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Abstract

Neural networks demonstrate great potential for discovering non-linear relationships
in time-series and extrapolating from them. Results of forecasting using financial data are
particularly good [LapFar87, Schone90, ChaMeh92]. In contrast, traditional statistical
methods are restrictive as they try to express these non-linear relationships as linear models.

This thesis investigates the use of the Backpropagation neural model for time-series
forecasting. In general, neural forecasting research [Hinton87] can be approached in three
ways: research into the weight space, into the physical representation of inputs, and into the
learning algorithms. A new method to enhance input representations to a neural network,
referred to as model sNx, has been developed. It has been studied alongside a traditional
method in model N. The two methods reduce the unprocessed network inputs to a value
between 0 and 1. Unlike the method in model N, the variants of model sNx, sN1 and sN2,
accentuate the contracted input value by different magnitudes. This different approach to
data reduction exploits the characteristics of neural extrapolation to achieve better forecasts.
The feasibility of the principle of model sNx has been shown in forecasting the direction of
the FTSE-100 Index.

The experimental strategy involved optimisation procedures using one data set and
the application of the optimal network from each model to make forecasts on different data
sets with similar and dissimilar patterns to the first.

A Neural Forecasting System (NFS) has been developed as a vehicle for the research.
The NFS offers historical and live simulations, and supports: a data alignment facility for
standardising data files with non-uniform sampling times and volumes, and merging them
into a spreadsheet; a parameter specification table for specifications of neural and system
control parameter values; a pattern specification language for specification of input pattern
formation using one or more time-series, and loading to a configured network; a snapshot
facility for re-construction of a partially trained network to continue or extend a training
session, or re-construction of a trained network to forecast for live tests; and a log facility for
recording experimental results.

Using the NFS, specific pattern features selected from major market trends have been
investigated [Pring80]: triple-top (“three peaks”), double-top (“two peaks”), narrow
band (“modulating™), bull (“rising”) and recovery (“U-turn™). Initially, the triple-top pattern
was used in the N model to select between the logarithmic or linear data form for presenting
raw input data. The selected linear method was then used in models sN1, sN2 and N for
network optimisations. Experiments undertaken used networks of permutations of sizes of
input nodes (I), hidden nodes (H), and tolerance value. Selections were made for: the best
method, by value, direction, or value and direction, for measuring prediction accuracy; the



best configuration function, H = I ¢, with ¢ equal to 0.9, 2 or 3; and the better of sN1 and
sN2. The evaluation parameters were, among others, the prediction accuracy (%), the
weighted return (%), the Relative Threshold Prediction Index (RTPI) indicator, the forecast
error margins. The RTPI was developed to filter out networks forecasting above a minimum
prediction accuracy with a credit in the weighted return (%). Two optimal networks, one
representing model sNx and one N were selected and then tested on the double-top, narrow
band, bull and recovery patterns.

This thesis made the following research contributions.
A new method in model sNx capable of more consistent and accurate predictions.
The new RTPI neural forecasting indicator.

) A method to forecast during the consolidation (“non-diversifying”) trend which most
traditional methods are not good at.

. A set of improvements for more effective neural forecasting systems.
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Chapter 1

Introduction

This chapter presents the motivations, aim, and contributions of this thesis.
Initially, it states the properties of neural networks that motivate this research.
There is then a survey of financial neural forecasting, emphasising research
systems applied to “real-world” data. Next, it presents the aim of the thesis,
the objectives of the experiments undertaken, and the choice of specific pattern
features chosen for the experimental data sets. Finally, it gives an overview of
the thesis contribution and organisation.

