ωS/C =

χ(OS ) − (g(C) − 1)(g − 1) and has non-negative quotients.

Proposition 4.9. Let f : X → S be a fibration, as in the statement of the theorem above. Then

(i) f∗ωX/S is locally free of rank g over S ,

(ii) deg f∗ωS/C = χ(OS ) − (g(C) − 1)(g − 1)

(iii) f∗ωX/S has non-negative quotients.

Proof. (i) The question is local on S , so we can assume that f : X → S = Spec A, where A is

a finitely generated k-algebra. The relative dualising sheaf ωX/S is an invertible sheaf that

is locally free of rank 1 on X. Therefore it is flat over X, by ([18], Pro. III.9.2.e), that is, for

every x ∈ X, ωX/S x is a flat OX,x-module. Since f is flat, for every x ∈ X, OS , f (x) → OX,x is

a flat morphism. Therefore for every x ∈ X, ωX/S x is a flatOS , f (x)-module, and hence ωS/C

is flat over S . Furthermore by ([18], II.5.20), f∗ωX/S is a coherent OS -module. Therefore

f∗ωX/S is locally free by [18], Pro. III.9.2.e.

It remains to show that the rank of f∗ωX/S is g. We have the following pull-back square:

Xη
g //

i
��

Spec k(η)

p
��

X
f // Spec A

where η is the generic point of A. Then the map Spec k(η) → Spec A is a flat map.

Therefore by the flat base change theorem, we have p∗ f∗ωX/S � g∗i∗ωX/S , or

H0(S , f∗ωX/S ) ⊗ k(η) � H0(Xη, ωη)



4.2. Hiccups in characteristic p 81

Since H0(Xη, ωXη) � H1(Xη,OXη) and dim H1(Xη,OXη) = g, we conclude that the rank of

f∗ωX/S is g.

(ii) The proof that deg f∗ωS/C = χ(OS ) − (g(C) − 1)(g − 1) can be extended from the classical

case to positive characteristic without any change, see 3.2.

(iii) The proof of this statement can be found in [21], theorem 1.

�

Lemma 4.10. Let f : S → C be a fibration as in the theorem statement. If η is an l-order torsion

element in Pic(S ), where l is a prime distinct from p, such that ηi|F is not trivial whenever ηi is

not trivial, then f∗(ωS/C ⊗ η) is also locally free and has rank g− 1 and degree equal to f∗ωS/C .

It also has non-negative quotients.

Proof. Since p - l, we know that (2.25) η corresponds an étale cyclic covering S̃ → S , where

S̃ = Spec(⊕n−1
j=0η

− j),

Then the proof that f∗(ωS/C ⊗ η) is locally free of rank g − 1 and has degree equal to degree

of f∗ωS/C can be extended from the classical case (see 3.3) to positive characteristic with no

change. To see that f∗ωS/C ⊗ η also has non-negative quotients, we note that our hypothesis

about a general fibre of f implies that the induced fibration f̃ : S̃ → C is also generically

ordinary, since f is generically strongly l-ordinary. Then by [21] and following the argument in

3.3, we are done. �

Slope of a fibration

It is possible to define the slope of a fibration f in characteristic p > 0 just like the complex case,

since Szpiro, ([39], Theorem 1), has shown that for a semi-stable and non-isotrivial fibration,

the degree of f∗ωS/C is strictly positive.

Definition 4.11. We therefore define the slope of the fibration f as

λ( f ) =
K2

S/C

deg f∗ωS/C
.
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Definition 4.12. Let f : S → C be a semi-stable fibration. We then define a surjective mor-

phism ψ : S̃ → S to be an admissible cover if ωS̃ /C̃ = ψ
∗ωS/C , where the fibration f̃ : S̃ → C̃

and and the finite morphism φ : C̃ → C are the morphisms induced by Stein Factorisation of

S̃ → C.

