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Electron-electron correlation, excitation and quantum interference are generally impor-

tant in attosecond physics, especially for imaging of atoms and molecules. These are

the main topics addressed in this thesis, in the context of laser-induced nonsequential

double ionization (NSDI). Excitation is the most extensive topic of this work and is

addressed within a rigorous, semi-analytic study of the recollision-excitation with sub-

sequent tunneling ionization (RESI) mechanism in laser-induced nonsequential double

ionization (NSDI). This is the most comprehensive study of this mechanism performed

in the context of the strong-field approximation to the preset date. Subsequently, we

investigate potential imaging applications, by computing electron momentum distribu-

tions of atoms and molecules. For atoms, we show that the RESI electron momentum

distributions depends very critically on the bound state wave function. For molecules,

we address the influence of the molecular orbital geometry and of the molecular align-

ment with respect to the laser-field polarization, by computing the electron momentum

distributions of N2 and Li2. We show that the electron-momentum distributions exhibit

interference maxima and minima, either due to the electron emission at spatially sep-

arated centers, or to the orbital geometry, such as nodes of the atomic wavefunction.

In this latter case, we do not restrict ourself only to RESI, and we also compute the

electron momentum distributions of N2 for electron-impact ionization, in which we also

observe two-center interference patterns when the molecule is aligned along the laser-

field polarization direction. The above-mentioned momentum constraints, together with

the strong dependence of the distributions on the bound states involved, the molecular

orbital geometry and the molecular alignment angle may be important for singling out

the RESI mechanism in actual physical situations and using NSDI in ultra-fast imag-

ing. In the final chapter, we present the first step taken by us in order to address the

above-stated issues using an approach beyond the strong field approximation.
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Chapter 1

Overview

This thesis brings together electron-electron correlation, excitation and quantum in-

terference in the context of laser-induced nonsequential double ionization. This phe-

nomenon occurs when atoms or molecules interact with very strong laser fields, whose

intensities are of the order of 1013 W/cm2 or higher.

The study of the interaction between matter and strong laser fields is one of the most

prominent and active fields of research in atomic physics with a range of applications,

such as solid-state physics [17–19], particle physics [20–22], novel X-ray sources [23–26],

XUV [27–29], plasma physics (in laser fusion process) [30–32] and attosecond science

[7, 33–35]. This field of research has posed a great challenge to theorists and experimen-

talists alike. This may be attributed to several reasons.

Firstly, at such high intensities the atomic binding forces are of the order of the laser

fields involved. Thus, at these intensities, perturbation theory with respect to the field

breaks down [36]. The breakdown of perturbation theory manifested itself as a series of

counterintuitive features, such as the “plateau” in high-order above-threshold ionization

(ATI)1 and high-order harmonic generation (HHG)2. The plateau corresponds to a “flat”

region in the HHG or ATI spectra, where harmonics or photoelectron peaks exhibit com-

parable intensities [37, 38], and it is followed by an abrupt decrease in the harmonic or

photoelectron yield, whose energy position is dependent on the driving-field intensity

[39]. These features have been observed since the early days of strong-field physics,

1Above-threshold ionization is a phenomenon in which matter absorbs more photons than the required
number for ionization to take place.

2High-order harmonic generation is the highly nonlinear response of an atom or molecule to an intense
driving field, emitting light whose frequency is a multiple of that of the driving field. For a typical, near
infrared field, these harmonics can extend up to around the 300th order, i.e., to the extreme ultraviolet
regime.

1
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Figure 1.1: Schematic representation of the characteristic time scales for: (upper
panel) microscopic motion and its connection with energy spacing between relevant
stationary states; (lower panel) the motion of one or several electrons and the collective

motion of an electronic ensemble (this is figure 2 in [7]).

when intense laser sources (1013 W/cm2 and higher) became feasible [40]. Their pres-

ence completely contradicted the predictions of perturbation theory with respect to the

field, in which one expects a monotonic decrease in the harmonic or ATI yield with in-

creasing harmonic order or photoelectron energy, without any plateau. The above-stated

features were highly counterintuitive findings and opened up a wide range of possibili-

ties for studying new physics. For comparison, the observation of only second-harmonic

generation in 1961 already revolutionized optical physics [41, 42].

Apart from that, at very high intensities relativistic effects start to play an important

role. Indeed, since the mid-1990s laser technology has advanced further to construct

lasers with intensities exceeding 1018 W/cm2 [43]. At this intensity regime, when a laser

interacts with an atomic system at a typical frequency range, it transfers kinetic energy

which is of the same order as the rest mass of the electron in the system [44]. Therefore,

the laser-atom interaction needs to be treated in a relativistic framework [45–51].

Secondly, this field of research deals not only with very strong fields, but also with some

of the shortest timescales in nature. This has led to the birth of a highly interdisciplinary

field of research in the past few years: attosecond science. This field, specifically, emerges

from the fact that high-intensity optical phenomena owe their existence to the laser-

induced rescattering or recombination of an electron with its parent ion. This process

takes place within time intervals of hundreds of attoseconds (1 attosecond = 10−18 s),

which is a fraction of a cycle of the laser field. This is the typical time scale of electron

motion in atoms and molecules. This allows one, in principle, to resolve and control

dynamic processes in matter with previously never-imagined precision.
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In principle, attosecond physics studies microscopic motion of electrons in atoms, molecules,

and nanoscale structures, the characteristic time scales of these microscopic motions is

shown in figure 1.1 Thus, this field acts as a bridge to connect different disciplines such

as physics, chemistry and biology [7]. Indeed, light including visible, x-ray and ultra-

violet is emitted due to the motion of electrons inside atoms. On the molecular scale,

electronic dynamics may change the biological function and initial chemical composition

of a system. These subsequent changes, however, due to initial attosecond dynamics of

valence electrons are not well understood. Apart from that, there are more open ques-

tions related to electronic dynamics in atoms, molecules and large systems (nanoscale

materials) [7]. How does an electron migrate in a molecule, or a proton rearrange it-

self? What changes, physically speaking, occur in such short timescales? Can one steer

electrons in chemical bonds in order to influence molecular structures or the function

of biomolecules? How can one optimize charge transformations in molecules to produce

solar cells with high efficiency? How can someone prevent radiation damage during

biological imaging? Can someone create compact x-rays by exciting atoms in a more

efficient way? These challenging questions can only be answered by studying, and even

controlling, the microscopic electron motion.

In addition, the generation of extremely short attosecond XUV (Extreme Ultraviolet)

pulses from high-order harmonics [52] has become possible. This has allowed even more

control. For instant, by superposing the XUV pulses to the laser field, one can resolve

dynamic processes in atom or molecule with precision of a few attoseconds [53]. In

conclusion, attosecond science has a great potential to develop a new ultrasensitive

molecular imaging and spectroscopic techniques [54]. Strong field phenomena can be

used as a tool to retrieve information about the molecular or atomic structure of the

sample. They also allow to study the quantum interference effects in molecules due to

high-order harmonic or photoelectron emission at separated centers [55], as shown in

figure.

Thirdly, in the context of the interaction of intense laser fields with a system with more

than one active electron, electron-electron correlation becomes extremely important [56].

Specifically, in a complex system with many electrons such as a molecule or solid, the

laser field interacts with many electrons as well as the electrons interacting with each

other and the residual ions. Thus at such high intensities the multielectron effects are

expected to play an important role. For example, multielectron effects shape the high-

order harmonic polarization [57] and multiphoton ionization of diatomic molecules [58].

It is necessary to consider the electron-electron correlation for studying the underlying

dynamics of a complex system. In particular, this correlation becomes very important

for ultrafast imaging of matter, which is an important goal in strong laser field physics.
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Figure 1.2: Schematic representation of the quantum interference effects in a molecule
due to photoelectron emission at separated centers (similar to the double-slit experi-
ment). Panel (a) represents geometry of the molecular orbitals; Panel (b) demonstrates
the double slit behavior of a diatomic molecule; and panel (c) shows the electron mo-
mentum distributions as functions of the momentum components parallel to the laser
field polarization with minima and maxima positions. I acknowledge Dr Carla Faria

for providing me the figure in panel (a).

This is a great change from the early 1990s and 2000s, when most strong field phenom-

ena could be explained by the Single Active Electron (SAE) approximation. In this

approximation the motion of the electron, which is released either by tunneling through

the atomic or molecular potential or multiphoton ionization, does not have any corre-

lation with other electrons in the system. It means the outermost electron governs the

ionization dynamics of the system while the other electrons are frozen in the core. Early

calculations beyond the SAE approximation (see [59, 60]) showed that dynamical elec-

tron correlation is important for the increase in the high-order harmonics of He atoms,

but it does not change the main features of HHG, such as the cutoff and plateau. Since

the early days of strong-field and attosecond science, however, there is one phenomenon

for which electron-electron correlation turns out to be very important: laser-induced

nonsequential double ionization (NSDI) [14]. NSDI occurs due to the inelastic recolli-

sion of an electron with its parent ion [61]. In this recollision, the first electron interacts

with a second electron by giving part of the kinetic energy it acquired from the driving

field to it. As a result of this interaction, the second electron is freed. In this process the

first electron can be ionized via several mechanisms (see detailed discussions in Chapter

2) depending on the laser field intensity, laser frequency and ionization potential of the

matter. In this thesis, the tunnel ionization mechanism is considered for ionization of

the first electron.

Nonsequential double ionization was first observed for Xe [62, 63], and then for noble-

gas atoms [8–10, 64–71] and for some molecules [72, 73]. Since then, it has been a

great challenge for theorists to develop a model to describe laser-induced nonsequential

double ionization. Indeed, there is no analytical solution for NSDI even for a simple
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system like helium and yet the numerical computation for such system is by no means

easy. Apart from the theoretical challenge, nonsequential double ionization exhibits

several advantages with regard to other strong field phenomena, such as ATI and HHG.

In particular, it allows one to extract more dynamic information about the system, as

the type of electron-electron interaction can be identified in the electron-momentum

distributions [74–77]3. Furthermore, events happening at different half cycles of the

driving field can be mapped into different momentum regions [74, 78]. For instance, the

theoretical investigation of NSDI with few-cycle pulses shows that the pulse envelope and

its carrier oscillation highly influence the electron momentum distributions. Therefore

this gives a great advantage to NSDI over HHG and ATI to delimit a confined phase space

region. Furthermore, the study of two-centre interference in diatomic molecules shows

that rescattering from a different molecular centre gives different electron momentum

distributions [79]. In comparison to other strong field phenomena, NSDI has great

potential in the study of excitation in atoms and molecules with attosecond time scales

(see examples given in Chapter 6 and 8).

This thesis focuses on the the different rescattering mechanisms involved in the NSDI

process by employing the strong-field approximation (SFA). In the SFA, the continuum

is approximated by field-dressed plane waves, which are nonperturbative with respect

to the laser field. In this method, in comparison to other available methods, the com-

putation of NSDI transition amplitudes can, to a very large extent, be done analyti-

cally. Furthermore, this method provides a rigorous and transparent picture for NSDI

mechanisms because the mechanisms involved can be defined clearly from the outset.

Therefore, the strong-field approximation gives good physical insight into the space-time

picture of the system.4

This thesis is structured as follows. Chapter 2 starts with a brief historical overview

of NSDI, discussing the physical mechanisms behind it and going through some of the

key features observed so far. It is followed by detailed discussions of two rescattering

mechanisms: electron-impact ionization and recollision excitation with subsequential

tunneling ionization (RESI). The former is a well studied mechanism and considerably

easier to model in the context of semianalytical approaches [61, 74, 75, 81–83], while

the latter is a less well studied mechanism and difficult to model. Therefore, the study

of RESI is the main objective of this thesis. Electron-impact ionization happens when,

at the time of the recollision, the first electron provides enough energy to the second

electron to overcome the second ionization potential. On the other hand, for RESI, upon

3In principle for strong field approximation, one can easily turn the electron-electron interaction on
and off or even defines different type of interactions.

4The coulomb potential, which is neglected in the SFA, affects the electron propagation in the con-
tinuum and causes a distortion in the electron momentum distributions as it was investigated for direct
above-threshold ionization [80].
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recollision the first electron does not have sufficient energy to directly ionize the second

electron. Instead, the second electron is promoted to an excited state, from which,

with laser assistance, it subsequently tunnels [84–86]. At the end of this chapter, the

existing theoretical models of NSDI are investigated by going through their advantages,

limitations and achievements.

Chapters 3 and 4 form the theoretical core of the thesis, the strong-field approximation,

for the electron-impact ionization (3.3.1) and RESI (3.3.2) mechanisms. Chapter 3 shows

how the SFA is applied to obtain the transition amplitude for electron-impact ionization

and RESI. The former transition amplitude has been extensively studied in the early

2000s (e.g. see [75, 77, 81, 87–89]), while development of the latter one is part of my PhD

work. Chapter 4 demonstrates how one can solve the multidimensional integral of the

transition amplitudes derived in Chapter 3 by applying the saddle-point approximation.

It is also shown when the saddle-point approximation needs to be replaced by the uniform

approximation and how these two approximations relate to each other.

The saddle-point equations, which are derived in Chapter 4, provide useful information

on the momentum-space regions populated by electron-impact ionization or RESI mech-

anisms as well as the shape of the electron momentum distributions. Chapter 5 shows

how one may use the saddle-point equations to determine constraints for the parallel

momentum components pn||(n = 1, 2) of electrons in the plane p1∥p2∥. These constraints

will be discussed in this chapter for both electron-impact ionization and RESI mecha-

nism. Furthermore, it is shown that these constraints can be used as a tool for sketching

the approximate shapes of the electron-momentum distributions. It is demonstrated

how the momentum-space constraints affect the electron momentum distributions for

different driving-field intensities.

Subsequently, in Chapter 6, it is shown that the RESI mechanism developed provides

information about the bound state with which the first electron collides, the bound state

to which the second electron is excited, and the type of electron-electron interaction.

In this chapter electron momentum distributions are computed for helium and argon

in the threshold and above-threshold intensity regimes5. The computation for argon is

compared with the existing experimental results [86]. The computations show that the

momentum constraints, together with the strong dependence of the distributions on the

bound states involved, may be important for singling out the RESI mechanism in actual

physical situations and using NSDI in ultrafast imaging.

5At the threshold, the kinetic energy of the first electron, upon return, is just sufficient to excite the
second electron.
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Chapters 7 and 8 focus on the NSDI for diatomic molecules. The simplest targets for

which the quantum interference effects due to photoelectron or high-harmonic emis-

sion at spatially separated centers can be studied are diatomic molecules. This can be

viewed as as the microscopic counterpart of a double-slit experiment [90, 91]6. Fur-

thermore, NSDI experiments on diatomic molecules have shown that molecular orbital

symmetry [84] and the alignment angle of the molecules with respect to the laser-field

polarization [13] affect the shapes of the electron momentum distributions. In Chapters

7 and 8 these two properties are investigated, based on the electron-impact ionization

and RESI mechanisms, respectively. The calculations demonstrate that the electron-

momentum distributions exhibit interference maxima and minima due to the electron

emission at spatially separated centers. Explicitly, in Chapter 8, we show that the

electron-momentum distributions exhibit interference maxima and minima, due to the

molecular orbital geometry, such as nodes of the atomic wavefunction. An analytical

expression for such patterns is provided for both electron-impact ionization and RESI.

For the former case, the classical limit of our model is employed.

Chapter 9 illustrates the Coulomb-corrected strong-field approximation. In the SFA,

the effect of Coulomb potential is neglected when the electron is in the continuum, i.e.

the ionized electron is propagating in the laser field. As a result, this approximation

is not capable of describing sub-cycle features of strong field phenomena [93]. Further-

more, in some cases, it gives an incorrect qualitative picture (more details can be found

in reference [94]). Therefore, one needs to move beyond the SFA to have a better de-

scription of strong field phenomena. The Coulomb-corrected strong-field approximation,

however, is an alternative model, in which the the Coulomb potential is incorporated

semi-analytically in the SFA. This chapter shows preliminary work on the Coulomb-

corrected strong-field approximation for direct ATI. In this process an electron is tunnel

ionized without any rescattering. In fact, this is the mechanism behind the dislodging

of the second electron in RESI. The long-term goal of this work is to implement the

Coulomb-corrected strong-field approximation to RESI. This approach yields identical

working formulae to those in Smirnova et al. [95], but is developed from different start-

ing points. In the last Chapter 9 a brief summary is provided with an illustration of

some of the main results of my PhD work.

Topics of complementary and technical nature in the thesis are provided in the appen-

dices. Derivation of the saddle-point approximation (SPA) and uniform approximation

is presented in Appendices A and B, respectively. The derivations cover the SPA and

uniform approximation of one-dimensional and multi-dimensional integrals in the real

6The role of entanglement and correlation between recollision of the first electron and ionization of
the second electron is being currently investigated [92].
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axis or the complex plane. Appendix C provides the general expressions for the prefac-

tors employed in Chapter 6 related to hydrogenic states. In Appendix D, an argument

is provided for neglecting the interference terms in electron momentum distributions of

equations 3.49. Finally, Appendix E contains the definition of the atomic units, which

are used throughout this thesis.



Chapter 2

Laser-induced Nonsequential

Double Ionization

2.1 Historical Overview

In the context of the interaction of matter with a strong laser field, nonsequential double

ionization occurs when there are at least two active electrons in the system. In this

phenomenon, two electrons have a strong correlation at the time of ionization. The

ionization may occur through several mechanisms.

For a high frequency laser, where individual photons have energy of the order of the

ionization potential of the electron in matter (XUV and above), a one-photon absorption

process can occur. For low frequency one-photon absorption does not lead to ionization.

In this frequency regime, multiphoton ionization or tunneling ionization occur for low

intensity laser and for a high intensity laser, respectively. In general, the adiabaticity

parameter known as the Keldysh parameter γ = ωl
√
Ip/El defines the limit in which

the mentioned mechanisms occur. Respectively, ωl, Ip and El give the frequency of the

laser, ionization potential and laser field intensity. If γ ≪ 1 tunneling ionization takes

place and if γ ≫ 1 multiphoton ionization happens.

In the early 1980s, the existence of NSDI was predicted for the first time, when the cross

section of multiphoton ionization (γ ≫ 1) of Xe atoms was investigated [62], based on

the rate of ionization against the intensity of an external laser field. In this work, two

cases of ionization were studied: 1) simultaneous ionization of two electrons from the

ground state of Xe atoms; and 2) ionization of a single electron from the ground state of

atoms and ground state of ions. In comparison with experimental results, the calculation

9
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showed that at low intensities doubly charged ions are mainly produced by the simulta-

neous removal of two electrons from the ground state of Xe. At high intensities they are

produced by a stepwise process via a singly charged ion. The former process corresponds

to nonsequential double ionization and the latter process to sequential double ionization

with no electron-electron correlation.

This existence of NSDI is not just limited to the multiphoton ionization mechanism.

Indeed, several experimental observations confirmed the existence of nonsequential dou-

ble ionization in the tunneling regime (γ ≪ 1) [8, 64]. The experiments showed an

enhancement, known as “the knee”, in the double ionization yield of both He and Ne as

a function of the driving field intensity, which deviated by several orders of magnitude

from predictions of sequential double ionization models. The experimental results which

show the knee for He are shown in figure (2.1). “The knee” has also been observed in

interaction of intense laser fields with molecules [72, 73, 96, 97].

The observation of “the knee” in the double ionization yield of several species made it

clear that correlated electron-electron dynamics is responsible for NSDI [98]. However,

it opened the debate about the physical mechanism responsible for nonsequential dou-

ble ionization in the low-frequency (near infrared), high-intensity (1013 − 1015 W/cm2)

regime. Since then, many mechanisms have been proposed to explain the NSDI for a

low-frequency, high-intensity laser field, such as collective tunneling [99], a shake-off pro-

cess [64] and rescattering [61, 100, 101]. For the collective tunneling, it was suggested

that in laser-matter interaction both electrons reach the continuum simultaneously by

tunneling ionization. For the shake-off process, it was suggested that the first electron

at the time of tunneling leaves the atom so quickly, that due to the very fast rearrange-

ment of the core, the second electron is promoted to an excited state, from which it

immediately ionizes. According to these mechanisms one would expect that both elec-

trons tunnel at the maxima of the external laser field, when the tunneling probability

maximizes. This happens due to the fact that at the field maxima the potential well of

the system is distorted the most. Thus, the electrons most probably leave the system

with zero momentum (for detailed discussion see reference [9]). On the other hand, the

scattering mechanism postulates a three-step physical process to explain NSDI: 1) Near

the maxima of the external laser field, the first electron is ionized by tunneling through

potential barrier of the atom, and subsequently accelerated in the continuum by the

laser field; 2) Later on when the phase of the field reverses, it is driven back towards its

parent ion by gaining some additional energy from the laser field; 3) Upon its return to

the core (most effectively with a linearly polarized field), the first electron collides with

the parent ion and releases the second electron by transmitting part of its kinetic energy
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Figure 2.1: Measured ionization yields as functions of the laser intensity for double
ionization of helium at 780 nm. The crosses represent the experimental results and the
rest theoretical calculations. For He2+ the solid and dot lines show the calculations for
sequential and nonsequential (NS) double ionization, respectively (figure 1 in [8]).

to the core. The first evidence that a laser-induced rescattering mechanism was respon-

sible for NSDI was a decrease in the double ionization yield with increasing driving-field

elipticity, whose physical explanation was consistent with the rescattering mechanism

[100]1.

However, up to one decade ago, the debate on the physical mechanism behind NSDI was

solely based on total multiple ionization rate measurements. New experimental evidence

in support of the rescattering mechanism, however, emerged when the ion momentum

distributions of neon [9] and helium [67], as functions of the ion momentum components

1With elliptical polarization the released electron does not have a chance to return to the core to
collide with it.
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Figure 2.2: Two-dimensional momentum distributions of single and double ioniza-
tion of Neon (p⊥, p||), in which distributions are integrated over the third Cartesian

coordinate (upper and middle panels of figure 2 in [9]).

parallel and perpendicular to the laser-field polarization, were measured using recoil-ion

momentum spectroscopy [102]. It was found that for doubly charged ions the electron

momentum distributions peaked at nonvanishing parallel momenta (for neon it was more

obvious), while for singly charged ions the electron momentum distributions peaked at

vanishing parallel momenta. The former process shows that both electrons prefer to leave

the atom when the laser field is at any local crossing, while the latter process indicates

that an electron leaves the atom at the the field maxima. Experimental results which

show the peaks for NSDI of neon are given in figure 2.2. Therefore, the observation of

peaks at nonvanishing parallel momenta are in favor of the rescattering mechanism for

NSDI in the low-frequency, high-intensity regime. In addition, coincident momentum

distributions of two electrons as functions of the electron momentum components parallel

to the laser-field polarization were measured for different atoms [9, 67, 86, 88, 103] and

molecules [13, 84]. NSDI can be studied in more detail using this technique, since it

provides a better picture for the correlation of the electrons at the time of recollision.

Like in the previous experiments, the electron momentum distributions show peaks at
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at nonvanishing parallel momenta, more astonishing evidence in favor of rescattering

mechanism for NSDI. Today, there is a general consensus that for infrared frequencies

at high intensities, i.e. 1013− 1015 W/cm2, the emission of more than one electron from

an atom or molecules occurs via rescattering [10].

Numerical calculations of NSDI, based on solving the time dependent Schrödinger equa-

tion (TDSE) in one dimension [104], predicted a V-shaped structure for the electron mo-

mentum distributions as functions of the parallel momentum components. At the begin-

ning, there was some doubt about their physical presence due to reduced dimensionality

in the model. A few years later, this feature was also predicted by semi-analytical mod-

els [74, 75, 105]. In 2007, two groups [10, 71] reported the V-shaped or finger-print-like

structure experimentally. In addition, this feature was identified in the computations

of NSDI of helium with the time dependent Schrödinger equation in three-dimensional

[11] and classical models [76, 77, 83]. Figure 2.3 demonstrates the finger-like structure

both theoretically and experimentally. One should note, however, that early calculations

and observations of NSDI suggested that the electrons left the system with the same

energy, and that the V-shaped structure was not present. This was due to the fact that

these early measurements did not have enough resolution to resolve this structure. The

finger-like structure may occur due to the long-range Coulomb interaction of the first

electron with the core at the time of the rescattering and the electron-electron repulsion

after simultaneous release of both electrons [75, 83, 105]. This causes the electrons to

have unequal momentum.

Electron correlation in NSDI has also been investigated in the near-infrared wavelength

(800 nm), low laser intensity regime. This is the intensity regime in which the max-

imal energy of the first electron, upon its return to the core, is below the ionization

potential of the second electron. To my knowledge, in 2003 Eremina et al. for the first

time measured the electron momentum distributions of argon at such low intensities

[86]. Recently, Liu et al. investigated this mechanism measuring electron momentum

distributions of Ar and Ne [12, 85] at the lowest intensities ever addressed. Figure 2.4

shows the experimental results of these studies. Apart from experimental observation,

several theoretical groups have attempted to investigate this mechanism using different

theoretical methods, such as quantum mechanical approaches [106–108], classical [109–

117] and semi-classical approaches [118]. However, the underlying mechanisms for NSDI

in this low laser intensity regime are not yet understood to a great extent. The main

part of this thesis is dedicated to developing a semi-classical model for understanding

this phenomenon.

As discussed above, several measurements have been carried out for the total ionization

yields of molecules, while (to my knowledge) just two experiments have measured the
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Figure 2.3: The upper panels (a) and (b) show the experimentally measured correlated

electron momenta for double ionization of helium at 800 nm, 4.5× 1014 W/cm
2
, where

k
∥
a,b are the electron momentum components along the polarization direction [10]. Panel

(a) corresponds to first quadrant and panel (b) to all quadrants. The lower panel
corresponds to the fully numerical solution of the time-dependent Schrödinger equation
[11]. The driving-field intensity and frequency were taken as I = 1.0 PW/cm

2
and

Ip = 0.057 a.u., respectively. The vertical line constrains the kinetic energy of electron
1 to 1.9 Up and the white circular arc indicates when the total kinetic energy equals
5.3 Up. One can clearly see the finger-like or V-shaped structure in the numerical

calculations and the experimentally observation.
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Figure 2.4: Electron momentum distribution parallel to the laser field polarization
for argon (a) at intensity 3×1013 W/cm

2
) and neon (c) at intensity 1.5×1014 W/cm

2
).

Electron transverse momentum (p⊥) distributions for argon (b) and neon (d) with the
same intensity as their left column. (figure 1 in [12]).

electron momentum distributions as functions of the electron momentum parallel to the

laser-field polarization for NSDI of molecules. Experiments (reference [84]) studied the

effect of the molecular orbital symmetry by looking at electron momentum distributions

of N2 and O2, while the role of alignment angle of the molecules with respect to the laser-

field polarization on electron momentum distributions was investigated in reference [13].

The former experiment was performed using the optical spectroscopic method. With

this method a molecule can be excited, oriented, or aligned before the recollision process

occurs (for more details see [13]). Consequently, this allows us to measure the influence

of molecular excitation or geometry on attosecond multielectron dynamics. The result of

the molecular alignment experiment is shown in figure 2.5. Since then, many theoretical

studies have also been performed via different approaches, such as the numerical solution

of the TDSE in reduced dimensionally [106–108], semi-analytical methods based on the

S-Matrix formalism [2] and classical methods [112, 119]. However, NSDI in molecules

has been considerably less well studied since it is far more difficult to measure and model

(see, e.g. [120]). The difficulty comes from the fact that molecules have more degrees

of freedom than atoms. Thus, one needs to consider many related problems such as the

effect of the alignment on ionization. On the other hand, understanding of these effects
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Figure 2.5: Electron correlation for the double ionization of N2 at 1.2× 1014 W/cm
2
,

800 nm, 40 fs. (a) N2 molecules oriented perpendicular, (b) parallel to the probe laser
polarization ([13]).

is essential for the attosecond imaging of molecules.

In comparison to NSDI in the tunneling regime (where γ ≪ 1), fewer studies have been

carried on the mechanisms behind NSDI in the multiphoton ionization regime (where

γ ≫ 1) due to the experimental difficulties [121]. Just recently, high order harmonics gen-

erated with femtosecond laser pulses and vacuum ultraviolet (VUV) photons generated

by a free-electron laser have allowed one to study double ionization in the multiphoton

ionization regime 2. The experiments were performed using either former source [124]

or latter source [125, 126] confirming that the two-photon absorption double ionization

leads to NSDI. In [125], the study of few-photon multiple ionization of neon and argon

showed that at low intensities (I < 6 × 1013 W/cm2) two-photon absorption leads to

nonsequential ionization, while at higher intensities sequential ionization dominates be-

cause of the involvement of multiphoton processes. In [126], in which sequential and

nonsequential mechanisms were clearly disentangled, the recoil-ion momentum distribu-

tions of helium clearly show that both electrons share the two observed photons, ionize

simultaneously and reach the detector with same energy.

2 Compared to HHG, a free-electron laser (FEL) is more reliable source for generating coherent
short-wavelength light [122]. With recent advances in the free-electron laser, it has become possible to
produce vacuum ultraviolet (VUV) photons at unprecedented intensities [123].
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Figure 2.6: Schematic representation of the RESI dominant physical mechanisms
behind laser-induced double ionization for driving field of high intensities and low fre-
quencies (tunneling regime), as functions of increasing pondermotive energy (modified

version of figure 2 in [14]).

2.2 Rescattering Mechanisms

As it was discussed earlier, the NSDI occurs in the tunneling regime by rescattering.

There have been, however, different proposed mechanisms for the dislodging of the

second electron, depending on the intensity of the field and ionization potential of the

target. Below we will discuss two main mechanisms responsible for releasing of the

second electron into the continuum. In figure 2.6 we present a schematic representation

of these mechanisms as functions of ponderomotive energy.

2.2.1 Electron-impact Ionization

The most simple and well-studied rescattering mechanism is electron-impact ionization

in which the first electron, during the accelerating in the field, gains enough kinetic

energy to provide to the second electron the energy necessary to overcome the second

ionization potential of the target. In this process, both electrons leave simultaneously

to reach the detector. In fact, the first cold-target recoil ion momentum spectroscopy
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(COLTRIMS) experiments carried out on helium [67] and neon [9], reported a double-

peak structure near p1∥ = p2∥ = ±2
√
Up, where Up is the pondermotive energy, i.e. the

average energy of a free electron in the laser field, and p1∥ and p2∥ denote the electron

momentum components parallel to the laser-field polarization for the first and second

electron, respectively. The ponderomotive energy depends on the electric field intensity

El and wavelength ωl of the laser-field and is defined as Up = E2
l /4ω

2
l .

With the intensity used in above-cited experiments, the rescattering process is electron-

impact ionization because both electrons share the same amount of energy with double-

peak structure close to ±2
√
Up, when they reach the detector. Furthermore, the first

electron can gain the maximum kinetic energy of 3.17Up by the time it returns to the core

[127]. As result, it has sufficient energy to ionize the second electron directly with impact

collision. If the energy of the first electron is at least of the order of ionization potential

of the second electron of the target, then electron-impact ionization most probably will

be the dominant rescattering mechanism, as was the case for neon experiment in [9].

The peaks at 2
√
Up correspond to the most probable momentum the electrons may have

in this process which depends on the driving-field intensity3. However, the electron-

momentum distributions can extend far beyond this specific momentum. This has been

demonstrated experimentally (for the first time in [88]) and theoretically, by applying

classical-trajectory methods [77, 87], the strong-field approximation [75] and the time-

dependent Schrödinger equation [11].

For the electron-impact mechanism, the main body of theoretical analysis has suggested

that after recollision, most ionized electrons pairs should emerge together in the first and

third quadrant (i.e. p1∥ > 0 and p2∥ > 0 or p1∥ < 0 and p2∥ < 0) of the plane spanned by

the electron-momentum components parallel to the laser-field polarization [75, 81, 82, 89,

129–131]. In all NSDI experiments, however, there are always some signals in the second

and fourth quadrant of the electron momentum distributions and these signals become

stronger as the laser intensity decreases. Nevertheless, until now, the key features of most

NSDI experiments, such as the peaks at nonvanishing momenta and V-shaped structure

(discussed in the previous section 2.1) could be explained sufficiently by the electron-

impact ionization mechanism. Furthermore, this mechanism has predicted the existence

of two-center interference due to photoelectron emission at spatially separated centers in

diatomic molecules, a feature which is observed in other strong-field phenomena, such as

high order harmonic generation and above threshold ionization [2]. However, it becomes

necessary to move beyond electron-impact ionization when we are dealing with NSDI

3The original of the cutoffs for laser-induced nonsequential double ionization was classically explained
in [128]



Chapter 2. Laser-induced Nonsequential Double Ionization 19

experiments at these intensities, in which the energy of the first electron is not sufficient

to directly, on recollision, free the second electron.

2.2.2 RESI

Recollision excitation with subsequential tunneling ionization happens when the first

electron, upon its return to the core, promotes the second electron to an excited bound

state, from which, with laser assistance, it subsequently tunnels [69]. This mechanism

becomes important when the first electron at the time of the recollision does not have

sufficient energy to directly ionize the second electron. In 2000, the existence of this

mechanism was proposed by experimentalists and theorists [68, 118, 132]. A year later,

Feuerstein et el. [69] managed to separate the electron-impact ionization and the RESI

mechanism in argon. This study confirmed the existence of RESI mechanism in the

rescattering process of NSDI. The observation of NDSI at laser intensities below the

ionization threshold of the second electron motivated several groups to study the RESI

mechanism [84, 86]. In this intensity regime the energy of the first electron, upon return,

is not sufficient to overcome the ionization potential of the second electron to release it

to continuum. Thus in this case the electron-impact ionization does not occur and RESI

becomes the predominant process for release of the second electron4.

For RESI, the first electron rescatters and immediately leaves, almost at the crossing

of the driving field, while the second electron tunnels slightly later at a field maximum.

Hence, there is a time delay between rescattering of the first electron and tunnel ion-

ization of the second electron. In this mechanism, the electron momentum distributions

are mainly populated at around p1∥ = p2∥ = 0, whereas in the impact-ionization the

peaks are at p1∥ = p2∥ = ±2
√
Up. Furthermore, the classical study of RESI suggests (for

instance [77, 109]) that both electrons leave with opposite momenta and fill the valley

in between double peak of the impact-ionization. According to these models, the second

and fourth quadrants are populated due to a time lag between the rescattering of the

first electron and ionization of the second electron. As a result, some (like the authors of

[117]) may argue that main features of NSDI can be explained fully by classical physics

without considering the quantum effects including excitation tunneling of the second

electron. However, they have not shown how this time delay may relate to excitation.

In fact, electron-impact ionization with a time delay also populates the low regions of

electron momentum distributions (for more details see the review article [14]). On the

other hand, a newly developed, semi-classical model for RESI, which rigorously incorpo-

rates the excitation of the second electron, shows that electron momentum distributions

4For SFA the ionization potential of the electron does not change while in reality the boundary is a
bit fuzzy due to present of stark shifts.
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occupy all four quadrants, not just the second and the fourth quadrants. Development

of this model was part of my PhD work and will be explained in more detail in Chapter

5.