1.1 Motivations

Neural networks have great potential for discovering the underlying structure of
non-linear time-series and extrapolating these time-series to the future [LapFar88, ShaPat90,
TanAlm90, MarHil91, SriLoo91]. In contrast, traditional statistical methods [HanRei89] are
restrictive as they try to express these non-linear relationships as linear models. Dutta and
Shekar [DutShe88] confirmed this in their comparison studies, neural networks consistently
out-perform multi-regression models for predicting bond ratings: the former averaging at
80% accuracy against 60% by the latter. In addition, Chakraborty et al [ChaMeh92] showed
their neural multi-index model approximates flour prices significantly better, providing a
better fit for the test data than Tiao and Tsay’s auto-regressive moving average model.
Latterly, these optimistic views have been reinforced by Schénenberg [Schéne90] who
obtained 90% accuracy for forecasting stocks.

Neural networks are known especially for their adaptive features and massive
parallelism. With the impetus of early work like that of Carpenter and
Grossberg [CarGro88], Rumelhart, McCelland and Hinton [RumMcC86, RumHin86],
Sejnowski [SejRos86], and Kohonen [Kohone88], the research momentum escalated with
reports of results from numerous and varied application domains for signal processing,
natural language processing and pattern recognition. The potential benefits of this
programming paradigm have also attracted a lot of interest from the financial sector. Some
of its many applications are for fraud detection, mortgage underwriting [ReiCol90],
extracting information from accounting reports [TriBer90], bond rating [ShaPat90,
SurSin90], bankruptcy prediction [OdoSha%90, RagSch91], and forecasting [KimAsa90,
RefAze92, ChaMeh92, TanKam92, JanL ai93].
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Figure 1.1 Computation Of A Simple Node

Artificial neural networks are mathematical models of simulated neurons based on
our present understanding of the biological nervous system. The characteristics of the
well-studied models, for example the Backpropagation model, ART, the Perceptron,
Self-Organising Maps are ‘well documented [Lippma87, Wasser89, Dayhof90, HerKro91].
Typically, a neural network like that of a Backpropagation model is composed of a number
of processing elements (nodes) that are densely interconnected by links with variable
weights. Unlike conventional sequential processing, all the adjacent nodes process their
outputs in parallel. Each node delivers an output, y according to an activation rule. In its
simplest form, the rule for a non-linear output of a node is a sum of its N weighted inputs as
shown in Figure 1.1. The transition function, f, normally has a binary, linear, sigmoid or
hyperbolic tangent characteristic. As a result, a neural model is made unique by the
specifications of the topology and dimension of the network, the characteristics of the nodes
including the type of transition function used, and the learning algorithm.

1.1.1 Forecasting Research Approaches

In his report on neural learning procedures, Hinton [Hinton87] classified neural
research into three main categories: search, representation and learning.- The investigative
procedure carried out in the first category searches the weight space for an optimal solution
to the network mapping in a constraint-satisfying manner. In the second, the research
focuses on identifying the physical representation of the inputs that best represents the salient
features of the domain. Finally, in the learning category, the research estimates a learning
algorithm modelling the relationships of all the network elements to present a mapping

solution in some numeric form.

On a similar level, forecasting techniques have been classified into two
categories: qualitative methods and quantitative methods [HanRei89]. Qualitative methods
cover a spectrum of non-science techniques, most of which are well-documented, tried and
tested explanations and judgements. In contrast, quantitative research covers well-defined
models for either time-series or econometric forecasting. Time-series forecasting predicts the
future value by discovering the pattern of the historical series and extrapolating the value to
the future. Econometric forecasting is, on the contrary, designed to predict a dependent
variable by discovering the form of a cause-effect relationship using one (univariate) or
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more (multivariate) independent variables and to use the learnt interdependencies for
prediction.

From the point of view of neural computing, neural forecasting research could,
therefore, be viewed as a concentration of efforts in any one of the three neural categories
applied to either one of the forecasting methods using a specific set of financial data for
analysis. Of the three choices, the most popular approach has initially been the exploitation
of the unique learning ability of a neural model on a specific forecasting application. To
date, the Backpropagation model has always been the model of choice, mainly because it has
been widely researched and the supervised learning strategy is well-suited for the task.