Lemma 4.13. If f : S → C is a semi-stable fibration, and ψ : S̃ → S is an admissible cover

then, λ( f̃ ) = λ( f ), where f̃ : S̃ → C̃ is the fibration induced by Stein Factorization.

Proof. See 3.6. �

Therefore admissible covers do not alter the slope of the fibration. Admissible covers arise

in the following situations. Note that since we restrict our attention to semi-stable fibrations in

positive characteristic, the second condition is simpler than the classical case.

Lemma 4.14. Let f : S → C be a semi-stable fibration. Let S̃ → S be a surjective morphism

and C̃ → C the resulting finite affine morphism by Stein Factorization. Under either of the

following conditions:

(a) C̃ = C and ψ is unramified.

(b) S̃ equals the minimal desingularisation of the pull-back of f by ψ,

ψ is admissible, i.e. ωS̃ /C̃ = ψ
∗ωS/C .

Proof. (a) See 3.7 (a).

(b) ψ is admissible by [39], Lemma 3.b.

�

Fixed and moving parts

We now define the fixed and moving parts as in the complex case.

Definition 4.15. Let D be a divisor on S such that E = f∗OS (D) is a locally free sheaf on C and

H is a subbundle of E. We define the fixed and moving parts ofH as follows:
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Choose a sufficiently ample divisor A, so that H1 = H ⊗ A is generated by global sections.

Then the inclusionH ⊂ E induces the homorphisms

f ∗H1 → f ∗(( f∗OS (D)) ⊗ A)→ OS (D) ⊗ f ∗A.

Let D be the linear subsystem of |D + f ∗A| corresponding to the global sections ofH1.

(i) Let Z(H) be the fixed part of the linear system D on S . We then define the fixed part of

H to be Z(H). This definition is independent of the choice of A.

(ii) We also define M(H) = D − Z(H) to be the moving part ofH , and

(iii) N(H) := D− Z(H)− µ f (H)F, where µ f (H) is the final Harder-Narasimhan slope ofH .

Definition 4.16. On a fibre F′, the restriction of H to F′ corresponds to a sublinear system,

D|F′ , of dimension equal to the rank of H . This system consists of all divisors D′|F′ , where

D′ ∈ D is a divisor whose support does not contain F′.

We can define the fixed part of the restriction of H to F′ as the fixed part of the linear

system D|F′ , and the moving part ofH on F′, as D|F′ − Z(D|F′).

Lemma 4.17. The restriction of Z(H) and M(H) to F′ is just the fixed and moving part of the

sublinear system corresponding to the restriction ofH to F′.

Proof. See 3.10. �

Definition 4.18. We will call a finite, separable morphism π : C̃ → C a good base extension

for f : S → C, if it is unramified on images of the singular fibres of f .

Remark. Note that in characteristic p > 0, we needed to modify the classical definition of

a good base extension to include the condition that the morphism is also separable. This is

required to ensure that the pull-back of the Harder-Narasimhan filtration of a sheaf on a curve

C is the Harder-Narasimhan of the pull-back of the sheaf to the extension C̃. We also note that

good base extensions give rise to admissible covers. Further since ordinarity is preserved by
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base change (see 2.74) in general, the admissible covers resulting from good base extensions

are also generically ordinary.

Lemma 4.19. Let ψ : C̃ → C be a good base extension. We denote the pull-back of an object

by ψ by writing ˜over the object, except F̃ means a general fibre of f̃ . Then

(a) S̃ = S ×C C̃ is smooth.

(b) Ri f̃∗(OS̃ (D̃)) � ˜Ri f∗(OS (D)). In particular, if E = f∗OS (D) then Ẽ = f̃∗OS (D̃).

(c) Let H be a sheaf on C, then the pull-back of the fixed and moving parts of H are just the

fixed and moving parts of H̃ .

(d) Furthermore since the pull-back of a semi-stable vector bundle is semi-stable and by

uniqueness of the Harder filtration, the pull-back of the Harder filtration of E is the Harder

filtration of Ẽ, with

µ(Ẽi/ ˜Ei−1) = µ(Ei/Ei−1) · degψ.