So far, substantially less attention has been paid to the recollision excitation with sub-

sequent tunneling ionization than the electron-impact ionization mechanism. One can

find two main reasons for the popularity of the latter mechanism. Firstly, in most ex-

periments, the key features of NSDI occur at large momenta. For example, the peaks

appear near 2
√
Up and the V-shape structure appears beyond 2

√
Up. On the other

hand, the key features of RESI mechanism appears at lower momenta, around p2∥ = 0

and p1∥ = 2
√
Up. Hence, according to the present observations, RESI corresponds to

the less stunning features of NSDI [69, 70, 118]. Secondly, the theoretical model for

electron-impact ionization is simpler than that for RESI. For example, in the strong-

field approximation (SFA), the electron-impact ionization can be modeled by using a

simple Feynman diagram, while for RESI one needs to incorporate the excitation and

the time delay into this framework, which is not an easy task. Furthermore, for electron-

impact ionization, a classical counterpart exists which helps us to define a classical limit

for the SFA-based approaches, while defining a quantum-classical counterpart for RESI

may not be possible as it occurs by tunneling and excitation processes.

Up to now, most of the NSDI ionization experiments for atoms and simple molecules have

been carried out for atoms in the tunneling regime with high-intensity lasers. However,

for studying a more complex system one needs to deal with the intensities that are

sufficiently low to prevent molecular bonding breaks as well as having a chance to probe

the structure of the target. For example, the study of NSDI of N2, using electron-

impact ionization, showed that the interference maxima and minima due to electron

emission at spatially separated centres can only be observed if we have an intensity

which is almost one order of magnitude greater than the experimental intensity (this

is discussed in Chapter 8). However, one may examine the two-centre interference of

N2 at low intensity by using the RESI mechanism [4]. Thus this mechanism plays an

important role when we are dealing with NSDI experiments at intensities below which

electron-impact ionization occurs or when we investigate more complex system such as

molecules. As a direct consequence, the RESI mechanism has got great potential for

ultrafast imaging.

Recently, more obvious experimental evidence has emerged that confirms the existence

of RESI for molecules [13]. The observation showed that during double ionization of

N2 electrons leave with anti-correlation momenta. For molecules aligned parallel to the
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laser-field polarization, the electrons were mainly ejected in the same direction within

a few hundred attosecond of each other. For molecules aligned perpendicular to the

laser-field polarization, double ionization takes longer with less probability. The result

of this experiment is shown in figure 2.5. Apart from experimental observation, several

theoretical groups have attempted to investigate this mechanism using different theo-

retical methods, such as quantum mechanical approaches [106–108], classical [109–117]

and semi-classical approaches [118]. In all these methods, with the exception of the

semi-classical approach in [133], one cannot easily disentangle the different rescattering

mechanisms from each other. Furthermore, in the calculations RESI is almost masked

by multiple collisions or electron-impact ionization. In the next chapters, we will discuss

how for the first time we could disentangle RESI from other rescattering mechanisms

using the strong-field approximation.

Apart from the above-stated rescattering mechanisms, a multi-recollision mechanism has

been proposed for NSDI at recollision threshold intensities [83, 134, 135]. This is the

intensity regime in which the maximum kinetic energy acquired by the first electron is

not even sufficient to promote the second electron to an real excited state. Thus, the

second electron can not be released through the excitation-tunneling channel. However,

one might consider a victual excited state to explain the excitation-tunneling channel in

this intensity regime 5. In fact, a recent experiment on argon [136] confirms the existence

of NSDI at such low intensities, in which strongly correlated back-to-back emission of

the electrons along the polarization of the laser field was observed. It was suggested

that multiple, inelastic field-assisted recollision induced direct-ionization was the cause.

However, the existence of this back-to-back emission (anticorrelation) depends on the

target structure and may always not be present as demonstrated in the most recent

experiment [12]. As is hinted in [137], a combination of rescattering for the first electron

and multiphoton ionization for the second electron may be responsible for this feature.

However, the underlying mechanism responsible for NSDI process at the intensities far

below the threshold ionization is still not clear.

2.3 Existing Theoretical Approaches

Interaction of the strong laser field with a system having more than one active electron is

challenging as far as theoretical modeling is concerned. Developing a theoretical model

which can describe laser-induced nonsequential double ionization, in which electron-

electron correlation plays a key role, is not an easy task. Indeed, even for NSDI of a

simple system like helium one cannot find an analytical solution and, even the numerical

5In this thesis the excited state is considered to be real.
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computation of NSDI in this system is by no means easy. For example, for the simple

case of the helium atom one needs to deal with solving the time-dependent Schrödinger

equation in six spatial dimensions, which requires a great deal of computer power and

immense technical tricks. In fact, just recently has the TDSE been solved for a realis-

tic, three-dimensional model of helium, after a continuous effort of over 10 years [11].

However, since observation of NSDI, different theoretical models have been applied to

describe this phenomenon. These models can be categorized in three mean approaches;

whose overview is provided below.

2.3.1 Classical Approaches

The main idea behind all classical models developed for laser-induced nonsequential

double ionization is that one can imitate the behaviour of the quantum-mechanical

wavefunction by means of an ensemble of classical electron trajectories. Classical mod-

els consists of many electrons each of which has certain probability to be released into

the continuum. Then their classical equations of motion, which include the external

laser field, electron-electron correlation and the residual binding potentials, are applied

to describe the electron motion in the field. Taking into account all of these effects

in the computations gives a great advantage to this theoretical approach, whereas in-

cluding them in the computation of time-dependent Schrödinger equation is extremely

challenging.

On the other hand, laser-induced nonsequential ionization can be considered as a quan-

tum mechanical phenomenon, due to involvement of tunneling and, in case of RESI,

excitation. Hence, classical approaches lack the ability to reproduce the full dynamics of

NSDI. As a direct consequence, this method has some disadvantages in comparison to

ab initio computations of NSDI. The disadvantages arise from the fact that by using this

method one cannot easily take into account the quantum interference effects, the spread-

ing of electron wavepacket in the continuum, the Heisenberg uncertainty relation or the

Pauli Exclusion Principle. In the classical method, the spreading of quantum mechani-

cal wavepacket can be mimicked to some extent. However, in the quantum mechanical

transition amplitude, there is an extra time factor related to the spread of the wave,

which cannot appropriately be included in the classical models [14]. In addition, this

method does not include the atomic bound states (ground or excited) in an appropriate

way.

As far as existing experiments on NSDI are concerned, the quantum interference effects

are not required in the theoretical models to reproduce the experimental results. Indeed,
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NSDI computations require integration over several degrees of freedom, such as the

momentum components perpendicular to the laser-filed polarization. This integration,

however, washes out interference effects. On the other hand, the Heisenberg uncertainty

relation and Pauli Exclusion Principle have been handled by treating them as effective

forces [138, 139]. Recently, in the classical models a time dependent “fudge” factor

has been included to take care of spreading of electron wavepacket in the continuum

[140, 141].

Incorporating excitation in classical models of RESI is a challenging task. In this mech-

anism, from a classical point of view, the first electron, upon its return to the core,

may not have sufficient energy to directly ionize the second electron. Instead the second

electron is released through excitation-tunneling, which is a quantum mechanical pro-

cess6. On the other hand, one could argue that, as long as the excited states are close

to the threshold, they form a quasi-continuum and hence have a classical counterpart.

Recently, however, in order to describe RESI in the framework of classical models it

was necessary to incorporate several quantum mechanical features. This resulted in a

WKB-like, semiclassical approach [135]. As was discussed in the previous section 2.2.2,

in classical models the time delay between the rescattering of the first electron and the

release of the second electron is incorporated in the electron-impact ionization mecha-

nism of NSDI [13, 109, 112–117]. As is shown in Chapter 7, this time delay corresponds

to different kinematic constraints than those which include excitation. Furthermore, the

computations based on this approach includes both electron-impact ionization and RESI

mechanisms. Thus, the absence of excitation as well as the difficulty of disentangling

the embedded-rescattering mechanisms are the key weaknesses of the classical models.

It has, however, been proved that semiclassical methods are very powerful as they have

explained the main features of NSDI in the last two decades. For example, they re-

produced “the knee”observed in the total double ionization yield [130], the peaks at

nonvanishing momenta for the ion and electron momentum distributions [89], the V-

shaped structure for the electron momentum distributions beyond 2
√
Up [77] and, more

recently, the finger-like structure, which observed in the TDSE computation and in

experiments [76, 77].

6Apart from excitation-tunneling the second electron can be released by other possible physical
mechanisms, such as over-the-barrier ionization [111] and multiple field-assisted recollisions with the
trapping potential [85].
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2.3.2 Quantum Mechanical Approaches

Classical and semi-classical (see 2.3.3) models provide the key features of laser-induced

nonsequentail double ionization as far as the existent experiments are concerned. How-

ever, these approaches are based on certain approximations, as a result of which some

physics may be lost. On the other hand, the numerical solution of time dependent

Schrödinger equation for a two-electron system in a strong field is free of any physical

approximations. Thus, the calculations based on this method can be used as a bench-

mark for testing and improving other NSDI models. However, this theoretical approach

has two main disadvantages: 1) solving the TDSE for NSDI is very complicated; 2) ex-

tracting physical mechanisms from the results of such computations is difficult, since all

the existing mechanisms of NSDI are embedded in the computations. Hence, electron

momentum distributions computed with the TDSE can be viewed as the outcome of

numerical experiments, which albeit accurate, does not provide a transparent physical

interpretation.

In the past two decades, enormous efforts have been made for solving the TDSE for

NSDI phenomenon. The early models dealt with solving the TDSE for two-electron

systems in one dimension for high frequency lasers, in which active electrons in the con-

tinuum have small excursion amplitude, in order to avoid divergence problems [142, 143].

After further improvements to the one dimensional models, in late 1990s, “the knee”

observed in NSDI experiments was reproduced, since the new models were extended

to low-frequency lasers in the tunneling regime [98, 144]. The one-dimensional model

for electron momentum distributions of NSDI reproduced the V-shaped structure [104]

observed in the experiments [10, 71] and predicted by other theoretical approaches.

Furthermore, apart from electron-impact ionization, the computations confirmed the

existence of other mechanisms such as RESI and over-the-barrier [11, 104] ionizations.

Recently, Parker et al. have managed to solve the time-dependent Schrödinger equation

for NSDI of Helium in three spatial dimensions [11]. In agreement with experimental

results [10, 71], the results of their computation show a finger-like structure in the elec-

tron momentum distributions. Furthermore, the results show a cutoff at around 5
√
Up,

similar to what is predicted by strong-field approximation [75] and classical-trajectory

methods [77, 87] (it is discussed in Chapter 5). The boundary between classical al-

lowed and forbidden regimes causes a cutoff in the energy spectrum (for more details see

Chapter 5). The lower panel in figure 2.3 shows the electron momentum distributions

obtained. Despite the astonishing results obtained in ab initio models, one still cannot

disentangle the NSDI physical mechanisms present in the computation.
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2.3.3 Semi-classical Approaches

Semi-classical approach for NSDI are based on a nonperturbative (with respect to the

external field) analytical approximation method called the strong-field approximation

(SFA) 7. Since the early days of strong field physics, this method has been applied to

many strong-field phenomena. There are two main assumptions behind this approach:

1) the influence of laser field is neglected when the electrons are bound to the atoms

or molecules; 2) the binding ionic potential is neglected when the electrons are in the

continuum. The free electrons in the continuum are described by field-dressed plane

waves, which are known as Volkov states [146, 147]. The Volkov wave function has

been used in many approximative procedures for calculating the ionization of atoms

in a strong field since it has an analytical solution [145, 148]. This approach is very

frequently combined with saddle-point methods, which lead to equations that can be

directly related to the classical equation of motion of an electron in a laser field. Yet, the

SFA transition amplitude retains several quantum mechanical features such as quantum

interference. For this reason, the SFA is in many situations viewed as semi-classical.

The assumptions made in the strong-field approximation may lead to the loss of some

important physics. For example, distortion of the bound states by the laser or the

Coulomb effect on the electron in the continuum may have a big contribution. In fact,

there are some groups [95, 149] that have already started to study the effect of the

Coulomb potential in NSDI, as will be discussed in Chapter 9. Within the SFA frame-

work, computations of strong-field phenomenon give different results in different gauges.

This problem also arises because of the assumptions made in this method. From the

start, there has been some dispute among the strong-field community on the validity

of gauges (see e.g. [150]). Nonetheless, there is almost a general consensus that the

physical gauge can be chosen by comparing different methods and experiments.

In comparison to previous methods, however, this approach has several advantages. The

computation of NSDI, to a very large extent, can be done analytically as far as field-

dressed plane waves are concerned. Furthermore, this method provides a transparent

picture for NSDI mechanisms because the mechanisms involved such as electron-impact

ionization and RESI can be defined clearly from the outset. In addition, the classical

trajectory of an electron in an external laser field can be directly connected with this

method without loss of quantum-interference effects. These advantages make the SFA

a powerful semi-analytic method for describing NSDI, or strong field phenomena in

general. In fact, it gives good physical insight into the space-time picture of the system.

7The SFA, however, as pointed out in [145] is, in fact, perturbation theory with a modified basis, in
which field free plane waves have been replaced by Volkov states.
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Within the SFA framework, the scattering matrix (or the S-matrix) approach can be

used to relate the initial state and the final state of the system, like the bound state

and continuum state of electrons in NSDI [151]. In addition, for a given NSDI process

one can identify the most relevant Feynman diagrams that contribute to the transition

amplitude [152]. For example, for RESI and electron-impact ionization one can define

different Feynman diagrams to compute the related transition amplitude. This approach

provides a platform to disentangle NSDI mechanisms. This is explained in more details in

Chapter 3. As a direct consequence of this technique, the SFA successfully reproduces the

key features of NDSI which have been observed experimentally or by ab initio methods,

such as the knee in the NSDI yield [152, 153] and peaks at nonvanishing momenta [118].

Furthermore, the SFA enables us to examine the influence of different type of electron-

electron interaction on the NSDI electron momentum distributions [82, 154]. The above

studies have showed that for contact-type interaction at the position of the ion, the

electron momentum distribution peaked at p1∥ = p2∥ = ±2
√
Up, while for Coulomb

interaction they peaked at unequal momenta. Above all, the calculation using this

method showed that the shape and centre of the electron momentum distributions may

be influenced by several physical features, such as the initial bound states of the first and

second electron [8], the final state electron-electron repulsion [75, 105] and two-centre

interference in diatomic molecules [2, 5].

So far, little attention has been paid to studying RESI in the framework of strong-field

approximation. In fact, there is only one early work addressing this mechanism [118].

Thus, it is a less-well understood mechanism which needs to be addressed. This was the

main motivation behind our detailed study of RESI.
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Methods Advantages Drawbacks

Classical
models

• Can mimic the evolution
of the quantum-mechanical
wavepacket

• Take into account the external
laser field, electron-electron
correlation and residual bind-
ing potentials

• Have predicted main features
of NSDI, like “the knee” and
V- shaped/finger like struc-
tures

Cannot take into account:

• quantum interference effects

• Pauli exclusion principle and
Heisenberg uncertainty rela-
tion

• spread of electron wavepacket
in the continuum

• atomic bound states (excita-
tions)

Strong-field
approxima-
tion

• Can compute analytically to a
very large extent

• Gives a rigorous and transpar-
ent picture for NSDI

• Provides a platform to disen-
tangle NSDI mechanisms

• Includes atomic bound states
such as excitations

• can define a classical counter-
part

• No loss of quantum interfer-
ence effects

• Neglects the influence of laser
field for the bound electrons

• Neglects the binding ionic po-
tential for the electrons in the
continuum

TDSE

• Ab initio calculation without
any approximation

• A benchmark for testing and
improving other NSDI models

• Computation is very compli-
cated

• Difficult to extract different
physical mechanisms of NSDI

Table 2.1: Comparing different theoretical methods for nonsequential double ioniza-
tion by going through their advantages and disadvantages
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The Strong-field Approximation

This chapter focuses on the theoretical aspects of the strong-field approximation, with

the purpose of deriving the transition amplitude for nonsequential double ionization.

First, it provides a brief historical overview of the SFA including its implementation

for describing strong field phenomena. In section 3.2, for the sake of simplicity, we will

first discuss the strong-field approximation in a single active electron context and derive

the ionization amplitude for direct and rescattered ionization. Finally, in section 3.3

we illustrate the SFA for NSDI and provide a general transition amplitude for both

electron-impact ionization and RESI mechanisms.

3.1 Historical Overview

In 1964, Keldysh proposed the strong-field approximation (SFA) to investigate ioniza-

tion processes in the context of the interaction of atoms with an electric field [145]. As

discussed in the previous chapter, this approximation neglects the effect of the atomic

binding potential, when the electron is in the continuum, and the laser field, when the

electron is bound to the atom. Based on this approximation, Keldysh used the adia-

baticity parameter (γ) to define the limits for the occurrence of multiphoton ionization

and tunnel ionization processes. Furthermore, Keldysh [145] and Perelomov et al. [155]

determined the transition amplitude for direct ionization of the hydrogen atom in the

length gauge. Subsequently, they were followed by Faisal [156] and Reiss [148] who em-

ployed the velocity gauge for describing atom-laser interaction. The method developed

by these three people is also known as Keldysh-Faisal-Reiss theory. This theory is not

limited to the hydrogen atom, which has one active electron. In fact, it can been applied

to other systems by considering the single active electron approximation (for e.g. see

[157, 158]), or even extended to multielectron systems.

28
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Lewenstein et al. applied the SFA to model high order harmonic generation [159]. They

derived the time dependent atomic dipole moment and showed that the Fourier transform

of this dipole momentum gives the harmonic spectrum. Shortly thereafter, more general

equations for HHG were derived, in close analogy to the Keldysh-Faisal-Reiss theory

[160]. This generalized theory unified the effective-dipole model of Lewinstein [159] and

the zero-range potential model, in which had been developed independently by Becker

and co-workers [161]. In addition, the Keldysh-Faisal-Reiss model was improved further

by incorporating an additional interaction with the core to take care of the rescattering

process in above threshold ionization [162]. It was claimed that this model works for

arbitrary binding potentials, but works better with shorter range potentials and higher

laser intensities. In fact, this is true for all ordinary Keldysh-type amplitudes, in which

the shorter range potential justifies ignoring the binding potential when the electron

propagates in the field and the high intensity allows one to consider only the contribution

of the ground state of the atom (neglecting the effect of the laser when the electron is

bound to the atom) [159, 162].

The above-stated formulations of the strong-field approximation were developed con-

sidering a system with just one active electron. Under the single active electron ap-

proximation one can describe HHG and ATI. This approximation, however, fails for

nonsequential double ionization, in which a correlated energy-sharing process exists be-

tween the two electrons at the time of recollision. Nonetheless, in the context of the

strong-field approximation, several scattering matrix (S-matrix) models have been for-

mulated to include the intermediate electron-electron interaction, considering it either as

an instantaneous Coulomb interaction [129, 163, 164] or as a contact interaction [118]. In

all these models, the second electron stays inactive in its bound state until the recollision

happens. Faisal and A. Becker have developed a model for NSDI based on their intense-

field many-body S-matrix (IMSM) theory [152, 165, 166], while others have followed the

Keldysh-Faisal-Reiss approach. IMSM is an asymptotic and probability series, in which

by rearranging the S-matrix series the desired transition process appears in the first few

leading terms of series. The leading terms of the series provide a Feynman diagram that

contributes to the transition amplitude [167]. As a result, by analyzing the Feynman

diagram one can identify the possible mechanisms involved in the process of interest. A

more detailed discussion of this theory is presented in the review [168].

Up to now, several groups have managed to evaluate the Feynman diagram of electron-

impact ionization of NSDI in the context of the SFA [81, 105, 118, 129, 163, 164].

Furthermore, the Feynman diagram of the RESI mechanism has been evaluated as part

of my PhD work. These Feynman diagrams are illustrated in section 3.3.1.
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3.2 Direct and Rescattered Ionization Amplitude of One-

electron Processes

In this section we employ the strong-field approximation to derive the ionization ampli-

tude for both direct and rescattered processes when considering a system with just one

active electron1.

With the presence of an external field the full Hamiltonian of an atom is

H = H0 +Hint(t) (3.1)

which satisfies the Schrödinger equation

i
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ (3.2)

Here H0 is the Hamiltonian of the unperturbed atom and Hint represents the atom-laser

interaction Hamiltonian.

The field-free or the unperturbed atomic Hamiltonian is

H0 =
p̂2

2
+ V (r̂) (3.3)

which satisfies

i
∂

∂t
|ψ(t)⟩ = H0 |ψ(t)⟩ (3.4)

Here p̂2/2 and V (r) represent the kinetic energy of the free electron and the Coulomb

potential of the system, respectively. In the above equations, the hat denotes operators.

By ignoring the Coulomb potential V (r̂) in equation (3.1), we will have the Gordon-

Volkov Hamiltonian

Hv =
p̂2

2
+Hint(t) (3.5)

1The derivation in this section is based mainly on lectures that have been given by Dr Carla Figueira
de Morisson Faria and reference [160].
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which satisfies

i
∂

∂t
|ψv(t)⟩ = Hv |ψv(t)⟩ (3.6)

The time evolution operator associated with the full Hamiltonian of the system, which in-

cludes the binding potential and the laser field, is defined as U(t, t′) = T exp[−i
∫ t
t′ H(s)ds],

where T denotes the time ordering.

By using the Dyson equation, we define the time-evolution operator U(t, t′) of the system,

as

U(t, t′) = U0(t, t
′)− i

∫ t

t′
dt′′U(t, t

′′
)Hint(t

′′)U0(t
′′, t′) (3.7)

where U0(t, t
′) = e−iH(t−t′) is the field-free time-evolution operator for an electron in-

teracting with the core, for which (3.3) is the corresponding Hamiltonian. This time

evolution operator satisfies

i
∂

∂t
U(0)(t, t

′) = H0(t)U(0)(t, t
′)

−i ∂
∂t′

U(0)(t, t
′) = U(0)(t, t

′)H0(t
′) (3.8)

In (3.7), the Hamiltonian Hint will have different forms depending on the gauge one

uses. In the length gauge, it reads:

Hint(t
′′) = E(t′′).r

and in the velocity gauge

Hint(t
′′) = −i∇.A(t′′) +

A2(t′′)

2
.

In addition, the time-evolution operator U(t, t′) can have another integral form if written

in terms of the binding potential V :

U(t, t′) = U (v)(t, t′)− i

∫ t

t′
dt′′U(t, t

′′
)V U (v)(t′′, t′) (3.9)
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where U (v)(t, t′) is the Gordon-Volkov time evolution operator [146, 147]. This is the

time-evolution operator for a free electron in an external field and its corresponding

Hamiltonian is (3.5). This time evolution operator satisfies

i
∂

∂t
U (v)(t, t′) = Hv(t)U

(v)(t, t′)

−i ∂
∂t′

U (v)(t, t′) = U (v)(t, t′)Hv(t
′) (3.10)

In standard (“weak field ”) perturbation theory we iterate (3.7), while in the Gordon-

Volkov series we iterate (3.9). In the strong-field approximation we mix these two series

as will be demonstrated.

If a system is in the initial state |ψ(t′)⟩, then under the time evolution operator U(t, t′)

it evolves from t′ to t , i.e.

|ψ(t)⟩ = U(t, t′)
∣∣ψ(t′)⟩ , (3.11)

The transition amplitude for ionization from the the ground state of an atom |ψg(t′)⟩
into a scattering state |ψp(t)⟩ is

Mp = lim
t→∞,t′→−∞

⟨ψp(t)|U(t, t′)
∣∣ψg(t′)⟩ , (3.12)

where p is the asymptotic momentum of the scattering state.

By substituting Dyson equation (3.7) into (3.12) we have

Mp = lim
t→∞,t′→−∞

< ψp(t)U0(t, t
′)|ψg(t′) > −i lim

t→∞,t′→−∞

∫ t

t′
dt′ ⟨ψp(t)|U(t, t′)Hint(t

′)
∣∣ψg(t′)⟩ ,

(3.13)

The first term is zero since the ground state and the scattering state are orthogonal.

Thus,

Mp = −i lim
t→∞

∫ t

−∞
dt′ ⟨ψp(t)|U(t, t′)Hint(t

′)
∣∣ψg(t′)⟩ . (3.14)

Equation (3.14) gives the matrix element without any approximation. We now employ

the strong-field approximation. We take the zeroth order of (3.9) and insert it into (3.7).
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Equation (3.14) now becomes

M (1)
p = −i lim

t→∞

∫ t

−∞
dt′ ⟨ψp(t)|U (v)(t, t′)Hint(t

′)
∣∣ψg(t′)⟩ . (3.15)

The Hint(t
′) in equation (3.15) can be replaced by the binding potential V , if we write

Hint(t
′) as

Hint(t
′) +H0 = Hv + V,

and using equations (3.4) and (3.10) we will have

M (1)
p = −i lim

t→∞

∫ t

−∞
dt′ ⟨ψp(t)|U (v)(t, t′)(Hv(t

′)−H0 + V )
∣∣ψg(t′)⟩

= −i lim
t→∞

∫ t

−∞
dt′ ⟨ψp(t)| {−i

∂

∂t′
U (v)(t, t′)− U (v)(t, t′)i

∂

∂t′

+U (v)(t, t′)V }
∣∣ψg(t′)⟩ . (3.16)

The second term in the bracket cancels if we integrate the first term in the bracket using

integration by parts with respect to t′. As a result, we have

M (1)
p = − lim

t→∞
⟨ψp(t)|U (v)(t, t′)

∣∣ψg(t′)⟩
−i lim

t→∞

∫ t

−∞
dt′ ⟨ψp(t)|U (v)(t, t′)V

∣∣ψg(t′)⟩ . (3.17)

This first term in (3.17) vanishes due to the orthogonality of the initial state and the

final scattering state. Thus we end up with the same equation as (3.15), just having V

instead of Hint, i.e.

M (1)
p = −i lim

t→∞

∫ t

−∞
dt′ ⟨ψp(t)|U (v)(t, t′)V

∣∣ψg(t′)⟩ . (3.18)

Equations (3.15) and (3.18) represent the SFA transition amplitude of direct ionization

of a system with just one active electron.
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If we insert the first order of (3.9) into (3.7) and replace its result with U(t, t′) in (3.14),

then we obtain

M (1,2)
p = −i lim

t→∞

∫ t

−∞
dt′ ⟨ψp(t)|U (v)(t, t′)Hint(t

′)
∣∣ψg(t′)⟩

+ lim
t→∞

∫ t

−∞
dt′′
∫ t′′

−∞
dt′ ⟨ψp(t)|U (v)(t, t

′′
)V U (v)(t′′, t′)Hint(t

′
)
∣∣ψg(t′)⟩ .(3.19)

The first term in (3.19) corresponds to direct ionization, while the second terms gives

the scattered ATI transition amplitude. Following the same argument as above the

scattered part in (3.19) can be written in terms of the binding potential V . Thus

M (2)
p = − lim

t→∞

∫ t

−∞
dt′′
∫ t′′

−∞
dt′ ⟨ψp(t)|U (v)(t, t

′′
)V U (v)(t

′′
, t′)V

∣∣∣ψg(t′)⟩ (3.20)

Performing this integral in the limit t → ∞ is awkward. However, one can overcome

this problem by replacing the scattering state ⟨ψp(t)| with a field-dressed plane wave

(Volkov state
⟨
ψ
(v)
p (t)

∣∣∣).
M (2)
p = −

∫ ∞

−∞
dt

∫ t

−∞
dt′
⟨
ψ(v)
p (t)

∣∣∣V U (v)(t, t′)V
∣∣∣ψg(t′)⟩ (3.21)

The use of Volkov wavefunction for the final state makes the calculation of matrix

element much easier but it destroys the orthogonality of the initial and the final states.

The equation we derived in (3.21) describes the physical process in which an electron,

initially, is in a bound state |ψg⟩. Then at a time t′, this electron is freed by tunneling

ionization and propagates in the continuum. Later on at a time t, it interacts with

parent ion and rescatters to a Volkov state. Equation (3.21) is very general and under

the single active electron approximation can be applied to any system. Furthermore, it

can be modified to in order to take care of a system with two correlated electrons. In

the next section we discuss how it can be modified for NSDI.

3.3 Transition Amplitudes for NSDI

In the rescattering mechanism, nonsequential double ionization is initiated by tunneling

of the first electron through the potential barrier of the system. Subsequently, the
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Figure 3.1: (Modified version of figure 16 in [14]) Feynman diagram of the dominant
rescattering mechanisms of NSDI in the tunneling regime. Diagram (a) represents
electron-impact ionization, in which an electron initially in a bound state |ψ1g >, is
released by tunneling ionization into a Volkov state at a time t′, returns at a time t and
releases the second electron by giving enough energy to make it overcome the second
ionization potential. Diagram (b) corresponds to RESI, in which an electron, initially

in a bound state |ψ(1)
g >, is released by tunneling ionization into a Volkov state at

a time t′, returns at a time t′′ and excites a second electron from the initial bound
state |ψ2g > to the bound state |ψ2e >, which it subsequently tunnels at a later time
t, reaching a Volkov state. The electron-electron interaction is indicated in the figure
by V12, the initial bound states by the dark blue lines, the excited bound state of the
second electron by the thick black line and the Volkov states by the double red lines.

released electron is driven back toward its parent ion, with which it collides. In the

recollision process, the second electron may be dislodged by impact ionization or it may

be promoted to an excited state, from which it subsequently tunnels. The Feynman

diagram that describes these two rescattering mechanisms is shown in Figure 3.1. In

this diagram, panel (a) represents the impact-ionization rescattering process of NSDI,

while panel (b) shows the RESI mechanism. Here, we do not consider electron-electron

interaction in the continuum, i.e. when both electrons are released [75, 169]. Now, based

on the transition amplitude we derived in (3.21), we define the transition amplitudes of

electron-impact ionization and RESI. The former transition amplitude has mainly been

developed by Faria et al. [75, 105], while the latter has been developed during my PhD.



Chapter 3. The Strong-field Approximation 36

3.3.1 Electron-impact Ionization

In NSDI, we are dealing with two active electrons, Thus, we need to incorporate the

wave function of these two electrons into the transition amplitude (3.21). For the sake of

simplicity in analytical calculation we approximate the ground state of the two-electron

system by a product of one-electron states

∣∣∣ψg(t′)⟩ =
∣∣∣ψ(2)
g (t

′
)
⟩
⊗
∣∣∣ψ(1)
g (t

′
)
⟩

(3.22)

where |ψ(n)
g (t′) > = exp[iEngt

′]|φ(n)
g >, and n = 1, 2. The ionization potential of the

first and the second electron is given by Eng.

The final state of the two-electron system can be chosen either as a two-electron Volkov

state, with correlation via electron-electron repulsion, or the product of one-electron

Volkov states: ∣∣∣ψ(v)
p (t)

⟩
=
∣∣∣ψ(v)

p2 (t)
⟩
⊗
∣∣∣ψ(v)

p1 (t)
⟩

(3.23)

with asymptotic momenta p1′p2,

By considering the initial state (3.22) and the final state (3.23), the S-matrix in (3.21)

can be written as

MEI = −
∫ ∞

−∞
dt

∫ t

−∞
dt′ < ψ(v)

p1 (t), ψ(v)
p2 (t)|Ṽ12U (v)

1 (t, t′)U2(t, t
′)Ṽ1|ψ(1)

g (t′), ψ(2)
g (t′) >

(3.24)

where U
(v)
1 (t, t′) is the Gordon-Volkov time-evolution operator for the first electron and

U2(t, t
′) is the field-free time evolution operator for the second electron. The interactions

Ṽ1 = PcgV1Pgg corresponds to the atomic binding potential acting on the first electron

and Ṽ12 = PccV12Pcg to the electron-electron interaction. Unless otherwise stated, we

consider the length gauge and atomic units throughout.

The operators Pµν are projectors onto the bound or continuum subspaces. Specifically,

Pgg =
∣∣∣φ(1)
g , φ(2)

g

⟩⟨
φ(1)
g , φ(2)

g

∣∣∣ (3.25)

is the projector onto the two-electron field-free ground state,

Pcg =
∣∣∣k, φ(2)

g

⟩⟨
k, φ(2)

g

∣∣∣ (3.26)



Chapter 3. The Strong-field Approximation 37

projects the first electron onto the continuum state |k⟩ , and keeps the second electron

in the ground state
∣∣∣φ(2)
g

⟩
, and

Pcc = |p1,p2⟩ ⟨p1,p2| . (3.27)

is the projector onto the two-electron state in the field-free continuum.

These projectors guarantee that the continuum and bound states remain orthogonal.

For the exact time evolution operators, the orthogonality property holds, while it is

lost if the continuum states are approximated by Volkov states (for details see [170]).

However, we apply projector operators to force the orthogonality relationship in the

Volkov state. Then, equation (3.24) becomes

MEI = −
∫ ∞

−∞
dt

∫ t

−∞
dt′ < ψ(v)

p1 (t), ψ(v)
p2 (t)|V12U (v)

1 (t, t′)U2(t, t
′)|k, ψ(2)

g (t′) >

< k|V1|ψ(1)
g (t′) > . (3.28)

We expand the Volkov propagator in terms of Volkov states

U (v)(t, t′) =

∫
d3k|ψ(v)

k (t) >< ψ
(v)
k (t′)|,

then we obtain

MEI = −
∫ ∞

−∞
dt

∫ t

−∞
dt′
∫
d3k < ψ(v)

p1 (t), ψ(v)
p2 (t)|V12|ψ(v)

k (t) >

U2(t, t
′)ψ(2)

g (t′) >< ψ
(v)
k (t′)|k >< k|V1|ψ(1)

g (t′) > . (3.29)

We write the field-free time evolution operator as

Un(t, t
′) = exp[i

∫ t

t′
Ĥ(τ)dτ ] = exp[iEng(t− t′)] (3.30)

where Ĥ(τ) is the Hamiltonian of the bound-electron and Eng is its ionization potential.

The bound state wavefunction and the Volkov state wavefunction are given by
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< ri|ψ(n)
g (t′) >= exp[iEngt

′]φ(n)
g (ri) (3.31)

and

< ri|ψ(v)
p (t′) >= (2π)−3/2 exp[i(p+A(t) · ri] exp[−

i

2

∫ t

dτ(p+A(t))2], (3.32)

respectively.

By using (3.30)-(3.32) in equation (3.29) and applying closure relations
∫
d3pi|pi >< pi|

and
∫
d3ri|ri >< ri|, we obtain

MEI =

∫ ∞

−∞
dt

∫ t

−∞
dt′
∫
d3kVpn,kVk0 exp[iSEI(pn,k, t, t

′)] (3.33)

with the action

SEI(pn,k, t, t
′) = −

2∑
n=1

∫ ∞

t
dτ

[pn +A(τ)]2

2

−
∫ t

t′
dτ

[k+A(τ)]2

2
+ E2gt+ E1gt

′ (3.34)

Here, A(τ) is the vector potential. The energies E1g and E2g denote the first ionization

potential and the ground-state energy of the singly ionized atom, respectively. The drift

momentum of the first electron, between ionization and recollision, is given by k and

the final momenta of both electrons by pn(n = 1, 2).

Equation (3.33) describes a physical process in which at time t′ the first electron leaves

the atom by tunneling from a ground state
∣∣∣φ(1)
g

⟩
. From t′ to t, it propagates in the

continuum with momentum k. Upon its return, through the interaction V12, the first

electron releases the second electron into the continuum. Finally, both electrons reach

the detector with momenta pn(n = 1, 2).