For instance, Schénenberg [Schéne90] carried out time-series forecasting research on
German stocks by experimenting with four different neural models, Adaline, Madaline, the
Perceptron and Backpropagation. In his approach, he had taken to optimising the models’
networks with regard to learning the features of each of the different types of stocks. He was
able to isolate and differentiate the behaviour of the models by fine-tuning neural parameters
such as the size and the types of input of the input vectors, the ways of splitting the input
vectors and the network configuration.

Varfis and Versino [VarVer91] like Schonenberg used a Backpropagation model for
univariate forecasting. One of the areas on which they concentrated was the input data and
the structure of the input vectors. Their main concern was the simulation of the underlying
features of seasonal behaviour and time lags in an otherwise “flat” network.

Unlike Schﬁnenberg, or Varfis and Versino, who used different time-series
information derived from one specific type of price index for inputs to the neural model,
there are others like Kimoto and Asakawa [KimAsa90], and Windsor and
Harker [WindHar90] who have used a neural model for multivariate forecasting. Kimoto
and Asakawa, for example, developed a prediction system for the Japanese stock index,
TOPIX, using clusters of Backpropagation networks. Each cluster in the network is
responsible for a batch of indices and macro-economic data, and all the outputs are combined
to produce a weighted average for the weekly returns of TOPIX. In addition to optimising
the network, they also modified the learning algorithm to improve the speed of training. The
supplementary learning process is one such enhancement. It is a control applied to each
training cycle to ensure a training pattern would not be unnecessarily presented for further
training once the pattern has been sufficiently learnt. The learning criteria is based on the
dynamic minimum network error achieved in the mapping.

Windsor and Harker, on the other hand, adapted a Backpropagation model to
simultaneously predict the annual movements of a range of London Stock Exchange Indices.
In particular, a steepness threshold was imposed onto the sigmoid transition function to
control the interdependencies and correlations of the indices. This was to force the network
to predict other chosen indices in addition to the index to be predicted while interpreting the
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movements of the indices as a whole. Apart from that, they also investigated ways to bring
out the structure of the training data. To do so, they focused on methods for representing the
data. They transformed the actual input values to fit logarithms onto a regression line using
an equation which they derived. As a result, their system predicted the deviations of the
Index from the exponential growth instead of its absolute value.

The papers by Refenes [Refene91], and Jang and Lai [JanLai93] are examples of
approaches by learning. Refenes’ CLS+ model forecasts the Deutschemarks by dynamically
updating the dimension of the hidden nodes using the constructive learning procedure. The
model is supported by a linear classifier which can be trained to optimise the errors between
its output and the target. As it is, a training session always commences with a one hidden
node network. This is followed by a look ahead test procedure to establish whether there
would be a reduction in the errors by an additional linear classifier. An affirmative result
would have the dimension of the hidden layer increased and the weights of the linear
classifier frozen. The test procedure is repeated for further additional classifiers until an
optimal configuration is obtained.

Jang and Lai, who found the fixed-structure Backpropagation. model too rigid,
developed the DAS net to synthesise and adapt its topology for Taiwanese stocks. The net is
a hierarchy of networks representing both the short- and long-term knowledge of a selection
of technical indices. The short-term knowledge is used for short-term prediction, principally
for trading decision making. In addition, it supplements the knowledge for the long-term
view as the time window advances. Together, these two levels of knowledge control the
continuous self-adjustment of the network’s assessment of curve-fitting.

Yet another variant of the learning approach is to explore the characteristics of the
nodes as [Casdag89] and [JonLee90] have done. They, like Jang and Lai [JanLai93],
redressed the fixed-structure problem with radial basis functions (RBF). The research on this
alternative tool is concerned with the representation of the hidden layer and its evaluation.
The composition of an RBF network is a number of RBF nodes evaluating a Gaussian-like
kernel function, and because it is designed to use a minimum hidden layer dimension, it is
claimed to offer a better network generalisation. Another of its advantages is that the layers
of the network can be trained independently on a layer by layer basis. This is a sharp
contrast to the usual method of computing each node and expanding it across the layers of the
network, or incrementally like CLS+.