In particular, µ f (Ẽ) = µ(E) · degψ.

(e) N(H) commutes with good base extensions.

Proof. See 3.12. �

4.2.5 Nefness of N(H)

Recall that the divisor N(H) is formed by taking away the base locus of the linear subsystem

corresponding to H . The base locus of the linear subsytem contains the base locus of the

complete linear system |D|. Although this does not imply that the divisor will be nef, it makes

it more likely that it will be nef. We prove nefness of N(H) by following Xiao’ proof in the

classical case to a large extent. We basically show that it is always possible to find a good base

extension such that there are enough divisors in the moving part.

We first show that a locally free sheaf E over C has global sections modulo a good base

extension. Xiao indirectly proved it in [11], theorem 1.1, in the complex case. We cannot
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directly extend the proof to positive characteristic. In the second step of his proof, he needs the

characteristic of the field to be zero to use Nakai’s criterion to find an ample divisor on the ruled

surface. We use an alternative method following [24] to find an ample divisor.

Lemma 4.20. Let f : S → C be a fibration as above. Let E be a locally free sheaf of positive

degree on C. Then modulo a good base extension, E has a global section.

Proof. The theorem is proved in the following three steps:

(i) If rank(E) = 1, then modulo a good base extension, h0(E) , 0.

Since deg(E) > 0 and E is ample, there exists an integer n >> 0, relatively prime to

the characteristic of k, such that the linear system |E⊗n| contains a reduced divisor D. D

corresponds to an injection |E⊗n| → OC , which defines a ring structure on the sheaf

OC ⊕ E
⊗−1 ⊕ E⊗−2 ⊕ . . . ⊕ E⊗−n+1

By hypothesis, Spec(OC ⊕ E ⊕ . . . ⊕ E
⊗−n+1) is a smooth curve C̃, with a cyclic cover

π : C̃ → C of degree n which is ramified along D. Let f̃ : S̃ → C̃ be the pull-back of f by

π. We can choose D such that the fibres of f above D are smooth. Then C̃ → C is a good

base extension and hence S̃ is a smooth surface. Further Ẽ = π∗E is an invertible sheaf

and by construction, we have

h0(Ẽ) , 0,

(ii) Let E be a locally free sheaf of rank 2 over C, and deg(E) > 0. There exists a finite

separable covering π : C̃ → C which is etale over the images of the singular fibres of f ,

such that the pull-back Ẽ of E has an invertible subsheaf of positive degree. Then we are

done by case(i).

We construct a good base extension such that the pull-back Ẽ of E admits an invertible

subsheaf of positive degree, using a technique defined by Lange, [24]. Lange has showed

that integral curves D of degree n on the projective bundle P(E) correspond in a natural
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and bijective way to finite coverings π : C̃ → C of degree n, such that the normalization

of D is isomorphic to C̃. Furthermore he has shown that the resulting pull-back Ẽ of

E contains an invertible sheaf E1 whose degree is uniquely determined by E, π and the

arithmetic genus of the corresponding curve on P(E) in the following way:

degE1 =
deg π.(g(C) − 1) − (pa(D) − 1)

deg π − 1
+

1
2

deg π∗E

Therefore it is sufficient to construct a smooth, connected curve D on P(E) of degree n

over C such that

degE1 =
n.(g(C) − 1) − (pa(D) − 1)

n − 1
+

1
2

deg π∗E > 0 (∗)

As there is a finite product g : P(E) → P1 × C of elementary transformations ([18], pg

416), P(E) and P1 × C are isomorphic after removing a finite set of points. Therefore the

genus and degree over C of the proper transform of D remains the same, and it is enough

to construct a smooth connected curve D on P1 ×C of degree n over C satisfying (*).