Here, the influence of the binding potentials and the electron-electron interaction is

embedded in the prefactors Vk0 and Vpn,k. Explicitly, they read

Vk0 =< k̃(t′)|V1|φ(1)
g >=

1

(2π)3/2

∫
d3r1 exp[−ik̃(t′) · r1]V (r1)φ

(1)
g (r1), (3.35)



Chapter 3. The Strong-field Approximation 39

and

Vpn,k = ⟨p̃1(t), p̃2|V12
∣∣∣k̃(t), φ(2)

g

⟩
=

1

(2π)9/2

∫∫
d3r2d

3r1 exp[ik̃(t) ·r1] exp[−i
2∑
n

p̃n(t) ·rn]φ(2)
g (r2)V12(r1, r2)(3.36)

where in length gauge k̃(τ) = k + A(τ) and p̃n(τ) = pn + A(τ) (τ = t, t′) and in

velocity gauge k̃(τ) = k and p̃n(τ) = pn. In the above equations, φ
(1)
g (r1) and φ

(2)
g (r2)

denote the initial position-space wave functions of the first and the second electrons in

the ground states, respectively. The potential V (r1) corresponds to the atomic binding

potential as seen by the first electron and V12(r1, r2) corresponds to the electron-electron

interaction at the time of the recollision2.

One can choose different kinds of binding potential V (r1), wavefunction φ
(n)
g (rn) and

interaction V12(r1, r2) processes for the prefactors. For atoms, it is more convenient

to use ground state hydrogenic-wavefunction for φ
(n)
g (rn). In the length gauge, for

some cases, this assumption causes a singularity in the computation of the prefactors.

In Chapter 6, I illustrate this issue in more detail. The binding potential V (r1) and

the type of the electron-electron interaction V12(r1, r2) affect the computation of the

electron momentum distributions in (3.33). For instance, if V (r1) is considered as a

zero-range potential and V12(r1, r2) as a three-body contact type interaction (V (r1, r2) ∼
δ(r1 − r2)δ(r2)), the five dimension transition amplitude in (3.33) can be expressed by

one-dimensional quadrature in terms of Bessel functions [151]. This thesis examines the

NSDI process in the tunneling regime with long and short range potentials. The effect

of the electron-electron interaction and the initial electron bound states are illustrated

in Chapter (6).

Under the additional assumption, that the electron-electron interaction depends only on

the difference between the two electron coordinates, we obtain

V12(r1, r2) = V12(r1 − r2) (3.37)

By using (3.37) the form factor in (3.36) becomes

Vpn,k =
1

(2π)9/2
Ṽ12(pn − k)

∫
d3r2 exp[−i

2∑
n

(p̃n(t)− k̃(t)) · r2]φ(2)
g (r2)

2One can show that the gauge transformation eir·A(τ), where τ = t, t′, from the length gauge to
velocity gauge causes a shift p → p−A(t) in a ket |p⟩. In our framework, this shift cancels the time
dependence of the Volkov states. This will held for the RESI transition amplitude.
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where

Ṽ12(p1 − k) =

∫
d3r exp[−i(p1(t)− k(t)) · r]V12(r) (3.38)

and r = r1 − r2.

3.3.2 Recollision-excitation with Subsequent Tunneling Ionization

In the RESI mechanism, the second electron is released by excitation with subsequent

tunneling instead of direct ionization, as is the case for electron-impact ionization mech-

anism of NSDI. Therefore, we need to incorporate this process in (3.24). As a result, the

transition amplitude describing the recollision-excitation-tunneling ionization (RESI)

physical mechanism reads

MRESI =

∫ ∞

−∞
dt

∫ t

−∞
dt′′
∫ t′′

−∞
dt′ (3.39)

< p1(t),p2(t)|ṼionŨ(t, t′′)V12U(t′′, t′)Ṽ |ψ(1)
g (t′), ψ(2)

g (t′) >,

where U(t′′, t′) and Ũ(t, t′′) denote the time evolution operator of the two-electron sys-

tem. Like in the previous case, |ψ(1)
g (t′), ψ

(2)
g (t′) > is the two-electron initial state, and

|p1(t),p2(t)⟩ the final two-electron continuum state. The interactions Ṽ = PcgV1Pgg

and V12 correspond to the atomic binding potential and the electron-electron interac-

tion, respectively. Here, in comparison to electron-impact ionization, we have one extra

interaction, due to the ionization of the second electron from an excited state. Therefore,

Ṽion =PccVionPce corresponds to the binding potential of the singly ionized core. Also,

similar to electron-impact ionization, we assume the initial state of the system is a prod-

uct state of one-electron ground states, i.e., |ψ(1)
g (t′), ψ

(2)
g (t′) >= |ψ(1)

g (t′) > ⊗|ψ(2)
g (t′) >,

with |ψ(n)
g (t′) >= exp[iEngt

′]|φ(2)
g >.

The operators Pµν , which project electrons onto the bound or continuum subspaces,

stay the same as for electron-impact ionization. In addition to those operators, we have

one extra operator to project the first electron onto the continuum state |k⟩, and the

second electron onto the excited state
∣∣∣φ(2)
e

⟩
.

Pce =
∣∣∣k, φ(2)

e

⟩⟨
k, φ(2)

e

∣∣∣ (3.40)

The time-evolution operator of the system from the tunneling time t′ of the first electron

to the recollision time t′′ was approximated by U(t′′, t′) = U
(1)
V (t′′, t′)⊗U (2)

g (t′′, t′), where

U
(1)
V is the Gordon-Volkov time-evolution operator for the first electron and U

(2)
g is the
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field-free time evolution operator for the second electron in the ground state. Subsequent

to the recollision, the time evolution operator of the system was taken to be Ũ(t, t′′) =

U
(1)
V (t, t′′)⊗U

(2)
e (t, t′′). Here, U

(1)
V is the Gordon-Volkov time-evolution operator for the

first electron and U
(2)
e is the field-free time evolution operator for the second electron in

the excited state of the singly ionized ion.

Similar to the electron-impact ionization mechanism, we employ the closure relations

and the explicit expressions for the Gordon-Volkov time-evolution operators. Thus, the

equation (3.39) can be written as

MRESI =

∫ ∞

−∞
dt

∫ t

−∞
dt

′′
∫ t′′

−∞
dt′
∫
d3kVp2eVp1e,kgVkg exp[iS(pn,k, t, t

′, t′′)] (3.41)

with the action

SRESI(pn,k, t, t
′, t′′) = −

∫ ∞

t
dτ

[p2 +A(τ)]2

2
−
∫ ∞

t′′
dτ

[p1 +A(τ)]2

2

−
∫ t′′

t′
dτ

[k+A(τ)]2

2
+ E2e(t− t′′)

+E2gt
′′ + E1gt

′. (3.42)

Thereby, A(τ) is the vector potential, the energy E1g denotes the first ionization po-

tential, E2g the ground-state energy of the singly ionized atom and E2e the ionization

potential energy of the state to which the second electron is excited3. The intermediate

momentum of the first electron is given by k and the final momenta of both electrons

by pn(n = 1, 2). Equation (3.41) describes a physical process in which the first electron

leaves the atom at a time t′, propagates in the continuum with momentum k from t′

to t′′, and upon returning, gives part of its kinetic energy to the core so that a second

electron is promoted from a state with energy E2g to an excited state with energy E2e.

This electron then reaches the detector with momentum p1. At a subsequent time t, the

second electron tunnels from the excited state, reaching the detector with momentum

p2.

Within our framework, all influence of the electron-electron interaction and of the bind-

ing potential is contained in the prefactors Vp2e, Vp1e,kg and Vkg. Explicitly, they read

Vp2e =< p2(t)|Vion|φ(2)
e >=

1

(2π)3/2

∫
d3r2Vion(r2)e

−ip2(t)·r2φ(2)
e (r2), (3.43)

3This energy is postulated according to the problem at hand.
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Vp1e,kg =
⟨
p1(t

′′), φ(2)
e

∣∣∣V12 ∣∣∣k(t′′), φ(2)
g

⟩
=

1

(2π)3

∫ ∫
d3r2d

3r1e
−i(p1−k)·r1

[
φ(2)
e (r2)

]∗
φ(2)
g (r2)V12(r1, r2) (3.44)

and

Vkg =< k(t′)|V |φ(1)
g >=

1

(2π)3/2

∫
d3r1e

−ik(t′)·r1V (r1)φ
(1)
g (r1), (3.45)

where in the length gauge k(τ) = k+A(τ) and pn(τ) = pn +A(τ) (τ = t, t′, t′′ and in

the velocity gauge k(τ) = k) and pn(τ) = pn. In the above equations, φ
(2)
e (r2), φ

(2)
g (r2),

and φ
(1)
g (r1) denote the initial position-space wave functions of the second electron in the

excited state, of the second electron in the ground state and of the first electron in the

ground state, respectively. The potentials V (r1) and Vion(r2) correspond to the atomic

binding potential as seen by the first and second electron, respectively. One should note

that the form factor Vp2e is similar to that obtained for direct above-threshold ionization,

in which an electron, initially bound, reaches the detector without rescattering [160].

By applying the assumption in (3.37), equation (3.44) may be written as

Vp1e,kg =
V12(p1−k)

(2π)3

∫
d3r2e

−i(p1−k)·r2
[
φ(2)
e (r2)

]∗
φ(2)
g (r2), (3.46)

with

V12(p1−k) =

∫
d3rV12(r) exp[−i(p1−k) · r] (3.47)

and r = r1 − r2. One should note that the prefactor (3.46) resembles that obtained for

high-order above-threshold ionization, in which an electron reaches the detector after

experiencing a single rescattering [160].

3.3.3 Electron Momentum Distributions

In this thesis the electron momentum distributions are computed as functions of the

momentum components (p1∥, p2∥) parallel to the laser-field polarization, in order to

compare with existing experiments. Throughout this thesis, we approximate the external

laser field by a monochromatic wave

E(t) = −dA(t)/dt = 2ω
√
Up sinωt (3.48)

This is a reasonable approximation for pulses whose duration is of the order of ten cycles

or longer (see, e.g. [78, 171] for a more detailed discussion). In this case, the electron

momentum distributions, when integrated either partially or fully over the transverse

momentum components, read
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F (p1∥, p2∥) =

∫∫
d2p1⊥d

2p2⊥|MR(p1,p2) (3.49)

+ ML(p1,p2) + p1 ↔ p2|2, (3.50)

where MR(p1,p2) is given by equations (3.33) (electron impact ionization) or (3.41)

(RESI) and d2pn⊥ = pn⊥dpn⊥dφpn . The amplitudes MR(p1,p2) and ML(p1,p2) are re-

lated to the right and the left peaks in the electron momentum distributions, respectively.

We employ symmetry A(t ± T/2) = −A(t), where T = 2π/ω denotes a field cycle, to

compute left peak ML(p1,p2) from the right peak. The symmetry works for monochro-

matic laser fields, while for few-cycle pulses it does not and one needs to computes each

peak separately.

For electron-impact ionization, we have ML(p1,p2, t, t
′) = MR(−p1,−p2), where the

momentum signs must be changed simultaneously. This implies that there is a symme-

try upon the reflection (p1,p2) → (−p1,−p2), which comes from the fact that the action

corresponding to ML and MR are given by SR(p1,p2,k, t, t
′) = SEI(p1,p2,k, t, t

′) and

SL(p1,p2,k, t, t
′, t

′′
) = SEI(−p1,−p2,k, t ± T/2, t′ ± T/2). For RESI, the actions cor-

responding to the transition amplitudesML andMR are given by SR(p1,p2,k, t, t
′, t

′′
) =

SRESI(p1,p2,k, t, t
′, t

′′
) and SL(p1,p2,k, t, t

′, t
′′
) = SRESI(p1,p2,k, t±T/2, t′±T/2, t′′±

T/2). They also obey the symmetry |SRESI(p1,p2, t, t
′, t′′)| = |SRESI(−p1,−p2, t ±

T/2, t′ ± T/2, t′′ ± T/2)|. In our computation the distributions have also been sym-

metrized with respect to the exchange p1 ↔ p2. To a good approximation, the quantum-

interference terms [Mν(p1,p2)]
∗Mµ(p1,p2), ν ̸= µ, get washed out upon the transverse-

momentum integration, so that it is sufficient to add the above-stated amplitudes in-

coherently. In Appendix D, we provide details on why the interference terms can be

neglected. A similar argument can be applied to electron-impact ionization.



Chapter 4

The Saddle-point and the

Uniform Approximations

The transition amplitude of the nonsequential double ionization in (3.33) and (3.41) has

the exponential integral format with a coefficient. The exponential part, the action of

the integral, describes the motion of the electron in the laser field. The coefficient of

the integral, the prefactors, contain the target structure. However, numerically, it is

not easy to solve the multidimensional integral of the transition amplitude. Therefore,

one needs to apply some integral transform techniques, such as asymptotic expansions

of integrals, to approximate this integral. In the asymptotic expansions of integrals

technique, one needs to find a series representation of the integral, and then obtain the

desired approximation, by using the appropriate partial sums. Within this technique,

the transition amplitude for the strong laser field phenomena such as HHG, ATI and

NSDI can be easily computed via the method of steepest descent. In this method,

the entire integral is approximated by contribution from the vicinity of the points on

the integration contour where the partial derivatives of the action with respect to the

integration variables vanish [172]. This approximation works well as long as the action

varies much faster than the prefactors. In fact, this is the case for the external laser field

in question, which is near-infrared high-intensity. This chapter illustrates how we solve

the transition amplitude (3.33) and (3.41) employing saddle-point methods. In section

4.1 it is shown how the saddle-point equations are derived from actions (3.34) and (3.42).

Furthermore, it is explained how we use the solution of the the saddle-point equations to

approximate the transition amplitudes, using the standard saddle-point approximation

(section 4.2) or the uniform approximation (section 4.3).

44
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4.1 The Saddle-point Equations

In the steepest descent method, first, one needs to determine the values of the inte-

gration variables t, t′, t′′ and k for which the action in (3.34) and (3.42) is stationary.

For electron impact ionization mechanism (3.33), these equations are obtained from

∂SEI(k, t, t
′)/∂t′ = 0, ∂SEI(k, t, t

′)/∂t = 0 and ∂SEI(k, t, t
′)/∂k = 0. This leads to the

saddle-point equations

[k+A(t′)]2 = −2E1g, (4.1)

k = − 1

t− t′

∫ t

t′
A(τ)dτ, (4.2)

and
2∑

n=1

[pn +A(t)]2 = [k+A(t′)]2 − 2E2g (4.3)

The saddle-point equation (4.1) gives the conservation of energy at the time t′, when

the first electron is ionized by tunneling. The solution of this equation is complex.

This is a consequence of the fact that one can not define a classical counterpart for

the tunneling process. The imaginary part of t′ can be related to the width of the

potential barrier through which the electron tunnels. Equation (4.2) constrains the

intermediate momentum k of the first electron and ensures that it returns to its parent

ion. By assuming Eg → 0, loosely speaking, the potential barrier becomes infinitely

thin. Thus, the electron leaves the atom with zero imaginary t′. Upon this assumption,

equation (4.2) can be related to the classical equations of motion of an electron in the

presence of the driving field. Equation (4.3) gives the conservation of energy at the

instant t. At this time, the first electron returns to its parent ion with a kinetic energy

Eres(t
′) = [k + A(t′)]2/2 ≥ E2g and releases the second electron. Later on, both of

the electrons reach the detector with momenta pn(n = 1, 2). For the electron-impact

ionization, there is a classically allowed region, since Eres(t
′) > 2E2g.

For the RESI mechanism, these equations are obtained from the conditions ∂SRESI(k, t, t
′′, t′)/∂t′ =

0, ∂SRESI(k, t, t
′′, t′)/∂t′′ = 0, ∂SRESI(k, t, t

′′, t′)/∂t = 0 and ∂SRESI(k, t, t
′′, t′)/∂k = 0.

This gives

[k+A(t′)]2 = −2E1g, (4.4)
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k = − 1

t′′ − t′

∫ t′′

t′
A(τ)dτ, (4.5)

[p1 +A(t′′)]2 = [k+A(t′′)]2 − 2(E2g − E2e) (4.6)

and

[p2 +A(t)]2 = −2E2e. (4.7)

The saddle-point equation (4.4) gives the conservation of energy at the instant t′. Phys-

ically, it corresponds to tunneling ionization of the first electron. Equation (4.5) con-

strains the intermediate momentum k of this electron so that it can return to its parent

ion. Equation (4.6) expresses the fact that the first electron returns at a time t′′ and

gives part of its kinetic energy Eret(t
′′) = [k + A(t′′)]2/2 to the core, which is excited

from a state with energy E2g to a state with energy E2e. This electron then reaches

the detector with final momentum p1. Finally, a second electron tunnels from the ex-

cited state at a subsequent time t, and reaches the detector with final momentum p2.

The conservation of energy at this instant is given by the saddle-point equation (4.7).

One should note that the saddle-point equations (4.4) and (4.7) have no purely real

solution. In both cases, Im[t′] and Im[t] give a rough idea of the width of the barrier

and of the ionization probability for the first and the second electron, respectively. The

larger this quantity is, the wider the barrier through which they must tunnel. From the

saddle-point equations, one can see that both electrons are decoupled in RESI while in

electron-impact ionization they are coupled. Thus this will simplify the problem as we

have inelastic scattering for the first electron and direct ionization for the second one.

4.2 The Saddle-point Approximation

In the context of the saddle-point approximation (SPA), first we need to find solutions

of the saddle-point equations in order to compute the transition amplitudes in (3.33)

and (3.41). For that, the monochromatic linearly polarized field defined in (3.48) is used

for the saddle-point equations, i.e equations (4.1)-(4.3) (for electron-impact ionization)

and (4.4)-(4.7) (for RESI). Furthermore, we write the final momenta in terms of their

components pn⊥ and pn|| perpendicular and parallel to the polarization of the laser field,

similar to equations (5.1) and (5.5). For a given asymptotic momentum pn there are

infinite number of pair solutions for (t′′, t′, t) [154, 173]. However, for the first electron,

pairs of solutions which have the shortest travel time Re(t′ − t′′) are taken, since their
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contribution dominates [154]. For pairs of solutions which have longer travel time, the

wave function spreads considerably. As a result, their contributions to the transition

amplitude become small. The saddle-point equations are non-linear, and do not have

any analytical solutions. Thus one needs to solve them numerically, which requires a

good initial guess value for finding the exact solution. On the other hand, proposing a

good initial guess value is not an easy task since solutions lie in a complex plan and have

many close branches. To overcome this problem, we choose the ionization potential to

be zero so that the variables become real (as in the classical simpleman’s model [39]).

These solutions help us to come up with a good guess value, but they do not solve the

problem completely. Therefore, one needs to use trial and error method to find the

right solutions (this is discussed in more details in section 4.4). It is always good to

graphically visualize the solutions to see if they make sense physically (see Chapter 5).

Once these solutions are obtained then one can determine the transition amplitudes (for

a full derivation see Appendix A)

M =
∑
s

As exp(iSs) (4.8)

where for the electron-impact ionization

Ss = SEI(ts, t
′
s,ks) (4.9)

As = (2π)5/2
Vk0Vpn,k√

detS
′′
EI(ts, t

′
s,ks)

(4.10)

and for the RESI

Ss = SRESI(ts, t
′
s, t

′′
s ,ks) (4.11)

As = (2π)3
Vp2eVp1e,kgVkg√

detS
′′
RESI(ts, t

′
s, t

′′
s ,ks)

(4.12)

Here, the index s runs over the relevant saddle points. detS
′′
EI(ts, t

′
s,ks) denotes the

determinant of the 5×5 matrix of the second derivatives of the action (3.34) with respect

to t, t′ and k and detS
′′
RESI(ts, t

′
s, t

′′
s ,ks) denotes the determinant of the 6× 6 matrix of

the second derivative of the action (3.42) with respect to t, t′, t′′ and k.
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For the electron impact ionization mechanism, the intermediate k in the saddle-point

equation (4.2) can be replaced by

k −→ k(t, t′) = − 1

t− t′

∫ t

t′
A(τ)dτ (4.13)

and SEI(t, t
′) −→ SEI(t, t

′,k(t, t′)).

As a direct consequence, the transition amplitude (3.33) can first be evaluated over k (a

three-dimension integral), by applying the saddle-point approximation. Once the three-

dimension integral over k is solved, we again apply the saddle-point approximation to

compute the two-dimensional integral over t and t′. As a result, the action and amplitude

in (4.9) become

Ss = SEI(ts, t
′
s) (4.14)

As = (2π)5/2
Vk(ts,t′s)0Vpn,k(ts,t′s)√

(ts − t′s)
3 detS

′′
EI(ts, t

′
s)

(4.15)

where detS
′′
EI(ts, t

′
s) is 2×2 the determinant of the second derivatives of the action with

respect to t and t′.

A similar approximation can be performed for RESI, giving

Ss = SRESI(ts, t
′
s, t

′′
s) (4.16)

As = (2π)3
Vk(t′′s ,t′s)0Vpn,k(t′′s t′s)√

(t′s − t′′s )
3 detS

′′
RESI(ts, t

′
s, t

′′
s )

(4.17)

where detS
′′
RESI(ts, t

′
s, t

′′
s ) is 3×3 the determinant of the second derivatives of the action

with respect to t , t′and t
′′

The concept of “quantum orbits” has emerged from the saddle-point method in relation

to the classical trajectories. The classical orbits describe the motion of an electron

from the time it tunnels into the continuum to the time it returns to the core in real

space, while the “quantum orbits” deal with its motion in the complex plane. In strong

laser field phenomena, the “quantum orbits” come in pairs composed of a short and a

long orbit. For the short orbit, the first electron tunnels late and returns to its parent
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Figure 4.1: Schematic representation of the quantum orbits, which are solutions of
the saddle-point equations and come in pairs (S1 and S2). The cutoffs appear at the
points where curves S1 and S2 are very close to each other (in here quantum orbits
50). This figure corresponds to tunneling t0 and return time t1 of the electron in HHG

process (lower panel of figure 2 in [15])

ion earlier. For the long orbit, the first electron tunnels early and rescatters at a later

time. The saddle-point approximation (SPA) picks the relevant “quantum orbits”, those

that contribute to the final state of the electron after rescattering. There are several

quantum orbits that contribute to a given final state but the pair with shortest real

time interval Re(t− t′) is the dominant one. These two dominated orbits are sufficient

for simulating electron momentum distributions because in the present problem the

transverse momentum is being integrated over. By adding their contribution coherently,

we get quantum interference in the photoelectron spectra, a feature which can not be

produced by the classical trajectory method. At a certain final momentum, short and a

long orbits approach each other very closely and reach what is called the classical cutoff

(this is illustrated in figure 4.1). The electrons with final momentum beyond the cutoff

do not have an associated classical counterpart.

The classically allowed region can be better understood in terms of the six-dimensional

final momentum space (p = (p1,p2) ). For equation (4.1), it is related to the solutions

in which k and t′ are real. The real solutions occur if we ignore the ionization potential

of the first electron E1g, if the classical limit of the saddle-point equations is taken. For

instance, for the electron-impact ionization the momentum space p = (p1, p2), equation

(4.2) represents the surface equation of a six-dimensional sphere. The centre of this

sphere is at (−A(t),−A(t)), and its radius is given by
√

[k +A(t)]2 − 2E2g. For an

electron that tunnels at time t′, the classically allowed region is defined by the electron

momenta p located on the surface of this sphere. However, quantum mechanics allows

a nonzero yield beyond the classically allowed region. The saddle-point approximation

deforms the original integration contour of the transition amplitude into a complex
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.

Figure 4.2: Schematic representation of the two saddle-points. In (a) two saddles are
well separated, thus standard saddle point approximation works well, while in (b) two
saddles are very close to each other, therefore one needs to apply uniform approximation

hyperplane, in order to encompass the relevant complex saddle points. The constraints

are explained in more details in Chapter 5.

Within the classically allowed region, the standard saddle-point approximation works

well, while at and beyond the cutoff it breaks down. At the cutoff, the real part of

the short and long orbits almost coalesce. Thus, the two saddle points are not well

separated and their second derivative is zero, as is illustrated in figure 4.2. In this case,

the standard saddle-point approximation becomes unsuitable. Furthermore, outside the

cutoff, there is a classically forbidden regime. In this region, the imaginary part of the

solutions rapidly increases and the asymptotic expansion must change. Therefore, the

contribution from one of the orbits should be dropped, in order to prevent the diver-

gence of the transition amplitude [173]. At some points beyond the classically allowed

region a quantitative change in the contour of the integral occurs so that the asymptotic

expansion still describes the function well. This change is known as “Stokes transition”

[174]. If i and j denote a pair of trajectories, the Stokes transition corresponds to a

value of p, such that ReS(ti, t
′
i, ki) = ReS(tj , t

′
j , kj).

However, the standard SPA can be replaced by a more general method called the uni-

form approximation (4.3). This method works at the Stokes transition, and allows a

smooth transition from the classically allowed region to the classically forbidden region.

One should note that, both standard SPA and uniform approximations are valid if the

expansion of the action holds until the integrand has become much smaller than it was

at the saddle point. This is the limit in which the integration contour can be extended

to infinity.
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4.3 The Uniform Approximation

In the standard saddle-point approximation, the multidimensional integral to the tran-

sition amplitude is estimated by second-order expansion of the action around the saddle

points. However, the expansion becomes inaccurate when the saddle points of two quan-

tum orbits composing a pair are too close to each other. For NSDI the failure occurs near

the classical cutoff. The uniform approximation has been developed to improve the ex-

pansion of the action around the two coalescent saddle points by including a higher-order

expansion and taking the resulting approximate integral as a collective contribution of

both saddle points [172]. In the uniform approximation, a pair of orbits (well separated

or close to each other) is defined by a diffraction integral. Then, the parameters of

the formal expansion are determined in terms of the quantities that enter the standard

saddle-point approximation. This method makes sure that the conventional saddle-point

approximation is recovered when two saddle points are well separated. The derivation

of this method, with a more detailed discussion, is provided in Appendix B.

In the classically allowed region, we consider any pair of trajectories denoted by i and j.

Then, within the uniform approximation, the contribution of this pair to the transition

amplitude of NSDI is given by

Mi+j =
√

2π∆S/3 exp(iS + iπ/4)

×A[J1/3(∆S) + J−1/3(∆S)] + ∆A[J2/3(∆S)− J−2/3(∆S)], (4.18)

where

∆S = (Si − Sj)/2, S = (Si + Sj)/2

∆A = (Ai − iAj)/2, A = (iAi −Aj)/2. (4.19)

By using the asymptotic behavior of the Bessel functions for large z, i.e.

J±ν(z) ∼ (2/zπ)1/2 cos(z ∓ υπ/2− π/4), (4.20)

one can show that the saddle-point approximation (4.8) is recovered from the uniform

approximation (4.18) when the saddle points are well separated.

In the uniform approximation (4.18) we do not need any special information, such as

higher derivatives of the action. We just need to compute the actions Si and their
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associated prefactors Ai, by using the solution of the saddle-point equations, and then

enter them into (4.18).

In addition, on can modify the uniform approximation, so that it works when one of

the two saddle points is bypassed by the contour in the classically forbidden region.

In here, we require a smooth functional behavior to select the branches of the function

automatically. Beyond the Stokes transition, these branches can be selected if we replace

the Bessel J functions by Bessel K functions [174]. Thus, in the classically forbidden

region, the transition amplitude will be

Mi+j =
√

2i∆S/π exp(iS)

×[AK1/3(−i∆S) + i∆AK2/3(−i∆S)] (4.21)

Like the previous case, for a large ∆S, the saddle-point approximation (4.8) can be

recovered from the uniform approximation (4.21). This can be checked by using the

asymptotic expansion

J±ν(z) ∼ (π/2z)1/2 exp(−z) (4.22)

Furthermore, the uniform approximations at the cutoff (4.18) and beyond the classically

allowed region (4.21) match at Stoke transitions. In nonsequential double ionization,

there are two cutoffs with two different energies. The position of these energies coincides

with minimum and maximum classically allowed momenta, and they create the boundary

between the classically allowed and forbidden regions.

4.4 Practical Issues

There are many branches for the saddle-point equations, both in the uniform approxi-

mation and standard saddle-point approximation since their solutions are complex. As

was discussed above, for numerical solutions one needs to use trial and error to find the

appropriated solutions. For the short orbit the guess values can be chosen based on the

assumptions that the electron tunnels just after field maxima and returns just before

field crossing. For the long orbit the guess values are chosen such that the electron tun-

nels just after field maxima but a bit earlier than the tunneling time of the short orbit

and returns just after field crossing. Furthermore, an imaginary part is associated with

the time the electron is born in the continuum through tunneling. For the classically

allowed region this imaginary part vanishes when the first electron returns to the core.
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Figure 4.3: Schematic representation of the divergency at the Stokes transition. In
order to prevent divergency we take those solutions which decay exponentially at Stokes

transition (red line).

In addition, complex solutions always come in a complex conjugate pairs. Thus the

complex conjugate of the solutions of the saddle-point equations will also be solutions.

Generally, physically relevant solutions have the following properties: 1) the real part of

the solutions is associated to the classical orbits; 2) their imaginary part decays beyond

the classical cutoff and does not increase exponentially for avoiding divergency (This

is illustrated in figure 4.3); 3) for the classically allowed region the imaginary part of

the return times is much smaller than unity Im[ωt] << 1; 4) the imaginary part of

the tunneling time should be greater than zero Im[ωt] > 0, otherwise the barrier is

unphysical.

As far as the computation is concerned, the saddle-point equations of NSDI can be fur-

ther simplified due to symmetry consideration. This simplification become very impor-

tant when we compute the electron momentum distributions. For both electron-impact

ionization and RESI the final momenta pn are written in terms of their components par-

allel pn|| and perpendicular pn⊥ to the the laser polarization. For the electron-impact

ionization we expand the quadratic terms of the action (3.34). Then we write them in

the following format:
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p|| = p1|| + p2||

ϵ = p21|| + p22|| + p21⊥ + p22⊥ + E2g

As a result, the saddle point reads

SEI(pn,k, t, t
′) =

1

2
ϵt− p||

∫ t

0
A(τ)dτ +

∫ t

0

A2(τ)

2
dτ

+
[
∫ t
t′ dτA(τ)]2

2(t− t′)
−
∫ t

t′

A2(τ)

2
dτ + E1gt

′ (4.23)

In order to find the solution of the saddle-point equations we start from the middle of

the classical region and move away from it.

For RESI, the solutions of the saddle-point equations for p1 and p2 are decoupled. The

first three saddle-point equations, i.e. (4.4)-(4.6) give the tunneling t′ and return t” time

and the drift momentum k of the first electron independent from the momentum of the

second electron. The fourth equation (4.7) corresponds to the tunneling of the second

electron without having any coupling with the first electron. As a result, it becomes

easier to solve the saddle-point equations. There are, however, some problems in defining

the pair of saddles in the uniform approximation. Thus we use the standard saddle-point

approximation and take the appropriate solutions, i.e. those make physically sense, at

the cutoff and beyond. Work in this direction, however, is in preparation.
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Constraints in Momentum Space

From the saddle-point equations in the previous section, one may determine constraints

for the parallel momentum components pn||(n = 1, 2) in the plane p1∥p2∥. This can be

done by writing the saddle-point equations in terms of the electron-momentum com-

ponents parallel and perpendicular to the laser field polarization.These constraints will

be discussed here for both the electron-impact ionization and RESI mechanisms, and

will serve as a tool for sketching an approximate shapes for the electron-momentum

distributions [78, 171].

For simplicity, we will consider a monochromatic field in equation (3.48) of frequency ω

[78, 171]. The momentum constraints for electron-impact ionization have been discussed

by Faria et al. in [16], and will be briefly summarised here for the sake of self-consistency.

The momentum constraints for RESI are part of my PhD work and have been published

in [3].

5.1 Electron-impact Ionization

We write equation (4.3) in terms of the electron-momentum components parallel and

perpendicular to the laser-field polarization

2∑
n=1

[pn|| +A(t)]2 + p2
n⊥ =

[
k+A(t′)

]2 − 2E2g. (5.1)

In momentum space, this equation represents a six-dimensional hypersphere with a

center at pn⊥ = 0, pn|| = −A(t), (n = 1, 2). As discussed in the previous chapter, the

hypersphere equation (5.1) describes the classically allowed region. The shape of this

region is determined by A(t), which can have different values, depending on the tunneling

55
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time of the electron as well as its time of return to the parent ion. Therefore, the union

of all the possible hyperspheres defined by equation (5.1) will determine the classically

allowed region [175]. However, the electron-impact ionization constraints can roughly

be determined if one assume the that the first electron returns around a crossing of the

laser driving field. For the monochromatic field (3.48), this estimation leads to a center

at approximately pn|| = ±2
√
Up, for the parallel component of the electron momentum.

For electron-impact ionization, this is the most probable parallel momentum rather than

the maximum momentum value. The right-hand side of equation (5.1) defines the radius

of the hypersphere, which is a function of driving-field intensities. For high driving-field

intensity, the radius may extend far beyond 2
√
Up. The increase in radius has been

demonstrated by different theoretical approaches, such as the SFA [75], classical models

[77] and the time-dependent Schrödinger equation [11]. As the driving-field intensity

decreases, the radius of the hypersphere becomes smaller and smaller until the classically

allowed region collapses. Equation (5.1) can be further examined by considering a fixed

value for the transverse momentum. If the transverse momentum is kept fixed, then

equation (5.1) can be written as

2∑
n=1

[pn|| +A(t)]2 =
[
k+A(t′)

]2 − 2Ẽ2g, (5.2)

with an effective ionization potential

Ẽ2g =

2∑
n=1

p2
n⊥/2 + E2g (5.3)

Here, the kinematic constraints are defined by equation (5.2), which is the equation of a

circle in the parallel-momentum plane. The right-hand side of equation (5.2) gives the

radius of the circle. It shows that the parallel-momentum plane will become more local-

ized around pn|| = ±2
√
Up, as the transverse momenta become larger. Equation (5.3)

shows that the effective potential energy increases as the transverse momentum of the

electrons increases. Therefore, for non-vanishing momenta, the second electron needs to

overcome a larger second ionization potential. In addition, according to equation (5.2),

the electron momentum distribution will populate the first and third quadrants of the

parallel momentum plane, which is the key feature of electron-impact ionization mecha-

nism. This emerges from the fact that pn|| have the same centre, hence at the maximum

they have the same signs. For a monochromatic field A(t) = A(t± T/2) with the laser

field cycle of T = 2π/ω, the electron momentum distributions are symmetric with re-

spect to the reflection
(
p1||, p2||

)
→
(
−p1||,−p2||

)
. However, it has been shown that this
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Figure 5.1: Schematic representation of the classically allowed region for electron-
impact ionization, as a function of the electron momentum components pn∥(n = 1, 2)
parallel to the laser-field polarization. The different fixed transverse momenta pn⊥(n =
1, 2) correspond to the different concentric circles. The picture is simplified as we

assumed a monochromatic driving field and A(t) = ±2
√
Up (figure 17 of [14]).

symmetry breaks down for few-cycle pulses [78, 171]. A schematic representation of the

discussed classically allowed region is shown in figure 5.1.

Now, one needs to see how this estimate agrees with the solutions of the saddle-point

equations, in terms of the start time t′ and the return time t. Only those solutions

which correspond to the shortest pair of orbits are considered, as they provide the

dominant contributions to the NSDI distributions. The imaginary part of these solutions

shows if a process is classically allowed or forbidden, and the real parts are related to

the classical start and return times of both electrons. Figure 5.2 shows a plot of real

and imaginary time of t′ and t against the equal parallel momenta for both particles

p1∥ = p2∥ = p∥. The plot shows that the return time t has almost zero imaginary part

just before the cutoffs. This means the recollision dynamics can be visualized classically.