The Backpropagation model also has weaknesses. The network is often described as
having a fixed structure, with its inability to accommodate changes in time window sizes, and
being “flat”, lacking a third dimension. In addition, training is often slow, with a likelihood
of getting caught in a local minima. As a result, derivatives of the model, like those
highlighted, have been researched to overcome some of these problems. A recurrent theme
that is often encountered in financial applications is the simulation of the time dimension of a
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2-dimensional “flat” network. This is an inconvenience which Varfis and Vesino tried to
simulate by aligning data from more than one recording time alongside each other as inputs
to a 2-dimensional input vector. Others like Kamijo and Tanagawa [KamTan90], and
Wong [Wong91] tried to redress the issue explicitly by adapting the framework of the
network itself.

In the case of Tanigawa and Kamijo [KamTan90, TanKam92], the authors used- a
recurrent neural network for the recognition of candle chart patterns (discussed in Chapter 2).
Effectively, a recurrent network [WilZip89] is a generalised Backpropagation model with a
new learning algorithm capable of retaining temporal information. The recurrent learning
procedure uses the information that has been accumulated in the memory which can either
have a fixed or indefinite historical span. In [TanKam92], the proposed extended
Backpropagation network had two hidden layers. Each of these was divided into two sets of
units, for holding the stock prices and for the corresponding temporal information about its
previous activity. Its successes in recognising a triangle chart pattern resulted in a Dynamic
Programming matcher being incorporated into a new version of the system. The matcher is
designed to resolve non-linear time elasticity (a feature of charting where the pattern could be
formed but could have variable window sizes).

Wong [Wong91] introduced time by the addition of a third dimension to a neural
model. Unlike [TanKam92]’s 2-dimensional temporal network which simulates time by
splitting the hidden layers into two halves, the NeuroForecaster simulates time orientation by
concatenating duplicates of an entire 2-dimensional network to form a single network. This
extensive network is burdened by long network training. Subsequently, the FastProp
learning algorithm [Wong91] was introduced to improve the rate of convergence. It trains
sections of the network and clusters them according to the ranking of the Accumulated Input
Error index. The index is built with a strategy to rank the data from an entire time-series to
several clusters according to the dynamic causal relationship between the input data and the
output.

Despite the various efforts made to enhance the standard Backpropagation model for
forecasting with non-linear inputs, Deboeck [Deboec92], being a financial player, called for
attention to an approach that is feasible but yet often overlooked. He asserted that in order
for financial systems to benefit from neural processing, it is more important to concentrate on
the basics of the application domain rather than the network paradigms. Areas suggested are
those relating to the dynamics of the domain such as the pre-processing of input data, risk
management and trading styles.

Following a survey of research approaches for financial forecasting, the approach
taken for this thesis follows Deboeck’s point of view. Specifically, it concentrates on
Hinton’s representation category, focusing on the method of transformation of input data to a
Backpropagation network.
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1.2 Thesis Aim

The AIM of this thesis is to investigate the use of the Backpropagation neural model
for time-series forecasting. A new method to enhance input representations to a neural
network, referred to as model sNx, has been developed. It has been studied alongside a
traditional method in model N. The two methods reduce the unprocessed network inputs to a
value between 0 and 1. Unlike the method in model N, the variants of model sNx, sN1 and
sN2, accentuate the contracted input value by different magnitudes. This approach to data
reduction exploits the characteristics of neural extrapolation to achieve better prediction
accuracy. The feasibility of the principle of model sNx has been shown in forecasting the
direction of the FTSE-100 Index.

The experimental strategy involves optimisation procedures using one data set and the
application of the optimal network from each model to make forecasts on different data sets
with similar and dissimilar pattern features to the first.