Let p1 and p2 denote the projections of P1×C onto P1 and C, l1 ∈ Pic(P1) be of degree n1,

and l2 ∈ Pic(C) of degree n2. If n1 and n2 are high enough, p∗1l1⊗ p∗2l2 is very ample, so by

Bertinis theorem its linear systems contains a smooth connected curve D, that meets each

of the fibres above the images of the non-singular fibres of f transversally. This ensures

that the resulting finite morphism ψ : D → C is unramified over the singular fibres of f .

Moreover by the Adjunction formula, we have g(D) = n1g(C) + (n1 − 1)(n2 − 1) and note

that deg(ψ) = n1.
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Therefore,

degE1 =
deg π.(g(C) − 1) − (pa(D) − 1)

deg π − 1
+

1
2

deg π∗E

=
n1.(g(C) − 1) − ((n1g(C) + (n1 − 1)(n2 − 1)) − 1)

n1 − 1
+

n1 degE
2

=
n1.g(C) − n1 − n1g(C) − (n1 − 1)(n2 − 1)) + 1

n1 − 1
+

n1 degE
2

=
−n1 − (n1 − 1)(n2 − 1)) + 1

n1 − 1
+

n1 degE
2

=
−(n1 − 1) − (n1 − 1)(n2 − 1))

n1 − 1
+

n1 degE
2

= −n2 +
n1 degE

2

So choosing n1 >
2n2

degE and relatively prime to the characteristic of k, gives degE1 > 0

and hence an invertible sub bundle of positive degree modulo a good base extension.

(iii) Let E be a locally free sheaf of positive degree over C. There exists a finite covering

π : C̃ → C étale above the images of the singular fibres of f , such that the pull-back Ẽ of

E has an invertible sub-sheaf of positive degree.

We will use induction on the rank of E. Let rankE ≥ 3.

Let λ(E) = degE
rankE the slope of E. Modulo a good base change, we may assume that λ(E) is

an integer. Here we note that although the characteristic of the field is p > 0, if necessary,

we can always construct a separable base extension of degree a power of p by using Artin-

Schreier covers that are unramified over the singular points of f , thereby getting a good

base extension.

Let α be a real number defined in the following manner:

α = Sup


deg Ẽ1

λ(Ẽ)
; Ẽ pull-back of E by a good base change,

Ẽ1 an invertible sub-sheaf of Ẽ

We assume that α ≤ 0. Let α1 be the largest integer strictly less than α, α2 = α1 + 1 (then

α2 ≥ α). By the definition of α, we can suppose that modulo a suitable base change, E has
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an invertible sub-sheaf E1 such that

degE1 > α1λ(E).

By our assumption degE1 ≤ 0 < λ(E), hence deg( E
E1

) = deg(E) − deg(E1) > deg(E). Also

rank( E
E1

) = rank(E) − 1. This implies that λ( E
E1

) > λ(E).

We can apply the induction hypothesis to E
E1
⊗L, where L is an invertible sheaf of degree

equal to −λ(E), since

deg(
E

E1
⊗ L) = rankL deg(

E

E1
) + rank(

E

E1
) degL

= deg(
E

E1
) − rank(

E

E1
)λ(E)

= (rank(E) − 1)(λ(
E

E1
) − λ(E))

> 0

We can assume, after a suitable base change, that E
E1

has an invertible subsheaf E2 with

degE2 > λ(E).

Let E′ be the inverse image of E2 in E. We have a filtration

0→ E1 → E
′ → E2 → 0

then

degE′ = degE1 + degE2 > (α1 + 1)λ(E) = α2λ(E)

Now we can apply step (ii) to the sheaf E′ ⊗ L′ where L′ is invertible with degL′ =

− 1
2α2λ(E), since

deg(E′ ⊗ L′) = rankL′ deg(E′) + rank(E′) degL′

= deg(E′) − 2(
1
2
α2λ(E)

> 0.
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We find a suitable base change π : C̃ → C such that π∗(E′) has an invertible subsheaf Ẽ′1

with

deg Ẽ′1 >
1
2
α2λ(Ẽ) ≥ αλ(Ẽ),

where Ẽ = π∗(E), contradicting the definition of α.