As the transverse momentum increases, the classically allowed region becomes more

concentrated around pn|| = ±2
√
Up and eventually it collapses, as we expect according

to our rough estimation. When the classical allowed region collapses, the imaginary part

of t increases rapidly. On the other hand, for the tunneling time t′, the imaginary part is

nonzero. The nonzero imaginary part indicates that tunneling does not have a classical

counterpart. Furthermore, from panel (a) we can see the electron tunnels earlier with

small Im[t′] on the long orbits, while it tunnels later with large Im[t′] on the short orbits.

This happens because, for the long orbit, the field is close to its maximum.
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The long orbit indicates that the electron tunnels easily when the laser field is at its

maximum. A more detailed discussion can be found in reference [16].

Apart from that, figure 5.2 also shows two momentum for the real part of the start and

return times almost coalesce. These momenta corresponds to the classical cutoffs, for

constant transverse momenta. They delimit a region centred at roughly 2
√
Up. This

region collapses for increasing transverse momenta. Furthermore, we include electron-

momentum distribution computed with equation (3.50) for three different driving-field

intensities in figure 5.3. We consider the prefactor Vpn,k = constant, in order to single-

out the influence of the momentum-space constraints. For effect of the different type

of the interactions the reader is refered you to [75, 105]. The figure clearly reflect

the previously estimated constrains. Indeed, the electron momentum distributions are

centered around ±2
√
Up, whose radius increases with the driving field intensity.

5.2 RESI

The saddle-point equations (4.6) and (4.7) provide useful information on the momentum-

space regions populated by the RESI mechanism, and on the shapes of the electron-

momentum distributions. Equation (4.7), which corresponds to the tunneling of the

second electron, is formally identical to the saddle-point equation describing the low-

energy electrons in above-threshold ionization (ATI), the so-called “direct electrons”.

In this case, an electron tunnels from a bound state and reaches the detector without

rescattering with its parent ion [176].

Physically, this is exactly the situation encountered for the second electron, and will

have two main consequences. Firstly, the solutions of the saddle-point equations will

be identical to those for the direct ATI electrons [176]. For vanishing electron drift

momenta, these solutions are displaced by half a cycle, and are located at a maximum

of the field. As the momentum increases, the solutions approach each other and move

away from the maximum. Secondly, the maximal kinetic energy for the direct ATI

electrons, if the field is approximated by a monochromatic wave, is 2Up [177]. Hence,

in RESI, the second electron leaves the excited state with largest probability when the

electric field E(t) = −dA(t)/dt is at its maximum. If the time dependence of the laser

field is such that A(t) vanishes when E(t) is at its peak (for instance, monochromatic

fields), then

− 2
√
Up ≤ p2 ≤ 2

√
Up. (5.4)

If, to first approximation, we neglect the momentum components perpendicular to the

laser-field polarization, one can see that the momentum of the second electron, in the
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Figure 5.2: Real and imaginary parts of the start and return times, obtained by
solving the saddle-point equations (4.1)-(4.3) for a monochromatic linearly polarized
field of frequency ω = 0.0551 a.u. and pondermotive energy Up = 1.2 a.u. The
ionization potential for neon atom were taken (E2g = 1.51 a.u. and E1g = 0.9 a.u.).
Panels (a) and (c) give the real and imaginary parts of the start time, respectively,
while panels (b) and (d) depict the real and imaginary parts of the return time. The
transverse momenta (p1⊥, p2⊥) is given by numbers in the curves in units of

√
Up.

(upper and middle panels of figure 1 in [16])

parallel momentum plane, is expected to be centered around vanishing momentum p2∥

and be limited by the bounds p2∥ = ±2
√
Up. One should note that this is in contrast to

the situation discussed in the previous section, in which the second electron is dislodged

by electron-impact ionization. In the electron-impact ionization mechanism, ±2
√
Up

is the most probable momentum p2∥ with which the second electron may leave. In the

present scenario, this is the maximum value for this quantity.

Furthermore, due to the fact that equation (4.7) describes a tunneling process, there

is no classically allowed region for the second electron. For nonvanishing transverse

momenta, this region will remain the same. We expect, however, that there will be a

large drop in the yield. This is due to the fact that there will be an effective increase

in the potential barrier through which the electron tunnels. This can be readily verified
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Figure 5.3: Electron momentum distributions as functions of the momentum compo-
nents (p1∥, p2∥) parallel to the laser-field polarization, computed with constant prefac-
tors and integrated over transverse momenta. This figure demonstrate how the classical
allowed region increases with intensity. The driving field frequency has been taken as
ω = 0.057 a.u. The ionization potentials E01 = 0.573 a.u. and E02 = 0.997 a.u.
correspond to N2 at the equilibrium internuclear distance R = 2.068 a.u. Panels (a)

correspond to the laser field intensity of I = 1×1014 W/cm
2
, and (b) and (c) correspond

to I = 3× 1014 W/cm
2
and I = 5× 1014 W/cm

2
, respectively.

by writing the saddle-point equation (4.7) as

[p2∥ +A(t)]2 = −2Ẽ2e, (5.5)

with an effective ionization potential Ẽ2e = E2e + p2
2⊥/2.

Equation (4.6), on the other hand, has a similar form to the saddle-point equation

describing the rescattered electrons in ATI [172], apart from the energy difference E2g−
E2e on the right-hand side. Physically, this is expected, as in both cases the first

electron leaves immediately after rescattering. The difference is that, while in ATI the

rescattering is elastic, in NSDI part of the electron’s kinetic energy is used to excite the

core. Explicitly, the momentum component of the first electron parallel to the laser-field

polarization is given by

−A(t)−
√

2Ediff ≤ p1∥ ≤ −A(t) +
√

2Ediff , (5.6)

where Ediff = Ekin(t
′, t′′) − (E2g − E2e) − p2

1⊥/2 and Ekin(t
′, t′′) denotes the kinetic

energy of the first electron upon return. For a monochromatic field, the electron returns

most probably near a crossing of the laser field; one may use the approximation A(t) ≃
2
√
Up in the above-stated equation. In this case, we also know that the kinetic energy

Ekin(t
′, t′′) ≤ 3.17Up. Hence, E

(max)
diff ≤ 3.17Up − (E2g − E2e)− p2

1⊥/2 and

− 2
√
Up −

√
2E

(max)
diff ≤ p1∥ ≤ −2

√
Up +

√
2E

(max)
diff . (5.7)
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Figure 5.4: Tunneling time t for the second electron, as functions of its parallel
momentum p2||, for a monochromatic field of intensity I = 1.5 × 1014 W/cm

2
and

frequency ω = 0.057 a.u, for several transverse momenta p2⊥. The upper and lower
panel give the real and imaginary parts of such times, respectively. We consider a model

atom for which the excited-state energy is, E2e = 0.25 a.u. and E2g = 1 a.u.

Equation (5.7) allows one to delimit a region in momentum space for p1∥ centered around

−2
√
Up and bounded by 2E

(max)
diff . In contrast to the previous case, there may be a clas-

sically allowed region for the momentum of the first electron if the parameters inside

the square root are positive, i.e., if 3.17Up ≥ (E2g − E2e) + p2
1⊥/2. For increasing per-

pendicular momentum and/or bound-state energy difference, this region will become

more and more localized around −2
√
Up until it collapses. Therefore, it is also pos-

sible to distinguish between threshold and above-threshold behavior in the context of

recollision-excitation-tunneling. One should note, however, that intensities below the

recollision-excitation threshold (E2g − E2e) = 3.17Up do not make physical sense, as

the energy of the returning electron would not be sufficient to promote the bound elec-

tron to an real excited state. However, for this intensity one may describe recollision-

excitation-tunneling by considering victual excited state for the second electron. If

(E2g − E2e) ≪ 3.17Up the well-known cutoff of 10Up for rescattered above-threshold

ionization is recovered. Based on ATI kinetic energy values, the upper bound for the

parallel electron momentum p1∥ can be estimated as −2
√
Up . p1∥ . 4

√
Up. For the

orbits leading to the mirror image of the distribution with respect to the reflection (p1∥,
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p2∥) → (−p1∥,−p2∥), the constraint upon the parallel momentum of the first electron

will be −4
√
Up . p1∥ . 2

√
Up. For these latter orbits, the times t′, t′′ and t are displaced

by half a cycle. A nonvanishing transverse momentum component p1⊥ will lead to lower

maximal and minimal momenta.

In view of the above-mentioned constraints, the expected maxima of the electron mo-

mentum distribution are located at the most probable momenta (p1||, p2||) = (±2
√
Up, 0),

and, after symmetrizing with respect to the exchange p1 ↔ p2, at (p1||, p2||) = (0,±2
√
Up).

This implies that, if the field can be approximately described by a monochromatic wave,

the outcome of our model should have distributions in the p1∥p2∥ plane, which are sym-

metric upon pn → −pn, n = 1, 2 and upon p1 ↔ p2, and which equally occupy the

four quadrants of the parallel momentum plane. The width of such distributions will

remain constant around −2
√
Up . pn∥ . 2

√
Up and their length will increases from a

small region around ±2
√
Up to a momentum region comparable to that defined by the

rescattered ATI plateau. Summarizing, as the intensity of the driving field increases,

the shape of the distributions will become more elongated. In other words, they will

change from ring-shaped to cross-shaped distributions (see subsection 5.2.1).

In figure 5.4, we plot the real and imaginary parts of the ionization times t for the second

electron, as functions of the electron momentum p2∥, for several transverse momenta

(upper and lower panel, respectively). In all cases, the imaginary parts of each time t

in a pair are identical and exhibit a minimum at the peak-field times ωt = π/2. This

is expected, as i) the two orbits behave symmetrically with respect to the laser field,

and ii) the effective potential barrier through which the electron tunnels is narrowest for

these times. As the transverse momentum p2⊥ becomes larger in absolute terms, we see

an increase in Im[t]. This is consistent with the fact that the potential barrier widens

in this case.

In figure 5.5, we display the real and imaginary part of the ionization [panels (a) and

(b), respectively] and rescattering times [panels (c) and (d), respectively] for the first

electron. We consider the shortest orbits for the returning electron. The remaining

sets of orbits are strongly suppressed due to wave-packet spreading. By associating the

real parts of t′ and t′′ with the classical trajectories of an electron in a laser field, one

may identify a longer and a shorter orbit, along which the first electron returns. These

orbits practically coalesce for two specific values of p1∥, namely the minimum and the

maximum momenta for which the rescattering process described by the saddle-point

equation (4.6) has a classical counterpart. Beyond these momenta, the yield decays

exponentially. For vanishing transverse momentum p1⊥, these cutoffs are near −4
√
Up

and 2
√
Up, as predicted by our estimates. As p1⊥ increases, the classically allowed region

shrinks and gets very localized near p1∥ = −2
√
Up. For the parameters considered here,
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Figure 5.5: Tunneling and rescattering times for the first electron, as functions of
its parallel momentum p1|| (with the same driving filed as figure 5.4). Panels (a)
and (b) give the real and imaginary parts of the tunneling time t′, respectively, and
panels (c) and (d) depict the real and imaginary parts of the rescattering time t′′.
We consider a model atom for which the first electron tunnels from a ground state of
energy E1g = 0.92 a.u., and rescatters with a ground ionic state of energy E2g = 1
a.u. Thereby the returning electron gives part of its kinetic energy to excite a second
electron to the state E2e = 0.25 a.u. The dashed and solid lines correspond to the short

and long orbits, respectively.

this corresponds to the situation in which the electron returns at a crossing of the field.

Finally, for very large transverse momenta, this region disappears.

The imaginary parts of the times t′ and t′′, displayed in figures 5.5.(b) and 5.5.(d),

confirm this physical interpretation. In fact, they show that, for the rescattering times,

Im[t′′] essentially vanishes between the momenta for which the real parts Re[t′′] coalesce.

Physically, this means that, in this region, rescattering is classically allowed. Beyond this

region, Im[t′′] increases abruptly, which indicates that the classically forbidden region has

been reached. In this context, it is worth mentioning that, even if there is no classically

allowed region, Im[t′′] exhibits a minimum near p1∥ = −2
√
Up. This is due to the fact

that rescattering is most probable for this specific momentum. A similar behavior has

been observed in [16] for electron-impact ionization. These findings have been briefly

summarized in the previous section.

The imaginary part Im[t′] of the start time of the first electron, on the other hand,
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Figure 5.6: Schematic representation of the regions of the parallel momentum plane
populated by the recollision-excitation-tunneling ionization mechanism, highlighted as
the rectangles in the figure. The shape of electron momentum distributions change
with intensity from ring-shaped (a) to cross-shaped (c) by increasing of intensity, while
the maxima of the electron momentum distributions are around pn∥ = ±2

√
Up. We

consider different sets of trajectories, whose start and recollision times are separated
by half a cycle of the field, and the symmetrization p1 ↔ p2 with respect to the
indistinguishability of the two electrons. In our estimates, we considered vanishing
transverse momenta, so that the constraints provided constitute an upper bound for

this region.

is always non-vanishing. This is not surprising, as tunneling has no classical counter-

part. They are, however, approximately constant between the lower and upper cutoff

momenta.

In figure 5.6, we summarize the information discussed above, and provide a schematic

representation of the momentum regions occupied in the RESI process in three different

intensities. In particular, we expect the distributions to exhibit maxima near the points

(p1||, p2||) = (±2
√
Up, 0). In a real-life situation, since both electrons are indistinguish-

able, one would expect maxima also at (p1||, p2||) = (0,±2
√
Up).

In the following figure (i.e. figure 5.7), we present electron momentum distributions

computed employing equation (3.50) (as discussed in section 3.3.3) under the assumption

that the prefactors Vp2e, Vp1e,kg and Vkg are constant. This removes any momentum

bias that may arise from such prefactors, and therefore provides a clearer picture of how

the momentum-space constraints affect such distributions. The transverse momentum

components d2p1⊥d
2p2⊥ are integrated over.

In panel (a), we consider only that the first electron is released in 0 < t′ < T/2, where

T = 2π/ω denotes a cycle of the external driving field, while in panel (b) we also consider

the contributions from t′ → t′ ± T/2, t′′ → t′′ ± T/2 and t → t ± T/2. Furthermore,

in the latter case, we also symmetrize the distributions with respect to p1 ↔ p2, as

the two electrons are indistinguishable. We have considered the parameters for a model

atom, corresponding to the situation in which an electron initially in 1s was released

and promoted a second electron to the 2p state.
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Figure 5.7: Electron momentum distributions for a model atom (E1g = 0.92 a.u.,
E2g = 1 a.u. and E2e = 0.25) in a linearly polarized, monochromatic field of frequency
ω = 0.057 a.u. and intensity I = 1.5 × 1014 W/cm2. Panel (a) displays only the con-
tributions from the sets of orbits starting at 0 < t′ < T/2, while panel (b) depicts also
the contributions from the other half-cycle of the field. In panel (b), the distributions

have also been symmetrized with respect to the exchange p1 ↔ p2

In figure 5.7.(a), one clearly sees that the distributions are brightest along the axis

p2|| = 0. This is expected, as the emission of the second electron is most probable at a

field maximum. For this time, the electron momentum vanishes. Apart from that, the

distribution is longer in the p1|| direction. This is expected, as the cutoff momenta is

higher in this case. Finally, the distributions also exhibit a maximum at p1|| = −2
√
Up,

in agreement with the RESI constraints defined earlier (see 5.2). Upon symmetrization

(figure 5.7.(b)), we obtain distributions highly concentrated along the momentum axis

p1|| = 0 and p2|| = 0. These distributions also exhibit a ring-shaped maximum around

the origin of the p1||p2|| plane. These results show that the momentum regions populated

by the RESI mechanism are much lower than those populated if the second electron is

released by electron-impact ionization, in agreement with other results reported in the

literature [70, 118].1

5.2.1 Intensity Dependence

We will now have a closer look at how the momentum-space constraints affect the elec-

tron momentum distributions for different driving-field intensities. For that purpose,

we will once more assume that the prefactors Vp1e,kg and Vp2e are constant, and vary

1The ionization potential of the second electron is small with respect to the external field, hence, one
needs to include the saturation. However, for the problem we are considering in here, this saturation is
ignored.
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Figure 5.8: Electron momentum distributions for Helium (E1g = 0.97 a.u., E2g = 2
a.u. and E2e = 0.5 a.u.) in a linearly polarized, monochromatic field of frequency
ω = 0.057 a.u.. In the picture, we considered all prefactors to be constant. Panels (a),
(b) and (c) correspond to a driving-field intensity I = 2.16×1014 W/cm2, I = 2.5×1014

W/cm2 and I = 3×1014 W/cm2, respectively. The contour plots have been normalized
to the maximum probability in each panel.

the laser-field intensity. For the lowest intensity, the kinetic energy of the returning

electron is just enough to promote the second electron to an excited state, i.e., we are

considering the recollision excitation (RESI) threshold E2g − E2e ≃ 3.17Up. This inten-

sity, however, is below the electron-impact ionization threshold, i.e., E2g > 3.17Up. The

intermediate intensity has been chosen such that E2g − E2e < 3.17Up, i.e., above the

threshold for recollision-excitation. Nevertheless, this intensity is not sufficient to make

the second electron overcome the ionization potential and be freed by electron-impact

ionization. Finally, the highest driving-field intensity considered in this section is far

above the recollision-excitation threshold, and slightly above the electron-impact ion-

ization threshold. This implies that rescattering is classically allowed for both physical

mechanisms. The computations in this section have been performed for helium, and the

results are presented in figure 5.8.

As an overall feature, the distributions exhibit four peaks at (pj||, pν||) = (±2
√
Up, 0),

with j, ν = 1, 2 and j ̸= ν. These peaks agree well with the constraints discussed in the

previous sections, and exhibit a striking resemblance with the schematic representation

of such constraints, displayed in figure 5.6. This holds even if the driving-field intensity

is just enough to excite the second electron and the only allowed momenta are ±2
√
Up

[figure 5.8.(a)]. Physically, this means that the first electron will reach its parent ion

most probably at a crossing of the driving field, reaching the detector with the most

probable momenta of ±2
√
Up, while the second electron will reach it with vanishing

momentum.

The shapes of the distributions, however, differ considerably. Indeed, at the RESI thresh-

old intensity [figure 5.8.(a)], one observes ring-shaped distributions. As the intensity
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increases, this distributions become more and more elongated along the pn∥ axis [fig-

ure 5.8.(b)], until the maxima merge and cross-shaped distributions are observed [figure

5.8.(c)].

This change of shape may be understood by analyzing the momentum-space constraints.

The widths of the distributions are determined by the tunnel ionization of the second

electron from an excited state. This process has no classical counterpart and leads to

distributions peaked at p2∥ = 0 and which vanish at p2∥ = ±2
√
Up, i.e., at the direct

ATI cutoff. Increasing the intensity will only make the effective potential barrier smaller

or wider, and thus affect the overall yield, but will not change such constraints.

The elongations in the distributions are determined by the rescattering of the first elec-

tron. This rescattering, in contrast, delimits a momentum region which is highly de-

pendent on the driving-field intensity. Therefore, its width in momentum space will

vary. Specifically, at the RESI threshold, there will be maxima in the distributions at

p1∥ = ±2
√
Up due to the fact that the first electron rescatters most probably at a field

crossing. However, as these are the only classically allowed momenta, the distributions

will be fairly narrow around this value. With increasing driving-field intensity, the clas-

sically allowed region defined by equation (5.7) will become more and more extensive

and this will cause the elongation.

Note that the electrons are indistinguishable so that the above arguments hold upon the

exchange p1∥ ↔ p2∥. Hence, the horizontal and vertical axis in the parallel momentum

plane will be equally affected.

5.2.2 Conclusions

The main conclusion to be inferred from this work is that the recollision-excitation-

ionization mechanism, which is becoming increasingly studied due to its importance

for NSDI of molecules and at threshold intensities, can be understood as a rescattered

above-threshold ionization-like process (ATI) for the first electron, followed by direct

ATI for the second electron.

The shapes of the electron momentum distributions, are determined by the interplay

between two different behaviours, associated with the collision of the first electron and

the tunneling of the second electron. The momentum region determined by the tunnel

ionization of the second electron from an excited state will always be restricted by the

direct ATI cutoff. The relevant momentum region will not change regardless of the

driving-field intensity, as this will always be a classically forbidden process.
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The first electron, on the other hand, rescatters inelastically with its parent ion, giv-

ing part of its kinetic energy upon return to excite the second electron. Hence, if its

maximum return energy is larger than the energy difference E2g −E2e, rescattering has

a classical counterpart. This implies that there will be a classically allowed region in

momentum space. If, however, this energy is just enough to excite the second elec-

tron, the classical region will collapse. Hence, the extension of the relevant region in

momentum space related to the rescattering of the first electron will depend on the

driving-field intensity. Hence, the distributions become increasingly elongated as the

intensity increases.

This also implies that one may define a threshold driving-field intensity for the RESI

mechanism. This intensity is considerably lower than that necessary for the second

ionization potential to be overcome by the second electron, i.e., for electron-impact

ionization to occur.



Chapter 6

Bound-state Signature in RESI in

Atoms

This chapter illustrates how we performed a rigorous, semi-analytic study of the recolli-

sion excitation with subsequent tunneling ionization (RESI) mechanism in laser-induced

nonsequential double ionization (NSDI), based on the strong-field approximation. This

work is part of my PhD work and has been published in [4]. This study shows how

the shapes of the electron momentum distributions carry information about the bound

state with which the first electron collides, the bound state to which the second electron

is excited, and the type of electron-electron interaction. Electron momentum distribu-

tions are computed for helium and argon in the threshold and above-threshold intensity

regimes. In the latter case, our findings are related to existing experiments [86]. The

electron momentum distributions encountered are symmetric with respect to all quad-

rants of the plane spanned by the momentum components parallel to the laser-field

polarization, instead of concentrating on only the second and fourth quadrants. The

above-mentioned momentum constraints, together with the strong dependence of the

distributions on the bound states involved, may be important for singling out the RESI

mechanism in actual physical situations and using NSDI in ultrafast imaging.

The prefactors of the transition amplitude contain all the information about the target

structure. In this chapter, an investigation is carried out to see how the initial and excited

states and the electron-electron interaction affect the electron momentum distributions

of NSDI in the RESI mechanism. In section 6.1, the specific prefactors are provided

for the hydrogenic systems to be investigated in this work. This approach is employed

to compute electron momentum distributions for helium and argon in section 6.2. For

the latter species, an explicit comparison with the results in reference [86] is performed.

Finally, in section 6.3, we bring the main conclusions from this chapter.

69
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6.1 Prefactors

In this work, we are particularly interested in exponentially decaying, hydrogenic bound

states. This means that, in general, the bound-state wavefunction reads

ψ(nlm)(rα) = Rnl(rn)Y
m
l (θα, φα), (6.1)

where n, l and m denote the principal, orbital and magnetic quantum numbers, the

index α refers to the electron in question, and the angular coordinates are given by θα

and φα. In this case, the binding potentials V (r1) and Vion(r2) will be given by

Vα(rα) = −Zeff

rα
, (6.2)

where Vα yields either V or Vion, and Zeff corresponds to the effective electronic charge.

The general expressions for the prefactors in this work are provided in the Appendix C.

Below, we state the specific prefactors to be employed for helium and argon. In the

former case, upon collision, the second electron may be excited from the 1s state to

either the 2s or the 2p state, while in the latter species it may undergo a transition from

the 3p state to the 4s or the 4p state. One should note that the prefactor Vp2e is gauge

dependent. In the length gauge, p̃2(t) = p2+A(t), and p̃2(t)∥ = p2∥+A(t) while, in the

velocity gauge, p̃2(t) = p2 and p̃2(t)∥ = p2∥. The prefactor Vp1e,kg, on the other hand,

is gauge invariant because phases cancel out(

6.1.1 Excitation 1s → 2s

Let us first consider the simplest case, in which the second electron is excited to 2s. This

gives the prefactors

V
(2s)
p2e ∼ [p̃2(t)]

2 − 2E2e

[[p̃2(t)]
2 + 2E2e]2

(6.3)

and

V
(1s→2s)
p1e,kg

∼ V12(p1 − k)
η1(κ

2, E2g, E2e)

[κ2 + ζ2(E2g, E2e)]3
, (6.4)

with

η1(κ
2, E2g, E2e) = κ2(

√
2E2g + 2

√
2E2e) + (2E2g)

3/2

−2(2E2e)
3/2 − 6E2e

√
2E2g. (6.5)

and

ζ(E2g, E2e) =
√

2E2e +
√

2E2g. (6.6)
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The above-stated equations can also be written in terms of the momentum components

parallel and perpendicular to the laser field polarization, denoted by pα|| and pα⊥, (α =

1, 2), respectively. In this case,

V
(2s)
p2e ∼

[
p̃2(t)∥

]2
+ p2

2⊥ − 2E2e

[
[
p̃2(t)∥

]2
+ p2

2⊥ + 2E2e]2
(6.7)

V
(1s→2s)
p1e,kg

∼ V12(p1 − k)
η1

[(
k − p1∥

)2
+ p2

1⊥, E2g, E2e

]
[
(
k − p1∥

)2
+ p2

1⊥ + ζ2(E2g, E2e)]3
, (6.8)

6.1.2 Excitation 1s → 2p

If, on the other hand, the second electron is excited to 2p, one must consider three

degenerate states, corresponding to the magnetic quantum numbers m = ±1, 0.

This yields

V
(2p)
p2e ∼

√
[p̃2(t)]

2(
2E2e + [p̃2(t)]

2
)2 [Y m

1 (θp̃2 , φp̃2)]
∗ (6.9)

and

V
(1s→2p)
p1e,kg

∼ V12(p1 − k)η2(κ
2, E2g, E2e) [Y

m
1 (θκ, φκ)]

∗ , (6.10)

with

η2(κ
2, E2g, E2e) =

ζ(E2g, E2e)
√
κ2

(ζ2(E2g, E2e) + κ2)3
. (6.11)

Since the electron may be excited to any of the 2p states, we will consider the coherent

superposition ∣∣∣ψ(2)
2p

⟩
=

1√
3

(∣∣∣ψ(2)
2px

⟩
+
∣∣∣ψ(2)

2py

⟩
+
∣∣∣ψ(2)

2pz

⟩)
, (6.12)

where ⟨r2
∣∣∣ψ(2)

2pj

⟩
= ψ

(2)
2pj

(r2), with j = x, y, z. This implies that

V
(2p)
p2e ∼

√
[p̃2(t)]

2(
2E2e + [p̃2(t)]

2
)2β(p̃2(t)) (6.13)

and

V
(1s→2p)
p1e,kg

∼ V12(p1 − k)η2(κ
2, E2g, E2e)β(κ), (6.14)

where the angular dependency is given by

β(q) = (sin θq cosφq + sin θq sinφq + cos θq). (6.15)
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Thereby, we employed the usual relations between spherical polar coordinates and the

spherical harmonics.

One may write the above-stated expressions in terms of the electron momentum com-

ponents parallel and perpendicular to the laser-field polarization. In this case, equation

(6.13) reads

V
(2p)
p2e ∼

√[
p̃2(t)∥

]2
+ p2

2⊥(
2E2e +

[
p̃2(t)∥

]2
+ p2

2⊥

)2β(p̃2(t)). (6.16)

In β(p̃2(t)), the angles θp̃2 and φp̃2 are given by

θp̃2 = arccos

[
p̃2(t)∥/

√[
p̃2(t)∥

]2
+ p2

2⊥

]
(6.17)

and φp̃2 = arccos[p̃2(t)x/p̃2(t)⊥], respectively. In equation (6.14), κ2 = (k − p1∥)
2 + p2

1⊥

and the angles θκ and φκ read

θκ = arccos
[(
k − p1∥

)
/
√

(k − p1∥)2 + p2
1⊥

]
(6.18)

and φκ = arccos[p1x/p1⊥], respectively. This angular dependence will be washed out

when the transverse momentum components are integrated over (see section 3.3.3).

6.1.3 Excitation 3p → 4s and 3p → 4p

Finally, we will assume that the second electron, initially in 3p, will be excited either to

the 4s or to the 4p state. Like the procedure adopted in the previous section, we will

consider a coherent superposition of the 3px, 3py and 3pz states for the initial state of

the electron, i.e., ∣∣∣ψ(2)
3p

⟩
=

1√
3

(∣∣∣ψ(2)
3px

⟩
+
∣∣∣ψ(2)

3py

⟩
+
∣∣∣ψ(2)

3pz

⟩)
. (6.19)

If the electron is excited to the 4s state, the excitation prefactor V
(3p→4s)
p1e,kg

will exhibit

an angular dependence given by β(κ), and the tunneling prefactor V
(4s)
p2e will not depend

on the angular variables. Both prefactors also have a radial dependence on p̃2(t) or κ.

If, however, the electron is excited to the 4p state, one must take the final state as∣∣∣ψ(2)
4p

⟩
=

1√
3

(∣∣∣ψ(2)
4px

⟩
+
∣∣∣ψ(2)

4py

⟩
+
∣∣∣ψ(2)

4pz

⟩)
, (6.20)

i.e., as a coherent superposition of 4px, 4py and 4pz. In this case, the angular dependence

of Vp2e will be embedded in β(p̃2(t)). The angular dependence of V
(3p→4p)
p1e,kg

will be more

complex and will involve the sum of the orbital angular momenta of the two electronic

bound states involved. Due to the higher quantum numbers involved, the prefactors
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are messier than those in the previous sections and will not be written down explicitly.

They can, however, be obtained from the general expressions in Appendix C.

6.1.4 Bound-state Singularity

The simplest scenario is if all prefactors are nonsingular, such as in the velocity-gauge

formulation of the SFA. In this case, they will contribute to the electron momentum

distributions as |Vp2e|
2 and |Vp1e,kg|2.

In the length-gauge SFA, however, the exponentially decaying bound states of the pref-

actors (3.45) and (3.43) exhibit singularities, due to the saddle-point equations (4.4)

and (4.7). This is due to the fact that these prefactors will be inversely proportional to(
[k+A(t′′)]2 + 2E1g

)n
and

(
[p2 +A(t)]2 + 2E2e

)m
, where n,m are integers. For the

problem addressed in this specific work, however, only the prefactor Vp2e will influence

the shape of the electron momentum distributions. This is a consequence of the fact that

it gives the final momentum p2 of the second electron at the detector. The prefactor

Vkg, in contrast, determines the intermediate momentum k, which will change to p1

after recollision. Hence, it will only affect the distributions quantitatively. Therefore, to

first approximation, one can consider equation (3.45) as constant. A similar problem for

the electron-impact ionization mechanism in NDSI has been discussed in detail in [74].

To overcome the singularity in Vp2e, one needs to embed this prefactor into the action,

which now reads

S̃(p1,p2,k, t, t
′, t′′) = S(p1,p2,k, t, t

′, t′′)− i lnVp2e. (6.21)

This will lead to modifications in the saddle-point equation ∂tS̃(p1,p2,k, t, t
′, t′′), which

is now given by

[p2 +A(t)]2 = −2E2e + i∂t lnVp2e. (6.22)

The main consequence of such a modification is that the drift velocity of the second

electron is no longer pure imaginary. This will lead to a splitting in the ionization time

t for each orbit, as compared to the non-modified case. Depending on the velocity in

question, the barrier the electron must tunnel through in order to reach the continuum

will either widen or narrow. This means that, with regard to the non-modified action,

Im[t] will either increase or decrease.

This singularity, however, is present only in the radial part of this prefactor. Therefore,

the angular parts are still slowly varying, and may be treated as above. The radial part

of the prefactor, however, must be incorporated in the action.
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6.2 Results

In this section, we will compute electron momentum distributions employing equation

(3.50) and integrating the transition amplitude (see 3.3.3) over the azimuthal angles

φpn and, unless otherwise stated, we just consider Vkg as constant. We will now briefly

discuss how the prefactors Vp2e and Vp1e,kg behave with regard to the integration over

φpn . Obviously, if the second electron is excited from an s state to an s state, the

prefactors Vp2e and Vp1e,kg do not depend on this parameter. However, if a transition

from or to a p state is considered there will be an angular dependence in such prefactors.

For instance, tunneling ionization from a p state would lead to the argument β(p̃2(t)) in

equation (6.13). If excitation from an s state to a p state or vice versa takes place, the

angular dependence of the prefactor Vp1e,kg is given by β(κ) in equation (6.14)). When

integrated over the azimuthal angles φpn , |β(κ)|
2 and |β(p2)|2 will yield 2π, so that the

angular dependence of these prefactors can be neglected. If, however, states of higher

orbital quantum numbers are involved, or if the initial and excited bound states of the

second electron are p states, this dependence will be more complex.

We will now investigate how the shape of the bound state to which the second electron

is excited is imprinted on the electron momentum distributions. We will also employ

different gauges and types of electron-electron interaction. Explicitly, we will assume

that the second electron is either excited by a contact-type interaction V
(δ)
12 (r1 − r2) =

δ(r1−r2) or by a long-range, Coulomb type interaction V
(C)
12 (r1−r2) = 1/(r1−r2). In the

former case, V
(δ)
12 (p1 − k) = const., while in the latter case V

(C)
12 (p1 − k) ∼ 1/(p1 − k)2.

We are considering these two types of interaction in order to make an assessment of

the role of the Coulomb tail in the RESI mechanism. In electron-impact ionization, for

instance, the long-range nature of the Coulomb interaction leads to a V-shaped structure

[10, 71, 74, 76, 77].

In order to perform a direct comparison, we will take the same parameters as in figure 5.8,

but incorporate the prefactors V
(1s→2s)
p1e,kg

and V
(2s)
p2e , or V

(1s→2p)
p1e,kg

and V
(2p)
p2e , corresponding

to the 1s→ 2s or 1s→ 2p excitation with subsequent tunneling, respectively.

In figure 6.1, we consider the lowest intensity in figure 5.8 and the velocity gauge. If

the electron is excited to the 2s state [figure 6.1.(a)], we observe four spots which are

slightly elongated along the pn∥ axis. Hence, in comparison to its constant prefactor

counterpart, i.e., figure 5.8.(a), there was a narrowing. This narrowing is caused by the

interplay of two features in the prefactor V
(2s)
p2e . First, this prefactor exhibits two sym-

metric nodes, which, for vanishing transverse momentum are located at p2∥ = ±
√
Up.

As the transverse momentum increases, these minima move towards vanishing parallel

momenta. Second, V
(2s)
p2e decreases very steeply with transverse momenta p2⊥. Hence,
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Figure 6.1: Velocity-gauge electron momentum distributions for helium (E1g = 0.97
a.u., E2g = 2 a.u. and E2e = 0.5 a.u.) in a linearly polarized, monochromatic field
of frequency ω = 0.057 a.u. and intensity I = 2.16 × 1014 W/cm2. In panels (a) and
(c), the first electron has been excited to 2s, while in panels (b), and (d) it has been
excited to 2p. The interaction employed is indicated in the figure. The contour plots

have been normalized to the maximum probability in each panel.

upon integration over this parameter, the main contributions will be caused by small

values of p2⊥ and will vanish near p2∥ = ±
√
Up.