Experimental Objectives

The objectives of the experiments for optimisation were:

(D To select a suitable raw data form

Either the ogarithmic or linear (absolute value) data form is selected as more suitable
for inputs to an NFS (explained in Section 1.3) configured network. This also serves
to justify the research approach for this thesis. The better data form was applied to
the rest of the experiments.

(2) To select a suitable prediction accuracy measurement.

A prediction is accurate if the direction of a prediction correlates with the tracking
data. A data correlation can be defined by value, direction, or value and direction. A
forecast value for tomorrow is correct according to interpretation by: vaiue, if the
movement of the forecast value compared with today’s tracking value is the same as
the movement of the tracking data, from today to tomorrow; direction, if the direction
of the forecast movement from today to tomorrow correlates with the movement of
the tracking data at the same period; value and direction, if the interpretations for
each of the separate elements are combined. The best interpretations are subsequently
used for evaluations of other objectives.

3) To select a suitable configuration function.

A configuration function relates the dimension of the hidden layer, H, to the
dimension of the input layer, /, by H =1 ¢. Three values of ¢ were used: 0.9, 2 and 3.

18



Each of the three function values were combined with a set of five different 7 values
to configure a group of networks as contenders for an optimal network to represent
models N and sNx. The test cases were cross-validated with the tolerance value.

4 To select the better version of model sNx.

The better version, either sSN1 or sN2, forecasting with a more consistent manner
across the group of test cases, is selected.

An optimal network selected for each model, sNx and N, is like the selection in 4),
characterised by consistency, a gently rolling prediction accuracy landscape across the
section of the evaluation window without intermittent spurts of exceedingly good accuracy.

The objective of the experiments applying the optimised networks was:

&) To observe the optimised network accommodating to new data sets.

The double-top pattern (explained in the section on Experimental Data below) was
applied, in part, to test the networks’ ability to adapt to a new data set similar to one
on which it was optimised. Like the other experimental patterns, it was used to test
the optimised network’s performance on specific pattern features.

The evaluations for objectives (3), (4) and (5) were based on a combination of
performance statistics, among them being, the test correlation (%), the corresponding
weighted return (%), the RTPI indicator (explained in Section 1.3) and the forecast error
margins. The test correlation percentage is the prediction accuracy percentage measured for
the test data set. The weighted return percentage is the final total of the number of Index
points made or lost, as points amounting to the size of the movement are added whenever a
forecast correlates and subtracted when it does not. It is an indirect indication of a network’s
ability to forecast the salient movements of the test pattern. The RTPI indicator is developed
to combine these two measurements to differentiate the forecasting performances of
networks. A minimum accuracy of 50% was assigned to the interpretation of a “weak”
performance and a “weak” network is differentiated by a negative RTPI value as opposed to
the positive valued “good” network.

The effectiveness of a neural forecasting tool is discovered by appraising the neural
forecasting results in a practical situation, highlighting its usability and areas for
improvement.

Experimental Data

The experimental data sets were selected from historical periods showing three data
trends: consolidation (“non-diversifying” pattern), bull (“rising” pattern) and recovery
(“U-turn” pattern). The consolidation trend was chosen for the optimisation procedures
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because its data values fluctuate consistently within a relatively smaller range of values,

therefore being particularly suitable for training and testing. As a result, three different

consolidation patterns were used, triple-top, double-top and narrow band, in addition to the

bull and recovery patterns. Each of these patterns have distinctive observational features:

(a)

(b)

©

(d)

(e)

1.3

triple-top.

Its signature is three almost identical peaks. The data values across the time window
lie neatly within fixed upper and lower bounds. The test pattern comprised a peak
formation. It was used for the optimisation procedures.

double-top.

Its signature is two.rather than three peaks. Some of the data values in the second
peak are slightly outside the upper bound of the first. This section is part of the test
pattern.

narrow band.

Its signature is data modulating within a tight range. An additional and interesting
feature is a breakout, a sudden diversification with a rising pattern at the end. The
major objective is forecasting the breakout section whose data values are outside the

range on which the network has b