�

Lemma 4.21. Let D, E,H be defined as above. Then N(H) is a nef Q divisor.

Proof: We show that N(H) is nef by viewing it modulo good base extensions as a limit of

nef and effective divisors. We will show that N(H) + εF is a nef Q-divisor modulo good base

extensions, for all rational numbers ε. Note that given a good base extension ψ : C̃ → C of

degree d, N(H) + εF is nef if N(H̃) + εdF̃ is nef. In this proof ˜ will always denote the

pull-back, except F̃ will be a general fibre of f̃ .

Let ε > 0. Consider the sheaf H′ = H ⊗ OC((ε − µ f (H))b). We may assume that modulo

a good base extension, µ f (H) − ε is an integer. Then

µ f (H ′) = µ f (H) + µ f (OC(εb)) + µ f (OC(−µ f (H)b)) = ε > 0,

which implies that degH ′ > 0. Hence by the above lemma, we may assume that H ′ has a

global section. Let B be the image of this global section in |N(H) + εF|. We want to show B is

nef modulo a good base extension. To this end, it is sufficient to show that for every component

A of B, there exists a good base extension ψ : C̃ → C such that H0(H̃ ′) has another global

section B̃′ which has no common component with the inverse image Ã of A. The case where A

is contained in a fibre of f has trivial self-intersection, and we can assume that A is not contained

in a fibre of f . We may also assume that the inverse image of A under a good base extension is

irreducible, as we can always split the components of B by base extensions till they cannot be

split any further.

Consider the subsheaf G of H ′ which consists of all local sections, whose divisors in the
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moving part contain A. Then for every open set U in C,

G(U) = {s ∈ H ′(U)|( f ∗s)A ∈ mALA},

where L = OS (N(H) + εF) and A denotes the generic point of A in S . Since the moving

part contines no common part, there must exist local sections of H ′ which do not contain A,

and hence G must be a proper subbundle of H ′. Now B̃′ contains Ã iff the section in H0(H̃ ′)

corresponding to B̃′ lies in G̃. Therefore the lemma is reduced to showing that:

For any proper subbundle G of H ′, there is a good base extension ψ : C̃ → C such that

H0(H̃ ′) contains a section of positive degree not lying in G̃.

We show this by the above lemma with a minor modification. In fact, the cases of

rank(H ′) = 1 or 2 go without significant change. For the general case, we first suppose that

there is a section s of positive degree in H0(H ′), using the above lemma. If s does not lie in G

we are done; otherwise s generates a subbundle G1 of G. Then the image of G in H ′/G1 is a

proper subbundle, hence by induction hypothesis, we get an invertible subbundleH1 of positive

degree inH ′/G1 (modulo base extensions) which is not contained in the image of G. Now use

the proof of the rank 2 case to the inverse image ofH1 inH ′, and the lemma is shown. �

4.2.6 Technical lemmas

The following two technical lemmas can be extended directly from the classical case without

any alteration to characteristic p > 0.

Lemma 4.22. Let f : S → C as before, with a general fibre F. Let D be a divisor on S , and

suppose that there is a sequence of effective divisors

Z1 ≥ Z2 ≥ . . . ≥ Zn ≥ Zn+1 = 0

and a sequence of rational numbers

µ1 > µ2 > . . . > µn > µn+1 = 0
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such that for every i, Ni = D − Zi − µiF is a nef Q-divisor. Then

D2 ≥

n∑
i=1

(di + di+1)(µi − µi+1),

where di = NiF.

Proof. See 3.15 �

Lemma 4.23. Let D1, D2 be two numerically equivalent divisors on S such that Ni = Di − Zi −

µiF, i = 1, 2, is nef, where µ1, µ2 are rational numbers with µ1 ≥ µ2, and Z1,Z2 are effective

divisors. Let Z be the common part of Z1 and Z2 (i.e., Yi = Zi − Z are two effective divisors

without common component). Then

N = D2 − Z − µ2F

is nef.