If, on the other hand, one assumes that the second electron is excited to 2p, there is

both a broadening in the distributions and a splitting in their peaks. These features are

depicted in figure 6.1.(b). The splitting occurs at the axis pn∥ = 0, n = 1, 2, and is caused

by the fact that Vp2e exhibits a very pronounced node at vanishing momenta, i.e., exactly

where one expects Im[t] to be minimum and the yield to be maximum. This has been

verified by a direct inspection of the radial dependence of equation (6.13), and omitting

the Vp2e prefactor in our computations. The latter procedure caused the additional

minima to disappear (not shown). The broadening in the distributions as compared to

the 1s → 2s case is a consequence of the much slower decrease in V
(2p)
p2e with increasing

transverse momentum p2⊥ and of the absence of the nodes at p2∥ = ±
√
Up. There are

also additional nodes at the diagonal p1|| = p2|| and at the anti-diagonal p1|| = −p2|| of
the p1||p2|| plane.

In this intensity regime, there seems to be little difference in the shapes of the distri-

butions if the electron is excited to the 2s state, regardless of whether the first electron

interacts with its parent ion through a contact or a Coulomb interaction [figures 6.1.(a)

and (c), respectively]. This is possibly caused by the fact that the prefactor V
(2s)
p2e , due
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Figure 6.2: Velocity-gauge electron momentum distributions for the same parameters
as in figure 6.1, but driving-field intensity I = 3× 1014 W/cm2. In panels (a) and (c),
the first electron has been excited to 2s, while in panels (b), and (d) it has been excited
to 2p. The interaction employed is indicated in the figure. The contour plots have been

normalized to the maximum probability in each panel.

to its fast-decaying behavior, delimits a very narrow region in momentum space. This

adds up to the very restrictive momentum constraints. In contrast, the effect of the

Coulomb tail is much more critical if the electron is promoted to the 2p state. Indeed,

for a Coulomb type interaction [figure 6.1.(d)], the splitting of the peaks at the axis

pn∥ = 0 remain, but the nodes at p1|| = p2|| and p1|| = −p2|| disappear compared to

their contact-interaction counterparts [figure 6.1.(b)]. This is caused by the fact that

the former minima are a characteristic of the V
(2p)
p2e prefactor, whereas the latter are

mainly determined by momentum-space effects. The Coulomb interaction introduces a

further momentum bias, and washes out the latter nodes.

We will now discuss what happens if the intensity of the driving field is such that

3.17Up > E2g − E2e. These results are displayed in figure 6.2, for the highest intensity

in figure (5.8). As expected, all distributions are much more elongated along the axis

pn∥ = 0, as compared to the low-intensity case. The imprint, however, of the different

bound states to which the second electron is excited and from which it subsequently

tunnels are the same as in the below-threshold regime. Indeed, we notice that there is a

narrowing in the distributions for the 1s→ 2s case [figure 6.2.(a) and (c)], and a splitting

in the peaks at the four axis in the 1s → 2p case [figures 6.2.(b) and (d)]. This is not

surprising, as the prefactors V
(2s)
p2e and V

(2p)
p2e exhibit the same functional dependencies

as before.
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The shapes of distributions, however, change much more critically in this intensity

regime, with regard to the type of electron-electron interaction, than for the intensity

used in figure (6.1). For all cases, the distributions computed using the Coulomb-type

interaction (figures 6.2.(c) and 6.2.(d)) are much more localized in the low-momentum

regions than those computed with a contact-type interaction (see figures 6.2.(a) and

6.2.(b)). This is expected, as V12(p1 − k) favors low momenta for the former, while it

is constant for the latter. Physically, this reflects the fact that rescattering of the first

electron is now allowed to occur over an extensive region in momentum space. Hence,

it does make a difference whether the second electron is excited by a long-range or

zero-range interaction.

We will now perform an analysis of the electron-momentum distributions in the length

gauge. In this case, the prefactor Vp2e governing the tunneling of the second electron

exhibits a singularity, and must be incorporated in the action. The modifications in the

action read, for the 2s and 2p bound states,

− i∂t lnV
(2s)
p2e = −i

2E(t)p̃2(t)∥(
[
p̃2(t)∥

]2
+ p2

2⊥ − 6E2e)

χ+(p̃2(t))χ−(p̃2(t))
, (6.23)

and

− i∂t ln Ṽ
(2p)
p2e = i

E(t)(p2
2⊥ + 2E2e − 3

[
p̃2(t)∥

]2
)

p̃2(t)∥

([
p̃2(t)∥

]2
+ p2

2⊥ + 2E2e

) , (6.24)

respectively, with

χ±(p̃2(t)) =
([
p̃2(t)∥

]2
+ p2

2⊥ ± 2E2e

)
and E(t) = −∂tA(t).

For each orbit, the tunneling time of the second electron will split into two values,

compared to the non-modified action. This has particularly important consequences as

far as Im[t] is concerned, since it provides a rough measure of the width of the barrier

through which the second electron tunnels. Physically, this means there will be one set

of orbits for which the potential barrier, effectively, will be widened, and another one

for which it will be narrowed.

In figures 6.3, we present the contributions of each of the orbits resulting from this

splitting for a final 2s state, for two different driving-field intensities. For simplicity, in

order to single out the effect of the modified action, we took the rescattering prefactor

Vp1e,kg to be constant.

In general, the distributions differ quantitatively by a factor between 1.5 and 1.7, de-

pending on whether Im[t] decreased [figures 6.3(a) and (c)] or increased [figures 6.3(b)

and (d)]. This shows that the splitting in this quantity is small, and therefore both

contributions are comparable.
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Figure 6.3: Length-gauge electron momentum distributions for helium in a linearly
polarized, monochromatic field. Throughout, we assumed Vp1e,kg = const., V12 to be

a contact-type interaction, and incorporated V
(2s)
p2e in the action. Panels (a) and (c)

correspond to the trajectories for which the barrier has been narrowed by the mod-
ifications in the action, while Panels (b) and (d) correspond to those for which it
has been widened. The upper and lower panels correspond to driving field intensities
I = 2.16 × 1014 W/cm2 and I = 3 × 1014 W/cm2, respectively. In order to perform
a quantitative comparison, we are providing the explicit values for the NSDI yield. In
the upper panels, these values are being multiplied by 1017 and 1016, respectively.

Furthermore, the distributions displayed in figures 6.3 are strikingly similar to those

observed in figure 5.8 (see panels (a) and (c) therein), for which only constant prefactors

have been considered. Indeed, the width of all distributions, along the axis, is determined

by the direct ATI cutoff, i.e., −2
√
Up ≤ pn∥ ≤ 2

√
Up. At first sight, this is unexpected,

as we assume that the second electron is tunneling from a 2s state. As previously

discussed, the prefactor V
(2s)
p2e exhibits a node in p2∥ = ±

√
Up, which leads to a narrowing

of the distributions along the pn∥ axis. An inspection of equation (6.7) also suggests that,

were it not for its singularity, the length-gauge prefactor would be very similar to the

velocity-gauge prefactor. This is a consequence of the fact that the second electron is

leaving when the field E(t) is near its maximum. For a monochromatic field, this implies

that the vector potential A(t) practically vanishes.

One should note, however, that we are considering only the individual contributions

from each of the orbits originating from the modification of the action. It is very likely

that, in order to recover the structure determined by the prefactor V
(2s)
p2e , one must

consider the coherent superposition of all the orbits originating from the splitting of

Im[t] when computing the yield. Since these contributions are comparable, one expects

the above-mentioned nodes to be recovered due to quantum-interference effects.
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In order to clarify this issue further, we consider a test case in which Gaussian bound

states

ψ(rα) =

(
Eα
π

)3/2

exp
[
−Eαr2α

]
, (6.25)

where Eα = E1g, E2g and E2e were taken in order to compute the prefactors Vkg, Vp2e

and Vp1e,kg. Due to the choice of wavefunction, the prefactors Vp2e and Vkg are no

longer singular in the length gauge.

The explicit expression for the ionization prefactors reads

Vp̃ζ = 2

(
Eα
p̃

)
exp[− p̃2

4Eα
]erfi

[
p̃

2
√
Eα

]
, (6.26)

where erfi indicates the imaginary error function erfi[z] = erf[iz]/iz, p̃ = k(t′′) or p2(t),

ζ = g or e and Eα = E1g or E2e. In the length gauge, p2(t) = p2 + A(t) and k(t′′) =

k + A(t′′), while in the velocity gauge p2(t) = p2 and k(t′′) = k. The rescattering

prefactor Vp1e,kg is given by

Vp1e,kg =

[
E2eE2g

π(E2e + E2g)

]3/2
exp

[
− (p1 − k)2

4(E2e +E2g)

]
×V12(p1 − k). (6.27)

This prefactor will be the same for both velocity and length gauges.

Figure 6.4 exhibits the results obtained employing the prefactors (6.26) and (6.27) in the

velocity and length gauges [panels (a) and (b), respectively]. The figure shows nearly

identical electron-momentum distributions. This is in agreement with the previous dis-

cussion.

6.2.1 Comparison with Experiments

We will now perform a direct comparison with the results in reference [86]. In partic-

ular, in this reference, the distributions encountered have been modeled employing the

electron-impact ionization physical mechanism and a modified ionization threshold for

the second electron. Apart from that, however, in view of the driving-field intensities

involved, one expects recollision-excitation tunneling to be present.

For that purpose, we will consider argon and the same laser-field parameters as in

reference [86] (c.f. figure 2 therein). We will assume, however, that, when the first

electron recollides, it excites the second electron from the 3p state either to the 4s or to

the 4p state. Therefore, we took the velocity gauge, and assumed that the first electron

interacts with the ion by a Coulomb or contact interaction.
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Figure 6.4: Electron momentum distributions computed with Gaussian bound-state
wavefunctions for the first and second electron, in the velocity and length gauge (panels
(a) and (b), respectively). Throughout, we considered that the second electron is excited
by a Coulomb-type interaction, the same bound-state energies as for helium and a
driving-field intensity I = 3× 1014 W/cm

2
. The contour plots have been normalized to

the maximum probability in each panel.
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Figure 6.5: Velocity-gauge electron momentum distributions for Argon in a linearly
polarized, monochromatic field of frequency ω = 0.057 a.u. The electron is excited
from 3p to 4s, i.e., E1g = 0.58 a.u., E2g = 1.02 a.u. and E2e = 0.40 a.u. in our
calculations. The laser-field intensity in panels (a) and (c), and panels (b) and (d) is
I = 9× 1013 W/cm2 and I = 1.5× 1014 W/cm2, respectively. The type of interaction
V12 taken is indicated in the figure. The contour plots have been normalized to the
maximum probability in each panel. We have verified, however, that the highest yields
on left-hand panels are between one and a half and two orders of magnitude smaller

than those on the right-hand side.
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The results for the 3p→ 4s excitation are presented in figure 6.5. An overall feature in

the distributions are two main maxima along the pn∥, n = 1, 2, axis. These features are

mainly caused by the V
(4s)
p2e prefactor for the tunnel ionization of the second electron,

which decays very rapidly with increasing transverse momenta and exhibit nodes near

p2∥ = ±0.5
√
Up. In general, we have verified that this prefactor determines the shape

of the electron-momentum distributions. Secondary maxima, around one order of mag-

nitude smaller, occur due to the rescattering prefactor V
(3p→4s)
p1e,kg

. This prefactor exhibits

an annular shape around p1∥ = p2∥ = 0.

The existing experiments, however, do not lead to distributions concentrated along the

axis of the p1∥p2∥ plane. The results for helium in the previous section suggest that a p

state may lead to broader distributions. For that reason, we will assume that, instead,

the second electron is excited to the 4p state.

Figure 6.6 depicts the electron-momentum distributions for Argon under the assumption

that the electron was excited from 3p to 4p. All distributions in the figure exhibit four

main maxima, which are broader than those in figure 6.5 and almost split at the axis

pn∥ = 0. These maxima are mainly determined by the prefactor V
(4p)
p2e , which has a

node at the axis for low transverse momenta and nodes around p2∥ = ±
√
Up across a

wide transverse-momentum range. Apart from that, the prefactors V
(3p→4p)
p1e,kg

decay more

slowly with regard to the transverse momenta. This implies that, upon integration, a

larger momentum region will be contributing to the NSDI yields. As in the previous case,

this prefactor also leads to secondary maxima (see figure 6.6.(c) and (d) for concrete

examples). In all cases, both in figures 6.5 and 6.6, a Coulomb-type interaction mainly

introduces a bias towards lower momenta.

Despite the above-mentioned broadening, the electron-momentum distributions in figure

6.6 are still considerably narrower than those observed in reference [86]. Within our

framework, this constraint is imposed by the V
(4p)
p2e prefactor. In fact, we have verified

that, for large principal quantum number, this prefactor always exhibits nodes at lower

absolute momenta than the ATI cutoff of p2∥ = 2
√
Up. In fact, if Vp2e is taken to be

constant, the distributions become considerably broader and a better agreement with

the experiments is obtained. This is shown in figures 6.7, as ring-shaped distributions

with four symmetric maxima at p1∥ = p2∥ and p1∥ = −p2∥. Such maxima are mainly

determined by the V
(3p→4p)
p1e,kg

prefactor. One should note, however, that this procedure is

inconsistent from a theoretical perspective: Since the electron has been excited to the

4p state, it should subsequently tunnel from it. Hence, the appropriate prefactor must

be taken. Furthermore, due to external field distortion the 4p state might be over the

barrier, which may not provide any nodal structures.
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Figure 6.6: Velocity-gauge electron momentum distributions for argon in a linearly
polarized, monochromatic field of frequency ω = 0.057 a.u. The electron is excited
from 3p to 4p, i.e., E1g = 0.58 a.u., E2g = 1.02 a.u. and E2e = 0.31 a.u. in our
calculations. The laser-field intensity in panels (a) and (c), and panels (b) and (d) is
I = 9× 1013 W/cm2 and I = 1.5× 1014 W/cm2, respectively. The type of interaction
V12 taken is indicated in the figure. The contour plots have been normalized to the
maximum probability in each panel. We have verified, however, that the highest yields
on left-hand panels are between one and two orders of magnitude smaller than those

on the right-hand side.

Nonetheless, the procedure of removing the Vp2e prefactor appears to mimic to some

extent what happens in a real-life situation, for which the bound states exhibit ac Stark

shifts. The first electron returns near a field crossing. Hence, at the rescattering time

t′, these shifts will only be a small perturbation and are not expected to influence

the distributions significantly. The second electron, however, tunnels close to a field

maximum. This means that, in this case, the Stark shifts will be more prominent and

will cause a broadening in the electron momentum distributions. A rough, ad hoc way

of verifying this is to introduce a time-dependent excited state energy according to the

procedure described in reference [178]. Such an approach has also been adopted in [86]

for electron-impact ionization. A rigorous way of incorporating these shifts, however, is

far more challenging.

6.3 Conclusions

Our analysis of the rescattering-excitation ionization (RESI) mechanism shows that the

NSDI electron momentum distributions depend on the interplay between the relevant
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Figure 6.7: Velocity-gauge electron momentum distributions for argon in a linearly
polarized, monochromatic field of frequency ω = 0.057 a.u. and intensity I = 1.5×1014

W/cm2. The electron is excited from 3p to 4p. We have taken the prefactor Vp2,e to
be constant. The type of interaction V12 is indicated in the figure. The contour plots

have been normalized to the maximum probability in each panel.

momentum-space regions, the type of interaction exciting the second electron, and the

spatial dependence of the bound states involved.

We have observed that the bound states involved in the process leave very distinct

fingerprints on the electron momentum distributions. This is particularly true for the

bound state of the second electron, prior and subsequently to excitation. In fact, the

widths of the distributions, their shapes and the number of maxima present will strongly

depend on the principal and orbital quantum numbers of the bound states involved.

In contrast, the type of interaction V12 by which the second electron is excited influ-

ences such distributions in a less drastic way. Indeed, a long-range, Coulomb interaction

mainly introduces a bias towards lower momenta, as compared to a contact-type inter-

action.

A very important observation is that all distributions encountered in this work are

equally spread over the four quadrants of the p1∥p2∥ plane. Under no circumstances

have we found electron momentum distributions concentrated only on the second and

fourth quadrant of this plane, as reported in the literature [13, 109, 112–114].

Within our framework, the above-stated symmetry can immediately be inferred from

equation (3.49). Nonetheless, one could argue that our approach does not include the

residual binding potential in the electron propagation in the continuum. Recent results,

however, from a classical-trajectory computation in which the Coulomb potential has

been incorporated, also revealed the same symmetry if only the RESI mechanism is

singled out [111] (see figures. 3.(b) and 4.(b) in [111]). This is a strong hint that our

results are not an artifact of the strong-field approximation.
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Hence, we suspect that, in the existing literature, the contributions from the RESI

mechanism to nonsequential double ionization also equally occupy the four quadrants of

the p1∥p2∥ plane. They may, however, be difficult to extract, as explained below.

In many situations addressed in the literature, the driving-field intensity is high enough

for electron-impact ionization to occur. This means that this latter NSDI mechanism is

also present, and fills the first and third quadrant of the p1∥p2∥ plane. Since, in many

ab initio models, the different rescattering mechanisms are difficult to disentangle, the

contributions from electron-impact ionization possibly obscure those from RESI in this

region. In the second and fourth quadrant of the parallel momentum plane, the former

contributions are absent and those from RESI can be more easily identified. In our

approach, electron-impact ionization is absent from the start. Hence, we can study the

RESI process separately, and assess all its consequences.

Furthermore, in several classical computations, one tries to mimic the RESI mecha-

nism by considering, instead, electron impact ionization with a time delay between the

rescattering of the first electron and the rescattering of the second electron. This is a

completely different physical process, which populates only the second and the fourth

quadrants of the parallel momentum plane [13, 109, 112–117].

In general, the RESI mechanism gets more prominent as the driving-field intensity is far

below the ionization threshold, so that the second electron may no longer be provided

with enough energy to overcome the second ionization potential. Alternatively, if the

pulse is long, one also expects RESI to be more prominent [70]. Otherwise, electron-

impact ionization will dominate.

An example of the former scenario can be found in reference [86] (see figure 2 therein),

for NSDI around the electron-impact ionization threshold. For the higher driving-field

intensity, one may identify two elongated shapes along p1∥ = p2∥ superposed to a more

symmetric structure. These shapes are a signature of the electron-impact ionization

mechanism. As the intensity decreases, this process gets less and less prominent and

RESI dominates. Consequently, the distributions become symmetric, and equally occupy

the four quadrants of the parallel momentum plane. In fact, ring-shaped distributions

centered around p1∥ = p2∥ = 0 have been observed experimentally for this intensity

region [84–86].

Our results are far more localized near the pn∥ = 0 axis than the experimental findings.

This discrepancy may be due to the following reasons. First, for higher intensities

employed in reference [86], collisional excitation may take place not only to the 4s or to

the 4p state, but also to highly lying states, or to a coherent superposition of excited
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states. To take this into account may be needed in order to reproduce the experimental

data.

Second, at the relevant driving-field intensities, one expects the excited states to be

distorted by the field, and the propagation of the electron in the continuum near the

core to be influenced by the residual ionic potential. This implies that a semi-analytical

treatment beyond the strong-field approximation is necessary (see, e.g., [83, 94, 95, 149]

for other phenomena and the electron-impact ionization case, respectively). The Stark

shift of the excited bound state seems to be particularly important, due to the fact

that the second electron leaves close to a field maximum. In fact, a computation with

a time-dependent energy for the excited bound state improves the agreement between

theory and experiment, especially if the electron is leaving from a 4p state. One should

note, however, that a rigorous treatment of such features is very demanding, and will

not be performed in this work.

Finally, the results obtained in this chapter show that the dynamics of the second elec-

tron have a huge influence in the shapes of the electron-momentum distributions. A

suppression or enhancement in its tunnel ionization would lead to an overall suppression

or enhancement in the yield. Furthermore, changes in its ionization time would affect its

most probable momentum, and therefore the peaks of the electron momentum distribu-

tions. Apart from that, depending on the shape of the excited state wavefunction, there

may be nodes in the corresponding prefactors, which may cause the distributions to

broaden or narrow. This means that, in principle, the shapes of the electron-momentum

distributions can be manipulated by an adequate driving-field choice and by preparing

the first electron in a suitable superposition of states.



Chapter 7

Electron-impact Ionization in

Diatomic Molecules:

Quantum-interference Effects,

Alignment and the Orbital

Symmetry

In this chapter we address the influence of the orbital symmetry and of the molecu-

lar alignment with respect to the laser-field polarization on laser-induced nonsequential

double ionization. We work within the strong-field approximation and assume that the

second electron is dislodged by electron-impact ionization (see 2.2.1), and also consider

the classical limit of this model. We show that the electron-momentum distributions ex-

hibit interference maxima and minima due to the electron emission at spatially separated

centers. The interference patterns survive the integration over the transverse momenta

for a small range of alignment angles, and are sharpest for parallel-aligned molecules.

Due to the contributions of transverse-momentum components, these patterns become

less defined as the alignment angle increases, until they disappear for perpendicular

alignment. This behavior influences the shapes and the peaks of the electron momen-

tum distributions. This work has been published in [2].

The main motivation behind this work lies on the fact that recent NSDI experiments on

diatomic molecules have shown that the shapes of the electron momentum distributions

depend on the symmetry of the highest occupied molecular orbital [13, 84]. This holds

even if the molecular sample is randomly aligned with respect to the laser-field polariza-

tion [84]. Indeed, in [84], very distinct electron momentum distributions were observed

86
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for N2 and O2, as functions of the electron momentum components pn∥ (n = 1, 2) par-

allel to the laser-field polarization. For the former species, elongated maxima along the

diagonal p1∥ = p2∥ were reported, while, for O2, the distributions exhibit a prominent

maximum in the region of vanishing parallel momenta, and are quite broad along the

direction p1∥ = −p2∥ + const. This has been confirmed by theoretical computations

within a classical framework, which reproduced some of the differences in the yields.

Subsequently, it was found that the peak momenta and the shape of the N2 electron-

momentum distributions changed considerably with the alignment angle of the molecules,

with respect to the laser-field polarization [13]. Specifically, for parallel alignment, a

roughly 40% larger peak momenta along the diagonal p1∥ = p2∥ was observed, as com-

pared to the perpendicular case. Furthermore, for perpendicular alignment, a larger

number of events in the second and fourth quadrant of the momentum plane (p1∥, p2∥)

was reported. In [13], these events were attributed to excitation-tunneling mechanisms.

Despite the above-mentioned investigations, NSDI in molecules has been considerably

less studied than HHG or ATI, possibly due to the fact that it is far more difficult to

measure, or to model (for a review on this subject see [120] and the discussions in the

previous chapters). In principle, since the physical mechanisms responsible for NSDI are

similar to those behind HHG and ATI, one would expect that this phenomenon can also

be used to retrieve information about the target. For instance, it is very likely that there

will be quantum interference due to photoelectron emission at different centers in the

molecule. Apart from that, since the type of the electron-electron interaction influences

the shape of the electron momentum distributions considerably, one expects that NSDI

will provide more dynamical information than the other phenomena.

This chapter is organized as follow: in section 7.1, we obtain the specific prefactors

for a diatomic molecule, simplifying the geometry of the molecular orbitals by just

considering hydrogenic molecular orbitals. We compute transition amplitude (3.33)

using the saddle-point approximation to obtain electron momentum distributions of N2,

for angle-integrated (7.2.1), and aligned molecules (7.2.2). Specifically, we investigate

the influence of the orbital symmetry and of the alignment angle on the NSDI electron

momentum distributions, and whether, within our framework, the features reported in

[84] and [13] are observed. Furthermore, we address the question of whether well-defined

interference patterns such as those observed in ATI or HHG computations may also be

obtained for NSDI, and, if so, under which conditions. Finally, in section 7.3, we state

the main conclusions of this chapter.
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7.1 Diatomic Molecules

We will now consider the specific case of diatomic molecules. For simplicity, we will

assume frozen nuclei, the linear combination of atomic orbitals (LCAO) approximation,

and homonuclear molecules. This very simplified model has the main advantage of allow-

ing a transparent picture of the physical mechanisms behind the interference patterns.

Explicitly, the molecular bound-state wave function for each electron is

ψ
(n)
0 (rn) = Cψ

[
ϕ
(n)
0 (rn −R/2) + ϵϕ

(n)
0 (rn +R/2)

]
(7.1)

where n = 1, 2, ϵ = ±1, and Cψ = 1/
√
2(1 + ϵS(R), with

S(R) =

∫ [
ϕ
(n)
0 (rn −R/2)

]∗
ϕ
(n)
0 (rn +R/2)d3r. (7.2)

The positive and negative signs for ϵ correspond to symmetric and antisymmetric or-

bitals, respectively. The binding potential of this molecule, as seen by each electron, is

given by

V (rn) = V0(rn −R/2) + V0(rn +R/2), (7.3)

where V0 corresponds to the binding potential of each centre in the molecule.

The above-stated assumptions lead to

V
(s)
k0 = −

2Cψ

(2π)3/2
cos[k̃(t′) ·R/2]I(k̃(t′)) (7.4)

or

V
(a)
k0 = −

2iCψ

(2π)3/2
sin[k̃(t′) ·R/2]I(k̃(t′)), (7.5)

for the symmetric and antisymmetric cases, respectively, with

I(k̃(t′)) =
∫
d3r1 exp[ik̃(t

′) · r1]V0(r1)ϕ(1)0 (r1). (7.6)

Thereby, we have neglected the integrals for which the binding potential V0(r) and the

bound-state wave function ϕ
(1)
0 (r) are localized at different centers in the molecule. We

have verified that the contributions from such integrals are very small for the parameter

range of interest, as they decrease very quickly with the internuclear distance.

Equations (7.4) and (7.5) do not play a significant role in the appearance of well-defined

interference patterns. This is due to the fact that the times t′ at which the electron is

emitted lie near the peak field of the laser field. In other words, the electron trajectories

relevant to the momentum distributions start near the times for which the electric field

is maximum. For those most important trajectories, the range of k(t′) is so limited that
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the term cos(k(t′) ·R/2) does not cross zero. In fact, we verified that the prefactor Vk0

has no influence on the interference patterns (not shown).

Assuming that the electron-electron interaction depends only on the difference between

the coordinates of both electrons, i.e., V12 = V12(r1 − r2), one may write the prefactor

Vpnk as

V
(s)
pnk

=
2Cψ

(2π)9/2
V12(p1 − k) cos[P(t) ·R/2]φ(2)

0 (P(t)) (7.7)

or

V
(a)
pnk

=
2iCψ

(2π)9/2
V12(p1 − k) sin[P(t) ·R/2]φ(2)

0 (P(t)), (7.8)

with P(t) = p̃1(t)+ p̃2(t)− k̃(t), for symmetric and antisymmetric orbitals, respectively.

Thereby,

φ
(2)
0 (P(t)) =

∫
d3r2 exp[iP(t) · r2]ϕ(2)0 (r2), (7.9)

and

V12(p1 − k) =

∫
d3rV12(r) exp[i(p1 − k) · r], (7.10)

with r = r1−r2. Specifically, in the velocity and length gauges, the argument in equations

(7.7), (7.8) is given by P(t) = p1 + p2 − k and P(t) = p1 + p2 − k+A(t), respectively.

The interference patterns studied in this work are caused by the pre-factors Vpnk. Ex-

plicitly, the two-centre interference condition defined by Vpnk gives the extrema[
p̃1(t) + p̃2(t)− k̃(t)

]
·R = nπ. (7.11)

For symmetric, highest occupied molecular orbitals, even and odd numbers in equation

(7.11) denote maxima and minima, respectively, whereas in the antisymmetric case the

situation is reversed (i.e., even and odd n give minima and maxima, respectively). This

equation will be discussed in more detail in section (7.2.2).

The structure of the highest occupied molecular orbital is embedded in equations (7.4)-

(7.8). The simplest way to proceed is to consider these prefactors and the single-centre

action (3.34). The multiple integral in (3.33) will be solved using saddle-point methods.

Using the saddle-point equations (4.1)-(4.3), the transition amplitude is then computed

by means of a uniform saddle-point approximation (As it was discussed in Chapter 4).

A more rigorous approach would be to incorporate the prefactors (7.7) or (7.8) in the

action. This would lead to modified saddle-point equations, in which the structure of

the molecule, in particular scattering processes involving one or two centers, are taken

into account. Recently, however, in the context of HHG, it has been verified that, unless
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the internuclear distances are of the order of the electron excursion amplitude, both

procedures yield practically the same results [179, 180]. Therefore, for simplicity, we

will restrict our investigation to single-atom saddle-point equations (4.4)-(4.6), together

with the two-centre prefactors (7.7) or (7.8).

7.2 Results

We compute electron momentum distributions, as functions of the momentum compo-

nents (p1∥, p2∥) parallel to the laser-field polarization, as discussed in 3.3.3. In particular,

we investigate how the symmetry of the molecular orbitals influence the electron mo-

mentum distributions. Furthermore, we integrate over the transverse momenta as well

as considering situations for which the transverse momenta are resolved. For the latter

case, the integrals in (3.50) are dropped.

The above-stated distribution may also be mimicked employing a classical ensemble

computation, in which a set of electrons are released with vanishing drift momentum

and weighed with the quasi-static rate

R(t′) ∼ |E(t′)|−1 exp
[
−2(2|E01|)3/2/(3|E(t′)|)

]
. (7.12)

Subsequently, these electrons propagate in the continuum following the classical equa-

tions of motion in the absence of the binding potential. Finally, some of them return

and release a second set of electrons. Explicitly, this distribution is given by

F cl(p1∥, p2∥) =

∫∫
d2p1⊥d

2p2⊥F
cl(p1,p2), (7.13)

with

F cl(p1,p2)=

∫
dt

′
R(t′)|Vpnk|2|Vk0|2

δ

(
2∑
i=1

[pi +A(t)]2

2
+ |E02| − Er(t)

)
, (7.14)

where Er(t) = [k+A(t)]2/2 is the kinetic energy of the first electron upon return (see [75]

for details). One should note that the argument in equation (7.14) is just equation (4.3),

which expresses conservation of energy following rescattering. This argument implicitly

depends on t′, since both start and return times are inter-related. If the laser-field

intensity is far above the threshold, i.e., if the classically allowed region is large, both

approaches yield very similar results [175].
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7.2.1 Angle-integrated Distributions

As a first step, we will discuss angle-integrated electron momentum distributions from

equation (3.33), for different gauges and orbital symmetry. To a first approximation, we

will assume that the second electron is dislodged by the contact-type interaction

V12(r1 − r2) = δ(r1 − r2), (7.15)

and that the electrons are bound in 1s states. These assumptions have been employed

in [84], and led to a reasonable degree of agreement with the experimental data. In this

case, the prefactor V12(p1 − k) = const. in (7.7)-(7.8), and the Fourier transform of the

initial wave function of the second electron reads

φ
(2)
0 (P(t)) ∼ 1

[2E02 + P(t)2]2
. (7.16)

The prefactors Vk0 and Vpnk agree with the results in [84], for which the velocity gauge

was taken.

We will consider the ionization potentials and equilibrium internuclear distance of N2,

and laser-field intensities well within the experimental range. To a first approximation,

we will model the highest-occupied molecular orbital of N2 using the symmetric prefactor

(7.7). In order to facilitate a direct comparison, we will also include the antisymmetric

prefactor (7.8), and the single-atom case, for which Vpnk ∼ V12(p1 − k)φ
(2)
0 (P(t)), and

employ the same molecular and field parameters for all cases.

Figure 7.1 depicts the above-mentioned distributions. In general, even though different

gauges and orbital symmetry lead to very distinct prefactors, the shapes of the distribu-

tions are very similar. This is due to the fact that the momentum region for which the

transition amplitude (3.33) has a classical counterpart is relatively small. Indeed, we

have verified that, for vanishing transverse momenta p1⊥ = p2⊥ = 0, this region starts

slightly below ±
√
Up, and extends to almost ±3

√
Up. This is the case for which the

classically allowed region is the most extensive, so that below ±
√
Up the contributions

to the yield are negligible. Hence, the maxima and the shapes of these distributions are

determined by the interplay between phase-space effects and the prefactor (7.16).

In the length gauge, equation (7.16) is very large near p1∥+ p2∥ = ±1.5
√
Up, while in the

velocity gauge this holds for p1∥+ p2∥ = ±0.5
√
Up. This is in agreement with the features

displayed in figure 7.1. In fact, a closer inspection of the length-gauge distributions shows

that they exhibit slightly larger maxima, near p1∥ = p2∥ = ±1.5
√
Up, and are broader

along p1∥ = −p2∥ than their velocity-gauge counterparts. In the velocity gauge, since the

peak of the prefactor lies outside the classically allowed region, we expect that the yield
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Figure 7.1: Angle-integrated electron momentum distributions as functions of the
momentum components (p1∥, p2∥) parallel to the laser-field polarization, computed us-
ing the contact-type interaction (7.15). The field intensity and frequency have been

taken as I = 1.5 × 1014 W/cm
2
, and ω = 0.057 a.u., respectively, and the ionization

potentials E01 = 0.573 a.u. and E02 = 0.997 a.u. correspond to N2 at the equilibrium
internuclear distance R = 2.068 a.u. The upper and lower panels have been calculated
in the velocity and the length gauge, respectively. Panels (a), and (d) correspond to
the single atom case, panels (b) and (e) to the antisymmetric prefactors (7.4) and (7.7),

and panels (c) and (f) to the symmetric prefactors (7.5) and (7.8).

will be maximal near the smallest momentum values which have a classical counterpart.

This agrees with figures 7.1(a)-(c), which exhibit peaks slightly above ±
√
Up.

In figure 7.1, one also notices that the distributions are nearly identical in the single-

atom and molecular case. This is possibly due to the fact that the distributions are

being angle-integrated. Apart from that, we have verified that, within the classically

allowed region, there is at most a single interference minimum. This may additionally

contribute for the lack of well-defined interference patterns.

7.2.2 Interference Effects

For the above-stated reasons, in order to investigate whether interference patterns are

present in the NSDI electron momentum distributions, we will proceed in many ways.

First, we will increase the classically allowed momentum region, and hence the radius of

the hypersphere given by equation (5.2). For that purpose, we will increase the intensity

of the driving laser field. Second, in this section, we will consider aligned molecules,

as it is not clear whether integrating over the alignment angle washes the interference

patterns out. One should note that, for the parameters considered in this work, the

De Broglie wavelength of the returning electron is much larger than the equilibrium

internuclear distance of N2.
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Finally, in order to disentangle the influence of the prefactor which accounts for the

two-centre interference from that of φ
(2)
0 (P(t)), we make the further assumption that

V12 is placed at the position of the ions. Without this assumption, prefactor (7.16)

corresponding to the contact interaction depends on the final electron momenta, and

thus introduces a bias in the distributions. This may obscure any effects caused solely

by the molecular prefactors.

Explicitly, this reads

V12 = δ(r1 − r2) [δ(r2 −R/2) + δ(r2 +R/2)] . (7.17)

Such an interaction has been successfully employed in the single-atom case, and led

to “balloon-shaped” distributions peaked near p1∥ = p2∥ = ±2
√
Up. Such distributions

exhibited a reasonable degree of agreement with the experiments [75]. This choice of V12

yields φ
(2)
0 (P(t)) = const, in addition to V12(p1 − k) = const. Hence, apart from effects

caused by the integration over momentum space, the shape of the distributions will be

mainly determined by the cosine or sine factor in equations (7.7) or (7.8). The former

and the latter case correspond to the symmetric or antisymmetric case, respectively.

The explicit interference maxima and minima are given by equation (7.11).

We will now perform a more detailed analysis of such interference condition. In terms of

the momentum components pi∥, or pi⊥ (i = 1, 2), parallel or perpendicular to the laser-

field polarization, this condition may be written as cos [ζR/2] or sin [ζR/2] , in terms of

the argument ζ. Explicitly, this argument is given by

ζ = ζ∥ + ζ⊥, (7.18)

with

ζ∥ =

[
2∑
i=1

pi∥ − k(t)

]
cos θ (7.19)

and

ζ⊥ = p1⊥ sin θ cosφ+ p2⊥ sin θ cos(φ+ α). (7.20)

In the above-stated equations, θ gives the alignment angle of the molecule, φ corresponds

to the angle between the perpendicular momentum p1⊥ and the polarization plane, and

α represents the angle between both perpendicular momentum components. Since we are

dealing with non-resolved transverse momenta, we integrate over the latter two angles.

In the velocity and in the length gauge, k(t) = k and k(t) = k − A(t), respectively.

Interference extrema will then be given by the condition

(ζ⊥ + ζ∥)R = nπ. (7.21)
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For a symmetric linear combination of atomic orbitals, even and odd n correspond to

interference maxima and minima, respectively, whereas, in the antisymmetric case, this

condition is reversed.

An inspection of equations (7.19) and (7.20), together with the above-stated condition,

provides an intuitive picture of how the interference patterns change with the alignment

angle θ. For parallel alignment, the only contributions to such patterns will be due to

ζ∥. In this particular case, the interference condition may be written as

p1∥ + p2∥ =
nπ

R cos θ
+ k(t), (7.22)

where cos θ = 1. Equation (7.22) implies the existence of well-defined interference

maxima or minima, which, to first approximation, are parallel to the anti-diagonal

p1∥ = −p2∥. This is only an approximate picture, as k, according to the saddle-point

equation (4.5), is dependent on the start time t′ and on the return time t. Furthermore,

since t′ and t also depend on the transverse momenta of the electrons (see [16] for a

more detailed discussion), equation (7.22) is influenced by such momenta. Finally, in

the length gauge, there is an additional time dependence via the vector potential A(t)

at the instant of rescattering.

As the alignment angle increases, the contributions from the term ζ⊥ related to the

transverse momenta start to play an increasingly important role in determining the

interference conditions. The main effect such contributions have is to weaken the fringes

defined by equation (7.22), until, for perpendicular alignment, the fringes completely

vanish and the electron momentum distributions resemble those obtained for a single

atom. This can be readily seen if we consider the interference condition for θ = π/2,

which is

p1⊥ cosφ+ p2⊥ cos(φ+ α) =
nπ

R
. (7.23)

Equation (7.23) gives interference conditions which do not depend on k(t), and which

vary with the angles φ and α. As one integrates over the latter parameters, which is

the procedure adopted for distributions with non-resolved transverse momentum, any

structure which may exist in equation (7.23) is washed out.

In figure 7.2, we display electron momentum distributions computed in the velocity

gauge for the highest symmetric occupied molecular orbital and various alignment angles.

The symmetric case is of particular interest, since, recently, NSDI electron momentum

distributions have been measured for aligned N2 molecules [13]. For parallel alignment,

interference fringes parallel to the anti-diagonal p1∥ = −p2∥ can be clearly seen, according

to equation (7.22). For small alignment angles, such as that in figure 7.2(b), the maxima

and minima start to move towards larger parallel momenta. Furthermore, there exists an
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Figure 7.2: Electron momentum distributions as functions of the parallel momenta
(p1∥, p2∥), for several alignment angles. We consider the velocity gauge, symmetric

orbitals, and driving-field intensity I = 5 × 1014 W/cm
2
. The remaining field and

molecular parameters are the same as in the previous figure. The position of the
interference minima, estimated by assuming that the first electron returns at a field
crossing, are indicated by the lines in the figure. Panel (a), (b), (c) and (d) correspond

to alignment angles θ = 0, θ = 300, θ = 600 and θ = 900, respectively.

increase in the momentum difference between consecutive maxima or minima, and the

interference fringes become less defined. This is due to the fact that the term ζ⊥, which

washes out the interference patterns, gets increasingly prominent. For large alignment

angles, such as that in figure 7.2(c), the contributions from this term are very prominent

and have practically washed out the two-centre interference. Finally, for perpendicular

alignment, the distributions resemble very much those obtained for the single-atom case,

i.e., circular distributions peaked at p1∥ = p2∥ = ±2
√
Up (c.f. Refs. [74, 75] for details).

This is expected, since the term responsible for the two-centre interference lets fringes

vanish for θ = 900.

The fringes in figure (7.2) exhibit a very good qualitative agreement with the interfer-

ence conditions derived in this section. Furthermore, the figure shows that, for some

alignment angles, the patterns caused by the two-centre interference survive the integra-

tion over the transverse momentum components. It is not clear, however, how well the

position of the fringes agree with equation (7.22) quantitatively, and if it is possible to

provide simple estimates for these maxima and minima. Apart from that, it is not an
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obvious fact that the patterns survive the integration over the transverse momentum,

and one should understand why this happens.

In particular, the role of the intermediate momentum of the first electron will be analyzed

subsequently. According to the return condition (4.5), this quantity depends on the start

and return times of the first electron. Furthermore, in the length gauge, the interference

condition also depends on the vector potential A(t1) at the return time of the first

electron. For each pair (p1∥, p2∥), the emission and return times are strongly dependent

on the transverse momenta [16]. Apart from that, physically, there are several orbits

along which the first electron may return, which occur in pairs. Hence, there exist several

possible values for k. In practice, only the two shortest orbits contribute significantly

to the yield. The contributions from the remaining pairs are strongly suppressed due

to wave-packet spreading. However, this still means that the intermediate momentum,

and therefore the position of the maxima and minima, has two possible values, which

depend on the start and return times, and also on the final momentum components.

We have made a rough estimate of the position of these patterns for parallel alignment,

in the velocity and length gauges, along the diagonal p1∥ = p2∥ = p∥. This estimate

is given in Table 7.1. For symmetric highest occupied molecular orbitals, the even and

odd numbers denote maxima and minima, respectively, while for antisymmetric orbits

this role is reversed. Thereby, we assumed that the first electron leaves at peak field and

returns at a field crossing1. This gives |k| ≃
√
Up/(0.75π) in the saddle-point equation

(4.2). Furthermore, in the length-gauge estimate, we took |A(t)| ≃ 2
√
Up. We have

verified that both quantities are negative for the orbits in question.

These estimates agree reasonably well with the electron momentum distributions along

p1∥ = p2∥ = p∥. These distributions are depicted in figure (7.3) for several alignment

angles, the velocity gauge, and the highest symmetric occupied molecular orbitals. The

positions of the minima, for each angle, are indicated in the figure. These minima have

been computed employing equation (7.22) and the above-stated estimate for k. For

parallel alignment [figure 7.3(a)], the position of the extrema agree relatively well with

Table 7.1. This suggests that the intermediate momentum of the first electron, upon

return, can be approximated by its value at the field crossing. As the alignment angle

increases, the patterns become increasingly blurred until they are eventually washed

out by the contributions of ζ⊥. For instance, for θ = 300 [figure 7.3(b)], one may still

identify a change of slope in the distributions, at the momentum for which the minima

n = 3 is expected to occur. For θ = 600, however, the term ζ⊥ has already washed out

the interference patterns. Indeed, in figure 7.3(c), there is no evidence of interference

1Note that is a rather crude approximation. Strictly speaking, the electron leaves after the field
maximum in order to return near a crossing (for details see [16]).
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Figure 7.3: Electron momentum distributions for parallel momenta p1∥ = p2∥ =
p∥, non-resolved transverse momenta and several alignment angles. We consider the
velocity gauge, symmetric orbitals, and the same molecule and field parameters as in
the previous figure. The position of the interference minima, estimated by assuming
that the first electron returns at a field crossing, are indicated by the vertical lines in
the figure. Panel (a), (b), (c) and (d) correspond to alignment angles θ = 0, θ = 300,
θ = 600 and θ = 900, respectively. For comparison, the yield for θ = 0 are indicated
as the dashed lines in the figure. To facilitate the comparison, the yields have been

normalized to the same peak values.

patterns. Finally, for perpendicular alignment, the distributions resemble very much

those obtained in the single-atom case, as shown in [figure 7.3(d)].

In order to investigate the behavior of the intermediate momentum k with respect to

pn⊥(n = 1, 2), we will compute electron momentum distributions keeping the absolute

values of the transverse momenta fixed. For simplicity, we will take θ = 0 and parallel

momenta along the diagonal, i.e., p1∥ = p2∥ = p∥. These distributions are displayed

in figure 7.4. In this case, there exists a region of parallel momenta for which the

yield is oscillating, between the maximum and the minimum parallel momentum. These

oscillations are due to the quantum interference between the two shortest possible orbits

along which the first electron may return. These orbits constitute the pair that has
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Extrema Parallel momentum p∥/[Up]
1/2

Order n velocity gauge length gauge

1 0.513 1.513
2 1.239 2.239
3 1.964 2.964
4 2.689 3.689

Table 7.1: Electron momenta corresponding to the interference maxima and min-
ima given by equation (7.22), in the velocity and length gauges, for a parallel-aligned
molecule, for the same field and molecule parameters as in figure 7.3. The parallel mo-
menta p∥ were taken to be along the diagonal p1∥ = p2∥ in the momentum plane, and
the transverse momenta are assumed to be vanishing. If the highest occupied molecular
orbital is approximated by a symmetric combination of atomic orbitals, the maxima
and minima are denoted by even and odd number, while in the antisymmetric case, this
role is reversed, i.e., odd and even numbers denote maxima and minima, respectively.

been employed in the computations performed in this work. The larger the transverse

momenta are, the less extensive this region is. This is expected according to equation

(5.1), which delimits this region (for details see reference [16]).

Apart from these oscillations, figure (7.4) also exhibits the maxima and minima caused by

the spatial two-centre interference. The figure shows that the position of such patterns is

very robust with respect to the choice of p⊥n, n = 1, 2. Indeed, both maxima and minima

remain at practically the same positions, if different transverse momenta are taken. For

this reason, such patterns survive if one integrates over the transverse momenta. In

contrast, the oscillations due to the temporal interference get washed out. For the

parameters employed in the figure, we have verified reasonable agreement between the

second minimum and Table 1. The first minimum is to a large extent washed out by

the contributions of the events displaced by a half-cycle, i.e., which are related to the

transition amplitude ML.

Interference fringes parallel to p1∥ = −p2∥ are also present in the length gauge, and for

antisymmetric orbitals. This is shown in the upper panels of figure 7.5, for a parallel

alignment angle. In fact, the main difference as compared to the symmetric, velocity-

gauge case, is the position of their interference patterns, in agreement with equation

(7.22). There is also some blurring in the patterns, in the length gauge, possibly caused

by the fact that the vector potential A(t) depends on the return time t. This latter

quantity is different for different transverse momenta. The patterns, however, can also

be clearly identified in this gauge. In all cases, however, there is no evidence of a

straightforward connection between an enhancement or suppression of the yield in the

low-momentum region and the symmetry of the orbital. For instance, in the velocity
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Figure 7.4: Electron momentum distributions for resolved transverse momenta, as
functions of the parallel momentum p1∥ = p2∥ = p∥, for alignment angle θ = 0. We
consider the velocity gauge, symmetric orbitals, and the same molecule and field pa-
rameters as in the previous figure. For comparison, the corresponding single-atom
distributions are presented as the dashed lines in the figure. The interference minima
according to Table 1 are indicated by the vertical lines in the figure. The numbers in
the figure indicate the transverse momentum components (p1⊥, p2⊥) in units of

√
Up.

gauge, the yield is enhanced if the orbital is antisymmetric. The length-gauge distribu-

tions, on the other hand, exhibit a suppression in that region regardless of the orbital

symmetry.

In the lower panels of figure 7.5, we display the distributions along p1∥ = p2∥ = p∥.

Similarly to the velocity-gauge, symmetric case, the minima and maxima of the distri-

butions roughly agree with Table 1. In fact, the even numbers in this table roughly give

the position of the minima in figure 7.5(e) and (f), which correspond to antisymmetric

orbitals, while the odd numbers approximately yield the minima in figure 7.5(d), which

display the length-gauge, symmetric case. Specifically for the length-gauge distributions

[figure 7.5(d) and (e)], there is an overall displacement of roughly 2
√
Up in the position

of the patterns. This is consistent with the modified interference conditions in this case.
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Figure 7.5: Electron momentum distributions for a parallel-aligned molecule (θ = 0),
different orbital symmetries and gauges. The upper and lower panels give the contour
plots as functions of the parallel momenta, and the distributions along p1∥ = p2∥ =
p∥, respectively. We integrate over the transverse momenta, and employ the same
molecule and field parameters as in the previous figures. The interference minima
according to Table 1 are indicated by the vertical lines in the figure. Panel (a) and
(d), (b) and (e), and (c) and (f) correspond to symmetric orbitals in the length gauge,
antisymmetric orbitals in the length gauge and antisymmetric orbitals in the velocity
gauge, respectively. For panels (d), (e) and (f), the units in the vertical axis have been
chosen so that their upper values are unity (the original values have been divided by

0.016, 0.01 and 0.04, respectively).

7.2.3 The Classical Limit

In the following, we perform a comparison between the S-Matrix computation and its

classical limit. In the single-atom case, both computations led to very similar results,

unless the driving-field intensity is close to the threshold intensity [175]. At this intensity,

the kinetic energy upon return is just enough to make the second electron overcome the

ionization potential. Therefore, since the intensity used in most figures is far above the

threshold intensity, one would expect similar results.

In figure 7.6, we display differential momentum distributions as functions of the parallel

momentum components, computed employing the classical model. This is the classical

counterpart of figure 7.2, in which the quantum mechanical distributions are depicted

for the same parameters. Indeed, for all alignment angles depicted, the classical and

quantum-mechanical distributions look very similar. Hence, even though the two-centre

interference is an intrinsically quantum mechanical effect, it can be mimicked to a very

large extent within a classical model. There is also a good quantitative agreement be-

tween the positions of the minima and maxima in both classical and quantum mechan-

ical cases. This is shown in figure 7.7, for parallel momenta p1∥ = p2∥ = p∥, and several
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ular orbitals and several alignment angles, as functions of the parallel momentum com-
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to θ = 0, θ = 300, θ = 600, and θ = 900, respectively.
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Figure 7.7: Electron momentum distributions for highest symmetric occupied molec-
ular orbitals and several alignment angles, along p1∥ = p2∥ = p∥, computed in the
velocity gauge using the classical model for the same field and molecular parameters
as in Fig. 7.3. Panels (a), (b), (c) and (d) correspond to θ = 0, θ = 300, θ = 600, and

θ = 900, respectively.
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alignment angles. For θ = 0 and θ = 300 [figures 7.7(a) and 7.7(b), respectively], the

maxima and minima agree very well with those in figure 7.3. The main difference, with

regard to the quantum-mechanical case, is that, for large alignment angles, the classical

distributions are more localized than their quantum-mechanical counterparts, especially

in the low momentum regions. For instance, in figure 7.7(d), the yield is much lower

near p∥ = 0, as compared to the outcome of the S-Matrix computation [figure 7.3(d)].

This discrepancy is possibly due to the fact that the classical model underestimates

contributions to the yield near the boundary of the classically allowed region.

7.3 Conclusions

In this work, we addressed two aspects of non-sequential double ionization of diatomic

molecules: the influence of the symmetry of the highest occupied molecular orbital,

and of the alignment angle, on the differential electron momentum distributions. We

considered the physical mechanism of electron-impact ionization, within the strong-field

approximation, and very simple models for the highest occupied molecular orbitals,

within the LCAO and frozen nuclei approximations.

For angle-integrated electron momentum distributions, we have shown that, for driving-

field intensities within the tunneling regime and compatible with existing experiments

[84], the distributions computed with symmetric and antisymmetric orbitals (prefactors

7.7) and (7.8), respectively), or different gauges, look practically identical. This is due

to the fact that, if only electron-impact ionization is taken into account, the momentum

region for which this process has a classical counterpart is too small to allow the corre-

sponding pre-factors to have a significant influence. At first sight, this is in contradiction

with the experimental findings and computations in [84]. Therein, a broadening parallel

the anti-diagonal direction has been reported only for the anti-symmetric case, while,

for a symmetric combination of atomic orbitals, an elongation in the direction p1∥ = p2∥

was observed. One should note, however, that, in [84], an effective, time-dependent

second ionization potential E02(t) = E02 − 2
√

2|E(t)| is used [86]. This feature has

not been incorporated in the present computations. It has the effect of increasing the

classically allowed momentum region and introducing an additional time dependence in

the prefactors and the action.

We also made a detailed assessment of the interference effects due to the fact that electron

emission may occur from two spatially separated centers. In order to disentangle the

interference effects from those caused by the prefactor φ
(2)
0 (P(t)), we assumed that the

second electron was dislodged by a contact-type interaction at the position of the ions.

We observed interference fringes in the electron momentum distributions, along p1∥ =
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−p2∥ + const for all gauges and orbital symmetries. These fringes are most pronounced

if the molecule is aligned parallel to the laser-field polarization. As the alignment angle

increases, it gets washed out by the term (7.23), which, for angle-integrated momenta,

is essentially isotropic in the perpendicular momentum plane. Consequently, the peaks

of the distributions shift towards higher momenta, and their shapes resemble more and

more those obtained for the same type of interaction in the single-atom case. We also

found that the prominence of such peaks will depend on the integration over the electron

transverse momenta, so that some maxima may be more prominent than others.

Interestingly, we are able to observe changes in the peak momenta of the distributions,

as the alignment is varied, even if a single physical mechanism, namely electron-impact

ionization, is considered. These changes are caused by the two-centre interference ef-

fects. This complements recent results, in which different types of collisions and double-

ionization mechanisms are associated with changes in the peaks of NSDI distributions,

within the context of molecules [13, 113]. Finally, for laser-field intensities within the

tunneling regime, the distributions obtained including only electron-impact ionization

are far more localized than those reported experimentally, and the differences between

different gauges and orbital symmetries are barely noticeable. In order to assess such

effects, it was necessary to consider much higher intensities, for which other physical

mechanisms, such as multiple electron recollisions, would also be expected to play a role

[113]. These discrepancies may be due to the fact that we are not including the physical

mechanism in which the first electron, upon return, promotes the second electron to an

excited state, from which it subsequently tunnels out.



Chapter 8

Excitation, Two-centre

Interference and the Orbital

Geometry in Molecular NSDI

Recently, several studies have found that the core dynamics, in particular excitation, is

important for high-harmonic generation in molecules [34, 181, 182]. This may also be

true for nonsequential double ionization. Indeed, we have shown in Chapter 6 that, for

the RESI mechanism, the shape of the electron momentum distributions depends very

strongly on the initial and excited bound states of the second electron [3, 4], in fact far

more critically than for electron-impact ionization [74]. If this is the case already for

single atoms, one expects this dependence to be even more critical for molecules.

Apart from that, the geometry of the molecular orbitals and the molecular alignment

with respect to the laser-field polarization, as discussed in the previous chapter, affect the

shapes of the electron momentum distributions in NSDI. In our previous study (Chapter

7 or [2]), however, the geometry of the molecular orbitals involved has been simplified

to a great extent. In fact, the HOMO was approximated by a linear combination of

1s orbitals. This implies that important features such as the spatial dependence of the

orbitals, the presence of nodal planes or s p mixing were ignored.

To some extent, these simplifying assumptions can be made for electron-impact ion-

ization and one may still gain useful information about the molecular structure. For

instance, in the previous chapter we addressed the influence of the orbital symmetry

and the molecular alignment with respect to the laser-field polarization on NSDI of

diatomic molecules for this mechanism. We showed that the electron momentum dis-

tribution exhibit interference maxima and minima due to electron emission at spatially

104
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separated centers. Such fringes were positioned at p1||+p2|| = const., i.e., parallel to the

anti diagonal of the plane spanned by the electron momentum components pn∥ parallel

to the laser-field polarization. They were sharpest if the molecule was aligned along the

direction of the field, i.e., for vanishing alignment angle. As this angle increased, the

fringes got increasingly blurred until they were completely washed out for perpendicular

alignment.

For RESI we expect a more critical dependence with regard to the geometry of the

bound-state wavefunctions, not only because the excitation process strongly depends on

them, but also due to the fact that the second electron is reaching the continuum by

tunneling. It is by now well known that this ionization mechanism is strongly influenced

by the presence of nodal planes or the directionality of a particular molecular orbital.

For instance, for HHG the nodal plane of a π state suppresses tunnel ionization when it

coincides with the polarization axis [34, 181–184]. Hence, it is not justifiable, not even

as a first approximation, to employ linear combinations of 1s orbitals.

In this chapter, we perform a systematic analysis of quantum-interference effects in NSDI

of diatomic molecules considering the RESI mechanism. We construct a semi-analytical

model, in which an electron tunnels from the HOMO of a neutral molecule and rescatters

with the HOMO of its singly ionized counterpart. Thereby, the second electron is excited

to the lowest unoccupied molecular orbital (LUMO). We investigate the influence of

such orbitals and of the alignment angle on the NSDI electron momentum distributions.

Specifically we choose species for which these orbitals have different geometries and

parities, such as πg, πu, σg, σu. Furthermore, we address the question of whether well-

defined interference patterns such as those observed in ATI or HHG computations may

also be obtained for NSDI in the context of the RESI mechanism, and, if so, under

what conditions. These are complementary studies to those performed in Chapters 5

and 6, where we showed that, for single atoms, the shape of the electron momentum

distributions carry information about the bound state from which the second electron

leaves and the state to which it is excited.

This chapter is organized as follows. In Section 8.1, we discuss the expression for the

specific prefactors for a diatomic molecule using Gaussian orbital basis sets. Further-

more, we derive a general two-centre interference condition for the RESI mechanism

(8.2). Subsequently, in section 8.3, we compute electron momentum distributions of

Li2 and N2 for several molecular alignment angles (8.3.1), and molecular orbitals (8.4).

Finally, we state the main conclusions of this chapter (8.5).
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8.1 Prefactors

In this work, we assume frozen nuclei and a linear combination of atomic orbitals (LCAO)

to construct approximate wave functions for the diatomic molecules. This implies that

the molecular bound-state wave function for each electron is given by

ψ(n)(rn) =
∑
α,lα

cα[ϕ
(n)
α (rn +R/2) + (−1)lα+λαϕ(n)α (rn −R/2)] (8.1)

where R and lα denote the internuclear separation and the orbital quantum numbers,

respectively. The index n = 1, 2 refers to the electron in question. The index λα = 0

applies to gerade symmetry and λα = 1 to ungerade symmetry. The binding potential

of this molecule, as seen by each electron, is given by

Vκ(rn) = Vκ(rn −R/2) + Vκ(rn +R/2) (8.2)

where the subscript κ = 0 or ion refers either to the neutral molecule or to its ionic

counterpart, respectively, and Vκ(rn) = Zeff/rn is the potential at each centre in the

molecule.

In this work, the wave function ϕ
(n)
α is approximated by a Gaussian basis set,

ϕ(n)α (rn) =
∑
j

b
(n)
j xlαylαzlα exp[ζjr

2] (8.3)

The coefficients bj and cα and the exponents ζj can be extracted either from exist-

ing literature or from quantum chemistry codes. We compute these coefficients using

GAMESS-UK [1]. In our basis set, we take only s and p states. This means that, in all

the expressions that follow, lα and lβ are either 0 or 1.

Based on above-stated assumptions, the RESI prefactors (3.46) and (3.43) will have the

following forms

Vp1e,kg =
V12(p1 − k)

(2π)3/2

∑
α

∑
β

[ei(p1−k)·R/2

+(−1)lα+lβ+λα+λβe−i(p1−k)·R/2]I1, (8.4)

where
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I1 =
∫
d3r2e

−i(p1−k)·r2ϕ(2)α (r2)
∗
ϕ
(2)
β (r2) (8.5)

and

Vp2e =
4π

(2π)3/2

∑
α

[
eip̃2·R/2 + (−1)lα+λαe−ip̃2·R/2

]
I2, (8.6)

where

I2 =
∫
d3r2V0(r2)e

−ip̃2·r2ϕ(2)α (r2). (8.7)

In general, the form factor (3.44) does not affect the shape of the electron-momentum

distributions. This is particularly true when the first electron tunnels from an orbital

with no nodal planes, such as a σg orbital [2]. However, one has to be careful when the

electron tunnels from any orbital with at least one nodal plane, such as a π orbital, as

this would lead to a suppression of ionization for specific alignment angles.

In the following, we will rewrite the above equations in terms of the electron-momentum

components pn∥ and pn⊥ parallel and perpendicular to the laser-field polarization. Phys-

ically, we are dealing with a diatomic molecule whose main axis is rotated by an angle

θ with respect to the direction of the laser-field polarization. Hence, we are dealing

with two frames of references, i.e., the molecular frame of reference and the laser field

frame of reference. The electron momenta in terms of their parallel and perpendicular

components with regard to the laser-field polarization read

pn = pn||êz′ + pn⊥ cosφêx′ + pn⊥ sinφêy′ , (8.8)

where we assumed that the laser field is polarized along the z′ axis, the coordinates

x′ and y′ define the plane perpendicular to the laser-field polarization and φ is the

azimuthal angle. In order, however, to compute the momentum-space wavefunctions

for this molecule, we need the momentum coordinates in the frame of reference of the

molecule. The molecular coordinates x, y and z can be obtained by a coordinate rotation

around the x axis. In this case, the momenta of the electrons in terms of the parallel

and perpendicular components in this latter frame of reference will be

pn = (pn|| cos θ + pn⊥ sin θ sinφ)êz + pn⊥ cosφêx

+ (pn⊥ cos θ sinφ− pn|| sin θ)êy. (8.9)
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Figure 8.1: Schematic representation of the molecule and laser field frames of refer-
ence, represented by the black and red sets of axis x, y, z and x′, y′, z′ respectively. The
two centers of the molecule are separated by R along the z axis of the molecule, and
their positions are indicated by the blue circles in the figure. The field A(t) is polarized
along the z′ axis, and θ shows the alignment angle of the molecule with respect to the

laser field.

This implies that the momentum components pnx, pny and pnz are defined by equation

(8.9) and that

pn ·R/2 = (pn|| cos θ + pn⊥ sin θ sinφ)R/2. (8.10)

A schematic representation of both the field molecular sets of coordinates is presented

in figure (8.1). Below, we provide the explicit expressions for the integrals In(n = 1, 2)

in the prefactors (8.4) and (8.6), for the specific types of orbitals employed in this work.

8.1.1 Excitation σ → σ

If the second electron is excited from a σ to a σ orbital, both integrals will have the

forms

I1 =
∑
j,j′

b
(1)
j b

(1)
j′ π

3/2(−i)lα+lβ

2
lα+lβ (ζj + ζj′)

3/2+lα+lβ

× exp[− (p1 − k)2

4(ζj + ζj′)
].Υ(lα, lβ) (8.11)

where

Υ(lα, lβ) =


1, lα + lβ = 0

(p1 − k)z, lα + lβ = 1

2(ζj + ζj′)− (p1 − k)z, lα + lβ = 2

, (8.12)
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and

I2 =
∑
,j′

b
(2)
j′ (−i)

lβG(lβ), (8.13)

where

G(lβ) =

{
2
√
πI

(lα=0)
r , lβ = 0

(p̃2z/p2) I
(lα=1)
r , lβ = 1.

(8.14)

In equation (8.14), I
(lα=0)
r and I

(lα=1)
r indicate the radial integrals

I(lα)r =

∫ ∞

0
rlβ+1jlβ (p̃2r) exp[−ζjr

2]dr. (8.15)

8.1.2 Excitation σ → π

We also consider that the second electron is excited to either a πu or a πg orbital. In this

case, since these orbitals are degenerate, one must consider a coherent superposition of

the πx and πy orbitals. This gives

I1 =
∑
j,j′

b
(1)
j b

(1)
j′ π

3/2
[
(−i(p1 − k)y)

lβ + (−i(p1 − k)x)
lβ
]

(−i(p1 − k)z)
lα

2
lα+lβ (ζj + ζj′)

3/2+lα+lβ
exp[− (p1 − k)2

4(ζj + ζj′)
]. (8.16)

One should note that, if the electron is excited from a π to a σ orbital, I1 will also have

this form. In the second prefactor,

I2 =
∑
,j′

b
(2)
j′ (−i)

lβ

[
(p̃2y)

lβ + (p̃2x)
lβ

p̃2

]
I
(lβ)
r , (8.17)

with lβ = 1.Throughout, (p1 − k)κ , with κ = x, y, z are defined according to equation

(8.9).

8.2 Interference Condition

Here, we provide a general interference condition, which takes into account the structure

of the orbitals. This includes s− and p mixing and the orbital parity. The expressions
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that follow are easily derived if the exponentials in equations (8.4) and (8.6) are expanded

in terms of trigonometric functions. In this case, the prefactor (8.4) can be written as

Vp1e,kg =
V12(p1 − k)

(2π)3/2

∑
α

∑
β

√
C2
+ − C2

− sin[ξ1 + (p1 − k) ·R/2]I1, (8.18)

with

ξ1=arctan[
−iC+

C−
] (8.19)

and

C± = 1± (−1)lα+lβ+λα+λβ . (8.20)

A similar procedure for high-order harmonic generation has been adopted in [183]. In-

terference minima are present if

ξ1 + (p1 − k) ·R/2=mπ (8.21)

where m is an integer. Similarly, interference maxima are obtained for

ξ1 + (p1 − k) ·R/2=(2m+ 1)π/2. (8.22)

We will focus on the minima given by equation (8.21) as they are much easier to observe.

If this equation is written in terms of the electron momentum component (p1 − k)z

parallel to the molecular axis, we find

[
(p1|| − k) cos θ + p1⊥ sin θ sinφ

]
R/2 = mπ − ξ1. (8.23)

The above equation shows that the parallel momentum component p1|| will lead to well-

defined interference fringes approximately at

p1|| =
2(mπ − ξ1)

R cos θ
+ k. (8.24)

This means that, in the p1||p2|| plane, these minima will be at p1|| = const., i.e., parallel to

the p1|| axis. When the azimuthal angle is integrated over, the perpendicular component

p1⊥ will mainly cause a blurring in such fringes. Extreme limits will be found for the

alignment angle θ = 0, with sharp, two-centre patterns, and θ = 90◦, when they get

washed out.

Following the same line of argument,
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Vp2e =
4π

(2π)3/2

∑
α

√
D2

+ −D2
− sin[ξ2 + p̃2 ·R]I2, (8.25)

with

ξ2=arctan[
−iD+

D−
] (8.26)

and

D± = 1± (−1)lβ+λβ . (8.27)

Interference minima are present for (8.6) if

ξ2 + p̃2 ·R =mπ. (8.28)

Likewise, there will be interference fringes for

p̃2|| =
2(mπ − ξ2)

R cos θ
, (8.29)

i.e., parallel to the p2|| axis in the plane spanned by the parallel momentum components

p1||, p2||. In the velocity and the length gauges, p̃2|| = p2|| and p2|| + A(t), respectively.

Since, however, A(t) ≃ 0 for the electron tunneling time, in practice there will be very

little difference. The perpendicular momentum components will lead to a blurring in

the fringes.

8.3 Results

Following the same line of argument as in section (3.3.3), we compute electron momen-

tum distributions, as functions of the momentum components (p1∥, p2∥) parallel to the

laser-field polarization.

In the following, we compute electron momentum distributions for Li2 and N2. We

assume that the first electron leaves from the neutral species and rescatters with the

singly ionized molecule, i.e., Li+2 or N+
2 , respectively. For all cases, we assume that the

electron-electron interaction is of contact type, i.e., V12 = δ(r1 − r2). This will avoid a

further momentum bias in the electron-electron distributions as it leads to V12(p1−k) =

const and allow us to investigate the influence of the target structure alone. For a long-

range potential, V12(p1 − k) would be momentum dependent.
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8.3.1 Interference Effects and the Influence of s− and p− Mixing

We will commence by investigating whether the interference conditions derived in sec-

tion (8.2) hold. For that purpose, we must have non-negligible tunneling ionization for

parallel-aligned molecules, as this is the situation for which the fringes are expected to

be sharpest. Hence, one must consider a target for which neither HOMO nor the LUMO

exhibits nodal planes along the internuclear axis. Therefore, we assume that the first

electron rescatters inelastically with Li+2 , exciting the second electron from its HOMO

(2σg) to its LUMO (2σu). In order to get a clear picture of conditions (8.21) and (8.28),

we must investigate the corresponding prefactors individually.
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Figure 8.2: Electron-momentum distributions for NSDI in Li2 (E1g = 0.18092040
a.u.,E2g = 0.43944428 a.u. and E2e = 0.12481836 a.u.) considering only the RESI mech-
anism, as functions of the momentum components parallel to the laser-field polarization,
obtained considering Vp2e according to equation (3.43) and Vp1e,kg = const. We con-

sider zero alignment angle, driving-field intensity I = 4.6× 1013 W/cm
2
and ω = 0.057

a.u. respectively. Panels (a) to (c) display only the contribution from the orbits start-
ing in the first half cycle of the field, while in panels (d) to (f) the distributions have
been symmetrized to account for the electron orbits starting in the other half cycle
and for electron indistinguishability. The left, middle and right panels correspond to
the contributions of the s, p and all states used in the construction of the σu LUMO,
respectively. The solid, dashed and short dashed lines show the position of minima due
to the two centre interferences, node of the wavefunction and mixed cases, respectively.
The contour plots have been normalized to the maximum probability in each panel.

In figure 8.2, we depict the above-mentioned electron-momentum distributions for the

alignment angle θ = 0. We consider Vp1e,kg = const. and focus on the influence of Vp2e

alone. We take either the individual contributions of s and p states or the combination of

both for 2σu. For clarity, in the upper panels, we also exhibit the distributions obtained

without symmetrizing with respect to the momentum exchange and electron start times.

For all cases, the two-centre fringes in figure 8.2 are parallel to p2|| = const., in agreement

with the second interference condition derived in section 8.2.
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For pure s or p states and λα = 1, which is the case for a σu orbital, this condition can

be further simplified. It reduces to

sin[p̃2 ·R/2] = 0, (8.30)

for s states, and

cos[p̃2 ·R/2] = 0 (8.31)

for p states. This implies that, for the former, we expect minima at p̃2 ·R = 2mπ, while

for the latter they should occur at p̃2 · R = (2m + 1)π. The position of such minima

can also be determined analytically by considering that the second electron tunnels at

the peak of the laser field, i.e., at = ωπ/2. The dashed lines in the figure show that

the position of these minima exhibit a very good agreement with this simple estimate.

Physically, this good agreement may be attributed to the fact that the second electron

tunnels most probably at this time.

For the s states the two-centre interference gives a sharp minimum at p2∥ = 0 (figure

8.2 (a) and (d)), while for the p states these patterns are located near p2∥ = ±3
√
Up

(figure 8.2 (b) and (e)). In the p−state case the distribution has another minimum

at p2∥ = 0, which comes from the fact the p wavefunctions have a node at vanishing

momentum. This causes a suppression in the transition amplitude. If the contributions

of both s and p states are considered, the minima in the high-momentum region due to

the two-centre interference seen for the p states vanish, but the minimum at p2∥ = 0

survives. This is shown in figure 8.2.(c) and (f) for unsymmetrized and symmetrized

distributions, respectively.