Proof. See 3.16 �

4.3 Proof of the main theorem

Let f : S → C over k be a fibration with F a general fibre of genus g ≥ 2. Given f : S → C we

have the following induced exact sequence,

π1(F)→ π1(S )→ Π(C)→ 1

Consider the pro-l quotient of π1(F) and the resulting push-out square of groups.

π1(F)
φ //

ψ
��

π1(S ) //

��

Π(C)

πl
1(F) α // Π

Π is defined as the push-out of the diagram given by the morphisms φ : π1(F) → π1(S ) and

ψ : π1(F)→ πl
1(F). It is the free product of πl

1(F) and π1(S ) with amalgamation defined by the

following relation:

φ(α)ψ−1(α) = e, α ∈ π1(F)
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Π = πl
1(F) ∗ π1(S )/N

where N is the smallest normal subgroup containing words of the form φ(α)ψ−1(α)

Theorem 4.24. Let k be an algebraically closed field of characteristic p > 0 and l a prime that

is distinct from p. Let S be a smooth and projective surface over k. Assume that S admits a

generically ordinary semi-stable fibration f : S → C to a smooth and projective curve C over k

that is not isotrivial, and that S is relatively minimal with respect to f . We also assume that the

generic fibre of f is strongly l-ordinary. Let F be a general fibre of f , which is a smooth curve

of genus g ≥ 2. Let KS/C = KS − f ∗KC be a relative canonical divisor. We have the following

commutative diagram of profinite groups,

π1(F) //

��

π1(S ) //

��

Π(C)→ 1

πl
1(F) // Π

where π1 is the étale fundamental group, πl
1 is the pro-l fundamental group and Π is the pushout

group.

If K2
S/C < 4 deg( f∗ωS/C) and f is non-hyperelliptic, then the image of πl

1(F)→ Π is trivial.

Proof. We first show that if the image of α is non-trivial then there exists a non-vertical l-torsion

element in Pic(S ). Since α is a continuous map between profinite groups, Im(α) is a closed and

normal subgroup of Π. If Im(α) has a finite quotient G � Im(α)/K, then by basic properties of

profinite groups, G is reflected in some étale covering S̃ of S . i.e. by Stein Factorization, the

morphism S̃ → S can be factored into ψ ◦ f̃ such that f̃ : S̃ → C̃ is a fibration and ψ : C̃ → C

is an finite morphism. If Ŝ is the minimal desingularization of S ×C C̃, then we can assume that

the morphism S̃ → Ŝ corresponds to G and we get the following commutative diagram,

S̃
G

��=
==

==
==

��.
..

..
..

..
..

..
.. f̃

''NNNNNNNNNNNNNNN

Ŝ
f̂ //

��

C̃

��
S

f // C.
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Since λ( f̂ ) ≤ λ( f ) < 4 by 4.14 and 4.13, and generic ordinarity is preserved by base change,

we can replace f with f̂ . Since G is a finite l-group with order ln, it contains normal subgroups

of order li with 0 ≤ i ≤ n, and hence by taking a quotient we may as well assume that G is a

cyclic group of degree l. Then G corresponds to an étale l-cyclic cover S̃ → S or equivalently

a non-vertical l-torsion η on S , such that S̃ := Spec(⊕l−1
i=0η

⊗i).

We will now see that this is impossible using the lemmas proved above. Let Dη be an

effective divisor on S having classωS/C⊗η. Then by 4.10, E = f∗(ωS/C⊗η) is locally free of rank

g− 1 and has non-negative quotients. Let the Harder-Narasimhan filtration of E = f∗(ωS/C ⊗ η)

be given by

0 = E1 ⊂ E2 ⊂ . . . ⊂ En = E.