One should note, however, that for parallel-aligned molecules, both the two-centre min-

imum for the s states and the minimum caused by the node in the p states occur at the

same momentum, i.e., at p2∥ = 0. Hence, when s p mixing is included both mechanisms

contribute to the suppression at the axes pn∥ = 0 seen in figures 8.2.(c) and (f). We will

now investigate the behavior of this node when the alignment angle is varied. Since for

Li2 both the LUMO and the HOMO exhibit distinct shapes and symmetries one can

expect significant changes in the electron-momentum distributions when this parameter

is modified.

Hence, in figure 8.3, we consider the same prefactors as in the previous case, but align-

ment angles θ = 450 and 900. The figure shows that the patterns caused by the electron

emission at spatially separated centres gets washed out for such angles. This is due

to the momentum components perpendicular to the laser-field polarization, and can be



Chapter 8. Excitation, Two-centre Interference and the Orbital Geometry in Molecular
NSDI 114

-4 -2 0 2 4

-4

-2

0

2

4

θ = 450

(a) s

p
2

||
/[
U

p
]1

/2
p

2
||
/[
U

p
]1

/2

p1||/[Up]
1/2

p1||/[Up]
1/2 p1||/[Up]

1/2

-4 -2 0 2 4

-4

-2

0

2

4

θ = 450

(b) p

-4 -2 0 2 4

-4

-2

0

2

4

θ = 450

(c) All

-4 -2 0 2 4

-4

-2

0

2

4

θ = 900

(d) s

-4 -2 0 2 4

-4

-2

0

2

4

θ = 900

(e) p

-4 -2 0 2 4

-4

-2

0

2

4

θ = 900

(f) All

Figure 8.3: Electron-momentum distributions for RESI in Li2 as functions of the
electron momentum components parallel to the laser-field polarization considering
Vp1e,kg = const and Vp2e according to equation (3.43), for alignment angles θ = 450

(panels (a) to (c)), and 900 (panels (d) to (f)). The remaining parameters are the same
as in the previous figures. The solid lines show the position of minima due to the node
of the one-centre wavefunction. From left to right, we considered the contributions of
the s, p and all states used in the construction of the LUMO. All panels have been
symmetrized with regard to the electron orbits and indistinguishability. The contour

plots have been normalized to the maximum probability in each panel.

seen very clearly in figure 8.3, where the s contributions are displayed for θ = 45◦. Al-

ready for this angle the interference minima at the axes p∥ = 0 are absent. The minima

caused by the node of the p wavefunctions also vanish, as shown in Fig. 8.3.(b). This

is caused by the fact that, in momentum space, these wavefunctions are proportional to

G(lβ = 1) (see equation (8.14)). This function contains components of p2 both parallel

and perpendicular to the laser field polarization, and the contributions from the latter

wash out the minimum. Obviously, this situation persists when s p mixing is included

(see figure 8.3.(c)).

For θ = 90◦, only the components p2⊥ contribute, and the electron momentum distribu-

tions are determined by the momentum-space integration alone. As a result, they reflect

the momentum-space constraints for the RESI mechanism. These constraints lead to

electron momentum distributions peaked at (pi∥, pj∥) = (±2
√
Up, 0), with i, j = 1, 2 and

i ̸= j and with widths 2
√
Up, and have been explicitly written in [3, 4]. This holds both

for the s, p and mixed case (Figs. 8.3.(d), (e) and (f), respectively).

We will now focus on the interference condition determined by the excitation prefactor

(3.44). With this objective, we will keep Vp2e = const. and investigate the influence

of Vp1e,kg alone, starting from vanishing alignment angle. Once more, we will study
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Figure 8.4: RESI electron-momentum distributions for Li2 considering Vp2e = const.
and Vp1e,kg according to equation (8.4), for θ = 0. The field and molecular parameters
are the same as in the previous figure. The upper panels display only the contribution
from the sets of orbits starting in the first half cycle of the laser field. In the lower panels
the distributions have been symmetrized in order to account for the orbits starting
in the other half cycle of the field, and for electron indistinguishability. The left,
middle and right panels display the contributions from s, p and all states composing
the HOMO and the LUMO, respectively. The dashed line shows the position of the two-
centre interference minimum. The contour plots have been normalized to the maximum

probability in each panel.

the contributions of the s and p states, and the overall distributions. The interference

condition and also the wavefunctions in the excitation prefactor now incorporate the

HOMO and the LUMO (see equation (3.44)). For Li+2 , the former and the latter are a

gerade and an ungerade orbital, so that λα = 0 and λβ = 1 in equation(8.21). For a

pure s states, lα = lβ = 0 and for a pure p states, lα = lβ = 1. This will lead to the

simplified interference condition

sin[(p1 − k) ·R/2] = 0 (8.32)

for both. Hence, one expects a minimum close to vanishing parallel momenta in the

pure cases. When s p mixing is included, however, different angular momenta will also

be coupled and the general interference condition must be considered.

The electron momentum distributions obtained in this way are shown in figure 8.4, for

both symmetrized and unsymmetrized distributions (upper and lower panels, respec-

tively). For most distributions in the figure, we do not observe clear minima. This holds

both for those caused by the two centre interference and by the node of the wavefunc-

tions at the ions. We only observe a two centre minimum if we consider the individual

contributions of the p states, and do not symmetrize the distributions (see figure 8.4.(b)).

This is due to the fact that, for the parameters considered in this work, the two-centre
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minimum according to condition (8.24) lies at or beyond the boundary of the momen-

tum region for which rescattering of the first electron has a classical counterpart. The

centre of this region is roughly at p1|| ≃ 2
√
Up and its extension is determined by the

difference between the maximal electron kinetic energy upon return and the excitation

energy E2g − E2e, as discussed in Chapter 6.

Apart from that, s p mixing will lead to a blurring of this minimum, as it couples states

with different angular momenta. Symmetrization introduces other events, either due to

the electron indistinguishability or displaced by half a cycle, and obscures this minimum

further, as shown in the lower panels of the figure.

cos[(p1 − k) ·R/2] = 0. (8.33)
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Figure 8.5: Electron-momentum distributions for RESI in Li2 as functions of the
electron-momentum components parallel to the laser-field polarization considering
Vp2e = const. and Vp1e,kg according to equation (8.4), for alignment angles θ = 450 and
900 (upper and lower panels, respectively). All distributions have been symmetrized
to account for the orbits starting in the other half cycle of the field, and for electron
indistinguishability. The left, middle and right panels display the contributions from s,
p and all states composing the HOMO and the LUMO, respectively. The contour plots

have been normalized to the maximum probability in each panel.

If the alignment angle is varied, incorporating only the excitation prefactor Vp1e,kg will

lead to ring-shaped distributions. This can be observed in all panels of figure 8.5, regard-

less of whether only p, s or all basis states employed in the construction of the HOMO

and LUMO are taken. This behavior may be attributed to the fact that the explicit ex-

pression for the prefactor Vp1e,kg incorporates both the HOMO and the LUMO. Hence,

upon integration over the transverse momenta, the wavefunction-specific features gets

was out.
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Figure 8.6: Electron-momentum distributions for Li2 as functions of the parallel
momenta (p1∥, p2∥) considering all prefactors, for different alignment angles. Panel (a),
(b),(c) and (e) correspond the alignment angle θ= 0, 10, 45 and 90 degrees, respectively.
The contour plots have been normalized to the maximum probability in each panel, and

the field and molecular parameters are the same as in the previous figures.

In figure 8.6, we incorporate both prefactors Vp2e and Vp1e,kg and vary the alignment

angle. The main conclusion to be drawn from the figure is that the prefactor Vp2e plays

the dominant role in determining the shapes of the electron momentum distributions.

This can be observed by a direct comparison of figure 8.6.(a) with figure 8.2.(f), for

vanishing alignment angle. The distributions in both figures exhibit similar shapes and

minima at the axes pn|| = 0, and are very different from those obtained if only the

recollision-excitation prefactor is included (see figure 8.4(f)). The main effect of the

excitation prefactor Vp1e,kg is to alter the widths of the distributions. This situation

persists for larger angles, such as θ = 45◦ and θ = 90◦, as a comparison of figure 8.6.(c)

and (d), with figure 8.3.(c) and (f) shows. In all such figures, the nodes at the axis

determined by the two-centre interference minima are washed out. In this context, one

should notice that the two-centre interference effects are already much less prominent

for an alignment angle as small as θ = 10◦. This is explicitly shown in figure 8.6.(b).

8.4 Molecular Orbital Signature

In the previous section, we dealt exclusively with σ orbitals. Spatially, such orbitals

are localized along the internuclear axis, and do not exhibit nodal planes for vanishing
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alignment angle. A legitimate question is, however, how the shape of the molecular

orbital to which the second electron is excited is imprinted on the electron momentum

distributions. From other strong-field phenomena, it is well-known that the presence of

nodal planes may suppress the yield considerably [182, 183].

For that reason, we will now compute electron momentum distributions for N2. The

first electron will be ripped out from the HOMO, which is also 3σg orbital. However,

upon return, it will excite the second electron to the LUMO, which is a πg orbital. A

πg orbital has gerade symmetry and exhibits two nodal planes, which will be oriented

along the laser-field polarization for parallel and perpendicular-aligned molecules.

Figure 8.7 shows electron momentum distributions for N2 for alignment angles of zero

and 90 degrees. Here, both prefactors Vp2e and Vp1e,kg are incorporated in the com-

putation. As was discussed in the previous section, one could expect sharp two-centre

interference minima along the axes pn|| = 0 for zero alignment angle. This is confirmed

by figure 8.7(a), which shows a clear minima along the axes pn|| = 0, similar to Li2

(figure 8.6(a)). In comparison to figure 8.6(a), however, these minima are wider. This is

very likely due to the fact that the nodal plane parallel to the internuclear axis also con-

tributes to the emergence of these minima. Figure 8.6(b), for alignment angle θ = 90◦,

confirms that the nodal planes of the πg wavefunction leave a strong imprint in the

RESI distributions. In the figure, the suppression along the axis pn|| = 0 can only be

attributed to the nodal plane perpendicular to internuclear axis. In fact, from the in-

terference conditions derived in section 8.3.1 and the results obtained in the previous

chapter we expect the interference patterns due to the electron emission at specially

separated centres to wash out completely for an alignment angle of θ = 90◦. Therefore,

the minima present in figure 8.7(b) come from nodes of the πg wavefunction.

The computations in chapter show that the electron momentum distributions of N2 and

Li2 will have different shapes as we vary the molecular alignment angle with respect to

the laser polarization direction. Thus RESI can be used a powerful tool to probe the

molecular orbitals of the target.

8.5 Conclusions and Outlook

In this chapter we address the influence of the molecular orbital geometry and of the

molecular alignment with respect to the laser-field polarization on laser-induced nonse-

quential double ionization of N2 and Li2. We focus on the recollision excitation with

subsequent tunneling ionization (RESI) mechanism, in which the first electron, upon

return, promotes the second electron to an excited state, from where it subsequently
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Figure 8.7: Electron-momentum distributions for N2 (E1g = 0.63485797 a.u., E2g

= 1.12657012 a.u. and E2e = 0.26871290 a.u.) as functions of the parallel momenta
(p1∥, p2∥) considering all prefactors, for alignment angles θ= 0 and 90, panel (a) and

(b), respectively. We consider a driving-field intensity I = 1.25 × 1014 W/cm
2
and

ω = 0.057 a.u. The contour plots have been normalized to the maximum probability
in each panel.

tunnels. We assumed the nuclei to be frozen and constructed the molecular wave func-

tion using Gaussian basis sets within the LCAO approximation.

In Li2, for zero alignment angle the influence of Vp2e alone gives sharp minima at pn∥ = 0

due to the electron emission at spatially separated centre and node of the p state.

These patterns disappear for alignment angle θ = 45◦ and 90◦. On the other hand, by

considering only the influence of Vp1e,kg we almost do not observe any minima for zero

alignment. This is due to the fact that, for the parameters considered in this work, the

two-centre minimum according to condition (8.24) lies at or beyond the boundary of the

momentum region for which rescattering of the first electron has a classical counterpart.

In this case, by varying the alignment angle we will get ring-shaped distributions.

By incorporating both prefactors Vp2e and Vp1e,kg, the minima at pn∥ = 0 survive for

zero alignment angle. This indicates that the prefactor Vp2e plays the dominant role in

determining the shapes of the electron momentum distributions. This conclusion become

more solid if we compare figure 8.6.(a) with figure 8.2.(f), for vanishing alignment angle.

Furthermore, the computations show that the excitation prefactor Vp1e,kg just alters

the widths of the distributions. The patterns caused by the two-centre interference get

washed out as the alignment angle varies. They become less defined for an alignment

angle as small as θ = 10◦.

For zero alignment angle, the electron momentum distributions of N2 shows a sharp

minima around pn∥ = 0 due to the electron emission at specially separated centers and

nodes of the wave function. In contrast to Li2, minima survive even when molecule is

aligned perpendicular to the laser field polarization direction. It is clear that at θ = 90◦

the nodal plane of the wave function are responsible for occurring of these patterns.
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The computation of RESI for N2 and Li2 show that the molecular orbital signature is

embedded in the the electron momentum distributions and it is reveal itself as we vary

the alignment angle. Furthermore, it indicates that the RESI can be an appropriate tool

for retrieving information about the molecular structure.

In order to understand the role of nodal plane in the electron momentum distributions,

one needs to investigate the N2 at various angles such as θ = 30◦, 45◦ and 60◦. In

addition, It would be very useful if one studies the electron momentum distributions

of Li2 under the assumption that the second electron is excited to a πu orbital, which

is the second lowest unoccupied orbital in Li+2 . This orbital has ungerade symmetry

and exhibits a single nodal plane at the internuclear axis, which will be parallel to

the laser-field polarization for vanishing alignment angle. This single nodal plane will

give a more complete picture about the influence of the wavefunction structure on the

electron-momentum distributions. The above-mentioned investigations, for a wide range

of alignment angles are currently being performed by us.



Chapter 9

Beyond the Strong-field

Approximation: a

Coulomb-corrected S-Matrix

Approach for Direct

Above-threshold Ionization

Since the early days of strong-field laser physics, the strong-field approximation has been

applied to a wide range of phenomena, such as above threshold ionization, high order

harmonic generation and laser-induced nonsequential double ionization. The strong-field

approximation is a very powerful approach, and has played a major role in the quantum

mechanical description of strong-field phenomena such as laser-induced rescattering or

recombination processes between an electron and its parent ion. It was decisive in

explaining a multitude of features in strong-field phenomena, such as the plateau and

the cutoff for HHG and ATI [159, 162] and “the knee” in the NSDI yield [152], and hence

helped establish many of the current paradigms in this field. This was made possible

due to the very clear physical interpretation provided by this approach, as discussed in

Chapter 2 and 3.

The SFA, however, suffers from several drawbacks:

• The strong-field approximation neglects the Coulomb potential when the electron

propagate in the continuum, approximating the continuum states by field-dressed

plane waves, i.e., Volkov states [147]. This means that, physically, effects such

as Coulomb focusing are not incorporated. This implies that the spread of the

121
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returning electronic wavepacket is overestimated in the SFA [185]. Apart from

that, it has been recently shown that, within the SFA, field-dressed momentum

conservation leads to the neglect of several types of electron trajectories, which are

important, for instance, for describing the recently observed energy structure in

ATI [80]. In addition, this approximation fails to describe symmetry breaking in

photoelectron spectra. For instant, if one place the detectors along the polarization

of the laser field, then the left and the right detectors observe different numbers

of electrons (more detail can be found in reference [94]).

• The strong-field approximation is not gauge invariant. This drawback appears as

a consequence of the fact that the series 3.7 and 3.9 are mixed (see, e.g., [186] for a

discussion of this issue), and is particularly problematic for extended systems such

as molecules. In this latter case, the interference patterns due to the high-order

harmonic or photoelectron emission at spatially separated centers are strongly

influenced by the choice of gauge. For a detailed discussion of the gauge influence

on the interference patterns of HHG in diatomic molecule see, e.g., [180, 187].

• In the strong-field approximation, the continuum and the bound states are not

orthogonal. This is a further consequence of approximating the continuum by

Volkov waves. This lack of orthogonality leads to artifacts which mask the above-

mentioned interference patterns for HHG in molecules. It also causes problems

as far as the translational invariance of SFA transition amplitudes are concerned

[170].

• There are no clear convergence criteria for the strong-field approximation. When

iterating the Dyson equation and constructing a perturbative series around either

the laser field or the binding potential, one may establish clear convergence criteria

for both. In the strong-field approximation, however, as, formally, these series are

mixed, the convergence criteria are not clear.

• The strong-field approximation does not account for the distortions caused by the

field on the bound states. This is particularly problematic for highly lying states,

or for electron start times close to the field peak. For instance, in Chapter 6 it

was argued that this may lead to the lack of agreement between the experimental

results of NSDI of argon and the SFA computations.

To develop, however, a semi-analytic approach which goes beyond the strong-field ap-

proximation is a highly demanding task, and, up to the present time, only two research

groups worldwide have succeeded in tackling this challenge (O. Smirnova and her co-

workers [94, 95, 188] and D. Bauer and his co-workers [149, 189]). This is discussed in

more details in section 9.3.
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The approach discussed in this chapter is being developed with the subsequent intention

of being applied to RESI. Since this mechanism is related to electron-electron correlation

near the ionization threshold, and also to excitation, we expect the interplay between

the Coulomb potential and the laser field to play a significant role.

As was shown in the previous chapters, the RESI mechanism may be understood as two

subsequent ATI-like processes:

1. A rescattered ATI-like process for the first electron

2. Direct above-threshold ionization for the tunnel ionization of the second electron.

A realistic strategy to follow would be first to implement the Coulomb correction on

the simplest processes in RESI (direct ATI), and then deal with the more complicated

process (rescattered ATI).

In this chapter, the influence of the Coulomb potential on direct ATI is investigated.

The Coulomb potential’s influence is incorporated in a semi-analytical approach, which

is constructed around the strong-field approximation. The main assumptions involved

in this approach are discussed in section 9.1. In this Section, we also show that they lead

to an ATI transition amplitude very similar to that found in [94, 188]. Subsequently, in

section 9.2, we discuss the saddle-point equations obtained from that expression, with

emphasis on the effects of the Coulomb potential on the electron motion in the con-

tinuum, and on the phase shifts introduced by the Coulomb continuum states at the

instant of ionization and when the electron reaches the detector. The relation between

the saddle-point equations and the classical equations of motion of an electron is ad-

dressed in section 9.3. This discussion is followed by a brief analysis of how to treat

the tunnel ionization process (section 9.4). This should include an adequate choice for

the initial momenta and the tunnel exit, i.e., the point in space for which the electron

reaches the continuum. Finally, in section 9.5, we close the chapter by discussing our

preliminary results and conclusions on this topic, and what should be next steps in order

to bring about the full implementation of the Coulomb-corrected approach developed in

this chapter.

9.1 Coulomb-corrected Transition Amplitude

In this section, the residual binding potential is incorporated in a semi-analytic, S-matrix

model for the specific case of direct ATI. In this work, one of the main assumption

of the strong-field approximation is still maintained. In this approximation, the laser
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field interaction with an atom is neglected when the electrons are bound to atoms or

molecules. In direct above-threshold ionization, at the time t′, an electron leaves the

atom from a bound state |φb(t′)⟩ and reaches the detector without scattering with a

final state of |q⟩.

By using the S-matrix (3.14), the transition amplitude of the system becomes

cq(t) = −i
∫ t

−∞
dt′ ⟨q|U(t, t′)HI(t

′)
∣∣φb(t′)⟩ . (9.1)

This is the well-know expression for the direct ATI transition amplitude, where HI is

the interaction of the atom with the laser field, and U(t, t′) the time evolution operator

related to the full Hamiltonian of the system.

On cannot exactly solve equation (9.1) because the full time evolution operator cannot

be computed exactly. However, this operator can be approximated in a way such that

the computations can be simplified considerably if one proceeds as follows. As a starting

point, we will write this operator in the Kramers-Henneberger gauge [190, 191]. This

gives

UKH(t, t
′) = exp[−i p̂

2
(t− t′)− i

∫ t

t′
V (r̂− α(τ))dτ)], (9.2)

where r̂ and p̂ denote the position and momentum operator, respectively. The electron

excursion amplitude is given by

α(τ) =

∫ τ

A(ξ)dξ. (9.3)

In equation (9.2), the coupling of the system with the external laser field is embedded

in the binding potential V (r̂−α(τ)), where in the case of a vanishing binding potential,

the free particle Hamiltonian is obtained. The time-evolution operator (9.2) cannot be

written in terms of a product, as the operators involved do not commute. In fact, the

Baker-Campbell-Hausdorff formula states that for two non-commuting operators Â and

B̂

exp(Â) exp(B̂) = exp(Ĉ), (9.4)

where

Ĉ = Â+ B̂ +
1

2
[Â, B̂] +

1

12
([Â, [Â, B̂]] + [Â, B̂], B̂]) + .... (9.5)

For the specific cases of

Â = −i p̂
2
(t− t′) (9.6)



Chapter 9. Beyond the Strong-field Approximation: a Coulomb-corrected S-Matrix
Approach for Direct Above-threshold Ionization 125

and

B̂ = −i
∫ t

t′
V (r̂− α(τ))dτ), (9.7)

one may show that these commutators depend on the spatial derivatives of the binding

potential. Without loss of generality, one may analyze this behaviour by checking the

commutators between p̂2 and V (r̂). The first-order commutator involving these operator

reads

[p̂2, V (r̂)] = ip̂.∇V (r̂) + i∇V (r̂).p̂, (9.8)

and, similarly, the higher-order commutators depend on the higher spatial derivatives of

the electron binding potential.

However, under the assumption that the binding potential varies slowly, on can neglect

all commutators. Thus we can approximate (9.2) by the product

UKH(t, t
′) ∼ exp[−i p̂

2

2
(t− t′)] exp[−i

∫ t

t′
V (r̂− α(τ))dτ)]. (9.9)

We will now assume that, to first approximation, the binding potential may be neglected

when defining the coordinate r. In the Kramers-Henneberger gauge, this implies that

one can approximate the electron coordinate associated with the position operator as

rFF (p, τ, t
′) = r0 + p(τ − t′), (9.10)

where r0 denotes the initial coordinate of the electron. This is nothing but the coordinate

of a free electron as a function of time.

In the context of this thesis, however, the desired gauge is the length gauge. Therefore

one needs to transform (9.2) into the length-gauge time evolution operator. By applying

the required transformation, we will have

UL(t, t
′) = exp[−i

∫ t

t′

A2(τ)

2
dτ ] exp[−iA(t).r̂] exp[−ip̂.α(t)]

UKH(t, t
′) exp[−ip̂.α(t′)] exp[−iA(t′).r̂], (9.11)

By using closure relations in r and p and applying the length gauge time evolution

operator UL, equation (9.1) becomes

cq(t) = −i
∫ t

−∞
dt′
∫
d3p

∫
d3r < q|r >< r|UL(t, t′)

∣∣p+A(t′)
⟩
< p+A(t′)| HI(t

′)
∣∣φb(t′)⟩ ,
(9.12)
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where r and p denote the intermediate coordinate and the intermediate momentum of

the electron, respectively. Due to the presence of the binding potential, the field-dressed

momentum of the system is not conserved. Thus, the final momentum q is not the

same as the intermediate momentum p. This fact has been first observed and discussed

systematically in [188], in a slightly different context, namely that of laser-induced XUV

ionization.

By inserting (9.11) into (9.12) we obtain

< r|UL(t, t′)
∣∣p+A(t′)

⟩
= exp[iA(t).r] exp[−i(Φv(t, t′) + Φc(t, t

′))] < r|p >, (9.13)

with

Φv(t, t
′) =

1

2

∫ t

t′
dτ [p+A(τ)]2 (9.14)

and

Φc(t, t
′) =

∫ t

t′
dτV(rL(τ)), (9.15)

where(9.14) and (9.15) are the phases which the electron obtains along its trajectory

in the continuum. The laser field and the presence of the Coulomb potential in the

continuum give a Volkov phase Φv(t, t
′) and a Coulomb phase Φc(t, t

′), respectively, to

the electron. The coordinate rL is defined as

rL(p, τ, t
′) = r0 +

∫ τ

t′
dt′′[p+A(t′′)]. (9.16)

At the time t′′, the electron tunnels from tan initial coordinate r0. We will refer to this

coordinate as the “tunnel exit”.

Apart from taking into account the influence of the Coulomb potential along the electron

trajectory, it is also necessary to account for the presence of the Coulomb potential at

the instant of ionization and at the detector [94, 95]. Following the procedure suggested

in these references, we define the initial continuum states and the asymptotic states of

the electron using Coulomb scattering waves. This assumption yields

< r|p >= 1

(2π)3/2
exp[ip · r] exp[−iΦp(r)] (9.17)
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and

< q|r >= 1

(2π)3/2
exp[−iq·r] exp[iΦq(r)], (9.18)

where Φp is the phase related to the distortion due to the Coulomb potential near the

core, and Φq is the phase related to the distortion at the end of the pulse. These phases

are defined as

Φp = exp[

∫ t′

+∞
dτrFF (p, τ, t

′)] (9.19)

and

Φq = exp[

∫ t

+∞
dτrFF (q, τ, t)]. (9.20)

By considering equations (9.13) - (9.20) and the fact that |φb(t′)⟩ = exp[Ipt
′] |φb⟩, the

transition amplitude reads

cq(t) =
−i

(2π)3

∫ t

−∞
dt′
∫
d3p

∫
d3r exp[iSc(q,p, r, t

′)] < p+A(t′)| HI(t
′) |φb⟩ , (9.21)

with the action

Sc(q,p, r, t
′) = (p− q).r−1

2

∫ t

t′
dτ [p+A(t′)]2 −

∫ t

t′
dτV(rL(τ)) +

∫ t′

+∞
dτV(rFF (p, τ, t

′))

−
∫ t

+∞
dτV(rFF (q, τ, t

′)) + Ipt
′, (9.22)

where Ip is the ionization potential.

One may identify two key “ingredients” in equation (9.21): 1) the prefactor which

denotes the matrix element between a bound state |φb(t′)⟩ and a continuum state < p+

A(t′)|, coupled by the interaction Hamiltonian HI at the ionization time t′; 2) the action

which corresponds to the phase acquired by the electron from the tunnel time t′ to the

detecting time t. The transition amplitude in (9.21) is identical to that obtained using

the Volkov-Coulomb Eikonal approximation developed in [94, 188]. In this approach, a

field-dressed Wentzel-Kramers-Brillouin (WKB) approximation is developed in order to

incorporate the binding potential in the continuum. The field-free counterpart is valid

if the Coulomb potential varies smoothly. In our derivation this assumption is implicit

in the neglect of the commutators (9.8) in order to obtain (9.9).

The Volkov-Coulomb Eikonal approximation developed in [94, 188] has mostly been used

in laser-induced XUV ionization, especially if the saddle-point approximation has been

employed (as in reference [188]). In this case, an electron is ejected in the continuum by

a high-frequency photon from an additional XUV pulse and reaches the detector with-

out rescattering. In the saddle-point framework, the calculation of the corresponding
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transition amplitude is considerably simplified, as the ionization time t′ will be real in

the saddle-point equations.

For above threshold ionization, however, the situation is more complicated, as the elec-

tron reaches the continuum by tunneling ionization. This implies that there is no real

solution for the saddle-point equation describing ionization. This will lead to a complex

ionization time, which will bring several difficulties. For instance, a complex ionization

time will render the other intermediate variables complex. In the present context, this

will lead to branches in the saddle-point equations. Apart from that, it will be necessary

to find appropriate physical criteria in order to define the tunnel exit.

By neglecting the Coulomb potential (V (r) = 0) in (9.21), the strong-field approximation

transition amplitude for direct ATI is recovered. In this case, the integral over the

electron coordinate r reduces to

1

(2π)3/2

∫
d3r exp[i(p− q).r] = δ(p− q). (9.23)

Consequently, the transition amplitude (9.21) may be written as

cSFAq (t) =
−i

(2π)3/2

∫ t

−∞
dt′ exp[iSSFAc (q, t′)] < q+A(t′)| HI(t

′)
∣∣φb(t′)⟩ , (9.24)

with the action

SSFA(q, t
′) = −1

2

∫ t

t′
dτ [q+A(t′)]2 + Ipt

′. (9.25)

By comparing the transition amplitude (9.21) and (9.24), several differences can be

identified. In the strong-field approximation transition amplitude for direct ATI (9.24),

the field-dressed momentum is conserved. It means the initial momentum p and the final

momentum q are the same (p = q). Therefore, one just needs to integrate the transition

amplitude upon the tunneling time t′. In the Coulomb-corrected approach, the binding

potential acts upon the momentum of the electron in the course of its trajectory and

introduces the phase (9.15). As a direct consequence, beyond the SFA, the transition

amplitude must also be integrated over the intermediate electron momentum p and the

intermediate electron coordinate r. Furthermore, in the SFA transition amplitude the

phases (9.19) and (9.20) are not present. Physically, this means that, in the absence

of the binding potential, the electron continuum states are described by plane waves.

However, in the presence of Coulomb potential there is a distortion near the core. In

addition, in the Coulomb-corrected approach, at the end of the pulse the asymptotic

continuum state is a Coulomb scattering state instead of a plane wave.
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9.2 Saddle-point Equations

We employ saddle-point methods to compute the transition amplitude in (9.21). The

saddle-point equations are obtained from the conditions ∂Sc(q,p, r, t
′)/∂t′ = 0, ∂Sc(q,p, r, t

′)/∂r =

0 and ∂Sc(q,p, r, t
′)/∂p = 0 and are, respectively

1

2
[p+A(t′)]2 = −V(rL(t

′))− [p+A(t′)]

∫ t′

+∞
dτ▽rV(rFF (p, τ, t

′))− Ip, (9.26)

(p− q)−
∫ t

t′
dτ▽rV(rL(τ)) +

∫ t′

+∞
dτ▽rV(rFF (p, τ, t

′))

−
∫ t

+∞
dτ▽rV(rFF (q, τ, t

′)) = 0, (9.27)

−r+

∫ t

t′
dτ [p+A(t′)] + r0 +

∫ t

t′
dτ(τ − t′)▽rV(rL(τ)) +

∫ t′

+∞
dτ(τ − t′)▽rV(rFF (p, τ, t

′))

−
∫ t

+∞
dτ(τ − t′)▽rV(rFF (q, τ, t

′)) = 0. (9.28)

Equation (9.26) corresponds to the conservation of energy at the time t′, when the

electron tunnels through the barrier at the coordinate r(t′) = r0. The right hand side

of this equations gives the kinetic energy of the electron in the continuum. For the

SFA, we would have just Ip in the right hand side of the equation, while the corrected

approach introduced the remaining terms, which are distortions due to the Coulomb

potential. The solution of equation (9.26) is complex, since tunneling has no classical

counterpart. Therefore, within the saddle-point framework, the intermediate momentum

p and electron coordinates r are also complex.

Equation (9.27) shows that the electron momentum is no longer conserved, as compared

to the SFA. The net force ▽rV (rL(t)) acts on the electron along its trajectory from

the tunnel exit r0 to the detector and alter the electron momentum in the continuum.

The remaining terms are related to the phase distortions at the tunneling time t′ and

at the end of the pulse, i.e. when the electron reaches the detector. The intermediate

momentum p and the electron momentum q at the detector become the same if V → 0.

Thus the electron momentum of the system will be conserved in the SFA.

Equation (9.28) provides the electron coordinate as function of time. Furthermore, this

equation can be directly related to the classical equation of motion of an electron under

the influence of the laser field and the binding potential. By finding the solutions of the
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saddle-point equations, the transition amplitude can be approximated as

cq(t) ≃
∑
s

(2πi)7/2
< ps +A(t′s)| HI(t

′
s) |φb⟩√

detS′′
c (q,ps, rs, t

′
s)

exp[−iSc(q,ps, rs, t′s)], (9.29)

where the index s runs over the relevant saddle points and detS
′′
c (q,ps, rs, t

′
s) is the

7× 7 determinant of the second derivatives of the action with respect to p, r and t′.

The situation for the standard strong-field approximation is much simpler, as we have

only one saddle-point equation which be integrated over t′ equation (9.25). In this latter

case, the saddle-point approximation for the direct ATI transition amplitude reads

cSFA(t) ≃
∑
s

(2πi)1/2
< q+A(t′s)| HI(t

′) |φb⟩√
∂2SSFA(q, t′s)/∂t

′2
exp[−iSSFA(q, t′s)]. (9.30)

9.3 Classical Equations of Motion and the Eikonal Ap-

proximation

The saddle-point equations (9.26)-(9.28) are similar to those in [188], with the difference

that we suppose that the electron is ionized by tunneling, while in [188] a short XUV

pulse provides ionization mechanism. As a result, they deal with a real ionization time

whereas in our case we have a complex ionization time, which makes the calculation more

complicated. In the literature, however, a slightly different Coulomb-corrected version

of the strong-field approximation has been applied to direct ATI [149, 189]. Therein,

the classical equations of motion of an electron under the influence of the external field

and the Coulomb potential are solved numerically. These results are used as the real

parts of r, p and t′ in a modified action including the Coulomb phase (9.15), but not

the terms (9.19) and (9.20) related to the Coulomb distortions at the ionization and

detection times. Explicitly, the authors consider the equations

dv

dτ
= −E(τ)êx − ▽rV(rL(τ)), (9.31)

where E(τ) is a linearly polarized time-dependent electric field and

dr

dτ
= v. (9.32)

Here, all the variables involved are real, and the initial condition r0 is a real tunnel exit

adapted from [192]. Considering the initial velocity v(t′) = p + A(t′); the velocity at

the detector v(t) = q + A(t) and integrating equation (9.31) in this time interval we

obtain equation (9.27) without the surface terms (the last two terms in the right hand of
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this equation). By inserting the velocities obtained from integration of equation (9.32)

in (9.31), obtain

r = r0 +

∫ t

t′
dτ [p+A(t′)]−

∫ t

t′

∫ τ

t′
dt′′▽rV(r(t′′)). (9.33)

If we approximate r(t′′) by equation (9.16) and integrate by parts with regard to ′′), we

obtain ∫ τ

t′
dt′′▽rV(rL(t

′′)) ≃ (τ − t′)▽rV(rL(τ))−
∫ τ

t′
dt′′

▽rV(rL(t
′′))

dt′′
. (9.34)

If the last term in the above equation is neglected then (9.33) will have a form similar to

the equation (9.28) without the surface terms. This latter approximation implies that

the gradient of the binding potential varies smoothly in time and can be neglected. This

is the assumption behind the Coulomb-Volkov eikonal approximation in [188] and in the

approach employed in this work.

9.4 The Tunnel Exit

An important issue is the treatment of tunnel ionization, and how to define the point in

space at which the electron reaches the continuum. This defines the initial conditions

to be implemented in the Coulomb-corrected SFA. This problem does not occur for the

SFA, as the influence of the potential is reduced to one point at r = 0.