Take

ri = rank(Ei)

µi = µ f (Ei) = µ(Ei/Ei−1)

Zi = Z(Ei)

Ni = N(Ei)

di = NiF

Let also Nn+1 = Dη, rn+1 = g − 1, Zn+1 = 0, µn+1 = 0, dn+1 = DηF. Thus we have a sequence

of effective divisors

Z1 ≥ Z2 ≥ Z3 ≥ . . . ≥ Zn+1 = 0

and by above, a sequence of non-negative rational numbers

µ1 > µ2 > µ3 > . . . > µn+1 = 0

such that by 4.21 and [5], Ni is a nef Q-divisor. This satisfies the conditions of Lemma 4.22,

which gives

K2
S/C = D2

η ≥

n∑
i=1

(di + di+1)(µi − µi+1) (4.1)
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On the other hand,

∆( f ) = degE =
n∑

i=1

ri(µi − µi+1) (4.2)

Combining 4.1 and 4.2, we see that we will have λ ≥ 4 if

di + di+1 ≥ 4ri (4.3)

Now di is defined to be the degree of NiF. Since Ni is nef, we may assume NiF is effective

and also NiF ≤ Nn+1F = DηF = 2g − 2. Further the dimension of the restriction of the linear

system Ni to F is ri − 1. Clifford’s Lemma states that,

dim|D| ≤
1
2

deg D

with equality if and only if either D = 0 or D = KF when X is non-hyperelliptic. Since NnF , 0

and NnF , KF ,

ri − 1 <
1
2

di

2ri − 2 < di

2ri − 1 ≤ di

Thus we have di ≥ 2ri − 1, i = 1, . . . , n, except if d1 = 0, (and r1 = 1). We require condition 4.3

to be satisfied for all i to prove the theorem. For 2 ≤ i ≤ n − 1 we have

di + di+1 ≥ 2ri − 1 + 2ri+1 − 1

≥ 2ri + 2(ri + 1) − 2

≥ 4ri

so that condition 4.3 is satisfied. However the cases i = 1 and i = n are more delicate. In the

case i = 1, d1 + d2 ≥ 0 + 2r2 − 1. If r2 = 2 then d1 + d2 ≥ 3. Therefore if d2 = 3 condition

4.3 will not be satisfied. In the case i = n, we have dn ≥ 2rn − 1 = 2(g − 1) − 1 = 2g − 3 and

dn+1 = 2g − 2, therefore

dn + dn+1 ≥ 2(g − 1) − 1 + 2g − 2

≥ 4(g − 1) − 1.
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Thus if dn = 2g − 3 again condition 4.3 is not satisfied. Hence the theorem is proved except if

dn = 2g − 3 or d1 = 0, d2 = 3 (hence r1 = 1, r2 = 2).

We will first try to modify Nn so that dn > 2g − 3. Now dn is defined to be the degree of

the linear system |Nn|F |. So

dn = NnF = M( f∗ωS/C ⊗ η)F = 2g − 3.

Nn = Dη − Z( f∗ωS/C ⊗ η) − µnF and Z( f∗ωS/C ⊗ η) is the fixed part of |Dη|. We have defined

the restriction of Z( f∗ωS/C ⊗ η) to F to be the fixed part of the linear system E = f∗ωS/C ⊗ η

restricted to F, which will be the fixed part of the linear system |Dη| restricted to F. Therefore

Nn|F = M(E)|F = Dη|F − Z(E)|F .

We may assume that for every torsion η, dn = 2g − 3 or equivalently the linear system |Dη|F |

has a base point Pη. We fix an η and let P = Pη. Let D be a divisor in |M(E)|F |.

2g − 3 = deg(D)

= deg(Dη|F − Z(E)|F)

= deg(KF) + deg(η|F − Z(E)|F)

= 2g − 2 − deg(Z(E)|F)

Therefore deg(Z(E)|F) = 1 which implies Z(E)|F = P, since we may assume Z(E)|F is effective.