Tunneling beyond the SFA is considerably more difficult than if one is dealing, for

instance, with laser-induced XUV ionization. In the latter case, the starting momenta

are real. In contrast, for tunneling, in principle all variables are complex. In fact, one

can only guarantee the reality of the final momentum q at the end of the pulse, as this

is the observed quantity. Our tunnel exit is chosen such that

V(r0)− r0 ·E(t′) = −Ip (9.35)

Equation (9.35) states that the electron will tunnel at the specific value r0 of the electron

coordinate such that the effective potential barrier determined by the binding potential

is equal to the binding-state energy of the electron. This equation corresponds to the

turning point condition for the binding potential in the presence of the external laser
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field. Note that, since t′ is complex, the coordinate r0 fulfilling (9.35) is expected to be

complex as well. One may now argue that the tunnel exit must be real. In fact both

[188] and [149, 189] have considered a real tunnel exit based on reference [192], which

assumes an electron starts its journey inside the potential barrier with some complex

time and by the time of tunneling the imaginary part of the time vanishes, thus the

electron is “born” with a real time in the continuum.

In our view, however, one may physically define a real tunnel exit, but in the context

of the saddle-point method the tunnel exit is associated with a complex tunneling time.

Thus, there is no guarantee that it will be real. Clearly, a complex solution for equation

(9.35) has many branches. Hence, one must chose those branches that make physically

sense. Apart from that, equation (9.35) has in principle many solutions, not all of which

correspond to a tunnel exit.

9.5 Preliminary Results and Outlook

Photoelectron spectra will be computed by employing the approach discussed in the

previous section. We will consider model atoms, bound by either short-range or long-

range potentials, under the influence of a linearly polarized monochromatic field

E(t) = E0 sin(ωt). (9.36)

We will restrict the dynamics of the problem to one or two dimensions. In the latter

case, our results will be compared to those obtained using the numerical solution of the

time-dependent Schrödinger equation. In this case, we will consider QPROP, which is

a free Schrödinger solver for atoms in intense laser field [193]. We will use a soft-core

potential

V(r) = − C√
a2 + r2

, (9.37)

where a and C have been chosen such that the energy of its ground state matches that of

hydrogen. In one or two dimensions, r(1D) = x, x ≥ 0 or r(2D) =
√
x2 + y2, respectively.

The tunnel exit is computed according to equation (9.35). We choose the tunnel exit as

(x; y) = (r0, 0). This is a reasonable assumption for a linearly polarized field, even though

the electronic wavepacket exhibits a non-vanishing width. Furthermore, we employe a

hard-core potential to compute r0, due to the fact that this provides a simple analytical

solution. The explicit expression for the tunnel exit reads
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Figure 9.1: Transition amplitude of the Coulomb-corrected strong-field approxima-
tion in above-threshold ionization in comparison to the SFA by considering the surface
terms. We consider a monochromatic field of intensity I = 1.5×1014 W/cm

2
, frequency

ω = 0.057 a.u and transverse momenta p⊥ = 0 for a model atom, for which the electron
tunnels from a ground state of energy E1g = 0.5 a.u.
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Figure 9.2: Tunneling times of the first electron, as functions of its parallel momentum
p||, for a monochromatic field of intensity I = 1.5×1014 W/cm

2
and frequency ω = 0.057

a.u, for transverse momenta p⊥ = 0. The panel on the left-hand side and on the right-
hand side give the real and the imaginary parts of the tunneling time t′, respectively,
with the blue lines show the long orbit and the red lines short orbits. In this specific
figure, we consider a model atom, for which the electron tunnels from a ground state
of energy E1g = 0.5 a.u. The dashed and solid lines correspond to the the Coulomb-

corrected S-Matrix approach and the SFA, respectively.

r0 = −
Ip +

√
I2p − 4CE0 sin(ωt′)

2E0 sin(ωt′)
. (9.38)

It is easy to show that this tunnel exit tends to infinity if the electric field vanishes,

and decreases if the field is a maximum. The computation presented here is still very

preliminary. So far the situation with the results is as follows:
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• There is a code for the one-dimensional (1D) situation which works if only the

surface terms are taken. If one includes changes along the trajectory, convergence

is still poor. The former terms, however, indicate a phase shift for quantum in-

terference patterns due to different ionization times in the yield, in comparison to

the strong-field approximation. This is shown in figure 9.1 and agrees qualitatively

with the results in [149].

• The one-dimensional calculation shows that the surface terms play an important

role. This is particularly true for the surface term close to the core. This is ex-

pected as the binding potential is dominant in this region (see figure 9.2). Further

investigation is required to find out how references [149, 189] could justify the

neglect of this term.

• What tunnel exit to take is still a mystery. However, by using equation (9.35)

for a one-dimensional Coulomb potential we have obtained four branches, two of

which can be eliminated employing physical arguments. More detailed studies of

the remaining branches are however missing.

• There are still several branches for the intermediate variables r and p in the saddle-

point equations, which must be selected employing valid physical arguments.

• Recently, we computed ATI spectra from the numerical solution of the time-

dependent Schrödinger equation employing QPROP [193]. These spectra will be

used as a benchmark. However, in order to perform a direct comparison, we must

implement a two or three-dimensional code for the approach described in this

chapter. In this context, one should note that a one-dimensional model is not

necessarily simpler to deal with. In fact, by taking a one-dimensional model we

are forcing the electron to recollide from core if its momentum changes direction.

This would imply a hard collision for which the binding potential would no longer

vary smoothly and the present approach would break down. In contrast, in a

two-dimensional model, the electron could possibly be deflected by the binding

potential without colliding. This is in fact what happens in [80], for a wide class

of trajectories.

Once the above issues are successfully dealt with, we intend to incorporate rescattering

in the ATI transition amplitude, and, finally, bring those mechanisms together in RESI.

In our view, this is a highly promising area of application for the Coulomb-corrected

approach discussed here.



Chapter 10

Summary

This thesis addresses electron-electron correlation, excitation and quantum interference

in the context of laser-induced nonsequential double ionization (NSDI). Its main empha-

sis is the recollision excitation with subsequential tunneling ionization (RESI) mechanism

of NSDI. We drive the RESI transition amplitude and compute electron momentum dis-

tributions employing the strong-field approximation and saddle-point methods. This

allows me to treat the problem analytically to a great extent. An analytical treatment is

very important in order to obtain a transparent physical picture of this process. There-

fore, we focus on potential attosecond imaging application and how RESI can be used

to retrieve structural information about the atomic and molecular wavefunctions. Apart

from that, we also address the specific issue of electron-impact ionization in diatomic

molecules.

Chapters 1 and 2 place this work in a general context, by providing an overview of

electron-electron correlation in strong laser field, and in particular of laser-induced

nonsequential double ionization. Chapter 3 focuses on the theoretical aspects of the

strong-field approximation. Starting from a general overview of the main concepts and

assumptions behind it. Subsequently, by applying the SFA, the general transition am-

plitude of NSDI is derived for both electron-impact ionization and RESI. In Chapter 4,

we briefly discuss the saddle-point methods employed in this thesis. Furthermore, it is

illustrated when the saddle-point approximation needs to be replaced by the uniform

approximation and how these two approximations relate to each other.

In Chapter 5, constraints for the parallel momentum components pn||(n = 1, 2) of elec-

trons in the plane p1∥p2∥ are determined using the saddle-point equations. The saddle-

point equations provide useful information on the momentum-space regions populated

by the RESI and electron-impact ionization mechanisms. Furthermore, the constraints

can be used as a tool for sketching the approximate shapes of the electron-momentum
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distributions. It shows that RESI mechanism can be understood as a rescattered above-

threshold ionization-like process (ATI) for the first electron, followed by direct ATI for

the second electron. The shapes of the electron momentum distributions, are determined

by the interplay between two different behaviors, associated with the collision of the first

electron and the tunneling of the second electron. The momentum region determined by

the tunnel ionization of the second electron from an excited state will be always restricted

by the direct ATI cutoff. The relevant momentum region will not change regardless of

the driving-field intensity, as this will always be a classically forbidden process. This

also implies that one may define a threshold driving-field intensity for the RESI mecha-

nism. This intensity is considerably lower than that necessary for the second ionization

potential to be overcome by the second electron, i.e., for electron-impact ionization to

occur.

Chapter 6 demonstrates that the RESI electron momentum distributions depends very

critically on the bound state wave function and the type of electron-electron interaction.

Furthermore, it shows that the bound states involved in the RESI process leave very

distinct fingerprints on the electron momentum distributions. This is particularly true

for the bound state of the second electron, prior and subsequent to excitation. In fact,

the widths of the distributions, their shapes and the number of maxima present will

strongly depend on the principal and orbital quantum numbers of the bound states

involved. More importantly, the observations in this chapter show that all distributions

encountered in this work are equally spread over the four quadrants of the p1∥p2∥ plane.

Under no circumstances have we found electron momentum distributions concentrated

only on the second and fourth quadrant of this plane, as reported in the literature

[13, 109, 112–114].

In Chapters 7 and 8, we address NSDI for diatomic molecules. In these chapters, we in-

vestigate how molecular orbital symmetry [84] and the alignment angle of the molecules

with respect to the laser-field polarization [13] affect the shapes of the electron momen-

tum distributions. Chapter 7 deals with electron-impact ionization and Chapter 7 covers

the RESI mechanism. The computations show that the electron-momentum distribu-

tions exhibit interference maxima and minima due to the electron emission at spatially

separated centres. The interference patterns survive the integration over the transverse

momenta for a small range of alignment angles, and are sharpest for parallel-aligned

molecules. Due to the contributions of transverse-momentum components, these pat-

terns become less defined as the alignment angle increases, until they disappear for per-

pendicular alignment. Explicitly, Chapter 8 demonstrates that the electron-momentum

distributions exhibit interference maxima and minima, due to the molecular orbital ge-

ometry, such as nodes of the atomic wavefunction. Furthermore, the computation of

RESI for N2 and Li2 show that the molecular orbital signature is embedded in the the
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electron momentum distributions and it reveals itself as we vary the alignment angle. As

a result, it indicates that the RESI can be an appropriate tool for retrieving information

about the molecular structure.

In Chapter 9, we illustrates the Coulomb-corrected strong-field approximation by dis-

cussing the main challenges involved in this approach. For the sake of simplicity, the

influence of the Coulomb potential on direct ATI (the simplest processes in RESI) is

investigated. The Coulomb potential influence is incorporated in a semi-analytical ap-

proach, which is constructed around the strong-field approximation. Our preliminary

results show that the surface term, which is related to the tunneling point close to the

core, influence the ATI spectra and the electron ionization times considerably. This is

expected as the binding potential is dominant in this region. This is, however, work

in progress and several technical difficulties most be overcome. Once the Coulomb-

corrected strong-field approximation of direct ATI is correctly implemented, we intend

to incorporate rescattering in the ATI transition amplitude, and, finally, bring those

mechanisms together in RESI. We expect these connections to play a major role, as,

according to our previous results, RESI is quite sensitive with regard to the internal

structure of the target involved.
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Saddle-point Approximation

This appendix illustrates the derivation of the saddle-point approximation in (4.8). For

the sake of simplicity, we start with a one-dimensional integral first for real variable and

then in the complex plane. Subsequently, we extend the derivation for a two-dimensional

integral. Finally, we provide the general equation for the multi-dimensional case in the

complex plane. The derivations provided in here, are mainly based on Dr Carla Figueira

de Morisson Faria’s lecture notes and reference [194].

The saddle-point approximation in (4.8) is derived from asymptotic expansions of Laplace-

type integrals. A one-dimensional Laplace-type integral reads

I =

∫ b

a
f(x) exp(−αs(x))dx (A.1)

When α→ ∞ and s(x) is real, the above integral decays exponentially or has nonoscil-

latory behavior. in this particular case, contour upon which this integral is computed is

the real line or a subsection of it.

Here, the asymptotic expansion does not depend on the endpoints of the integration.

Instead it depends entirely on the behavior of s(x) and f(x), in an arbitrarily small

neighborhood of their global minimum (xs) along the interval of integration. Thus, the

entire integral in (A.1) can be approximated by considering the contribution from the

vicinity of the stationary points, i.e ds(x)/dx = 0 on the integration contour. Further-

more, we assume that the integral does not have any singular point along the deformed

contour, and second derivatives of s(x), at the stationary points, are greater than zero

(s
′′
(xs) > 0). The contributions far from the extremum are negligible. Thus, the contour

can be constructed almost like a Gaussian, when we move away from the vicinity of the

stationary points. The latter correspond to maxima of the integrand, after deformation
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of the original integration manifold. We apply Taylor series expansions on s(x) about

x = xs. This leads to

s(x) ≈ s(xs)−
(x− xs)

2

2
s
′′
(xs) (A.2)

As a result, the (A.1) can be approximated as

I ≈ f(xs) exp(−αs(xs))I0 (A.3)

where

I0 =

∫ ∞

−∞
exp(−α(x− xs)

2

2
s
′′
(xs)))dx, (A.4)

and f(x) ≈ f(xs). This approximation is justifiable, since f(x) is a slowly varying func-

tion comparing to s(x). Equation (A.4) is a Gaussian integral. Thus, the approximated

integral of (A.4) will have the following format:

I ≈ f(xs)

√
2π

αs′′(xs)
exp(−αs(xs)) (A.5)

Laplace’s method can be extended further to approximate an integral in a complex

plane. Let us assume that the contour integral in (A.1) is deformed in a complex plane,

instead of the real axis, i.e.

I(η) =

∫
C
g(z) exp(ηs(z))dz (A.6)

Where η → ∞, z is a complex variable, C a fixed contour in this plane, and g(z) and

s(z) are analytic functions in some region that include C. As long as s(z) stays in its

analytical region, the value of the integral will not be affected by distorting the path.

To elaborate the analytic condition of s(z), we suppose

s(z) = u(x, y) + iv(x, y) (A.7)

where complex variable z = x+ iy. u(x, y) and v(x, y) are real functions. Since we are

dealing with an analytic function, s(z) has a well-defined derivative
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ds(z)

dz
= lim

∆z→0

s(z +∆z)− s(z)

∆z
(A.8)

In contrast to the function with real variable, ∆z can approach zero from two indepen-

dent directions (along the x axis or along the y axis). This means

∂s(x, iy)

∂x
=
∂s(x+ iy)

∂(iy)
(A.9)

In terms of u and v, this leads to Cauchy-Riemann conditions

∂u(x, y)

∂x
=

∂v(x, y)

∂y
,

∂u(x, y)

∂y
= −∂v(x, y)

∂x
(A.10)

Now, the second derivative of (A.9) will lead to a two-dimensional Laplacian equation,

in which

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
=
∂2v(x, y)

∂x2
+
∂2v(x, y)

∂y2
= 0, (A.11)

which can be written as ∇2u = ∇2v = 0.

This result implies that, one can not have simultaneous maxima and minima in x and y.

In fact, a minimum in x implies a maximum in y and vice versa. Hence, conditions A.10

lead to a saddle point in the complex plane. Furthermore, one can show that∇u.∇v = 0.

This implies that the gradients of the real and imaginary parts are orthogonal. Thus, if

we choose our contour along the steepest descent of u(x, y), i.e. along ∇u , then, along

the same contour, v is constant. Therefore, the contributions along this path are all

in phase. One should note that a constant imaginary part for s(z) does not guarantee

that the chosen path is a steepest descent. Therefore one has to be careful with steepest

ascents. In 1-D, one can choose the right contour considering above-mentioned criteria.

In practice, for higher dimensions the situation is more difficult. Thus, in the multiple

integrals computed in this work, trial-and-error has been used for finding the relevant

steepest descent path.

Based on the above discussions, the real part of s(z) in (A.6) determines the magnitude of

the integrand, and its imaginary part determines the phase of the integrand. Therefore,
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by choosing the contour integral through the saddle points along the steepest descent,

the biggest contributions to the integral are all in phase. Like the Laplace-type integral

(A.1), along this path, the integral has standard Gaussian form. In addition, the

contribution of the integral away from the saddle point can be neglected, since η → ∞.

Now, we can approximate (A.6) carrying a Taylor series expansions on s(z) about z = zs.

By following all the steps in Laplace-type integral (A.1), we will have

I(η) ≈ g(zs)

√
2π

ηs′′(zs)
exp(−ηs(zs)) (A.12)

Here, g(z) ≈ g(zs), since g(z) changes much more slowly than exp(ηs(z)).

Next, I discuss a case with two integration variables

I =

∫ ∫
f(x, y) exp(−αs(x, y))dxdy (A.13)

By applying a Taylor expansion around xs, ys ( the stationary points where first deriva-

tives of s(x, y) vanish), we will have

I ≈ f(xs, ys) exp(−αs(xs, ys))
∫ ∞

−∞

∫ ∞

−∞
exp(−αχ)dxdy (A.14)

where

χ = A(x− xs)
2 +B(y − ys)

2) + 2C(x− xs)(y − ys) (A.15)

where A = 1
2
∂2f(x,y)
∂x2

, B = 1
2
∂2f(x,y)
∂y2

and C = 1
2
∂2f(x,y)
∂x∂y at x = xs and y = ys

One can write (A.15) in matrix format of

(x− xs, y − ys)M

(
x− xs
y − ys

)
(A.16)

where M =

[
A C

C B

]

To eliminate the cross term in (A.15), we use a variable transformation to deform (A.14)

to
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I ≈ f(xs, ys) exp(−αs(xs, ys))
∫ ∞

−∞

∫ ∞

−∞
exp(−α[E1p

2 + E2q
2])dpdq (A.17)

Since M is a diagonalizable matrix, we will have

[
A C

C B

]
=

[
E1 0

0 E2

]
, with E1 = A

and E2 =
1
A(AB − C2).

The determinants of the two metrics are equal, thus detM = AB − C2 = E1E2

By using the obtained results, the Gaussian part of the integral in(A.17) can be estimated

as

I ≈ f(xs, ys) exp(−αs(xs, ys))
π

α
√
detM

(A.18)

Consequently, one can estimate a Multidimensional integral of the format (A.17) at

around a saddle point as

I(η) ≈ (
2π

η
)j/2

g(zs)√
detS′′(zs)

exp(−ηS(zs)) (A.19)

where j corresponds to dimension of the integral. However, one has to be very careful to

choose the right contour for this multidimensional integral. Using the techniques above

with some trial and error attempts could help us to find these branches. This task is

not always easy, especially when there are many branches around a given saddle point.

Whatever branches we choose, we have to make sure it makes physical sense for the

problem we are dealing with.

In the transition amplitude of NSDI, we are dealing with many saddle points. Thus,

we need to sum the contributions from all the saddles (as it is shown in 4.8). One

should note that in this thesis we use atomic units to represent all the equations. Thus,

the coefficient of the actions (3.34) and (3.42), i.e. 1/~ is set to unity. Therefore, the

assumption η → ∞ is held, since 1/~ → ∞.

The saddle-point approximation is a very powerful technique for simplification of com-

putations as it converts a multiple integrals to a simple one-dimension integral. Fur-

thermore, for the physical processes like HHG, ATI and NSDI, it provides a space-time

picture which gives us additional physical insight. For example, it allows us to investigate

the interference processes which are a purely quantum mechanical concept. However,
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this approximation is not valid when the domain of the integral contains a critical value.

In this case, the valid expansion will be the uniform approximation. It is discussed in

(4.3) and Appendix B.



Appendix B

Uniform Approximation

The standard saddle-point approximation is not valid when the domain of the integral

contains a critical value. This occurs if we are dealing with asymptotic expansions of

integrals with two nearby saddle points (coalescent saddle points), or when the saddle

points are the singularities of the integral, or when the saddle points lie at an end point of

the integral. To approximate the integral in this case, one needs to define an asymptotic

expansion which remains valid even over a domain containing these critical values. Here,

we look at a special case of the uniform approximation, which is valid for two coalescing

or nearly coalescing simple saddle points. The derivations in this appendix are mainly

based on Dr Carla Figueira de Morisson Faria’s lecture notes and reference [194]. We

will provide an adaption of the discussion in [194] and [172]. For simplicity, we will

consider an integral of the form

I(η, κ) =

∫
C
f(z) exp(ηS(z;κ))dz (B.1)

where f(z) and S(z;κ) are analytic functions in a connected domain, containing the

contour C and the end points z = κ±, with the critical value of |κ+ − κ−| = 0. By con-

sidering some reasonable criteria, we change the variable z = z(t). The transformation

is chosen such that the number of saddle points and their behaviour remain unaltered.

In addition, the new expansion φ(t, κ) should have a simpler form than S(z;κ). Thus,

one can have the simple form of

φ(t;κ) = S(z(t);κ) = −(
t3

3
− γ2t) + ρ (B.2)

We can determine γ and ρ by differentiating (B.2) with respect to t. Thus, we have
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ż =
dz

dt
= (

γ2 − t2

Sz(z;κ)
) (B.3)

To avoid any additional saddle point, ż is required to be finite and nonzero. Therefore,

we must have t = ±γ when z = ±κ. By substituting these results to (B.2), and solving

the second order simultaneous equations, we will have

γ3 =
3

4
∆S

ρ =
1

2
S (B.4)

here ∆S = S(κ+;κ) − S(κ−;κ) and S = S(κ+;κ) + S(κ−;κ). In equation (B.4) when

κ+ ̸= κ−, there are three solutions for γ. For a case γ ̸= 0, we apply L’Hospital’s rule

in (B.3) to obtain

ż2 = ∓ 2γ

Szz(κ±;κ)
); with t = ±γ and z = κ± (B.5)

In a case γ = 0 and κ+ = κ−, by applying L’Hospital’s rule twice, we will have

ż3 =
−2

Szzz(κ+;κ)
); with t = 0 and z = κ+ (B.6)

Thus, for each value of z, equation (B.2) defines three possible values of t, creating

three branches of the inverse transformation. As a result, one needs to chose the right

branch to keep the number of saddle points constant, as well as keeping their behavior

unaltered. This problem can be solved by trial and error.

Under the transformation (B.2), one can write equation (B.1) as

I(η;κ) =

∫
C
F0(t, κ) exp(ηφ(t;κ))dt+ ε (B.7)

where ε is asymptotically negligible, and

F0(t;κ) = f(z(t))
dz

dt
(B.8)
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Furthermore, we need to expand F0, in such that the derivation of the uniform expansion

will be possible. To satisfy this condition, we set

F0(t;κ) = κ0 + κ1t+ (t2 − γ2)H0(t;κ) (B.9)

with κ0, κ1 and H0 are needed to be determined.

In the transformed domain, if H0 is regular, then the last term in (B.9) vanishes at the

two saddle points t = ±γ. Therefor, we will have

κ0 =
F0(γ;κ) + F0(−γ;κ)

2

κ1 =
F0(γ;κ)− F0(−γ;κ)

2γ
(B.10)

By inserting (B.9) and (B.2) into (B.7), we obtain

I(η;κ) ∼
∫

exp(ηρ) exp(−η( t
3

3
− γ2t))(κ0 + κ1t)dt+W0(η;κ) (B.11)

here

W0(η;κ) ∼
∫

exp(ηρ)(t2 − γ2)H0(t;κ) exp(−η(
t3

3
− γ2t))dt (B.12)

The first term of (B.9) can be expressed in terms of the Airy function Ai(x) and its

derivative [194]. W0 is integrated by parts. This leads to

I(η;κ) ∼ 2πi exp(ηρ)[
κ0

η1/3
Ai(η2/3γ2) +

κ1

η2/3
Ai′(η2/3γ2)] +W1 (B.13)

with

W1(η;κ) =

∫
exp(ηρ)H1(t;κ) exp(−η(

t3

3
− γ2t))dt (B.14)

and H1(t;κ) =
d
dtH0(t;κ)

Equation (B.14) can be computed iteratively, as it is an integral of the form (B.7). It can

be proved that the asymptotic expansion (B.13) is uniformly valid, when the distance

between two saddle points κ+ − κ− is small.
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For our concern problem, H0 is regular in the transformed domain. Thus, the second

term in (B.13) will be neglected.

In (B.13), the Airy function can be written in terms of Bessel functions

Ai(−z) =

√
z

3
[J1/3(

2

3
z3/2 + J−1/3(

2z3/2

3
)] (B.15)

A′i(z) =

√
z

3
[J−2/3(

2

3
(−z)3/2 − J2/3(

2

3
(−z)3/2] (B.16)

By using these relationships and (B.4), we will have

I(η;κ) ∼ 2πi exp(ηρ)

{1
3
(−1)1/2γκ0[J1/3((−1)3/2η∆S) + J−1/3((−1)3/2η∆S)]

1

3
γ2κ1[J−2/3((−1)3/2η∆S)− J2/3((−1)3/2η∆S)]} (B.17)

Here (−1)1/2 = exp(iπ+2mπ)1/2 where m is an integer. Here, there are many branches,

which is needed to be tested. By choosing the branch as (−1)3/2 = −i, and using (B.5),

(B.8) and (B.10), we will have

I(η;κ) ∼
√

2πiη∆S/3 exp(ηS + iπ/4)

{( iA1 −A2

2
)[J1/3(−iη∆S) + J−1/3(−iη∆S)]

(
iA2 −A1

2
)[J−2/3(−iη∆S)− J−2/3(−iη∆S)]} (B.18)

with

A1 =
√

2π/η
f(γ;κ−)√
Szz(κ−;κ)

and A2 =
√

2π/η
f(γ;κ+)√
Szz(κ+;κ)

(B.19)

If two saddle points are well apart (large ∆S), then the saddle-point approximation of

(A.12) is recovered from the uniform approximation (B.18). If the Bessel functions are

expanded asymptotically

J±ϑ(z) ∼
√

2/zπ cos(z ∓ ϑπ/2− π/4) (B.20)
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In the limit of large ∆S, by using the expansion (B.20), equation (A.12) is recovered

from (B.18).



Appendix C

General Expressions for RESI

Prefactors Employing Hydrogenic

States

In this appendix, we provide the general expressions for the prefactors employed in

this work related to hydrogenic states. We will make no simplifying assumption on

the initial states of the first and second electron, and on the excited state to which

the second electron is promoted, apart from the fact that they are given by hydrogenic

wavefunctions. In order to compute the prefactors, we will employ the expansion

e−iq·rα = 4π
∞∑
l=0

l∑
m=−l

(−i)ljl(qrα)

Y m
l (θqα , φqα)

[
Y m′
l′ (θα, φα)

]∗
, (C.1)

where q denotes a generic momentum, rα the coordinate of the αth electron, and jl(·)
the spherical Bessel functions of the first kind. This expression will be both used in the

derivation of Vp2e and Vp1e,kg, together with the orthogonality relation∫ [
Y m′
l′ (θα, φα)

]∗
Y m
l (θα, φα)dΩ = δll′δmm′ , (C.2)

where Ω denotes the solid angle.

For the former prefactor, equation (3.43) reduces to

Vp2e ∼
∫∫

exp[−i(p̃2(t) · r2)]Rnl(r2)Y m
l (θ2, φ2)r2dr2dΩ

= 4π(−i)lY m
l (θp̃2 , φp̃2)I1, (C.3)
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with

I1 =
∫ ∞

0
r2Rnl(r2)jl(p̃2(t)r2)dr2. (C.4)

Similarly, equation (3.44) reads

Vp1e,kg ∼ V12(p1 − k)I2, (C.5)

with

I2 =

∫
d3r2e

i(k−p1)·r2Rnele(r2)
[
Y me
le

(θ2, φ2)
]∗

Rnglg(r2)Y
mg

lg
(θ2, φ2), (C.6)

where the indices g and e in the principal, orbital and magnetic quantum numbers refer

to the ground and excited states, respectively.

We will now compute the radial integrals I1 and I2 explicitly. For that purpose, let us

consider a generic Hydrogenic radial wavefunction

Rnl(r) = Cnlr
l exp[−

√
2Enr]

×
n−l−1∑
ν=0

2ν(−1)ν+1(
√
2En)

ν

ν!(n− l − 1− ν)!(2l + 1 + ν)!
, (C.7)

with

Cnl = −
{
(2
√
2En)

3+2l(n− l − 1)!

2n [(n+ l)!]3

}1/2

[(n+ l)!]2 . (C.8)

In the above-stated equations, En denotes the energy of the bound state to be studied,

i.e., n = 2g or n = 2e for the ground or excited states of the second electron, respec-

tively. Since we are performing a qualitative analysis, we will concentrate mostly on

the functional form of Rnl(r). The integral I1 present in the prefactor Vp2e can then be

written as

I1 ∝
n−l−1∑
ν=0

(−1)ν+12ν−1−l(
√
2En)

−2−l

ν!(n− l − 1− ν)!(2l + 1 + ν)!

Γ [2 + ν + 2l]

Γ [3/2 + l]

×2F1(1 + l +
ν

2
,
3 + ν

2
+ l,

3

2
+ l,− [p̃2(t)]

2

2Ee
). (C.9)

The integral I2 in Vp1e,kg is slightly more involved. It may be explicitly written as

I2 = 4π

∞∑
l=0

l∑
m=−l

(−i)lY m
l (θqα , φqα)I2RI2Ω, (C.10)



Appendix C. General Expressions for RESI Prefactors Employing Hydrogenic States151

where

I2R =

∫ ∞

0
r22Rnglg(r2)Rnele(r2)jl(κr2)dr2 (C.11)

and

I2Ω =

∫
Y m
l (θ2, φ2)

[
Y me
le

(θ2, φ2)
]∗
Y
mg

lg
(θ2, φ2)dΩ (C.12)

give the radial and angular dependencies of such prefactors, respectively. The explicit

expression for I2 is then

I2 = 4π

lg+le∑
l=|lg−le|

l∑
m=−l

(−i)l(−1)meY m
l (θκ, φκ)

√
(2lg + 1) (2le + 1)

4π (2l + 1)

×⟨lg, le, 0, 0 |l, 0⟩ ⟨lg, le,mg,−me |l, 0⟩ I2R. (C.13)

The radial integral I2R is proportional to

I2R ∝
ng−lg−1∑
νg=0

ne−le−1∑
νe=0

(−1)νe+νg+12νe+νg−1−l(
√

2E2g)
νg(

√
2E2e)

νe [ζ(E2g, E2e)]
−3−νe−νg−le−lg

νe!νg!(ne − le − 1− νe)!(ng − lg − 1− νg)!(2le + 1 + νe)!(2lg + 1 + νg)!

Γ [2 + λ]

Γ [3/2 + l]

(
κ2

ζ2(E2g, E2e)

)l/2
2F1(

3 + λ

2
,
4 + λ

2
,
3

2
+ l,− κ2

ζ2(E2g, E2e)
), (C.14)

where λ = νe + νg + le + lg + l and ζ(E2g, E2e) is defined according to equation (6.6).

Note that the terms in equation (C.13) are only non-vanishing if m = mg − me and

l1 + l2 − l is even.

In the present work, apart from the case in which only s states are involved and the

angular integrals are constant, one may identify the following cases. First, the second

electron may be initially in a p state and be excited to an s state. In this case, l = lg = 1

and le = 0. Second, if the electron is initially in an s state and is excited to a p state,

then l = le = 1 and lg = 0. Finally, if the second electron suffers a transition from a p

state to another p state, in principle l = 0, 1, 2. Due to the constraints upon l for the

Clebsch-Gordan coefficients, however, only the terms with l = 0, 2 will survive. Apart

from that, the constraint upon m will impose further restrictions for me and mg. The

above-stated expressions, however, are applicable to generic hydrogenic states.



Appendix D

Interference of Electron

Momentum Distributions

In this appendix, we provide an argument for neglecting the interference terms in equa-

tion (3.49). Explicitly, we wish to show that∫∫
|MR +ML|2d2p1⊥d2p2⊥ ≃

∫∫
|MR|2 + |ML|2d2p1⊥d2p2⊥ (D.1)

The integrand in each of these transition amplitudes can be written as Fξ(p1,p2, t, t
′, t′′,k) exp[iSξ],

where Fξ(p1,p2, t, t
′, t′′,k) is the product of all the prefactors involved, and ξ refers to the

left or right peak. The corresponding electron orbits are displaced by half a cycle. Since

the first and the second electron tunnel near A(t′′) = A(t) = 0, FR(p1,p2, t, t
′, t′′,k) ≃

FL(p1,p2, t, t
′, t′′,k) = F(p1,p2, t, t

′, t′′,k). For a linearly polarized monochromatic

field, the action related to the orbits with the same momenta p1,p2will be SL =

α(p1,p2, t, t
′) + SR. Thereby,

α(p1,p2, t, t
′) = α0(p1∥, p2∥, t, t

′) +
p2
1⊥
2

+
p2
2⊥
2
,

where

α0(p1∥, p2∥, t, t
′) = 2Up +

p21∥

2
+
p22∥

2
+ E1g + E2g (D.2)

−2A0

ω

[
p1∥ sin

[
ωt′
]
+ p2∥ sin [ωt]

]
.

Hence,

|MR +ML|2 ≃ |exp[iSR]|2F(p1,p2, t, t
′, t′′,k)

×[2 + 2 cos[
α0

2
+

p2
1⊥
4

+
p2
2⊥
4

]]. (D.3)
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The first term in equation (D.3) corresponds to the incoherent sum, while the sec-

ond term gives the interference condition. If the prefactors are slowly varying their

dependence with regard to the transverse momentum can be neglected to first approxi-

mation. Therefore, the dependence with regard to p2
n⊥ (n = 1, 2) is mainly determined

by the trigonometric function coming from the interference between the actions SR and

SL. Upon integration over p21⊥ and p22⊥, they cause the interference terms to vanish.

In practice this means that the contributions from the coherent term are small. If

F (p1,p2, t, t
′, t′′,k) = const, this argument is exact.



Appendix E

Atomic Units

In this appendix, we provide the atomic units used in this thesis.

1. Mass(m): a.u. = 9.1× 10−31 kg (electron mass)

2. Length(r0): a.u. = ~2/me2 = 0.53× 10−10 m (Bohr radius)

3. Charge(e): a.u. = 1.602× 10−19 C (electron charge)

4. Frequency(ω0): a.u. = 4.13× 10−15 s−1

5. Planck’s constant/2π: a.u. = 6.5× 10−22 Mev

6. Energy(E0): a.u. = e2/r0 = 27.2 eV

7. Intensity (I0): a.u. = ϵ0ce
2/2r20 = 3.51× 1016 W/cm2
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wisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke,
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[183] S. Odžak and D. B. Milošević. Phys. Rev. A, 79:023414, (2009).

[184] E. Hijano, C. Serrat, G. N. Gibson, and J. Biegert. Phys. Rev. A, 81:041401,

(2010).

[185] T. Brabec, M. Y. Ivanov, and P. B. Corkum. Phys. Rev. A, 54:R2551, (1996).

[186] A. Fring, V. Kostrykin, and R. Schrader. J. Phys. B, 29:5651, (1996).

[187] D. Bauer, D. B. Miloevi, and W. Becker. Phys. Rev. A, 72:023415, (2005).

[188] O. Smirnova, A. S. Mouritzen, S. Patchkovskii, and M. Y. Ivanov. J. Phys. B, 40:

F197, (2007).

[189] S. V. Popruzhenko, G. G. Paulus, and D. Bauer. Phys. Rev. A, 77:053409, (2008).

[190] H. A. Kramers. Collected Scientific papers, North-Holland:Amsterdam, (1956).

[191] W. C. Henneberger. Phys. Rev. Lett., 21:838, (1968).

[192] A. M. Perelomov, V. S. Popov, and M. V. Terentev. Sov. Phys. JETP, 24:207,

(1967).

[193] D. Bauer and P. Koval. Comp. Phys. Comm., 174:396, (2006).

[194] N. Bleistein and R. Handelsman. Asymptotic Expansions of Integrals, Dover Pub-

lications, Inc.:New York, Section 2, (1986).