Applying Riemann Roch to the divisor D, we get

h0(F,OF(D)) − h0(F,L(KF − D)) = deg D + 1 − g

g − 1 − h0(F,OF(KF − D)) = 2g − 3 + 1 − g

h0(F,OF(KF − D)) = g − 1 − 2g + 3 − 1 + g

h0(F,OF KF − D)) = 1

Now KF − D is linearly equivalent to −η|F + P (we abuse notation to denote a divisor in the

class η|F by η|F itself) . Since h0(F,OF(KF − D)) = 1, the complete linear system | − η|F + P|
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is nonempty. Hence | − η|F + P| is linearly equivalent to some effective divisor Q of degree 1.

Therefore Q is a point of F such that η|F = OF(P − Q). Further note that η cannot have order

two. If it does then 2P ≡ 2Q. However |2Q| is a linear system of degree 2 and dimension 1.

This contradicts the hypothesis that f is non-hyperellitptic, ([18] IV.5). Consequently η|2F =

OF(P′ − Q′) with (P′ , Q′). Note also that P , P′ else 2P − 2Q ≡ P − Q′, or 2Q ≡ P + Q′,

again contradicting the condition that F is non-hyperelliptic. We assume

µ f ( f∗ωS/C ⊗ η) ≤ µ f ( f∗ωS/C ⊗ η
2)

Let Z′1 = Z( f∗ωS/C ⊗ η), Z′2 = Z( f∗ωS/C ⊗ η
2). Since Z′i F = 1, there is a unique section Ci in Z′i

such that C1 ∩ F = {P}, C2 ∩ F = {P′}, in particular C1 , C2. Now we can apply Lemma 4.23

and let Nn = Dη − Z − µnF, where Z is the common part of Z′1 and Z′2. Then dn = 2g − 2.

Next we consider the case d1 = 0, d2 = 3. We want to show

K2
S/C ≥ 4∆( f ).

We will do this by considering two cases; d3 = 5 and d3 ≥ 6. First we consider the case d3 = 5.

Since r3 = 3 we have 3 = r3 < rn = g − 1, hence g ≥ 5. The linear system |N3|F | is a g2
5 and

hence defines a map φ of F to P2. The image of F is a plane curve B which is not contained

in any hyperplane. The degree of B is equal to B.H where H is a divisor in the class O(1).

However deg(φ∗O(1)) = 5 which implies B.H = 5. Hence B is a curve of degree 5. |N3|F |

has a sublinear system |N2|F | which is a g1
3. This implies that B has a double point. Then by a

Riemann-Hurwitz type formula for singular curves ([14]), we have g ≤ 5. Therefore g = 5, and

n = 4 and d4 = 8. If µ1 − µ2 ≤ µ3 − µ4, 4.1 and 4.2 give

K2
S/C ≥ 3(µ1 − µ2) + 8(µ2 − µ3) + 13(µ3 − µ4) + 16µ4

≥ 4(µ1 − µ2) + 8(µ2 − µ3) + 12(µ3 − µ4) + 16µ4

≥ 4∆( f )

On the other hand if µ1−µ2 ≥ µ3−µ4, we use Lemma 4.22 on the sequence {Z1,Z4, 0},{µ1, µ4, 0}
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to get

K2
S/C ≥ 8(µ1 − µ4) + 16µ4 ≥ 4∆( f )

We finally consider the case when d3 ≥ 6. We then have two possibilities: if µ1 − µ2 ≤

µ2 − µ3, then by 4.1 and 4.2,

K2
S/C ≥ 3(µ1 − µ2) + 9(µ2 − µ3) +

n∑
i=3

(di + di+1)(µi − µi+1)

≥ 4(µ1 − µ2) + 8(µ2 − µ3) + 4
n∑

i=3

(µi − µi+1)

= 4∆( f )

otherwise use Lemma 4.23 on the sequences

{Z1,Z3,Z4, . . . ,Zn, 0}, {µ1, µ3, µ4, . . . , µn, 0},

to get

K2
S/C ≥ 6(µ1 − µ3) +

n∑
i=3

(di + di+1)(µi − µi+1)

≥ 4(µ1 − µ2) + 8(µ2 − µ3) + 4
n∑

i=3

(µi − µi+1)

= 4∆( f )

�
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